DEPARTMENT OF SURVEYING AND GEOINFORMATICS SCHOOL OF ENVIRONMENTAL TECHNOLOGY

FEDERAL UNIVERSITY OF TECHNOLOGY MINNA

1ST SEMESTER EXAMINATION FOR 2018/2019 SESSION

COURSE CODE/TITTLE SVG 214(SURVEY INSTRUMENTATIONS)

INSTRUCTION: ANSWER ALL QUESTIONS

TIME ALLOWED 1 HOUR 30 MIN

MATRIC NUMBER

by field observation.

THE THE THE PLANT	
. A Travers is a	whose end have been marked
in the field and whose	have been determined

2. Given the field book below from a traverse observation, determine the horizontal Angel, vertical Angle and slop correction. Make a clear sketch in the space provided and show all workings clearly below.

STA	SIGHT	FACE	HORZ.CIRCLE	HORIZ	VERT.	VER	DIST	REMARK
				ANGLE	CIRCLE	T.		
					RDG	ANG		
						LE		
	A	L1	023 ⁰ 14' 13''					
В	C .	L2	223° 09' 54''		90° 12'		212.24	
			2		13"			
	С	R2	204° 22' 37''		270° 12'			
	300		41		15"			
	A	R1	004° 27' 01''					

3.	Before embarking on any survey observation,	after the	instrument	is set up
	adjustment must be carried ou	ıt.		

MATRIC N	UMBER_							
4. To ascer	tain the in	tegrity of	control po	ints,	tes	st is carrie	d out.	
5. For effect	ctive perin	neter trave	rse, with a	theodolite	e a	1	minimum cont	rol i
required								
6. Plans are	e in		are in		scale			
							_, Azimuths a	re
referenc	ed to the _							
8. Theodol	ites directl	y measure				_, the con	npass measure	S
§		_						
9. Total sta	ation is a co	ombinatio	n of		ar	ıd		
11. The end	product o	f Tacheom	etric surv	ey is		a	nd	
12. Abney le	evel is use	d for meas	suring					
13. Conside	r the leveli	ing field b	ook given	below and	compute	the reduc	ed level at eac	h
station a	ccordingly	/ .						
Station	B.S	I.S	F.S	Raise	Fall	R.L	remark	
	2.228							
		1.606						
	2.090		0.988					
		2.864						
	0.602		1.262					
	1.044		1.982					
-		ā	2.684					
Sum		6						
Chechk	:							
14. During	leveling ex	ercise by	200L stud	ents		was used	to check the	
	y of the ob							
15. TBM in	F)							
						stations tl	neodolite trave	ers.
18. Objects						ever of the second second		
called			F					

19. Make a sketch and label the following compass observation below:

MATRIC NUMBER	
---------------	--

Line	Fore Bearing
AB	79 ⁰ 15'
BC	1770 30'
CD	2700 00'
DA	350° 10'

20.	in travers field book, a single set of observation at one traverse station is recorded on
	lines
21.	Four major information contained in a traverse field sheet include:,
	, and
22.	A booker mistakenly writes 25° 15' 22" instead of 55° 17' 22". Illustrate how he is to
	effect the corrections
23.	The two kinds of travers are

24. Consider the level field book below, using height of instrument method; give height of P,Q and R

B.S	I.S	F.S	H.I	R.L	REMARK
1.622			?	432.384	TBM
?		0.354	435.526	?	
2.032	E-	1.780		?	
	2.362				P
0.984		1.122			Q
1.906		2.824			
		2.036			R
	100				

MATRIC	NUMBER		
	701000000000000000000000000000000000000	 	

25. Consider the table below and state if the following components present (P) or absent (A) in the Dumpy, Tilting or Automatic level.

	DUMPY	TILTING	AUTOMATIC
Spirit bubble	A	?	?
Spirit Level	?	P	A
Compensator	A	?	?

26. The surv	ey instrument that uses ele	ectromagnetic wave to car	ryout distance measure	ement
is known	as			
27. The surv	ey instrument that acquire	s signals from satellites is	called	
28	is an instrume	ent used to measure depth	of water.	
29. The vehi	cle that carries camera for	photogrammetric survey	operation is	
called				
ANSWER T	RUE OR FALSE FOR TH	HE QUESTIONS BELOW	V	
30. The first	reading on a leveling set	up is called foresight		
31. The mos	t recent survey equipment	s presently in use is the G	PS	
32. The last	reading on a leveling setu	p is called foresight		
33. Whole ci	ircle bearings are not the s	ame as Azimuths		
34. A closed	traverse may be mathema	atically close but geometri	cally opened	

37. Systematic errors can also be called cumulative errors 38. A plan with a large scale is a recce diagram_____

36. Gross errors are not same as mistakes

40. The whole simple bearing of N 1780 05' E is 2780 05'

35. Pillars that are used to demarcate boundaries are not called beacons

39. The whole circle bearing of N 78° 05' E is 178° 05'_