
DESIGN AND IMPLEMENTATION OF A SOFTWARE 
INTERCOM ON A LOCAL AREA NETWORK 

BY 

ALI-NOCK GYET 
99/8087EE 

DEPARTMENT OF ELECTRICAL/COMPUTER ENGINEERING 
SCHOOL OF ENGINEERING AND ENGINEERING TECHNOLOGY 

FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA 
NIGER STATE, NIGERIA. 

A PROJECT REPORT SUBMITTED IN PARTIAL FULFII ... MENT FOR 
mg· AWARD OF BACHELOR OF ENGINEERING DEGREE (B.ENG.) 

IN ELECTRICAUCOMPUTER ENGINEERING 

NOVEMBER 2005 
l 
\ 



A TIESTATIONIDECLARA TION 

This is to attest that this project "Design and Implementation of a Software 

Intercom on a Local Area Network (LAN)" was designed and implemented by 

ALI-NOCK GYET for the award of bachelor degree in Electrical/Computer Engineering 

of the Federal University of Technology, Minna, Niger State, Nigeria. 

~ 
. • f. / 

'f . , 
........................................ 
STIJDENT 

••••• !'~"" •• , •• ,. 

~-
Mr. Jonathan Kolo 
PROJECT SUPERVISOR 

~~~ 
Engr. Musa Abdullahi 
~iW OF DEPARTMENT 

'" -..................... -., " ...... . 
EXTERNAL EXAMINER 

. ..... 1.J..1.~1.~r: .. 
DATE 

'.' ........................... . 
DATE 



ACKNOWLEDGEMENT 

I would want to first ofaJl say thank you to my par!!Jl~s Mr. and Mrs. M. I. Ali­

Nock. whom have loved and nurtured me unconditionally and have given me the room 

and support to grow and explore my true potential,. 

I would also love to acknowledge my departmental lecturers, through whom I 

have been groomed to face the challenges of work as an engineer. I want to also show 

appreciation to my supervisor Mr. Jonathan Kolo, whom through his patience and 

constructive criticism has enabled me to complete this project with ease. 

Finally I want to thank my Lord God Almighty, through whom my existence was 

made possible, thank you for being my Strongest support. 

Jl1 



DEDICATION 

This project is dedicated to my closet friends. With their support and friendship I 

have come to appreciate the influence of positive thinking people on a person's life and 

realize my true potential. They inspire me to reach for greater heights. 

11 



ABSTRACf 

This project represmts a branch of Voice over IP (VolP} technology which in 

itself incorporates many aspects of digital signal processing. Quic~ effective, reJiable, 

efficient, and cheap means of communication has necessitated the need to rmding new 

solutions to improving telecommunication which is the backbone in the operation and 

day to day nmning ofmos{ businesses and institutions today. The need for 

infonnation at the press of a button cannot be over-emphasized. 

This project stands as the foundation of the revolution of multimedia 

communication today. The project enables the use of a Local Area Network (LAN, 

which are mostly dedicated to data traffic only) installed in an office area as a ineans 

of communication using voice and video media, presented in real-time between peers 

by the use of a software. It also has an extra functionality of voice conferencing and 

multicast oflive events via video over the network. The project also hopes to provide 

a solution which eliminates the use of expmsive hand-wired intercoms and Public 

Branch Exchange (P ABX), allowing the use of only the LAN network and readily 

available computer hardware, in essence giving the user a truly Multimedia 

exp~ence. 



Certification 

Dedication 

Acknowledgement 

Table of Content 

Abstract 

Chapter One 

1.0 Introduction 

1.1 Project overview 

1.2 Statement of problem 

TABLE OF CONTENT 

1.3 Rationale for the project 

1.4 Objectives of the project 3 

Chapter Two 

2.1 An overview of digital signal processing 

" 

2.2 An overview of multimedia communication on digital networks 

2.3 Audio Communication 

2.4 Video communication 

2.5 Summary of multimedia communication 

n 

iii 

IV 

V 

I 

I 

2 

2 

4 

9 

15 

18 

19 



Chapter Three 

3.0 Program Analysis and Design 

3.1 Why Java? 

3.2 Program Design 

Chapter Four 

4.0 System Requirement and Implementation 

4.1 software requirements 

4.2 Hardware requirements 

4.3 Program Implementation 

4.4 Program segments 

Chapter Five 

5.0 Conclusion and Recommendation 

5.1 Project conclusion 

5.2 Recommendations 

Reference 

Appendixes 

20 

20 

24 

27 

27 

28 

29 

31 

34 

34 

35 

36 

37 



CHAPTER ONE 

INTRODUCfION 

1.1 PROJECT OVERVIEW 

In this day and age, digital technology is the backbone ~four entire information 

industry. As a part of this, the transformation of audio information into digital signals 

Is now a routine process which is incorporated into our telephone, digital networks, 

televisions and music equipments. 

The invention of the transistor in 1947 and later evolution of semiconductor 

microelectronics techniques have facilitated the digital revolution and ushered in the 

electronic age, giving us the capabilities we have today in digital communications. 

Voice communication has traditionally been carried over dedicated Telephone networks 

operated by Telecommunication service providers such as the NITEL and GLO, e.t.c in 

Nigeria. These telephone networks have progressively evolved from the initial analog 

circuits to the current digital networks with bandwidth in excess of] Gbps. For reasons 

of varying bandwidth and networking requirements, different services were provided on 

separate networks. For exampJe, Telegraph networks; Telex networks, Telephone 

networks, Facsimile networks, Cable networks and Data networks support different 

services, as their names would suggest. These networks possessed characteristics that 

satisfied the peculiar requirements of the service they provided. For example, the voice 

network would support bandwidths of 64 Kbps for voice communication and would 

ensure telco-grade voice communication with little jitter and echo cancellation. Likewise, 

the cable networks would provide even higher bandwidth and improved quality of service 

(QoS) for video transmission. On the other hand, the data communication networks' 

1 



bandwidth and QoS requirernents are highly flexible .. For rnost types of data 

comrnunication applications, reliability is critical, which means that the delivery 

protocols would implernent rnechanisms for error checking, acknowledgment, re­

transmissions and sequencing. On the other hand, for real-time applications such as voice 

communications, it would make little sense to retransrnit a lost packet for play back at the 

receiving end, if it is out of sequence and is considerably delayed. Essentially, the main 

point to be noted is that these networks have been designed differently in terms of their 

underlying architecture and communication protocols. 

1.2 STATEMENT OF THE PROBLEM 

With the imrnense growth of digital networks, which is the marriage of two 

technologies i.e. telecommunication technology and computer technology. Networks are 

being explored to the fullest. Ways in which existing networks can be used optimally, 

with minirnum additional cost. For example, fac.ilities like video conferencing, rnail 

serving, can be incorporated into the network, saving cost, granting easier access to 

remote database and remote programs. 

Integrating these networks into a single integrated network, such that all services 

would use common facilities, presents a technological hurdle. 

This project therefore is designed to provide a service which transmits voice and video 

over a Data network, as against having dedicated voice and cable networks meant for 

either voice or video communication only. 

1.3 RATIONALE FOR THE PROJECT 

Certain advantages could be gained from having an all purpose network as against 

having only dedicated networks. Below are some reasons why this evolution in digital 

2 



communication is deemed necessary. 

1.3.1 Cost Reduction 

With the implementation of a software based intercom, the need for expensive 

P ABX, Telephone handsets would be eliminated since the only hardware requirement 

needed would be headset and a computer on the network. Moreover, with the prevalence 

of IP nodes and the abundant supply of IP based switches and routers, communication 

might not be limited to just local area networks(LAN), but may include Wide Area 

Networks(W AN), thereby reduced the cost of making long distance calls. 

1.3.2 Simplification and Consolidation 

An integrated infiastructure that supports all forms of communication could allow 

more standardization and reduce the total equipment compliment. The differences 

between the traffic patterns of voice and data offer further opportunities for significant 

improvement in efficiency. Simplified installation and maintenance are a major 

advantages the project will otTer. 

1.4 OBJECTIVES OF THE PROJECT 

The major aim of this project is to develop a network based software intercom 

where anyone on the network can dial a peer that is logged on the network. This is an 

intercom without the P ABX and expensive handsets. Another aim of the software is to 

provide video peer to peer conferencing, where two or more clients can see each in real 

time using web cams or any other video capture devices connected to their computers. 

3 



CHAPTER TWO LITERATURE REVIEW 

2.1 AN OVERVIEW OF D~GITAL SIGNAL PROCESSING (DSP) 

Digital Signal Processing is one of the most powerful technologies that has 

shaped Science and Engineering in this century. Revolutionary changes have been made 

in a broad range of fields: communication, medical imaging, radar and sonar, high 

fidelity music reproduction, and oil prospecting to name just a few. Each of these areas 

has developed a deep DSP technology, with its own algorithms, mathematics, and 

specialized techniques. DSP in essence is the technology making possible this project 

possible(Software Intercom). 

2.1.1 WHAT IS DIGITAL SIGNAL PROCESSING (DSP). 

Digital Signal Processing is distinguished from other areas of computing by the 

Type of data it uses: signals. In most cases, these signals originate as sensory data from 

the real world i.e. seismic vibration, visual images, sound waves etc. DSP is the 

mathematics, the algorithm and the technique used to manipulate these signals after they 

have been converted into digital form by transducers. 

2.1.2 WHY PROCESS SIGNALS DIGITALLY 

Certain advantages are gained from processing real world sensory signal into 

digital signals. The following are some the reasons why. 

1. Enhancement of visual images. 

2. Recognition and generation of speech. 

3. Compression of data for storage and transmission. 

4. Encrypting of signals for security purposes. 

4 



The application ofDSP is limitless and has application in areas of commerce, military, 

research and the day to day running of most house holds. The remainder of this chapter 

illustrates areas in which has had an effect, especially with regards to the technologies 

behind the workings of this project. 

2.1.3 TELECOMMUNICATION 

Telecommunication is about transferring information from one location to 

another. This includes many forms of information: telephone conversations, television 

signals, computer files, and other data types. To transfer the information, a channel 

between the two locations is needed. This may be a wire pair, radio signals, optical fiber, 

etc. Telecommunication companies receive payment for transferring their customer's 

information, while they must pay to establish and maintain the channel. The financial 

bottom line is simpJe~ the more the information they can pass through a single channel, 

the more money they make. DSP has revolutionized the telecommunications industry in 

many areas: signaling tone generation and detection, frequency band shifting, filtering to 

remove power line hum etc. Three specific technologies would be discussed here: 

Multiplexing, Compression, and Echo control. 
2.1.3.1 MULTIPLEXING 

There are approximately one billion telephones in the world. At the press of a few 

Buttons, switching networks allow anyone of these to be connected to any other 

in only a few seconds. The immensity of this task is mind boggling! Until the 

1960s, a connection between two telephones required passing the analog voice 

signals through mechanical switches and amplifiers. One connection required one 

pair of wires. In comparison, DSP converts audio signals into a stream of serial 

5 



digital data. Since hits can he easily intertwined and later separated, many 

telephone conversations can be transmitted on a single channel. For example, a 

telephone standard known as the T -carrier system can simultaneously transmit 24 

voice signals. Each voice signal is sampled 8000 times per second using 8 bit 

compounded (logarithmic compressed) analog-to-digital conversion. This results 

in each voice signal being represented as 64,000 bits/sec, and all 24 channels 

being contained in 1.544 megabits/sec. This signal can be transmitted about 6000 

feet using ordinary telephone lines of 22 gauge copper wire, a typical 

interconnection distance. The financial advantage of digital transmission is 

enonnous. Wire and analog switches are expensive~ digital gates are cheap. 

2.1.3.2 CO,MPRESSION 

When a voice signal is digitized at 8000 samples/sec, most of the digital 

information is redundant. That is, the information carried by anyone sample 

largely duplicated by neighboring samples. Dozens.ofDSP algorithms have been 

developed to convert digitized voice signals into streams that require fewer 

bitslsec. These are called data compression algorithms. Matching decompression 

algorithms are used to restore the signals to its original form. These algorithms 

vary in the amount of compression achieved and the resulting sound quality. In 

general, reducing the data rate from 64 kilobitslsec to 32 kilobitslsec results in no 

loss of sound quality. When compressed to a data rate of 8 kilobitslsec, the sound 

is noticeably affected, but still usable for long distance telephone networks. The 

highest achievable compression is about 2 kiJobitslsec, resulting in sound 

that is highly distorted, but usable for some applications such as military and 

6 



undersea communications. 

2.1.3.3 ECHO CONTROL 

Echoes are a serious problem in long distance te1ep~one connections. When you 

Speak into a telephone, a signal representing your voice travels to the connecting 

receiver, where a portion of it returns as an echo. If the connection is within a 

hundred miles, the elapsed time for receiving the echo is only a. few milliseconds. 

The human ear is accustomed to hearing echoes with these small time delays, and 

the connection sounds quite normal. As the distance becomes larger, the echo 

becomes increasingly noticeable and irritating. The delay can be several hundred 

milliseconds for international communications, and is particularly objectionable. 

Digital Signal Processing attacks this type of problem by measuring the returned 

signal and generating an appropriate anti-signal to cancel the offending echo. This 

same technique allows speakerphone users to hear and speak at the same time 

without fighting audio feedback (squealing). It can be used to reduce 

environmental noise by canceling it with digitally generated anti-noise. 

2.1.4 AUDIO PROCESSING 

The two principal human senses are vision and hearing. Correspondingly, much 

of nsp is related to image and audio processing. People listen to both music and speech. 

DSP has made revolutionary changes in both these areas. 

2.1.4.1 Music 

The path leading from the musician's microphone to the audiophile's speaker is 

remarkably long. Digital data representation is important to prevent the 

7 



degradation commonly associated with analog storage and manipulation. This is 

very familiar to anyone who has compared the musical quality of cassette tapes 

with compact disks. In a typical scenario, a musical piece is recorded in a sound 

studio on multiple channels or tracks. In some cases,'this even involves recording 

individual instruments and singers separately. This is done to give the sound 

engineer greater flexibility in creating the final product. The complex process of 

combining the individual tracks into a final product is called mix down. nsp can 

provide several important functions during mix down, including: filtering, signal 

addition and subtraction, signal editing, etc. 

One of the most interesting nsp applications in music preparation is artificial 

reverberation. If the individual channels are simply added together, the resulting 

piece sounds frail and diJuted, much as if the musicians were playing outdoors. 

This is because listeners are greatly influenced by the echo of revemeration 

content of the music, which is usually minimized in the sound studio. DSP allows 

artificial echoes and reverberation to be added during mix down to simulate 

various ideal listening environments. Echoes with delays of a few hundred 

milliseconds give the impression of cathedral like locations. 

Adding echoes with delays of 10-20 milliseconds provide the perception of more 

modest size listening rooms. 

2.1.4.2 SpeKh Generation 

Speech generation and recognition are used to communicate between humans and 

machines. Rather than using one' s hands and eyes, the mouth and ears are used 

instead. Two approaches are used for computer generated speech: digital 

8 

.,,' 



recording and vocal tract Simulation. In digital recording, the voice of a human 

speaker is digitized and stored, usually in a compressed form. During playback, 

the stored data are uncompressed and converted back into an analog signal. 

Vocal tract simulators are more complicated trying to mimic the physical 

mechanisms by which humans create speech. The humans vocal tract is an 

acoustic cavity with resonant frequencies determined by size and shape of the 

chambers. Sound originates in the vocal tract in one of two ways, called voiced 

and fricative sounds. With voiced sounds, vocal cord vibration produces near 

periodic pulses of air into vocal cavities. In comparison fricative sounds originate 

from the noisy air turbulence at narrow constrictions, such as the teeth and lips. 

Vocal tract simulators operate by generating digital signals that resemble these 

two types of excitation. The characteristics of the resonate chamber are simulated 

resonances. The approach was used in one of the very early DSP success stories, 

the Speak & Spell, a widely sold electronic learning aid for children. 

2.2 AN OVERVIEW OF MULTIMEDIA COMMUNICAtION 

ON DIGITAL NETWORKS 

In the past, separate infrastructures were required to support different types of 

communication. Most workstntions me still equipped with hoth n telephone nlld II 

pcrsonnl computer (PC) to support voice alld data COllllllllllicntioll. The telephol1c is thc 

user's front end the Private Branch Exchange (PBX) or other telephony switch, while the 

PC is an intelligent device that uses LANs and WANs to communicate with other 

devices. 

9 



Technological innovations have eroded the distinctions between previously 

distinct communication technologies. Advances in components technologies have 

enabled the development of increasingly sophisticated and specialized applications. 

Multimedia communication, for example, owes its existence to advances in 

microprocessors are continuing to increase in power and speed while steadily becoming 

more affordable. Similar advances have been made in the various types of magnetic 

storage devices. 

These advantages encouraged creative attempts to exploit their potential. One 

creative attempt was the digitization of data that traditionally existed in other forms. 

Today, numerous data type converging into a common format: digital encoding. 

Integrating mUltiple application types that use digitally encoded data into a single host 

platform, that is, a computer has become euphemistically known as "multimedia 

computing." 

Some of the more common multimedia applications include 

1. Computer-based telephony 

2. Video conferencing 

3. Video transmission 

4. Audio transmission 

5. High-density graphics 

Multimedia communication can be equally difficult to define; multimedia communication 

means the integration of multiple data types into a common bit stream. 

A subtle but important point is that multimedia computing and multimedia 

communication are not completely synonymous. For example, a LAN can support client 

10 



machines that are used exclusively for traditional forms of data communication and also 

provide networking for machines that are dedicated to provide video or audio service for 

external clients. Consequently the LAN is simultaneously transporting multiple media 

types with extremely different performance requirements, even though no true 

multimedia computers are directl y connected to it. 

Multimedia applications typically impose two basic types of performance 

requirements: latency and bandwidth. 

2.2.t LATENCY 

Latency is defined as the minimum amount of time required for a packet to clear 

any given network device, such as a router, a hub, a switch and so on. Time sensitive 

applications like live video or video conferencing require low-latency connections 

throughout the entire network. A low latency connection, ideally, provides a and 

consistent delay between the transmission and receipt of a packet. Low but inconsistent 

delays can result in jittery images, choppy sounds, or otherwise degraded performance of 

networked multimedia applications. 

2.2.t~t LAN Access Methods 

The cumulative latency of a network is affected in many ways. The first, and most 

obvious, is the LAN's access method. LAN's that feature a contention-based 

access method (for example, all "flavors" of Ethernet) are likely to have a higher, 

and less consistent, latency due to the vicissitudes of competing for empty 

packets. LANs that use a deterministic access method (for example, Token Ring 

and FDDI) have a lower latency, but remain inconsistent and unpredictable. 

11 



A good way to improve the latency of both contention and token based networks 

is to implement them using switching hubs. Switches are very fast forwarding 

devices that function completely at Layers 1 and 2 of the OSI reference model A 

LAN based' on switching hubs enjoys a lower innate latency than one based on 

repeating hubs simply because the switches forward packets faster than 

conventional repeating hubs. 

2~2.1.2 Routing 

Another aspect ofa network's cumulative latency is whether or not routing is 

used. Routers, an integral part of virtu all y all W ANs, operate at layer 3 of the OSI 

Model and require software-driven table lookups to forward packets. This means 

that they cannot forward packets as a quickly as a switch, Thus, they directly 

increase the cumulative latency of a network. 

2.2.1.3 Frame and Packet Structures 

Latency is also directly affected by a network's frame structure. Many oftodays 

more common and mature network protocols also use flexible frame and packet 

sizes. Flexible data fields excel at transporting traditional data types by 

minimizing the packet-to-payload ratio, Unfortunately, this has the exact opposite 

impact on time-sensitive applications. Forcing such applications to intermingle in 

the bit stream with indeterminate packet sizes adversely affects time-sensitive 

applications by introducing inconsistency to the network's cumulative latency. 

12 



1.2.1.4 Paded Discrimination 

Given that conventional networks are designed explicitly to support the transport 

of data, the time-sensitive packets of multimedia applications require non­

standard handling. Networks must be able to 

Identify packets that require special handling. 

Be capable of accommodating those special requirements. 

A mechanism that can provide networks with the ability to discriminate between 

packets, based on their performance requirements, is known as Quality of Service 

(QoS). QoS has two distinct facets: network and application. Valid application 

QoS parameters include image size and quality, frame rate (if the application is 

video), start-up delays, reliability, and so on. The network however has a very 

different set ofQoS parameters. These include: bandwidth, loss rate, delay. Users 

are not allowed to specify network QoS parameters. A QoS-capable protocol, 

such as RSVP ~esource Reservation Protocol), provides the translation between 

application and network parameters. 

Obviously, the relationship between these sets of parameters is very complex. In 

theory, QoS will enable the different application types to receive the special 

handling that they require. Applications that require guaranteed integrity of packet 

contents can receive that, while others that need low delay and/or response times 

can tell the network about requirement through QoS tags too. 

1.1.2 BANDWIDTH 

Timely delivery of multimedia data packets is not the only challenge in 

multimedia communication. The other challenge to be overcome is transporting the 

13 



volume of data generated by multimedia applications. Applications that are not time­

sensitive like high-density gfaphics or non-streaming audio and/or video transmissions 

can be transported better by conventional networks. Their performance requirements are 

guaranteed integrity of packet contents and re-sequencing upon arrival. However they can 

be extremely bandwidth intensive. 

Ways have been devised to improve on bandwidth utilization and some of the are 

discussed briefly: 

2.2..2..1 Bandwidth Conservation: 

One of the best ways to increase the amount of usable is to conserve the 

consumption of existing bandwidth. There are numerous techniques for 

conserving bandwidth, most of which are automatically built into multimedia 

application software. Compression is an invaluable tool for conserving 

bandwidth. 

1.1.2.2 Increasing available bandwidth 

The other way to increase the bandwidth available for multimedia applications is 

to increase the ~peed of the network. Fast Ethernet, gigabit Ethernet, ATM, FDDI, 

Fiber Channel, and so on can also be used to substantially increase the available 

bandwidth on a LAN. Segmentation increases usable bandwidth without 

increasing a network's velocity by creating multiple collision domains or logical 

rings within a common broadcast domain. This type of upgrade allows the 

retention of the station wiring and network interface cards. 

14 



2.2.2.3 High Bandwidth with low Latency 

Certain applications, like "ideo conferencing., simult~eously require low latency 

and high levels of throughput to operate successfully. Unless a network is 

intentionally and severely o"er-~ngineeted, adding such applications to an 

existing network may tax the network's capabilities and reduce overall 

performance for all the applications that rely upon the network for transport. 

Given the various contributors to a network's cumulative latency, the surest way 

to provide high bandwidth and low latency is to select network technologies that 

are specifically designed fro this tandem purpose. Some specific examples include 

A TM and isochronous Ethernet. 

2.2.2.4 Bandwidth Reservation 

One way to maximize bandwidth utilization is to use protocols that reserve 

bandwidth. RSVP (Resource Reservation Protocol), for example is an emerging 

network protocol that can reserve the amount of bandwidth that will be needed by 

establishing a temporary but dedicated virtual circuit between the source and 

destination machines. The obvious danger inherent in bandwidth reservation 

schemes is that once bandwidth is reserved by anappti'cation, it is unavailable to 

other machines and their application. 

2.3 AUDIO COMMUNICATION 

Audio communication can take three distinct forms, each with slightly different 

set of network performance requirements. Specific categories include: computer-based 

telephony, audio conferencing and audio transmission. 

15 



2.3.1 COMPUTER-BASED TELEPHONY 

Computer-based telephony uses PCs and LANs/WANs to integrate voice 

telephony into a data ~etwork. The client PC buffers inbound transmission and plays 

them using its sound card and speaker. This buffering can "smooth out" the sound quality 

of the transmission somewhat, despite its having transverse contention-based LANs using 

error-correcting protocols. 

Audio communication is not bandwidth intensive. Audio can be delivered over 

dialup facilities as low as 14.4Kbps using Point-to-Point Protocol (PPP). This form of 

communication however is extremely susceptible to corruption from packets delivered 

late or out of sequence. Any such packets are discarded because, by the time a successful 

retransmission can be made, the stream being played back willl~kely have progressed 

beyond the point at which that packet was needed. Thus, re-inserting it late creates a 

second disturbance that is readily detectable by the user. 

Computer-based telephony suffers from two limitations. Transmissions are to 

date, half-duplex only. Half-duplex transmission means that only one party can "talk" at a 

time, much like "push-to-talk" walkie-talkies. Telephones are full-duplex mechanisms. 

Both parties on a telephone call can talk and listen simultaneously. 

The second limitation is that computer-based telephony capable of providing 

sound quality on par with an AM radio. The combination of half-duplex transmission and 

. relatively low sound quality renders this technology more of a curiosity or techno-toy 

than a business tool. 

16 



' .. 

2.3.2 COMPUTER-BASED AUDIO CONFERENCING 

Audio conferencing differs from computer-based telephony only in that it is used 

in other than point-to-point sessions. Conferences tend to be multipoint.to-multipoint in 

the case of a collaborative conference of peers, or point-to-multipoint for broadcast of 

major events. 

Given the half-duplex nature of this technology set, point-to-multipoint 

unidirectional broadcast may be the use of this technology. The network must have some 

mechanism for this form of multicasting. Multicasting is the transmission of a single 

stream of packet data with an address that is recognized by more than one workstation. 

This is far more bandwidth efficient than transmitting multiple simultaneous streams, 

each destined for a single, specific end-point. End-point that belong to a multicast group 

listens for both their unique Internet address and address of their group. 

2.3.3 STREAMING AUDIO 

Streaming audio transmission are unidirectional transmissions of a stream of 

audio data. It uses a host that either records audio in real-time or uses prerecorded audio 

media. In either case packets stream out onto the network as soon as they are generated. 

Recipients listen to them as they arrive, generally without buffering them. Dropped or 

damaged packets are usually left out of the playback session. 

Streaming audio, like most audio only multimedia application, is relatively easy 

to support in a LAN/W AN environment. It is low bandwidth and benefits from but does 

not require low network latency. Streaming audio c~n be used to distribute, on demand, _: .. '\ 

either a feed from a live speech or copies of recorded speeches, question and answer 

sessions or even the latest disk from your favorite group. 

17 



2.4 VIDEO COMMUNICATION 

Video communication requires a fairly high powered computer and can also be 

extremely bandwidth intensive. It also benefits greatly from low 'latency network 

components. 

Video communication can occur at surprisingly low levels of throughput given 

the right compromise of picture size, quality and refresh rate. The ideal rate of refresh is 

30 frames per second. At this rate known as "full motion" the ,picture appears smooth 

and movement is smooth not jerky. Unfortunately, even using a small picture size, like 

288 pixels by 352 pixels, the uncompressed stream is approximately 500Kbps. This 

represents a generous portion of a t-I 's available bandwidth. It is also a sizeable portion 

of the useable bandwidth on most LANs. 

Dropping the refresh rate to 15 frames per second and decreasing the number of 

colors recognized can dramatically reduce bandwidth consumption and reduce the si.ze of 

the transmission stream. 

Video communication includes video conferencing and streaming video 

transmissions. Although very similar, they have distinct functionality sets and 

consequently, different network performance requirements. 

2.4.1 VIDEO CONFERENCING 

Real-time, bi-directional transmission between two of more points are known as 

video conferencing. The accompanying audio can be handled "in-band" or "out-band". 

In-band audio transmissions bundle the audio signals with the video signals in the same 

bit stream. This requires the video conferencing system to have its own speaker and 

microphone or to interface with those already installed in the computer. Out-of-band 

18 



" 

audio relieves software from having to capture and play back the audio signals. It also 

means the video conferencing system doesn't synchronize the audio and video. Rather 

the video system ignores the audio signals and requires conferences to establish a second 

communication link over conventional telephony. 

2.5 SUMMARY ON MULTIMEDIA COMMUNICATION 

It is inevitable that the currently separate voice, data, and video communication 

infrastructure will eventually integrate into a single broadband multimedia 

communication infrastructure with common user interface and vehicle. This integration is 

only just beginning and will take years to complete. It is already clear that LAN is 

capable of progressively growing into the role of multimedia communication network. In 

the interim it is used to support fledgling attempts at this degree of integration: toady's 

multimedia application like the one this project is based on i.e. Software Intercom. 

Some of these applications require levels of performance that are difficult to 

achieve in a conventional LAN/WAN environment. Today's LANs/WANs and their 

protocols are not well suited to transporting time sensitive data of many multimedia 

communication technologies. However the good news is that today's networks have the 

potential to evolve incrementally into a true multimedia communication infrastructure .. 

19 



CHAPTER THREE 

3.0 PROGRAM ANALYSIS AND DESIGN 

The Software Intercom has a graphical user interface (GUI) much like the 

various internet phoning software found on the world wide web. The exception 

about this software is that it uses a network card to establish communication instead of a 

modem (as with most phoning software). Although there is no phone line involved in as 

with PABX, there definitely won't be a dialing tone. Instead the recording of a sound 

emulating the conventional phone ring tone is used. When a caller dials the number of a 

peer, the sound file is activated which lets the call recipient know he is being called, and 

also a pop-up dialog box appears on the screen interrupting whatever program is being 

run. Implementation of this project is achieved with the J A VA Programming. 

3.1 WHY JAVA? 

Java is a high level programming language that was developed solely with the 

Internet in mind. Most web programs used today are designed using the JAVA 

programming language. It has unique attributes embedded into its design features which 

make it the program of choice for most web application developers. It's embedded design 

feature include; Object Oriented Programming (OOP), Platform Independence, High 

Performance, Multi-Threading, and Dynamic Jinking. All these feature have made 

programming complex applications rather simple and straight forward. The design 

. features would be expJained in detail so as to aid an understanding into way JAVA is 

very important in the implementation of this project. 

20 



3.1.1 OBJECT ORIENTED PROGRAMMING (AN ANALOGY). 

You can walk into a computer store and, with a little background and assemble an 

entire PC computer system from various Components: a motherboard, a CPU chip, a 

video card, a hard disk, a keyboard, and so on. Ideally, wheri )'Ou finish assembling 

all the various self-contained units, you have a system in which an the units work 

together to create a larger system with which you can solve the problems you bought 

the computer for in the first place. Internally, each of those components may be vastly 

complicated and engineered by ditTerent companies with different methods of design. 

But you don't need to know how the component works, what every chip on the board 

does. As the assembler of the overall system, each component you use is a self 

contained unit, and all you are interested in is how the units interact with each other. 

Will this video card fit into the slots on the motherboard and will this monitor work 

with this video card? Will each particular component speak the right commands to the 

other components it interacts with so that each part of th~ computer is understood by 

every other part? Once you know what the interactions are between the components 

and can match the interactions, putting together the overall system is easy. 

What does this have to do with programming? Everything. Object-oriented 

programming works in exactly this same way. Using object-oriented programming, 

your overall program is made up of lots of different self-contained components 

(objects), each of which has a specific role in the program and all of which can talk to 

each other in predefined ways. 

21 



3.1.1 PLATFORM INDEPENDENCE 

Java was designed to not only be cross-platform in source form like C, but in 

compiled binary form. Since this is impossible across processor architecture JAVA is 

compiled to an intermediate form cal1ed byte-code. A java program never really 

executes native on the host machine, rather a special native program called the JAVA 

interpreter reads the byte code and executes the CQrresponding native machine 

instructions. Thus to port JAVA programs to a new platform all that is needed is to 

port the interpreter and some of the library routines. The byte-code is precisely 

defined and remain same on all platforms. 

The second important part of making JAVA cross-platform is the elimination of 

undefined or architecture dependent constructs. Integers are always four bytes long 

and floating point variables follow the IEEE 754 standard for computer arithmetic 

exactly. One doesn't need to worry about rewriting a program to fit to the design and 

architecture of various computer systems and operating system. JAVA in essence can 

be said to be ''write once and run anywhere". 

3.1.3 mGH PERFORMANCE 

Java byte codes can be compiled on the fly to code that rivals C++ in speed using a 

"just in time compiler". Several companies are also working on native machine 

architecture compilers for JAVA. These will produce executable code that does not 

require a separate interpreter and that is indistinguishable in speed to C++. 

While you will never get the same speed out a JAVA program that you might be able 

to, writing from C or FORTRAN, the results will be suitable for all but the most 

demanding applications. 

22 



3.1.4 MULTI-THREADING 

Java is inherently multi-threaded. A single JA VA program can have many different 

threads executing independently and continuously. 'Three JAVA applets on the same 

page can run together with each getting equal time from the CPU with very little extra 

effort on the part of the programmer. 

This makes JAVA very responsive to user input. It also helps to contribute to JAVA's 

robustness and provides a mechanism whereby the JAVA environment can ensure 

that a malicious applet doesn't steal the entire host's CPU cycles. 

There is a downside to multi-threading, multi-threading is to JA VA what pointer 

arithmetic is to C, that is a source of hard to find bugs ( an error in a computer 

program). 

3.1.5 DYNAMIC LINKING 

Java does not have a dynamic link phase. JAVA source code is divided in .java files, 

roughly one per class in your program. The compiJer compiles these into .class files 

containing byte code. The compiler searches the current directory and directories 

specified in the CLASSPA m environment variable to find other classes explicitly 

referenced by name in each source code file. If the file being compiled depends on the 

other non-compiled files, the compiler will try to find them and compile them as well. 

The compiler is quite smart and can handle circular dependencies as wen as methods 

that are used before they are declared .. 

More importantly, classes that were unknown to a program when it was compiled can 

still be loaded into it at runtime. For example, a web browser can load applets of 

differing classes that it's never seen before without compilation. 

23 



3.1 PROGRAM DES,IGN 

This program is designed to ease communication over a network. The major 

challenge in the running of this program is capturing the analog sound or video images 

from the microphone or web cam, buffering it and transmitting it seamlessly to the 

specified destination in real-time. On the other side the recipient should be able to hear 

and reply in a two way communication (full duplex mode). The figure below shows the 

software a startup. 

. '.,' . I, ,t., 

cam serv... a'" 18 
.... gat _.---_._---_. 

II 127.0.0.1 
EIIIt Par1190OO----------

! ~ ~p~ ___ ~~01 =~:_=~I 
f Start ...... 

a -Intercom 
r'Ji tninIl~ :. 

~ 

f1pre 1.0 Showtq • .......- ........ ,wItII. ~er .... 

............ 

When a caller wants to make a call to another on the network, he runs the 

program by clicking an icon on his desktop, then from the program's edit menu he 

chooses "configure server" option which configures his local server to listen for any 

incoming calls from other caJlers on the network. He then starts his Virtual intercom by 

choosing the "Start" option from the file menu. Finally the caller loads a window called 

''New Call" from the file menu. 

24 



~, .e £-I.~ jL:::::::i2:::LtL~{.t2'<:::::::[:::UAL91Lt:{::::::{)::::::{:::;_ a~ -:"_~ ; 

\ 

f. ..... ,.... 
i s..Ion 
1 
n IPAddrft. 
f 

Part 

r.------. ----------, 
~
.----- .. ---------------

Audio J ---------
[]DDD 
r~~O , 
I~;-J 

~ Audio Capture r VIdeo Capture 

[ 
i 

CIII to client"""" ..... 

Flpre 1. Showing the e.n Client 

The window or internal frame contains several parameters; the caller needs to use to 

establish a connection with another on the network i.e. a text-field displaying the caller 

identity and other fields to input the recipient systems IP addresses, and also a choice of 

what type of media is to be captured, that is audio or video. He then makes the call by 

clicking on the send button and the specified recipient is prompted about an incoming 

call. As long as the call parameter are correct and the other person's software is running 

on his system then secure link between the two peers is established. 

2S 



3.1.1INSTALLA nON 

The program will have to be instalted on each system the application will run on. 

The program automatically acquires the IP address of the system on which it is installed, 

so that its local server can be easily configured without much problem. The program uses 

a JAVA Runtime Environment (JRE 1.5.0) to execute and also JAVA Media Framework 

(JMF) which is an API (Application Package Interface) that does not come with the 

standard JA VA development toolkit, has to installed then the program is ready to run. All 

other IP addresses of the other systems on the network would have to be obtained 

manually. They are important because these addresses are used in place of phone 

numbers to establish the connection between peers. 

26 



CHAPTER FOUR 

4.0 SYSTEMS REQUIREMENT AND IMPLEMENTATION. 

This chapter highlights the requirements needed for the smooth running of the 

program (both hardware and software). The Implementation of the program is also 

explained in this Chapter. 

4.1 SOFTWARE REQUIREMENTS 

The aim of this project is to enable the software to run on any computer platform 

(any operating system). To do so would require some software, application packages and 

API's (application package interface) to be installed basically on every computer system 

to enable the software intercom to run effectively. 

4.1.1 OPERATING SYSTEM. 

The software most definitely requires an operating system to run on the computer. 

An operating system manages the resources of the computer system i.e. hardware and 

software resources. The software runs on any of the major operating systems available in 

the market or the I.T. world i.e. WINDOWS 98, 2000, NT, AND XP~ others would be 

LINUX, UNIX, and MAC os. 

4.1.2 RUNTIME ENVIROMENTS AND API'S 

Since this program was written in JA VA, in needs a 'runtime environment to 

interface it with the operating system of choice. It uses a JRE 1.5.0 (Java Runtime 

Environment version 1.5.0). Another very important Application Package Interface (API) 

needed to run this program is JMF 2.0 (Java Media Frameworks 2.0). It's importance 

and purpose would be explained below. 

27 



Ji 

Java Media Frameworks (JMF 2.0), is an application programming interface 

for in cooperating time based media into JAVA application and applets. This API 

supports media capture and addresses the needs of application d~velopers who want 

additional control over media processing and rendering. It also provides a plug-in 

architecture that provides direct access to media data and enables JMF to be more 

customized and extended. 

4.2 HARWARE REQUIREMENTS 

A computer with full multimedia capabilities is the basic requirement for running 

the program. There should be installed a good full duplex sound card, with working 

speakers and a microphone. Optionally because the software is also capable of 

transmitting videos, a TV card could be installed too. This forms the interface needed for 

connecting a video camera to the computer. A webcam can be used instead of a video 

camera which requires a TV card, primarily because the webcam can be connected to the 

computers USB port with no need for extra expensive hardware. Only draw back to using 

a webcam is that the quality of pictures is greatly diminished. 

4.2.1 A QUALITY LOCAL AREA NElWORK (LAN) 

Today local area networking is a shared access technology. This means that all of 

the devices attached to the LAN share a single communication medium, usually a 

coaxial, twisted pair or fiber optic cable. Several computers are connected to a single 

cable that serves as the communications medium for all of them. The physical connection 

to the work is made by putting a network interface card (NIC) inside the computer and 

connecting it to the network cable. Once the physical connection is in place, it is up to the 

28 



J 

network software to ma~ge communication between stations on the network. This LAN 

should of quality speed. 

4.3 PROGRAM IMPLEMANTATION 

The system works with both point to point and pointto multipoint configuration 

with full duplex transmission for voice and video conferencing. This means that the 

software works as both a client and server software. The purpose of the server is to 

listen in on any communication in the network that is addressed to the IP address of the 

computer it is resident on. It then relays the message to the client addressed which in this 

case is the computer it is running on. 

When the program is launched the software is configured to set the machine to 

receive any incoming calls from another on the network. By default the server is 

initialized through TCPIIP socket-socket communication on a selected port (9001). When 

a call is being setup the transmitting station is required to provide user identification 

which is transmitted along with its IP address to the receiving end. This enables the 

receiving end to know what machine on the network is trying to establish a connection. 

The transmitting system then sets up a socket communication with the receiving 

station. During this call setup phase, the transmitting and the receiving station agree on 

transmission parameters like the RTP session port, the audio quality signal (this particular 

implementation uses the base sampling quality on the system, specifically using the 

following audio format; LINEAR, 8000.0Hz. 16-bit., Mono. LittIeEndian. signed) and the 

capture device used is Java Sound Audio Capture locator = java sound/1441 00 which 

represents the system microphone. Other capturing system include the system dependent 

Direct Sound Capture (locator = dsound ://). 

29 



4.4 PROGRAM SE~MENTS 

Basically, there are four modules or segments; 

1. Capture the media data from the input device. 

2. Encode the captured audio data. 

3. Transmit the captured data. 

4. Decoding and rendering the data stream at the destination. 

4.4.1 CAPTURING MEDIA DATA 

To capture media data: 

Locate the capture device to be used by querying the CaptureDeviceManager. 

Get a CaptureDeviceInfo object for the device 

Get a MediaLocator from the CaptureDevicelnfo object and use it to 

create a DataSource. 

Create a Player or Processor using the DataSource. 

Start the player or processor to begin the capture process. 

4.4.2 ENCODING CAPTURED AUDIO DATA 

The processor can be configured to transcode captured media data before 

presenting, transmitting, or storing the data. To encode captured audio data in the IMA4 

format before saving it to a file: 

1. Get the MediaLocator for the capture device and construct a processor. 

2: Call configure on the processor. 

3. Once the processor is in the Configured state, call getTrackControls. 

4. Call setFormat on each track until one that can be converted to IMA4. 

31 



'. 

(1)\11'1 III{ I 

Server to own Client Connection 

Client to Other Server Connection 

Client to own Server Connection 

(()\II'I III{ 2 

Figure 4.0 A Pictorial view oCpeer-Peer communication of two Computers running the software. 

After the socket communication has agreed on the parameters to be used for the 

communication, an RTP session is started based on the parameters to be used for the 

communication, an RTP session is started based on the parameters and real-time audio 

could be captured and transmitted between the two systems in full duplex point to point 

configuration. The system could be extended to handle fun session, fun duplex point to 

point configuration. 

30 



5. Realize the processor and use its output DataSourc6 to construct a DataSink to 

write the data to a file. 

4.4.3 TRANSMITIING THE MEDIA STREAM 

The basic process for transmitting RTP data with the ,session manager is: 

1. Create a JMF processor and set each track format to an RTP-specific format. 

2. Retrieve the output DataSource from the processor. 

3. Call createS end Stream on a previously created and initialized 

SessionManager, passing in the DataSource and a stream index. The session 

manager creates a Send Stream for the specified SourceStream. 

4. Start the session manager by calling SessionManager start Session. 

5. Control the transmission through the Send Stream methods. A Send Stream 

Listener can be registered to listen to events on the Send Stream. 

4.4.4 DECODING AND RENDING THE MEDIA STREAM 

1. Set up the R TP session 

a. Create a SessionManager. For example, construct an instance of 

com.Sun.media.rtp.RTPSessionMgr. (RTPSessionMgr is an implementation of 

SessionManager provided with the JMF reference implementation.) 

b. Call RTPSessionMgr.addA VStreamListener to register as a listener 

c. Initialize the RTP session by calling the RTPSessionMgrinitSession. 

d. Start the RTP session by calling the RTPSessionMgntartSession. 

32 



2. [n your AVStream~istener update method, watch for NewReciveStreamEvent, 

which indicates that a new data stream has been detected. 

3. When a NewRecieveStreamEvent is detected retrieve and RecieveStream from the 

NewRecieveStreamEvent by calJing getRecieveStream. 

4. Receive the RTP DataSource from the ReceiveStream by calJing getDataSource. 

This is a l»ushBufTerDataSource with an RTP-specific Format. For example, the 

encoding for a DVI audio player will be DVI_RTP. 

5. Pass the Data Source to manager.createplayer to construct a player. For the player to 

be successfully constructed, the necessary plug-in for decoding and depacketizing the 

RTP-formatted data must be available. The basic files used are: 

I. A VRequestListener.java 

2. A VStreamListener.java 

3. A VStreamTransmitter.java 

4. Vtserver.java 

5. Vihtercom.class 

33 



/ 
I 

I 
1'" CHAPTERS 

CONCLUSION AND RECOMMENDATION 

s.t PROJECT CONCLUSION 

In concJusion, the implementation of the project was successful. Companies with 

good network instaIJation can enhance the functionality of their network by using this 

software intercom. This will by pass the need for expensive Private Branch Exchange 

(PABX). The installation is also easy. The protocols involved in the program do not 

reserve bandwidth so this will not slow the network down. More so, one example of how 

today's open standard component can be assembled to support a multimedia application 

and can be used with audio conferencing over networks. The trend toward telecommuting 

and virtual office has created both near-ideal condition and a legitimate business need for 

audio and video conferencing. 

The architecture of this software has been designed and tested to provide network users 

with cost effective, easy, reliable multimedia communication over a network. 

34 



J 
I 

I 
J 5.2 RECOMMENDAJ'IONS 

The program is designed strictly for systems on a network; further study could be 

done to interface the program with a Public Switch telephone Network (PSTN). In this 

mode a regular telephone call is received by the secretary and redirected using the 

software intercom to the target recipient of the can. This will be of immense use to 

companies and industrial firms. 

Another recommendation is the installation design, work stations could be made 

to install from the server and used ID numbers so for every fresh installation the existing 

number are automatically loaded into the address book resident on the work station. 

Furthermore, the issue of security could also be integrated into the program, where user 

names and passwords will have to be given to access the program; this will eliminate 

impersonation over the network. 

Voice messaging could also be incorporated, so if any work station isn't logged 

on, whenever the work station gets logged ,on the message could be relayed in a store and 

forward method (just like voice mail). 

35 



/ 
I 

/ 
I 
I 

REFERENCES 

l. EUiotte Rusty Harold. Java Network Programming, 3'" Edition, Published by O'Reilly Media. Inc .• ]005 
Gravenstein Highway North. Sebastopol. CA 95472.(bttp:/< .. a{ari.oreillv.com) 

2. DeiteJ and Denel. Java How to Program, 4th Edition, Publi.vhed by Prentice Hall. 2002. 

3. Debashish Mitra, Network Convergence and Voice over IP, TATA Consultancy Services. 200] 

4. Quitmn Te(:hnologies Inc. Risk and. Rewards. 2000 Strategies for Migrating Corporate Voice Traffic to 
data Network, Quilum Technologies Inc. J 4 Christopher way Eatontown, NJ 07724. (wwlI'.quilum. com) 

S. wwwjava.sun.com 

6. wll'w.javaworld.com/index.htm( 

7. www.iblbllo.orgljavaj.aql 

36 



j 

J 
J 

I 
/ 

APPENDIXES 

Ten Files are involved in the writing of this program~ all fonning separate 

modules with specific functions, taking advantage of java's object oriented programming 

properties. For the purpose of documentation I have excluded all files that where used to 

create the GUI (graphical user interface) and included only those that form the core of the 

program itself. Below are a list of all the files used in the program. 

A VRequestListener.java 

A VStrearnListener.java 

A VStreamTransmitterjava 

A VServer.java 

RemoveUserEntry.java 

calJPanel.java 

startPanel.java 

execPanel.java 

SoundPlayerjava 

Vintercomjava 

1 AVRequestListener.Java 

import java.io.*; 
import java.util.*; 
import java.net.*; 
import javax.media.*; 
import javax.media.rtp.*; 
import javax.swing.*; 

class AVRequestListener extends Thread 
{ 

JTextArea B; 

37 



; 

I 
I 

i 

ServerSocket serverSock = null; 
Socket userSock = null; 
String sessionID = null, userName = null, 
userIP = null; 
int userPort; 
StringT,okenizer tokens = null;, 
DataOutputStream output = null; 
DatalnputStream input = null; 
PrintStream print = null; 
String data = null; 
AVRequestListener(int tcpPort, JTextArea A) 
{ 

} 

try 
{ 

B=A; 
serverSock = new ServerSocket(tcpport); 
catch(Exception e) {} 

start () ; 

public void runt) 
{ 

while (true) 
{ 
try 
{ 

userSock = serverSock.accept(); 
input = new 

DatalnputStream(userSock.getlnputStream(»; 
data = input.readLine(); 
tokens = new StringTokenizer(data,"I"); 
sessionID = tokens.nextToken(); 
userName = tokens.nextToken{); 
userIP = tokens.nextToken(); 
userPort = 

Integer.parselnt(tokens.nextToken(»; 
System.out.println("New client joined: Info 

: "+sessionID+ " "+userName+" "+userIP+ " "+userPort); 
JOptionPane.showMessageDialog(null, "New 

client joined : Info : "+sessionID+ " "+userName+" 
"+userIP+ " "+userPort, JOptionPane.PLAIN_MESSAGE); 

B.setText("New client joined: Info: 
"+sessionID+ " "+userName+" "+userIP+ " "+userPort); 

try 
{ 

38 



RemoveUserEntry removeUserEntry = 

RemoveUserEntry(sessionID, userName)i 
} 
catch(Exception ex) {} 

new 

Userlnfo userInfo = new Userlnfo(sessionID, 
userName, userIP, userPort, userSock); 

if (!VIserver.userInfoTable.isEmpty() && 
VIserver.userInfoTable.containsKey(sessionID)) 

{ 
«Vector)VIserver.userInfoTable.get 

(sessionID)) .addElement(userlnfo); 
} 
else 
{ 

VIserver.userInfoTable.put(sessionID, new 
Vector())i 

«Vector)VIserver.userlnfoTable.get(sessionID)) .addElement( 
userInfo)i 

} 
/*check for the audio-video stream*/ 
if(!VIserver.managerMapTable.isEmpty() && 

VIserver.managerMapTable.containsKey (sessionID)) 
{ 

output = new DataOutputStream 
(userSock.getOutputStream()); 

print = new PrintStream(output); 
print.println("Y"); 
AVStreamTransmitter transmitter = new 

AVStreamTransmitter(sessionID, 
userName, userIP, userPort); 

} 
} catch(Exception e) {} 

} 
} 

class User Info 
{ 

string sessionID = null, userName = null, userIP = null; 
int userPorti 
Socket SOCki 
UserInfo(String sessionID, String userName, String 

userIP, int userPort, Socket sock) 
{ 

this.sessionID = sessionID; 
this.userName = userName; 

39 



t 
i 

/ 
I 

1 
I 

I 

} 

} 

this.userIP = userIP; 
this.userPort = userPorti 
this.sock = sock; 

class RTPManagerlnfo 
{ 

string sessionID = null, userName = nUll; 
RTPManager rtpMgrs; 
Processor proci 
RTPManagerlnfo(String sessionID, String userName, 

RTPManager rtpMgrs, Processor proc) 
{ 

} 
} 

this.sessionID = sessionIDi 
this.userName = userNamei 
this.rtpMgrs = rtpMgrs; 
this.proc = proc; 

2. AVStreamListener.Java 

import 
import 
import 
import 
import 
import 
import 
import 
import 
import 
import 

. . * Java .10. ; 

java.net.*; 
java.util.*; 
javax.media.*; 
javax.media.rtp.*; 
javax.media.rtp.event.*; 
javax.media.rtp.rtcp.*; 
javax.media.protocol.*; 
javax.media.format.*; 
javax.media.control.*; 
. . * J avax . sWlng. ; 

public class AVStreamListener implements 
ReceiveStreamListener, SessionListener 
{ 

String sessionID = null,userName = nUll; 
RTPManager mgrs = null, rtpMgrs = null; 
DataSource dataOutput = nUll; 
Processor processor = hull; 
boolean dataReceived = false; 
Object dataSync = new Object(); 
boolean waitFlag - false; 
String address ~ null; 
int port; 

40 



/ 
/ JTextArea C; 

public AVStreamListener(String address, int port, 
JTextArea A) 

( 

} 

C=A; 
this.address = address; 
this.port = port; 
initialize(); 

1* This method is used for initializing the 
sessions and add the session listener and 
receivestream listener to the RTPManager class, 
set the buffer length and detect the new stream & 
participant detected whenever event generated 
*1 
boolean initialize() 

{ 
try 
{ 

I*create the new instance of RTPManager*/ 
mgrs = (RTPManager) RTPManager.newlnstance(); 

I*add the sessionListener*/ 
mgrs.addSessionListener(this); 
/*add the receiveStreamListener *1 
mgrs.addReceiveStreamListener(this); 

SessionAddress local = new 
SessionAddress{InetAddress.getLoealHost(), port); 

SessionAddress destination = new 
SessionAddress(InetAddress.getByName(address) , port); 

mgrs.initialize(local); 
mgrs.addTarget(destination); 
BufferControl be = (BufferControl) 
mgrs.getControl 

("javax.media.eontrol.BufferControl"); 
if (be != null) 
bc.setBufferLength(500); 

} 
cateh(Exception e) 
{ 

Syste~.err.println("Cannot create the RTP Session: 
" + e); 

} 

} 

C.setText("Cannot create the RTP Session: " + e); 
return false; 

return true; 

41 

\ 



void close ( ) 
{ 

/* close the RTP session.*/ 
if (mgrs != null) 
{ 

} 

mgrs.removeTargets( "Closing session"); 
mgrs.dispose(): 
mgrs = null"; 

} 
/*Event generate when new participant joins */ 
public synchronized void update (SessionEvent evt) 
{ 

if (evt instanceof NewParticipantEvent) 
{ 

Participant p = 
«NewParticipantEvent)evt) .getParticipant(); 

if(processor != null && waitFlag == false) 
{ 

} 
} 

} 

waitFlag = true; 
saveSessionAndTransmit(p); 

else if (waitFlag) 
{ 

waitFlag = false; 
} 

/*Event generate when new stream is tletected*/ 
public synchronized void update ( 
ReceiveStreamEvent evt) 
{ 

RTPManager mgr = (RTPManager)evt.getSource(); 
Participant participant = evt.getParticipant(); 
ReceiveStream stream = evt.getReceiveStream(); 
if (evt instanceof RemotePayloadChangeEvent) 
{ 

System.err.println(" - Received an RTP 
PayloadChangeEvent."); 

System.err.println("Sorry, cannot handle payload 
change."); 

C.setText(" - Received an RTP 
PayloadChangeEvent.\n" + 

change. \n") ; 
} 

"Sorry, cannot handle payload 

/*event generated for the new stream*/ 

42 



I 
t 

i 
I 

I 
/ 

/ 
else -if (evt instanceof NewReceiveStreamEvent) 
{ 

try 
{ 

/*get the stream*/ 
stream = 

«NewReceiveStreamEvent)evt) .getReceiveStream(); 
/*create the datasource from the stream*/ 
DataSour.ce ds = stream. getDataSource () ; 
/* Find out the formats.*/ 
RTPControl ctl = (RTPControl)ds.getControl 

("javax.media.rtp.RTPControl"); 
System.err.println(" - Recevied new RTP stream: 

" + ctl.getFormat(»: 
C.setText(" - Recevied new RTP stream: " + 

ctl.getFormat(»; 
/*create a processor to handle the 
input media locator*/ 
try 
{ 

processor = 

javax.media.Manager.createProcessor(ds): 
} catch(Exception npe) {} 
waitForState(processor, 
Processor.Configured); 
ContentDescriptor cd : new 

ContentDescriptor(ContentDescriptor.RAW_RTP); 
processor.setContentDescriptor(cd): 
waitForState(processor, Controller.Realized): 
/* Get the output data source of the 
processor*/ 
dataOutput = processor.getDataOutput(): 
PushBufferDataSource pbds = 

(PushBufferDataSource)dataOutput: 
PushBufferStream pbss[] = pbds.getStreams(): 
SendStream sendStream: 
try 
{ 

rtpMgrs : RTPManager.newlnstance(); 
SessionAddress local = new SessionAddress(); 
SessionAddress destination = new 

SessionAddress(InetAddress.getLocalHost(), 9999); 
rtpMgrs.initialize(local): 
rtpMgrs.addTarget(destination); 
sendStream = 

rtpMgrs.createSendStream(dataOutput, 0); 
sendStream.start(); 

43 



} 

} 

} 

processor.start(): 
if(participant != null && waitFlag==false) 
{ 

} 

waitFlag = true: 
saveSessionAndTransmit(participant) : 

'else if (waitFlag) 
{ 

waitFlag = false: 
} 

} catch(Exception e) {} 
}catch{Exception e) {} 

/*event generated when user disconnected*/ 
else if (evt instanceof ByeEvent) 
{ 

try 
{ 

} 
removeSessionAndClose(participant): 

catch(Exception e) {} 

/* This method is used for transmission of stream 
from the server to the user */ 
void saveSessionAndTransmit(Participant p) 
{ 

try 
( 

string Info = p.getCNAME(): 
StringTokenizer st = new StringTokenizer(Info,"I"): 
sessionID = st.nextToken(}: 
userName = st.nextToken(}: 
System.out.println("User info ... "+sessionID+" 

"+userName) : 
C.setText("User info ... "+sessionID+" "+userName)i 
RTPManagerInfo mgrlnfo = new RTPManagerlnfo 

(sessionID,userName,rtpMgrs,processor): 
if (!VIserver.managerMapTable.isEmpty() && 

VIserver.managerMapTable.containsKey(sessionID}} 
{ 

/*already transmitting the stream in this 
session as server only allows one stream per 
session*/ 

System.out.println("Sorry only one user is allowed to 
transmit in this session: "+sessionID): 

44 



/ 
I 

;1 

" 

C.setText(~Sorry only one user is allowed to transmit 
in this session : "+sessionID); 

if (VIserver.userInfoTable.isEmpty() && 
VIserver. userInf.oTable. containsKey(sessionID) ) 

{ 
/*sending the restriction info to the 
tra~smitting end*/ 
vector userVec = 

«Vector)VIServer.userInfoTab1e.get(sessionID»; 
for(int k = 0; k<userVec.size();k++) 
{ 

User Info user Info = 
(UserInfo) «Vector)VIserver.userInfoTable.get(sessionID».e 
lementAt(k); 

if «userInfo. userName) . equals (userName» 
{ 

DataOutputStream outStream = new 
DataOutputstream 

«userInfo.sock) .getOutputStream(»; 
PrintStream stream = new 

PrintStream(outStream) ; 
stream.println("DENY"); 
System.out.println("Sending the 

information back to the transmitting end"); 
C.setText("Sending the information back to 

the transmitting end"); 

} 

else 
{ 

'} 

} 

return; 

VIserver.managerMapTable.put(sessionID, new Vector(»; 
( (Vector) VIserver .managerMapTable. get (sessionID) ) . addE 

lement(mgrInfo); 
} 

/*send the info (stream starts) to the user by 
TCP*/ 
if (!VIserver.userInfoTable.isEmpty() && 
VIserver.userlnfoTab1e.containsKey(sessionID» 
{ 

int socsize = «Vector)VIserver.userlnfoTable.get 
(sessionID) ) . size () ; 
DataOutputStream dos = nUll; 
PrintStream ps = null; 
Userlnfo info = null; 

45 



I , 
/ 

J 
I 

,/,1 for(int i = '0; i<socsize; i++) 
{ 

info = 
(Userlnfo) «Vector)VIServer.userlnfoTable.get(sessionID».e 
lementAt (i) ; 

if«info.userName) .equals(userName» 
{ 

/*this is the same user who is 
transmitting*/ 
System.out.println("Sending the information 

back to the tiansmitting end"); 
C.setText("Sending the information back to the 

transmitting end"); 
} 

else 
{ 

try 
{ 

dos = new 
DataoutputStream«info.sock) .getoutputStream(»; 

ps = new PrintStream(dos); 
ps. println ("Y") ; 

} 

catch(Exception eel 
{ 

(info.sock) .close(); 
} 

AVStreamTransmitter transmitter = new 
AVStreamTransmitter(info.sessionID, info.userName, 
info.userIP, info.userPort, C); 

} 
} 
} 

} 

catch(Exception me) 
{ 

System.out.println("Exception in the 
saveSessionAndTransmit method: "+me); 

C.setText("Exception in the saveSessionAndTransmit 
method : "+me); 
} 
} 

void removeSessionAndClose(Participant participant) 
{ 

try 
{ 

46 



string byeInfo = participant.getCNAME(); 
StringTokenizer stl = new 

StringTokenizer(byeInfo,"I"); 
sessionID = stl.nextToken(); 
userName = stl.nextToken(); 
try 
{ 
VIserver.userRecTable.remove 

(sessionID+" "+userName); 
} catch(Exception urt) {} 

int size = 
«Vector)VIserver.managerMapTable.get(sessionID» .size(); 

for(int i = 0; i<size; i++) 
{ 
RTPManagerInfo mgrsInfo = 

(RTPManagerInfo) «Vector)VIserver.managerMapTable.get(sessi 
onID» .elementAt(i); 

if«(mgrsInfo.sessionID) .equals(sessionID» 
&&«mgrsInfo.userName) .equals(userName») 

{ 

ended."); 
(mgrsInfo.rtpMgrs) .removeTargets("Session 

(mgrs Info. rtpMgrs) . dispose () ; 
Processor proc = (Processor)mgrsInfo.proci 
if(proc != null) 
{ 

} 

proc.stop(); 
proc.close(); 
proc = nUll; 

«Vector)VIserver.managerMapTable.get(sessionID» .removeEle 
mentAt(i); 

i=size; 
} 

} 

if««Vector)VIserver.managerMapTable.get(sessionID») .size 
() == 0) 

{ 

VIserver.managerMapTable.remove(sessionID); 
} 

/*send the info (stream stops) to the user by 
TCP*/ 
if (!VIserver.userInfoTable.isEmpty() && 

VIserver.userlnfoTable.containsKey(sessionID» 
{ 

47 



int socsize = 
«vector)VIServer.userInfoTable.get(sessionID» .size(); 

DataOutputstream dos = null; 
PrintStream ps = null; 
User Info info = null:, 
for(int i = 0: i<socsize; i++) 
{ 

,info = 
(UserInfo) «Vector)VIserver.userInfoTable.get 

(sessionID» .elementAt(i): 
dos = new DataOutputStream 

«info.sock) .getOutputstream(»; 

, } 

} 

ps = new PrintStream(dos); 
try 
{ 

ps.println("N") ; 
} 

catch(Exception eel 
{ 

} 
} 

(info.sock) .close(); 

} catch(Exception bee) 
{ 

} 

System.out.println("Stop Exception" +bee); 
C.setText("Stop Exception" +bee); 

/* These methods are used for handling processor's 
state changes.*/ 
private Integer stateLock = new Integer(O); 
private boolean failed = false: 
Integer getStateLock() 
{ 

return stateLock: 
} 

void setFailed() { 
failed = true; 

} 

/*This method waits for the states of the 
processor*/ 
private synchronized boolean waitForState(Processor p, 

int state) 
{ 

p.addControllerListener(new StateListener(»; 
failed = false; 

48 



I 
I 

) 

} 

/*Call the required method on the processor*/ 
if (state == Processor.Configured) 
{ 

p.configure(); 

else if (state == Processor. Reali·zed) 
{ 

p.realize(); 
} 
/*Wait until an event is fired that confirms 
the success of the method, or a failure 
event *1 
while (p.getstate() < state && !failed) 
{ 

synchronized (getStateLock(» 
{ 

try 
{ 

getStateLock{) .wait(); 
} catch(InterruptedException ie) 

{ 

return false; 
} 

if (failed) 
return false; 

else 
return true; 

/* Inner class used to control the state of 
the processor*/ 
class StateListener implements Controller Listener 
( 

public void controllerUpdate(ControllerEvent ce) 
{ 

if (ce instanceof ControllerClosedEvent) 
setFailed () ; 
/* All controller events, send a 
notification to the waiting thread in 
waitForState method.*/ 
if (ce instanceof ControllerEvent) 
{ 

synchronized (getStateLock{» 
{ 

getStateLock() .notifyAll(); 

49 



} 

III end of AVStreamListener 

3. AVStreamTransmitter. Java 

import 
import 
import 
import 
import 
import 
public 
{ 

, '* Java.lO. ; 
java.net.*; 
, t'l * Java.u 1 . ; 

javax.media.*; 
javax.media.rtp.*; 
, '* J avax . sWlng. ; 
class AVStreamTransmitter 

int port; 
String address = null; 
String userName = null,sessionID = nUll; 
RTPManager rtpMgrs = null; 
JTextArea D; 

public AVStreamTransmitter(String sessionID,String 
userName, String address, int port, JTextArea C) 

{ 

} 

D=C; 
this.sessionID = sessionID; 
this.userName = userName; 
this.address = address; 
this.port = port; 
addRxTarget () ; 

String addRxTarget{) 
{ 

try 
{ 

int size = 
«Vector)VIserver.managerMapTable.get{sessionID» .size{); 

for{int i = 0; i<size; i++) 
{ 

RTPManagerlnfo mgrslnfo = (RTPManagerlnfo) 
«Vector)VIserver.managerMapTable.get 

(sessionID» .elementAt(i); 
RTPManager rtpMgrs = mgrslnfo.rtpMgrs; 
I*first check whether the Server is 
already transmitting to this particular 
user or not*/ 

50 

\ 


