DEPARTMENT OF CHEMISTRY FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA FIRST SEMESTER EXAMINATION: 2021/2022 SESSION

COURSE: CHM 313 UNIT: 2

COURSE TITLE: Molecular Properties TIME ALLOWED: 1hour 30 minutes INSTRUCTION: Answer any 3 Questions

CONSTANTS: $C = 3 \times 10^{10} \text{ cms}^{-1}$; $Avogadro's \text{ constant} = 6.022 \times 10^{23} \text{ mol.}^{-1}$, $h = 6.266 \times 10^{-34} \text{ Js}$, ${}^{1}H = 1.673 \times 10^{-27} \text{Kg}$, $\mu_{HCl} = 1.16148 \times 10^{-27} \text{ kg}$

- 1(a). In tabular form, discuss the diversity of spectroscopy based on:
 - i. Frequency region
 - ii. wavelength ranges and
 - iii. characteristics. (12 marks)
- 1(b). The infra-red emission from a hot HF molecule appears as series of lines at 3960 (1 0), 3780 (2 -1) and 3600 (3 -2) cm⁻¹. Calculate the force constant of the HF bond. (8 marks)
- 2(a). The spectrum of HX records intense absorption at 2888, 5669 and 8370 cm⁻¹. Determine the:
 - i. ω_{osc}
 - ii. Xe

(12 marks)

- 2(b). i. Explain band origin
 - ii. Analysis of vibration-rotation spectrum of CO gives the P and R-branches as follows: $P_1 = 2128.54$, $P_2 = 2124.66$, $P_3 = 2120.74$ and $R_0 = 2136.19$, $R_1 = 2161.97$, $R_2 = 2143.61$ cm⁻¹. The first overtone of CO is obtained at 4260.04 cm⁻¹. Calculate the dissociation energy of CO. **(8 marks)**
- 3(a). i. What is spectroscopy?
 - ii. State the basic differences between atomic and molecular spectroscopy.
 - iii. Rotational constant, R, can be expressed as $\frac{h}{8\pi^2 M v}$. Define h, M and v.
 - iv. Using the expression in a iii, deduce the reduced mass μ ratio of isotopic substitutes like in ¹²CO and ¹³CO. (12 marks)

- 3(b). Give account, with examples, the moment of inertia of each of the following molecular classes:
 - i. Linear molecule
 - Ii. Spherical tops
 - ii. Symmetric tops
 - iii. Asymmetric tops (8 marks)
- **4**(a). Derive the expression of bond length $\mathbf{r}_0 = [\mathbf{I}/\boldsymbol{\mu}]^{1/2}$ of a rigid diatomic molecule. **(10 marks)**
- 4(b). What is Stark effect in microwave analysis? Highlight its significance.

(4 marks)

4(c). Rotational absorption lines for hydrogen chloride molecule were found at the following positions: 86.12, 106.99, 127.22 and 145.78cm⁻¹. Find the moment of inertia and bond length of the HCl molecule. (6 marks)