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STA 217 Study Guide

Introduction

STA217: Probability 1l is a 3-credit unit course for students studying towards acquiring
a Bachelor of Technology in Mathematics and Statistics and other related disciplines.
The course is divided into 4 modules and 13 study units. It will first take a brief review
of the concepts of Probality. This course will then go ahead to deal with different types
of probability distributions.

The course guide therefore gives you an overview of what the course; STA217 is all
about, the textbooks and other materials to be referenced, what you expect to know in
each unit, and how to work through the course material.

Recommended Study Time

This course is a 3-credit unit course having 15study units. You are therefore enjoined
to spend at least 3 hours in studying the content of each study unit.

What You Are About to Learn in This Course

The overall aim of this course, STA217 is to introduce you to the basic concepts of
Probbaility and its distributions to enable students understand the basics in the
application in the society.

Course Aim

Aim of this course is to introduce students to the basics and concepts of probablity. It
is believed the knowledge will enable the student to understand various applications
of probablities.

Course Objectives

It is important to note that each unit has specific objectives. Students should study
them carefully before proceeding to subsequent units. Therefore, it may be useful to
refer to these objectives in the course of your study of the unit to assess your progress.
You should always look at the unit objectives after completing a unit. In this way, you
can be sure that you have done what is required of you by the end of the unit. However,
below are overall objectives of this course. On completing this course, you should be
able to:

i.  understand combinatorial techniques

ii. state and prove axioms of probability
iii. comprehend different types of distribution of probabilities
iv. show case some practical issues of probablities

Working Through This Course

To complete this course, you are required to study all the units, the recommended
textbooks, and other relevant materials. Each unit contains some self assessment



exercises and tutor marked assignments, and at some point, in this course, you are
required to submit the tutor marked assignments. There is also a final examination at
the end of this course. Stated below are the components of this course and what you
have to do.

Course Materials
The major components of the course are:

i. Course Guide
ii.  Study Units
iii. Text Books
iv.  Assignment File
v. Presentation Schedule

Study Units
There are 15 study units and 4 modules in this course. They are:

Module One Unit 1: Introduction to Probability
Unit 2: Statistical Experiments and Events
Unit 3: Concept of probability
Unit 4: Conditional Probability and Statistical Independence

Module Two Unit 1: Combinatorics
Unit 2: Random Variables and their Distributions
Unit 3: Expected Value and Variance

Module Three Unit 1: Discrete Probability Distribution
Unit 2: Continuous Density Functions
Unit 3: The Normal Distribution
Unit 4: Joint Probability Functions

Module Four Unit 1: Law of Large Numbers
Unit 2: Introduction to the Central Limit Theorem
Unit 3: Introduction to Statistical Inference
Unit 4. Moments and Moment Generating Functions

Recommended Texts

These texts and especially the internet resource links will be of enormous benefit to
you in learning this course:

http://www.stats.gla.ac.uk/steps/glossary/probability. htmli#baythm

http://www.stanford.edu/class/poliscil00a/newprob2.pdf

http://en.wikipedia.org/wiki/Random_variable

http://people.stern.nyu.edu/wgreene/Statistics/DiscreteRandomVariablesCollection.p
df



http://www.stats.gla.ac.uk/steps/glossary/probability _distributions.html

http://faculty.palomar.edu/mmumford/120/notes/Chap5.pdf

http://stattrek.com/probability-distributions/negative-binomial.aspx?tutorial=stat

8.http://www.google.com.ng/url?sa=t&rct=j&g=random%?20variables%20and%20pro
bability%20distributions&source=web&cd=5&cad=rja&ved=0CFEQFjAE&url=
http%3A%2F%2Fwww.stat.ufl.edu%2F~winner%2Fsta4321%2Fchapter3.ppt
&ei=Y3MOUPGgIMLX0QX92YCwBg&usg=AFQjCNGbkSpHwrcWrGic7H2_rfk
5ZXKLcg

Harry Frank and Steven C. Althoen (1995): Statistics: concepts and applications.
Cambridge Edition.

W. J. Decoursey (2003): Statistics and probability for engineering applications.
Newness.

Sheldon M. Ross (1997): Introduction to probability models, sixth edition. Academic
Press. New York

Mario Lefebre (2000): Applied probability and statistics. Springer

Nitis Nikhopadhyay (2005): Probability and Statistical Inference.

Deborah Rumsey (2007): Intermediate statistics for dummies. Wiley publishing Inc.

Michael W. Trosset (2005): An introduction to statistical inference and its applications.
Wiley.

James E. Gentle (2007): Matrix Algebra: Theory, computations and applications in
statistics. Springer.

John Geweke (2003): Contemporary Bayesian Econometrics and Statistics.

Douglas C. Montgomery (2005): Design and Analysis of experiments. 3™ edition.

Jun Shao (1998): Mathematical Statistics. Springer Texts in Statistics. Springer —
Verlag, New York, Inc.

Wolter, K. M. (1985): Introduction to variance estimation. New York. Springer-Verlag.

Assignment File

The assignment file will be given to you in due course. In this file, you will find all the
detailsof the work, you must submit to your tutor for marking. The marks you obtain
for these assignments will count towards the final mark for the course. Altogether,
there are tutor marked assignments for this course.

Presentation Schedule

The presentation schedule included in this course guide provides you with important
dates for completion of each tutor marked assignment. You should therefore
endeavour to meet the deadlines.

Assessment

There are two aspects to the assessment of this course. First, there are tutor marked
assignments; and second, the written examination. Therefore, you are expected to
take note of the facts, information and problem solving gathered during the course.
The tutor marked assignments must be submitted to your tutor for formal assessment,



in accordance to the deadline given. The work submitted will count for 40% of your
total course mark.

At the end of the course, you will need to sit for a final written examination. This
examination will account for 60% of your total score.

Tutor Marked Assignment (TMA)

There are TMAs in this course. You need to submit all the TMAS. The best 10 will
therefore be counted. When you have completed each assignment, send them to your
tutor as soon as possible and make certain that it gets to your tutor on or before the
stipulated deadline. If for any reason, you cannot complete your assignment on time,
contact your tutor before the assignment is due to discuss the possibility of extension.
Extension will not be granted after the deadline, unless on extraordinary cases.

Final Examination and Grading

The final examination for STA217 will last for a period of 2 hours and have a value of
60% of the total course grade. The examination will consist of questions which reflect
the Self Assessment Questions and tutor marked assignments that you have
previously encountered. Furthermore, all areas of the course will be examined. It
would be better to use the time between finishing the last unit and sitting for the
examination, to revise the entire course. You might find it useful to review your TMAs
and comment on them before the examination. The final examination covers
information from all parts of the course.

Pratical Strategies for Working Through This Course
Read the course guide thoroughly

Organize a study schedule. Refer to the course overview for more details. Note the
time you are expected to spend on each unit and how the assignment relates to the
units. Important details, e.g. details of your tutorials and the date of the first day of the
semester are available. You need to gather together all this information in one place
such as a diary, a wall chart calendar or an organizer. Whatever method you choose,
you should decide on and write in your own dates for working on each unit.

Once you have created your own study schedule, do everything you can to stick to it.
The major reason that students fail is that they get behind with their course works. If
you get into difficulties with your schedule, please let your tutor know before it is too
late for help.

Turn to Unit 1 and read the introduction and the objectives for the unit.

Assemble the study materials. Information about what you need for a unit is given in
the table of content at the beginning of each unit. You will almost always need both
the study unit you are working on and one of the materials recommended for further
readings, on your desk at the same time.

Vi



Work through the unit, the content of the unit itself has been arranged to provide a
sequence for you to follow. As you work through the unit, you will be encouraged to
read from your set books

Keep in mind that you will learn a lot by doing all your assignments carefully. They
have been designed to help you meet the objectives of the course and will help you
pass the examination.

Review the objectives of each study unit to confirm that you have achieved them. If
you are not certain about any of the objectives, review the study material and consult
your tutor.

When you are confident that you have achieved a unit’s objectives, you can start on
the next unit. Proceed unit by unit through the course and try to pace your study so
that you can keep yourself on schedule.

When you have submitted an assignment to your tutor for marking, do not wait for its
return before starting on the next unit. Keep to your schedule. When the assignment
is returned, pay particular attention to your tutor's comments, both on the tutor marked
assignment form and also written on the assignment. Consult you tutor as soon as
possible if you have any questions or problems.

After completing the last unit, review the course and prepare yourself for the final
examination. Check that you have achieved the unit objectives (listed at the beginning
of each unit) and the course objectives (listed in this course guide).

Tutors and Tutorials

There are 8 hours of tutorial provided in support of this course. You will be notified of
the dates, time and location together with the name and phone number of your tutor
as soon as you are allocated a tutorial group. Your tutor will mark and comment on
your assignments, keep a close watch on your progress and on any difficulties, you
might encounter and provide assistance to you during the course. You must mail your
tutor marked assignment to your tutor well before the due date. At least two working
days are required for this purpose. They will be marked by your tutor and returned to
you as soon as possible.

Do not hesitate to contact your tutor by telephone, e-mail or discussion board if you
need help. The following might be circumstances in which you would find help
necessary: contact your tutor if:

i. You do not understand any part of the study units or the assigned readings.
il.  You have difficulty with the self test or exercise.
iii. You have questions or problems with an assignment, with your tutor's comments
on an assignment or with the grading of an assignment.

You should endeavour to attend the tutorials. This is the only opportunity to have face
to face contact with your tutor and ask questions which are answered instantly. You
can raise any problem encountered in the course of your study. To gain the maximum
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benefit from the course tutorials, have some questions handy before attending them.
You will learn a lot from participating actively in discussions.

GOODLUCK!
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1.0 Introduction

The world is replete with prediction of likely of events happening at some time. For
instance, meteorologists seek to predict what the weather of a particular place or
location will be in the next few minutes or days.

Looking at the topic from another perspective, if you roll a pair of dice, what are the
chances of rolling a double six? What is the likelihood of winning a state lottery? The
subject of probability was invented to give precise answers to questions like these. In
other word, Probability is the mathematical study of chance and random processes. It
is now an indispensable tool for making decisions in virtually all areas of human
endeavours.

To recap, this unit will introduce you to the basic idea portrayed by probability as a
subject. The subsequent units will give more insights into what statistical events are,
and how they are generated from set theory and combinational method.

2.0 Learning Outcome

At the end of this unit, you should be able to:

i.  give your own understanding of the term ‘probability’
ii.  mention various areas of human activities where probability find applications
iii. understand how important the concept of probability is in decision-making
processes.

3.0 Learning Outcomes

3.1 Explanation of the Term ‘Probability’

The mathematical theory of probability was first discussed in 1654 by Pascal and
Fermat. The subject was invented to give precise answers to questions of likelihood
or otherwise of events to occur. For the purpose of simplicity, probability is a measure
of the ratio of an item of interest to the total items (outcomes) under consideration.
Mathematically, probability is defined as follows:

Let S be the sample space of an experiment in which all outcomes are equally likely
and let E be an event. The probability of E, written as P(E), is

Number of elements in E

P(E) =

Number of elements in S

Notice that 0 <n< (E) <n(S), so the probability P(E) of an event is a number between
0 and 1, that is,



0 <P(E) < 1.

Probability Concepts

We distinguish the following 3 concepts of probability — Equally likelihood or Classical
or Apriori concept, Relative frequency concept and the Axiomatic concept.

Equally likelihood

If any experiment can result in Ns equally likely ways (when they have the same
chance or same probability) and mutually exclusive number of ways out of which a
particular event; say, A say Na of these associated with it, then we define the
probability of the event A as follows:

No of sample points in A _np

P(A) =

The total no of sample points in the experiment_ ng

e.g. if a fair and honest coin is thrown 3 times, then the possible outcomes,

S, are = {HHH, HHT, HTH, TTT, TTH, THT, THH} i.e. Ns =8
Let {A exactly 2 heads}i.e. A={HHT, HTH, THH}, Na=3
=> p (exactly 2 heads), = Na/Ns = 3/8.

It therefore follows that the probability of none occurrence of A

NS-NA NA
el I-— 1-p(A)

p (not A) =

Self Assessment Exercises

1. What are the three (3) Probability Concepts

Self Assessment Answers

i.  Equally likelihood or Classical or Apriori concept,
ii. Relative frequency concept and
iii. the Axiomatic concept.

3.2 Applications of Probability

The concept of probability finds applications in diverse areas such as business,
manufacturing, psychology, genetics, and in many sub-disciplines of science.
Probability is used to determine the effectiveness of new medicines, assess a fair price
for an insurance policy, decide on the likelihood of a candidate winning an election,



determine the opinion of many people on a certain topic (without interviewing
everyone), and answer many other questions that involve a measure of uncertainty. It
is also an indispensable tool in decision-making processes both in private
organizations and government parastatal.

4.0 Conclusion

This module took you through the introduction to the subject of probability and how it
may be defined. It went further to look at various areas where probability finds
applications.

5.0 Summary

Probability has been described as the mathematical study of chance and random
processes. The laws of probability are essential for understanding genetics, opinion
polls, pricing stock options, setting odds in horseracing and games of chance, and
many other fields.

6.0 Tutor-Marked Assignment (TMA)

1. (a) Explain what you understand by the term ‘probability’.
(b) Itemize the various areas where the concept of probability finds applications.

2. In what way(s) do you think the concept of probability is relevant to managerial
level of private organizations and government parastatals?

7.0 References

Harry Frank and Steven C. Althoen (1995): Statistics: Concepts and Applications.
Cambridge Edition.

W. J. Decoursey (2003): Statistics and Probability for Engineering Applications.
Newness.
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1.0 Introduction

This unit will introduce you to the methods of performing statistical experiments, events
determination, representation of events with Venn diagram as well as how to specify
mutually exclusive and independent events.

Though events can be described in terms of other events through the use of the
standard set theory, this would be discussed in the subsequent units together with the
corresponding Venn diagrams that illustrate them.

2.0 Learning Outcome

At the end of this unit, you should be able to:

i.  Perform statistical experiments
ii.  Determine simple and compound events
iii. Represent events using Venn diagrams
iv.  Specify mutually exclusive and independent events

3.0 Learning Outcomes

3.1 Statistical Experiment

AStatistical Experimentis any operation that is performed according to a well-defined
set of rules and which when repeated generates a number of outcomes that cannot
be predetermined. Some examples of simple statistical experiments include a toss of
two coins at a time, choosing 100 people from a large population and testing them for
a certain characteristic of interest, etc.

A single performance of an experiment is called a trial. For instance, a toss of a coin
once, selecting nitems from a large population of items, etc.

The possible result of a trial is called an outcome. For instance, in a toss of two coins,
an outcome could be any one of

HHHTTHTT
The set of all possible outcomes of one trial of an experiment is called a

SampleSpace, denoted by S . For instance, in a toss of two coins, the sample space
is

S=HHHTTHTT

If we roll a six-sided die, and the number that shows on top is observed, a sample
space of the experiment is the 6-element set
S={1, 2,3 4,5, 6}

Certain specified sets of outcomes (subsets) are called events. For example, for the
above sample space, we can define A to be the event that the result of the roll is a



number divisible by 3 and B to be the event that the result of the roll is an even
number, then

A= {3, 6}
B=(2, 4, 6.

Self Assessment Exercises

What is a statistical experiment?

What is a trial?

AN OULCOMI IS ettt ettt e et e ettt et e e e e e aenas
The set of all possible outcomes in one trial of an experiment is called a

NP

5. Subsets or sets of outcomes are called ............oovimoi .

Self Assessment Answers

3.2 Simple and Compound Events

An event is called simple if it cannot be decomposed any further. That is, if it is a set
containing only one element of the sample space. But if it can be decomposed into a
set of simple events (i.e., can be expressed as the union of simple events), then it is
called a compoundevent. For example, the occurrence of 6 in a throw of a die is a
simple event. The occurrence of 7 in a simultaneous throw of two dice is a compound
event because it can be split up in to six simple events each of which corresponds to
the same compound event, namely, 6 and 1,5 and 2, 4 and 3, 3 and 4, 2 and 5,

1 and 6.

An event is said to have occurred if any one of its elements is the outcome of the
experiment.

In many cases, events can be described in terms of other events through the use of
the standard constructions of set theory. The definitions of these constructions are
reviewed in the following section together with the corresponding Venn diagrams that
illustrate them.

Self Assessment Exercises

1. An event that cannot be decomposed furtheris ..............cccooiiiiinn.
2. An event that can be expressed as the union of simple events is called ......




Self Assessment Answers

3.3 Complements, Union and Intersection of Events

Every event is characterized by a property, which is possessed by each of the
elements in the corresponding sets of the events. For instance, for the sample space
of rolling a die once, let an event A be defined as

A: An even number is observed.

Then, we can consider another event for A where such property does not hold. The
subset corresponding to this event is the set of all elements in the sample space not
belonging to A. Such a set is called the complement of A, denoted by A'.

Definition
The complement, A’, of an event A with respect to a given sample space S, is the

subset which consists of all the individual outcomes of S that are not contained in
A . This is given by the set

A ={x|xeSand x ¢ A}

The construction is illustrated by the Venn diagram below with the shaded area
representing A'.

A
Figure 1.1: The Complement of an Event A.

Example 1.01Suppose an integer is chosen from the set of first 12 positive integers.
The sample space of this experiment is the set

S={123,...12}.
If the events below are defined on S

A The result of selection is an odd integer

9



B : The result of selection is an integer divisible by 4.
We have
A={135,7,91%
B={4,812%}
Then, the complement of A is given by
A’ ={2,4,6,8,10,12}.
And this is the event of choosing an integer that is not odd.
Similarly, the complement of B is given by
B'={1,2,3,5,6,7,9,10,11},
This is the event of choosing an integer that is not divisible by 4.

The complement of the sample space S is the impossible event (empty set), & which
is an event consisting of none of the experimental outcomes.

In application of probability theory, we are often concerned with several related events
rather than with just one event. If A and B are any two events with corresponding
properties e, e,(e.g., even and divisible by 3), then we can define two other natural

events as follows.

The first is the event that either e, or e, holds (e.g., a number is either even or divisible

by 3) for which the corresponding set is that of all elements belonging to either AorB
. Such event is called the union of the events A andB .

Definition

If Aand B are any two events of a sample space S, then their union (written as Au B
) is defined as the event which consists of all the individual outcomes contained in
AorB. This is given by the set

AUB={xxe AorxeB}

The Venn diagram is given below with Au B shaded.

AuUB
Figure 1.2: The union of two events AandB.

Example 1.02: Consider the above example of rolling a six-sided die for which the
sample space is

10



S={1 2, 3, 4,5, 6}
If Aand B are two events defined on Sas

A an even number shows on top.

B : a number divisible by 3 shows on top.
Then,

A={2,4,6}.

B ={3,6}.
Therefore, the union of Aand B is given by

AU B ={2,3 4,6}

This is the event of having a number showing on top, which is either even or divisible
by 3.

Example 1.03: Consider an experiment of tossing a coin three times, for which the
sample space is

S =HHH HHT HTH HTT THHTHT TTH TTT .

If Aand B are two events defined on Sas
A First outcome is a head
B : Second outcome is a tall
Then,
A={HHH,HHT ,HTH ,HTT}
B={HTH,HTT , TTH,TTT}
And the Union of Aand B is given as
AuB={HHH, ,HHT ,HTH ,HTT ,TTH,TTT }

The second one is the event that both e, and e, hold (e.g., a number is even as well

as divisible by 3) for which the corresponding set consists of all the elements belonging
to both Aand B . This event is called the intersection of the events A andB.

Definition

If Aand B are any two events, then their intersection (written as AnB), is defined
as the event which consists of all the outcomes contained in both AandB. Thus
AN Bis the event that both Aand B occur. It is given as

ANB={xx € Aand x € B}

The Venn diagram below illustrates this with the shaded portion representing A~ B.

11



ANB

Figure 1.3: The intersection of two events AandB .

Example 1.04 Consider the experiment of example 1.03 above for which the sample
space is the 8-element set S ={HHH HHT HTH HTT THH THT TTH TTT} with the

events Aand B as defined. Then,
ANB={HTH,HTT}.

Consider the experiment in which a fair die is rolled once. If Ais the event that the
result of the roll is an even number and B is the event that the result is a number
divisible by 3, then

A={2, 4, 6}
B ={3, 6}
The intersection of Aand B is given by
AN B ={6}.
This is the event of having a number showing on top, which is even and divisible by 3.

Example 1.05 Suppose two tetrahedral dice are tossed together and the interest is on
sum of the numbers that show on top for each die. The sample space of the experiment
is the set

A

If the two events below are defined on S
A: The sum is even

B :A sum greater than 3

12



Find
(i) AUB.
(i) AnB.
Solution
From the sample space, we have
A={2, 4, 6, 8}
B={4,56,7, 8}
Therefore,
() AUB={2, 4,5,6, 7,8}
(i) AnB ={4, 6, 8}.

Self Assessment Exercises

1. If Ais an event, the set of all elements in the sample space not belonging to A
iscalled .........cooeviiiiiiii. ,denoted by ...

2. The complement of the sample spaces is called ...... represented by .........

An event whose outcome can occur in event AorBis writtenas ..................

4. The intersection of any two events, AandBis denoted by ........................

w

Self Assessment Answers

3.4 Mutually Exclusive and Independent Events

Two or more events are said to be mutually exclusive or disjoint if the occurrence of
any of them makes the simultaneous occurrence of any other of them impossible. That
is

ANA =0, foranyiand j=i.

For instance, if a coin is tossed once, the events head and tail are mutually exclusive.
If a die is rolled once, the events

A five

B :SiX
are mutually exclusive. However, the events

C :a prime number

D :an even number

13



are not mutually exclusive because if the roll resulted in a two, both those events would
occur together.

Events are said to be independent if the occurrence or nonoccurrence of any of them
has no effect at all on the probability of occurrence of the others. This implies that
when two events are independent, then they can occur together simultaneously. For
instance, in throwing a coin and a die together once, the events

A : an even number on the die
B : head on coin
are independent.

Self Assessment Exercises

1. Two or more mutually exclusive or disjoint events can occur simultaneously.
True / False.

2. An event(s) whose occurrence is (are) of no effect at all on the probability of
occurrence of the othersis saidtobe ...

Self Assessment Answers

4.0 Conclusion

This unit, you were introduced to the basic concepts to aid you in understanding
probability theory. We started with statistical experiment methods and its basic
concepts, such as events, sample space, finding complements, union and intersection
of various events as well as determining when events are mutually exclusive or
independent.

Other events specification using the standard set theory would be discussed in the
subsequent units together with the corresponding Venn diagrams that illustrate them.

5.0 Summary

In this unit, we have discussed:

I. Statistical experiment asany operation that is performed according to a well-
defined set of rules and which when repeated generates a humber of outcomes
that cannot be predetermined.

ii. Simple event is an event that cannot be decomposed any further, but if it can be
decomposed into a set of simple events (i.e., can be expressed as the union of
simple events), then it is called a Compound event.
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iii. The complement, A’, of an event A with respect to a given sample spacesS, is the

subset which consists of all the individual outcomes of S that are not contained in
A.

iv. If AandB are any two events of a sample space S, then their union (Auw B) is the
event which consists of all the individual outcomes contained in AorB. If Aand
B are any two events, then their intersection (A~ B), is the event which consists
of all the outcomes contained in both AandB .

v. Two or more events are said to be mutually exclusive or disjoint if the occurrence
of any of them makes the simultaneous occurrence of any other of them
impossible. Events are said to be independent if the occurrence or nonoccurrence
of any of them has no effect at all on the probability of occurrence of the others.

6.0 Tutor-Marked Assignment (TMA)

1. What do you understand by the following terms?
(a) Sample space
(b) Statistical experiment
(c) Statistical event
2. How are statistical events generated?
3. U={x:x=1,2,3...10}
A={1,2,3...8}
B={2, 3}
C={1,3,5,7,9}
4. Define the following sets: (1) A’, B’, C’ (ll) is B'’c A’? (lll) Are A and C disjoint
If V ={d} W={c,d} X={a,b,c} Y={a, b} Z={a, b,d}
Determine that each of the following statement is true or false.
i. YcX
i. W#Z
i. W2V
iv. X2V
v. YZX

vi. Vc X
vih. X=W

7.0 References

Harry Frank and Steven C. Althoen (1995): Statistics: Concepts and Applications.
Cambridge Edition.

W. J. Decoursey (2003): Statistics and Probability for Engineering Applications.
Newness.
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1.0 Introduction

Events arising out of an experiment in nature or in a laboratory vary randomly in their
frequencies of occurrence. Besides, these events cannot be predicted with certainty
and are thought to be subject to “chance”. The study of probability helps us figure out
the likelihood of such events happening. Probability of an event is a numerical
measure of the likelihood that the event will occur when an experiment is performed.
It can be expressed as a fraction or a decimal from O to 1 with unlikely events having
a probability near 0 and those that are likely to happen having probabilities near 1.
Two approaches for computing the probability of events are considered here. These
are basic interpretations, or ways of thinking about probabilities that help us to assign
probabilities to uncertain outcomes.

2.0 Objectives

At the end of this unit, you should be able to:

i.  Estimate the possibility of events’ occurrence
ii.  Proof some probability axioms to assert the chances of events’ occurrence
iii. Generalize arbitrary events

3.0 Learning Outcomes

3.1 The Relative Frequency approach

This approach approximates the probability of an event E as the proportion of times
that the event occurs when the experiment is performed repeatedly under similar
conditions. That is

number of times E occurs

P(E) = -
E) number of timesexperimentis performed

We should note that this approach only gives an approximation to the true probability
of E. However, if we perform our experiment more and more times, the relative
frequency will eventually approach the actual probability.

Example 2.1 Suppose we roll a six-sided die 50 times and the frequency distribution
of the outcomes is given as in the table below.

Score 1 2 3 4 5 6

Frequency 9 10 5 7 6 13

Let E denotes the event “the outcome is even”, F the event “a number greater than
or equals to 4”. Then from the table of frequency distribution of tosses above, we have

17



E ={2,4,6}and F ={4,5,6}and by the relative frequency approach, we can estimate
the probability of E as

P(E) =

(10+7+13) 06,
50

and that of F as

P(F

):w:o&_
50

The relative frequency is often used as an estimate of probability and the more trials
we perform the better the estimate will be.

3.2 The Classical Approach

This approach rests on the assumption that all the possible outcomes of an experiment
are equally likely. That is, these possible outcomes have equal probability of
occurrence. It states that if a trial of an experiment can result in m mutually exclusive
and equally likely outcomes and if exactly n of these outcomes correspond to an event
E , then the probability of E is given by

P(E) = number of outcomesfavourable to E _n

total possible number of outcomes m

For instance, in tossing a die once, the sample space
S={123456}.
Then by this approach, each of the elements of S has equal probability 1/6 so that the
probability of an event
A Score divisible by 3
is given by

P(A):@i:os:%
ns) 6 '

and that of an event

B : an even number

B _3 s,

P(B) ns) 6
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Self Assessment Exercises

1. The relative frequency result is better with plenty trials. True or False.
2. Events that have have equal likelihood of occurrence is denoted by ............

Self Assessment Answers

3.3 Probability Axioms

The probabilities assigned to events by a probability distribution function on a sample
space S must satisfy the following properties:

1. 0< p(E) <1foreveryE c S.

Proof:

For any event E the probability P(E)is determined from the distribution p by

P(E) =2 p(X),

xeE

For every E — S. Since the function p is nonnegative, it follows that P(E) is also
nonnegative and this property proved.

(1) 0< p(E)<1foreweryEcS.

2.  P(S)=1.

Proof:

This Property is proved by the fact that

0< p(x) <1 forevery xeS§,
and the equations

P(S)=> p() =1.

xes

(1) 0< p(E)<1foreveryE cS.

(2) P(S) =1.

3. If A and B are disjoint subsets of S, then
P(AUB) = P(A) + P(B).

Proof:

19



Suppose that A and B are disjoint subsets ofS (i.e., A and B have no element
in common). Then every element x of AUB lies eitherin A and notin B or in

B and not in A . It follows that

P(AUB) =% , o P()=2 PO+ . P(X)
— P(A)+P(B),

and this property is proved.

Example 2.2An experiment consists of rolling a die once. If the two events below are
as defined:

A: afive is observed
B :an even score is observed.
Then Aand B are disjoint subsets ofS. Then
AUB ={2,4,5,6},
each of these elements with probability 1/6. Therefore
PAUB)=3 , PX)=¢=%.

Now

+

P( five) + P(evenscore) =

olw

2
3

|-

which verifies that
P(AUB) =P(A)+ P(B), provided A and B are disjoint.

This property can be extended to more than two events. If S is finite and A ,..., A, are
pairwise disjoint events of S (i.e., no two of the A 's have an element in common),
then

P(A U...UA)) = iP(Ai).

Self Assessment Question(s)

1. Specify the property a probability distribution function (pdf) must satisfy on a
sample spaces.
2. If two events, A and B are disjoint subsets of S, then the probability function
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Self Assessment Answer(s)

3.4 Addition Rule for Arbitrary Events

Property 3 can be generalized in another way. Suppose that A and B are any events
in S that are not necessarily disjoint, then

P(AuB)=P(A)+P(B)—P(ANB).
Proof:
Now, the event
AUB
occurs if and only if the mutually exclusive events
ANnBorAnBor A°nB

occurs.

This is illustrated in the Venn diagram below

That is,
P(AUB)=P(ANB)+P(ANB®) + P(A° M B).oeeies e e e @
Now from this diagram and by property 3,
P(A) = P(ANB) + PANB ) oo eeeeeeee e coeeeeeeen eeeeesees eeeeseeees oo (2)
P(B) = P(ANB) + P(A M Bt i st et sevsessns e (3)
Adding (2) and (3), we obtain
P(A)+P(B)=2P(ANB)+P(ANB)+P(A MB)ocee e e (4)
By comparing (4) with (1), we have

P(A)+P(B)=P(AUB)+P(ANB)
Fromwhich we obtain
P(AUB)=P(A)+P(B)-P(ANB).
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Example 2.3: Let A and Bbe events such that P(AnB)=1/4, P(A)=1/3,
and What is P(AUB) ?
Solution

A and B are not disjoint since {A~B}= O .

Now

P(A)=1/3=P(A)=1-P(A)
=1-1/3=2/3.

by property (4) below.

Therefore
P(AUB) = P(A)+ P(B)-P(ANB)

+

1
4
1

[N

ol W

7

D N
[EEN

Example 2.4: A fair die is rolled once. What is the probability of an even score
or a score divisible by 3?

Solution
The events
A: an even score

B: a score divisible by 3

are not disjoint events since

{ANnB}=OJ.

Their probabilities are

P(A) =

IN O w
= N

P(B)=6=3,

P(ANB)=P(6) = %.

Then the probability of an even score or a score divisible by 3 is

P(AuB)=P(A)+P(B)-P(AnB)

2
>

1 11
_+___
2 3 6
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4. P(A)=1-P(A)forevery AcS.

Proof:

To prove this property, we consider the disjoint subsets Aand A'whose union is
givenby AUA =S.

Now, by property 3 (property of disjoint additivity),
we have
P(A)+ P(A) =P(S)
But by property 2
P(S) =1
Hence
P(A)+P(A) =1

and so

P(A)=1-P(A), foreveryAcS,

and this property is proved.

Self Assessment Question(s)

1. A fair die is rolled once. What is the probability of an even score or a score
divisible by 3

Self Assessment Answer(s)

4.0 Conclusion

In this unit, you have learnt how to estimate the possibility of events’ occurrence, proof
events’ property axioms and generalization of arbitrary events. Baye’s probability and

formula was also discussed.

In the next unit, we shall further our study of probability theory by discussing a more
important aspect of it, known as Permutations and Combinations involving determining

the number of ways that a certain event can occur.

5.0 Summary

In this unit, we have discussed the following:
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ii).

The Relative Frequency approach for approximating the probability of an event.
If the experiment is performed manymore times, the relative frequency will yield
actual probability.

Probability Axioms are the properties the probabilities assigned to events by a
probability distribution function on a sample space S must satisfy, such as:

(1) O0<p(E)<ilforeweryEcS.

(2) P(S)=1.

(3) If A and B are disjoint subsets of S, then
P(AuB)=P(A)+ P(B).

Mutual exclusiveness of events i.e the occurrence of one event precludes the
occurrence of the others, hence independence and mutual exclusiveness can be
thought of as opposites. The conditional probability is a situation where the
occurrence of one event does have some effect on the probability of occurrence
of another without making that probability zero.

Independent events are those events such that Event B is said to be statistically
independent of EventA, if the occurrence of Event A has no effect on the
probability of occurrence of B .

6.0 Tutor-Marked Assessment (TMA)

1.

2.

Let A and B be events such thatP(AnB)=1/8,P(A)=1/9, and P(B)=1/4.
What isP(AnB) ?
Proof that 0 < p(E) <1foreveryE — S.

7.0 References

W. J. Decoursey (2003): Statistics and probability for engineering applications.

Newness.

Harry Frank and Steven C. Althoen (1995): Statistics: Concepts and applications.

Cambridge Edition.
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1.0 Introduction

Recall that mutual exclusiveness of events is a way of stating that if one of a set of
events occurs, then none of the others can possibly occur; and independent events
are thoseevents whose occurrences has no effect (at all) on the probabilities of
occurrence of other events. In this unit, you will learn how to vary the probability of
events’ occurrence and observe their outcomes.

You will learn more about conditional probabilities and assigning distribution function
to sample spaces when performing experiments.

2.0 Learning Outcome

At the end of this unt, you should be able to:

i.  Find conditional probability of events

ii. Determine statistical Independence of events
iii.  Assign distribution function to sample spaces of performed experiments
iv. Altering probabilities of events

3.0 Learning Outcomes

3.1 Conditional Probability and Statistical Independence

As stated in unit 2, mutual exclusiveness of events means that if one of them occurs,
then none of the others can possibly occur and when events are independent, then
the occurrence of one has no effect at all on the probabilities of occurrence of the
others. Therefore, independence and mutual exclusiveness can be thought of as
opposites. The conditional probability considers the in- between situations where the
occurrence of one event does have some effect on the probability of occurrence of
another without making that probability zero, as we shall see in this section.

Suppose an experiment is performed and we assign a distribution function to the
sample space S and then learn that an event A has occured. How should we change
the probabilities of the remaining events? Consider the examples below.

Example 2.5 An experiment consists of rolling a die once. Let the two events below
be defined on S

B : six is observed
A:a number greater than 4 is observed.
Now S consists of 6 elemnts each with probability1l/6. That is

p(x)=1/6 for x=1,2,...,6. Thus P(B) =1/6.

Now suppose that the die is rolled and we are told that the event A has occurred.
Based on this information, we now want to know the new probability of the event B .
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We consider A to be the new sample space and note that B is a subset of A because
the only outcomes that can have occurred are those in the set A. Hence, the only way
B can occur is if we have an outcome that is in both A and B, that is, an outcome in
AN B. The chance of this happening is the chance of an A~ B outcome as a
proportion of all the possible A outcomes which might have occurred. This is denoted

by

P(B A)

P(BIA)=—5

The ratioP(B ~ A)/P(A) when P(A) =0 is called the conditional probability of B
given A, denoted by P(B/A).

We see that whenever we compute P(B/A) we are essentially computing P(B) with

respect to the reduced sample space A, rather than with respect to the original sample
space S.

Now
A={56}= P(A) =1/3
B={6}= P(B)=1/6
AnB={6}=P(AnB)=1/6
Therefore we have

P(B A)

P(B/A) = oA

[N
»

/

173~ 2

~|
w

Example 2.6 Consider an experiment of tossing a fair coin three times. What is the
probability of obtaining exactly 2 heads, given that

(a) the first outcome was a head?

(b) the first outcome was a tail?

Solution
The sample space is
S ={HHH,HHT, HTH, HTT, THH, THT, TTH, TTT}.

Now let the event ‘getting exactly 2 heads’ be denoted by A, the event first toss was
a head’ be denoted by B, and the event ‘first toss was a tail’ by C. Then we have

B ={HHH HHT HTH HTT},

AN B ={HHT HTH}
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andP(B)=4/8=1/2, P(AnB)=2/8;
C={THHTHTTTH TTT},
ANC ={THH}
and P(C)=4/8=1/2, P(AnC)=1/8
Therefore
€)) P(getting exactly 2 heads / first tosswas a head) = P(A/ B)

_P(AnB) _ o8 1
- P(B) T 4/8 7 2°
(b) P(getting exactly 2 heads / first tosswas a tail) = P(A/C)
_ P(A(-\C) :L :l
P(C) /8~ 4°

Example 2.7:A random sample of 150 graduands from a Polytechnic during a session
are classified below according to sex and class of diploma obtained.

Male Female
Sex
Class

Distinction 11 3

Upper credit | 22 15

Lower credit | 57 42

If a person is picked at random from this group, what is the probability that

i.  the person graduated with Upper credit given that the person is a male?
ii. the student did not graduate with Distinction given that the student is a female?

Solution
Let D denotes distinction, U denotes upper credit, and L denotes lower credit, M
denotes male and F female. Then we have

Sex | M F Total
Class
D 11 3 14
U 22 15 37
L 57 42 99
Total 90 60 150

Therefore,

PUNM) _22/150 _11_,,

O PUIMY==0 M) ~90/150 45~ "
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P(DNF) 57/150 19

iy P(D'/F)= _ _19_
@ PO F) ==y = 60/150 20

0.95.

We can also represent the sample space of this experiment as the paths through a
tree with the probabilities assigned as shown in the figure below.

class w p(w)
D wl 11/180
M
9] w2 11/90
1/2
L w3 19/60
(start)
D w4 1/40
1/20
1/2
F 1/4
U w5 1/8
7/10
L w6 7120
Figure 2.4: Tree diagram

Let U be the event “a student graduated with upper credit’, and M the event “a male is
chosen.” Then the branch weight 11/45that is shown on one branch in the figure can
now be interpreted as the conditional probability P(U /M).

Self Assessment Exercises

1. A mutually exclusive events means ............coooiiiiiiiiiii
2. Anindependent event Means .........ccoiiiiiiiiiii i

Self Assessment Answers

3.2 Independent Events

Event B is said to be statistically independent of event A if the knowledge that A has
occurred has no effect on the probability of occurrence of B. That is, if

P(B/A) = P(B).
In this case
P(AnB)=P(A)P(B),

and one would expect that the equation
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P(A/B) = P(A)

would also be true, i.e., A is also independent of B .

For example, consider a fair coin tossed twice. Here one would not expect the
knowledge of the outcome of the first toss of the coin to have any effect on the
probability of the possible outcomes of the second toss. That is, the second toss is
independent of the first.

Definition

Let Aand B be two events. Then they are said to be independent if either (1)
both events have positive probability and

P(B/A)=P(B) and P(A/B)=P(A),

or (2) at least one of the events has probability O.

From this definition, we see that to verify whether two events are independent, only
one of these equations must be checked.

Now assume that Aand B are independent.
Then P(A/B)=P(A), and so
P(AnB) =P(A/B)P(B)
=P(A)P(B).

and if the this equation is true, then it implies that

P(A/B) = % — P(A).
Also,
P(B/A) :% - P(B).

Therefore, Aand B are independent.

Example 2.8 A box contains 40 bolts 16 of which are defective and 24 non-defectives.
Two bolts are selected in succession with replacement. Find the probability that

(a) the first bolt is defective and the second is non-defective.
(b) the second bolt is non-defective given that the first is defective.
Solution

Let D and ND denote, respectively, the events defective and non-defective bolts.
These two events are independent since the selection is with replacement and so
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(a) P(D ~ND) = P(D)P(ND)

_1628 4o
40°40
(b) P(ND/D) = Z(ND D) _0.24 ¢
P(D) 0.4

Because the two events are independent, we could see from the last result that
P(ND/D)=P(ND)=0.6.
If the selection was without replacement, we shall have

(a) P(D ~ ND) = P(D).P(ND/D)

182 o2
40 39

and

(b) P(ND/D) = "(ND D) _ 24 16,16 _ ) 0y
P(D)  39°40 40

Example 2.9 A fair coin is tossed twice. Let A be the event “first toss is a head” and
B the event “the two outcomes are the same.” Show that Aand B are independent.

Solution

The sample space is S ={HH HT TH TT},

A={HH HT},
B={HHTT}.
Then P(A)=P(B)=1/2.
Therefore
and

P(AnB)=P(A/B)P(B) = (})})-= (1)= P(A)P(B).

Therefore, Aand B are independent.

Next we consider an example involving two events that are not independent.

Example 2.10 In example 2.08, let E be the event “first toss is a head” and F the
event “two heads turn up.” Show that E and F are not independent.

Solution
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Here we have
P(E)=1/2 and P(F)=1/4.
EnF={HH}and P(EnF)=1/4.
But P(E)P(F)=1/8%P(EnF).
Thus E and F are not independent.

Self Assessment Exercises

1. Independence and mutual exclusiveness can be considered as opposites.
True or false.
2. A box contains 40 balls, 16 of which are white and 24 black. Two bolts are
selected in succession with replacement. Find the probability that
a. The first bolt is white and the second is black.
b. The second bolt is black given that the first is white.

Self Assessment Answers

3.3 Bayes Probabilities

Suppose we have two boxes 1 and 2. Box 1 contains 3 black balls and 4 white balls.
Box 2 contains 1 black ball and 2 white balls. Suppose that a ball is drawn at random
and observed to be black but we do not know from which box it was drawn. Here we
calculate the conditional probability that a particular box was chosen, given the color
of the ball, namely P(l /b). Such a probability is an inverseprobability called the

Bayesprobability.Bayes probabilities are calculated using the bayes formula, which is
derived as follows.

3.3.1 Bayes Formula

Let A be an arbitrary event that can occur only in conjunction with one of k mutually
exclusive and exhaustive eventsH,,H,,...,H, ofS . Before we receive information on

the occurrence of A, we have a set of probabilites P(H,),P(H,),...,P(H,) for the
eventsH,,H,,...,H,, called the priorprobabilites. We then want to find the
probabilities for the events H,,H,,...,H, giventhat A has occurred. That is, we want
to find the conditional probabilities P(H, / A) , called the posteriorprobabilities.

Now if A is observed, the probability that it occurs in conjunction with H, (i =1,...,k) IS
given by

P(H, N A)

P(H, ) = =00

(1)
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We can calculate the numerator P(H, ~ A) of (1) from our given information by
P(H, nA)=P(H,)P(A/H,). (2)

Now since one and only one of the events H,,H,,...,H, can occur, we can write the
probability of Aas
P(A)=P(H, "A)+P(H, "A)+..+ P(H, N A)
Using equation 2, the above expression can be seen to equal
P(A) = P(H,)P(A/H,)+P(H,)P(A/H,)+...+ P(H)P(A/H,) (3)

Using (1), (2) and (3), we have the Bayesformula

PHIPATH)  i_12 k)

P(H,/A) =
D> P(H;)P(A/H,)

This is the Baye’s formula. Here, P(H,) is the prior probability of the eventH,; the
probability of H, before it is known whether A occurs, and P(H, /A) is the posterior
probability of H, .

Example 2.11:A doctor is trying to decide if a patient has one of the three diseases
d,, d,,ord,. From the national records on the distribution of diseases and test results

for 10,000 people having one of these three diseases, he assigned the probability
0.3215 for disease d,, 0.2125 for disease d,, and 0.466 for d,. He carries out a test

that will be positve with probability 0.656 if the patient has diseased,, 0.186 if he has
diseased,, and 0.109 if he has disease d,. Given that the outcome of the test was
positive, what probabilities should the doctor now assign to the three possible
diseases?

Solution

The prior probabilities for the three diseases are P(d,)=0.3215, P(d,)=0.2125
P(d,) = 0.466. Then using the Bayes formula, the posterior probabilities for the three
diseases are
p(d, /1) = P(d,)P(t/d,)

P(d,)P(t/d,)+P(d,)P(t/d,)+ P(d,)P(t/d,)

(0.3215)(0.656)

~ (0.3215)(0.656) + (0.2125)(0.186) + (0.466)(0.109)
=0.700.
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P(d,)P(t/d,)

P(d,/t)=
P(d,)P(t/d,)+ P(d,)P(t/d,)+ P(d,)P(t/d,)
~ (0.2125)(0.186)
(0.3215)(0.656) + (0.2125)(0.186) + (0.466)(0.109)
=0.131
and
P, /1) = P(d,)P(t/d,)
P(d,)P(t/d,)+P(d,)P(t/d,)+ P(d,)P(t/d,)
B (0.466)(0.109)
(0.3215)(0.656) + (0.2125)(0.186) + (0.466)(0.109)
=0.169
Example 2.12: In a Polytechnic, 60%, 25% and 15% of the total number of

graduands in a set fall, respectively, in the class of lower credit, upper credit and
distinction. Furthermore, 40% of those in the lower class, 20% of those in the upper
class and 20% of those with distinction are women.

() If a graduand is selected at random, find the probability that the graduand is a
woman.
(ii) If a graduand is selected at random and turns out to be a woman, find the

probability that she belongs to the distinction class.

Solution

Let L = lower class, U = upper class, D = distinction. Then,
P(L)=0.6, P(U)=0.25 P(D)=0.15.

(i) Let W be the event that the graduand is a woman, then by total probability rule,

PW)=P(L)PW /L)+PU)PW /U)+P(D)P(W /D)
=0.6x0.4+0.25x0.2+0.15x0.2
=0.32.

(i) Using Baye’s theorem, the probability that the selected graduand belongs to the
distinction class is
P(W /D)P(D)
P(W /D)P(D)+PW /U)PU)+PW /L)P(L)

_ 0.15x0.2 0,09
0.15X0.2+0.25x0.2+0.6x0.4

P(D/W)=

Example 2.13: A ball is picked at random from a box containing balls that are
black or white. Some balls are labeled and some are not. If half the balls are labeled
and three fifths of the labeled balls and two fifths of the non- labeled balls are black,
find the probability that the ball drawn is labeled, given that it is black.
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Solution

Let B = black ball, w = white ball, L = labeled ball and NL = non-labeled ball. Then
1
P(L) =P(NL) :E'
3
P(B/L)=-,
(B/L) :
P(B/NL)=§.

) P(B/L)P(L)
" P(B/L)P(L)+P(B/NL)P(NL)

P(L /B

_ (3/5)x(1/2) 3
:

(3/5)x(1/2)+(2/5)x(1/2)

Self Assessment Exercises

1. Bayes probabilities is also known as ...
2. The probability of event H, given that A has occurred can be specified by

Self Assessment Answers

4.0 Conclusion

In this unit, you have learnt how to estimate the possibility of events’ occurrence, proof
events’ property axioms and generalization of arbitrary events. Baye’s probability and
formula was also discussed.

In the next unit, we shall further our study of probability theory by discussing a more
important aspect of it, known as Permutations and Combinations involving determining
the number of ways that a certain event can occur.

5.0 Summary

In this unit, you have learnt the following:

i) Independent events are those events such that Event B is said to be statistically
independent of Event A, if the occurrence of Event A has no effect on the
probability of occurrence of B.

i) Bayes Probabilitiesis an inverseprobabilityusing the Bayes formula, stated as
follows:
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p(H, 13y = PHOP(ATH)

ZP(HJ.)P(A/HJ.)

L (i=12,...K)

Where, P(H,) is the prior probability of the eventH,; the probability of H, before it is
known whether A occurs, and P(H, /A) is the posterior probability ofH,.

6.0 Tutor-Marked Assignment (TMA)

(1) In a class of ND statistics students, 25% failed MTH 212, 15% failed STA 213 and
10% failed both. A student is selected at random and noted to have failed STA 213.

I. What is the probability that the student failed MTH 2127
. What is the probability that the student failed MTH 212 or STA 2137

(2) An experiment consists of throwing a coin and a die simultaneously. If the events
A: head on coin and B: 5 on die are defined on the sample space of this
experiment, investigate the dependence of these two events.

(3) 3 machines A, B and C produce, respectively, 50%, 30%, and 20% of the
totalnumber of items in a factory. The percentages of defective output of
thesemachines are 3%, 4% and 5% respectively.

i) If an item is selected at random, find the probability that the item is defective.

i) If an item is selected at random and found to be defective, find the probabilitythat
the item was produced by machine B.

(4) In a certain University, 4% of the men and 1% of the women are taller than
1.6.Furthermore, 56% of the students are women. If a student is selected at
randomand is taller than 1.6, what is the probability that the student is a woman.

7.0 References/Further Readings

Harry Frank and Steven C. Althoen (1995): Statistics: concepts and applications.
Cambridge Edition.

W. J. Decoursey (2003): Statistics and probability for engineering applications.
Newness.

Sheldon M. Ross (1997): Introduction to probability models, sixth edition. Academic
Press. New York.

Mario Lefebre (2000): Applied probability and statistics. Springer.
http://www.stanford.edu/class/poliscil00a/newprob2.pdf
http://en.wikipedia.org/wiki/Random_variable
http://www.stats.gla.ac.uk/steps/glossary/probability _distributions.html
http://faculty.palomar.edu/mmumford/120/notes/Chap5.pdf
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Answers to SAAs
Module 1 Unit 1

1. A statistical experiment is any operation that is performed according to a well-
defined set of rules and which when repeated generates a number of outcomes
that cannot be predetermined.

2. A single performance of an experiment.
3. The possible result of a trial.

4 Sample space.

5. Events

6. A Simple event.

7. A compound event.

8. The Complement of A, denoted by A'.

9. The Empty set represented by, & symbol.
10. AUB)

11.AnB)

12. False

1. Truel3. Independent event(s)

Module 1 Unit 2

number of outcomesfavourabletoE n

2. P(E) = : =—.
total possiblenumber of outcomes  m
3. 0< p(E) <1foreweryE cS.
4, P(AUB) = P(A) + P(B).
Module 1 Unit 3
1. If one event occurs, then none of the others can occur.
2. The occurrence of one event has no effect at all on the probabilities of

occurrence of the others.

3. Inverse probabilities
4. P(H,/A)

5. True

6. a) 0.24 b) 0.6
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Module

Combinatorics and
Random Variables

Unit 1: Combinatorics
Unit 2: Random Variables and their Distributions
Unit 3: Expected Value and Variance
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Unitl

Combinatorics

Content
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2.0 Learning Outcome
3.0 Learning Outcomes
3.1 Counting Technique
3.2 Tree Diagrams
3.3 Permutation
3.4 Combination
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment (TMA)
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1.0 Introduction

We now study the topics of Permutations and Combinations. This subject is important
because many problems in probability theory involve counting the number of ways that
a particular event can occur.

Before we continue, it is useful to study a general counting technique that will enable
us to solve a variety of counting problems including the problem of counting the
number of points in the sample space, S and in subsets ofS.

2.0 Learning Outcome

At the end of this unit, you should be able to:

i.  Develop a new counting technique for iterative sequences
ii. Use tree diagrams to represent events occurring in stages
iii. Arrange and select experimental objects using permutation and combination
techniques of counting

3.0 Learing Outcomes

3.1 Counting Technique

Consider a task that is to be carried out in a sequence of r stages. There are n, ways
to carry out the first stage; for each of these n, ways, there are n,ways to carry out
the second stage; for each of these n,ways, there are n,ways to carry out the third
stage, and so on.

Then the total number of ways in which the entire task can be accomplished is given
by the product

N =n,.n,. .n,.

It is often more convenient to represent the outcomes of this type of experiment by a
tree diagram.

3.2 Tree Diagram

It is often useful to use a tree diagram when studying probabilities of events relating
to experiments that take place in stages and for which we are given the probabilities
for the outcomes at each stage.

Example 3.1 A fair coin is tossed three times. The tree diagram for this experiment is
as shown in the figure below.
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rd
1st toss ond toss 3" toss outcomes

HHH

H
H <
T HHT
H H  HTH
.

T HTT
H  THH
T

\

\ T TTT

(start)

Figure 2.1: Tree diagram for three tosses of a coin.

A path through the tree corresponds to a possible outcome of the experiment. From
the tree diagram above, we have eight paths, and assuming each outcome to be
equally likely, we assign equal probability 1/8to each path.

Now, let E be the event “at least one head turns up”. Then we have
E ={HHH HHT HTH HTT THH THT TTH}

and so
P(E)=7/8.

Example 3.2 A box contains 5 red and 4 white marbles. If two marbles are drawn at
random, what is the probability that

(@) i. one marble is red and the other white?
ii. both are of the same colour?

(b) If three marbles are drawn at random, what is the probability that exactly two are
red?

Solution

The tree diagram is
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1stdraw 2nd draw

R
4/8
R 4/8
5/9 w
(start)
4/9 5/8 R
A\
3/8
w

Figure 2.2: Tree diagram for drawing two marbles.

(&) i. P(one white and one red marble) = P(WR) + P(RW)

(45354

20 20 5

= —=—,
72 72 9
ii. P(same colour) = P(RR) + P(WW)
5 4 4 3
=| =X—=|+]| =X=
o) (55)
20 12 4
=——ft—=—,
72 72 9

(c) If three marbles are drawn at random, the tree diagram is

1stdraw 2nd draw 3rd draw

37 R

a4/7
_ a7
4/8 R wW
R 4/8 a/7 R
5/9 w <
(start) a/7
4/9 5/8 R 3/7
Y w
3/8 /3/7/// R
w

2/7

D2

w

Figure 2.3: Tree diagram for drawing three marbles.
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Therefore,
P(exactly 2 red balls) = P(RRW) + P(RWR) + P(WRR)

5 4 4) (5 4 4\ (4 5 4
= =X=X= |[+| =X=X= [+| =X=X=
(987](987)(987)

80 80 80
= + +

504 504 504
_10_ 0.476.

21

Self Assessment Exercises

1. Multi-stage experiments such that there are n, ways to carry out the first
stage; n,ways to carry out the second stage; for each of these n,ways, there
are n,ways to carry out the third stage, and so on. Then the total number of

ways in which the entire task can be accomplished is given by the product.
2. A path through a tree corresponds t0 ..........cooiiiiiiiiii
3. If two red balls are drawn at random out of a total of six (three red, three blue)
balls, what is the probability that exactly two are red?

Self Assessment Answers

3.3 Permutation

Consider the number of ways of arranging 3 of 7 items in 3 empty spaces. Here the
first space can be filled in 7 ways, the second space can be filled in (7-1) = 6 ways and
the third space can be filled in (7-2) = 5 ways. Therefore there are (7)(7-1)(7-2) ways
of arranging the 3 items taken from 7 items. This is the number of permutations of 7
items taking 3 at a time. It is also the number of ways of filling 3 empty spaces taken
7 different items at a time.

Definition

Let A be an n- element set, and let k be an integer between 0 andn. Then a k -
permutations of A is an ordered listing of a subset of the set A of size k.

That is, the total number of k -permutations of a set Aof nelements is given by
"B, =n(n—-D)(n—-2)..(n—k+1).

The total number of permutations of a set A of ndistinct elements taking all at a
time is given by
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"P,=n(n-1)(n-—2)...1.

This is called nfactorial and is denoted by n!. By definition, 01=1.

Example 3.3: Evaluate 7P, .

Solution

I
7P, ="
(7-3)!

=7x6x5=210.

Example 3.4 A student must attempt five questions out of seven. How many different
sequences of five might appear in his script?

Solution
This is

|
7P, = % = 7X6x5x4x3 = 2520.

3.4 Combination

This involves selection of objects without regard to order. It is the total number of
combinations of robjects selected fromn, or the combinations of nobjects taking r at
a time. Given ndifferent objects, r < nof them can be selected in

(”)—C“ o nt nn=-1)..(n-r+1)
T i (n=r) r(r-1)..1

ways, when no attention is paid to the order.

The symbol ("), which is sometimes written as "C, is read as the number of
combinations ofn things taken rat a time.

Example 3.5 (example 3.04 cont’d) If a student must answer 5 out of 7 questions in a
semester examination, how many ways has he to select his questions?

Solution

Since the order in which the answers appear in the script is not relevant, we have

|
Co= -2
5121

Example 3.6 In how many ways can we select 5 people from a group of ten to form a
committee?

44



Solution
This is
101

10C, = =— = 252,
515!

Self Assessment Exercises

1. The selection of n objects from r objects without regard to order is known as

2. In how many ways can a pair of socks be selected out of 6 pairs.

Self Assessment Answer(s)

4.0 Conclusion

In this unit, you have learnt how to determine the counting of experiments that are
perfomed ins stages and how to represent them diagrammatically, using a tree
diagram. Observe that a tree diagram is also useful for studying probabilities of events
relating to experiments that take place in stages.

You are now familiar with Permutation i.e. the number of ways of arranging items,
taking a certain number at a time; as well as Combinationwhich is the selection of
objects without regard to order. These are basic techniques that are to be applied in
forecasting stochastic events, as you will see later in this course.

5.0 Summary

You have learnt that:

i) There are ni.nz....nr possible ways in which a task involving r stages can be
accomplished, for cases where each of these n, ways, there are n,ways to carry
out the second stage; for each of these n,ways, there are n,ways to carry out the
third stage, and so on.

i) Atree diagram is used to study probabilities of events relating to experiments that
take place in stages.

i) Permutation deals with items arrangement by drwaing a certain number of the
items at a time, denoted by "P, =n(n-1)(n—2)...(n—k +1), called n! (n-factorial)

iv) Combination is the selection of objects without regard to order, denoted by "C,
i.e the number of combinations ofnitems taken ritems at a time.
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6.0 Tutor-Marked Assignment (TMA)

=

How many 3 letter words can be formed from the letter MANGO?
In how many ways can 5 students in a class sit on 1 desk?

Find the number of permutations that can be formed using the words:

i. STATISTICS (i))MISSISSIPI (iii) BANANA (iv) CASHEW

An urn contains 6 balls, all of different colours, find the number of ordered
arrangement

i. of size 3 with replacement.
ii. of size 3 without replacement
iii. of size with one more replacement

Consider the four letters A, B, C, D. How many unordered selection are possible
taken 3 letters at a time if

I. Replacement is not allowed.
ii. replacementis allowed
iii. list the samples in (a) or (b) above

Suppose 6 students are to represent their university in an inter — university tennis
competition

a. How many double teams can be found?

b. If one of the students is the tennis captain and play in each competition, how
many double teams are possible?

A welfare committee of 5 members is to be formed from 12 peoples which 7 are
women and 5 are men. Find the possibility of selecting the 5 members committee
if it is required that 3 must be women.
A committee of 3 people is to be chosen from 4 married couples.
i. How many different committees are possible?
ii. How many contain 2 women and 1 man?
iii. What is the probability that the committee will be made up of more women than
men?
iv. What is the probability that the committee will contain only men?

7.0 References/Further Reading

Harry Frank and Steven C. Althoen (1995). Statistics: concepts and applications.

Cambridge Edition.

W. J. Decoursey (2003): Statistics and probability for engineering applications.

Newness.
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1.0 Introduction

Observe that most of the examples of statistical experiments you have used in the
previous units resulted in quantitative (numerical) data. In this unit, we shall develop
models for such numerical data, with associated real components otherwise known as
random variables.

In addition, you are going to study the different types of the data model (random
variables) such as discrete random variables, continuous random variables, density
functions, continuous distribution functions as well as their characteristic properties.
With these, you will be able to develop models for all your experimental data by
specifying their respective variables and state the data properties.

2.0 Learning Outcome

At the end of this unit, you should be able to:

i. Develop models for your experimental data
ii. ldentify different data variables
iii.  Fit data into their respective model
iv.  Specify data characteristic properties

3.0 Learning Outcomes

3.1 Concept of Random Variables

We have seen that most of the examples of statistical experiments given in the
previous units generated quantitative (numerical) data. This is frequently true. To
develop models for such data, a real number or a vector with real components is
associated with each possible outcome, s in the sample space, S, of the experiment.

The function mapping the outcome to the number or vector is called a random variable.

Definition
A random variable is a real-valued function X (s) , defined for every outcome, s in
the sample space of an experiment.

Capital letters are often used to designate the random variable itself and lower-case
letters for an unspecified value of a random variable.

For example, if we toss a coin twice and denote by X the number of heads that turn
up, then heads may be associated with X =1, 2 and tails with X =0. So, X is called
a random variable and its values are 0, 1 and 2.

In practice, the sample space of the random variable is either a discrete set of values
(as in throwing a die) or a continuous set (as in measuring a length).
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3.2 Discrete Random Variables

These are integer-valued random variables with discrete sample space. For instance,
the number of defective items in a carton of manufactured items, the number of leaves
on a tree and the number of heads that comes up when a pair of fair coins is tossed
are examples of random variables with discrete value space.

Definition

A discrete random variable X is a random variable with finite or countably infinite
set of possible outcomes.

Self Assessment Exercises

1. Numerical data can be replaced with ...,
2. Discrete random variables have ........................l Values.
3. Examples of discrete random variables are ..................ooooiiiii,

Self Assessment Answer(s)

3.3 Probability Function of Discrete Random Variables

It may be convenient to assign a probability to each point x in the sample space S of
an experiment. The discrete probability function specifies the probability associated
with each possible value the random variable in question can assume.

Definition

Let S be a discrete sample space of an experiment. Then a probability
distribution function for each of the elements, x of S is a real-valued function p

whose domain is S and which satisfies

1) 0<p(x)<1, forallxesS, and

2) . p(x) =L

XeS

Furthermore, for any subset E of S, the probability of E is defined to be the
number P(E) given by

P(E) =2 p(X).

xeE

Example 4.1: A fair coin is tossed twice, the sample space of this experiment is

49



S ={HH HT TH TT}

Here we see that every outcome is equally likely and so each of the four outcomes will
have an assigned probability of 1/4. That is

p(x)=1/4, forevery xeS

which is nonnegative.

Now to verify condition (2), we see that

dp()=i+i+i4i=1

xeS

Therefore, P(x) is a valid discrete probability function.

Eample 4.2:

From example 3.01, let E be the event that ‘atleast one head turns up’. Then, the
elements of E are E ={HH,HT,TH}and the probability of E is

P(E)=Y p(x) =4 +1+1=2.

xeE
Example 4.3:

Consider an experiment of rolling a fair die once for which the sample space is
S ={1,2,3,4,5,6}. Since the die is fair, we define the probability distribution function for

the elements of this sample space by

p(x) =1, forx=1...,6,

which is nonnegative.
Also, for every xeS,

we have

> p(x) =6(4)=1.

xeS
Therefore,
is a valid discrete probability function.

Now, if E is the event that the result of the roll is an even number, we have the
elements of E as

E ={2,4,6},

and so

P(E)=>" p(x)=3(4)=1.

xeE
Example 4.4

A pair of fair dice is rolled once. What is the probability of
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0] getting a sum of 5?
(i) getting a sum of 11?
Solution

The sample space of this experiment is the set of all ordered pairs (i, j) of integers with
1<i<6 and 1< j<6. Therefore

S ={(i, j):1<i, j <6}.

Here, we note that there are six choices for i, and for each choice of i, there are six
choices for |, leading to 6x6 =36 different outcomes as the size of the sample space
S for the experiment.

Now, since the dice are fair, each of the 36 outcomes is equally likely and the
probability distribution function on S is

p(li, j) =%, 1<i,j<6.
() Letthe event “getting a sum of 5” be denoted by E, then
E={14),(41).,(2,3).3,2)}

and

P(E) =Y p(x) = 4(%)=1.

X<E

That is, the probability of getting a sum of 5 is {.

(i) Let F denote the event of getting a sum of 11. Then,
F ={(5,6),(6,5)}.

So,

P(F)=Y p(x)=2(%)=4.

xeF

Therefore, the probability of getting a sum of 11 is .

3.4 Cumulative Distribution Function for Discrete RandomVariables

For a discrete random variable X with probability function f (x) , for x = x;, x,,..., X, the

ey n?

distribution function, F (x), is defined by

F(x) =2 f(x)

X; <X

That is, the corresponding cumulative probabilities of the discrete random variable X
are obtained by summing all the probabilities up to a particular level.
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Example 4.5: The probability distribution for a discrete random variable X is
given by the table below.

X 0 1 2 3 4 5 6

P(X =x)0.04 02 03 01 0.16 0.08 0.12
Obtain the corresponding CDF table for X.

Solution

By definition, the cdf is given by

F(O = (%)

X; X

Therefore, the CDF table is

X 0 | 1 2 3 4 5 6
F(X) ‘0.04 024 054 0.64 0.80 0.88 1

From this table, it is obvious that the function F(x) increases from zero at the bottom
of the range to unity at the top of the range.

Self AssessmentExercises

1. The probability function of a discrete random variable is called ...
2. A pair of fair dice is rolled once. What is the probability of obtaining

a. Sumof7?
b. Sum of 9?

3. 6.The summation of all the probabilities of a discrete random variable is called

Self Assessment Answer(s)

3.5 Continuous Random Variables

A random variable with sample space consisting of a continuous set of values is
referred to as a continuous random variable. That is, Xis a continuous random
variable when it can only assume any value within a specified range or interval. A good
example is the measurement of weight or height.
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Definition
A random variable X is said to be a continuous type when all of its possible values
are contained in a particular range or interval, say [a, b].

If X is continuous, then the probability that it assumes any one particular value is
generally zero. For instance, let X be a continuous random variable denoting the
height of adult males in a group. Then, if an individual is selected at random from this
group, the probability that his height X is precisely 42 inches would be zero. However,
there is a probability greater than zero that X is between 54.5 and 55.5 inches.

3.6 Density Functions of Continuous Random Variables

A continouos random variable represents the outcome of an experiment with a
continuous sample space. In such experiments, the probabilities for the outcomes to
fall in a given interval are assigned by means of the area under a suitable function
called the density function.

Definition

Let X be a continuous real-valued random variable. A density function for X is a
real-valued function f which satisfies

Pla<X <b)=[ f(x)dx,

for all a,beR.

It should be noted at this point that, unlike the case of discrete sample spaces, the
value f(x) of the density function for the outcome x is not the probability of x occurring

(it has been stated earlier that this probability is always 0) and in general, f(x) is not
at all, a probability.

Nevertheless, the density function f does contain all the probability information about

the experiment, since the probabilities of all events can be derived from it. In particular,
the probability that the outcome of the experiment falls in the interval [a,b] is given by

P(a,b])= [ f(x)dx,

That is, by the area under the graph of the density function in the interval[a,b].

Example 4.6A continuous random variable X has density function

f(x)=Cx, 2<x<10,
0, otherwise
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Find
(a) The value of the constantC.
(b) PB< X 7).

Solution

(&) Since f(x) is a density function, we must have

[ foodx=1

That is,
10 10
j Cxdx = CJ' xdx=1
2 2
= cl£]’ —48c -1
=C= lg.
Hence,

f(X)=F5x  2<x<10,

0, otherwise

7 7

(b) P@<X<7)= xdx=3[<]
_40_5
9% ~12°

Therefore,
P(3< X <7)=0.417.

Example 4.7A continuous random variable X has pdf

Cx, 0<x<2,
f(x)=<C(4-x), 2<x<4,
0, otherwise

Find
(a) the value of the constant C

(b) P& <X <29,

Solution
@) joz Cxdx+ J':C(4— x)dx =1, since f(x) is a density function.

That is,
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clsf +clax-£f -1
= 2C +C[(16-8) - (8-2)]=1.

= 4C =1.
So
c=1.
Therefore,
ix, 0=<x<2
f(x)=<%(4-x), 2<x<4,
0, otherwise

(b) PG < X <23) = [xdwr [ (4- 00K

_ 1[X2]i _|_1[4X_x2]2%
3 LTy 2k
1

Therefore,
PE<X<2i)=1,

Self Assessment Exercises

1. A continuous random variable has a sample space consisting ...................
Values

2. Measuring the quantity of petrol is an example of discrete random variable.
True or False.

3. The probabilities for the outcomes of continuous random variables to fall in a
given interval are assigned a function called ...................oo

Self Assessment Answers

3.7 Cumulative Distribution Functions for Continuous Random
Variables

In the previous section, we considered the density functions of continuous random
variables. In this section we shall consider another kind of function that is closely
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related to these density functions and is also of great importance. These functions are
called cumulative distribution functions.

Definition
If X is a continuous random variable there exists the probability P(X < x), for X

to be less than or equal to x . This probability is called the cumulative distribution
function of X denoted by F(x). Thus

F(x) =P(X £x).

Therefore, if X is a continuous real-valued random variable which possesses a
density function f(x), then it also has a cumulative distribution function defined

by
Fo=[" f(dt

Furthermore, f(x)andF(x) are related by the fact that
LFx)=f(x).

That is, if F has a derivative, then dF(x)/dx = f(x) for almost all x.

3.7.1 Properties of Distribution Functions
The following properties of a distribution function are consequences of the definition.
i F(-0)=0; F(x)=1,

that is, the function F(x)obviously increases fromzero at the bottom of the range

to unity at the top of the range.
ii.  F(x)<F(x,), if x <x,, thatis, F(x) is monotonically non-decreasing.

ii. The probability in an interval, say x, < X <x,, is given by the difference in the
values of F evaluated at the endpoints of the interval. That is
F(x,)—F(X)=P(x, < X £x,).

Example 4.8: A continuous random variable X has density function

f(x) =2kx, 0<x<5,
0, otherwise

obtain (i) the value of k
(i) the CDF

Solution
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0] to obtain the value of the constant k, we have
5
J.O 2kxdx =1

= 2kJ.05xdx: k[x2f =1.

That is
_ _1
25k =1 = k—g.
Hence,
f(x)=%, 0<x<5,
25

0, otherwise
(i) The CDF is derived as
FO) = f(x)dx:z%j;xdx

- z[£] 2 o<t<s

—25L2 b 5

Therefore, F(x):%, 0<x<5.

Example 4.9: A continuous random variable X has CDF given by
0, x<0,
F(X)={%, 0<x<3
1, Xx>3

Obtain the density function f(x).

Solution

Using the relationship
KFOO=1(x),

we have the density function derived as

3) 2
LF(x) =%[’;—7j =25 =100,

Therefore the density function for X is

x2
f(x) =%, 0<x<3

9 il
0, otherwise.

Self Assessment Exercises
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1. The probability such that, F(x) = P(X <x) is called ...
2. FOO)<F0Q), if X <% means F(X) is ...

Self Assessment Answers

4.0 Conclusion

This unit has taught you how to represent experimental data values with random
variables as well as distingusnig between a discrete and continuous random
guantities. Also, the technique generating a data model for quantitative data was
accomplished.

Further, you learnt how to obtain density functions, discrete and continuous distribution
functions as well as their characteristic properties for experimental data. These are
useful tools for fitting data into their respective models, subsequent units will introduce
you to other data models, specification and generalization.

5.0 Summary

You have learnt the following in this unit:

i) Quantitative data generated from experiments are converted into data models. A
random variable as a real-valued function X(s), was introduced and defined for
every outcome, s in the sample space of an experiment. Random variables are
represented by upper-case lettersand lower-case letters for an unspecified value
of a random variable.

i) There are discrete random variables as well as continuous random variables.
Discrete random variables are integer-valued with discrete sample space, while a
continuous random variable assumes any value within a specified range or interval.
Examples of discrete random variables are die tossing, number of books on a table,
etc; and examples of continuous random variables are measurement of weight or
height or quantity of liquids.

i) Probability distribution function of discrete random variables which assigns a
probability to each point x in the sample space S of an experiment is defined as

1) 0<p(x)<1l, forallxes,

for S being a discrete sample space of an experiment. Then a probability
distribution function for each of the elements, x of S is a real-valued function p

whose domain is S. Also, for any subset E of S, the probability of E is defined to
be the number P(E) given by
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P(E) = p(x).

xeE

iv) Density functions of continuous random variables X is a continuous real-valued
random variable satisfying

Pla<X <b)=[ f(x)dx,
forall a,beR.

v) Cumulative distribution functions for continuous random variables, Xis a
continuous random variable where the probability P(X < x), is denoted by F(x) as

F(x) =P(X <Xx).

If X is a continuous random variable with a density function f(x), then it has a
cumulative distribution function defined by

F(x) = j_xw f (t)dt.

vi) Properties of distribution functionsas consequences of the definition was stated
as:.

I. F(-0)=0; F(xo)=1,

i F(x) <F(x,), if x, <x,,

iii. The probability in an interval, with x, < X <x,, is given by the difference in the
values of F evaluated at the endpoints of the interval, i.e.
F(x,)—F(X)=P(x, < X £x,).

6.0 Tutor-Marked Assignments (TMA)

1. Afair coin is tossed three times. The sample space is
S ={HHH,HHT, HTH, HTT, THH, THT, TTH, TTT }
Describe in words the events specified by the following subsets of S:
(@) E ={HHH, HHT, HTH, HTT}
(b) F={HHH,TTT}
(¢c) D={HHT, HTH, THH}
(d) K={HHT,HTH, HTT,THH, THT, TTH, TTT}

2. State the probabilities of each of the events described in exercise 1 above.

3. A die is loaded in such a way that the probability of each face turning up is
proportional to the number of dots on that face. (For example, a six is three times
as probable as a two.) What is the probability of getting an even number in one
throw?
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4. A continuous random variable X has density function
f(x)=2kx, 0<x<5,
0, otherwise
obtain (i) the value of k
(i) the CDF

5. A continuous random variable X has CDF given by

0, x<0,
F(x)=+%, 0<x<3
1, Xx=>3

Obtain the density function f (x).

7.0 References/Further Reading

Harry Frank and Steven C. Althoen (1995): Statistics: concepts and applications.
Cambridge Edition.

W. J. Decoursey (2003): Statistics and probability for engineering applications.
Newness.
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1.0 Introduction

When data is gathered during a research or an experiment, the observed data or the
gathered research data are not enough rather some descriptive quantities such as the
mean or the median are desirable metrics of the data. This unit will step you into the
measurement of such descriptive metrics and more such as the expectedvalue and
the variance of numerically-valued random variables.

In addition, you will be able to measure the likely deviation from central tendencies
(mean and median) of random variables such as the variance and standard deviation.

2.0 Learning Outcome

At the end of this unit, you should be able to:

i.  Determine the mean and median of numerically-valued random variables
ii. Compute the deviation of random and continuous variables from central
measurements
iii. State the properties of expected values and variances of random variables
iv.  State the properties of expected values and variances of continuous variables

3.0 Learning Outcomes

3.1 Mathematical Expectation of Discrete Random Variables

When a research of any kind is conducted and data is gathered, we are usually
interested not in the individual data items, but rather in certain descriptive quantities
such as the mean or the median. In general, the same is true for the probability
distribution of a numerically valued random variable. In this chapter, we shall consider
two such descriptive quantities - the expectedvalue and the variance — as they apply
to numerically valued random variables.

3.1.1 Expected Value

For a discrete random variable X, the mathematical expectation is obtained by
considering the various values that the variable can take; multiplying those values by
their corresponding probabilities and then sum the products.

Definition

Let X be a discrete random variable with sample space S and probability
function p(x) . The expectedvalue E(X) is defined by

E(X) = xp(x)

xeS

This is often referred to as the mean and denoted by ., or 4.
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Example 5.1: A fair coin is tossed three times. What is the expected value for
the number of heads that appear?

Solution
The sample space for the experiment is

S ={HHH,HHT, HTH, HTT, THH, THT, TTH, TTT},
in which each element has the probability %.

Now, let the number of heads that appear be denoted by the random variable X . Then

the possible values of X are 0, 1, 2 and 3 with the respective probabilities%,%,%and %
. Therefore, the expected value of X is

4
E(X)= in p(xi)

i=1

= 0()+1(2)+ 20)+3(t) =3

Example 5.2: The probability distribution for a discrete random variable X is
given by the table below.
X 0 1 2 3 4 5 6

o) 0.04 02 03 01 016 008 0.12

Obtain the expected value of X .
Solution
From the table, the expected value is given by

E(X) =) X =X Py +X, P+ X, P,

= (;:(0.04) +1(0.2) + 2(0.3) + 3(0.1) + 4(0.16) + 5(0.08) + 6(0.12)
= 2.86.

Example 5.3A fair die is rolled once. Denote by X the number that turns up. Find the
expected value of X .

Solution
The sample space for the experiment is

S={1 2 3 4,5, 6},
in which each element has the probability %

Therefore, the expected value of X is
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i=E(X)= Y% p(x)

13} 23) 308)+4(4)+5() 60

3.2 Properties of Expected Values of Discrete Random Variables

The following are properties of the expected values of discrete random variables.

If C is any constant and X is a discrete random variable, then
] E(C) =C.

This can easily be investigated since

E(C) :Z"‘pf (x) =c_§nj f(x)
_cw=c.

ii. Product Of A Constant And The Random Variable
E(CX)=CE(X)

That is, the expected value of the product of a constant and a random variable is
equal to the product of the constant and the expected value of the random variable.

Proof

E(CX) = Zn:cxiP(X =X;)

i=1
=c) XP(X =x)
i=1
=cE(X).
iii. Sum Of Two Random Variables.

Let X and Y be random variables with finite expected values. Then
E(X +Y)=E(X)+E()

Proof:

We consider the random variable X +Y to be the result of applying the function
#(x,y) = x+y to the joint random variable (X,Y).

E(X +Y)=ZZ(Xi +Y)P(X=x,Y =y;)
=ZinP(X =x,Y = yj)+ZZyjP(X =x,Y =Y;)

Now, using the fact that
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Y P(X=x.,Y=y,)=P(X=x)

and
ZP(X =X;,Y :yj):P(Y :yj');

we then have
E(X+Y)=> xP(X=x)+> y;P(Y=y))
i j

=E(X)+E(Y).
It is important for us to note at this point that mutual indepenedence of the
summands ( X andY ) is not needed here.

iv. Sum of a constant and the random variable

E(X +C):§n:(x +C)f(x,)

i=1

=Zn:Xf(xi)+Zn:Cf(xi)
= E_(X)+C _

v. Independence
If X and Y are two independent random variables, then

E(X.Y) = E(X)E(Y).

Proof
E(X.Y) =22xjykp(x =X;,Y =Y,).
ik

Now, if X and Y are independent,

P(X =x;,Y =y,) =P(X =x))P(Y = y,).

Therefore,
E(X.Y) zzzxjykp(x = Xj)P(Y = yk)
ik

:(zj:xjp(x = x,.)](zk:ykP(Y = yk)j

= E(X)E(Y).
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Example 5.4A coin is tossed twice. X, =1 if the ith toss is head and 0 otherwise. Now,

X, and X, are independent. They each have expected value Y.

Therefore,
E(X.Y)=E(X)E()=(/2)1/2)=1/4.
The following example shows that the expected values need not multiply if the random

variables are not independent.

Example 5.5A coin is tossed once. Let the random variable X have a value 1 if heads
turns up and 0O if tails turns up, and letY =1- X . Then E(X)=E(Y)=1/2. Now, XY =0

for either outcome. Therefore,
E(XY)=0
and this implies that
E(X.Y) = E(X)E(Y).

Self Assessment Exercises

1. IfX is a discrete random variable with sample space S and probability
function p(x) what is the expected value of X?

2. What is the symbol of mean of a discrete random variable, X?
3. A fair coin is tossed twice, what is the expected value for the number of tails
that appear?

Self Assessment Answers

3.3 Variance and Standard Deviation of Discrete Random Variables

In the previous sections, we considered the expected value as one of the means of
predicting the outcome of an experiment. The prediction becomes more and more
accurate when the outcome is not likely to deviate too much from the expected value.
A measure of this deviation or spread of the values (which the corresponding
numerically valued random variable X can assume) is called the variance, and is
introduced in this section.
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Definition
If X is a real-valued random variable having probability function f(x) and

expected value 2 = E(X), then the variance of X (denoted by V (X) or Var(X))
is defined by

V(X)=E((X —)%).
This can further be expressed as
V(X)=E(X —u@)* = > (X = u)* £ (X)
= (x* = 2ux+ p*) £(X)
=D X)) =20 xF () + 1> f(x)

=E(X*)-u’

3.3.1 Standard Deviation

The standarddeviation of X denoted byo, , where

Oy = VV(X) = E(X—ﬂ)z ’

is the positive square root of variance. It is a measure of variability or spread around
the mean; a small standard deviation indicating little variability among the possible
values of the random variable, a large standard deviation indicating considerable
variability.

Example 5.6Consider the experiment of die rolling in example 5.3 above, with X
denoting the number that turns up. Find the variance of X .

Solution

The expected value of X isZ as calculated in example 5.3. Now to find the variance

of X, we may form the new random variable (X —x)?and compute its expectation.
This can easily be done if we use the table below.

X p(x) (x=712)*
1 1/6 25/4

2 1/6 9/4

3 1/6 Ya

4 1/6 Ya

5 1/6 9/4

6 1/6 25/4

From this table we then find E((X — x)?)as
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V(X)=E((X = )*) =D (x—1)* p(x)

25 . 9 9,25
=%(T+Z+%+%+Z+T)
_35
12°
Or we may use the formula

V(X)=E(X?)-u?,
as derived above. That is

V(X)=E(X?)-p’

=1(3)+ 4(3)+9(3) +16(3)+ 25(3) + 36(3) - (3)

-2-f
_35
12

in agreement with the value obtained directly from the definition of v (X) above.

The standard deviation is

o, =4V (X)

VE(x—p)®
= J/35/12
1.707.

Q

Example 5.7(example 5.2 cont'd) the probability distribution for a discrete random
variable X is given by the table below.

X 0o 1 2 3 4 5 6
P(X =x) 0.04 02 03 01 0.16 008 0.12

Obtain (i) the expected value of X
(i) the variance of X
Solution
(i) By the above definition of expected value, we have

E(X) =D %P =X Py + X, Py +..+ X, P,

= 62(0.04) +1(0.2) + 2(0.3) + 3(0.1) + 4(0.16) + 5(0.08) + 6(0.12)
=2.86
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(ii) Now

E(X7) = Y% p(x)
— 0(0.04) +1(0.2) + 4(0.3) +9(0.1) + 16(0.16) + 25(0.08) + 36(0.12)
=11.18

Then, the variance is given by

Var(X) = E(X?) - u?
=11.18-(2.86)°
=3.0004

Example 5.8A random variable X has the distribution

01 2 4
(0,1 2 4)

1/3 1/3 1/6 1/6

Obtain the expected value, variance, and standard deviation of X .
Solution

(i) The expected value is given as
E(X) = xp(x)

=0Q/3)+1(1/3)+2(1/6)+4(1/6)
=0+1/3+1/3+2/3
=4/3.

(ii) To calculate the variance, we have
E(X?)=> x*p(x)

=0(1/3)+1(1/3)+4(1/6) +16(1/6)
=0+1/3+2/3+8/3
=11/3.

Therefore,

Var(X)=E(X?) -’
=11/3-(4/3)?
=11/3-16/9
=17/9.
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(i) The Standard deviation is

Example 5.9:A number is chosen at random from the integersi,2,3,...,n. If X denotes
the chosen number, show that

E(X)=(n+1/2andV(X)=(n-D(n+1)/12.
Hint: The following identity may be useful:

1°+2%+..+n% = —(n)(n+lg(2n+l) )

Solution

The integers 1,2,3,...,nare equally likely and so the uniform probability distribution
function for X , the chosen number is given by

pP() =1
(i) The expected value for X is given as

E(X) =2 xp(x)

Sl Sl
Nl

1+2+3+..+n)
(

)ﬂ(n +1)

n+

[N

N ‘

(i) The variance is computed as follows
E(X?) =2 x*p(x)

=L@ +2% +..+n?
1 (M +D)(2n+1)
S e—
~(n+h(2n +1)

- 6

Now, the variance is

Var(X) = E(X?) - u?
=w_(n_+l)2
6 2
_ (n+1)(2n+1) (n2 +2n+1)
= 5 - 2
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_ 2n2+3n+1_ n2 +2n+1
h 6

4
_ 4n2+6n+2-3n2-6n-3
= i)

_n2-1 _ (n-D)(n+1)
-T2 T 12

3.4 Properties of Variance of Discrete Random Variables

In section 4.2, we considered the properties of expectation of random  variables and
we saw that the expectation is a linear function since, if ¢ is any constant, then
E(cX)=cE(X)andE(X +c)=E(X)+c. However, the variance is not linear, as we

shall see in the following properties.

If X is any random variable and c is any constant, then
() V(C)=E(C*)—(E(C))
=C?-C?
=0.
That is, the variance of a constant is zero, since it doesn’t vary.
(i) V(cX)=cV(X).

That is, the variance of the product of a constant and a random variable is the
product of the square of the constant and the variance of the random variable.

Proof:

V(CX) = E((cX —cp)®)
=E(C*X % -2c*Xu+c?u?)
=E(c*(X - 1))
=C*E((X - u)*)
=c’V(X).

V(X +c)=V(X)..

That is, the variance of the sum of a constant and a random variable equals the

variance of the random variable.

Proof: to prove this assertion, we note that to computeV (X +c), we would
replace X by X +c and u by ux+c inthe equation given above for variance.
Then the ¢'s would cancel, leaving vV (X), as follows
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V(X +c) =D (X +c)—(u+c))’p(x)

= > (X = )? p()

=VX(X).
(iv) Let X and Y be two independent random variables. Then
V(X +Y)=V(X)+V(Y).

That is, in the case of independent random variables, the variance of the sum is
the sum of the variance.

Proof: Let E(X) =, andE(Y) =z, . Then

V(X +Y)=E((X +Y)*)=[E(X)+EM)])?
= E((X +Y)*) = (uy + )
= E(X?)+ 2E(X)E(Y) + E(Y?) = (ux” +2pty sty + 11,°)
= E(X?)+2E(X)E(Y) + E(Y*) = 41" = 2papty — p1,°
=E(X?*) - +E(Y ) -,
=V (X)+V(Y).

3.5 Expectation and Variance of Continuous Random Variables

In this section we shall consider the properties of the expected value and the vaiance
of a continuous random variable. These quantities are defined just as for discrete
random variables and share the same properties.

3.5.1 Expected Value

Definition
Let X be a real-valued random variable with density function f(x). The
expectedvalue ;. = E(X) is defined by

u= E(X):E@xf(x)dx

The properties of E(X) can be summarized just as for the discrete random

variables. That is, if ¢ is any constant and X and Y are real-valued random
variables then

E(cX) = cE(X).
E(X +Y)=E(X)+E(Y).

and so on.
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These properties are proved in exactly the same way that the corresponding properties
for discrete random variables were proved in section 4.3.

Example 5.10Let X be a continuous random variable with range [0, 5] and density
function

f(x)=2%.
Obtain the expected value E(X).

Solution

The expected value is given as

E(X) :josxf (x)dx:josx%dx

That is, the expected value of X is%.

Example 5.111f Xis a continuous random variable with density function
f(x)=&x% 0<x<4, findg(X).

Solution
E(X) :J.:xf(x)dx:_[:x(G—:’;fxz)dx
:%J:xgdx:(s—a[%ﬁ =3.
Thatis E(X)=3.

Example 5.12A continuous random variable X is uniformly distributed on the interval
[0, 1]. Obtain the expected value E(X).

Solution

Since X is uniformly distributed, the density function is given by
f(x)= ﬁ =1.
Therefore

E(X) = [ xf(x)dx= [ xdx

1
:[ﬁ} _1
2 0 2

73



3.5.2 The Variance
Let X be a continuous random variable with density function f(x). The variance is
defined as

o =V(X)=E((X - ©)?).
This can further be simplified as
VOO =E((X =)= (x= )" f(x)dx
:j:xzf(x)dx—zyj:xf (x)dx+y2_[: f (x) dx
=[ X"t dx-u®
=E(X?)-u?

The properties of variance for continuous random variables can be summarized as
follows. If X is a real-valued random variable defined onS, the sample space, and c is
any constant, then

V(cX)=cV(X).
V(X +¢)=V(X).

If X and Y are independent then
V(X+Y)=V(X)+V(Y).

These properties are all proved in exactly the same way that the corresponding
properties for discrete random variables were proved in section 4.4.

Example 5.13(example 4.11 contin’d). A continuous random variable X is uniformly
distributed on the interval [0, 1]. Obtain the variance.

Solution
V(X)=E(X?)- x>
Now,
2y (T2 )
E(X )_jox f(x)dx_jox dx
:[ET _1
o P
Then
V(X)=E(X?)-pu’
2
_1 (1 1
=1-3f -%
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Example 5.14Let X be a random variable with range [-1, 1] and density function
f (x) =1/2Obtain the mean , and variance o>of X .

Solution

The mean is given by

E(X) :fle(x)dx:fl%xdx

1
2
4[], o

That is, the mean E(X)=0.

To find the variance, we have

E(X?) =[x f(x)dx=[ 1 x"dx

1
:;[ﬁ] :;[;+;};
2 3 a 2|33 3’

V(X)=E(X?) -4’
=1 (0 -1.

Self Assessment Exercises

Therefore

1. If a worn machine tool produces 1% defective parts and the parts produced
are independent, find (i) the mean number of defective parts out of 25 (ii) the
variance of the number of defective parts
n=25,p=0.01,q=0.99

2. Mrs Kofo, a business tycoon, ventured into poultry business ten times. If the
success and failure rate of poultry is equally likely, find the probability of
success twice. Compute the mean and standard deviation.
n=20,p=1/,9=0.99

Self Assessment Answers

4.0 Conclusion

This unit has acquainted you with finding the measure of central tendency for discrete
random variable as well as continuos random variables. The proof of the properties
was also established.
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In the next unit, you will be introduced to discrete probability distribution, density
function and the normal distribution that gives you the probability of every possible
outcome of a discrete experiment, trial or observation.

5.0 Summary

In this unit, you have learnt the following:

1.

Mathematical expectation and variance of discrete random rariables. Expected
Value i or yof a discrete random variable X ,with sample space S and

probability function p(x) is defined as:

E(X) =2 xp(x)

xes
Properties of expected values of discrete random variables are:
(i) If Cis any constant and X is a discrete random variable then,
E(C)=C.
(i) The expected value of the product of a constant and a random variable is

equal to the product of the constant and the expected value of the random
variable, thus:

E(CX)=CE(X)

(i) Sum of two random variables. If X and Y are random variables with finite
expected values, then

E(X +Y)=E(X)+E(Y)

(iv) Sum of a constant and the random variable

E(X +C) :i(x +C)f(x;)

i=1

:Zn:Xf(xi)+Zn:Cf(xi)
_E(X)+C

(v) Independence, if X and Y are two independent random variables, then
E(X.Y)=E(X)E(Y).

A measure of deviation or spread of values is the variance and standard
deviation of discrete random variables such that if X is a real-valued random
variable with probability function f (x) and expected value z = E(X), then the

variance of X, V(X)or Var(X)) is:

V(X)=E(X -w)?).

For continuous random variables, the expectation and variance is defined by:
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(i) 1 =E(X) :J:xf(x)dx

Where X is a real-valued random variable with density function f (x) .

The properties of E(X) is similar as for the discrete random variables, i.e., if ¢
is any constant and X and Y are real-valued random variables then,

E(cX) =cE(X).
E(X +Y)=E(X)+E(Y).

The properties are exactly the same for the corresponding discrete random
variables.

(i) o =V(X)=E(X~-)?")
Where X is a continuous random variable with density function f (x).
This can be simplified as
VOO =E((X =)= (x= )" f(x)dx
:j:xzf(x)dx—zyj:xf (x)dx+y2_[: f (x) dx
= [ X*f (0 dx— g
=E(X*) -4’
The properties of variance for continuous random variables can be
summarized as:
V(cX)=cV(X).
V(X +c) =V (X).
Whereas, if X and Y are independent then
V(X +Y)=V(X)+V(Y).

The proof of these properties is exactly the same as the corresponding
properties’proof for discrete random variables.

6.0 Tutor-Marked Assignment (TMA)

1. A coin is tossed three times. Let X be the number of heads that turn up.
Calculate  the variance and standard deviation of X .

2. A die is loaded so that the probability of a face coming up is proportional to the

number on that face. The die is rolled with outcome X . Calculate the expected
value and variance of X .
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Answers to SAAS

Module 2 Unit 1

1.

a w0

N =n.n,..n.
A possible outcome
60

Combination

65.5 ways

Module 2 Unit 2

1
2
3
4
5.
6
7
8
9

10.
11.

Data model or random variables

Integer

Die or coin tossing, number of Aces in a deck of cards, etc.
Discrete probability function

) &, 1) &

Cummulative distribution function (CDF) for a random variable.
Continuous set of values.

False

Density function

Cumulative distribution function of X

Monotonically non-decreasing.

Module 2 Unit 3

1.

no

o b~ w

The expected value of X is E(X) =" xp(x)

M, Or u

3/4

(1)0.25 (ii)0.2475
()5  (ii)1.58
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1.0 Introduction

A discrete probability distribution gives the probability of every possible outcome of a
discrete experiment, trial or observation. Some special types of these distributions are
considered in this chapter and their properties are also examined.

2.0 Learning Outcome

At the end of thi unit, you should be able to:

i. Perform chance experiments with two outcomes
ii. Use Bernoulli distribution to compute experimental data spread: Mean and
Variance
iii. Computethe probability of independent successive experiments with probability
of success p on each trial
iv. Determine the probability of occurrence of random events
v. Sample with and without replacement

3.0 Learning Outcomes

3.1 The Bernoulli Distribution

A Bernoulli trial is a performance of a chance experiment consisting of only two
possible outcomes generally referred to as success and its complement (failure).

The probability of success is denoted by p while that of failure is denoted byg=1-p
Examples of such experiments include the following:

i) Atoss of a coin whose two possible outcomes are Head (success) with probability
p = < and Tail (failure) with probabilityq =1-p=1.
i) Asking a person if he/she will favour a particular candidate during an election.
The two possible outcomes here are yes (success) and no (failure).

Now, let a random variable X assume only the value 0 if the outcome is a failure or 1
if the outcome is a success. Then, X is known as a Bernoullivariable and its
distribution f (x) given by the table

X’O 1

p(X=x) g p

which can also be expressed as

f(x)=p*q"™, x=01

is called the Bernoulli Distribution.
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To show that this is really a distribution, we have

1 1
2 (=2 pq"
x=0 x=0
=(Q+p)=1-p+p=1L
The Mean is given by

pEX) = 3000 = 3 xpret”
= (;7q +1.p= ;7
The Variance is computed as
V(X)=E(X?*)~u’
X p?
= (XJ_ZO.q +1%.p-p?
=p-p°=pq
Therefore,

u=p, o=pq.

3.2 The Binomial Distribution

Suppose a Bernoulli experiment with probability of success p on each trial is

pe
i)

rformed independently n times. For instance:

Tossing a coin ten times with heads and tails as the two possible outcomes on
each trial and } as the probability of head (success) on any one toss.

i) Asking 1000 people randomly chosen from a population of eligible voters in an

opinion poll so as to know if they will favour a particular candidate during an
election for which the two outcomes are yes and no. The probability p of a yes

answer (i.e., a success) indicates that proportion of people in the entire
population that favour this candidate, etc.

Now let the number of successes in these n trials be counted by the random variable

X

. Then, the distribution of X , given by

is called the Binomial Distribution.

b(n, p,X) = (Q)pxq“’x, x=0,12,..,n

Th

is distribution gives the probability of exactly x successes in a sequence of n

independent Bernoulli trials with probability of success p on each trial.
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It should be noted that for the binomial distribution to be applicable to an experiment,
the following four conditions must be met:

i. There must be a fixed number n (>1) of repeated trials of the experiment.
ii. Each trial must have two possible outcomes- success or failure.
iii. The probability of success p must be the same on every trial.

iv. The trials must be independent of each other.

The general properties (2.1) and (2.2) are satisfied by this pdf since 0< p(x) <1 and

> p(x) =Z(Q)pxq"‘*
x=0
=q" +(})pg"* ( )pzqn 2 4.+ p", (by binomial expansion)

=(@+p)’
=1

3.2.1 Expectation and Variance of Binomial Distribution

The mean is given by

#, = E(X) = ZX( )p*g™”

= n(n—1)! o
_;XX(X—D!(I’I—X)! P-p~q

(n 1)' X—1 o N—X
- IDZ(x Din—xi" 1

Letv=x-1, so that x=1+v and substituting, we have

1 V o N=1-v
E(X)= DZ% pq

np (n j V o n-1-v

=npp+q”1

Next we compute the variance as

V(X)=E(X*)~u —ZX (Jp*a"* —(np)®

= n 2 n(n_l)! xl n—x
_;X X(x—Din—x)1 P —(np)*
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pZ

x=1

U (n—l)!
-DI(n—x)!

—1

p

Let v=x-1, so that x=1+v and substituting, we have

1!

n—X

~(np)*

= Nnpa.

Therefore, 1, =np, o> =npq

V(X)=n Z(\::nl)(ln iAo’
pnzl:vlzlrfn 11)\/)' e pniv(imn 11) oiPa - ey
- Hv(v i1 anl”i(njjpvqn“}(np)z
Ao o
:np_v“z‘;(v(nl)ll()rgn 12)\'/)I vt n1v+“z‘1:(”-lj . nlv} ()’
e S

—npl(n-Dp(p+a)" % +(p+0a)"* |- (np)?
=np[(n-1)p +1]-
=np[np— p+1]-(np)* = np[np +1- p]—(np)*
=np[np +q] - (np)*
=[np]® +npg—(np)*

(np)?

Example 6.1If a coin is tossed 4 times and we are interested only in the number of
heads showing, what is the probability of obtaining exactly 0, 1, 2, 3, 4 heads?

Solution

In this case,n =4, p=
the number of

PO = (4 ey @)™,

Then,

, q=1-p=
heads that
x=0,12,3,4.

turn

. Then let X be the random variable denoting

so that the distribution of X s



P(X =2)=(¢)3)(3)"* =6(2)" =6/16.and so on.
Thus we obtain 0, 1, 2, 3, or 4 heads with the respective probabilities

Hor Yar %sr ¥ and x.

This distribution is represented by the bar chart below with p = %%.

Example 6.2An ordinary die is thrown seven times. What is the probability of obtaining
exactly three fives?

Solution
The probability of obtaining a five as success in one throw of the die is
p(5) =%, and q=1-p(5) =2, where q is the probability of not obtaining a five.
Therefore, in seven throws, we have
p(exactly 3 fives) = (7 (2 (&)’
=0.078.

Self Assessment Exercises 1

A Bernoulli variable has .................. Outcomes, namely .......................
The binomial distribution is given by ...
The mean of Bernoulli distribution is ...,
The variance of binomial distribution is ...

N\
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Self Assessment Answers 1

3.3 The Poisson Distribution

Poisson distribution is an important model for situations in which certain kinds of
occurrences happen at random in a continuous time interval or region of space. A unit

of

time may be a minute, an hour, a day, a week etc, while a region of space may be

a length, an area or a volume.

Examples of such occurrences include arrival of patients into a doctor’s waiting room,
the number of incoming telephone calls arising at an exchange in a particular minute,
the number of errors on a page of printing, etc. Let the number of occurrences in a
given time interval or region of space be counted by the random variable X , this shows
that X can only take discrete values 0, 1, 2, 3, . . . The Poisson distribution gives the
distribution of X .

Definition

A discrete random variable X is said to have a Poisson distribution with
parameter A if the probability function is given by
f(x)= l—e‘i, x=0,12,..
x!
Where A (>0) is the mean number of occurrences in a given time interval or region
of space.

Based on certain assumptions, the Poisson distribution enables us to compute the
probabilities of events such as “more than 10 phone calls occurring in a 5-minute time
interval”. The assumptions are that:

The average number (mean rate) of occurrences per minute or per unit space
(denoted by 1) is a constant. This means, for instance, that in a given time interval
of length 5 minutes, we would expect about 54 occurrences.

The number of occurrences in two non-overlapping (or disjoint) time intervals or
regions of space are independent. For instance, the event that there are j
telephone calls between 5:00 and 5:10 p.m. and k calls between 6:00 and 6:10
p.m. on the same day are independent.

The probability of exactly one occurrence in a small interval of time or region of
space is approximately proportional to the width of the interval or region.
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It can easily be checked that the general properties (i) and (ii) are satisfied by this
density function, i.e., that its values are nonnegative and sum to 1, since

0< f(x)<1

and

© o) /1X e /IX
Y =) =e*=e"> =
x=0 x=0 X! x=0 X!
=e e’ =1
A very important relation that was used here is that
2 A" 2

—_(1+A+—+ )=¢’
x=0 X- 2

3.3.1 Expectation and Variance of Poisson Distribution
The mean of the Poisson distribution is given by

0 X

E(X)= Zxﬂ—le“ = e“le—l
o X 0 X

= e‘ﬁixﬂ—X —e S s
x=1 X! x=1 (X _1)'

= e 2/1— (where v = x—1)

v=0
=le et = A.

The variance is derived as follows:

X

ELX (X ~D)]= Y x(x-D) f(x) =3 x(x—l)ile“

x=0 x=1
) B © /1X—2 »
=Ae" , (wherer=x-2
;(x 2)I z r! ( )
=%
That is
E(X?)—E(X)= /%, sothat
E(X) =2+
But

Var(X)=E(X?*)—(E(X))?
= (24 A)- A=
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That is, the Poisson distribution has mean and variance equal to A.

Example 6.3

If the number of telephone calls an operator receives from time t, to t, follows a
Poisson distribution with A= 2, obtain the probability that the operator will

a. Not receive a phone call in the same time interval tomorrow.
b. Receive phone call twice.

Solution

Let the number of phone calls the operator receives in time interval t be denoted by
X. Then the pdf of X is

X A2
F0 =28 x=od..
x!
(@) P(no phone call) = P(x =0)
0
~2 g2 _g2_01353

T o
(b) P(receives phone call twice) = P(x = 2)
2

= 2—8’2 =2e7* =0.2706.
2!

Example 6.4: In a certain general hospital, arrivals of patients at a doctor’s
waiting room are assumed to follow Poisson distribution at an average rate of 120 per
hour. What is the probability that in a particular minute interval

a. no patients arrive the room?
b. one or more patients will arrive?
Solution

The average number in a minute interval is At. Here A =120 arrivals per hour, which,
alternatively, equals 2 arrivals per minute and so At =2, since t =1 minute. Let the
number of patients that arrive the doctor’s room in time interval t be denoted by the
random variable X . Then the pdf of X is

X A—2
F =28 x=o1..
X!
Therefore,
20
(a) P (no patients in a particular minute) =P(X =0)=e™ o —e?

= 0.14.

(b) P(one or more patients in a particular minute)
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=1 - P (no patients)
=1-0.14 =0.86.
Example 6.5:A typesetter makes, on the average, one mistake per 150 words. If he is

setting a book with 100 words to a page, what is the probability that a seven-page
pamphlet prepared by the typist contains more than two errors?

Solution

Here, A=1 mistake per 150 words. This, alternatively, can be given as 1 =1/150
mistakes per word. Now, let the number of words per page be denoted by w. Then,
the average number of errors per page is Aw =100(1/150) = 0.67, since w =100 words

per page. So in a seven-page pamphlet, the mean number of errors is7x0.67 = 4.7 .

Let the random variable X denotes the number of mistakes that the typesetter makes
on a single page. Then the distribution of X is given as
. AT

P(X=x)="¢e".= e,
X! X!

Now,

0
P (O errors) = 4'(; et =e*" =0.01

1

P (1 error) = 4'17 e’ =(4.7)(0.01) = 0.047.

2

P (2 errors) = 4'27| e =(11.045)(0.01) = 0.110.

Therefore, P(pamphlet contains more than two errors)
=1 - P(0 error) + P(1 error) + P (2 errors)
=1-(0.01 +0.047 + 0.110)
=1-0.167
=0.833
The CDF of Poisson distribution is given by
F(x)= e‘lzl—s, X > 0.
= 5!
3.3.2 Poisson as an Approximation to the Binomial Distribution

Poisson distribution is a convenient approximation of the binomial distribution in cases
of a large number n of trials and a small probability p of success in a single trial. That

is, the binomial distribution approaches the Poisson distribution for large nand small
p . In fact, the degree of approximations improved as the number of observations

increases.
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Proof
Now, the mean of the Binomial distribution is derived above to be

p=np

from which
p:ﬁ,andso p* :'u—x.
n n

Also, ¢"* =(1-p)™* :( —%j =[1—ﬂn{ —%}

Substituting the above expressions for p* and g" ™ in the binomial probability
distribution function, we have

£(x)= (") p* (- p)"* =X,(+lx), p* (- p)™*.

B n! /JX 1_£ n—x
xI(n—x)!' n* n

_on oz [1_4”{1_&}”
x!(n—x)! n* n nj

_ ' n(n=1)..(n—x+1) {kﬁ}n{l_ﬁ}_x ______ (5.00)

x! n* n

Now, as n — oo, the expression

n(n—l)...(n—x+1)_(Ej(n—lj (n—x+1)
n* nn J7U i

approaches 1, and so does the expression {1—ﬁ} for fixed x,
n

While {1—ﬁ} can be expanded as
n

] o3 .
n n 2! n 3 n

:1_ﬂ+u_2[n,n_—1}_ﬂ_3[ﬂ_M_M}m

n n n
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So that as n — oo, (1—1) —1 and
n

2 3

g —>1—y+y——ﬂ—+...=e‘”.
n 213

Therefore, the RHS of (5.01) becomes

X
K ou

x!

which is the distribution of the Poisson random variable.

Example 6.6 If, in a class of national diploma in statistics students, 1% is the
probability that a student will fail STA 122 in a semester examination, what is the
probability that in a sample of 300 such students, exactly 5 will fail the course?

Solution

In this case, pis small and the number of trials nis large. Therefore, it is a binomial
trial to be approximated by Poisson distribution and we have

ﬂ:np:BOOXi:&
100

X

SP(X)==—e>3, x=01 ...
X!

5

So, P (exactly 5) = P(x = 5) = %e‘3 =0.1008

Therefore the probability that exactly 5 students will fail the course in a sample of 300
students is 0.1008.

Self Assessment Exercises 2

1. Poisson distribution is an approximation of the binomial distribution in cases
WREIE ..o

2. The margin of error deceases as the number of observations increases, True
or False.

Self Assessment Answers 2

3.4 The Geometric Distribution

Consider a sequence of infinite number of independent Bernoulli trials with probability
of success p on eah trial. For instance, a coin tossed an infinite number of times. Let
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the number of trials up to and including the first success be denoted by a random
variable X so that

P(X =1)=p,
P(X =2)=gp,
P(X =3)=0q°p,

and in general,
P(X=n)=q""p

That is, if 0<p<1, and q=1-p, then we say that the random variable X has a
GeometricDistributionif P(X =x)=q**p for x=1,2,3,...

The general properties are satisfied by this density function since

0< f(x)<1And
Y Ex)=>a" p=p> g
x=1 x=1 x=1

= p+ pq+ pg® +...

The right-hand expression is just a geometric series with first term p and common
ratioq, and so its limiting sum (sum to infinity) is given by

=S L:1, Sincep=1-q.

lim S =
(1-0)

n—po —n
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3.4.1 Expectation and Variance of Geometric Distribution

Mean=E(X) = iqu“ = pi xq**

= d & d 1 p
= —_— q = —_— =
Za dqzo dq{l—qj (L1-a)

, Since p=1—q.

Q_|Q_
x

'c.I P 'UN|-O

To derive the variance, we have

V(X)=E(X?)-pu _ZXZ “ip (—j —pzxz - (pjz
o305 =r(Sa (5
g5 2—p—(qix M
eEEREE R
e RS e O

t i( q j: 1 + 2q :i+2_q
“dgl@-a)?) @-qf (@-q° p* p°

Therefore,

_2q 1 1
P> p p
2q-1+p q
p? P
Thatlsu_l o’ =i2.
p p
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Note:

If X ~ Geo(p), then

i p(X=r)=q"'p

i. p(X<r)= pzr:qx‘l = p[1+q+q2 +...+qr‘1]
x=1

@-q9")

(1-a)

r

=1-q".

=p , sum of first n termsof a geometricseries

ii. p(X>r)=1-p(X<r)=q".

Example 6.7A coin is biased so that the probability of obtaining a head is 0.6. If the
number of tosses up to and including the first head is a random variable denoted by
X, find

a. P(X < 4).
b. P(X >5).
Solution

Given that p = 0.6, g = 0.4, then f(x) =(0.6)(0.4)"", x =1, 2,3,...
a. P(X <4)=1-(0.4)", (from (ii) above)
=0.9744.

b. From (iii), we have

P(X >5)=1-P(X <5)=1-(1-(0.4)°)
=(0.4)°
=0.01024

Example 6.8A random variable, K, has probability function given by

k-1
P(K =k) :ﬂ(EJ k=123,
505

P(K =k) =0, otherwise

Given thatinp” :lL)Z, find E(K).
p

n=1 -
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Solution

_4 _5
5 (1—§) 4

3.5 Hypergeometric Distribution

Suppose we have a set of N items, of which k are defective and N —k are non-
defective. If we draw n items from this set withreplacement, then we saw in section
3.2 that the probability that exactly x of the n items drawn are defective is given by
the binomial distribution. Now, suppose that our sampling is without replacement and
we denote by the random variable X , the number of defective items in our sample.

Then, we have ( '\rl]) different samples of size n, and the total number of such samples

with exactly xdefective items is obtained by multiplying the number of ways of
choosing xdefective items from the set of k defective items and the number of ways
of choosing n - x non-defective items from the set of N —k non-defective items. This

is given as

kY N-k

X n—=x
each with the probability %
B
Hence, the distribution of X (the number of defective items in our sample), is given as

M
h(x;N,k,n) = u,
(6N ko) == |
n

and is known as the Hypergeometric distribution.

x=0,12,...

Example 6.9 A box contains 20 screws, of which 5 are defective. A random sample of
5 screws is chosen to be inspected. Find the probability that the sample contains
exactly one defective item.
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Solution

Let N be the total number of screws in the box, k be the number of defective screws,
and n be the size of the sample drawn. Let X be a random variable that gives the
number of defective items in the sample. Then we have

I 1 e B H o I

= = = 0.44
N 20 20
S N
Self Assessment Exercises 2
1. If we have a set of N items, of which k are defective then............ are non-

defective.

Self Assessment Answers 2

4.0 Conclusion

This unit discussed how to perform chance experiments with two outcomes; success
or failure with the corresponding probabilities of p and q respectively. Different types
of experiments were considered, using the appropriate probability distribution
techniques and worked examples for illustrations.

5.0 Summary

You have learnt the following in this unit:

i) The Bernoulli Distribution as a performance of chance experiments yielding only
two possible outcomes: success (with prob., p) and its complement failure (of prob.,
g = 1- p). For a random variable X a Bernoullivariable and its distribution, f(x),

given by the table
X001
p(X =Xx) q p
which can also be expressed as
f(x)=p*qg**, x=0,1
The Mean and the variance are given by

H=p, o=paq
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i) The Binomial distributionis the probability of exactly x successes in a sequence of
n independent Bernoulli trials with probability of success p on each trialis defined

as:
b(n, p,x) = (Q)pxq”‘x, x=0,12,..,n

The following four conditions must be met before applying the binomial distridution to
sample sample data:

» There must be a fixed number n (>1) of repeated trials of the experiment.
» Each trial must have two possible outcomes- success or failure.

* The probability of success p must be the same on every trial.

» The trials must be independent of each other.
The mean and the variance are: np and npq respectively.

i) The Poisson Distribution is used when certain the eventsoccur at random over
time interval or region of space. The Poisson distribution is defined as:

f(x) = i—e”l, x=0,12,..
x!

Where 1(>0) is the mean number of occurrences in a given time interval or
region of space.

The Poisson distribution has Mean and Variance equal to A.

iv) The Geometric distribution is a sequence of infinite number of independent
Bernoulli trials with probability of success p on eah trial such that, if the number

of trials up to and including the first success is denoted by a random variable X

then,
P(X=1)=p,
P(X =2)=qp,
P(X =3)=qp,
Generally,

P(X=n)=q""p
Where,0< p<1,and q=1- p, then we say that the random variable

The Geometric Distribution Mean and Variance are:

v) Hypergeometric distribution is defined as:
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X n—x
h(x;N,k,n) = —+——,
( ) [ N J
n
For a set of N items, of which k are defective and N —k are non-defective, such that

the probability that exactly x of the n items drawn are defective is given by the
binomial distribution

6.0 Tutor-Marked Assignment (TMA)

1. Atestis conducted and nine out of ten students in the class passed. If the same
test is administered ten times, what is the probability that exactly nine passes will
be recorded and one failure?

2. In an experiment, the probability of success, p, is 0.5. If the number of trials is n
and the number of success is x, show that the binomial pdf for this experiment
takes the simple form

F(x)=2(7)

Hence, find the mean, y, and variance o2, of x in this case.

7.0 References/Further Reading
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1.0 Introduction

Recall that a continuous random variable x , is one that can assume any value within
some interval or intervals and that its corresponding probability distribution function
f (x), is valid only if it satisfies the properties.

In this unit, we are going to consider some other models such as the normal (or even)
distribution, waiting—time (exponential) distribution as well as other distributions such
as the Gamma and Beta distributions to fit the characteristics of other various
experiments.

2.0 Learning Outcome

At the end of this unit, you should be able to:

i. Define a model for evenly distributed random variables
ii. Model waiting-time events
iii. Fit other experiments’ behaviour with Gamma and Beta distributions

3.0 Learning Outcomes

3.1 The Uniform (or Rectangular distribution)

This distribution provides a model for continuous random variables that are evenly
distributed (i.e., one that is just as likely to assume a value in one interval as it is to
assume a value in any other interval of equal size).

A continuous random variable X is said to be uniformly distributed (or has
rectangular distribution) in an interval a< X <b if its density function is defined by

L as<x<b
f(X)=<b—-a' =~

0, otherwise
i.e., X~U (a, b)

Where the parameters a and b are real constants. This distribution has a graph that

is a rectangle with base of length (b — a) and height bi

To show that this is really a distribution, we must prove that

[ f(0dx=1

. 1 b 1 b
that IS,EL dx = b—[x]a =1.

The distribution function (cdf) is given by

101



1 b
F(b) = —I dx =1, as expected.
b—a-a

Thereforewe have :

x<a as<x<b b < x
f(x) 0 1/(b—a) 0
F(x) 0 (x—a)/(b-a) 1

3.1.1 Mean and Variance of Uniform Distribution

The mean is given by

1 b
E(X)=——| xdx
b-a-a

1 x_2b 1 |b’-a’| b+a
b-al 2| b-a| 2 2

We then compute the variance as

_ 2 2 1 o, b+a)’
V(X)=E(X ) -ut = =[x dx—(Tj

1 x_3b_(b+aj2_ 1 [b*-a’ b_(b+a)2
“b-a| 3| 2 ) b-al 3 | {2

::m2+ab+aﬂm-a)_[b+ay

3(b-a) 2
:b2+ab+a2_(b+aj2:(b—af
3 2 12

That is,

2
iva o LG
2 12
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Example 7.1

A continuous random variable is such that X ~ U(3,6). Find

i.  The pdf of X.
i. E(X).
ii.  Var(X).
iv. P(X>D5).
Solution:

i. The pdf of X is given by

f(x)=i=1,3sx$6
b-a 3

. 16 1| x?

I1. E(X):§J.3XdX:§ 7

=1[36—9]=—7=4.5
6 6

iii. Var(X)=E(X?)-[E(X)]?

3 6
E(X?) =2 [ X?dx=1| X
3% 3l 3 |,

(2]

3

1
==(189) = 21.
o189

s Var(X) =21-(4.5)?
=0.75.

iV. P(X >5)=1-P(X <5).
sl lpyp 2
butP(Xss)_j3§dx_§[x]3_§.

- P(X >5)=1—%=%.

Self Assessment Exercises

1. A uniformly distributedrandom variable X in an interval a< X <b is defined by
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Self Assessment Answers

3.2 The Exponential Distribution

This is also known as a waiting—time distribution. It is used to model situations where
we observe a sequence of occurrences which occur at “random times”. For example,
we might be observing cars passing a milepost on a highway, or light bulbs burning
out. In such cases, we might denote the time from one occurrence to the next one by
a random variable X . Here, X is a continuous random variable whose range consists
of the non-negative real numbers and which has an exponential distribution with the
density function

f(x)=1e"*, x>0,
0, otherwise

Where) is a nonnegative real number and represents the reciprocal of the average
value of X Thus if the average time between occurrences is 30 minutes, then 2 = 1.

To prove that this is a pdf, we have:

jo“’ f(x)dx = jo“’ Ae~**dx

o0

= Are‘“dx =—e* =1,
0

0

The distribution function (CDF) is given by
F(x) = jox Je~*tdt
_ ;LJ‘OXe—M — _p M X

0
=1-e*%, x> 0.

3.2.2 Mean and Variance of exponential distribution
The mean is given by

u=E(X)= j: xf (x)dx = zjo“’ xe dx

Integrating by part using j udv:uv—f vdu, we have
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E(X)= /1]: xe *dx = — xe ™™

- +'[ e dx
0 0

Similarly, the variance is given by

2 2 © 2 1
V(X)=E(X?)-u =j0 X f(x)dx—F

o 1
_ 20Xy
_/’LJ.O x“e *dx 7

—_x2% " 4+ Zr xe‘“dx—i
0 0 12
2 m|= 2xe™” o2 w1
ST T2 2
0 0
2 1 1
BV

. 1 1
That is, E(X)==, V(X)=—.
s E(X)=7 V(X)=—;

Example 7.2A continuous random variable X is such that the pdf is given by

f(x)=3e, x>0
0, otherwise

Find a E(X) b. Var(X) c. P(X >0.5).

Solution

(@) E(X)= j: Xf (x)dx = 3]5” Xe **dx

-3x |* -3x
_3 Xe _I e dx
-3 . 0o _3

= j:e“”dx = %

(b) Var(X) = E(X*)-[E(X)]*

Now, E(X?)= 3j0°° X 26 ¥dx

3x ® 3%
—3|-x2E -2 X & dx
3 ), b7 o3

= ZJ'OOo Xe**dx
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—-3x -3x
o x &€ _ux =g_|' e ¥*dx
-3 b _3 3 Jo

Var(X) = E(X?)-[E(X)]
2 1 1
9 9 9

(c) P(X >05)=3[ e dx= LT,
~0.223

Self Assessment Exercises

1. The exponential distribution is for modelling..............ccoooiiii
2. What is the density function of exponential distribution ...........................
3. The Mean and Variance of exponential distributionare ...........................

Self Assessment Answers

3.3 The Gamma Distribution

A random variable X is said to have a gamma distribution with parameters a and g if
the pdf f(x) is

Xa—le—xlﬁ‘
f(X)=———, 0<x<wo,a>0, >0
fTa
0, otherwise.

To show that the pdf is valid, we have

J.wf(x)dx=°° 1 yatguipgyo 1 .[:Xa_le_wdx

0 0 BTa  BTa
lety=x/p
= x =y andso, dx= gdy
0 _ 1 00 a1y
[ fo0dx= o [, (Bt pdy
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3.3.1 Mean and Variance of Gamma Distribution

To determine the mean and variance we consider E(X"), the rth moment about the
origin.

1

r_ [ r [ r a-1,-xIpB
Now, E(X )_jo X f(x)olx_j0 X —ﬂ“l"ax e /P dx
_ 1 J'w X a+r—1e—x/ﬂdx
LTa°
— ﬂ J‘wyom—r—le—ydy
pTa
_ﬂr © L a+r-1 -y
_EL y e ’dy
_p'T(a+r)

IN'a
Now, r=1= E(X)

CE(X) = LT (a+1) _ pPala
la l'a
=apf.
Also,r=2= E(X?)
. 2 _ﬂzl"(a+2)
S E(X )——r

_pia+)(@)la
- l'a

= fla(a+l)
ButVar(X) = E(X2) - (E(X))?

:ﬁ2a2+aﬂ2—a2 2

3.4 The Beta distribution

A continuous random variable X is said to follow a Beta distribution if the pdf is defined
as

_ 1 m—1, yyn—1
f(x)_ﬂ(m,n)x @-Xx) , 0<X <1

0, otherwise

where m and n are the parameters of the distribution and
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I'mI'n

plm.n) = r(m+n)

To verify that this pdf is valid, we have

1 1 1
jo f (x)dx = jo B

1 1y m-1 n-1

:ﬂ(m'n)jox (1— X)"dx

_ B(m,n)
A(m,n)

X ™ (LX) dx

=1, since the Beta function of parametermand n is

A(mn) = [ X" (1= X)"dx

3.4.1 Mean and Variance of Beta Distribution

To determine the mean and variance, we consider, as before, E(X "), the r"™ moment
about the origin. That is

_ 1
A(m,n)

_ 1
A(m,n)

_p(m+r,n)

A(m,n)
_I'(m+r)I'n I'(m+n)
T(m+r+n) I'mCn
_T'(m+r)['(m+n)

- r'(m+r+nIm

E(X") [ XX A= X)"dx

J'Ol X m+r—1 (1_ X)n—l dx

Now,r =1= E(X)
...E(X):F(m+1)1“(m+n): mI'mIT°(m + n)
'm+n+)I'm (mM+n)I’(m+n)I'm
_m
m+n’

Also,r =2 = E(X?).

) E(Xz)_l“(m+2)1“(m+n) 3 (Mm+1)mI'mIT(m+n)
- C I(M+n+2)Tm  (M+n+D)(mM+n)[(m+n)Im
m(m +1)

- (m+n)(Mm+n+1)
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ButVar(X) = E(X?) - (E(X))’
~ m(m+D) _[ m JZ
C(m+n)(Mm+n+1) (m+n

~ mn
C(Mm+n+)m+n)?

Self Assessment Exercises

What is the pdf of Gamma distribution?

What is the Mean and Variance of Gamma Distribution?
State the Beta distribution pdf.

What is the Mean and Variance of Beta Distribution?

hrwbdPE

Self Assessment Answers

4.0 Conclusion

This unit advanced further in discussing how to develop models for continuous random
variables and defined its corresponding probability distribution function ¢ (x) , here, you

learnt about the normal (or even) distribution, waiting—time (exponential) distribution
as well as the Gamma and Beta distributions to fit the features of various random
variables.

5.0 Summary

In this unit, you have learnt:

i) The uniform (or rectangular distribution), which provides a model for continuous
random variables that are evenly distributed, defined as:

——.,a<x<hb
f(xX)=<{b-a

0, otherwise

For a continuous random variable, X in an interval a< X <b, where ameters a and b
are real constants.

The mean and variance are given by:

_ 2
_bxa ._b-a7

2 12
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i) The exponential distributionis used to model situations where events sequence
occur at randomly like the arrival of passengers at a bus park. The exponential

f(x)=1e**, x>0,

distributionis defined by the pdf: where, Xis a continuous

0, otherwise

random variable whose range consists of the non-negative real numbers and A is

a nonnegative real number.

1 1
The Mean and Variance are: E(X) =7 V(X)= —
A

iii) The Gamma distribution of a random variable X is

Xa—le—xlﬁ
fX)=——, 0<Xx<w,a>0, >0
pTa

0, otherwise.

The Mean and Variance are: E(X)=af
Var(X) = af’.

given as:

iv) A Beta distribution is one with a continuous random variable, X and the pdf defined

as:

_ 1 m-1,4_ yyn-1
f(x)_ﬂ(m,n)x 1-X) , 0<X«<1

0, otherwise

where m and n are the parameters of the distribution.

mn

The Mean and Variance are: E(X) = % Var(X)=
+

6.0 Tutor-Marked Assignment (TMA)

(mM+n+1)(m+n)? "’

A continuous random variable X is such that the pdf is given by

f(x)=3e, x>0
0, otherwise

Find a E(X) b. Var(X) c. P(X >0.5).

7.0 References/Further Reading

W. J. Decoursey (2003): Statistics and probability for engineering applications.

Newness.

Harry Frank and Steven C. Althoen (1995): Statistics: Concepts and applications.

Cambridge Edition.
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1.0 Introduction

We are now going to turn to one of the most important of all probability distributions —
the normal distribution. We shall outline its properties, discuss the standardization of
normal random variable, the computation of cumulative distribution for random
variates and how to use the normal distribution to estimate the the binomial
distribution., especially when the number of trials is large.

2.0 Learning Outcome

At the end of this uniy, you should be able to:”

i.  Specify the normal distribution
ii.  State the properties of the normal distribution
iii.  Standardize normal random variable
iv.  Compute the value of a cumulative distribution function for random variates
v. Use the normal distribution to approximate the Binomial distribution

3.0 Learning Outcomes

3.1 The Normal Distribution

This is the most important density function. A continuous random variable, X , is said
to be normally distributed if its density function is

1 e—(xf,u)z 1262
o2

0, otherwise.

F(x) =

—0< X<

Where the parameter u represents the “center” of the density; the parameter o
(assumed to be positive) is a measure of the “spread” of the density.

The graph of the normal distribution is given below.

NES
1

f= =

HU—OC p pu+o

Figure 7.1: Normal distribution curve.
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Properties of Normal Distribution

i.  The mean and the variance are respectively, xzando?.

ii.  The total area under the curve and above the horizontal axis is equal to 1.

iii.  The mean, median and mode all coincide in the center.

Iv. ~ The curve is symmetrical about the mean; the coefficient of skewness is
zero.

3.2 The Standard Normal Distribution

Let z be a normal random variable with parameters =0 and o=1. A normal

random variable with these parameters is said to be a standard normal random
variable. The process of changing a normal random variable to a standard normal
random variable is known as standardization. This process involves computing the
number of standard deviations the normal random variable concerned is away from
the mean 4 . If X has a normal distribution with paramneters » and o and if

Then, z is said to be the standardized version of X .

Also,

E(Z) = E(Mj =0, since E(X) = u
(o2

and

X—u

Var(2) :Var( J = izVar(X —u) =1,
(o}

as expected.

Definition
A normal random variable Z is said to be a standard normal random variable if its

density function is given by
15
f(z)=—e-%2 , —0<Z<w,

2z
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3.3 The Cumulative Distribution Function for the Normal Random
Variable

Let X be a normal random variable with parameters x and o . Suppose we wish to
calculate the value of a cumulative distribution function for X , then this calculation can
be reduced to one concerning the standard normal random variable z as follows:

Fy (x) =P(X £x)

_ P(Z < X_”j
O

=¢(X“‘]=¢(z)-
O

Note that this last expression can be found in a table of values of the cumulative
distribution function for a standard normal random variable.

Example 8.1

A normally distributed random variable X has parameters x =10and o =3. Find the
probability that X is between 4 and 16.

Solution

Here we compute the standardized version of X , which is

7 X —10.
3
So, we have
P(4< X £16)=P(X <£16)-P(X <4)
= Plz <1%51%)-plz < 43°)
- of1339)-gls0)
=4(2)-¢(-2)
= 2(2) -1
=0.9544,
Example 8.2

In a semester examination, the scores of 400 students in a department are normally
distributed with mean 56 and variance 25. What is the number of students having 60
marks and above to the nearest whole number?

Solution

Let X be the normal random variable denoting the exam scores, with parameters
1 =56 and o =5. Then, the probability of students having 60 marks and above is
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60 — 56
5
=1-P(Z <0.8)
=1-¢(0.8)

=1-0.7881
=0.2119

P(X >60)=P(Z > )=P(Z >0.8)

Therefore, the number of students having 60 marks and above, to the nearest whole
number, is

21.19% of 400=85
Example 8.3

A manufacturer knows from experience that the resistance of the resistors he
produces is normally distributed with mean x =100ohmsand standard deviation o =2

ohms. What percentage of resistors will have resistance between 98 ohms and 102
ohms?

Solution

Let X be the normal random variable denoting the resistance of the resistors, with
parameters g =1000hms and o =2ohms.

Then, the probability of resistors with resistance between 98 ohms and 102 ohms is
P(98< X <102) = P(X <102) - P(X <98)

_ ¢(102—100j 3 ¢(98—100j

2 2
=¢(1) - 4(-1)
=2¢(1) -1
=2(0.8413 -1
=0.6826
= 68.26%.

Therefore, the percentage of the resistors with their resistance between 98 and 102
ohms is 68.26%.

Self Assessment Exercises

1. Specify the pdf of a normal distribution.
2. State the four properties of a normal distribution.

3. The standard normal distribution of a variate X with Mean, x and variance, o
isdefinedas.......cccooviiiiiiiiii
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Self Assessment Answers

3.4 The Normal Approximationto the Binomial Distribution

Under certain circumstances, the normal distribution can be used to give a useful
approximation of the Binomial distribution when the number of trials, n, is large.

Recall that if a discrete random variable, X is such that X ~ Bin(n, p), then the
probability function of X is

p(x) = ( Q)px(l— p)™, x=0.1..,n

Now if 0< p <1, then for large nthe normal distribution can be used as an
approximation to the binomial distribution with mean, z=np, and variance,
o? =npq. That is,

if X ~ Bin(n, p) , we have
E(X)=np
and Var(X)=npq
then for large nand 0< p <1,
X ~ N(np,npg) approximately
The density function of X is then given by

1 2 X—nN
gt /2 where z =

F)=—e™",
N N e T

The practical advantage of this approximation is that calculations are much less
tedious to perform.

o

Example 8.4 If 10% of the screws produced in a factory are defective, what is the
probability that in a random sample of 1000 screws

(a) less than 80 are defective? (b) between 90 and 115 inclusive are defective?
Solution

Let X be the random variable, ‘the number of defective screws when a random sample
of 1000 screws is selected’.

Let ‘success’ be ‘obtaining a defective screw’.
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1 . 1
Then X ~ Bin(n, p) where n=1000 and p :E’ so X ~ Bin(1000, E).
Now nis large and pis not too small, so we use the normal approximation:

1
X ~ N(np,npg) Wherenp = (1000)(5) =100

npg = (1000)(%)(%) - 90

StandardDeviation =310
. X ~ N(100,90).

() P(X <80) » P(X <79.5) (correctio for continuity)

P(X <795) = P[x ~100 79.5—100]

310 3410
- P(Z < -2.160)
—1- ¢(2.160)
= 0.0154.

The probability of obtaining less than 80 defectives = 0.0154.
(b) P(90< X <115) —» P(89.5< X <115.5) (correctio for continuity)

P(89.5< X <1155) = P(89'5_100 X -100 115-5—100J

< <
3/10 3J10 3J10
=P(-1.107<Z <1.634)
=¢(1.634) + ¢(1.107) -1
=0.8145
The probability of obtaining between 90 and 115 inclusive = 0.8154.

Example 8.5 Find the probability of obtaining more than 110 ones in 400 tosses of an
unbiased tetrahedral die with faces marked 1, 2, 3 and 4.

Solution

Let X be the random variable: ‘the number of ones when an unbiased tetrahedral die
is tossed’.

Let ‘success’ be ‘obtaining a one’.
Then X ~ Bin(n, p) where n=400and p :%, so X ~ Bin(400,%).
Since n is large and p is not too small, we use normal approximation:

X ~ N(np,npqg) where np= 400(%) =100
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npg = (400>(§)(§) ~75.

standard deviation = 5.3
- X ~ N(100,75).
To find the probability of obtaining more than 110 ones, we require

P(X >110) » P(X >110.5) (correctio for continuity)

X 100 1105 —100}
53 53

=P(Z >1.212)

=1-¢(1.212)

=0.1127.

P(X >1105) = P(

The probability of obtaining more than 110 ones = 0.1127.

Self Assessment Exercises

1. The normal distribution can be used to approximate the Binomial distribution
when the number of trials, n, is small. True or false

2. Normal approximation of the binomial distribution is cumbersome. True or
False.

Self Assessment Answers

4.0 Conclusion

This unit discussed the normal distribution, outlined its properties, as well as the
standardization of normal random variable, the computation of cumulative distribution
for random variates and how to use the normal distribution to estimate the the binomial
distribution., especially when the number of trials is large. In addition, worked
examples were used to illustrate the calculation of a cumulative distribution function
for random variates.

5.0 Summary

You have learnt the following in this unit:

i) The Normal distribution as the most important density function, its pdf is defined
as:
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1
oN2r

0, otherwise.

e—(xf,u)2 1262

f(x)=

, —00 < X <00

Where 4 is the “center” of the density and o (assumed to be positive) is the
“spread” of the density.

The properties of the nomal distribution are:

* The mean and the variance are respectively, xandco?’.

» The total area under the curve and above the horizontal axis is equal to 1.
*» The mean, median and mode all coincide in the center.
»= The curve is symmetrical about the mean; the coefficient of skewness is zero

i)  The standard normal distribution, z for a normal random variable with
parameters =0 and o=1is

iii) The normal distribution can be used to obtain a helpful approximation of the
Binomial distribution when the number of trials, n, is large.

6.0 Tutor-Marked Assignment (TMA)

1. If 10% of the screws produced in a factory are defective, what is the probability
that in a random sample of 1000 screws
(a) Lessthan 80 are defective? (b) Between 90 and 115 inclusive are defective?
2. Find the probability of obtaining more than 110 ones in 400 tosses of an unbiased
tetrahedral die with faces marked 1, 2, 3 and 4.

7.0 References/Further Reading

Harry Frank and Steven C. Althoen (1995): Statistics: Concepts and applications.
Cambridge Edition.
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1.0 Introduction

Quite often an experiment is performed on pairs or vectors of random variables,
whereby multiple variables are being investigated simultaneously and are defined on
the same sample space. In this unit, we shall seek to deduce a model for such two
functions, in what is called their joint distribution. Covariance shall be discussed, which
measures how variables are related.

2.0 Learning Outcome

At the end of this uniy, you should be able to:”

i.  Deduce a model for two joint probability functions
ii.  Measure the Covariance of two joint random variables
iii.  Find correlation between the joint random variables

3.0 Learning Outcomes

3.1 Joint Probability Function

It is often the case that when an experiment is performed, pairs or vectors of random
variables are investigated. In this case, we consider these variables simultaneously
and defined them on the same sample space. Though each member of a pair (X,Y)
could be studied individually as a random variable, certain interesting and relevant
relationships may exist between them, which can only be analyzed in the context of a
model for the two together, in what is called their joint distribution.

This joint distribution is defined by a joint probability function that gives the probability
of each possible pair of values:

f(x,y)=P(X =X, Y =Y).

Definition
Let X and Y be two discrete random variables defined on the same sample space
S, where X takes the values X ,X,,..,X, and Y takes the values Y, Y,,..., ¥;.

Then the function f (x, y) such that
f(Xi’yj): P(X =X, Y= yj)

is called the joint probability function of X andY if it satisfies the following
conditions

) foxy)=0 (i) D> f(xy)=1
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The distributions of the individual random variables are called MarginalDistributions
and are used to make probability statements that involve any one of the variables
without regard to the value of the other variable.

From the joint distribution above, the marginal distributions of X andY are
respectively:

fl(Xi) = P(X = Xi) = Z:-]:l f (Xi! yi)
and

L) =P =y) =" f(x.y)).

For continuous random variables X and Y, the joint density function is obtained by
analogy with the discrete case on replacing sums by integrals.

Thus, f(x,y)is called the Joint Density Function of X andY if it satisfies the
conditions below

M f(x,y)=0 (i) TTf(x, y)dxdy =1

—00—00

The marginal density functions are

00

f,00 = [ f(x y)dy

—00

and

L0 = [ £00 v

Example 9.1 The table below is on the numbers of those who do or do not smoke and
those who do or do not have cancer in a group of 60 people.

smoke

No Yes Total
No 40 10 50
Cancer
Yes 7 3 10
Total 47 13 60

Obtain the joint distribution of {CS}and the marginal distributions.

Solution
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The joint distribution of {CS}is given in the table below with S =1if a person smokes
and 0 if not, and C =1if a person has cancer and O if not.

S
0 1
0 40/60 10/60
C
1 7/60 3/60

In this table for example we have P(C =0,S = 0) = 40/60, P(C =0,S =1) =10/60, and so
on.

The Marginal Distributions are

0 1
o[ ol
50/60 10/60

and

0 1
47/60 13/60)

P(S) =[

Example 9.2 Let the random variables X and Y have the joint distribution given in the
table below.

Y

1 2 3

X 1 |112 16 1/12
2 1/6 0 1/6

3 0o 13 0

Table 7.3: Joint distribution of X and Y

(a) Find the marginal probability functions of X and Y .

(b) Find P(X =2,Y <2).

Solution
(a) From the table, the marginal probabilities are respectively
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1 2 3
p(X):( j
1/3 1/3 1/3

and

1 2 3
P00 - |
1/4 1/2 1/4

(b) We see from the joint distribution table above that

P(X>=2Y<2)=>> p(xy)

X>2y<2

=1/6+0+0+1/3
=1/2.

Example 9.3 If the joint density function of two continuous random variables X andY
is

f(x,y)=kxy, 0<x<3 1<y<4
0, otherwise

Find
(a) The value of the Constantk .
(b) PA<X <3, 0<Y <3
(c) P(X=21Y<2).
(d) The marginal density function of X.
(e) The marginal density function of Y
Solution

(&) Since f(x,y) Iis a density function, we must have

kxydxdy=1

O ey W
P C——

That is, kﬁxydxdy: k j: { j.xydy}dx =1
01 x=0 y=1

4
= kjix—f} dx=k j‘

1 x=0

2 3
{16x—x}dxzk 15x :@kzl.
2 4 o 4

k=2
135

Hence,
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axy
135’
0, otherwise

f(xy) =

0<x<3 1<y<4,

(b) PL<X <3 0<Y<3)=P(l<X<31<Y<3)

4 3
_ f f Iggxydxdy-—Iggij(xy)dy]dx

x=1y=1 y=1
4 xy dx :i 4xdx— 4 [Zx ]1
135 2 | 1357 135
L PL<X<31<Y<3)= o4
135’

(€) P(X=21L,Y<2)=P(1<X <3 1<Y<2)

3 Xyz 2
xydxdy= — dx
-5 ] [ asay- mxu

x=1y=1
4 3 3x 4 [3x27
=— | Zdx=—| =
1357 2 135| 4
_i[ﬁ}_ﬁ_i
135 4 135 45

wx>1v<a;%

1

(d) The marginal density function of X is given by

f(x)—j— xydy =[xy’

,135 135
_ 4 (15x) _2x
135 2 9

~of(x) = —x for 0<x<3

(e) The marginal density function of Y is given by

X7y
Z(y)_'j 135 135{ 2 }0
=i@:ﬂ
135 2 15

2
o f =—y, forl<y<4
() 15y y

125



Self Assessment Exercises

1. Pairs or vectors of random variables are investigated concurrently with.........

2. A marginal distributions of continuous random variables X andY , is defined

Self Assessment Answers

3.2 Conditional Probability Function

If X andY are two continuous random variables with joint probability density function
f(x,y)and the value of one of the variables becomes known, then, probability
statements involving the other variable should be conditional on what is known. The
conditional density function of the random variable Y given that X has the value x is
given as

f(y/x):%.

Similarly, that of X given Y is

f(x/y)=%,

Where f (x)and f,(y)are the marginal probability density functions of X and Y
respectively.

For the discrete case the conditional probability of Y given X is

P(X;, i
P(Y:yi/X:xj):%,

and that of X given Y is

P(X;,y:)
P(y;)

Where P(x;)and P(y;) are the marginal probabilities of X and Y respectively?

P(X =xj/Y:yi)=
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3.3 Independent Random Variables

Two random variables X and Y are said to be statistically independent (or
independently distributed) if their joint density function can be written as the product
of the two marginal density functions:

fy) = 1,09 1,(y)-

It is noteworthy that when the random variables X and Y are independent and the
joint density, f(x,y) is known, then knowledge of the value of one of the variables

furnishes no information about the other variable because in this case,

f(x/y)=f,(x) and f(y/x)=f,(y).

Example 9.4 (example 8.1 continued). In the smoking and cancer example above,
obtain the conditional probability P(C =1/S =1) and show that the random variables

S and C are not independent.
Solution
The conditional probability is obtained as

PC=1S=1) _3/60 _,,,

P(C=1/S=1)= - 0.
( ) P(S=1)  13/60

Now

P(C=1S=1)=— =0.05,
60

and from the marginal probabilities,

pC=1Ps =1 =22 _0036.
60 60

Therefore Sand C are not independent since P(C=1S =1) # P(C=1)P(S =1).

Example 9.5 (example 8.2 continued) From the joint probability function of the discrete
random variables X and Y above, obtain the conditional probability P(X =1/Y =3)

and show that these random variables are not independent.
Solution
This conditional probability is given as

P(X =1Y =3) 1/6
P(Y=3  1/3

0.5.

P(X =1/Y =3) =

Now from the marginal probability of X we have
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P(X =1)= 1 0.25.
4
Therefore X and Y are not independent since P(X =1/Y =3) = P(X =1).

Example 9.6 (example 8.3 continued) From the joint density function of the two
continuous random variables given above, obtain

(a) The conditional density function of Y given X.
(b) The conditional density function of X given Y
Solution
The given joint density function is

f(x,y)=kxy, 0<x<3 1<y<4

0, otherwise

Therefore,
(&) The conditional density function of Y given X is

4
——X
F(y/x) = ff(?xs)/) _ 1325
9

y

X

_by_ 2

“30x 157

(b) The conditional density function of X given Y is

f(x,
F(x/y) = f( y)=1325
A(Y) 2y
15
by _2
18y 9

3.4 Expectation and Variance for Joint Distributions

If X and Y are two continuous random variables with joint density function f (x, y),
the mean for each of the variables is given, respectively, by

i =E() = [ [xE(x y)axay

—00—00

= [xf,(9dx, —c0<X <o

and similarly
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=) = [ [yf 0 y)ady

—00—00

= [y, (dy, -o<Y<w

The variance is given by

ok =Var(X) = E(X — uy)?

= [ -, 00 ey

—00—00

(x = a2y )2 f, (x)dx

8§ =38

Similarly,
oy =Var(Y) = E(Y - 4 )°

= [y £ ey

00—00

(y = ) £,(y)dy

—38

8

Where f,(x) and f,(y) are the marginal densities of X and Y respectively.

Therefore, the mean and variance for each of the variables may be obtained from the
marginal densities.

Self Assessment Exercises

1. State the Mean and Variance of a joint distribution function.

Self Assessment Answers

3.5 The Covariance

Another statistic, in addition to the means x, and ., , and the variances &3 and o/,
of the marginal density functions of the random variables X and v, is the Covariance,

which is a measure of the “co-variability” of the two variables about their respective
means and is defined as
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Oxy = EX =, )(Y — 1)

[ J0= s Xy =, )1 (% )eay

E(XY) — uy py -

| Il
8'—-8

Still, for the same random variables, we can define the correlation coefficient as
a ratio of the covariance to the product of the standard deviations of the variables
and is given as

O xy

OxOy

For independently distributed random variables X andY , the covariance, and
consequently, the correlation are zero

However,

the reverse is not necessarily true;

; two random variables can be
uncorrelated (i.e., can have correlation coefficient zero) without being independent

Example 9.7 Let the joint pdf of X andY be given by
f(x,y)=4xy, 0<x<l1l 0<y<l1
0, otherwise.

Obtain(i) the mean and variance for each of the variables
(i) the covariance.
Solution

x4xydxdy
1(1

I J.4x ydy}dx

oLO

Jl‘2x2y2]1dx j2x dx
0

°| 5

(i) E(X)=]

Il
O ey

OOII\J
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E(Y) =jjy4xydxdy
00

1
J'4xy2dy}dx
L0

Ol O ey

- ) .
ﬂxyﬂ dx:ﬂj‘xdx
_3 0 30

S E(X) = E(Y)z%.

(i) Cov(X,Y) =0y, = E(X — )Y ~ )
= E(XY) — 1y 4

Now,

E(XY) = | | xy(4xy)dxdy

Ot O

1
Ax?y?dxdy = %I x*[y*1; dx
0

Il
O D 0—=—r ot—r

e
>
w
S =

4
5

Sooyy = E(XY) =y 1ty
4 22

"9 33
Now, it can easily be checked that
f(x)=2xf,(y)=2y,
from which we compute
f () f(y) =4xy=f(xy).
Then, since f(x,y)= f,(X)f,(y), and o, =0, it follows that the two jointly distributed

random variables X and Y are statistically independent.

Self Assessment Exercises

1. Correlation coefficient of independently distributed random variables X andY
, is the ratio of the covariance to the ...and is given as ...

2. If the random variables X and are independently distributed, what is their
likely their co-variance?
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Self Assessment Answers

4.0 Conclusion

This unit had introduced you to how to investigate pairs or vectors of random variables
simultaneouslyon the same sample space, in order to find association or otherwise on
the variable pairs. Also, another statistic, the co-variance was discussed in order to
measure the covariance of the two random variables as well as determine the level of
correlation among the two variables.

5.0 Summary

In this unit, you have learnt the following:

)

Joint probability function is used whenpairs or vectors of random variables are
being investigatedsimultaneouslyon the same sample space. A joint probability
function that gives the probability of each possible pair of values is:

f(x,y)=P(X =x,Y=Yy).
From the joint distribution above, the marginal distributions of X andY are
respectively:
L) =P(X =x)=>" f(x,y)
and
f0y) =P =y) =Y, T Y).
for continuous random variables X and Y .

Conditional probability function is a situation where X andY are two continuous
random variables with joint probability density function f (x,y)and the value of
one of the variables is known then, the probability statements involving the other
variable should be conditional on what is known.

The conditional density function of the random variable Y given that X has the
value x is given as

f(x.y)
f(y/x)=—>7"—"-.
f (%)
Similarly, that of X given Y is
f(x.y)
f(x/y)= ,
f2(y)
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Where f,(x)and f,(y)are the marginal probability density functions of X and
Y respectively.

iii) The Covariance is an additional statistic other thanthe means and variances of
the marginal density functions of the random variables X and Y, is the

Covariance, that measures the “co-variability” of the two variables about their
respective means and is defined as

x = EX =, )Y — 1)
Hx #x Xy = 1, )T (x, y)dxdy

E(XY) = py pay -

The correlation coefficient as a ratio of the covariance to the product of the
standard deviations of the variables and is given as

O xy

OxOy .
for independently distributed random variables X andY , the covariance, and,
hence, the correlation are zero.

iv) Two random variables X and Y are said to be statistically independent (or
independently distributed), if their joint density function can be written as the
product of the two marginal density functions as:

fxy) =1, f,(y)-

6.0 Tutor-Marked Assignment (TMA)

1. Letthe joint pdf of X andY be given by

f(x,y)=4xy, 0<x<1 0<y<l1
0, otherwise.

Obtain (i) the mean and variance for each of the variables.

(i) the covariance.

7.0 References/Further Reading

W. J. Decoursey (2003): Statistics and probability for engineering applications.
Newness.
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Answer To SAAsS

Module 3: Unit 1

1. Two outcomes; success(1) and failure (0)
5 b(n, p, x) =(§)pxq”’x, x=0,12,..,n

P

npq

5. n(Number of trials is large,) and p (probability of success) is small in a single
trial.

6. True

7. N-k

Module 3: Unit 2

abrowbd

1

——,a<x<b
1 f(xX)=<b-a
' 0, otherwise
_ 2
2. ﬂ:m, 02:(b a) )
2 12
3. A sequence of events which occur at “random times”.
f(x) =4, x>0, _ _
4. . where A is a nonnegative real number.
0, otherwise
1 1
5. E(X)==, V(X)=—
A 22
Xocflefxlﬂ
6. f(X)=———, 0O0<x<w,a>0, >0
pTa
0, otherwise.
7. E(X)=apf
Var(X) = af’.
F)=—t xM=1g_x)"-1 gox <1
8. A(m,n)
0, otherwise
9 E(X) =—" var(X)= mn _
m+n (m+n+1)(m+n)

Module 3: Unit 3
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1

e—(x—y)z /20?

f(x)= , —0< X<
1. () o271 * > where = "centre” of the density and
0, otherwise.
o = “spread” of the density
2. i. The mean and the variance are respectively, xandc?.

ii. The total area under the curve and above the horizontal axis is equal to 1.
iii. The mean, median and mode all coincide in the center.

iv. The curve is symmetrical about the mean; the coefficient of skewness is

zero.
3 7 _X-H
O
4. False
5. False

Module 3: Unit 4
1. Joint probability function (distribution)

2. f, (%) =P(X :Xi)=ZT:1f(Xi’Yi) and fz(yj):P(Y :yj)zz:(:lf(xi’yj)'
ux = E(X) = [ [xF(x y)dxdy
3. ) o
- jxfl(x)dx, ~0< X <o

and

u, = E() = [ [y y)xay

—00—00

- nyz(y)dy, —0<Y <o

o0

of =Var(X) =E(X — u)?

[ (x= e V' £(x, y)dxdy

=
Il
é"—;S

(X — Hx )2 f, (x)dx

Il
8 —38
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ol =Var(Y) = E(Y — g, )?

and

Il
é'—;S

T(y — )" F(x, y)dxdy

(y — Uy )2 f,(y)dy

Il
—3

8

where f,(x) and f,(y) are the marginal densities of X and Y respectively.

i) Product of the standard deviations of the variables

.. o}
OxOy

for independently distributed random variables X andy ,
Zero (0)
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1.0 Introduction

In the previous module on probability concept, we saw that an intuitive way to view the
probability of a certain outcome of an experiment is as the frequency with which that
outcome occurs in the long run, when the experiment is repetated a large number of
times. The law of large numbers is a fundamental theorem proved about the
mathematical model of probability and shows that this model is consistent with the
frequency interpretation of probability.

To discuss this law, we would start with an important inequality called the
chebyshevinequality.

2.0 Learning Outcome

At the end of this unit, you should be able to:”

I.  State Chebyshev’s Inequality law
i. Define the law of large numbers
iii.  Estimate boundary values

3.0 Learning Outcomes

3.1 Chebyshev’s Inequality

This states as follows:

Let X be a discrete random variable with mean x and variancecs?. Then if £ >0

is any positive real number, we have
V(X
P(|X —y|25)s¥.

Proof. Let the distribution function of X be denoted by p(x) . Then the probability
that X differs from , by at least ¢ is given by

P(X 42 e)= 3 p(x)-

‘x—,u‘zg
Now we know that the variance of X is given by

V(X) =D (x= )" p(x),

and this is at least as large as

D (x=)*p(x),

‘X—y‘z.s
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Since all the summands are positive and the range of summation in the second
sum have been restricted. Now, since|x— 4| >e&, we have (x—u)® >¢? and so

the above last sum is

> efp(x)=¢® > p(x)

‘X—,u‘Zg ‘X—,u‘Zg
= 52PQX —,u| > 8).
So,
P(]X —,u| > S)S V()z() .

&

Therefore, if X is any random variable with mean x and variances?, and ¢ = ko
, then this inequality states that

o’ 1

That is, for any random variable, the probability of a deviation from the mean of
more than k standard deviations is <1/k?.

Examplel0.1 Let X be a continuous random variable with values uniformly distributed
over the interval [0, 20].

i.  Find the mean and variance of X .
ii.  Using chebyshev’s Inequality, find an upper bound for PQX —,u| > 9).

iii. Calculate PQX —/J| > 9) exactly and compare with the bound in (b). How good
is Chebyshev’s Inequality in this case?
Solution

Since X ~U[0,20], we have

f(x):i, 0<x<20.
20

@ u=E(X)= j:‘) xf (X)dx

1 (20 1[x2 7"
=—| xdx=—|—| =10.
200 20| 2
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o = E(X?) - 1P :Lzoxzf(x)dx—yz

T I X—SZO— 2
=50 H H

" 20 3,
_ 400 140-100
3 3

Therefore,
1 =10, o%=100/3.

(b) Chebyshev’s inequality states that, given mean and variance,

P(|X —y|2€)£v(x)

82 .
Thus,

100 _ 0.412.

P(X -10>9) < 309

(c¢) Since X ~UJO0,20], the exact probability is calculated as follows
P(X -/ <9)=P(x -10<9)
19
=P(L< X <19)=jl f (x)dx

But P(X -10/>9)<1-P(X ~10 <9)
Thus
P(X -10>9)=1-09=0.1.

Comparing this exact probability with the one in (b) we see that the Chebyshev’s

estimate, here, is not very accurate.

Example 10.2 Let X be a continuous random variable with values exponentially

distributed over [0,c0] with parameter 2 =0.1.

(a) Find the mean and variance of X .

(b) Using chebyshevV’s Inequality, find an upper bound for PQX —,u| > 20).

(c) Calculate the probability PQX—y|220)exactIy and compare with the

Chebyshev’s upper bound in (b) above. How good is Chebyshev’s Inequality in

this case?
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Solution

Since X ~ exp(1), we have
f(x) = 167, x>0..
Now A =0.1, therefore as derived in section 6.3, we have

@) y=E(X)=%=10, 02=V(X)=ﬂ—12=100.

(b) Chebyshev’s inequality states that, given mean and variance,

P(|X —y|2€)£v(x)

82 .
Thus since =10 and &? =100,

P(X -10>20) < 199 _ .25,
400

(c) Since X ~exp(1), the exact probability is calculated as follows
P(X - £ <20)=P(X -1 < 20)
30
= P(-10< X <30)= [~ f (x)dx

30
=-e

—-0.1x 30

30
= jo Jedx=—e™

=1-e”.

0 0

But P(X -10/>20)<1-P(X -10| < 20)
Thus
P(X -10/> 20)=1-(1-¢")
=e =0.0497.
Again, comparing this exact probability with the one in (b) we see that the Chebyshev’s

estimates are in general not very accurate.

Example 10.3 For the binomial variable with n=50 and p=1,use Chebyshev’s

inequality to obtain an upper bound for the probability that the r. v. X deviates from
its mean by two standard deviations or more.

Solution
n=50, p=%. ..u=np=25
o’ =np(l-p)=125
o =+125
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P(|X —,u| > ko) Ski?_
Here, k =2,
S P(X -25>20) < % =0.25.

Example 10.4 Arandom variable X has =10, o? = 4, using Chebyshev’s inequality,
find P(X 10> 3).

Solution
1
P(|X—,u|>k0')ék—2
o?=4, 6=2, kc=3=2k=3and k=3
4
P(X —10|23)s§.

Example 10.5 Arandom variable X has 4 =12, o? =9. Using Chebyshev’s inequality,
find P(6 < X <18).

Solution

Since 4 =12, we have

P(6< X <18)=P(6-12< X -12<18-12)
= P(X -12 <6)=1-P(X -12 > 6)

By Chebyshev’s inequality,
1
P(|X —,u| > ko) Sk—?_.
Nowo? =9= o =3.
) 1
S P(X -12/>3k) < PR

Now, 3k=6 => k=2
So,

P(X -12>6) <

N

and

P(X -12<6)>1- %.

NP
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Therefore,

P(6< X <18):%.

Now we discuss the law of large numbers.

Self Assessment Exercises

1. State ChebysheV’s Inequalitylaw.
2. Chebyshev’s estimates are always very accurate. True or false.

Self Assessment Answers

3.2 Law of Large Numbers

Let X,,.., X, be a set of n independent and identically distributed random variables

with finite expected value x = E(X) and finite variance o” =V (X ).

Let S, =X, +..+ X,

be the sum, and

p =S

n
be the average.
Then for any ¢ > 0, we have

S
P( L —u
n

> Sj —0
as n — «. Equivalently,

A3
n

==y

<5J—>1

as n— oo.

That is, in an independent trials process where the individual summands have finite
expected value and variance, for large n, the value of the arithmetic mean, A, is

usually very close to its expected value, which equals .
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Proof
Since X,, X,,..., X, are independent and identically distributed, we have
E(S,) =E(X,)+..+E(X,)

=gty et u, =N
V(S,)=V(X)+..+V(X,)

=0/’ +0, +..+0,. =no’.

E(An)=E(S j=%E(sn)=u,

N
S )Ly )=
V(An)=V(?j—n2V(Sn)— n

Then by Chebyshev’s Inequality, for any ¢ > 0, we have

and, for fixed ¢, taking the limit as n — «, we obtain

Limp[s_n_

n—o0
n

Or equivalently,

<5J=L

Example 10.6A die is rolled n times. Let X, denotes the outcome of the jth roll. Then

n

i P(S——
n

: , S, .
S, = X, + X, +...+ X, is the sum of the outcomes of the first n rolls, and A, =—"is
n

the average of the outcomes. Then, each Xj has distribution

1 2 3 4 5 6
1/6 1/6 1/6 1/6 1/6 1/6

p(x) =(

and
E(Xj)=7/2,

V(X,)=35/12.
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Then,

E(A) = E(S,) =2,

V(A) =SV (S) =

By the law of large numbers, for any ¢ >0, we have

P STy g|< 35
n 2 12ne?
Thus, for fixed ¢, we have
P[i ! > gj -0
n 2
as n — oo, Oor equivalently,
P(i ! < g} —>1
n 2

as N —oo.

That is, for largen, we can expect the average, A , of the outcomes to be very near
the expected value.

Example 10.7 (a) Suppose 20 real numbers are chosen independently from the
interval [0, 20] with uniform distribution. Find a lower bound for the probability that their
average lies between 8 and 12.

(b) Suppose 100 real numbers are chosen independently from the interval in (a). Find
a lower bound for the probability that their average lies between 8 and 12.

Solution

In this experiment, if X, describes the ith choice, we have

SE(X,) = = [Pxdx =10
u=E(X;) = xdx=10,

2 1 0, 2
o _V(xi)_%jO x2dx — u

4000100
3 3
Hence,
S 1
a E[ 22 |= ~E(S,)=10,
@ 52 ]-55Ee)
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Now,

’
fotpoao

Sx
20] 400 Ve ”)_

S,

ﬁ—1 <2|=1-P
20 20

By the law of large numbers,

Now,

Therefore,

Hence,

Thus,

(b)

Now,

P 8sﬁ312 =P
100

P

p| |22
%

P
&

-10 ZKGJS—

P ﬁ
20
O-zh =§:>O-h = §,
20) 3 20 3

5 2.3
ka:2:>k\/::2:>k:—.
3 J5

> zzjgu@i@%f:suz.

20 _10

h—10 <2 :1—2:1.
12 12

By the law of large numbers,
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P2 10> ko siz.
100 k
Now,
100) 3 100 3
1
k0':2:>k\/;:2:>k=2\/§.
Therefore,
P(h—lo(zzjs ! zzi
100 2 3) 12
Hence,
P h—1 <2 =1—i=1—1.
100 12 12
Thus,

P 8sﬁ312 =1—1.
100 12

From this example, we can see that as we increasen, the chances that

510
n

less than 2 become closer and closer to 1.

Self Assessment Exercises

is

1. The law of large number states that for large number of trials, n we can expect
the average, A , of the outcomes to be very near .....

2. AsS n—x,

S
—n—10‘—>....
n

Self Assessment Answers
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4.0 Conclusion

The law of large numbers was discussed in this unit. Note that this is a fundamental
theorem about the mathematical model of probability and it was shown that this model
is consistent with the frequency interpretation of probability.

You were introduced to an important inequality law called the chebyshev Inequality
and the law of large numbers. The two laws were contrasted.

5.0 Summary

In this unit, you have learnt the following:

i) Chebyshev’s inequalitystates that if X is a discrete random variable with mean
u and variances?. Then if £ > 0 is any positive real number, we have

V(X

>
&

P(X —y>¢)<

i) If X,,.,X, is a set of n independent and identically distributed random

n

variables with finite expected value x=E(X) and finite variance o =V (X;).
Then, if
S, =X, +..+ X,

is the sum, and

A = Sn is the average
n

Then, for any ¢ >0, we have

-
n

as n — o. Equivalently,

e

26‘}—)0

——u
n

<gj—>l,as n— .

6.0 Tutor-Marked Assignment (TMA)

1. Let X be a random variable with E(X)=0and Vv (X)=1. What integer value k will
assure us that P(X|>k)<0.01?

2. In a final semester examination, a student’s score on a particular statistics course
is a random variable with values of [0, 100], mean 70, and variance 25.

(a) Find a lower bound for the probability that the student’s score will fall between
65 and 75.
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(b) If 100 students take the final, find a lower bound for the probability that the class
average will fall between 65 and 75.

7.0 References/Further Reading

Sheldon M. Ross (1997): Introduction to probability models, sixth edition. Academic
Press. New York.

Mario Lefebre (2000): Applied probability and statistics. Springer.
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1.0 Introduction

The central limit theorem (CLT) is one of the remarkable results of the theory of
probability. It occupies a basic position not only in theory but also in application.

2.0 Learning Outcome

At the end of this unit, you should be able to:

i.  State and apply the Central limit theorem
ii.  Undestand the underlying assumptions of the theorem
iii.  Proof the Central limit theorem

3.0 Learning Outcomes

3.1 The Central Limit Theorem

In its simplest form, the theorem states that if several samples of size n are taken from
a population with mean x and finite variance o2, then for large n, the distribution of

sample means, X , approaches normality with mean x and variance o?/n. Thatis

2
- N[,,,G_J.
n

Moreover, the approximation steadily improves as n increases without bound.

We now show that the mean and variance of the sample mean are g and o&”/n
respectively.
Suppose that Xy, X,,..., X are independent and identically distributed observations in

a random sample of sizenfrom a population with mean 4 and finite variance o?. If X
is the sample mean, then

E(X) = |5H(xl+x2 ot xn)}
1
:EE[X1+X2 +o+ X, ]

_ %[E(Xl)+ E(X,)+...+ E(X,)]

:%[“ﬂ]z 1.

And
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V (X) =VE(X1+X2 Fot xn)}
:(%) VI[X, + X, +..+ X, ]

S|

j V(X)) +V(X,)+...+V(X,)]

{

- (%T [012 e an]

oo

The mathematical statement and proof of the CLT now follows:

Let X, denotes the mean of the observations in a random sample of sizenfrom a

population with mean 4 and finite variance o>.

Define the random variable

X, —u
u, =2t
olJn

Then as nincreases indefinitely, the distribution function of U  converges to the
standard normal distribution function.

Proof

Define a standardized random variable z, by

where E(z,)=0 and Var(z;)=1.
Then, the moment generating function of Z can be written as

M, (t) =1+tE(Z,) + S E(Z,}) + S E@Z) +...

1+2  CE@Z) +..., (by Maclaurin seriesexpansion).

Now,
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nX n(x )
I =" =0
dn| o n o
1 N
=ﬁiélzi - (12.1)

Because the random variables X, are independent, so are the random variables

Z,. We now take the moment generating function (mgf) of the standardized
variable, U, ,as

n
t
M, (t) = [M > (ﬁﬂ (mgf of sum of independent random variables Z,).

{ j_ E(Z,)+ (ﬁ}z E(Z,%) +%(%T E(Z°) +}

:{1+£+ & CE@Z)+. },(sinceE(Zi)=0,V(Zi):E(Zi2)=1.)

2n  3In

By taking logarithm to base e of M, (t), we obtain

In(Mn(t))=In[Mn(%ﬂ
n
t2 3 .
:nln(1+(5+3!n% E(Z, )+...D ——————— 22.2)

Recall that the Taylor Series expansion of In(1+x) is

x2 x* x*

InQ+X) =X——+——-——+...
2 3 4

2 t3

Now, if we let X—E—n+ T E(Z°)+.. } in (12.2) above, we obtain
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X X

X2 3 4
In(M, (t))=nInl+x)= n(x—?+?—7+..}

Rewriting this expression by substituting for x, we have

In(M,, (1)) =

2 3
2 3 2 43 2 t3
t 34 11t 3 1( 14 B
nH(Zn o 3/2E(Z )+ j Z(Zn o 3/2E(Z )+ ) +3| ot o 3/2E(Z ) R

Now, if we multiply through by the initial n, we see that all terms except the first
have some positive power of n in the denominator. Consequently, if we take the
limit of In(M, (t)) as n — oo, all terms but the first go to zero, leaving

2

li t
o oIV, () ==

and so

lim (v @) =e”,

N — oo
Which is the moment generating function for a standard normal random variable.

Probabilities for X can then be calculated, approximately, using the standard

normal table as

. n-f5%)

Example 11.1The lifetimes of a particular fluorescent bulb produced by a company
are known to come from a distribution with mean 35 months and variance 64 months.
If a random sample of 45 such bulbs is taken from this population, derive an
approximate probability that the mean of this sample is greater than 38 months.

Solution

Given that n =45, 4 =35, c° =64.

Then, oy =o/+Jn =8/45=1.19

oy 1.19

X
=P(z>252)=1-P(z<252)
=1-¢(2.52)
=1-0.0058
=0.9942

P(X >38) = P[X —H < 38‘35]
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Example 11.2If a random sample of size 30 is taken from Poisson distribution with
— 3 7
parameter A=260qPO2< X <7)

Solution
X ~P (2), 0 uy =0, =2.
The sample size is large and so by the CLT,

X ~N(2, 230) approximately.
oy =42 =40.07,

Yoo 15-2 _ X-2 175-2
Ple=X <%= F{\/0.07 = Jo07  Joor J
= P(-1.88< 7 < -0.945)

= $(~0.945) — $(~1.88)

= #(1.88) — $(0.945)

=0.1435,

Example 11.3

If a random sample of size 10 is taken from the binomial distribution with probability of
success p = 3,find P(3<y<6).
Solution

Here y ~ Bin(10,%) and sox =np=>5,0° =npg=2.5.

S0 =,/npq=+/2.5, so,
P(3<y<6)=P(2.5< y<6.5)(Continuity correction)

_ [2.5—5 Y5 6.5—5)
=P(-1.58<z<0.95)

= #(0.95) — ¢(—1.58)

= #(0.95) + ¢(1.58) —1
=0.7719,

Now if

2 2
X ~ N(,u,a—J then nX ~ N[ny,nza—j
n n
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But
nX =X, +X,+..+ X, =S,.
Therefore
S, ~ N(n,u,no*z).
That is, for largen, the distribution of S, is approximately normal with mean nu

and varianceno?. The standardized sum of S, is given by

This standardizes S, to have expected value 0 and variance 1.

Example 11.4
A coin is tossed 100 times. Estimate the probability that the number of heads that turn
up

(a) Lies between 40 and 60.

(b) Is 45 or less.
Solution
The expected number of heads in 100 tosses isnp = (1/2)(100) =50, and the standard
deviation is o =,/100.5..3 =5. Let S,,, be the number of heads that turn up in 100

tosses of the coin. Then we have
(a) P(40 < S < GO)z p[&;f’o <S5 < Mj
=P(-2.1<8,,,<2.)
=2¢(21)-1
=0.9642
~ _455-50
(b)  P(Syo <45)=~ P(Sloo < Tj
= P(S;4 < 0.9)
=1- P(Sl*OO < 0-9)
=1-¢(0.9)
=0.1841

Self Assessment Exercises

1. For samples of size n taken from a population with mean « and finite

variance o2, then for large n, the distribution of sample means, X , is .......
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Self Assessment Answers

4.0 Conclusion

This unit discussed the central limit theorem (CLT) as one of the remarkable results of
the theory of probability. It is useful theoretically and in application. The theorem was
stated and proved, with mean and variance as well as illustration with  worked

examples.

5.0 Summary

This unit discussed the following:

i) The Central Limit Theorem which states that if several samples of size n are
taken from a population with mean x and finite variance ¢, then for large n,
the distribution of sample means, X , approaches normality with mean x and
variance o’ /n. i.e.

2
X - N[ﬂ,ff_}
n

i) As nincreases indefinitely, the distribution function of U, converges to the
standard normal distribution function.

iii) In the proof of CLT, if a standardized random variable Z; is defined by

where E(Z;)=0 and Var(Z;) =1, then, the moment generating function of Z
can be written as

M, (t) =1+tE(Z,) + S E@Z,2) + S E@Z ) +...

=1+ 5 SE@EZ )+ (by Maclaurin seriesexpansion).

6.0 Tutor-Marked Assignment (TMA)

1. A population of students in a Polytechnic has an average weight of 100 and

standard deviation of 25. A student selected at random from the population will
have a weight that is random, with the distribution of the population. If a random
sample of weights of 55 students is taken from this population, what is an
approximate probability that the mean weight, X of this sample is greater that 1057
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2. What is an approximate probability that the mean of a random sample of size 25
taken from a normally distributed population with mean 30 and variance 16 is

(a) less than or equal to 28
(b) between 15 and 25

7.0 References/Further Reading

Sheldon M. Ross (1997): Introduction to probability models, sixth edition. Academic
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Mario Lefebre (2000): Applied probability and statistics. Springer.
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1.0 Introduction

In statistics,we are often concerned with making inferences from samples about the
populations from which they have been drawn. In other words, if we find a difference
between two samples, we would like to know, is this a"real" difference (i.e., is it present
in the population) or just a"chance" difference (i.e. it could just be the result of random
sampling error). The procedure by which we achieve this is termed statisticalinference.

Statistical inference refers to extending your knowledge obtained from a random
sample drawn from the entire population to the whole population. Any inferred
conclusion from a sample data to the population from which the sample is drawn must
be expressed in a probabilistic term. Inference in statistics is of two types:

i.  Estimation
ii.  Testing of Hypothesis

2.0 Learning Outcome

At the end of this unit, you should be able to:

i.  Estimate population parameters
ii. ldentify Good Estimator properties
iii. Postulate and test Hypothesis

3.0 Learning Outcomes

3.1 Estimation of Population Parameters

Estimation involves the determination, with a possible error due to sampling, of the
unknown value of a population characteristic, such as the proportion having a specific
attribute or the average value [Jof some numerical measurement.To express the
accuracy of the estimates of population characteristics, one must also compute the
standard errors of the estimates.

In statistics, one is often faced with the problem of predicting the values of population
parameters of interest using the information obtained from the sample of reasonable
size drawn from that population. The process of achieving this is termed estimation. It
provides the most likely location of a population parameter. It involves selecting a
random sample of size n from the population, collecting data on the sample members

and then computing a sample statistic such as the mean, denoted by X , the variance
s?, etc. These statistics are then used as estimators to predict or estimate the

corresponding population parameters like the mean 4, the variance s?, etc.
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Definition

An estimator dof a population parameter 6 is a function of the sample
observations (x,, X, ..., X, ) which is closest to the true value of the parameter in

some sense.

An estimate is the numerical value taken by the estimator in a particular instance.

There are two methods of estimating a population parameter from the sample statistic.
These are the point and interval estimation.

3.2 Point Estimation

This gives an estimate of the population parameter as a single number using the
sample statistic. For instance, the sample mean X can be used to predict a specific
value for the population mean x ; the sample standard deviation s can also be used to

predict a value for the population standard deviationo . In such cases X and sare
point estimators, respectively, of the population mean & and population standard

deviationo .

3.3 Properties of a Good Estimator

As stated above, the process of estimation involves finding a sample statistic (an
estimator) that comes closer to the true value of the parameter of the population from
which the sample was drawn. But various sample statistics might be tried as
estimators, some of which are better than others. Our task therefore is to find a good
estimator of the parameter in question; an estimator whose closeness to the parameter
we can say something definite about. There are a number of desirable properties that
serve as measures of closeness of an estimator to the true value of its corresponding
parameter. Some of these properties are discussed in this section.

Consider a random sample X,, X,,..., X, independently drawn from a population F,

n

the parameter of which is@ . Let 9 = h(x;,X,,..., X,) be a statistic that gives the estimate

of the parameteré . Then 6 would be regarded as a good estimator of @ if it possesses
the properties below

Unbiasedness: @ is an unbiased estimator of ¢ if its expected value equalsé.
That is if
E@)=6.
Example 12.1 Given that X, X,,.., X,is a random sample of size n from an
exponential distribution with parameter ¢ such that

f(x)=6*, 820, x>0
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Show that X is an unbiased estimator of %.
Solution

By definition,x =+ >"X; and for alli, E(X;)=3.

Therefore,

. Xis an unbiased estimator of 6.

Example 12.2 LetX,,X,,.., X, be a random sample of size n from geometric
distribution with mean%. Show that X is an unbiased estimator of %

Solution

x=4> X, andforalli, E(X;) =43

Therefore,

.. Xis an unbiased estimator of -

Example 12.3 LetX,, X,,.., X ,be a random sample of size n from a normal

distribution with mean x and variance ¢?. Show that
(i) The sample meanX is an unbiased estimator of x .

> (X -x)’

n-1

(i) The sample variance s* = is an unbiased estimator of o>

Solution

0 x=£> X,

E(i)zE(%in}%ZE(xi)
But for all i, E(X,) = u.
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LB =12 EX) =52 u=5(nu)=

(i) s®is an unbiased estimator of o?ifE(s*) = o

Now,
» 2 (x-x)
n-1
Then
(n-Ds? =3 (X2 —2XX + X?)
=) X2-2XD X +nX?
:ZXZ_Z(Z_X)ZJrM
:sz__(ZnX) ~ 3 X7 X
and

E(n-1)s? =EY X2 —E(nX?)
= > E(X?)-nE(X?)

2

But E(X?)=02+ 4% and E(X?) =T 1 42,
n

So,
O_2
E(n-1)s” = Z(O‘Z +u?) - n(T+,u2}
=no’ -0’ =(n-1)c?
Therefore,
Esty = (=Uo" 2
n-1

(i)  Efficiency: An efficient estimator is the one such that among several
asymptotically unbiased estimators, no other estimator has smaller asymptotiv

variance. That is, if él is an unbiased estimator of a parameter & of a given distribution
and the variance of él is minimum compared to any other unbiased estimators of &,
then 4, is said to be the most efficient estimator of # and is also known as the minimum
variance unbiased estimator.

(i) Consistency: An estimator én (based on a random sample of sizen) of a

parameter @ is said to be a consistent estimator if it converges in probability to the
true value of the parameter as the sample size,n increases.
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That is,
4. is consistent for 6 if , 6 as n— .

Therefore, consistency is not valid with reference to a particular sample size but the
condition is that the larger the sample size, the closer the estimator to the true value
of the parameter being estimated.

So we have

P(6, 6] »0)>1as n > o0,
Alternatively, @ is consistent for 8 if V(6) >0 as n — .

Example 12.4 A biased estimator of o*based on a random sample of size nfrom a
normal population is

5?2 :M with E(S2):M:JZ(1_EJ_
n n n

We see thatE(s?) - o°ash — .

Hence, s?, though biased, is consistent for o?.

(iv) Minimum mean square error: Among the properties of a good estimator is that
its mean square error

E(0 - 60)*be small.

The amount of bias is the difference between the mean of an estimator and the value
of the parameter one wish to estimate. It can be expressed as

b(@) =E(0) -6,
so that E(9) =@ if 6 is unbiased and then b(d) =0.
For an unbiased estimator §, the mean square error can be expressed as
mse(d) = E(0—0)? = E(0—E(0))? =V (6).
The mean square error combines variability of the estimator with its bias because

mse(d) = E(0—6)? =V (0) +[b(O)]*.

Example 12.5 The mean square error in estimating the population mean by the
sample mean X is
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mse(X) = E(X — x)* = E[X = E(X)]?
= E(X?*) -[E(X))?
= E(X?)—u?, sinceE(X)=u
=0—2=V(>?).
n

Self Assessment Exercises

1. The two methods of estimating a population parameter from the sample
statisticare ...,
2. State the four properties of a good estimator.

Self Assessment Answers

3.4 Methods of Estimation

Some methods of estimation that offer general technique for finding estimators for
population parameters are as follows.

(i) Method of Moments

With this method, we make use of the moments of the distributions together with the
sample moments to get estimates of the parameters. We equate the observed values
of the sample moments with the corresponding population moments expressed as
functions of the parameters and then solve the resulting equations for estimates of the
parameters.

Let x;,X,,..,X, be independent and identically distributed observations from a

n

distribution involving unknown parameters 6,,0,,..., 6,. Let the first k raw moments of
the distribution exist as functionse, (6,,6,,...,6,), r =1...,k of the parameters. The rth

raw moment of the distribution is denoted by E(X"), r=12,3,...
Now if we denote the sample moment functions by
a, =y X{/n,
then the method of moments consist of equating the observed value of a,to E(X")
and solving for 6,,6,,...,6,.
Example 12.6 Let X,, X,,..., X, be a random sample from an exponential distribution

with pdf
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f(x)=6"%, x>0, >0.
Obtain the moment estimate of the unknown parameterd .

Solution

0 0 1

_ -0x _ -0x _ -

E(X)__[0 x@e dx_é?fo xe rdx = )
The sample meanis a, = E X, In=X

Therefore equating these corresponding moments and solve for@ we have

Example 12.7 Let X,, X,,..., X, be a random sample from Poisson distribution with
parameter A .

Obtain the moment estimate for the population mean x .

Solution

x 2%

' ki 72{ _ |
,ule(X):XZ:(;xge =Jland a, =—"——

Il
x|

n
Equating x, and a,, we have
A=X.
(i) Method of Maximum Likelihood

This is a widely used method of estimation that has attractive large- sample properties.

Definition
Let X, X,,.,X,be a random sample from a discrete distribution with

probabilities f (x;60), in which & may be a vector. Then, the likelihood function

gives the probability of getting the particular sample values and is defined as the
product of n probability mass functions, one evaluated at each sample value.
That is

L(X., Xy 5oy X3 0) = P(X; O)P(X,;6)...P(X,; 0)
=11P(x,:0)
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If the sample is from a continuous distribution, the likelihood function is defined
to be the product of the densities evaluated at the sample points. That is

L(X;, Xy e X3 6) = T(X;0) T(X,;0)...T(X,;0)
=111 (x;0)
i=1
We then choose as estimates, those values of the parameters that maximize this

probability. That is (6,,..., 6, )is said to be the maximum likelihood estimate of the
parameter (4,,...,6,) if it maximizes the likelihood function.

Example 12.8 Let X,, X,,..., X, be a random sample from an exponential distribution
with density f(x)=41e™™, x>0, 1>0.
Obtain the maximum likelihood estimate of 1.

Solution

f(x)=1e%, x>0, 1>0.

n

n JZXi
L(Xy, Xy ey X3 A) =167 = 2" =

i=1
InL(x;A)=nInA-2>"X,.

i=1
DInL n DInL n

=—=— X, and =0= == Xi
DY Z ' DA ) Z
Therefore,

S5

A=

1
=]

Example 12.9 Let X, X,,..., X, be a random sample from an normal distribution with

mean u and varianceoc”’.

Obtain the maximum likelihood estimate of z ando?.

Solution
7(X—;Zt)2
f(x)= Gﬂe 20
Therefore,
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. C(X=p)? - (Xi—p)?

L(Xl’XZ""’Xn;/’llO-Z):H e 20—2 :(272-0-2)7”/26 i=1 20'2
i<l o+ 27

C (Xi _/1)2 .

n n
InL(x; 1t,0%)=——Inc? —=In(27) -
(X, 14,0°) > > (27) =

DA i=1 2
That is,
> X =nu=0
i=1
hence,
1 n
A:— X :X
f nzl“ :
Now,
- 2
DInL_,,l( A LU
Do? 2c* 202
Z(Xi_ﬂ)z
ie., = =N ,
2c* 202
and,
D (X, — )’ =no’.
i=1
Hence
D (X — )’
6'2 — i=1 .
n

(iii) Method of Least Squares
This is most suitable for estimating parameters involve in linear models of the form
y=a+px+e

where vy is the response variable, ¢ and g are unknown parameters to be estimated
X is a known independent constant and e is a random error component. The least
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squares estimators ¢ and 4 and the values of  and A which minimize the sum of
squares of the error term

SSe=>el =Y (y,—a—px) s (1)
i=1 i=1
The minimum will occur for values of ¢ and g that satisfy

0SSe _0 and 8SSe:0.
oa op

From the above SSe, we have

B3 _ o3y —a—p)=0 =3y —a—fx)=0.r(2)

oa i=0 i=0

and

%;ez_zznlxi(yi —a—fx)=0= Z(Xiyi —ax _p&f):o. +(3)

By solving the equations (6) and (7) simulataneously, we obtain the least squares
estimator @ =y — X,

b= nzxiyi _inzyi
anf—(in)2

3.5 Interval Estimation

Point estimators provide us with single value that helps locate the parameter. But this

estimate is always inexact and may contain some error. Besides, point estimation
provides no information about the precision of the estimate. Interval estimation
provides us with the opportunity of determining the size of the error we are likely to
make when we estimate. With this method, an interval is given within which a
population parameter is likely to lie, together with the chance that the interval includes
the parameter.

Supposea random sample of size nis taken from a normal population with unknown
mean x and known standard deviationo . Then if the mean of this sample isx, a

100(1- @)% confidence interval for u is given by
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V2 o V2 o
(X —Z%—ﬁ <pu<X +Z%—ﬁn)
This can be written as
va o
X+ Z% =

A 100(1- )% confidence interval for a parameter is constructed so that 100(1— «)% of
a large number of intervals calculated in the same way will capture or include the
parameter.

Example 12.10 A random sample of weights of 10 students chosen from a class has
a mean weight of 29.0 kg. Ifit is known that the standard deviation of the weights of all
students in the class is 13.586, obtain a 95% confidence interval for the mean weight
of all students in the class.

Solution
n=10, X =29, o =13.586.

1-a=95%=0.95 = a =1-0.95=0.05,
al/2=0.025=12,,=196.

o 13586
sem=—=——=4.30.
Jn o V10
Therefore, a 95% confidence interval for u is given by
"3 o _
X iza/z I 29.0+(1.96)(4.30)
=29.0+84
=(20.6, 37.4).

Therefore, we are 95% confident that the above interval of 20.6 to 37.4 includes the
parameter (u) .

3.5.1 Test of Hypotheses

In this section, we discuss test of hypothesis as the second basic class of statistical
inference.Hypothesis testing involves the definitions of a hypothesis (null) as one set
of possible population values and an alternative, a different set. There are many
statistical procedures for determining, on the basis of a sample, whether the true
population characteristic belongs to the set of values in the hypothesis or the
alternative. In attempting to reach a decision about population on the basis of sample
information, it is useful to make assumptions or guesses about the probability
distribution of the population involved. Such assumptions are called
statisticalhypotheses.A hypothesis under test is referred to as the null hypothesis,
denoted by H, . It states the absence of an effect.
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A test of hypothesis H, is a rule that specifies for each possible set of values of the
observations, whether to accept or rejectH,, should these particular values be

observed. It consists in dividing the sample space S into two regions.The first region
is that subset of S for each element of which the null hypothesis, H, , will be rejected

and is referred to as the rejectionor critical region,denoted byw. The second is that
subset for which H, will be accepted, referred to as the acceptanceregion and

denoted by S —w.

Hence the null hypothesis is rejected, an alternative hypothesis, usually denotedH,,
is accepted in its place.Your decision to acceptH,, or to reject H, in favour of your
alternative H,is based on the observed valueT =t of a suitably chosen test statistic
T.

If a hypothesis completely specifies the distribution, it is called simple. For instance,
the hypothesisH,: 1 = 1,, where p, is a numerical value.But if the distribution is not

completely specified, it is composite, e.g., the hypothesisH: gz # 1, or x> p,.

Self AssessmentExercises

1. List three methods of estimation that offer general technique for finding
estimators for population parameters.

2. What are the defects of point estimate in locating a parameter?

3. Hypothesis testing involves the testing of.............. and.............. hypothesis,
denoted by .............. and............ respectively.

Self Assessment Answers

3.6 One-Tailed and Two-Tailed Tests

There are two types of tests which could be performed, depending on the alternative
hypothesis being made. Consider the hypothesisH,: x = 4, and the three different

sets of alternatives: H, @ p <y, Hy 1> py or Hy T # py.

Alternatives of the first two types and the associated tests are called one-sidedor one-
tailedtests while those corresponding to the third type are called two-sided or two-
tailed tests.

3.7 Type of Errors

Whatever procedure may be employed for testingH,, there are two types of errors
involved. The first is the error of rejecting H, when it is true, called the Type | error.
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The second one is the error of not rejecting (accepting) H, when it is false, called
Type |l error. These are presented in the table below.

Decision H, True H, False
AcceptH, Correct Decision Type Il Error
Reject H, Type | Error Correct Decision

Letwdenotes the subset ofS consisting of the values for which H, will be

rejected(called the critical region), then the probability of Type | error (called the
significance level ) is given bya where

o = P(rejectH, /H, istrue) =P(w/H,)
- 1-—a=P(acceptH,/H, istrue)
The probability of Type Il error is given by g where
S =P(acceptH,/H, isfalse) = P(S-w/H,)
.+ 1- B =P(rejectH,/H, isfalse) called power of the test.

These probabilities are presented in the table below.

Decision H, True H, False
AcceptH, l-a B
Reject H, & 1-p

Therefore, the steps for testing a given hypothesis include:

(i) State the null and alternative hypotheses.

(i) Choose a suitable test statistic T(e.g., Z.,t, ,;(f , etc.).

(i) Determine the critical (rejection) regionw.

(iv) Based on sample information, compute the value t_ of your test statistic chosen
in (ii) above.

(v) Make decision. If the observed value of the test statistic falls in the rejection
region, i.e.,ift, e w, we reject H,at a significant levela and say that the test is
significant, otherwise we acceptH,.

Example 12.11A fluorescent bulbs manufacturer claims that his light bulbs have a
mean life of 1000 hrs and standard deviation of 40 hrs. A random sample of 64 such
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bulbs is tested and the mean life was found to be 988 hrs. Test the manufacturer’s
claim at 5% significant level.

Solution
The hypotheses are
H,:x=1000
H, : £ <1000
Since o is known and the sample size,n, is large (n >30), we use the test statistic
X —u

Zoo = ~ N (0,1
obs G/\/ﬁ ( )

We will reject H, if z, <z, , where

©988-1000

2, =0 R 24
“ " 40/64

and

Z, =175 =1.645
Therefore, sincez, <z, we reject H, at 5% significant level.

Now if n is large and the population variance is unknown, we use an estimator 62 for
2

it whereg? = ns
n-1

, andS?is the sample variance. Then the test statistic above

becomes

7, =X H

obs JA/\/H

In case of small sample size (n < 30), where the population variance is unknown, we
use the test statistic

~N(0,2).

T =u~t(n_1)_

g/ n-1
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3.8 The Likelihood Ratio Test

This is a general method of test construction that frequently leads to satisfactory
results.

Definition

Let X,,X,,..., X, be a random sample from a distribution with pdf f (x;6), and
required to test a simple hypothesisH,:6=6, against H,:0=6, >0, at
significance levela . The likelihood ratio of the required test is defined by

,_ Lix/Hy)
L(x/H,)

If the numerator is sufficiently smaller than the denominator, this indicates that x has
a much higher probability under one of the alternatives than under H,, and it then

seems reasonable to reject H,when X is observed.

3.9 The Most Powerful Test

As already noted, the probability
P(rejectH,/H, isfalse) =1- 3,

where £ is the probability of Type Il error, is called the power of the test of H, against
the alternative H, . Therefore, a good test is the one for which « , the size of typel error
is small, and similarly, for which g, the size of Type Il error, is also very small (ideally
zero). That is, for which the powerl- g, is large (ideally unity). Hence, a good test
could be achieved by fixing e and minimizing # (maximizing the power of the test).

Definition
A test of H,:0 =6, against H, : 0 =46, is defined to be a most powerful test of

size «a if it has the size of its Type | error equal to o and if among all other tests
of size « or less, it has the largest power or smallest size of Type Il error.

The fundamental result underlying construction of a test of H,with maximum power

againstH, is the Neyman — Pearson lemma, discussed in the nextsection.

Self Assessment Exercise

1. Thereare.......ccoooviiiiiiiiiiiinnn. types of error, namely...........................
2. A good testisthe one for which ...
3. A way of maximizing the power of the testis by ...,
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Self Assessement Answers

3.10 Neyman-Pearson Lemma

LetX,, X,,..., X, be arandom sample from a distribution with pdf f (x; ) . For testing a
simple hypothesis H,:0 =46, against a particular alternative H, : 6 =6,, the critical
region, w, of the most powerful test is determined by the likelihood ratio

L(x/H,) _

<k, fork>0
L(x/H,)

with k chosen to give the desired significance level.

Example 12.12 LetX,, X,,.., X,be a random sample of size n from a normal

distribution with an unknown mean x and a known variance o*. Find a most powerful
(MP) test for testing a simple hypothesis H, : u = u, against H, @ g =1, > p, .

Solution
The pdfis
_(xw)?
f(xu0%) = e 2
o~N2r
Therefore,
Lf 1
ﬂ,az(x)=ga\/ﬂe
Now,
L (X, Hos 0'2)) = .lf{ O'\;Lﬂ e_(ngg) = (27[0'2 )_nlze_Z(ZIa;lO)
and
nooq o) . i)

L(x 2,0%) =11 e 2o =(27z0'2)_ e 2

i=l o\ 27T

By N-P lemma, we have

D (Xi—)°
-n/2 ~ 20_2

L(x) (272'62) e <k

- Z(Xi—/h)z
202

L(,)

2o’ )wzei
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{Z(xiyo)z D (Xi—m)?
e

207 207 <23 X, (a0 ) +0 (13 ~1)) <

<k= ezz

Taking logarithms, we have

23 %, (1tp — 1) ~ (ki — 1) < 202 Ink
2

(o2
+—Ink

_ X 2 2
e, —(uo— 1)3%

ZX (luo /ul + 0-2 Ink
n 2(/Uo ) Ny — 1)

That is

2
_ + o
xgﬂo ﬂ1+

2 N(ue — 141)
=>X<¢cC

Ink =c

Therefore, the best critical region of sizea for testingH,:u=u, against
Hotp=um > py is
c ={(Xy,..-, X,,) : X < C},

where c is selected such that P(X<c/H,:u=u,)=«.

Example 12.13 LetX,, X,,..., X,be a random sample of sizenfrom a Poisson

distribution with mean A4 . Find a most powerful (MP) test for testing a simple hypothesis
H,:4A=41, againstH, : 1=4,.

Solution
. _ Ae? n et
The pdfis f(x;4) = = Lf(x;2) =11 '
i1 x!
Therefore,
n X ZX' —AN
L(4) = Hxl /10 e
X! X!
o 2% g
L =178 2 A

By N-P lemma, we have

L) (Azx‘e‘%”)/ X! ;;X /o
L(,U:) B (ﬁjzx‘e“”)/ X! <= ;lex o~n

<k.
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ie [ﬁJZXi e <k =D x In(ﬁj—(ﬂb ~ A )n<lInk
e 21 - i Al 0 =

=>'x In(%)+n(ﬂq—}to)s Ink

Therefore,

_Ink-n(% - 2,)
2% < In(2,/4,)

Therefore, the best critical region of sizea for testing H, : 1 =4, againstH, : A =4, is

C={(Xg, o X,) 1 D % <C}

Self Assessment Exercises

1. The error of not rejecting (accepting) H, when it is false, called ..................

error.
2. The error of rejecting H, when it is true, called the ...............................

error.
3. What are the steps involved in testing for a given hypothesis?

Self Assessment Answers

4.0 Conclusion

Theis unit discussed theuse of statitical inference from samples about the populations
from which they have been drawn in order to determine the sample characteristic, i.e.
to know, if there is a"real" difference (i.e., is it present in the population) or just
a"chance" difference (i.e. it could just be the result of random sampling error).

Statistical inference is an extension of your knowledge of random sampling, already
discussed in the last unit.You were introduced to how to make estimates of population
parameters; the error types as well as how to postulate and test hypothesis.

5.0 Summary

In this unit, we have discussed the following:

i) Estimation of population parameterswhich involves the determination, with a
possible error due to sampling, of the unknown value of a population
characteristic features. To express the accuracy of the estimates of population
characteristics, one must also compute the standard errors of the estimates.
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ii)

By definition, an estimator, §of a population parameter 6 is a function of the
sample observations (x,,X,.,..,X,) which is closest to the true value of the

. n

parameter in some sense.

There are two methods of estimating a population parameter from the sample
statistic, viz: the point and interval estimation.

Properties of a good Estimator include:
a) Unbiasedness: 4 is an unbiased estimator of ¢ if its expected value equals
0,ie.ifE@)=6.

b) Efficiency: such that of all asymptotically unbiased estimators, no other
estimator has smaller asymptotiv variance.

c) Consistency: An estimator én (having a random sample of sizen) of a
parameter 6 is said to be a consistent estimator if it converges in probability to

A

the true value of the parameter as the sample size n increases, i.e. 6. is

consistent for 6 if §, 6 as n— .

d) Minimum mean square error, i.e. E(6—6)>must be small.

Methods of estimationfor finding estimators for population parameters are:
a) Method of moments

Using the moments of the distributions and the sample moments to obtain
estimates of the parameters. Equate the observed values of the sample
moments with the corresponding population moments expressed as
functions of the parameters and solve the resulting equations for estimates
of the parameters.

b) Method of Maximum Likelihood

A widely used method of estimation with attractive large-sample properties,
defined as the product of n probability mass functions, one evaluated at each
sample value, i.e.

L(X(s Xy yeeey X3 0) = P(X; O)P(X,; 6)...P(X,; 0)
:_IEP(xi;H)

For X,,X,,.,X,as a random sample from a discrete distribution with
probabilities f(x;60), in which 8 may is a vector, wheraasif the sample is
from a continuous distribution,the likelihood function is defined as:
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L(X., Xy yeee X,30) = T(X;0) T (X,;0)...T(X,;6)
n
=111 (x:0)

i=
Then choose as estimates, those values of the parameters that maximize
this probability.

c) Method of Least Squares

Most suitable for estimating parameters of linear models e.g. y=a + fx+e
where y is the response variable, @ and g are unknown parameters to be
estimated x is a known independent constant and e is a random error

component. The least squares estimators ¢ and 4 and the values of « and
£ which minimize the sum of squares of the error term.

Therefore,

By solving the equations (1) and (2) simulataneously, we obtain the least
squares estimators

nzxiyi _ZXiZYi .
ny x’ —(in)z

iii) Interval estimation enables one to determine the size of the error during the
estimate. For a random sample of size n] taken from a normal population with
unknown mean x and known standard deviationo . Then if the mean of this

sample isx , a 100(1—- )% confidence interval for u is given by

B

K-z, H<u<x+z, %]
or

X o

X+Z,

iv) Test of hypothesesinvolves the definitions of a hypothesis (null) as one set of
possible population values and an alternative, a different set. Assumptions or
guesses about the probability distribution of the population are made. Such
assumptions are called statisticalhypotheses. A hypothesis under test is
referred to as the null hypothesis, denoted by H,. An alternative hypothesis, is

denoted H, .
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The decision to acceptH,, or to reject H, in favour of your alternative H, is
based on the observed valueT =t  of a suitably chosen test statisticT .
If a hypothesis completely specifies the distribution, it is called simple. For
instance, the hypothesisH,: u = u,, where y, is a numerical value. But if the
distribution is not completely specified, it is composite, e.g., the hypothesisH, :
HFE My OF > .

V) Type of Errors: There are two types of errors, viz: a) Type | error — the error of
rejecting H, whenit is true, and b) Type Il error — the error of not rejecting
(accepting) H, when it is false.

Vi) Tests that lead to satisfactory results e.g. The Likelihood Ratio Test, The Most
Powerful Test andNeyman-Pearson Lemma were considered.

6.0 Tutor-Marked Assignment (TMA)

1. LetX,, X,,..., X, be a random sample of size n from a normal distribution with
variance 1 and an unknown mean x . Find a most powerful (MP) test for testing a
simple hypothesis H, : y = u, againstH, : u = 1, > u,.

2. LetX,, X,,.., X, be arandom sample of size n from a distribution with pdf

1 : o : : :
ge‘x’e; 0<x<oo. Obtain a best critical region for testing H,: u = u, against
Hytp= > .

7.0 References/Further Readings

Sheldon M. Ross (1997): Introduction to probability models, sixth edition. Academic
Press. New York.

Mario Lefebre (2000): Applied probability and statistics. Springer.
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Unit 4

Moments and Moment
Generating Functions

Content
1.0 Introduction
2.0 Learning Outcome
3.0 Learning Outcomes

3.1 Moments

3.2 Generating Functions
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment (TMA)
7.0 References/Further Reading
1.0 Introduction

This unit will take you through the measurements of the characteristics of a distribution,
as it provides information about the distribution function. Different types of moments
would be considered, then we turn Generating function, a simpler method of
computing moments. A generating function is a transform of density and probability
functions that simplifies analyses for certain sums of random variables.
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2.0 Learning Outcome
At the end of this unit, you should be able to:

I.  Measure the characteristics of a distribution
ii.  Use a generating function to calculate moments

3.0 Learning Outcomes

3.1 Moments

Moments are one of the devices for measuring the characteristics of a distribution.
They are of interest because of the information that they provide about the distribution
function. In fact, in many circumstances, knowledge of the moments of all orders
uniquely determines the distribution function.

The types of moments considered here are as follows.

(i) The moment about the origin (the n™" raw moment) of a random variable X , or of
the corresponding distribution f (x), is defined as

y'n =E(X"), n=1 2,..
where

> XIP(x;)  (discrete case)
E(X") =1
Iﬁ X"f(x)dx (continuouscase)

when n =1, we have
w=E(X") =
and n = 2 gives
u, = E(X?) etc.
That is, the first raw moment is the mean.
(i) The n® moment about the mean (i.e., the central moment) is defined as
Hy =E(X=)"),n=12, ...
where

2. (X = m)"P(X)) (discretecase)
E(X-m)") =1
LO(X — )" f(x)dx (continuouscase)

when n =1, we have
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 =E(X —pu)' =E(X)—pu=0, sinceE(X) =
That is, the first central moment is zero.
When n = 2, we have
Hy, = E(X —p)* = E(X* = 24X + p1*)
=E(X?%)=2uE(X) + p?
=E(X?%)—u®, sinceE(X)= L.
This shows that the second central moment is the variance of the random variable.

The mean x, and the variance u,, generally represented by o %, play an important role

in statistical data analysis. Purely as descriptive measures of the distribution, the mean
represents a central value of the random variable and the variance represents the
scatter around the central value.

The central moments can be represented in terms of the raw moments as
Mo =1 41 =0
u, =E(X _:ull)z
. 2
= (X?*) =2 E(X) + 1
. 2 2
=M, =2 +
' 2
=H, —
s = E(X = 1)’
= (X*)=3mE(X?) +24;
. o 3
=ty =3 i, + 24

And in general,

pa =ty =Dty + (e 1y = (D= a1

Example 13.1

The probability distribution for a discrete random variable X is given by the table below
X 1 2 3 4

P(X) X Hs As s

Find the first three moments about the origin and the corresponding moments about
the mean.

Solution

The first three moments about the origin are calculated as follows:
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1 =E(X) = Y XP(x)

— 1 3 5 7
=1IX55 +2X 55+ 3X 55 +4X %

= 50 =3.125
16

uy =E(X?) = Y X?P(¥)

=1IX55 +4X 3+ 9X 3 +16x %
170

—=10.625
16

s = E(X®) =D X°P(x)

=1IX& +8X3 + 27X 3 + 64X L&
- _ss,
16

For the corresponding moments about the mean, we use the relationship between the
two types of moments discussed above.

, =E(X =)' =0, sinceE(X) = .

Hy = E(X = 11,)°
! 2
SH, T M
=10.625-(3.125)°
=0.86
Hy = E(X = 14,)°

: - 3

=ty =3 i, + 21
=38-3(3.125)(10.625) + 2(3.125)°
=-0.57.

Example 13.2

A continuous random variable X has density function given by
f(x)=4x% 0<x<1
0, otherwise
Find the first three raw moments and hence obtain the 3" central moment.
Solution

The first 3 raw moments are

185



. 1

= E(X) =j0 xf (x)dx
= _[le4x3dx
=
-0.8

1, = E(X?) :j:xzf(x)dx
= 4J'01xsdx
4}
=0.67.

sy = E(X®) = [ X*f (x)dx
= 4I:x6dx
=
=057

The 3" central moment is given by
s =E(X = 1)°

: o 3
= My =3y pty + 211
=0.57-3(0.8)(0.67) + 2(0.8)°
=-0.014

Self Assessment Exercises

1. What is a moment?
2. What is the purpose of a moment?

Self Assessment Answers

3.2 Generating Functions

Instead of computing moments from their definitions, it is often simpler to make use of
a generating function. A generating function is a transform of density and probability
functions that simplifies analyses for certain sums of random variables.
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3.2.1 The Moment Generating Functions

This is defined as the expected value of the random variable e*,where t is a real
variable.

Definition
Given a random variable X of the discrete type with probability function P(x), if there
exists an h>0 such that

E(e™) =) e"P(x)

exists for ft| < h, then the function of t defined by
M, (t) = E(e™)

is called the moment generating function of X.

This function exists only for random variables that have moments of all orders and
when expanded in powers of t, it yields the moments of the distribution as the
coefficients of those powers. MGF is formally defined as

> e"P(x)) (discretecase)
M, () =E(e") =
f e™ f (x)dx (continuous case)

It can be shown that the existence of M (t)for [t <himplies that the derivatives of all
orders exist for it att =0.

That is if M, (t) = E(e™) exists, then for i =1,2,..., the r'" moment can be found as the

rh derivative of M, (t) evaluated at t =0, and x, = d dl\:lr(t) |\ - Therefore,
> xe f(x))
M'(t) = E(xe™) =< !
f xe™ f (x)dx
> x2e"P(x;)
M'"(t) = E(x?™) =4 !
j_‘” x2e™ f (x)dx

and for any positive integer r,
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tx;
E x'e P(x;)
(r) _ ratxy _ j : :
MY (t)=E(x"e”) =
f’ x"e™ f (x)dx

Settingt =0, we see that the exponential function equals 1 and the expression on the
right equals the r"raw moment. To generate those moments, we replace the
exponential function in the integrand of M, (t) by its power series expansion. That is

M, (t) = f e™ f (x)dx
:f“ Z@f(x)dx
—o Syl

:f (1+tx+%t2x2 +..) f(x)dx
Lt + St +
=Lt + o,
=3y,

r=0 r!

where 4, is the r" raw moment. This is also equivalent to the r" derivative of M, (t)
evaluated att =0. That is

iy = M O] =M O 0),
Thus
1 =M'(0)
1, =M (0)
and so on.

Therefore, if the MGF exists, we have
u=M'0
o’ =M"(0)-[M'(0)]

Example 13.3 A discrete random variable X has Bernoulli distribution with probability
function

X _ 1-x —
F(x) = P*@-P) K x=0,1.
0, otherwise.

i) The MGF is
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M, (t) = E(e")

1
— zetXPX (1_ P)l—x
x=0

1

=> (Pe")*(1-P)**
x=0

=1-P +Pe'

i) Mean and Variance are computed as follows
M'(t) = Pe'
Lu=M'0)=P
M"(t) = Pe'
iy, =M"(0) = P.

Var(X)=M"(0)-(M'(0))*
=P-P?
= Pq.

Example 13.4

A discrete r.v. X has binomial distribution with pdf

f(x)= (x)P @a-pPmr, x=0,.1,2,...,n
0 ,otherwise.

i) The MGF of Xis
M, (1) =E(e")
:Zi:etx(z)PX(l_ P)nfx
Zn:(g)(Pet)*(l— Py

=[1-P)+Pe']"

i) The mean and variance are

M (t) =[(1- p)+ pe']"

M'(t) = npe'[(1- p) + pe']""

S E(X)=M'(0)=np[l-p+ p]"*
=np.

Differentiating again we have
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M*"(t) = n(n-1)[L~ p) + pe']"*(pe')* + npe'[(1 - p) + pe']""

~M"(0)=n(n-DL-p+p]"*p® +npll-p+p]""
=n(n-1)p®+np

therefore,the variance is

V(X)=M"(0)-[M"'(0)]
=n(n-1)p® +np-(np)*
= (np)* —np* +np—(np)*
=np-np*
=np(-p)
=npaq.

Example 13.5

Let a discrete random variable X have a Poisson distribution with pdf

Xa—A
f(x):“I . Xx=012,.. A>0.
X!

0, otherwise

Obtain (a) the MGF (b) mean and variance.
Solution

(&) The moment generating function is

M, ()= E(e*) =D e" ﬂ“—lel
x=0 X

(b) The mean and variance are derived as follows
M, (t) =e*“? we have
M I(t) _ eﬂ.(e‘—l) (ﬂet)

and
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M (t) =D (e') + (de')?e Y.
SO,

M*(0) = A

and

M*"(0) = A + A2

Therefore,

V(X)=M"(0)-[M"'(0)F
=A+ =X
=A

That is, u=o0%=1>0.

Example 13.6

A continuous random variable X has an exponential distribution with pdf

f(x)=2e**, x>0,1>0
0, otherwise.

Find (i) the MGF (ii) the mean and variance
Solution
(i) The mgfis

M, (t) = E@e") = Tetx f (x)dx

= Ietxxle’“dx = lje""t)xdx
0 0

—(a-t)x 1%
=/1[ © } % jo-q]
0

-(2-9 (4-1)

-1
:L{l_i}
A-—t A

(i) The mean and variance:

t -1

So,

191



oy 1, t]
M(t)_l{l J

.. the meanis

=M=

vo- 1]

-3
e
A A
" 2

So,
V(X)=M"(0)-[M"(0)]°

Example 13.7

A continuous random variable X has normal

(x-p)?
f(x) = e 2 | —o<X<o®
o271
0, otherwise.

The moment —generating function is derived as follows:

l 7(X_/‘)2

e 2 dx
o\2r

J.oo ——(x ,u) +tx

M, (t)=E(e”) = ﬁe‘x

dx

m/_

By introducing (t(x — ) +tu) =tx, we have

) 1 . _i(x—y)zﬂ(X—#)*lﬂ
Mx(t)—aﬂfe dx
e re_;z(x_#)zmx_ﬂ)
- o2
) et J_w e_T;[(X_#)Z_ZGZt(X_y)] X —————__
o2
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We now complete the square in the exponent of (1) w.r.t. (x— ). That is,

(X—1)* =20°t(x— p) = (X — p)* = 25°t(x — p) + o *t? —o*t?
=(x-pu-oct)y’ —-c'tP ————————- (2)

By substituting (2) in (1), we have

pHt J.oo —é[(x—,u—azt)z—o-“tz]
e

M, (t) = dx
X o2
e#t " 7L(X7ﬂ7021)2+04t2
_ 2072 2072
— _[ e dx
o2 T

ot?
eﬂteT '[OO —é(xfﬂfﬂzt)zd
= e X
oN2m %

We can see that the last integral is the area under the normal curve with mean u + ot

and variance o2, which is equal to 1. Therefore,

242
ot

2)'

M (t) = exp(ut +

Now to derive the mean and variance of this distribution using the MGF method, we
have

242

l\/lx(t)=e><|o(ut+62t ).
So,
O_ZtZ
M'(t) = exp(ut + — )X (1 + o)
242
= (u+o’t)exp(ut + Uzt )
and
242 2,2 -
M (t) = u(u + o *t)exp(ut + Gzt )+0+0t(u+o’t)exp(ut + Gzt )+ o2 exp(ut + Gzt ).

So, M'(0) = u,

M'"(0) = p? + o?

Thus

variance = M"'(0) — (M '(0))?
=,112 g —,U2
= 0'2.
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Example 13.8

Let a continuous random variable X have gamma distribution with pdf
a-1,-xIp

f(x) = Xa—e’
BT (a)

0, otherwise.

a>0,4>0

where o and £ are the parametersand
I'a)= j X “Fe~*dx
0

=(a-DI'(x-1)
=(a-1)!

The moment generating function is

M (t) — E(etX) — 1 J‘w X a—le—x/ﬂetxdx

BT (a)*
_ 1 JwX“’lef(%ft)xdx
BT ()™
nowlety:x(%-t)zx(%} t<
then x=i, dx:idy.

(1-p9 1-p

. Y
MO = e (l—ﬂt] ° Kl—ﬂtjdy
_ 1 * ﬂ ’ a-1,-y
= G [1—ﬂtj e

1 R
e R

1 Y .
= , providedt < <.
(1—&) P Z
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The mean and variance are derived from the MGF as follows:

M (1) = (ﬁ] —@-py

M) = —al- A) ()
- ap(l- pr)y

So,

u=M'(0)=ap.

Also,

M"(t) = ~a -Lap)L- /1) “* (-5)
=~(a+D(ap)L- )" (-p)
= (@ +Dep*1-p)™
- M"(0) = (a +)ap’
So, the variance is
o’ =V(X)=M"(0)~[M'(0)]*
= (@ +Dap’ —(ap)’
=(af)’ +ap’® —(ap)’
= aﬂz
While we have seen that the moment generating function is a useful device for
computing moments of random variables and their distributions, its main significance
arises from the uniqueness theorem, which states that a moment- generating function

uniquely determines it’s distribution function. And it is often easier to find the moment
generating function of a random variable than its distribution function. For instance,

consider the random variable Z = X +Y,where X and Y are two independently

distributed random variables. It then follows from the definition of a moment —
generating function that the mgf of Zis the product of the moment- generating

functions of X andY . This is shown in the next section. No such simple relationship
exist between the distribution function of Z and those of X andY .

However, once the mgf of Zis known, it is theoretically possible to determine its
distribution functions.

3.2.1.1 MGF of Sums of Independent Random Variables

If X and Y are two independently distributed random variables having moment
generating functions M, (t) and M, (t) respectively, then

My () = My (.M, (1)
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That is, the moment generating function of a sum of two independent random variables
is the product of the moment generating function of the summands.

Proof
The joint pdf of X, Yis f(x,y).
My () =E@E™™)
= J'Y J'X e' X f (x, y)dxdy
- J‘Y L e™e¥ f (x, y)dxdy
- J'Y J'X e%e” f, (x) f,(y)dxdy, since X and Y are independent.
- _[X e™f, (x)de'Y e f, (y)dy,
=M, (t)M, (1)

Extension of this property to any finite number of independent random variables (the
summands) is easily made by induction. That is, if X, X,,..., X, are independent,

then M X1+ Xo+..4+X, (t) = E[]-M X (t) .

Moreover, if the random variables have identical distributions, say, with common
mgf, M, (t) then

M Xq+X o+ 4 X, = [M X (t)]n'

Example 13.9

Let X,,X,,.., X, be independent sequence of random variables from a Bernoulli
population with parameter p , each with the distribution

P(X =x) = p*q*™*, x=0,1.
The mgf of this distribution is

M, (1) = E(e) = 3 e"P(x)

—e'0q 4 t®

=+ pe'.

Y

So, the moment generating function of the sum X, + X, +,...,.+ X, IS

M X+ X+ 4+X, (t) = [M X (t)]n
=[q+ pe']"

196



3.2.2 Factorial Moment Generating Functions

This is another useful generating function in determining the moments of a random
variable X . For a discrete random variable X , taking values 0, 1, 2, . . . Let
p, = P(X =1). Then this function is defined as

p(t)=E(tX)=§tka.

This generates the factorial moments, «, of the random variable X as the ki
derivative of p(t) evaluated att =1.

Such derivatives are
p'(t) = E[Xt*],
p"(t) = ELX (X 1)t 7],
P (t) = EIX (X =1)(X = 2)t* ]
and so on, with values att =1given by
p'() = E[X],
p"(1) = E[X(X -1)],
p™' (@) = E[X(X -D(X -2)].
And in general, the k™" factorial moments are given by the formula

dt*
so that
oy dp(1)
p (1) - dtk t=1
= E[X(X -D(X —=2)..(X =k +1)]
=a.

Clearly, knowledge of the factorial moments is equivalent to knowledge of the raw
moments; the factorial moments are connected with the raw moments, i, by the
relations

a, = E(X) =
a, =E[X(X=D]=p, — 1,
ay = E[(X (X —1)(X —2)] = 5 —3u, + 211,
a, = E[X(X =1)(X =2)(X =3)] = sty — 65 +11u, —614
and soon.
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or conversely,
=y
Hy'=a, +a,
Uy'=0, +3a, +a
U =0, +60,+Ta, +a,.

etc.

Example 13.10

A random variable X has Binomial distribution. The factorial moment generating
function is derived as

n

PO =Et) =Yk p*a-p"*
> (2 )pt) - p)”

(q+pt)".

So,
P'(t) =np[1- p)+ pt]"*
p(t) = np2 (n=-D[L-p)+ pt]n—z
p"(t) =np*(n—-)(n-2)[L- p) + pt]"*

from which, by substituting t =1, we obtain
P@=a,=np
p@)=a,=np’(n-1)
p @ =np*(n-1(n-2)
and so on.
So that
u=E(X)=np,
=E(X*)-E(X)?
= E[(X (X =D]+E(X)-E(X)?
=np*(n-1)+np-(np)’
=np-np°
=npq.
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Example 13.11

Let X have a Poisson distribution with mean value 4. The f.m.qg.f. is given by

o0 X

P (1) =E(t") =;tX %e‘l

& (A
-y O

— e—ielt — el(t—l).
The derivatives are
P'(t) = 1e*tD
p" (t) — AZel(tfl)
p (t) — lﬁs‘eﬂ(tfl)
and,
pk (t) — /fikel(t—l)
so that
p (1) =2
In particular,

EX)=u=p @) =4,
E[(X(X-D]=p =2
so that
oy =E(X*)-E(X)?
= E[(X(X —=1)]+ E(X) - E(X)?
P+ A=
=A.
In conclusion, for some random variables (usually discrete), factorial moments are

easier to calculate than raw moments and they provide very concise formulae for the
moments of certain discontinuous distributions of the binomial type.

3.2.3 Cumulant Generating Functions (c.g.f)

Let M, (t) be the moment generating function of a random variable X , then, the
cumulant generating function is defined as

K(t) =InM, (t).

That is, the logarithm of the moment generating function is called the cumulant
generating function.
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If E(X")exists, then K(t) admits the Taylor expansion

tz t3 0 tl’
K(t)ZInM(t):tkl"'Ekz +§k3 +...:Z—k

r
r=0 r!

(sinceln M (0) = In(1) = 0).

where

' 1 '
K =InM =—M
O=IMy O =5 )

from which

K'(0)=——M'(0)=M (0), (sinceM(0)=1)
M (0)

=k =m
and
" 1 " )
K ()= > [MOM () -[M ©)]
(M(®)]
from which
" 1 n ' 2
K (0)= 5 [M(OM (0)-[M (0)]
[M(0)]
1 -2
=ky=uy -1y
and so on.
That is,
k1 = /Jll
Ky = ity —

' [ 3
Ky = 3 =3pu 1, + 244
and so on.

And in terms of the central moments

k, = p
K, = 1,
Ky = #13
K, —/U4_3ﬂ22

etc.
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Example 13.12

Let X have Poisson distribution with mgf
M (t) =e*© ™,

The cumulant generating function is

K(t) =InM(t) = A(e' —1)

g

r=0 r!
o0 tl‘
‘4§ﬁ]

k, =4, forallr.

So

Thus the cumulants of this distribution are equal to A.
Example 13.13

Let X have a Binomial distribution with moment generating function

M (t) :(q+ pe‘)”.
The cumulant generating function is

K(t)=InM(t) = In[q + pe']"

=t(np) +%tz[np(1— p+np)—n®p?]+...
So,

K, = 4, =np

k, =np(l— p+np)—n?p? =np(l- p)

k, =np(l- p)1-2p)

etc.

That first cumulant is the npand subsequent cumulants are given by the recurrence
relation

dk
K., = .
r+l pqdp

In conclusion, cumulant generating function provides an easiest way of computing
wand o for a given distribution.

3.2.4 Characteristic Function
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The characteristic function is defined as the expected value of the random variable
e™, wheretisrealandi=+/—1.

Definition

The characteristics function of a random variable X with probability density
function, f (x) is defined as

_ 3 e"™p(x) (discretecase)
$(0) = E@E"™) =1
L e™ f (x)dx (continuous case)

where idenotes the imaginary unit and tis an arbitrary real.

Every distribution has a unique characteristic function and to each characteristic
function, there corresponds a unique distribution of probability.

If X and Y are independent random variables with characteristic functions ¢, (t) and
@, (t) respectively, then the characteristic function of (X +Y)is given by

¢X+Y (t) = ¢x (t)@ (t)
The characteristic function has the advantage that it always exists since

itx

e

=|Costx +iSintx =1,

continuous and bounded for all X.

If E(X")exists, then, it is possible to express ¢(t) as a Maclaurin series. That is

() = 4(0) + 14 (0) + %tzﬁ' (0) +%t3¢"' 0)+..

where u is the nth moment about origin and x4, =1. This indicates that the

characteristic function generates moments in the same way as the moment generating
function, except that each differentiation introduces factor of i. Thus the r'™ moment
can be found as the r'" derivative of ¢(t) evaluated att = 0, and

pe = (0)"dg(0)/dt"| = ()" ¢" (0).
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Example 13.14

A continuous random variable X has pdf given by
f(x)=e™, x>0.

The characteristic function is

¢(t) — E(eitX) — J‘:eitxefxdx

_ J‘O"’e-(l—it)xdx

_ -1 e—(l—it)x ®
(1—it) 0
1

1-it

Example 13.15

Let a continuous random variable X have Gamma distribution with pdf given by
a-1,-xI8
f)=2% " x50,a>0 550
BT (a)

The characteristic function is

itx a-1.,-xIp 4itx
#(t) = Ee )—ﬂr( [ xe o
N waa‘le_(?mxdx
LTa
ﬁit

set y= x(——|t)_ ( )

then, x=—""— ( J
—ﬂlt 1-pit

VRSN S i &)
0= [ ﬂ] (1 ﬂ.Jy
1 °° ﬁ
pTa® \1-pit
( 1 J
—Ta
1-pit) Ta

=(L-pit) ™,
gt = ([L-pit)”

Example 13.16
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Given that f(x)=4e ™™, Ax>0.
The characteristic function is
d(t) =E(E™) =1 j:ei“e-“dx
=1 J':e‘“‘”’xdx

0

— -A e—(/l—it)x
(i —it) 0

. -1
L(l_tj |
A—it A

Self Assessment Exercises

1. A continuous random variable X has pdf given by f (x) =e™, x> 0. Find the
characteristic function

Self Assessment Answers

4.0 Conclusion

This unit discussed the measurements of the characteristics of a distribution, called
the moment, which provides information about the distribution function. Different types
of moments were considered. You also learnt about Generating function, a simpler
method of computing moments.

5.0 Summary

In this unit, you have learnt the following:

[) Moments as a way of measuring the characteristics of a distribution. We discussed
about the moment about the origin (the n™" raw moment) of a random variable X ,

or of the corresponding distribution f (x), defined as x, =E(X"), n=1 2,... as
well as the n™ moment about the mean (i.e., the central moment) is defined as

Hy = E((X _,u)n)1n =12, ..

2) Generating Functions and its variants as methods of computing moments from a
generating function. A generating function is a transform of density and probability
functions that simplifies analyses for certain sums of random variables.

6.0 Tutor-Marked Assignment (TMA)

1. Let a continuous random variable X have Gamma distribution with pdf given by
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X eI/ : - :
f(x)= —e' x>0, a >0, #>0. Find the characteristic function.

BT(a)
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Answer to SAAS

Module 4: Unit 1

1. Let X be a discrete random variable with mean x and variancec?. Then if
£ >0 is any positive real number, we have

P(|X —y|25)sv(x).

2
2. False
3. The expected value, or the mean.
4. 1 (Unity)
Module 4: Unit 2
1 X ~ N(u,a—zj
n
Module 4: Unit 3
1. The point and interval estimation.
2. i) Unbiasedness ii) Efficiency, iii) Consistency iv) Small (minimum) mean

square error.
3. i) Method of moments
i) Method of Maximum Likelihood
iif) Method of Least Squares
4. i) Always inexact
i) May contain errors
iif) No information about the precision of the estimate.
5. Null and Alternative hypothesis, denoted by Ho and Hzi respectively.
6. Two; Type | and Type Il errors.

7. a , the size of type | error is small; and for which g, the size of Type Il error, is
also very small (ideally zero).

8. Fixing a and minimizing 5.
9. Type Il error
10. Type | error

11. i) State the null and alternative hypotheses.

()  Choose a suitable test statistic T(e.g., Z.t, 7. , etc.).
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(i) Determine the critical (rejection) regionw .
(i)  Based on sample information, compute the value t_of your test statistic
chosen in (ii) above.

(iv)  Make decision. If the observed value of the test statistic falls in the
rejection region, i.e., ift, e w, we reject H, at a significant levela and

say that the test is significant, otherwise we acceptH, .

Module 4: Unit 4
1. Moment is a device for measuring the characteristics of a distribution.

2. It provides informationabout the distribution function
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