

DEPARTMENT OF CHEMISTRY FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA SECOND SEMESTER EXAMINATION 2020/2021 ACADEMIC SESSION

COURSE CODE: CHM 322 COURSE UNIT: 2

COURSE TITLE: CHEMICAL KINETICS

INSTRUCTION: ANSWER ANY THREE QUESTIONS TIME: 2 hours

Q1. The reaction of nitric oxide with hydrogen at 1280°C is $2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g)$

From the following data collected at this temperature, determine

i. the rate law [4

marks]

ii. the rate constant

[2 marks]

iii. the rate of the reaction when [NO] = $12.0 \ 3 \ 10^{-23} \ M$ and [H₂] = $6.0 \ 3 \ 10^{-23} \ M$. [2 marks]

Experiment	[NO] (M)	$[H_2]$	Initial Ra	ate
			(M/s)	
1	5.0×10^{-3}	2.0×10^{-3}	1.3 x 10 ⁻⁵	
2	10.0 x 10 ⁻³	2.0×10^{-3}	5.0 x 10 ⁻⁵	
3	10.0×10^{-3}	4.0×10^{-3}	10.0 x 10 ⁻⁵	

1b. State four (4) limitations of Collision Theory

[1

mark each]

bii. List two (2) advantages of Transition theory over Collision Theory [1 mark each]

biii. Transition state theory attempts to relate the kinetic rates with thermodynamic properties of the transition state and reactants. Show that $k = \frac{k_b T}{h} e^{-\frac{\Delta H^*}{RT}} e^{\frac{\Delta S^*}{R}}$

Q2. differentiate between Homogeneous and Heterogeneous chemical Reaction [3 marks]

2b. The following mechanisms have been proposed for the synthesis of NO₂ (g)

If the experimental rate = $k_1[NO_2]^2$: Step 1. $NO_2(g) + NO_2(g) \longrightarrow NO_3(g) + NO(g)$ Step 2. $NO_3(g) + CO(g) \longrightarrow NO_2(g)_+ CO_2(g)$ i. Write the equation for the overall reaction [1 mark] ii. Identify the fastest reaction [1 mark] iii. Which of the species in step 1 and 2 is/are intermediate molecule? [1 mark] iv. What is the molecularity of step 1 and 2? [1 mark] v. Identify the slowest reaction [1 mark] vi. Identify the rate determining step [1 marksl vii. Predict the rate law from the reaction mechanisms [2 marks] Comment on the order of the reaction in NO_2 (g) and CO (g) [2 viii. c. with the aid of diagram differentiate between continuous flow and stopped flow method for the determination of fast reaction [7 marks] Q3. State the assumption that necessitate the application of steady state approximation for the determination of rate law of a reaction [3 marks] Given the following reaction $A \stackrel{\cdot}{a}^{k_1} B \stackrel{\cdot}{a}^{k_2} C$ Equation 1 where $k_1 = 0.2 \text{ M}^{-1}\text{s}^{-1}$, $k_2 = 2000 \text{ s}^{-1}$ i. State whether steady-state approximation can be applied to the reaction and why. [3 marks]

dt using the Steady State Approximation

[4

[4

ii. Write the rate equations for A, and B.

marks]

marks

iii. Give the expression for

iv. Calculate
$$\frac{d[C]}{dt}$$
 if $[A] = 1M$ [3 marks]

v. Calculate [C] at t = 3 s and $[A]_0 = 2M$ [3 marks]

Q4. Study the following enzyme kinetics equation;

$$\mathbf{E} + \mathbf{S} \xrightarrow{\mathbf{k}_1} \mathbf{E} \mathbf{S} \xrightarrow{\mathbf{k}_2} \mathbf{E} + \mathbf{P}$$
 Equation 2

- i. What is the role of enzyme in the reaction? [3 marks]
- ii. Draw a labelled diagram showing the changes in concentration of all the species in the equation with time

[7 marks]

iii. Derive the rate law express given that $k_2 >>> k_1$ [10 marks]