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ABSTRACT 

In this paper we present a mathematical model of the flame dynamics. We assume that fuel is the limiting species, so that the 

combustion is lean. Under this assumption, we consider the steady equations describing the flame dynamics in a combustor. 

We prove the existence and uniqueness of solution by actual solution and examine the properties of solution by transforming 

the dimensionless equation from infinite domain to finite domain. The equations are solved analytically using asymptotic 

expansions. The steady-state temperature and concentration distributions profiles are presented and discussed. It is discovered 

that the Frank-Kamenetskii number plays a crucial role in the flame dynamics and the temperature is increased and species is 

consumed in the spatial direction. 
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1. INTRODUCTION 

Combustion includes many chemical chain reactions and 

many intermediate species are involved. To model this 

combustion process, we assume that the reaction satisfies the 

one-step reaction mechanism of a convectional hydrocarbon 

fuel 

OH
y

xCOO
y

xHC yx 222
24









                     (1)                           

The rate of fuel consumption is usually expressed using an 

Arrhenius term 

 
    TR

E

nm
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a

eOHCA
dt

HCd 

 2                             (2)                                     

For a premixed laminar flame, methane react with air in the 

form of  

  222224 52.7276.32 NOHCONOCH  ,    (3)                                              

where 1,1  nm . 

 

 Many gas-phase mixture or pure substances that react or 

decompose exothermically are capable of supporting a low-

velocity subsonic decomposition wave, which is called a 

flame [1]. Zeldovitch et al. [2] were the first to model purely 

gaseous premixed flames with a chain mechanism using a 

two-step chemical mechanism. Other work followed using 

this non-linear mechanism (see, for example, a modified 

mechanism by Dold et al. [3]). The advantage of the latter 

mechanism is the fact that it takes the chain breaking or 

completion step to be linear in the concentration of some 

intermediate radical or species. This is completely consistent 

with the final state being an equilibrium one in a broader 

chemical system and bears the added advantage of enabling 

mathematical tractability. Hammoud and Souidi [4] 

presented a numerical method for the study of chemically 

reacting flow in laminar premixed flame of carbon monoxide 

/ oxygen mixture in the region of the stagnation point. Hu et 

al. [5] conducted numerical study on laminar burning 

velocity and NO formation of the premixed methane–

hydrogen–air flames at room temperature and atmospheric 

pressure. The unstretched laminar burning velocity, adiabatic 

flame temperature, and radical mole fractions of H, OH and 

NO are obtained at various equivalence ratios and hydrogen 

fractions. In another related paper, Hu et al. [6] conducted 

experimental and numerical study on the lean methane–

hydrogen–air flames at elevated pressures and temperatures. 

The unstretched laminar burning velocities and Markstein 

lengths were obtained over a wide range of hydrogen 

fractions at elevated pressures and temperatures. Olayiwola 

et al. [7] considered a steady, adiabatic, premixed laminar 

flame in an approximation in which all species 

concentrations can be related to the temperature T as the 

single dependent variable. They provided an analytical 

solution for the model with variable thermal conductivity. . 

 

In this paper we study mathematically the chemical kinetics 

of a laminar premixed flame. We assume that the fuel is the 

limiting species, so that combustion is lean. We examine the 

properties of solution. To simulate the flow, we assume that 

the incoming mixture is at the burner temperature. 

 

2. MODEL FORMULATION  
 

Here, we study lean premixed laminar flame, and 

equivalence ratio 1 . Under this assumption, the 



                     Volume 3 No.2, February 2013                                                                                                                   ISSN 2224-3577 

  
International Journal of Science and Technology 

                                                                                                                                 
©2013 IJST. All rights reserved 

 
http://www.ejournalofsciences.org 

 

126 

governing equations that describe the flame dynamics in a 

combustor are 

 

Conservation of mass 

 

0
dx

du
                                                                             (4) 

 

Conservation of momentum 
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Conservation of species 
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Conservation of energy 
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From the continuity equation (4), we obtain 

u constant                                                                         (8) 

 

Here, we let 

0, 00  vvu                                                           (9) 

 

We make the additional assumptions that ,pc  and D  

are constant and equal for all species. Although these 

assumptions could be relaxed in the future, they considerably 

simplify the equations. Thus the equations (4) – (9) can be 

simplified as  
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where T  is the temperature, Y  is the mass fraction of the 

fuel (assumed to be the limiting species),   is the density, 

x  is the position,   is the thermal conductivity, pc  is the 

specific heat at constant pressure, h  is the heat of reaction, 

D  is the diffusion coefficients and R  is the rate term in 

Arrhenius form 

RT

E

fofof eYYMMkR fofoof
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


 ,                    (12)   

 

where of YY ,  are the mass fraction of the fuel and 

oxidizer, and of MM ,  are molecular weights. of  ,  are 

the correspond stoichiometric coefficients and k  is the pre 

exponential constant. 

The boundary conditions were formulated as follows: 
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3. METHOD OF SOLUTION 
 

3.1 Existence and Uniqueness Solution ] 

 

Theorem 1 Let 

pc
D




 . Then there exists a unique 

solution of problem (10) – (12) satisfy (13). 

Proof: Let 
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 . Then (10) - 
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We obtain the solution of problem (14) as  
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Then, we obtain 
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Hence, there exists a unique solution of problem (10) – (12). 

This completes the proof. 

 

3.2 Non-dimensionalisation 
 

We make the variables dimensionless by introducing  
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L

x
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Y
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E
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and using (18), equations (10) and (11) (after dropping prime) 

become 
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     xasxYYY 0,0 0                      (22) 

 

     xasxb 0,0  ,                    (23) 

 

where  

 

 
h

Tc
bYTT

h

c
a

p

oburner

p









0

0 ,  

 

 
00

0 0

vTc

eYMMkhM

p

RT

E

fof

offoof
















 is the  

Frank-Kamenetskii parameter 
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When 0 , equations (20) and (21) become 
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3.3 Properties of Solution 

     

We consider equation (25) when 0b  and transform the 

equation from infinite domain to finite domain, using 
xey   and we obtain 
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It suffices to show that    zz   . 

 

Replace z  by z . We obtain 
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Hence   is symmetric about 0z  i.e.   is symmetric 

about 
2

1
y . This completes the proof. 

 

Theorem 3 Let 0b  and 1 fo vv   in (26). Then  
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This completes the proof. 
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Using Ayeni [8], we obtain 
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Hence,  y  is strictly monotonically increasing for 
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3.4 Analytical Solution 

      

Here, we consider equations (24) and (25) when 

1 fo vv .  Ayeni [9] has shown that  exp  can be 

approximated as   221   e . In this paper we are 

going to take an approximation of the form 
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Using the asymptotic expansion 
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where ... toh  read “higher order terms in  . In our analysis 

we are interested only in the first three terms.  
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  (44) 

 

 

 

 

4. RESULTS AND DISCUSSION 
 

 

The existence and uniqueness of solution of the Problem is 

proved by the actual solution. Under certain conditions, we 

have shown that (i)  x  is symmetric about 
2

1
x , (ii) 

0
2

1









  and (iii)  x  is strictly monotonically 

increasing for 









2

1
,0x . Analytical solutions given by 

equations (43) and (44) are computed for the values of 

,0.1,0.1  ba  ,01.0b  ,718.2,01.0  e  

1 fo vv . The concentration and temperature values are 

depicted graphically in Figures 1 and 2.  

     The temperature distribution behavior along the spatial 

direction is shown in Figure 1. Figure 1 depicts the graph of 

 x against x  for different values of  . It is observed 

that the temperature increases along spatial direction as 

Frank-Kamenetskii number increases. The concentration 

distribution behavior along the spatial direction is shown in 

Figure 2. Figure 2 depicts the graph of  xY against x  for 

different values of  . It is observed that the concentration 

does not change much with increase in Frank-Kamenetskii 

number.  

 

 
 

 

 
It is worth pointing out that the effect of   as shown in 

Figures 1 and 2 indicating that there is increase in heat of 

reaction h . When the heat of reaction is high, the rate of 

conversion of hydrocarbon fuel into water and gas is high. 

This is of great economic importance. 
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5. CONCLUSION 

To study the dynamic response of the heat release model, we 

used high activation energy asymptotics and analytical 

solution via asymptotic expansions is obtained for steady-

state, also called equilibrium solutions of the flame model. 

The governing parameter for the problem under study is the 

Frank-Kamenetskii number. Considering the physical 

constraints, the temperature must increase and species be 

consumed in the positive spatial direction. The analytical 

method is used to search for steady state temperature and 

species mass fraction profiles. The temperature and species 

mass fraction profiles are significantly influenced by the 

parameter involved. The analytical solution of the problem 

may help model numerical solutions and codes. It may be 

used as a preliminary predictive tool to study mathematically 

the dynamics of a laminar premixed flame.  The work may 

be extended to more complex cases such as transient state 

and two-dimensional cases and therefore, recommended for 

further research. 
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