
MICROCOMPUTER BASED MUL TI­
APPLIANCES CONTROL SYSTEM

BY

AYENI REUBEN E.
2001/12104EE

DEPARTMENT OF ELECTRICAL AND COMPUTER
ENGINEERING SCHOOL OF ENGINEERING AND

ENGINEERING TECHNOLOGY
FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA

A thesis submitted in partial fulfillment of the
requirements for the award of Bachelor of Engineering

(B. Eng) degree in the Department of Electrical and
Computer Engineering,

School of Engineering and Engineering Technology,
Federal University of Technology, Minna.

NOVEMBER, 2007

DECLARATION

I, Ayeni Reuben Erema declares that this project was my concept and was designed,

constructed and tested under the supervision .of Engr. Kolo J. G., Dept of Electrical and

Computer Engineering.

.tl$JI.LL~l
Date

CERTIFICATION

I hereby certify that this project was carried out by Mr. Ayeni Reuben Erema of the

Department of Electrical and Computer Engineering, School of Engineering and Engineering

Technology, Federal University of Technology, Minna.

~~
.. -"

Engr. J.G. Kolo
(Supervisor)

Engr. M.D. Abdullahi
(H.O.D)

External Examiner

11

..... !l. ~. (.1. .'?-:.l. ~ r.-. ...
Date

Date

Date

DEDICATION

This project is dedicated to God- my destiny-maker, my way-maker, my hope giver

and future builder, and my beloved parents, Mr. and Mrs Michael Babatunde Ayeni, who has

always wanted the best for me in life.

III

ACKNOWLEDGEMENT

I thank the Sovereign God Jehovah for the gift of Life, sustenance and for being my

inspiration throughout my study in the university.

I thank my supervisor, Engr. J. G. Kolo for all hi s contributions and efforts towards

the success of this project. To my H.O.D. Engr. M.D Abdullahi and every lecturer in

Electrical and Computer Engineering Department, I say thank you for all your efforts to see

that I am a success.

My profound gratitude goes to my mother, Mrs Ayeni Hellen Efurosibina, and Father,

Mr Ayeni Michael Babatunde, for your sacrificial support all through my stay in school. My

siblings, Oboro, Ededagobin, Mekabright and Mosifomokpo, for your loving support, I say

thank you.

My dear aunty, Hajia Sikirat Saidu, I want to say thank you for your contribution. I

also want to thank Otunba Ayeni Richard for all his support. All my friends, David Osama,

Isaac and Richard Ogunmola, Comfort Jegede, Oluwatoyin Apata, Stephen Omotuke, Harry

Gwar, Ronke Adesida, Titiolawunmi Madamidola, Rossy, I say thank you for the fun we

share. To nurse Hannah Omokagbo, thank you for always been their.

To Nurse Obaro Blessing, "thank you" is just inadequate to appreciate you enough for

all you have been to me all along. You are indeed a darling.

IV

ABSTRACT

The Microcomputer Based Multi-Appliance Control System is built around an

inverter driver IC, ULN 2803A. The circuit is designed to drive relay contacts, which then

controls the loads. The circuit is pulsed by the parallel port of the Pc. The output of the

parallel port at any of the output pins connected to the input pins of the driver triggers the

driver, which produces an inverted pulse of the input pulse at its corresponding output pins.

These outputs energize the relays, thus controlling the loads. The driver is powered by a 12V

output from the regulator circuit, while the Visual C program installed on the microprocessor

of the Microcomputer controls the pulse generated at the parallel port.

v

Declaration

Certification

Dedication

Acknowledgement

Abstract

CHAPTER ONE

TABLE OF CONTENT

GENERAL INTRODUCTION

1.1 Introduction

1.2 Project objective

1.3 Methodology

1.4 Project layout

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

2.2 Microprocessor mode of device control

2.2.1 Advantages of microcomputer based control

2.3 Microcomputer interfaces

2.3.1 Microcomputer ports

PAGES

\I

III

iv

v

2

2

3

4

7

8

9

10

CHAPTER THREE

DESIGN AND CONSTRue.

3.1 Introduction 12

3.2 Design Specification 13

3.3 The Microcomputer 13

3.4 Computer Parrallel Port 14

3.4.1 Data port 15

3.4.2 Status port 15

3.4.3 Control port 16

3.4.4 Ground pins 17

3.5 Signal Generator 18

3.5.1 Visual c++ Development environment 19

3.5.2 Using the application wizard to create the application shell 20

3.5.3 Designing the application window 21

3.5.4 Adding code to the application 21

3.5.5 Accessing the output pane 22

3.6 Power Supply 25

3.7 The Relay 27

3.8 The Driver 28

CHAPTER FOU R

TEST, RESULT AND DISCUSSION

4.1 Project characteristic focus 30

4.2 Hardware circuit construction 30

4.3 Software development 31

4.3.1 Port Driver 32

4.4 Testing 32

4.5 Discussion of Result 33

4.6 Precaution 34

4.7 Difficulties Encountered 34

CHAPTER FIVE

5.1 Conclusion 35

5.2 Recommendation 35

Appendix A xxxvi

Appendix B XXXVII

List of Figures Ii

List of Tables Ii i

References liii

CHAPTER ONE

GENERAL INTRODUCTION

1.1 INTRODUCTION

Aside the various usage the modem day computer offers, there seems to be an

unending innovations and improvements on ways of making new and even better use of the

computer. An outstanding usage of the computer is for communication, especially when it

has to relate to peripheral devices like printers, mice, modems, scanners, digitizers, and many

other devices that "talk to" and receive infomlation from the microcomputer. Today, several

industrial and scienti fic operations are controlled using the computer. With the control

operation been able to be monitored through the monitor to know its state if it conforms to

set standards, industrial and scientific activities has not only grown complex, but at the same

time has increasingly been made relatively simpler. H is therefore imaginable, to consider the

convenience this control feature of the computer has also allowed as it applies to its

importance in security, household device management, e.t.c. This project therefore aims at

the same and can be use to control the printer, loads & other household electrical appliances.

The hardware interface circuit comprises, voltage rectifier, voltage regulation, relay

driver and relay sections. The microcomputer's parallel port was used to control these

equipments. The software interface and program of controlling is resident at the computer's

microprocessor and built around the Visual C++ language and compiled using Microsoft

Visual Studio 6.

1.2 PROJECT OBJECTIVE.

The aim of this project is to design and construct a peripheral hardware, interfaced

with a microcomputer alongside support software that can be used for device control.

The following can therefore be achieved with this project:

i. Connected electrical appliances will be switched ON and OFF from the computer.

ii. The connected appliances can be regulated, for example the speed of Fan.

iii. These switching and regulating features can be pre- timed and events carried out

automatically

iv. The processes above will be carried out with minimal human involvement.

v. The project switches four appliances, with one of the appliance configured for

regulation.

1.3 METHODOLOGY

The microcomputer relates with peripheral devices through the interfaces called ports.

The parallel port of the computer was used for interfacing the microcomputer with the

external hardware system because of its advantage of been very fast in accessing data (byte­

wise operation), which makes it the best suited port of the microcomputer in carrying out

control activities.

2

1.4 PROJECT LAYOUT

This project thesis comprises of five chapters. The first chapter, chapter one

generally introduced the project explaining the genesis of microcomputer (and by

implication, the microprocessors), the tasks it can perform and its advantages. This chapter

also states the objective of this project.

Chapter Two "lit~rature review" deals with the theoretical and brief historical

background of this project. Previous works as they relate to the project were also appraised.

Chapter Three "design and implementation" describes the stages of construction,

the tools used to construct the hardware circuit, selection of choice components. The design

and implementation of the software program is also covered in this chapter.
/

Chapter Four "test, results and discussion" describes the steps taken to test this

project, alongside test and measurement methods used. The results obtained and the
f.,

limitations of the project were also discussed.

Chapter Five "Conclusion and Recommendation" concludes with the great market

potential of this wonderful project design. Under this same chapter, recommendation were

made to individuals, industries, government and business agencies that the design can be

used to control their numerous appliances from only one single computer system.

Finally, the appendix gives the source code listing of the software interface program

used, full circuit diagram, and the graphical user interface.

3

2.1 INTRODUCTION

CHAPTER TWO

LITERATURE REVIEW

In the 1970s, National Aeronautics and Space Administration (NASA),

an agency of the United States government, created the microchip- a tiny wafer of silicon that

occupies a space smaller than a postage stamp. Computer components were placed on these

microchips, hence computers required much less space than before. NASA produced these

smaller computers in response to their need to send rocket ships to the moon with on-board

computers. The computers on Earth could not provide split-second accuracy for rockets

because radio waves took several seconds to travel between the Earth and the moon. Through

development, these microchips became small enough so the computers could travel with a

rocket and safely compute the rocket's trajectory- thus device control using the

microcomputer was hOI "11.' This space program was not the only beneficiary of computer

miniaturization. Because microchips became the heart of the microcomputer, computers

could now fit on desktops [1]. These microcomputers cost much less than their larger

counterparts, so many people started buying them. Thus, the home and small-business

computer market was also born [2].

Computer miniaturization has also allowed for the development of other

Illlcroprocessors which may not be computer based (that is, microcomputers with

microprocessors that has no self in-built peripherals), but designed for other specific

functions. However, these microprocessors are generally programmed using assembly

language. This is not as flexible as using any of the high level language for the computer's

4

microprocessor and it reqUIres an understanding of the underlying architecture of the

microprocessor to be programmed efTectively [3].

Since its commercial availability more than twenty mne years ago, today,

microprocessors are used throughout the electronic industry to perform tasks, ranging from

the relatively simple- self control pumps, supermarkets cash registers, traffic light; through to

complex applications such as autopilots in guided weapons, aircraft advanced

communication systems, steer-able systems in drilling automation, e.t.c. The prospects in the

use of microprocessors for device control is growing geometrically by every passing day- it

thus seem that barely all human need for automation can be met; how challenging and

interesting!

Nevertheless, for the computer and generally, microprocessors to carry out any function,

owners still needed a way to program these machines. Over the years, several programming

languages were designed to be "the only programming language one would ever need." PLiI

was heralded as such in the early 1960s. It turned out to be so large and took so many system

resources that it simply became another language programmers used, along with COBOL,

FORTRAN, and many others. In the mid-1970s, Pascal was developed for smaller

computers. Microcomputers had just been invented, and the Pascal language was small

enough to fit in their limited memory space while still offering advantages over many other

languages. Pascal became popular and is still used often today, but it never became the

answer for all programming tasks, and it failed at being "the only programming language one

would ever need." When the mass computer markets became familiar with C in the late

1970s, C also was promoled as "lhe only programming language one would ever need."

5

What has surprised so many skeptics .is that C has practically fulfilled this promise! The

appeal of C's efficiency, combined with its portability among computers, makes it the

.
language of choice. Most of The UNIX operating system was written almost entirely in C.

today's familiar spreadsheets, databases, and word processors are written in C. Now that C++

has improved on C, programmers have re-tooled their minds to think in C++ as well [4].

Bell Labs first developed theS programming language in the early 1970s, primarily

so that Bell programmers could write their UNIX operating system for a new DEC (Digital

Equipment Corporation) computer. Until that time, operating systems were written in

assembly language, which is tedious, time-consuming, and difficult to maintain. The Bell

Labs people knew they needed a higher-level programming language to implement their

project quicker and create code that was easier to maintain. Because other high-level

languages at the time (COBOL, FORTRAN, PLll, and Algol) were too slow for an operating

system's code, the Bell Labs programmers decided to write their own language. They based

their new language on Algol and BCPL. BCPL strongly influenced C, although it did not

ofTer the various data types that the makers of C required. After a few versions, these Bell

programmers developed a language that met their goals well. C is emcient (it is sometimes

called a high, low-level language due to its speed of execution), flexible, and contains the

proper language elements that enable it to be maintained over time. In the 1980s, Bjourn

StroUstlUP, working for AT&T, took the C language to its next progression. Mr. StroustlUP

added features to compensate for some of the pitfalls C allowed and changed the way

programmers view programs by adding object-orientation to the language. The object-

orientation aspect of programming started in other languages, such as Smalltalk. Mr.

6

Stroustrup realized that C++ programmers needed the flexibility and modularity offered by a

true OOP programming language. C++ therefore became a powerful programming language

designed for an advanced power-object-oriented programming (OOP). Now, Microsoft's

Visual C++ is an improvement on C++, used to build a wide variety of applications with

several in-built tools provided than is probably needed in anyone individual application

development errort. It has the particular advantage of writing less code words and much

easiness in developing a graphic user interface (GUI). Visual C++ was used for the building

of the software component of this project [5].

Summarily, the underlying power behind this growmg electronic feature is the

programs that drive these microprocessors. Depending on the nature of the control expected

of the microprocessor, specific programs have to be written to control its operation. Such

programs can be written in either the high level or low level program languages, depending

on the type of processor used.

2.2 MICROPROCESSOR MODES OF DEVICE CONTROL

For the purpose of this project, the modes through which devices could be controlled

using the microprocessor have been categorized into two, viz.

i. Microcomputer Based Control: The microcomputer is a machine made up of

several small microchips that uses its microprocessor with other peripheral to process data or

information. The microcomputer therefore has a resident microprocessor. Therefore, when

devices are controlled in this mode, the microprocessor of the computer is used for the

control feature. Even though there are different means through which the microprocessor

7

could be programmed, generally, a 11igh level language is used (C++ the most common

today). This has the added advantage of allowing the designer to incorporate a graphic user

interface (GUI). The GUI, aside allowing the device to be easily accessed and controlled

using the mouse or the keyboard, it also enables the user to know the state of the devices at

any point in time when the program is initialized.

ii. NOli-Microcomputer Based Control: This control mode uses nllcroprocessors

which are not dependent on the operation of the microcomputer. Generally, a low ievel

language is used, particularly the assembly language, to program it. To effectively program

these processors, the basic underlining architecture of the microprocessor will have to be

known.

2.2.1 Advantages of the Microcomputer Based Control:

1. Inexpensive, since there is no need to buy any 1111Croprocessor. Given a working

microcomputer system, the program will only be written such that the necessary memory

location on the microprocessor is affected.

2. It require less hardware interface circuitry

3. A high level language interface is utilized. Hence, no need to have a strong

underlining knowledge of the microprocessor hardware architecture.

4. The microprocessor of the microcomputer is relatively consistent with its underlying

hardware architecture. However, to program other microprocessors require strong knowledge

of their different hardware architecture.

8

5. When an object- oriented prograplming language is used, it has an added advantage

of one been able to develop a user friendly graphic user interface for the program, rather than

running it in a usual DOS environment.

6. The program can easily be modified and improved on due to its flexibility, unlike the

low level language which is tedious, time-consuming, and difficult to maintain.

2.3 MICROCOMPUTER INTERFACES

When controlling device from a microcomputer base, there is the need to build

interfaces that will interact between the user and the computer (graphic user interface) and,

the computer and the device (hardware interface). The design of these interfaces depends on

the type of control to be implemented.

The Graphic User Interface (GUI) is a window displayed on the monitor when the

control program is launched. It is the obvious aspect of the control program that allows the

user to relate with the hardware interface. FroPl this window, the user determines the state of

the device so wished to be controlled. It also indicates the status of the device if they are

individually connected or not and give any other infomlation of the system that will enhance

its efficient and eITective usage. The code program translates the user desire fed from the

GUI to electrical impulses at the necessary port -(in this case, the parallel port) of the

computer system to be feed to the hardware interface.

The hardware interface is a built circuitry on a board that converts the impulse from

the output data pins of the parallel port of the computer system to signals that finally

determine the state of the devices to be controlled.

9

2.3.1 Microcomputer Ports

Generally, microcomputer ports are terminals of busses on its circuit board. The bus

terminals herein referred to as ports are pins representing the different data, instruction, or

control lines that make up the bus. In computers, ports are the main link between the

microcomputer and other hardware devices external to it. They are used mainly for two

functions: device control and communication. When used for communication, the computer

communicates with the 'outside world' through difTerent modes. These modes of

communication and their connections enable transfer and sharing of files and documents,

printing of documents, sending of electronic mail, access of software on other computers, and

generally make two or more computers behave as a team. There are difTerent types of ports.

The categorization depends on their mode of receiving and giving out of data, and the speed

at which these data are accessed per standard memory cycle. These modes of communication

include:

ii. Serial mode: - This mode of operation makes use of the serial port for data

transmission. This has basically two data lines: One for transmission and the other for

receiving. To send a data in serial port, it has to be sent one bit after another with some extra

bits like start bit, stop bit and parity bit to detect errors [6]

iii. Universal serial bus (USB) mode: - The universal serial bus is a relatively new bus

technology compared to the serial and parallel pOlis. Essentially, the benefit of the USB

specification is self-identifying peripherals (plug and play functionality), a feature that

greatly ease installations.

10

iv. Parallel mode: - This mode of operation· makes use of the parallel port for data

transmission. Parallel port transmits data byte-wise, all the 8 bits of a byte will be sent to the

port at a time and an indication will be sent in another line. It has some data lines, some

control and some other handshaking lines [7]

Even though these ports all have the ability to be configured for control purpose, the

parallel port is mainly used due to its speed, ruggedness, and the added pin features (the

female D-type, resident on the motherboard has 25 pins for example).

1 1

CHAPTER THREE

DESIGN AND CONSTRUCTION

3.1 INTRODUCTION

Figure 3.1 shows the block diagram of the microcomputer based multi- appliance

control system. From the diagram, it is clear that the whole operation of this system is based

on the output signal generated from the parallel port of the computer system. The signals at

the parallel port depend on the visual C++ program that is installed on the microprocessor of

the computer, when initialized. The output pins of the parallel port directly handshake with

the input pins of the buffer in the hardware interface circuit.

The basic electric components which consist of resistors, capacitors, diodes, relays,

and integrated circuits (IC) were used in the design of the hardware interface of this project.

This interface is built around the logic state of a buffer, ULN 2803A. This buffer gives an

inverted logic state at its output pins, for every con'esponding logic state at the input pins.

These output logic state signals from the bulTer are the triggering signals !hat control the state

of the relays that in turn control the devices connected to them. This interface also has its

own power circuit. This power circuit yields a regulated 12V output from a 15V step-down

transformer. This output powers the buffer driver and the relay circuits.

The microcomputer and the connected appliances are powered by the mains from PHCN at a

maximum of 240V.

12

DC
- POWER SUPPL Y 1-

PARALLEL PORT
OF

.---..
DRIVER ~ RELAY CIRCUIT ---. LOAD OUTPUT

COMPUTER SYSTEM

Fig 3.1 Microcomputer Based Multi- Appliance Control System's Block Diagram

3.2 DESIGN SPECIFICATION

It is expected that the microcomputer based muIti- appliance control system should

meet the following specification:

i. The devices to be controlled should be powered by a 240 volts ac mains supply

ii. The hard",:are interface should be powered by a 240 volts ac mains supply, which is

then converted to 12 volts by the use of voltage regulators after stepping it down by a

transformer.

iii. In order to get an inverted logic state relative to the logic state of the parallel port, a

buffer, ULN 2803A is used.

iv. The logic state output from the parallel port is determined by the operations carried out

at the graphic interface level.

v. The input signals to the relays circuit should be fed from the output of the buffer.

3.3 THE MICROCOMPUTER

The microcomputer serves as the main control unit of the entire system. Input from

the user is processed by it and compared with some preset conditions in the software

13

programmmg. Depending on the condition that has been met by the input signals, the

computer responds via the software control by sending out specific output.

The modern day computer is popularly called the PC after the IBM compatible

computers, with barely the same underlying system architecture. Any of these PC can be

programmed to perform any function. The various components, both internal and external,

are interconnected by a series of electrical data highways over which data travels, as it

complete the processing cycle that transform it from an input item to an output item. These

"buses", connect these various components to the computers' central processing unit

(microprocessor) and main memory (RAM).

Communication with each of these components is made possible by a unique address

to each device by the microprocessor- an input- output port number. The PC has a built- in

listing of all input- output units, each of which has their own port address.

In this project, the hardware interface is interfaced with the microcomputer via the

parallel port. Only the data port of the parallel port was utilized.

3.4 COMPUTER PARALLEL PORT

A port contains a set of signal lines that the CPU uses to send or receive data with

other components. They are used to communicate via modem, printer, keyboard, mouse etc.

In signaling, open signals are "1" and close signals are "0" so it is like binary system. A

parallel port sends 8 bits and receives 5 bits at a time. The parallel port or line printer

terminal (LPT) port is a 25-pin D-type female connector available at the back of the

computer. A basic IBM PC usually comes with one or two LPT ports. Figure 3.2 shows the

diagram of a parallel port.

\

14

113 ,11 ,fI ,'. 10 •. ~} ,8 ,: 7 •... 6 ,J .,4 , .. J 0: .. 1 A~h~;,' .. ' '. . . .l' '.j I .. ' I .' '. .
, ". . " - . ' .

.
".~.·~ .. ~~.~.'.:.:.!:t.I .. ~ .. : .. ; .. j.~.:,l ... 05 :'~'~'~":"~"'~.' .. ,.~.x.~:,·.:,: .. : .. ~,t"f.~.;~ ;.~:.:.;.l.:. 4 ~.~ .. ;::, .. ~.~::.~ .. :'~:" .. '.~.i.':.[:'~~.;:.::,~.:.:.;:.:l:::,: .. 2J ,.:.::.:: ... :::.::.::.:l.:,::,.::'.; •. ;::::·:~:::;:~,: .. ,: .. :.::.:.~,;:.:.~.,.::.~,}1 ~, : ... ::: ... : ... ~:.:':.~ :,:.::.::.:.:.::.:.t: '.: .. ::::, .. '.:.;:.:,.! •• :~.:,.n .:::tk~Oii:t:t::\19::tmJ8 .'::;!¥i:~n ,~:~:mJ6.. 15 ,~.!,·,,~.:.::,~:.~.::· .. ,:.: .. '.:.i;::.: . ..,.:.·.::·,:.~.",1::::1,4 ~.. ~~~/ ;"~;~' ... ::: '. :.;"'" \f.#~ti fltff !;:~;.f¥! :f;;11.~~ ~:I' ~«*/

Fig. 3.2 Diagram of a parallel port showing its pins output

Normally, the parallel POlt is configured and used by the computer to communicate

with the printer. One would then expect a conflict in task if a printer task and this project

control task are initialized at the same time. The control pins of the parallel port help to take

care of this problem, since the configuration of the control pins were not altered in any way

while writing the code for this project.

3.4.1 Data Port

These are the pins 2 to 9, 8-bit port represented in figure 3.2 by DO to D7. This port is

purely a write-only port. This means it can be used only to output some data through it. It is

these port pins that were programmed and used for the control feature of this project.

3.4.2 Status Port

These ports are made for reading signals. The range is like in data ports which are SO-

S7. But SO, S 1, S2 are invisible in the connector (as seen from figure 3.2, these pins are not

shown). Though these pins are for reading signals, SO is different. The SO bit is for timeout

flag in EPP (Enhanced Parallel Port) compatible ports. The address of this status port is

Ox379. This often referred to as "DATA+ I" and it can send 5 numeric data from the 1 0 - 11 -

12 - 13 - 15th pins. The functions of the Status pins are as highlighted below:

15

• so: This bit becomes higher (I) if a timeout operation occurs in EPP mode.

• S 1: Not used (Maybe for decoration)

• S2: Mostly not used but sometime this bit shows the cut condition (PIRQ) of the port

• S3: If the printer determines an error it becomes lower (0). Which is calIed nError or

nFault

• S4: It is high (I) when the data inputs are active. Which is called Select

• S5: It is high (1) when there is no paper in printer. Which is called PaperEnd,

PaperEmpty or PError

• S6: It sends low impact signaling when the printer gets a one byte data. Which is

called nAck or nAcknowledge

• S7: This is the only reversed pin on the connector (see my table in the article). If the

printer is busy and it cannot get any additional data this pin becomes lower. Which is called

Busy

3.4.3 Control Port

This port is usually used for outputting, but can also be used for inputting (hence, is

capable of reading and writing). The range is like in data ports CO-C7 but C4, C5, C6, C7 are

invisible in connector (hence not shown in figure 3.2). The functions of the control pins are

as highlighted below:

• CO: This pin is reversed. It sends a command to read 00-07 on the port. When the

computer starts it is high in the connector. Which is calIed nStrobe

• Cl: This pin is reversed. It sends a command to the printer to feed the next line. It is

high in the connector after the machine starts. Which is called Auto LF

16

• C2: This pin is to reset the prillter and clear the buffer. Which is called nInit,

nInitialize

• C3: This pin is reversed. Sends a high (1) for opening data inputs. It is low after the

machine starts. Which is called nSelectIn

• C4: Opens the cut operation for the printer. Not visible in the connector. ..

• C5: Sets the direction control in multidirectional ports. Not visible in the connector ...

• C6: Not used and also Not visible in the connector ...

• C7: Mostly not used but it is used as a C5 in some ports. Not visible in the

connector ...

. 3.4.4 Ground Pins

These are (GO - G7) the pins from 18 to 25. These are mostly used for completing the

circuit. Table 1 below shows the details of25-pin parallel port.

TABLE 1: Parallel Port Pin Details

Parallel port Port signal Direction Hardware Register
Pin no. Name inverted
1 NStrobe I/O Yes Control

2 DO Out Data

3 01 Out Data

4 D2 Out Data

5 03 Out Data

6 04 Out Data

7 D5 Out Data

8 06 Out Data

17

9 D7 Out Data
,

10 NACK In Status

11 Busy In Yes Status

12 Paper Out In Status

13 Select In Status

14 Nauto-Lf VO Yes Control

15 Nerror In Status

16 Ninitialize I/O Control

17 Nselect I/O Yes Control

18-25 Ground Gnd

F or the purpose of this project, the status and control ports were not used. The project

is designed to use only the output port. Four of the output pins (DO to D4) were configured to

switch the target five appliances, while the remaining three pins (D5 to D7) were used to

configure the control features of one of the appliance intended to be regulated.

The base address of the first parallel port (LPT 1) is 0378 in hexadecimal (hex)

notation (or 888 in decimal. The base address of the second parallel port (LPT2) is 0278 in

hex. In this project, only LPT I was used.

3.5 SIGNAL GENERATOR

In any electronic project where switching is required, it is very important to generate

a pulse signal that will be able to change between two voltage levels (i.e. for digital circuits),

18

so that one level will be for switching "off" (logic 0) and the other for switching "on" (logic

1), it could be the other way round depending on what is expected.

In this project, these pulses are generated through a computer program written in

Visual C++ programming Language. This program determines the signals at the output pins

of the computer parallel port.

3.5.1 The Visual C++ Development Environment

This is a window in the Microsoft Visual development environment. It has various

areas with specific purpose. These arrears can be rearranged to customize the Developer

Studio Environment to suit individuals particular development needs.

i. The Workspace

This is the area on the left hand side of Developer Studio. It is the key to navigating

the various pieces and parts of the development project. The workspace also allows one to

view the parts of the application in three different ways:

• Class View allows one to navigate and manipulate the source code on a C++ class

level.

• Resource View allows one to find and edit each of the vanous resources in the

application, including dialog window designs, icons, and menus.

• File View allows one to view and navigate all the files that make up the application.

ii. The Output Pane

This might not be. visible at the start of Visual C++. However, after the first

compilation, it appears at the bottom of the Developer Studio environment and remains open

until it is closed. The Output pane is where Developer Studio provides any information that it

needs to give the programmer; where one sees all the compiler progress statements, warnin,gs

19

and error messages; and where the Visual c++ debugger displays all the variables with their

current values as you step through the code. After the Output pane is closed, it reopens itself

when Visual C++ has any message that it needs to display.

iii. The Editor Area

The area on the right side of the Developer Studio environment is the editor area. This

is the area where all editing are performed when using Visual C++, where the code editor

windows display when C++ source code is edited, and where the window painter displays

when designing a dialog box. The editor area is also where the icon painter displays when the

icons for use in the applications are been designed. The editor area is basically the entire

Developer Studio area that is not otherwise occupied by panes, menus or toolbars.

iv. Menu Bars

At the first run of Visual C++, three toolbars display just below the menu bar. Many

other toolbars are available in Visual C++, and they can be customized. New once can also

be created. The three toolbars that are initially open are the following:

• The Standard toolbar contains most of the standard tools for opening and saving files,

cutting, copying, pasting and a variety of other commands that one is likely to find useful.

• The Build minibar provides one with the build and run commands that the

programmer most likely will use as he develops and test his applications. The full Build

toolbar also lets one switch between multiple build configurations (such as between the

Debug and Release build configurations).

3.5.2 Using The Application Wizard To Create The Application Shell

The AppWizard asks a series of questions about what type of application to be built

and what features and functionality is needed. It uses this information to create a shell of an

20

applicatio11 that is immediately c(lIllpiled and nlll This shell provides the basic infr<lstructure

that is needed to build the <ll'plie<1tinn around. The nal11(, entered at this stage for the dialog is

what is seCl1 gi\cn the ploject hll this project, 'Un,,111 lla\ igator' was used

3.5.3 ()esi~l1il1~ the Applicatioll Window (Intt'I'faft')

NCl\V that application shell is running, focus can then he put on the window layout of

the application. FH'n though the l11ilin dialog windo\\ l11ilY already he available for painting

in the editor area This allo\\s dcl;llllt texts ttl be deleted and replacc'd \\'ith costumed texts~

command buttons, static tn\. edit hox, check hox. I adi() button, dnlp-down. list box (also

knO\vn as a coI11\lu b(1'\) and otiwi \lasic Windtms ('(lllll ols, to he positillned, labeled, c.l.e

3.5.4 Adding ('odf.' to Tht' Applifatiol1

Codes arc attached to the rii;llog through tlw \'isll,,1 C' , Class Wizard The Class

Wizard Gin he lIsed to 1111ild the tahle of Windo\\ <; fll('<;sages that the application might

recei\'e, including the 1t1l1ction<; the\' should he P(lssl.'d to for pnlcessing, tllilt the Microsoft

FOllndation Classes (l\iIlT) macms lise for attaching fllllctionality to window controls. To

attach fllliclillllalities tll applicatiolls the following stcps afe ro"owt~d

• To attilch sUllle functionality tll buttons, li~ht·click nver the hlltton <llld select CI<lsS

Wizard from the pop-up menu Once the button has been selected \",hen you opcned the CI<lsS

Wizard, it is (llready selected ill the list of available Objed IDs.

• With the name ur the hlltton selected in the Object JD list, select BN ('1.JeKED in

the list of 11ll'ssilges ilnd clirk Add ,'Ilnction This opens the Add l\lelllbcr Function dialog

This dialug contains a suggestiull Il)) the fllllCtioll lIalll\' ('Iirk OK to (I cate the function and

add it to thc Illessilge map.

21

• After the function is added for the click message on the button, select the appropriate

function in the list of available functions. Click the Edit Code button so that the cursor is

positioned in the source code for the function, right at the position where you should add the

functionality.

• Add the code in the Listing as appropriate, just below the TODO comment line.

• When the application is compiled and run, the button should display the appropriate

message or carry out the required instruction

• Now that the application is functionally complete, finishing touches can be added like

creating the dialog box icon, adding maximize and minimize buttons, e.t.c

The full code listing for this program is as shown in appendix [8].

3.5.5 Accessing The Output Port

The memory location corresponding to the data port is not bit addressable. This factor

makes it difficult to address the data pins individually. Therefore, to address these pins, a

byte of data must be sent to the base address-byte addressing (making the switching target of

each device look impossible). To overcome this limitation the immediate base address has to

be read and then ORed with a reference byte before sending to the base address. This

reference byte should have all the bits low with only the bit corresponding with the pin of the

target device's pin high. This action allows only the target device to be turned "ON". On the

other hand, ANDing the base address with a reference byte results in an "OFF". Regardless

of the state of the base address that is read, these operations stand true. Tables 2a and 2b

highlight these operations.

22

TABLE 28: Showing the events leading.to accessing the output port for 'ON" operation.

STATE OF
DATA IN PORT PIN LAYOUT LOGIC DEVICE DEVICE

MEMORY EVENT STATE

ADDRESS
9 8 7 6 5 4 3 2

INITIAL STATE
X X X X X X X X

SECURITY
REF. BITS LIGHT o· 0 0 0 0 0 0 I

FINAL STATE
X X X X X X X 1 OR ON

INITIAL STATE
I ,

X X X X X X X X
TV

REF. BITS
0 0 0 0 0 0 1 0

FINAL STATE
X X X X X X 1 X OR ON

INITIAL STATE
X X X X X X X X

REF. BITS FRIDGE 0 0 0 0 0 1 0 0

FINAL STATE
X X X X X 1 X X OR ON

INITIAL STATE
X X X X X X X X

FAN
REF. BITS SPEED 1 0 0 0 0 1 0 0 0

FINAL STATE
X X X X I X X X OR ON

INITIAL STATE
X X X X X X X X

FAN
REF. BITS SPEED 2 0 0 0 I I 0 0 0

FINAL STATE
X X X 1 1 X X X OR ON

INITIAL STATE
X X X X X X X X

FAN
REF. BITS SPEED 3 0 0 1 1) 0 0 0

FINAL STATE
X X 1 1 1 X X X

23

TABLE 2b: Showing the events leading to accessing the output port for 'OFF' operation.

STATE OF
DATA IN PORT PIN LAYOUT LOGIC DEVICE DEVICE

MEMORY EVENT STATE

ADDRESS
9 8 7 6 5 4 3 2

INITIAL STATE X X X X X X X X
SECURITY

REF. BITS I I I I I I I 0 LIGHT

FINAL STATE X X X X X X X 0 AND OFF

INITIAL STATE X X X X X X X X
TV

REF. BITS I I I I I I 0 I

FINAL STATE X X X X X X 0 X AND OFF

INITIAL STATE X X X X X X X X
FRIDGE

REF. BITS 1 I 1 I 1 0 I I

FINAL STATE X X X X X 0 X X AND OFF

INITIAL STATE X X X X X X X X
FAN

REF. BITS I I I I 0 I I I SPEED I

FINAL STATE X X X X 0 X X X AND OFF

INITIAL STATE X X X X X X X X
FAN

REF. BITS 1 1 1 0 0 I I I SPEED 2

FINAL STATE X X X 0 0 X X X AND OFF

INITIAL STATE X X X X X X X X
FAN

REF. BITS I I 0 0 0 I 1 I SPEED 3

FINAL STATE X X 0 0 0 X X X AND OFF

24

The GUI window displayed has ti~le display, auto time control setting (time start and

time stop), ON and OFF button, e.t.c., for each device. The ON and OFF button for each

device is tied to a corresponding data pin of the parallel port. At any time the button is

clicked ON, it places a digital "1" at the data pin of the parallel port tied to it. On the other

hand, if OFF, a digital "0" is placed at the same pin. Since these data lines are fed directly to

the input of the driver, the instantaneous digital value at the parallel port is fed to it. The

function of the driver is to invert this state at the corresponding output pin. Hence, a logical

'1' at the input of the driver implies a logical '0' at its corresponding output pin. This logical

'0' at its output is needed to turn ON the relays.

The auto time control setting is configured to work with the microcomputer time

configuration on 24 hourly bases. So, the program compare the set time with the system time

from the time the time control is triggered. Once the set time equals that of the system for the

'time start', the program automatically trigger 'ON' the corresponding device. On the other

hand, once the "time stop" is reached, the program automatically triggers 'OFF' the

corresponding device. The two timers can be set to run simultaneously.

3.6 POWER SUPPLY

The power supply functions basically to provide the necessary dc voltage with low

level of ac ripple and with good stability and regulation. It is important to state here that

sometimes, the source of this power supply could be a battery. However, often, ppwer is

obtained from a unit that converts the normal single- phase ac mains supply from local

source (e.g. PHCN) 240 volts to some different value of ac voltage suitable for the circuitry

in concern. One of the various methods of achieving a stable dc voltage from ac mains is by

the use of linear stabilizer.

25

In the case of this project, a 240(15 volts centre tapped step-down transformer was

used to step down the ac voltage. The desired 12 volts for the logic circuit respectively was

then realized using a full-wave bridge rectifier to a steady dc voltage with a choice voltage

regulator IC, LM 7812, connected in parallel to the output of the transformer.

Direction of" Cun-ent :in
D 1 Second Half" Cycle

I~r--__ ~

+ ~--.----

~----------~----~----~---

Fig 3.3: TIle power supply circuitry

The steady dc voltage realized needed to be smoothened to remove the ripple effect

caused by the ac components. This smoothening action is performed by a large value

electrolytic capacitor connected across the DC supply to act as a reservoir, supplying current

to the output when the varying DC voltage from the rectifier is falling. This action

significantly increases the average DC voltage to almost the peak value (1.4 x RMS value).

This smoothing is not perfect due to the capacitor voltage falling little as it discharges, giving

a small ripple voltage. For many circuits a ripple which is 10% of the supply voltage is

satisfactory with a larger capacitor giving fewer ripples. The capacitor value must be doubled

when smoothing half-wave DC. From the power supply circuitry diagram, C 1 and C2 is use

or smootheni ng.

26

capacHOf ct.largiog
\ capacitor discharging

cunent , ,
\ t

,
\ I • \ I , \

\ I
, , , ,

I } • ,
I ,

f t , , , , , , • II ,I •

or + " } I \ ,
voltage I , ,

I • , , ,
• t t I \

I ; I , '
0 It "

Smoothing time
Fig 3.4: Showing the smoothening effect of the capacitor

3.7 THE RELAY

A relay is a coil with a specific inductance (LC, in Henry) that causes a contact to

open or close when a specified current Ion, in Amperes, charges it. It is therefore a type of

switch whose operation is based on electromagnetic principles. In other words it is activated

when a current is applied to it. The magnetic relay can be used as a normally open or

normally closed relay. It is activated when the current in the energizing circuit exceeds the

value of the switch-on current, Ion. During operation, the contact switches from the normally

closed terminals to the normally opened terminals. The relay will remain on as long as the

current in the circuit is greater than holding current, Ihd. The value of Ihd must be less than

that of Ion.

The contact remains in the same position until the current falls below the holding

value, Ihd in Amperes, at which point it returns to its original position.

The energizing coil of the relay is modeled as an inductor, and the relay'S switching

contact is modeled as a resistors. The circuit diagram of a relay is shown figure

This unit directly interacts with the connected appliances and is responsible for

switching the appliance on and off, alongside the regulating operation. The circuitry is given

below.

27

12V de

12V Relay

Dl / IN4001

................ _-
From OutPUt of The ULM2803

Fig 3.5: The relay circuitry

From the circuit above, the diode functions as a free wheeling diode. Thus, it prevents

the switching device (Driver IC) from the charge reversal of the inductor (Relay).

3.8 THE DRIVER

The ULN 2803A is one of the series of the ULN28xxA, high-voltage, high-current

Darlington arrays that are ideally suited for interfacing between low-level logic circuitry and

multiple peripheral power loads. Typical loads include relays, solenoids, stepping motors,

magnetic print hammers, multiplexed LED and incandescent displays, and heaters. All

devices feature open-collector outputs with integral clamp diodes. The ULN2803A is

furnished in I8-pin dual in-line plastic packages with series input resistors selected for

operation directly with 5 V TTL or CMOS. It can handle numerous interface needs -

particularly those beyond the capabilities of standard logic butTers. The ULN2803 A is one of

the standard Darlington arrays. The output is capable of sinking 500 rnA and will withstand

at least 50 V in the OFF state. Outputs may be paralleled for higher load current capability.

The ULN2803A device is rated for operation over the temperature range of -20°C to +85°C.

28

Fig3.6: Pin Out of ULM2803

This unit is used to drive the relay, this is necessary because the output of the

computer cannot drive the relay directly. It is also important because it also isolate the

parallel port from electromagnetic switch.

The full circuit diagram is shown in appendix [A]

29

CHAPTER FOUR

TEST, RESULT AND DISCUSSION

4.0 PRODUCT CHARACTERISTIC FOCUS

In designing and constructing the Microcomputer multi appliance control system, the

following factors were carefully put into consideration. They include:

• Reliability

• Durability

• Efficiency

• Affordability

• Effectiveness

• Low purchase cost

4.1 HARDWARE CIRCUIT CONSTRUCTION

The construction and assembling of the hardware components was divided into three

stages, which include:

i. Mounting of components on Breadboard: - This stage was the experiment stage. It

involved placing the components on the Breadboard and using jumpers to link the major

components as appropriate. The multi-meter was used to test the signals expected at certain

nodes. The circuit was then adjusted to meet the target specification by carefully adjusting

the values of the critical components. After all the components have been mounted and the

circuit was tested working and meeting the targeted specification, it was then transferred to

the next stage- Vero board

30

ii. Mounting of components 011 V~ro board: - A suitable Vero board was cut into a

suitable size that should contain all components involved. The power circuit was first

constructed, followed by other leading component. The soldering operation was smoothly

and neatly done, carefully avoiding short circuit and excessive heating up of the components.

Again, the circuit was tested for elTors. With the circuit operating very close to the

specification, the circuit was housed- which is the next stage.

iii. Packaging: - The circuit, having been found working operationally, was housed in a

transparent plastic case as a complete unit. The choice of a transparent plastic housing was

made due to its availability, convenience, low cost, and attractiveness.

4.2 SOFTWARE DEVELOPMENT

The development of the software involves the following three stages:

i. Building of the graphic user interface (GUI): - The GUl was built using the

powerful Microsoft Visual C++ development environment. Using the in- built, dialog-based

MFC package, the design of the GUI was implemented. After the dialog was invoked, it was

first 'built' and 'run', and then 'executed', to allow the program generate the' .exe' file. The

various controls were then put on the dialog and sized accordingly. Furthermore, identity

names were attached to the various controls alongside variable names for controls that

require such. Other attractive touches were given the interface to make it more user-friendly.

The interface was 'built' and 'run'. With no error message, the codes were then added.

ii. Adding the program code: - The program codes were attached to each of the

controls by calling their identity names from the code editor. After each control has its codes

attached to it, it was 'built' and 'run' to check it for errors. The process was repeated for all

the controls until certain that there were no errors. The general program was then 'built' and

31

'run'. With no error message record~, the software package was ready to carry out its

control of the hardware interface.

4.2.1 Port Driver

Due to security reasons Microsoft operating systems do not allow any how access to

the ports of microcomputers. To access the ports, especially ~e parallel port, specially built

software drivers, called Direct Link Libraries (DLL) are required to allow the port to be

configured for use. The drivers needed to access the parallel port are the INPOUT.DLL and

INPUT.DLL. These drivers will need to be installed on the system before the software

program can access the computer's parallel port.

4.3 TESTING

At this stage, the printer cable was connected from the microcomputer to the

hardware interface and the various loads connected to their respective sockets on the

hardware interface. The loads and the microcomputer were powered from the mains. The

oceal111avigalor was initialized from the microcomputer. From the interface, the 'ON' and

'OFF' buttons corresponding to the various loads was clicked. With the loads behavior

corresponding to the desired specification, it confirms that the entire system was functioning

appropriately. The speed control of the Fan was also tested. With the obvious varying speed

of the fan in response to the clicking event of the buttons corresponding to the different

speed, it also confirmed that the speed control was operating fine. Again, the timer event was

tested. Various' START' and 'STOP' time were entered at the interface for the different

loads. Since the loads came 'ON' and 'OFF' respectively, it then also confirms that the

system was operating according to the desired specification.

32

4.4 DISCUSSION OF RESULT

From the test carried out, it was seen that each of the loads came 'ON' when the ON­

button was clicked, and 'OFF' when the same button was clicked again. These same events

occur when the timer function is invoked. When the set 'START' time of the timer reach its

equivalent system time, say 00:00:00 hrs, it triggers the ON-button. On the other hand, when

the set' STOP' time of the timer reach its equivalent system time, say 00:00:00 hrs, it triggers

the button OFF.

Clicking the shutdown button saves the settings of oceall navigator and any other

program running on the system and shutdown the system. Enabling the shutdown timer and

setting the timer at a shutdown time triggers the shutdown event, when the set time reaches

the equivalent system time.

The oceal1l1al'igator, when initialized also runs its own time from the timer display

unit. The time displayed was seen to be the same with that displayed from the system.

Finally, when the close button is clicked, the program is brought to an end, with the

setting saved, and the loads retaining these saved settings.

The result is however based on the assumption that the initial condition of the loads is

such that the main power supply is not cut off, such as when power failure from PHCN

occurs. If this situation thus occurs and the system settings remain constant, the state of the

loads will remain unchanged when there is an eventual restoration of power.

Lastly if for any reason the system unit need be put-off, and every other factors

remain constant, the state of the load will retain their states till further changes are made to

them when the system is powered again.

33

4.5 PRECAUTIONS

During the construction of this project, the following precautions were taken:

i. The various components were prevented from heat related damage by making sure

that the solder was carefully applied.

ii. Little but enough solder was applied to any joint to ensure proper contact of the

components

iii. Care was taken to ensure proper soldering of each joint, so that the lead of individual

joint would not heat away.

iv. Heat sink was used to conduct heat away

v. It was also ensured that the soldering- iron temperature was not too high to avoid

damage resulting from over-heating.

vi. Sensitive parts of the circuit were properly insulated to prevent short circuit.

vii. The circuit was firmly screwed to the casing for rigidity to prevent unexpected

removal of wires.

viii. Extreme care was taken to ensure that there were no conflicts with the use identity

names when entering the codes for the various controls.

IX. Also the syntax for entering the codes was carefully followed to avoid errors

x. I also made sure that I was careful enough not to delete any of the in-built, resident

code that enhances the operation of the program.

4.6 DIFFICULTIES ENCOUNTERED

Basically, the difficulties encountered were from the development of the software

interface. It was difficult avoiding any conflict of controls identity names or even spelling

them wrongly. It was also a tough time combating with viruses.

34

CHAPTER FIVE

5.1 CONCLUSION

The design of this project was quite very simple and straight forward. The

components used were readily available and affordable in the market. The objectives as

earlier stated were also achieved satisfactorily.

5.2 RECOMMENDATION

I will recommend that the parallel port of the microcomputer be put to better use

because of its obvious advantages. All eight output data lines can be put to use, thereby

enhancing greater control and capabilities. More devices like heat or smoke detector,

temperature sensor, e.t.c. can be interfaced with it. Motor control could also be incorporated

into the design.

When more devices are needed to be interfaced than the eight supported basically by

the parallel port, cascading can be employed using decoders. Depending on the need of the

designer, many devices (unending number) can be interfaced using this means.

Finally, individuals, business and corporate organizations should take the advantage

this project offers to improve on the control of their electrical appliances with less human

interference. The same applies to the industrial organizations. It will be fun to have their

heavy machines and equipments switched ON and OFF by "themselves" and their operations

even regulated. Feedback path could also be incorporated to allow the user observe the state

of the control work been carried out at any particular time. This project gives the necessary

background infonnation for such improvements.

35

\.
\

11
-...,
~~ l

... 0- f-4 3
I> f-4 4
~ f-4 5

",-00 f-6

"'(). r- 1
B f- B

"Do f- P
0-r-

~ f- 18-25
f-4

~ r-

~ ~ ~
L/

D 3UB25M

.

-=f

Tl

.~ 240V +

}~ Vs Source
.,p:nmuy

230V/15V· 5A 02

APPENDIX A

CIRCUIT DIAGRAM

II V
13

t 17

3 16

~ 15
5 ULM2803

14 , 13 ~

7 It

, II

10 1..4 ,
l..

12V

Dl

+ LM7812

~
+ ~lK +

04 ,,~Cl ~,C2
2200uf 220uF UJ)¥~

XXXVI

-L

~ ~ / ----.

~ ~ /
=-r
---L

~ ~ / ----.
r--L-

J ~ /--
;-L-

J ~ /
':::r

r-L-

~ ~ / ...,.....
lJVRElAY

BULB HOI] At

TV

fRIDGE

SPEED 3

SPEED 2

FAN
SPEED 1

APPENDIX B

PROGRAM SOURCE CODE

II DeXDlg.cpp : implementation file
II

#include "stdafx. h"
o#include "DeX.h"
#include "DeXDlg.h"
#include "conio.h"

#ifdef DEBUG
#define new DEBUG NEW
#undef THIS FILE
static char THIS _FILE[] = _FILE_;
#endif

#define DATA Ox378
#define STATUS Ox379
#define CONTROL Ox3 7 A

short _ stdcall Inp32(short portaddr);
void _stdcall Out32(short portaddr, short datum);
I II I I I I I I I II I I I I I I I II I I I I I I I II I I I I I 1/111 I I I I I I II I I I I II I II
II CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:

CAboutDlgO;

I I Dialog Data
II{ {AFX_DATA(CAboutDlg)
enum { IDD = IDD _ ABOUTBOX };
II} }AFX_DATA

II Class Wizard generated virtual function overrides
II{ {AFX_ VIRTUAL(CAboutDlg)
protected:
virtual void OoDataExchange(COataExchange* pOX); II DDXlODV support
II} }AFX_ VIRTUAL

II Implementation

XXXVII

protected:

};

II{ {AFX_MSG(CAboutDlg)
II} }AFX_MSG
DECLARE MESSAGE MAPO

- -

CAboutDlg: :CAboutDlgO : CDialog(CAboutDlg:: 1DD)
{

}

II{ {AFX_DATA_INIT(CAboutDlg)
II}}AFX_DATA_IN1T

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{

}

CDialog: :DoDataExchange(pDX);
II{ {AFX_DATA_MAP(CAboutDlg)
II} }AFX_DATA_MAP

BEGIN_MESSAGE _MAP(CAboutDlg, CDialog)
II{ {AFX_MSG_MAP(CAboutDlg)

II No message handlers
II} }AFX_MSG_MAP

END MESSAGE MAPO - -

I I II I II I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I II I I I I I I I II I I I I I I I II I I I I I I I I I I I I I II I I I
II CDeXDlg dialog

CDeXDIg::CDeXDlg(CWnd* pParent I*=NULL*/)
: CDialog(CDeXDlg::IDD, pParent)

II{ {AFX_DATA_INIT(CDcXDlg)
m BBOnOff = T("OtT'); - -
m_ GTOnOff= _ T("Off");
m SSOnOff = T("OtT'); - -
m SWOnOfT = T("OfT");

- -
m_sTime = _ T("");
m_BBApplianceStatus = _T("Not working ... ");
m _ GT ApplianceStatus = _ T("Not working ... ");
m _ SSApplianceStatus = _ T("Not working ... ");
m _ SW ApplianceStatus = _ T("Not working ... ");
m_SWEnableTiming = TRUE;
m_SSEnableTiming = TRUE;
m_GTEnableTiming = TRUE;
m_BBEnableTiming = TRUE;
m _ BBPortStatus = _ T("Not working ... ");

XXXVlll

,.

m_ GTPortStatus = _ T("Not working ... ");
m _ SSPortStatus = _ T("Not working ... ");
m_SWPortStatus = _T("Not working ... ");
m _ SWStartedTime = _ T("OO:OO");
m_SSStartedTime = _T("OO:OO");
m GTStartedTime = T("OO:OO"); - -
m BBStartedTime = T("OO:OO");

- -
m SWStartTime = T("OO:OO"); - -
m _ SSStartTime = _ T("OO:OO");
m _ GTStartTime = _T("OO :00");
m_BBStartTime = _T("OO:OO");
m_BBStopTime = _T("OO:OO");
m_ GTStopTime = _ T("OO:OO");
m_SSStopTime = _T("OO:OO");
m_SWStopTime = _T("OO:OO");
m j)in2 = FALSE;
mj)in3 = FALSE;
m j)in4 = FALSE;
m j)inS = FALSE;
m_BBEnableDisable = _T("Timing\nDisable");
m_ GTEnableDisable = _ T("Timing\nDisable");
m _ SSEnableDisable = _ T("Timing\nDisable");
m_SWEnableDisable = _ T("Timing\nDisable"); .
m_ShutDownTime = _T("OO:OO");
m _ShutDown = FALSE;
m_ EnableShutdown = FALSE;
m ESD = T(""); - -
II} }AFX_DATA_INIT
II Note that LoadIcon does 110t require a subsequent DestroyIcon in Win32
m_hIcon = AfxGetAppO->LoadIcon(IDR_MAINFRAME);

void CDeXDlg: :DoDataExchange(CDataExchange* pDX)
{

CDialog: :DoDataExchange(pD X);
lit {AFX_DATA_MAP(CDeXDlg)
DDX_Text(pDX, IDC_STATICBB, Ill_BBOnOf1);
DDX_Text(pDX, IDC_STATICGT, m_GTOnOtl);
DDX_Text(pDX, IDC_STA TIeSS, m_SSOnOtl);
DDX_Text(pDX, LDC_STATICSW, m_SWOnOtl);
DDX_Text(pDX, IDC_STATICTlME, lll_sTillle);
DDX_Text(pDX, IDC_BBAPST_EDIT, m_BBApplianceStatus);
DDX_Text(pDX, IDC_GTAPST_EDlT, m_GTApplianceStatus);
DDX_Text(pDX, IDC_SSAPST_EDlT, Ill_SSApplianceStatus);
DDX_Text(pDX, IDC_SW APST_EDIT, Ill_SWApplianceStatus);
DDX _ Check(pDX, IDC _ SWEnableTiming, m _ SWEnableTiming);

XXXIX

DDX _ Check(pDX, IDC _ SSEnableTiming, m _ SSEnableTiming);
DDX _ Check(pOX, IDC _ GTEnableTiming, m_ GTEnableTiming);
DDX _ Check(pDX, IDC _ BBEnableTiming, m _ BBEnableTiming);
DDX_Text(pDX, IDC_BBPTST_EDIT, m_BBPortStatus);
DDX_Text(pDX, IDC_GTPTST_EDIT, m_GTPortStatus);
DDX_ Text(pDX, IDC_SSPTST_EDIT, m_SSPortStatus);
DDX_ Text(pDX, IDC_SWPTST _EDIT, m_SWPortStatus);
DDX_Text(pDX, IDC_SWSDTM_EDIT, m_SWStartedTime);
DDV_MaxChars(pOX, m_SWStartedTime, 8);
DDX_Text(pDX, IDC_SSSDTM_EDIT, m_SSStartedTime);
DDV _MaxChars(pDX, m_SSStartedTime, 8);
DDX_Text(pDX, lDC_GTSDTM_EDIT, m_GTStartedTime);
DDV _MaxChars(pDX, m_ GTStartedTime, 8);
DDX_Text(pDX, IDC_BBSDTM_EDIT, m_BBStartedTime);
DDV _MaxChars(pDX, m_BBStartedTime, 8);
DDX_Text(pDX, IDC_SWSTTM_EDIT, m_SWStartTime);
DDV _MaxChars(pDX, m_SWStartTime, 8);
DDX_Text(pDX, IDC_SSSTTM_EDlT, m_SSStartTime);
DDV _MaxChars(pDX, I11_SSStartTime, 8);
DDX_Text(pDX, IDC_GTSTTM_EDIT, m_GTStartTime);
DDV _MaxChars(pDX, 111_ GTStartTime, 8);
DDX_Text(pDX, IDC_BBSTTM_EDlT, m_BBStartTime);
DDV _MaxChars(pDX, m_BBStartTime, 8);
DDX_Text(pDX, IDC_BBSPTM_EDIT, m_BBStopTime);
DDV _ MaxChars(pDX, m _BBStopTime, 8);
DDX_Text(pDX, IDC_GTSPTM_EDIT, m_GTStopTime);
DDV _MaxChars(pDX, m_GTStopTime, 8);
DDX_Text(pDX, IDC_SSSPTM_EDIT, m_SSStopTime);
DDV _MaxChars(pDX, I11_SSStopTime, 8);
DDX_Text(pDX, IDC_SWSPTM_EDIT, m_SWStopTime);
DDV _MaxChars(pDX, m_SWStopTime, 8);
DDX _ Check(pDX, IDC _Pin2, m yin2);
DDX_Check(pDX, IDC_Pin3, myin3);
DDX_Check(pDX, lDC_Pin4, myin4);
DDX_Check(pDX, IDC_PinS, myinS);
DDX_Text(pDX, IDC_BBEnableDisable, m_BBEnableDisable);
DDX _ Text(pDX, IDC _ GTEnableDisable, m _ GTEnableDisable);
DDX_Text(pDX, IDC_SSEnableDisable, m_SSEnableDisable);
DDX_Text(pDX, IDC_SWEnableDisable, m_SWEnableDisable);
DDX_Text(pDX, IDC_SHUTDOWNTIME, m_ShutDownTime);
DDX _ Check(pDX, IDC _ ENABLE SHUTDOWN, m _ EnableShutdown);
DDX_Text(pDX, IDC_ESD, m_ESD);
II} }AFX_DATA_MAP

BEGIN_MESSAGE _ MAP(CDeXDlg, CDialog)

xl

II{ {AFX_MSG_MAP(CDeXDlg)
ON_ WM_SYSCOMMANDO
ON_WM_PAINTO
ON_ WM_ QUERYDRAGICONO
ON_BN_CLICKED(lDC_EXlT,OnExit)
ON_ WM_TIMERO
ON _ BN _ CLICKED(IDC _ BBEnableTiming, OnBBEnableTiming)
ON _ BN _ CLICKED(IDC _ GTEnableTiming, OnGTEnableTiming)
ON_ BN _ CLICKED(IDC _ SSEnableTiming, OnSSEnableTiming)
ON_ BN _ CLICKED(IDC _ SWEnableTiming, OnSWEnableTiming)
ON _BN_ CLICKED(IDC _Pin2, OnPin2)
ON_BN_CLICKED(IDC~Pin3, OnPin3)
ON_BN_CLICKED(IDC_Pin4,OnPin4)
ON_BN_CLICKED(IDC_PinS,OnPinS)
ON_BN_CLICKED(IDC_ENABLESHUTDOWN,OnEnableshutdown)
ON_ WM_ HELPINFOO
ON_BN_CLICKED(IDC_Pin6, DnPin6)
ON_BN_CLICKED(IDC_Pin7,OnPin7)
ON_BN_CLICKED(IDC_PinS,OnPinS)
II} }AFX_MSG_MAP

END_MESSAGE_MAPO

I I 11// IIIIIIIIIIIII I I II 11/1111111111//1//1111 I I 1111111111111111111/1//1/11/11
II CDeXDIg message handlers
long int ctr=O;
#include <iomanip.h>
#include <fstream.h>

BOOL CDeXDlg: :OnlnitDialogO
{

Out32(DATA,255);

Out32(CDNTROL,0);

LoadSettingsO;
SetTimer(lD_CLOCK_TIMER, 1000, NULL);

CDialog: :OnlnitDialogO;

II Add "About..." menu item to system menu.

II TOM ABOUTBOX must be in the system command range.

xli

ASSERT((IDM_ABOUTBOX & OxFFFO) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < OxFOOO);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu != NULL)

CString strAboutMenu;
strAboulMenu.LoadString(IDS_ABOUTBOX);
if (!strAboutMenu.lsEmptyO)
{

pSysMenu-> AppendMenu(MF _SEPARATOR);
pSysMenu->AppendMenu(MF _STRING, IDM_ABOUTBOX,

str AboutMenu);
}

II Set the icon for this dialog. The framework does this automatically
1/ when the application's main window is not a dialog
Setlcon(mJ,lcon, TRUE); /1 Set big icon
SetIeon(m hIeon, FALSE); // Set small icon

II TODO: Add extra initialization here

return TRUE; II return TRUE unless you set the focus to a control

void CDeXDlg::OnSysCommand(UINT nID, LPARAM IParam)
{

if«nID & OxFFFO) == 10M ABOUTBOX)
{

}
else
{

CAboutOlg dlgAbout;
dlgAbout. OoModalO;

CDialog: :OnSysCommand(nID, IParam);
}

/1 If you add a minimize button to your dialog, you will need the code below
1/ to draw the icon. For MFC applications using the document/view model,
II this is automatically done for you by the framework.

void CDeXDlg: :OnPaintO
{

if (IsIconicO)

xlii

else
{

CPaintDC dc(this); II device context for painting

SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdcO, 0);

II Center icon in client rectangle
int cxlcon = GetSystemMetrics(SM _ CXICON);
int cyIcon = GetSystemMetrics(SM_ CYICON);
CRect rect;
GetClientRect(&rect);
int x = (rect.WidthO - cxlcon + I) 12;
int y = (rect.HeightO - cylcon + 1) 12;

I I Draw the icon
dc.DrawIeon(x, y, m_hIeon);

CDialog: :OnPaintO;

II The system calls this to obtain the cursor to display while the user drags
II the minimized window.
HCURSOR CDeXDlg: :OnQueryDraglconO
{

return (HCURSOR) m hlcon;
}

void CDeXDlg: :OnExitO
{

II TODO: Add your control notification handler code here

}

myin9=0;
UpdateData(F ALSE);
ChangePinO;
OnOKO;

void CDeXDlg: :OIlTimer(UINT nIDEvent)
{

StatusPinsO;
1/ TODO: Add your message handler code here and/or call default
1/ Get the current time

xliii

ctr++;
if(ctr==l)
{

CTime curTime = CTime: :GetCurrentTimeO;

II Display the current time
m _ sTime. F ormat("%d :%d", curTime. GetHourO,

curTime. GetMinuteO,
curTime. GetSecondO);

II Update the dialog
UpdateData(F ALSE);

TimmerEvents();
}

else
{

if(ctr%60==O)
{

CTime curTime = CTime: :GetCurrentTimeO;

II Display the current time
m_sTime.Format("%d:%d", curTimeGetHourO.

curTime.GetMinute(),
curTime. GetSecondO);

1/ Update the dialog
UpdateData(F ALSE);

TimmerEvents();
}

}
CDialog: :OnTimer(nIDEvent);

void CDeXDIg: :OnBBEnableTimingO
{

II TODO: Add your control notification handler code here

EnableTimingO;
}

void CDeXDlg: :OnGTEnableTimingO
{

xliv

II TODO: Add your control notification handler code here
EnableTimingO;

void CDeXDIg: :OnSSEnableTimingO
{

II TODO: Add your control notification handler code here
EnableTimingO;

void CDeXDIg: :OnSWEnableTimingO
{

1/ TOOO: Add your control notification handler code here
EnableTimingO;

void CDeXOlg: :EnabJeTimingO
{
UpdateData(TRUE);

if(m_BBEnableTiming==TRUE)
{m_BBEnableOisable="Timing\nEnabled";

GetOlgItem(IDC _ BBSTTM _ EDIT)-> EnableWindow(F ALSE);
GetDIgltem(lDC _ BBSPTM _ EDIT)->EnableWindow(F ALSE);}

else{m_BBEnableDisable="Timing\nDisabled";
GetDlgltem(IDC _ BBSTTM _ EDlT)->EnableWindow(TRUE);

GetDlgltem(IDC _ BBSPTM _ EOIT)->EnableWindow(TRUE);}

if(lll_ GTEnableTiming==TRUE)
(m _ GTEnableDisable="Timing\nEnabled";

GetDlgItem(1DC _ GTSTTM _ EDIT)->EnableWindow(F ALSE);
GetDlgItem(1DC _ GTSPTM _ EDIT)->EnableWindow(F ALSE);}

else{ m_ GTEnableDisable="Timing\nDisabled";
GetDlgItem(IDC_GTSTTM_EDlT)->EnableWindow(TRUE);

GetDlgItem(IDC _ GTSPTM _ EDIT)->EnableWindow(TRUE);}

if(m _ SSEnableTiming==TRUE)
{m_SSEnabJeDisable="Timing\nEnabJed";
GetDlgltem(lDC_SSSTTM_EDIT)->EnableWindow(FALSE);

GetDlgItem(IDC _ SSSPTM _EDlT)->EnableWindow(F ALSE);}
else{ m _ SSEnableDisable="Timing\nDisabled ";

GetDlgItem(lDC _ SSSTTM _ EDIT)->EnableWindow(TRUE);
GetDlgltem(lDC _ SSSPTM _ EDIT)->EnableWindow(TRUE);}

if(m_SWEnableTiming==TRUE)
{m _ SWEnableDisabJe= "Timi ng\nEnabled" ;

xlv

}

GetDlgltem(IDC _ SWSTTM _ EDIT)->EllableWi Ildow(F ALSE);
GetDlgltem(LDC_SWSPTM_EDlT)->EllableWilldow(F ALSE);}

else{m_SWEnableDisab\e="Timing\nDisab\ed";
GetDlgltem(lDC_SWSTTM_EDIT)->EnableWindow(TRUE);
GetDlgltem(lDC_SWSPTM_EDIT)->EnableWindow(TRUE);}

if(m_EnableShutdown=TRUE)
{ m ESD="Shutdown\nEnabled";
GetDlgItem(IDC _ SHUTDOWNTlME)->EnableWindow(F ALSE);}
else {m_ESD="Shutdown\nDisabled";

GetDlgltem(IDC _ SHUTDOWNTlME)->EllableWindow(TRUE);}
UpdateData(F ALSE);

SaveSettingsO;

void CDeXDlg: :TimmerEventsO
{

UpdateData(TRUE);
if(m _ BBEnableTiming==TRUE)

{if(strcmp(m_sTime,Il1_BBStartTime)==O) myin2=1;
if(strcmp(m_sTime,m _BBStopTime)==O) myin2=O;}

if(m _ SWEnableTiming==TRUE)
{if(strcmp(m_sTime,m_SWStartTime)==O) myin3=1;

if(strcmp(m_sTime,m_SWStopTime)==O) myin3=O;}

if(m _ GTEnableTiming==TRUE)
{if(strcmp(m_sTime,m_ GTStartTime)==O) myin4=1;
if(strcmp(m_sTime,m_ GTStopTime)==O) myin4=O;}

if(m_BBEnableTiming==TRUE)
{if(strcmp(m_sTime,m_SSStartTime)==O) myin5=1;
if(strcmp(m _ sTime,m _ SSStopTime)==O) m yin5=O;}

if(m _ EnableShutdown==TRUE)
{if(strcmp(ll1_sTime,m _ ShutDownTime)==O)
ShutDownO; }

UpdateData(F ALSE);
ChangePinO;
}

xlvi

void CDeXDlg:: UpdatePinsO
{
int reg;

reg=Inp32(DATA);

if«reg & OxOl)==O) myin2=O;
if«reg & Ox02)==O) myin3=O;
if«reg & Ox04)==O) myin4=O;
if«reg & Ox08)=O) myin5=O;

UpdateData(F ALSE);
}

void CDeXDlg: :ChangePinO
{
int dataJegister, new_register;

UpdateData(TRUE);
data_register=Inp32(DATA);
new _ regi ster=O;

else m yin2= 1 ;
else myin3=1;
else myin4=1;
else m yin5= 1;

i f(m yin2==TRUE) new_register 1= OxO I;
if(myin3==TRUE) new_register 1= Ox02;
if(myin4==TRUE) new_register 1= Ox04;
if(myin5==TRUE) new_register 1= Ox08;

Out32(DAT A, new_register);

if(myin2==I) Itl_BBOnOff="On"; else Itl_BBOnOff="Ofr';
if(myin3=1) m_SWOnOff="On"; else m_SWOnOff="Ofr';
if(m_pin4=1) Ill_GTOnOff="On"; else m_GTOnOff="Ofr';
if(myin5=1) {

else

UpdateData(F ALSE);
SaveSettingsO;

}

void CDeXDlg: :LoadSettingsO
{

fstream fp;
fp.open("DeCON",ios: :in);

{ };

xlvii

I
I·

fp»m_ BBEnableTiming»m_ SWEnableTiming»m_ SSEnableTiming»m _ GTEnableTi
ming;

}

UpdateData(F ALSE);
fp.c1oseO;

fp.open("DeCON 1 ",ios: :in);
fp»myin2»m yin3»m yin4»myin5;

UpdateData(F ALSE);
fp.c1oseO;

EnableTimingO;
myin9=1; ';
ChangePinO;

void CDeXDlg: :SaveSettingsO
{

fstream fp;
fp.open("DeCON",ios: :out);

fp«m_BBEnableTiming«setw(5)«m_SWEnabJeTimillg«setw(5)«I11_SSEnableTimin
g«setw(5)«m_GTEnableTiming;

}

fp.c1oseO;

fp.open("DeCONl ",ios::out);
fp«myin2«setw(5)«myin3«setw(5)«myin4«setw(5)«myinS;
fp.c1oseO;

UpdateData(TRUE);

void CDeXDlg: :OnPin20
{

}

II TODO: Add your control notification handler code here
ChangePinO;

void CDeXDlg: :OnPin30
{

}

II TODO: Add your control notification handler code here
ChangePinO;

void CDeXDlg: :OnPin40
{

II TODO: Add your control notification handler code here

xlviii

ChangePinO;

. void CDeXDlg: :OnPin50
{

II TODO: Add your control notification handler code here

m-pin5=F ALSE;

m SSOnOfT="Off'" - ,
UpdateData(F ALSE);

ChangePinO;
}

void CDeXDlg::ShutDownO
{

WinExec("shutdown.exe",SW SHOW);
}

void CDeXDlg: :OnEnableshutdownO
{

}

II TODO: Add your control notification handler code here
EnableTimingO;

void CDeXDIg::StatusPinsO
{

int status_reg;
statusJeg=Inp32(STATUS);

if«statusJeg & Ox40)==O) m_BBApplianceStatus ="Not working";
else m_BBApplianceStatus ="Working";

if«statusJeg & Ox80)==O) m_SW ApplianceStatus ="Not working";
else m_SWApplianceStatus ="Working";

if«status_reg & Ox20)=-O) m_ GTApplianceStatus ="Not working";
else m_GTApplianceStatus ="Working";

if«status_reg & OxIO)==O) m_SSApplianceStatus ="Not working";
else m_SSApplianceStatus ="Working";

xlix

BOOL CDeXDlg::OnHelplnfo(HELPINFO* pHelpInfo)
{ .

II TODO: Add your message handler code here and/or call default

return CDialog: :OnHelplnfo(pHelplnfo);
}

void CDeXDlg::OnPin60
{

}

II TODO: Add your control notification handler code here
m yin5=TRUE;

myin7=TRUE;
m yin8=TRUE;

m SSOnOff="I II. - ,
UpdateData(F ALSE);

ChangePinO;

void CDeXDIg::OnPin70
{

II TODO: Add your control notification handler code here

myin5=TRUE;
m yin6=TRUE;
m yin8==TRUE;
m_SSOnOff="2";
UpdateData(F ALSE);

ChangePinO;

void CDeXDlg: :OnPin80
(

II TODO: Add your control notification handler code here

m yin5==TRUE;
m yin6=TRUE;
m yin 7=TRUE;
m SSOnOff="3 II. - ,
UpdateData(F ALSE);

ChangePinO;

LIST OF FIGURES

Figure 3.l Microcomputer based multi- appliance control system"s block diagram

Figure 3.2 Diagram of a parallel port showing its pins output

Fib:rure 3.3 The power supply

Figure 3.4 Sho\\ing the smoothening effect of the capacitor

Figure 3.5 The Rrlay circuit

Figure 3.6 Pin out of ULM 2803A

. "
1"

f

-

Tab\e \. Parallel port pins details
Table 20. Showing evenls leading 10 accessing lhe oulpul porI for '01'1' opera lion

Table 2b. showing evenl
s

leading 10 accessing lhe outpul port for 'OFF' oper,atio

n

lii

REFERENCES

[1]. C++ Programming Language, available at: www.mcp.com

[2]. Norris, Mark. "Microcomputer". Microsoft Encarta (c) 2006

[3]. C++ Programming Language, available at: www.mcp.com

[4]. C++ Programming Language, available at: www.mcp.com

[5]. C++ Programming Language, available at: www.mcp.com

[6]. Harsha, Perla; Programming Language, available at: .mvw:...~1~s,;1[Q .. ~Q..fL~.Qm

[7]. Harsha, Perla; Programming Language, available at: ~:w.el~1[Q§Qftg,Qm

,

liii

