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ABSTRACT 

This thesis presents mathematical model of unsteady laminar flow of an incompressible 

viscous fluid through a channel with slip at the cold plate in the presence of viscous energy 

dissipation. The partial differential equations governing the phenomenon were non-

dimensionalized using some dimensionless quantities. The dimensionless coupled non-

linear partial differential equations were solved using harmonic solution technique by 

transforming into ordinary differential equations. The results obtained were presented 

graphically and discussed. From the results obtained, it was observed that increase in Peclet 

number, Eckert number, Thermal radiation parameter, Grashof thermal number and term 

due to thermal radiation increases the temperature profiles and increase in Hartmann 

number, Sunction/Injection parameter and Reynolds number leads to decrease in the 

temperature profile. Increase in the Sunction/Ijection parameter and Kinematic viscosity 

reduces the velocity profile and increase in the Reynold number increases the velocity 

profile. 

 

 

 

 

 



8 
 

 

 

 

 

 

 

 

 

TABLE OF CONTENTS 

Content                                                                                                                 Page 

Cover Page                                                                                                        i 

Title Page                                                                                                         ii 

Declaration          iii 

Certification          iv 

Dedication          v 

Acknowledgements         vi 

Abstract          vii 

Table of Contents         viii 

List of Figures          x 

List of Tables          xi 



9 
 

CHAPTER ONE 

1.0 INTRODUCTION        1 

1.1 Background of the Study       1 

1.2 Statement of the Research Problem      2 

1.3 Aim and Objectives of the study      2 

1.4 Significance of the Study       3 

1.5 Scope and Limitations of the Study      3 

1.6 Definition of Terms        4 

CHAPTER TWO 

2.0 LITERATURE REVIEW       6 

2.1       Review of Related Literature       6 

2.2 Summary of Review and Gaps to Fill      11 

CHAPTER THREE  

3.0 MATERIALS AND METHODS      12 

3.1 Model Formulation        12 

3.2 Non-Dimensonalisation       23 

3.3 Methods of Solutions        27 

3.3 Skin-friction of the Fluid Velocity      44 

3.5 Nusselt-number of the Temperature of the Fluid    44 

CHAPTER FOUR 

4.0 RESULTS AND DISCUSSION      45 

4.1  Results               45 

4.2 Discussion of Results        57 



10 
 

CHAPTER FIVE 

5.0 CONCLUSION AND RECOMMENDATION    60 

5.1      Conclusion          60 

5.2      Recommendation        60 

5.3 Contributions to Knowledge        61 

REFERENCES         62 

 

 

 

 

 

 

LIST OF FIGURES 

Figure           Page 

4.1 Effect of Peclet number ( )eP  on velocity ( ),u y t  against distance  47 

4.2 Effect of Peclet number ( )eP  on temperature ( ),y t against distance 47 

4.3 Effect of Hartman number ( )aH on temperature ( ),y t  against distance 48 

4.4 Effect of Suction/Injection parameter
 
( )S on velocity ( ),u y t  against  48 

distance  

4.5 Effect of Suction/Injection parameter
 
( )S on temperature ( ),y t    49 



11 
 

against distance   

4.6 Effect of Eckert number ( )cE on velocity ( ),u y t  against distance  49 

4.7 Effect of Eckert number ( )cE on temperature ( ),y t  against distance 50 

4.8 Effect of Reynolds number
 
( )eR on temperature ( ),y t  against distance 50 

4.9 Effect of kinematic viscosity
 
( )v  on velocity ( ),u y t  against distance 51 

4.10 Effect of Grashof thermal number ( )rG  on velocity ( ),u y t against  51 

distance 

4.11 Effect of Grashof thermal number ( )rG  on velocity ( ),u y t  against 52 

 distance 

4.12 Effect of term due to thermal radiation
 
( ) on temperature ( ),y t   52 

 against distance 

4.13 Effect of Thermal radiation parameter ( )aR on temperature ( ),y t   53 

 against distance. 

4.14 Effect of time ( )t on velocity ( ),u y t  against distance            53 

4.15 Effect of time ( )t on temperature ( ),y t  against distance   54 

LIST OF TABLES 

Table           Page 

4.1.  Numerical values of skin-friction coefficient at the plate 0y =  for   55 

 various values of physical parameters  

4.2. Numerical values of Nusselt number at the plate 0y =  for various   56 

 values of physical parameters 



12 
 

 

 

  

 

 

 

 

CHAPTER ONE 

1.0                     INTRODUCTION 

1.1 Background to the Study 

The study of oscillatory flow of an electrically conducting fluid through a porous channel 

saturated with porous medium is important in many physiological flows and engineering 

applications such as Magneto-hydrodynamic (MHD) generators, arterial blood flow, 

petroleum engineering and many more. Oscillatory flow is a periodic flow that oscillates 

around a zero value. Oscillatory flow is a single swing or movement in one direction of an 

oscillating body. They are generally used in the literature to describe the flows in which 

velocity or pressure or both depend on time. Oscillatory flow is always important for it has 

many practical applications for example in the aerodynamics of helicopter rotor or in 

fluttering airfoil and also in a variety of bioengineering problems (Baba et al., 2020). 
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The effect of heat transfer on an oscillatory flow of an electrically conducting fluid in 

vertical media is encountered in a wide range of engineering areas, science and technology 

such as MHD power generators, plasma studies, nuclear reactor, geothermal energy 

extraction, electromagnetic propulsion, the boundary layer control in the field of 

aerodynamics. It also has numerous industrial applications in molten iron flow, recovery 

extraction of crude oil, electrostatic precipitation, petroleum industry and polymer 

technology (Mehta et al., 2020). 

Flow of conducting fluid in external magnetic field produce a variety of new effects, which 

are not realized in usual hydrodynamics. MHD analyzes these phenomena. It also studies 

the arising of a flow of conducting fluid due to the current passing through the fluid (so-

called electrically induced vortex-type flows). Eclectromagnetic methods of action on 

electrically conducting medium are mostly used both in technical devices such as pump, 

flow meters, generators and industrial processes in metallurgy and material processing. 

Another common application of MHD in metallurgy is MHD separation that is used for 

electromagnetic removal of non-metalic inclusions from melts and metal extraction from 

Oxides i.e. MHD is used for cleaning liquid metals of impurities as well as for the 

separation of multiphase systems into their components (Herman and Yeshajahu, 1993). 

1.2 Statement of the Research Problem 

The study of oscillatory flow of an electrically conducting fluid through a porous channel 

saturated with porous medium is important in many physiological flows and engineering 

applications such as magneto-hydrodynamic (MHD) generators, arterial blood flow, 

petroleum engineering and many more. Therefore, investigation of oscillatory flow through 
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porous channel is important for improving the existing industrial processes and for 

developing new MHD devices. 

1.3 Aim and Objectives of the Study 

1.3.1 Aim 

The aim of this research work is to investigate the effect of viscous energy dissipation on 

oscillatory flow through a porous medium. 

1.3.2 Objectives 

The objectives of this study are to: 

i. Formulate a model for the oscillatory flow through a porous medium with 

viscous energy dissipation. 

ii. Obtain the analytical solution of the model using harmonic solution 

technique. 

iii. Provide the graphical representation of the system responses. 

iv. Analyses the result obtained. 

1.4.1 Significance of the Study 

Oscillatory flow of an electrically conducting fluid through a porous channel saturated with 

porous medium is important in many physiological flows and engineering applications such 

as magneto-hydrodynamic (MHD) generators, arterial blood flow, petroleum engineering 

e.t.c. Magnetohydrodynamics (MHD) finds its application in meteorology, solar physics, 

geophysics and motion of the earth core. MHD flow have also significant applications in 

the  field of planetary magnetospheres, aeronautical plasma flows, chemical engineering 
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e.t.c which arises to the use of Partial Differential Equations (PDE) to model  these physical 

phenomena. Based on this, a mathematical model to analyse effect of viscous energy 

dissipation on oscillatory flow through a porous medium using harmonic technique was 

presented. 

1.5 Scope and Limitation 

1.5.1 Scope 

The scope of this research work is to study the governing equations by providing analytical 

solution using harmonic solution method for the analysis of oscillatory flow through a 

porous medium with viscous energy dissipation. 

1.5.2 Limitation 

This research work is limited to the mathematical study of oscillatory flow through a 

porous medium with viscous energy dissipation. 

1.6 Definition of Terms 

Convection: This is heat transfer by mass motion of fluid such as air or water when the 

heated fluid is caused to move away from the source of heat, carrying energy on it. 

Compressible fluid: This is the one in which the fluid density changes when it is subjected 

to high pressure-gradients. 

Electrodynamics: The branch of mechanics concerned with the interaction of electric 

currents with magnetic fields or with other electric currents. 
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Fluid: A substance that has no fixed shape and yield easily to external pressure, either gas 

or liquid. 

Heat transfer: Exchange of thermal energy between physical systems. The rate of heat 

transfer is dependent on the temperature of the system and the properties of the intervening 

medium through which the heat is transferred. 

Incompressible fluid: Fluid whose volume or density does not change with pressure. 

Magnetic Field: Region around a magnetic material or a moving electric charge within 

which the force of magnetism acts. 

Magnetism: A physical process produced by the motion of electric charge, which results in 

attractive and repulsive forces between objects. 

Mathematical Modelling:  A representation of a system, process or relationship in a 

mathematical form in which equations are used to simulate the behavior of the system or 

process under study. 

Order: Order of a differential equation is the order of the highest derivative involved in the 

equation. 

Ordinary Differential Equation (ODE):  An equation containing a single independent 

variable. 

Partial Differential Equation (PDE): An equation containing two or more independent 

variables. 
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Unsteady flow: Flow in which quantity of liquid flowing per second is not constant, that is, 

if at any point in the fluid, the conditions change with time. Unsteady flow is a transient 

phenomenon. 

Steady flow: A flow of fluid is steady if its velocity, pressure and all the numerical values 

relating to its substance (e.g. density and viscosity) are independent of time at every point 

in the flow field. 

Viscosity: Measure of fluids resistance to gradual deformation by shear stress or tensile 

stress. It is the friction between the molecules of fluids. 

Viscous:  A thick, sticky consistency between solid and liquid. 

 

 

CHAPTER TWO 

2.0          LITERATURE REVIEW 

2.1 Review of Related Literatures 

The study of oscillatory fluid flow and heat transfer in porous medium with inclined 

magnetic field has been carried out by several authors like: Makinde and Aziz (2010) who 

analyzed MHD mixed convection from a vertical plate embedded in a porous medium with 

a convective boundary condition. 

Several authors have studied the flow and heat transfer in oscillatory fluid problems. To 

mention just a few, Makinde and Mhone (2005) investigated the forced convective MHD 
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oscillatory fluid flow through a channel filled with porous medium, and analyses were 

based on the assumption that the plates are impervious. In a related study, Mehmood (2007) 

investigated the effect of slip on the free convective oscillatory flow through vertical 

channel with periodic temperature and dissipative heat. In addition, Chauchan and Kumar 

(2011) studied the steady flow and heat transfer in a composite vertical channel. Palani and 

Abbas (2009)  investigated the combined effects of magneto-hydrodynamics and radiation 

effect on free convection flow past an impulsively started isothermal vertical plate using the 

Rosseland approximation. Hussain et al. (2010) presented analytical study of oscillatory 

second grade fluid flow in the presence of a transverse magnetic field and many more. In 

all the studies above, the channel walls were assumed to be impervious. This assumption 

was not valid in studying flows such as blood flow in miniature level where digested food 

particles were diffused into the bloodstream through the wall of the blood capillary. 

Umavathi et al. (2009) investigated the unsteady flow of viscous fluid through a horizontal 

composite channel whose half width was filled with porous medium. Ajibade and Jha 

(2010) presented the effects of suction and injection on hydrodynamics of oscillatory fluid 

through parallel plates. Ajibade and Jha (2012) extended the problem to heat 

generating/absorbing fluids in and the effect of viscous dissipation of the free convective 

flow with time dependent boundary condition was investigated. Adesanya and Makinde 

(2012) further investigated the effect of radiative heat transfer on the pulsatile couple stress 

fluid flow with time dependent boundary condition on the heated plate. It is well known 

that the no-slip condition is not realistic in some flows involving Nanochannel, micro-

channel and flows over coated plates with hydrophobic substances. In view of this, 
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Adesanya and Gbadeyan (2010) studied the flow and heat transfer of steady non Newtonian 

fluid flow noting the fluid slip in the porous channel. 

Vieru and Rauf (2011) obtained the exact solutions of Stokes flows for a Maxwell fluid 

whereas Vieru and Zafar (2013) recently investigated some Couette flows of a Maxwell 

fluid. Cookey et al. (2010) contributed to MHD oscillatory Couette flow of a radiating 

viscous fluid in a porous medium with periodic wall temperature. Makinde and Chinyoka 

(2010a) discussed MHD transient flows and heat transfer of dusty fluid in a channel with 

variable physical properties and Navier slip condition. A numerical investigation of 

transient heat transfer to hydromagnetic channel flow with radiative heat and convective 

cooling has been carried out by Makinde and Chinyoka (2010b). Gireesha et al. (2010) 

analyzed unsteady flow and heat transfer of a dusty fluid through a rectangular channel 

under the influence of pulsatile pressure gradient and uniform magnetic field. Prakash et al. 

(2011) investigated MHD free convective flow of a viscoelastic (Kuvshinski type) dusty 

gas through a porous medium induced by the motion of a semi-infinite flat plate under the 

influence of radiative heat transfer. 

Zubi, (2018) studied MHD and mass transfer of an oscillatory flow over a vertical 

permeable plate in a porous medium with chemical reaction. He considered a two-

dimensional, unsteady, laminar non-Darcian mixed convection flow of an incompressible, 

viscous, electrically conducting fluid. He applied a magnetic field of strength vertically to 

the sufface, neglecting the effect of induced magnetic field. 

Mansour et al. (2007) studied the free convection flow of micropolar fluid in slip flow 

regime through porous medium with periodic temperature and concentration. (El-Hakiem 

2000) analyzed thermal radiation effects on transient, two-dimensional hydromagnetic free 
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convection along a vertical surface in a highly porous medium using the Roseland diffusion 

approximation for the radiative heat flux in the energy equation, for the case where free- 

stream velocity of the fluid vibrates about mean constant value and the surface absorbs the 

fluid with constant velocity. 

Fetecau et al. (2021) analysis maxwell fluid flow through a porous plate channel induced 

by a constant accelerating oscillating wall. They considered an incompressible fluid at rest 

in a porous medius and used finite fourier sine transform to establish exact expressions for 

the dimensionless velocity and the shear stress fields corresponding to the two different 

motions of incompressible fluid. 

Hamza et al. (2011) investigated unsteady heat transfer to MHD oscillatory flow through a 

porous medium under slip condition. They investigated the effects of slip condition, 

transverse magnetic field and radiative heat transfer to unsteady flow of a conducting 

optically thin fluid through a channel filled with porous medium. Exact solution of the 

governing equations for fully developed flow was obtained in closed form. 

Kulshretha and Puri (1981) had investigated the couette flow of a dusty gas due to an 

oscillatory motion of the plate. The time dependent plate and transient effects had been 

included. The dusty gas contained between two parallel plates was disturbed by the motion 

of the lower plate with an arbitrary velocity ( )F t . When ( )F t  contained a factor of the 

type ( )exp{ }i t − − ., two distinct types of waves were generated, one of which was 

oscillatory and the other was non-oscillatory which disappears for 0 = . Reflections of 

these waves were studied and graph for the wave speeds were presented. Long time 
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approximations for this type of ( )F t  were evaluated and steady state solutions were 

obtained for ( )F t  of the type ( )exp i . 

Kodi and Mopuri (2021) studied unsteady MHD oscillatory casson fluid flow past an 

inclined vertical porous plate in the presence of chemical reaction with heat absorption and 

soret effects. They perform unsteady hydrodynamic flow over an inclined plate embedded 

in a porous medium with soret-alligned magnetic field and chemical reaction. 

Olayiwola (2016) presented an analytical method for studying chemically reacting flow in a 

laminar premixed flame of carbon monoxide/oxygen mixture in the region of stagnation 

point its result show that velocity increased as prandtl number increased, Biot number 

decreased the fluid velocity and enhanced the species concentration and flame temperature. 

Krsihna et al. (2018) discussed heat and mass transfer on unsteady MHD oscillatory flow 

of blood through porous arteriole. They developed a mathematical model for unsteady state 

situations using slip conditions, analytical expressions were obtained and computationally 

discussed with respect to the non-dimensional parameters. 

Falade et al. (2016) studied MHD oscillatory flow through a porous channel saturated with 

porous medium. They investigated the effect of suction/injection on the unsteady 

oscillatory flow through a vertical channel with non-uniform wall temperature. The fluid 

was subjected to a transverse magnetic field and the velocity slip at the lower plate was 

taken into consideration. Exact solutions of the dimensionless equations governing the fluid 

flow were obtained and the effects of the flow parameters on temperature, velocity profiles, 

skin friction and rate of heat transfer are discussed and shown graphically. 

Their model equations are: 
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( )
22

0
0 02

1 eBu u dP u
V u u g T T

t y dx y k


 

 

     
  − = + − − + −

     
    (2.1) 

( )
2 2

0 02

4f

p p

kT T T
V T T

t y C y C



 

    
− = + −

    
      (2.2) 

where 

( , )u y t  is the axial velocity 

0V is the constant horizontal Velocity 

 is the fluid density 

P  is the fluid pressure 

  is the Kinematic viscosity 

K  is the porous permeability 

e  is the electrical conductivity 

0B  is the magnetic field intensity 

g  is the gravitational acceleration 

  is the volumetric expansion 

pC  is the specific heat at constant pressure 

  is the term due to thermal radiation 

k  is the thermal conductivity 

T  is the fluid temperature 
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0T  is the referenced fluid temperature 

2.2 Summary of Review and Gap to fill  

In reviewing literature of this study, it has been discussed that several works had been 

carried out on oscillatory fluid flow and heat transfer in porous medium with inclined 

magnetic field without considering viscous energy dissipation. In view of the above, this 

research work seeks to consider oscillatory fluid flow and heat transfer in porous medium 

with inclined magnetic field in the presence of viscous energy dissipation. Here, in 

formulating our model, the research work of Falade et al. (2016) was extended by 

incorporating viscous energy dissipation to the energy equation. 

 

 

 

CHAPTER THREE 

3.0          MATERIALS AND METHODS 

3.1 Mathematical Formulation 

Consider the unsteady laminar flow of an incompressible viscous electrically conducting 

fluid through a channel with slip at the cold plate. An external magnetic field is placed 

across the normal to the channel. It is assumed that the fluid has small electrical 

conductivity and the electro-magnetic force produced is also very small. The flow is 

subjected to suction at the cold wall and injection at the heated wall. We choose a Cartesian 
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coordinate system ( ),x y  where x lies along the centre of the channel, and y  is the 

distance measured in the normal section such that y a =  is the channel’s half width.  

Under these assumptions, the equations governing the flow are as follows: 

 ( )
22

0
0 02

1 eBu u dP u
V u u g T T

t y dx y k


 

 

     
  − = + − − + −

     
   (3.1) 

 ( )
22 2

0 02

4f

p p p

kT T T u
V T T

t y C y C C y

 

 

       
− = + − +  

       
   (3.2) 

with the boundary conditions, 

 
( )

( )

0

0 0

,0 0, , 0

,0 0,

s

k du
u y u T T on y

dy

T y T u T T on y h




   = = = = 

 
   = = = = 

   (3.3) 

where 

( , )u y t  is the axial velocity 

0V is the constant horizontal Velocity 

 is the fluid density 

P  is the fluid pressure 

  is the Kinematic viscosity 

K  is the porous permeability 

e  is the electrical conductivity 
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0B  is the magnetic field intensity 

g  is the gravitational acceleration 

  is the volumetric expansion 

pC  is the specific heat at constant pressure 

  is the term due to thermal radiation 

k  is the thermal conductivity 

T  is the fluid temperature 

0T  is the referenced fluid temperature 

3.2 Non-dimensionalisation 

Equations (3.1), (3.2) and (3.3) were non-dimensionalised using the following 

dimensionless variables: 

0 0

1 0

2

2

, , , , , ,

, , , , ,

T T vx y u Ut
x y u v t

h h T T U U h

P dP U dP h
P u Uu t t y hy

U dx h dx U







   − 
= = = = = = − 


    = = = = =

 

   (3.4) 

From equation (3.4) equation (3.5) was obtained  

2 2

2 2 2

1 1
, ,

U

t h t y h y y h y

     
= = = 
        

      (3.5) 

Equation (3.1) becomes, 

( )
22 2 2 2

0
1 02 2

eB UU u vU u U dP U u U
u u g T T

h t h y h dx h y k

 
 



  
− = − + − − + −

  
  (3.6) 
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Multiply equation (3.6) by 
2

h

U
 gives, 

( )22
1 00

2 2

e
g h T TB hu u dP u hv

v u u
t y dx hU y Uk U U






−  
− = − + − − +

  
   (3.7) 

2
2

2

1
a r

e

u u dP u
v Su H u G

t y dx R y


  
− = − + − − +

  
     (3.8) 

So, 

( )
2

2

2

1
a r

e

u u dP u
v S H u G

t y dx R y


  
− = − + − + +

  
     (3.9) 

Equation (3.2) becomes, 

( ) ( ) ( ) ( )
222 2

1 01 0 1 0 1 0

2 2 2

4f

p p p

k T TU T T U T T v T T U u

h t h y C h y C C h y

   


 

−− − −     
− = + +  

    
 (3.10) 

Multiply equation (3.10) by 
( )1 0

h

U T T−
 gives, 

( )

22 2

2

1 0

4f

p p p

k h U u
v

t y C hU y C U C h T T y

    


 

    
− = + +  

   −  
    (3.11) 

So, 

22

2

1 c

e e

E u
v

t y P y R y

  


    
− = + +  

    
       (3.12) 

Equation (3.3) also becomes, 
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( )

( )

( ) ( )

( ) ( ) ( )

0 0

0 0

0 0

0 0

0

0

0

1 0

0 0 0 0 1 0

1 0 1 0 1

0
, ,0 0,

0, 0,

0, 0, ,

0
1, 0

,0 0, 0, 1, 0

,0 0, 0, 0, 1,

y y
s sy y

s s

y y

y y

y

y

u
u u y

U U

k du kU du
u U u

dy h dy

h hdu du
u u

dy dyk k

u t
U

du
u y u u t

dy

T T

T T

T T T T T T
y t t

T T T T T

 

 
 





  

= =

= =

= =

= =

=

=


= = =


− = − =



− = − = =

= =

= − = =

 −
=

−

− − −
= = = = =

− −

( ) ( ) ( )
0

1

,0 0, 0, 0, 1, 1

T

y t t  





















=
−


= = =      (3.13) 

Therefore the dimensionless equations become, 

( )
2

2

2

1
a r

e

u u dP u
v S H u G

t y dx R y


  
− = − + − + +

  
     (3.14) 

22

2

1 c

e e

E u
v

t y P y R y

  


    
− = + +  

    
       (3.15) 

with corresponding dimensionless initial and boundary conditions as. 

( ) ( )

( ) ( ) ( )

0

0

,0 0, 0, 1, 0

,0 0, 0, 0, 1, 1

y

y

du
u y u u t

dy

y t t



  

=

=


= − = = 




= = = 

     (3.16) 

where, 

e

dU
R


= = Reynolds number 
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hv
S

Uk
= = Suction/Injection parameter 

( )1 0

2 r

g h T T
G

U


 −
= = Thermal Grashof number 

24

p

h

C U





= = Thermal radiation parameter 

p

e

C dU
P

k


= = Peclet Energy number 

( )

2

c

p w d

U
E

C T T
=

 −
= Eckert number 

2
20e
a

B h
H

U




= = Hartman number    

v = Kinematic viscosity 

 = Term due to thermal radiation    

3.3 Method of solution 

For a purely oscillating flow,  

( ) ( ) ( ) ( ) 2, , , ,i t i t i tdP
e u y t u y e y t y e

dx

    


− = = = 


    (3.19) 

So, 
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( )
( )

( ) ( ) ( ) ( )

( )
( )

( ) ( ) ( ) ( )

( ) ( )

2 2

2 2

2 2

2 2 2

2 2

2 2

2

, , ,
, , ,

, , ,
2 , , ,

,

i t i t i t

i t i t i t

i t

u y t u y t du y u y t d u y
i e u y e e

t y dy y dy

y t y t d y y t d y
i e y e e

t y dy y dy

u y t du y
e

y dy

  

  





    
 

  
= = =

   


   
= = = 

   


    =   
    

 (3.20) 

Put equation (3.20) in equation (3.14) gives, 

( )
2

2 2

2

1i t i t i t i t i t i t

a r

e

du d u
i e u ve e e S H e u G e

dy R dy

     

  − = + − + +    (3.21) 

Multiply equation (3.21) by e

i t

R

e 
 gives, 

( )
2

2

2

i t

e e e a e r e

du d u
i R u vR R S H R u G e R

dy dy



  − = + − + +     (3.22) 

( )
2

2

2

i t

e a e e r e

d u du
vR S H i R u R G e R

dy dy



  + − + + = − −     (3.23) 

That is, 

2
2

1 12

i t

e r e

d u du
b c u R G e R

dy dy



 + − = − −       (3.24) 

where  

( )

1

2

1

e

a e

b vR

c S H i R

= 



= + + 

        (3.25) 

Put equation (3.20) in equation (3.15) gives, 
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22
2 2 2 2 2

2

1
2 i t i t i t i t i tc

e e

Ed d du
i e ve e e e

dy P dy R dy

     
   

 
− = + +  

 
    (3.26) 

Multiply equation (3.26) by 
2

e

i t

P

e 
 gives, 

22

2
2 c e

e e e

e

E Pd d du
i P vP P

dy dy R dy

 
   

 
− = + +  

 
      (3.27) 

( )
22

2
2 c e

e e

e

E Pd d du
vP i P

dy dy R dy

 
  

 
+ + − = −  

   

     (3.28) 

That is, 

22
2

2 22

c e

e

E Pd d du
b c

dy dy R dy

 


 
+ + = −  

 
       (3.29) 

where,  

( )

2

2

,

2

e

e

b vP

c i P 

= 


= − 

         (3.30) 

The corresponding boundary conditions are 
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( )

( )

( )
( )

( ) ( )

( ) ( )

0 0

0 0

0

0

2

2 2 2

2

0, 0

0
1 0,

0, 1 0

, 0 1
, 0 0, 1

0 0, 1

i t i t

y y

y y

i t

y

y

i t

i t i t i t

i t

du du
e e u u

dy dy

u
e

du
u u

dy

y t
y e

e e e

e

 





  



 




  

 

= =

= =

=

=

−

−


− =  − = 



= =



− = = 


= = = = =



= = 


    (3.31) 

That is, 

( )

2
2

1 12

0

0

0, 1 0

i t

e r e

y

y

d u du
b c u R G e R

dy dy

du
u u

dy



 


=

=


+ − = − − 



− = =



      (3.32) 

and, 

( ) ( )

22
2

2 22

20 0, 1

c e

e

i t

E Pd d du
b c

dy dy R dy

e 

 


  −

 
+ − = −  

 


= = 

       (3.33) 

Let 

0 1rG    such that, 

( ) ( ) ( )

( ) ( ) ( )

0 1

0 1

...

...

r

r

u y u y G u y

y y G y



  

= + + 


= + + 

       (3.34) 

Put equation (3.34) in equations (3.32) and (3.33) gives, 
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( )

( )

( )

2 2
20 01 1

1 1 0 12 2

0 1

0 1
0 1 0

0 0

... ... ...

...

... ... 0

r r r e

i t

r e r

r r r y

y y

d u dud u du
G b G c u G u R

dy dy dy dy

G e R G

du du
G G u G u

dy dy

  



 

  



 


=

= =

 
+ + + + + − + + = − −  

  


+ + 

+ + − + + =



 (3.35) 

( )
2 2

20 01 1
2 2 0 12 2

2

0 1

... ... ...

...

r r r

c e
r

e

d dd d
G b G c G

dy dy dy dy

E P du du
G

R dy dy

  



  
 

 
+ + + + + + + + =  

  


  
− + +  

  

 (3.36) 

For Order 0, that is ( )0 :1rO G 
 gives, 

( )

2
20 0

1 1 02

00

0

0, 1 0

e

y

y

d u du
b c u R

dy dy

du
u u

dy




=

=


+ − = − 



− = =



       (3.37) 

( ) ( )

22
20 0 0

2 2 02

2

0 00 0, 1

c e

e

i t

d d E P du
b c

dy dy R dy

e 

 


  −

 
+ + = −  

 


= = 

      (3.38) 

also for Order 1, That is ( )1 :r rO G G   gives, 

( )

2
21 1

1 1 1 02

1
0 10

0

0, 1 0

i t

e

y

y

d u du
b c u e R

dy dy

du
u u

dy

 


=

=


+ − = − 



− = =



       (3.39) 
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( ) ( )

2
2 01 1 1

2 2 12

1 1

2

0 0, 1 0

c e

e

E P dud d du
b c

dy dy R dy dy

 


 

  
+ + = −   

  
= = 

      (3.40) 

Solving equation (3.37) 

( )

2
20 0

1 1 02

0
0 00

0

0, 1 0

e

y

y

d u du
b c u R

dy dy

du
u u

dy




=

=


+ − = − 



− = =



       (3.41) 

Solving the homogeneous part of equation (3.41), that is 

2
20 0

1 1 02
0

d u du
b c u

dy dy
+ − =         (3.42) 

seek, 

0

myu e=           (3.43) 

Differentiating equation (3.43) gives, 

0

myu me =           (3.44) 

Differentiating equation (3.44) gives, 

2

0

myu m e =           (3.45) 

Put equations (3.45), (3.44) and (3.43) into equation (3.42) 

2 2

1 0my my mym e bme c e+ − =         (3.46) 
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( )2 2

1 0mym bm c e+ − =          (3.47) 

2 2

1 0m bm c+ − =  and 0mye   

Using formular method, we have 

2 2

1 1 1

1,2

4

2

b b c
m

−  +
=         (3.48) 

2 2

1 1 1

1

4

2

b b c
m

− + +
=          (3.49) 

2 2

1 1 1

2

4

2

b b c
m

− − +
=          (3.50) 

That is,  

1 2

0 1 2

m y m y

cu A e A e= +          (3.51) 

Assume a particular solution of the form, 

0 3pu A=           (3.52) 

0 0pu =           (3.53) 

0 0pu =           (3.54) 

Put equations (3.54), (3.53) and (3.52) into equation (3.41) gives, 

2

1 3 ec A R− = −           (3.55) 
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3 2

1

eR
A

c


=           (3.56) 

and, 

( ) ( ) ( )0 0 0c pu y u y u y= +         (3.57) 

That is, 

( ) 1 2

0 1 2 3

m y m y
u y Ae A e A= + +         (3.58) 

Applying the boundary condition, 

0
0 0

0

0
y

y

du
u

dy


=

=

− = implies, 

1 1 2 2 1 2 3 0A m A m A A A  + − − − =        (3.59) 

( ) ( )1 1 2 2 3 0A m A m A  − + − − =        (3.60) 

( )

( )
3 2 2

1

1

A A m
A

m

 



− −
=

−
        (3.61) 

Using the boundary condition, 

( )0 1 0u =  implies, 

( )

( )
1 23 2 2

2 3

1

0
m mA A m

e A e A
m

 



 − −
+ + =  − 

      (3.62) 

( ) ( ) ( )1 1 2

3 2 2 2 2 2 3 0
m m m

A e A e m m A e m A   − − + − + − =     (3.63) 
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( ) ( )( ) ( )( )2 1 1

2 2 2 2 3

m m m
m e e m A e m A   − − − = − + −     (3.64) 

( )( )
( ) ( )( )

1

2 1

2 3

2

2 2

m

m m

e m A
A

m e e m

 

 

− + −
=

− − −
       (3.65) 

So, the solution to equation (3.37) is, 

( ) 1 2

0 1 2 3

m y m y
u y Ae A e A= + +         (3.66) 

Where, 

( )

( )

( )( )
( ) ( )( )

1

2 1

3 2 2

1

1

2 3

2

2 2

3 2

1

m

m m

e

A A m
A

m

e m A
A

m e e m

R
A

c

 



 

 



− − 
= 

− 
− + − 

= 
− − − 


=



       (3.67) 

Solving equation (3.39) that is, 

( ) ( )

22
20 0 0

2 2 02

2

0 00 0, 1

c e

e

i t

d d E P du
b c

dy dy R dy

e 

 


  −

 
+ + = −  

 


= = 

      (3.68) 

Differentiating equation (3.66) gives, 

1 20
1 1 2 2

m y m ydu
A m e A m e

dy
= +         (3.69) 

( )1 2

2
2

0
1 1 2 2

m y m ydu
A m e A m e

dy

 
= + 

 
       (3.70) 



37 
 

( )1 21 2

2

2 22 2 2 20
1 1 1 2 1 2 2 22

m m ym y m ydu
A m e A A m m e A m e

dy

+ 
= + + 

 
    (3.71) 

Put equation (3.71) into equation (3.68) gives, 

( )( )1 21 2

2
2 22 2 2 2 20 0

2 2 0 1 1 1 2 1 2 2 22
2

m m ym y m yc e

e

d d E P
b c A m e A A m m e A m e

dy dy R

 


+
+ + = − + +   (3.72) 

Solving the homogeneous part,  

2
20 0

2 2 02
0

d d
b c

dy dy

 
+ + =         (3.73) 

seek,  

( )0

myy e =           (3.74) 

Differentiating equation (3.74) gives, 

( )0

myy me =           (3.75) 

Differentiating equation (3.75) gives, 

( ) 2

0

myy m e =           (3.76) 

Put equations (3.76), (3.75) and (3.74) into equation (3.73) gives, 

2 2

2 2 0my my mym e b me c e+ + =  

( )2 2

2 2 0mym b m c e+ + =         (3.77) 

2 2

2 2 0m b m c+ + =  and 0mye         (3.78) 
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Applying formular method gives, 

2 2

2 2 2

3,4

4

2

b b c
m

−  −
=         (3.79) 

2 2

2 2 2

3

4

2

b b c
m

− + −
=          (3.80) 

2 2

2 2 2

4

4

2

b b c
m

− − −
=          (3.81) 

That is,  

( ) 3 4

0 4 5

m y m y

c y A e A e = +         (3.82) 

We assume a particular solution of, 

( ) ( )1 21 22 2

0 6 7 8

m m ym y m y

p y A e A e A e
+

= + +       (3.83) 

Differentiating equation (3.83) gives, 

( ) ( ) ( )1 21 22 2

0 6 1 7 1 2 8 22 2
m m ym y m y

p y A m e A m m e A m e
+ = + + +     (3.84) 

Differentiating equation (3.84) equation, 

( ) ( ) ( )1 21 2
22 22 2

0 6 1 7 1 2 8 24 4
m m ym y m y

p y A m e A m m e A m e
+ = + + +     (3.85) 

Put equations (3.85), (3.84) and (3.83) into equation (3.72) gives, 
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( ) ( ) ( ) ( )

( )( ) ( )( )

1 21

1 21 2

2

1 2 1 21 2 1 2

2
2 6 1 7 1 22 22 2

6 1 7 1 2 8 2 2
2

8 2

2 2 2 22 2 2 2 2

2 6 7 8 1 1 1 2 1 2 2 2

2
4 4

2

2

m m ym y

m m ym y m y

m y

m m y m m ym y m y m y m yc e

e

A m e A m m e
A m e A m m e A m e b

A m e

E P
c A e A e A e A m e A A m m e A m e

R

+

+

+ +

 + + +
+ + + +  

 
 

+ + + = − + +

 (3.86) 

Comparing the variables, 

2 2
2 2 1 1

6 1 6 2 1 2 64 2 c e

e

E P A m
A m A b m c A

R
+ + = −       (3.87) 

( )

2 2

1 1
6 2 2

1 2 1 24 2

c e

e

E P A m
A

R m b m c
 = −

+ +
      (3.88) 

( ) ( )
2 2 1 2 1 2

7 1 2 2 7 1 2 2 7

2 c e

e

E P A A m m
A m m b A m m c A

R
+ + + + = −     (3.89) 

 
( ) ( )( )

1 2 1 2
7 2 2

1 2 2 1 2 2

2 c e

e

E P A A m m
A

R m m b m m c

−
 =

+ + + +
     (3.90) 

2 2
2 2 2 2

8 2 2 8 2 2 84 2 c e

e

E P A m
A m b A m c A

R
+ + = −       (3.91) 

 
( )

2 2

2 2
8 2 2

2 2 2 24 2

c e

e

E P A m
A

R m b m c

−
 =

+ +
      (3.92) 

( ) ( ) ( )0 0 0c py y y  = +         (3.93) 

That is, 

( ) ( )1 23 4 1 22 2

0 4 5 6 7 8

m m ym y m y m y m y
y A e A e A e A e A e

+
= + + + +     (3.94) 

Applying the boundary condition, 
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( )0 0 0 =  implies, 

4 5 6 7 8 0A A A A A+ + + + =         (3.95) 

( )4 6 7 8 5A A A A A= − + + −         (3.96) 

4 9 5A A A= − −           (3.97) 

where, 

9 6 7 8A A A A= + +          (3.98) 

Also, 

( ) 2

0 1 i te  −=  implies, 

( )1 23 4 1 22 2 2

4 5 6 7 8

m mm m m m i tA e A e A e A e A e e + −+ + + + =      (3.99) 

Put equation (3.97) into equation (3.99) 

( )1 23 3 4 1 22 2 2

9 5 5 6 7 8

m mm m m m m i tA e A e A e A e A e A e e + −− − + + + + =     (3.100) 

( )1 23 1 2

34

2 22

9 6 7 8
5

m mm m mi t

mm

e A e A e A e A e
A

e e

 +− + − − −
=

−
     (3.101) 

and  

4 9 5A A A= − −           (3.102) 

( )1 23 1 2

34

2 22

9 6 7 8
4 9

m mm m mi t

mm

e A e A e A e A e
A A

e e

 +− + − − −
= − −

−
    (3.103) 
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( ) ( )1 23 34 1 2

34

2 2 2

9 9 6 7 8

4

m mm mm m m i t

mm

A e e A e A e A e A e e
A

e e

+ −− − − + + + −
=

−
   (3.104) 

( )1 24 1 2

34

2 2 2

9 6 7 8
4

m mm m m i t

mm

A e A e A e A e e
A

e e

+ −− + + + −
=

−
     (3.105) 

Therefore,  

( ) ( )1 23 4 1 22 2

0 4 5 6 7 8

m m ym y m y m y m y
y A e A e A e A e A e

+
= + + + +     (3.106) 

where, 

( )

( )

( )

( ) ( )( )

( )

1 24 1 2

34

1 23 1 2

34

2 2 2

9 6 7 8
4

2 22

9 6 7 8
5

2 2

1 1
6 2 2

1 2 1 2

1 2 1 2
7 2 2

1 2 2 1 2 2

2 2

2 2
8 2 2

2 2 2 2

4 2

2

4 2

m mm m m i t

mm

m mm m mi t

mm

c e

e

c e

e

c e

e

A e A e A e A e e
A

e e

e A e A e A e A e
A

e e

E P A m
A

R m b m c

E P A A m m
A

R m m b m m c

E P A m
A

R m b m c





+ −

+−




− + + + −
=

− 


+ − − − =
−



= − 
+ + 

−
=

+ + + +

−
=

+ +










     (3.107) 

Solving equation (3.8) 

( )

2
21 1

1 1 1 02

1
1 10

0

0, 1 0

i t

e

y

y

d u du
b c u e R

dy dy

du
u u

dy

 


=

=


+ − = − 



− = =



       (3.108) 

Put equation (3.106) into equation (3.108) gives, 
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( )( )1 23 4 1 2

2
2 221 1

1 1 1 4 5 6 7 82

m m ym y m y m y m yi t

e

d u du
b c u e R A e A e A e A e A e

dy dy

 +
+ − = − + + + +  (3.109) 

Solving the homogeneous part that is, 

2
21 1

1 1 12
0

d u du
b c u

dy dy
+ − =         (3.110) 

seek, 

( )1

myu y e=           (3.111) 

Differentiating equation (3.111) gives, 

( )1

myu y me =           (3.112) 

Differentiating equation (3.112) gives, 

( ) 2

1

myu y m e =           (3.113) 

Put equations (3.113), (3.112) and (3.111) into equation (3.110) gives, 

2 2

1 1 0my my mym e b me c e+ − =          (3.114) 

( )2 2

1 1 0mym b m c e+ − =         (3.115) 

0mye            (3.116) 

2 2

1 1 0m b m c+ − =          (3.117) 

Using formular method gives, 
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2 2

1 1 1

1,2

4

2

b b c
m

−  +
=         (3.118) 

2 2

1 1 1

1

4

2

b b c
m

− + +
=          (3.119) 

2 2

1 1 1

2

4

2

b b c
m

− − +
=          (3.120) 

The complimentary solution becomes, 

( ) 1 2

1 10 11

m y m y

cu y A e A e= +         (3.121) 

Assume a particular solution of, 

( ) ( )1 21 2 1 22 2

1 12 13 14 15 16

m m ym y m y m y m y

pu y A e A e A e A e A e
+

= + + + +     (3.122) 

Differentiating equation (3.122) gives 

( ) ( ) ( )1 21 2 1 22 2

1 12 1 13 2 14 1 15 1 2 16 22 2
m m ym y m y m y m y

pu y A m e A m e A m e A m m e A m e
+ = + + + + +  (3.123) 

Differentiating equation (3.123) gives 

( ) ( ) ( )1 21 2 1 2
22 22 2 2 2

1 12 1 13 2 14 1 15 1 2 16 24 4
m m ym y m y m y m y

pu y A m e A m e A m e A m m e A m e
+ = + + + + +  (3.124) 

Put equations (3.124), (3.123) and (3.121) into equation (3.109) gives, 
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( ) ( )

( ) ( )( )

( )( )

1 21 2 1 2

1 21 2 1 2

3 4

1 21 2 1 2

22 22 2 2 2

12 1 13 2 14 1 15 1 2 16 2

2 2

1 12 1 13 2 14 1 15 1 2 16 2

4 5

2 2 22

1 12 13 14 15 16 6

4 4

2 2

m m ym y m y m y m y

m m ym y m y m y m y

m y m y

m m ym y m y m y m y i t

e

A m e A m e A m e A m m e A m e

b A m e A m e A m e A m m e A m e

A e A e

c A e A e A e A e A e e R A e

+

+

+

+ + + + + +

+ + + + + −

+ +

+ + + + = −
( )1 21

2

7

2

8

m m ym y

m y

A e

A e

+










 
 

+ 
  +  

(3.125) 

Comparing the variables gives, 

2 2

12 1 1 12 1 1 12 4

i t

eA m b A m c A e R A+ − = −        (3.126) 

 4
12 2 2

1 1 1 1

i t

ee R A
A

m b m c

−
 =

+ −
       (3.127) 

2 2

13 2 1 13 2 1 13 5

i t

eA m b A m c A e R A+ − = −        (3.128) 

 5
13 2 2

2 1 2 1

i t

ee R A
A

m b m c

−
 =

+ −
       (3.129) 

2 2

14 1 1 14 1 1 14 64 2 i t

eA m b A m c A e R A+ − = −        (3.130) 

 6
14 2 2

1 1 1 14 2

i t

ee R A
A

m b m c

−
 =

+ −
       (3.131) 

( ) ( )
2 2

15 1 2 1 15 1 2 1 15 7

i t

eA m m b A m m c A e R A+ + + − = −      (3.132) 

( ) ( )
7

15 2 2

1 2 1 1 2 1

i t

ee R A
A

m m b m m c

−
 =

+ + + −
     (3.133) 

2 2

16 2 1 16 2 1 16 84 2 i t

eA m b A m c A e R A+ − = −       (3.134) 
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 8
16 2 2

2 1 2 14 2

i t

ee R A
A

m b m c

−
 =

+ −
       (3.135) 

and  

( ) ( ) ( )1 1 1c pu y u y u y= +         (3.136) 

That is, 

( ) ( )1 21 2 1 2 1 22 2

1 10 11 12 13 14 15 16

m m ym y m y m y m y m y m y
u y A e A e A e A e A e A e A e

+
= + + + + + +   (3.137) 

Applying the boundary condition 

1
1 0

0

0,
y

y

du
u

dy


=

=

− =  

Differentiating equation (3.137) gives, 

( ) ( )1 21 2 1 2 1 22 21
10 1 11 2 12 1 13 2 14 1 15 1 2 16 22 2

m m ym y m y m y m y m y m ydu
A m e A m e A m e A m e A m e A m m e A m e

dy

+
= + + + + + + +  (3.138) 

This implies, 

( )

( )

10 1 11 2 12 1 13 2 14 1 15 1 2 16 2

10 11 12 13 14 15 16

2 2

0

A m A m A m A m A m A m m A m

A A A A A A A

+ + + + + + + −


+ + + + + + = 

   (3.139) 

( ) ( ) ( ) ( ) ( )

( ) ( )

1 10 2 11 1 12 2 13 1 14

1 2 15 2 16

2

2 0

m A m A m A m A m A

m m A m A

    

 

− + − + − + − + − +


+ − + − = 

  (3.140) 

( ) ( )1 10 2 11 4 0m A m A B − + − + =        (3.141) 

Where, 
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( ) ( ) ( ) ( ) ( )4 1 12 2 13 1 14 1 2 15 2 162 2B m A m A m A m m A m A    = − + − + − + + − + −  (3.142) 

So, 

( ) ( )1 10 2 11 4m A m A B − + − = −        (3.143) 

( )( )
( )

4 2 11

10

1

B m A
A

m





− + −
=

−
        (3.144) 

Also, 

( )1 1 0u =  implies, 

( )1 21 2 1 2 1 22 2

10 11 12 13 14 15 16 0
m mm m m m m m

A e A e A e A e A e A e A e
+

 + + + + + + =   (3.145) 

Put equation (3.144) into equation (3.145) gives, 

( )( )
( )

( )1 21 2 1 2 1 2
4 2 11 2 2

11 12 13 14 15 16

1

0
m mm m m m m m

B m A
e A e A e A e A e A e A e

m





+
 − + −

+ + + + + + = 
 − 

 (3.146) 

( )

( )

( )
( )

11

1 22 1 2 1 22 11 2 24
11 12 13 14 15 16

1 1

0

mm
m mm m m m mm A eB e

A e A e A e A e A e A e
m m



 

+−−
− + + + + + + =

− −
 (3.147) 

( ) ( )

( ) ( )
( )

2 1 1

1 21 2 1 211 2 2 11 2 24
12 13 14 15 16

1 1

m m m
m mm m m mA m e m A e B e

A e A e A e A e A e
m m

 

 

+− − −
= − − − − −

− −
 (3.148) 

( ) ( ) ( ) ( ) ( )

( )

( ) ( )

1 21 1 2 1

2

2 1

2

4 12 1 13 1 14 1 15 1

2

16 1

11

2 2

m mm m m m

m

m m

B e A m e A m e A m e A m e

A m e
A

m e m e

   



 

+
− − − − − − − −

− −
=

− − −
 (3.149) 
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( )

( )

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 1 2 1

1 2 2

2 1

2

4 12 1 13 1 14 1

2

2 15 1 16 14
10

1 1 2 2

m m m m

m m m

m m

B e A m e A m e A m e

m A m e A m eB
A

m m m e m e

  

  

   

+

 − − − − − − −
 
 − − − −−

= −  
− − − − − 

 
 

(3.150) 

Therefore, 

( ) ( )1 21 2 1 2 1 22 2

1 10 11 12 13 14 15 16

m m ym y m y m y m y m y m y
u y A e A e A e A e A e A e A e

+
= + + + + + +   (3.151) 

where, 

( )

( )

( )

( ) ( )

( ) ( ) ( )

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

1 1 2

1 21

2

2 1

1 1 2 1

1 2 2

2

4 12 1 13 1

2

14 1 15 1

2

2 16 14
10

1 1 2 2

2

4 12 1 13 1 14 1

2

15 1 16 1

11

2

m m m

m mm

m

m m

m m m m

m m m

m

B e A m e A m e

A m e A m e

m A m eB
A

m m m e m e

B e A m e A m e A m e

A m e A m e
A

m e m

 

 

 

   

  

 



+

+

 − − − − −
 
 − − − −
 

− −−  
= −  − − − − −

 
 
 
 
 

− − − − − − −

− − −
=

− − ( )

( ) ( )

1

2

4
12 2 2

1 1 1 1

5
13 2 2

2 1 2 1

6
14 2 2

1 1 1 1

7
15 2 2

1 2 1 1 2 1

8
16 2 2

2 1 2 1

4 2

4 2

m

i t

e

i t

e

i t

e

i t

e

i t

e

e

e R A
A

m b m c

e R A
A

m b m c

e R A
A

m b m c

e R A
A

m m b m m c

e R A
A

m b m c





























−

−

= 
+ − 


− 

= 
+ − 

−
=

+ − 


− =
+ + + −


− 
= + −












   (3.152) 
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Solving equation (3.40) that is, 

( ) ( )

2
2 01 1 1

2 2 12

1 1

2

0 0, 1 0

c e

e

E P dud d du
b c

dy dy R dy dy

 


 

  
+ + = −   

  
= = 

      (3.153) 

Differentiating equation (3.58) gives 

1 20
1 1 2 2

m y m ydu
A m e A m e

dy
= +         (3.154) 

Differentiating equation (3.1531) gives, 

( ) ( )1 21 2 1 2 1 22 21
10 1 11 2 12 1 13 2 14 1 15 1 2 16 22 2

m m ym y m y m y m y m y m ydu
A m e A m e A m e A m e A m e A m m e A m e

dy

+
= + + + + + + + (3.155) 

That is, 

( ) ( )

( ) ( ) ( )

( ) ( )

1 2 1 21 1

1 2 1 21

1 2 1 22 2

2 22 20 1
1 10 1 1 11 1 2 1 12 1 1 13 1 2

2 232

1 14 1 1 15 1 1 2 1 16 1 2

2 22 2

2 10 1 2 2 11 2 2 12 1 2 2 13 2

2 2

m m y m m ym y m y

m m y m m ym y

m m y m m ym y m

du du
A A m e A A m m e A A m e A A m m e

dy dy

A A m e A A m m m e A A m m e

A A m m e A A m e A A m m e A A m e

+ +

+ +

+ +

  
= + + + +  

  

+ + + +

+ + +

( ) ( ) ( )1 2 1 2 2
2 2 32

2 14 1 2 2 15 2 1 2 2 16 22 2

y

m m y m m y m y
A A m m e A A m m m e A A m e

+ +








+
+ + +   

(3.156) 

( ) ( ) ( )

( )( ) ( )

( )
( ) ( )

1 21

1 21

1 2 2 2

220 1
1 10 1 12 1 1 11 1 13 2 10 2 12 1 2

232

1 14 1 1 15 1 2 2 14 2 1

1 16 1 2 2 32 2

2 2 11 2 13 2 2 16 2

2 15 1 2

2 2

2
2

m m ym y

m m ym y

m m y m y m y

du du
A A A A m e A A A A A A A A m m e

dy dy

A A m e A A m m A A m m e

A A m
m e A A A A m e A A m e

A A m m

+

+

+

  
= + + + + + +   

   


+ + + + 


+ 
+ + + 

+  




 (3.157) 

Put equation (3.157) into equation (3.153) gives, 
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( ) ( )

( )( ) ( )

( )( ) ( )

( )

1 21

1 21

1 2

2 2

1 11 1 1322

1 10 1 12 1 1 2

2 10 2 12

2
23221 1

1 14 1 1 15 1 2 2 14 2 12 2 12

2

1 16 1 2 15 1 2 2

2 32 2

2 11 2 13 2 2 16 2

2
2 2

2

2

m m ym y

m m ym yc e

e m m y

m y m y

A A A A
A A A A m e m m e

A A A A

E Pd d
A A m e A A m m A A m m eb c

dy dy R
A A m A A m m m e

A A A A m e A A m e

 


+

+

+

+ + 
+ + + 

+ 

+ + + ++ + = −

+ + +

+ +

 
 
 
 
 
 
 
 
 

 (3.158) 

Solving the homogeneous part, that is 

2
21 1

2 2 12
0

d d
b c

dy dy

 
+ + =         (3.159) 

seek 

( )1

myy e =           (3.160) 

Differentiating equation (3.160) gives, 

( )1

myy me =           (3.161) 

Differentiating equation (3.161) gives, 

( ) 2

1

myy m e =           (3.162) 

Put equations (3.162), (3.161) and (3.160) into equation (3.159) gives, 

2 2

2 2 0my my mym e b me c e+ + =         (3.163) 

( )2 2

2 2 0mym b m c e+ + =         (3.164) 

0mye   and 
2 2

2 2 0m b m c+ + =        (3.165) 
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Using the formular method we have, 

2 2

2 2 2

3,4

4

2

b b c
m

−  −
=         (3.166) 

2 2

2 2 2

3

4

2

b b c
m

− + −
=          (3.167) 

2 2

2 2 2

4

4

2

b b c
m

− − −
=          (3.168) 

That is, 

( ) 3 4

1 17 18

m y m y

c y A e A e = +         (3.169) 

Assume a particular solution of, 

    (3.170) 

Differentiating equation (3.170) gives, 

( )
( ) ( ) ( ) ( )

( ) ( )

1 2 1 21 1

1 2 2 2

1 22 3

19 1 20 1 2 21 1 22 1 2

2 2 3

23 1 2 24 2 25 2

2 3 2

2 2 3

p m m y m m ym y m y

m m y m y m y

d y
A m e A m m e A m e A m m e

dy

A m m e A m e A m e

 + +

+


= + + + + + +




+ + + 

 (3.171) 

Differentiating equation (3.171) gives, 

( )
( ) ( ) ( ) ( )

( ) ( )

1 2 1 21 1

1 2 2 2

2
2 21 22 32 2

19 1 20 1 2 21 1 22 1 22

2 2 2 32 2

23 1 2 24 2 25 2

4 9 2

2 4 9

p m m y m m ym y m y

m m y m y m y

d y
A m e A m m e A m e A m m e

dy
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 (3.172) 

Put equations (3.172), (3.171) and (3.170) into equation (3.158) gives, 
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  (3.173) 

Comparing the variables, 

( ) 2

1 10 1 12 12 2

19 1 2 19 1 2 19

2
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+
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2
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and, 
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( ) ( ) ( )1 1 1c py y y  = +         (3.186) 
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Applying the boundary condition 

( )1 0 0 =  implies, 

17 18 19 20 21 22 23 24 25 0A A A A A A A A A+ + + + + + + + =      (3.188) 

( )17 19 20 21 22 23 24 25 18A A A A A A A A A= − + + + + + + −      (3.189) 

17 26 18A A A= − −          (3.190) 

Where, 

26 19 20 21 22 23 24 25A A A A A A A A= + + + + + +       (3.191) 

Also, ( )1 1 0 =  implies, 
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Put equation (3.195) into equation (3.190) gives, 
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where, 
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  (3.200) 

The general solution to the momentum and energy equation respectively is, 

( ) ( ) ( )0 1ru y u y G u y= +         (3.201) 

( ) ( ) ( )0 1ry y G y  = +         (3.202) 

and, 
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3.4: Skin-friction of the Fluid Velocity ( ),u y t . 

The dimensionless stress tensor in terms of the skin-friction coefficient at the plate 0y =  is 

given by 
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3.5: Nusselt-number of the Temperature of the Fluid ( ),y t . 

The dimensionless rate of heat transfer in terms of the Nusselt number at the plate 0y =  is 

given by 
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CHAPTER FOUR 

4.0           RESULTS AND DISCUSSION 

4.1 Results 

From the graph in chapter three, the effects of Peclet number ( )eP , Hartman number ( )aH , 

Suction/Injection parameter
 
( )S , Eckert number ( )cE , Reynolds number ( )eR , kinematic 

viscosity
 
( )v , Grashof thermal number ( )rG  , term due to thermal radiation

 
( ) , Thermal 

radiation parameter ( )aR  and time ( )t  on the velocity ( ),u y t  and temperature ( ),y t  of 

the fluid. Skin friction of the fluid velocity and Nusset number of the temperature of the 

fluid given by equations (3.206) and (3.207) respectively were computed using computer 

symbolic algebraic package (MAPLE 17).  

The results obtained from the solutions are shown in Figure 4.1 through 4.16. The effect of 

Peclet number ( )eP  on velocity ( ),u y t  against distance is depicted in figure 4.1. The effect 

of Peclet number ( )eP  on temperature ( ),y t against distance is depicted in figure 4.2. The 

effect of Hartman number ( )aH on temperature ( ),y t  against distance is depicted in 

figure 4.3. The effect of Suction/Injection parameter
 
( )S on velocity ( ),u y t  against 

distance is depicted in figure 4.4. The effect of Suction/Injection parameter
 
( )S on 

temperature ( ),y t  against distance is depicted in figure 4.5. The effect of Eckert number

( )cE on velocity ( ),u y t  against distance is depicted in figure 4.6. The effect of Eckert 

number ( )cE on temperature ( ),y t  against distance is depicted in figure 4.7. The effect of 
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Reynolds number
 
( )eR on temperature ( ),y t  against distance is depicted in figure 4.8. 

The effect of kinematic viscosity
 
( )v  on velocity ( ),u y t  against distance is depicted in 

figure 4.9. The effect of Grashof thermal number ( )rG  on velocity ( ),u y t against distance 

is depicted in figure 4.10. The effect of Grashof thermal number ( )rG  on velocity ( ),u y t  

against distance is depicted in figure 4.11. The effect of term due to thermal radiation
 
( )

on temperature ( ),y t  against distance is depicted in figure 4.12. The effect of Thermal 

radiation parameter ( )aR on temperature ( ),y t against distance is depicted in figure 4.13. 

The effect of time ( )t on velocity ( ),u y t  against distance is depicted in figure 4.14. The 

effect of time ( )t on temperature ( ),y t  against distance is depicted in figure 4.15.  
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Figure 4.1: Effect of Peclet number ( )eP  on Velocity ( ),u y t  against Distance 

It is observed that velocity of the fluid does not change much with an increase in the Peclet 

number ( )eP  at steady time. 

   

Figure 4.2: Effect of Peclet number ( )eP  on Temperature ( ),y t against Distance 

It is observed that temperature of the fluid increases with an increase in the Peclet number 

( )eP  at steady time. 
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Figure 4.3: Effect of Hartman number ( )aH on Temperature ( ),y t  against Distance 

It is observed that temperature of the fluid reduces with an increase in the Hartman number 

( )aH
 
at steady time. 

   

Figure 4.4: Effect of Suction/Injection parameter
 
( )S on Velocity ( ),u y t  against          

Distance 

It is observed that velocity of the fluid reduces with an increase in the Suction/Injection 

parameter
 
( )S at steady time. 
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Figure 4.5: Effect of Suction/Injection parameter
 
( )S on Temperature ( ),y t against 

          Distance. 

It is observed that temperature of the fluid reduces with an increase in the Suction/Injection 

parameter
 
( )S at steady time. 

   

Figure 4.6: Effect of Eckert number ( )cE on Velocity ( ),u y t  against Distance 

It is observed that velocity of the fluid does not change much with an increase in the 

Suction/Injection parameter
 
( )S at steady time. 
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Figure 4.7: Effect of Eckert number ( )cE on Temperature ( ),y t  against Distance 

It is observed that temperature of the fluid increases with an increase in the Eckert number
 

( )cE at steady time. 

   

Figure 4.8: Effect of Reynolds number
 
( )eR on Temperature ( ),y t  against Distance 

It is observed that temperature of the fluid reduces with an increase in the Reynolds number
 

( )eR at steady time. 
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Figure 4.9: Effect of Kinematic Viscosity
 
( )v  on Velocity ( ),u y t  against Distance 

It is observed that velocity of the fluid reduces with an increase in the kinematic viscosity
 

( )v  at steady time. 

   

Figure 4.10: Effect of Grashof Thermal number ( )rG  on Velocity ( ),u y t against     

          Distance 

It is observed that the velocity of the fluid does not change much with an increase in the 

Grashof thermal number
 
( )rG   at steady time. 
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Figure 4.11: Effect of Grashof Thermal number ( )rG  on Velocity ( ),u y t  against       

          Distance 

It is observed that the temperature of the fluid increases with an increase in the Grashof 

thermal number
 
( )rG   at steady time. 

   

Figure 4.12: Effect of term due to Thermal radiation
 
( ) on Temperature ( ),y t        

against Distance 

It is observed that the temperature of the fluid increases with an increase in the term due to 

thermal radiation
 
( ) at steady time. 
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Figure 4.13: Effect of Thermal Radiation parameter ( )aR on Temperature ( ),y t       

against Distance. 

It is observed that the temperature of the fluid increases with an increase in the Thermal 

radiation parameter
 
( )  at steady time. 

   

Figure 4.14: Effect of Time ( )t on Velocity ( ),u y t  against Distance 

It is observed that the velocity of the fluid reduces with an increase in time ( )t . 



66 
 

   

Figure 4.15: Effect of Time ( )t on Temperature ( ),y t  against Distance 

It is observed that the temperature of the fluid reduces with an increase in time ( )t . 

 

 

 

 

 

 

 

 

 

 

 

 

 



67 
 

Table 4.1.. Numerical values of skin-friction coefficient at the plate 0y =  for various 

values of physical parameters 

eP  aH  cE  eR  v  
rG     t

 0CF  

0.6 0.1 0.0000001 0.1 7 1 1 0 0.02282159761 

0.7 0.1 0.0000001 0.1 7 1 1 0 0.2771784025 

0.8 0.1 0.0000001 0.1 7 1 1 0 1.222821597 

0.6 0.5 0.0000001 0.1 7 1 1 0 0.02270243200 

0.6 0.9 0.0000001 0.1 7 1 1 0 -0.5775709957 

0.6 0.1 0.0000002 0.1 7 1 1 0 -0.1771783959 

0.6 0.1 0.0000003 0.1 7 1 1 0 -0.3771783893 

0.6 0.1 0.0000001 0.3 7 1 1 0 0.6557569325 

0.6 0.1 0.0000001 0.4 7 1 1 0 0.3670472404 

0.6 0.1 0.0000001 0.1 13 1 1 0 0.5172536900 

0.6 0.1 0.0000001 0.1 15 1 1 0 0.02076954027 

0.6 0.1 0.0000001 0.1 7 2 1 0 0.02282160413 

0.6 0.1 0.0000001 0.1 7 3 1 0 0.02282161064 

0.6 0.1 0.0000001 0.1 7 1 2 0 1.022821599 

0.6 0.1 0.0000001 0.1 7 1 3 0 3.022821607 

0.6 0.1 0.0000001 0.1 7 1 1 0.4 0.02609456154 

0.6 0.1 0.0000001 0.1 7 1 1 0.7 0.01290161830 

 

 

 

 

 

 

 

 

 



68 
 

Table 4.2: Numerical values of Nusselt number at the plate 0y =  for various values of 

physical parameters. 

eP  aH  cE  eR  v  
rG     t

 0Nu  

0.6 0.1 0.0000001 0.1 7 1 1 0 -14.56136822 

0.7 0.1 0.0000001 0.1 7 1 1 0 -17.25372613 

0.8 0.1 0.0000001 0.1 7 1 1 0 -19.49438297 

0.6 0.5 0.0000001 0.1 7 1 1 0 -13.75969507 

0.6 0.9 0.0000001 0.1 7 1 1 0 -8.417759937 

0.6 0.1 0.0000002 0.1 7 1 1 0 -24.50266599 

0.6 0.1 0.0000003 0.1 7 1 1 0 -34.44396367 

0.6 0.1 0.0000001 0.3 7 1 1 0 -8.493814836 

0.6 0.1 0.0000001 0.4 7 1 1 0 0.068118293 

0.6 0.1 0.0000001 0.1 13 1 1 0 -9.856397265 

0.6 0.1 0.0000001 0.1 15 1 1 0 -9.856397265 

0.6 0.1 0.0000001 0.1 7 2 1 0 -24.50266594 

0.6 0.1 0.0000001 0.1 7 3 1 0 -0.06553324430 

0.6 0.1 0.0000001 0.1 7 1 2 0 -15.35806125 

0.6 0.1 0.0000001 0.1 7 1 3 0 -16.04140800 

0.6 0.1 0.0000001 0.1 7 1 1 0.4 -5.034545097 

0.6 0.1 0.0000001 0.1 7 1 1 0.7 0.1168126243 
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4.2 Discussion of Results 

Figure 4.1 displays the effects of Peclet number ( )eP  on the velocity of the fluid. It is 

observed that the velocity of the fluid ( ),u y t  does not change much with increase in Peclet 

number ( )eP  at a steady time. 

Figure 4.2 show the effect of Peclet number ( )eP  on the temperature of the fluid ( ),y t . It 

is observed that the temperature increases with an increase in the Peclet number at steady 

time. 

Figure 4.3 show the effect of Hartman number ( )aH on the temperature of the fluid ( ),y t

. It is observed that temperature reduces with an increase in the Hartman number at steady 

time 

Figure 4.4 shows the effects of Suction/Injection parameter
 
( )S on the velocity of the fluid. 

It is observed that the velocity of the fluid ( ),u y t  reduces with increase in 

Suction/Injection parameter
 
at a steady time. 

Figure 4.5 show the effect of Suction/Injection parameter
 
( )S on the temperature of the 

fluid ( ),y t . It is observed that the temperature reduces with an increase in the 

Suction/Injection parameter
 
at steady time. 

Figure 4.6 shows the effects of Eckert number
 
( )cE on the velocity of the fluid. It is 

observed that the velocity of the fluid ( ),u y t  does not change much with increase in the 

Eckert number at a steady time. 
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Figure 4.7 displays the graph of Eckert number
 
( )cE on the temperature of the fluid ( ),y t

. It shows that an increase in Eckert number from 0 (no viscous heating) through 0.5 to 1 

(high viscous heating) clearly boost temperature in the porous regime. Eckert number 

signifies the quantity of mechanical energy converted via internal friction to thermal 

energy.  

Figure 4.8 show the effect of Reynolds number
 
( )eR on the temperature of the fluid ( ),y t

. It is observed that temperature decreases with an increase in the Reynolds number
 
at 

steady time. 

Figure 4.9 displays the graph of kinematic viscosity
 
( )v on the velocity of the fluid ( ),u y t . 

It is observed that the velocity of the fluid reduces with increase in kinematic viscosity at a 

steady time. 

Figure 4.10 show the effect of Grashof thermal number
 
( )rG  on the velocity of the fluid

( ),u y t . It is observed that the velocity of the fluid ( ),u y t  does not change much with 

increase in the Grashof thermal number at steady time.  

Figure 4.11 shows the effects of Grashof thermal number
 
( )rG  on the velocity of the fluid. 

It is observed that the temperature increases with an increase in the Grashof thermal 

number
 
at a steady time. 

Figure 4.12 show the effect of the term due to thermal radiation
 
( )  on the temperature of 

the fluid ( ),y t . It is observed that the temperature of the fluid increases with increase in 

the term due to thermal radiation at steady time. 
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Figure 4.13 shows the effects of Thermal radiation parameter
 
( )  on the temperature of the 

fluid ( ),y t . It is observed that the temperature of the fluid increases with increase in 

Thermal radiation parameter
 
( )  at a steady time. 

Figure 4.14 show the effect of time ( )t on the velocity of the fluid ( ),u y t . It is observed that 

the velocity of the fluid reduces with increase in time. 

Figure 4.15 shows the effect of time ( )t on the temperature of the fluid ( ),y t . It is 

observed that the temperature of the fluid reduces with increase in time. 

Table 4.1 shows that at the plate ( )0y = when the Eckert number
 
( )cE , Reynold number 

( )eR , Hatmann number ( )aH , kinematic viscosity
 
( )v  and Thermal radiation parameter

 

( )  increase the skin friction ( )0CF  decreases. The rate of skin friction ( )0CF  increases 

for increasing values of Peclet number ( )eP .
 

Table 4.2 shows that the rate of heat transfer at the plate ( )0y =  increases for increasing 

values of Reynold number ( )eR , Hatmann number ( )aH , and Grashof thermal ( )rG  , but 

a reverse trend is observed for increasing values of Peclet number ( )eP , Eckert number 

( )cE  and Thermal radiation parameter
 
( ) . 
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CHAPTER FIVE 

5.0      CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

A mathematical analysis has been carried out to study the magnetohydrodynamic 

oscillatory flow with viscous energy dissipation through a porous channel saturated with 

porous medium. The dimensionless governing coupled non-linear partial differential 

equations for this investigation were solved analytically using harmonic solution technique. 

The effects of the dimensionless parameters as shown on the graph were analyzed. It is 

concluded that: 

(i) Peclet energy number, Eckert number, Thermal radiation parameter, Grashof 

Thermal and the term due to thermal radiation increase the transient temperature 

of the fluid. 

(ii) Suction/Injection, kinematic viscosity and time reduce the velocity of the fluid. 

(iii) Hartman number, Sunction/Injection parameter, Reynolds number and time 

reduce the transient temperature of the fluid 

(iv) Reynolds number
 
increases the velocity of the fluid. 

(v) Eckert number ( )cE , Reynold number ( )eR , Hatmann number ( )aH , 

kinematic viscosity ( )v  and Thermal radiation parameter ( )  decrease the skin 

friction ( )0CF at the plate ( )0y = . 

(vi) Peclet number ( )eP  increase the rate of skin friction ( )0CF  at the plate ( )0y =  
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(vii) Reynold number ( )eR , Hatmann number ( )aH , and Grashof thermal ( )rG   

increases the rate of heat transfer at the plate ( )0y = .  

(viii) Peclet number ( )eP , Eckert number ( )cE  and Thermal radiation parameter
 
( )  

reduces the rate of heat transfer at the plate ( )0y = . 

5.2 Recommendation 

Further work can be carried out on magnetohydrodynamic oscillatory flow with viscous 

energy dissipation through a porous channel saturated with porous medium using other 

analytical methods (Parameter expansion, Method of lines, Homotopy perturbation and so 

on) to ascertain how best the result can be obtained as it is important in many physiological 

flows and engineering applications such as magneto-hydrodynamic (MHD) generators, 

arterial blood flow, petroleum engineering, meteorology, solar physics, geophysics and 

motion of the earth core. 

Magnetohydrodynamic oscillatory flows in channels and pipes possess large amounts of 

mechanical applications which may incorporate cooling frameworks, petrochemical 

transport (oil and petroleum gas) and biotechnology. Regularly such flows are going with 

heat transfer, example is the removal of thermal energy from hydronic space heating 

framework by means of circling water in the heater, after which it is transported to the 

individual areas through pipes. 
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5.3 Contributions to knowledge 

In this study, the following contributions were made to knowledge: 

(i) This present work extends the work of  Falade et al. (2016) by incorporating 

viscous energy dissipation term in the heat process 

(ii) Magnetohydrodynamic oscillatory flow with viscous energy dissipation through 

a porous channel saturated with porous medium was solved using harmonic 

solution technique. 
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