

DEPARTMENT OF CHEMISTRY FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA. FIRST SEMESTER 2021/2022 SESSION EXAMINATION

Course Code: CHM452

Course Title: Physicochemical Properties of Polymers

Unit: 2

Time allowed: 2 Hours Instructions: Answer question 1 and any other two.

- Q1. Answer **True** or **False** in each of the following sentences. Please, think carefully before answering as cancellations will be penalized (**40 Marks**)
 - i. Primary bond forces are sensitive to the distance between molecules.
 - ii. A fully cross-linked polymer exhibits plastic deformation.
 - iii. Polymer chains packs more tightly together in branched than in linear polymers.
 - iv. Increase in crystallinity increases the impact strength of a polymer.
 - v. When a polymer sample melts, the sample experiences an increase in energy without a change in temperature.
 - vi. A highly crystalline polymer has an irregular placement of atoms in the chain.
 - vii. Both amorphous and semi crystalline polymers have well defined Tg.
 - viii. High intermolecular forces in polymers increases its free volume.
 - ix. A semi crystalline polymer contains crystalline regions embedded in an amorphous phase.
 - x. Below T_g, polymers are soft and flexible.
 - xi. Random, alternate, graft and block structures are characteristics of homopolymers.
 - xii. A polymer whose T_g is -80°C can be used to package frozen foods.
 - xiii. Crosslinking in polymers can only be generated during polymerization.
 - xiv. Polystyrene is an amorphous polymer.
 - xv. At the yield point of a polymer under strain-stress deformation, there is increase in strain as well as the stress.
 - xvi. A crystalline polymer exhibits a random molecular orientation in the molten state.
 - xvii. Amorphous polymers do not have a melting point.
 - xviii. A polymer with a narrow molecular weight distribution melt over a wider temperature range.
 - xix. The covalent bond is the predominant bond in polymers.
 - xx. Polyvinyl chloride exhibits hydrogen bonding.

Q2. a. Study the following differential scanning calorimetric curve of a semicrystalline polymer sample cooled from the melt and answer the questions that follows (**5 Marks**)

- i. Label points I, II and III.
- ii. Name the morphologies of a polymer characteristic of points I and III respectively.
- iii. If the polymer is to be used in the manufacture of a picnic table, suggest a value of point I that will allow for a comfortable use of the table.
- iv. List four factors that can affect the process at point II.
- b. Indicate how the following properties change with increase in the amorphous content of a polymer (**5 Marks**).
 - i. Opacity
 - ii. Density
 - iii. Permeability
 - iv. Tear resistance
 - v. Impact strength
 - vi. Ductility
 - vii. Ultimate elongation
 - viii. Toughness
 - ix. Tensile strength
 - x. Compressive strength
- Q3.a. Justify the following observations: (8 Marks)
 - i. Syndiotactic and isotactic polypropylene can crystallize while atactic polypropylene does not.
 - ii. Atactic polyvinyl alcohol and polyvinyl fluoride can crystallize.
 - iii Syndiotactic general-purpose polystyrene is mainly amorphous.
 - iv. Step-reaction polymers made from monomers containing three or four functional groups are generally amorphous.

b. The density of a polymer sample is 0.56 g/cm³ and that of fully crystalline polymer in 1.00 g/cm³. Given that the crystallinity of the sample on mass basis is 57.30%. What is the crystallinity on a volume basis? (**2 Marks**)

Q4. a. Indicate the type of orientation in each of the following polymer products: (2 Marks)

- i. Shopping/carrier bag
 - ii. Coca-Cola bottle
- iii. Gee-Pee tank
- iv. Pure water sachet
- b. State the type of mechanical property being exerted on the material in each of the following situations: (2 Marks)
 - i. A woman holding a shopping/carrier bag loaded with potatoes.
 - ii. A student sitting on a plastic stool.
 - iii. A table tennis ball being played by two boys.
 - iv. A man lying on a mattress.
- c. Given that the T_m of a hypothetical polymer is 100°C.
 - i. Estimate its T_g. (2 Marks)
 - ii. If the T_g is the only information available on the polymer, draw a well labelled stress-strain deformation diagram for the polymer. (4 Marks)