FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA SCHOOL OF PHYSICAL SCIENCES DEPARTMENT OF GEOLOGY

FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BTech (GEOLOGY), 2015/2016 SESSION

COURSE:

GEL 513 (APPLIED GEOCHEMISTRY)

UNIT:

3

DATE: 11th April, 2016.

Time Allowed: 21/2 Hours

Instructions: Answer question 1 and any 3 other questions.

- Q1. (a) Write explanatory notes on the terms anomaly, threshold and background.
 - (b) Using the data in Table 1 below, plot a frequency distribution curve and use it to identify the threshold, background and anomalous values.
 - (c) Explain two other methods of defining the threshold concentration in geochemical prospecting.

Table 1 Frequency distribution of the log10 of an element in soil

Log Concentration	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0
Frequency	5	12	25	35	50	38	8	3	5	12	8	5	1

- Q2. (a) List and explain five factors that affect the mobility of elements in low temperature geochemical environments.
 - (b) Give a classification of secondary dispersion patterns based on their geometry and relationship with the ore body.
 - (c) Explain the importance of provenance in soil geochemical prospecting.
- Q3. (a) Explain why anomalous stream sediments may not necessarily be accompanied by anomalies in the water with which they are in contact.
 - (b) With the aid of a well labelled diagram, explain how drainage geochemical survey is carried out.
 - (c) Briefly explain how you can distinguish between direct chemical precipitation and mechanical erosion and deposition in streams.
- Q4. (a) Explain in detail the term trace element.
 - (b) Outline the factors controlling the partition coefficient (D) of trace elements during magma crystallization.
 - (c) Explain the following observations made from chemical analyses of a suite of rocks.
 - (i) High concentration of Ni and Cr (ii) Declining concentrations of Ni, Co and Cr (iii) Declining Sr concentration.
- Q5. (a) i) Explain the factors that influence the magnitude of stable isotope separation.
 - ii) List three methods through which stable isotope separation factors can be obtained.
 - (b) Write an equation for determining the ratio (δ) of ¹⁸O (∞) in a carbonate sample.
 - (c) i) What are the applications of stable isotope geochemistry?
 - ii) In the deuterium method for dating groundwater, why is it important to use standards obtained before the 1960s?
- Q6. Enumerate and explain various applications of geochemistry in solving human problems.