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ABSTRACT 

In this research, the Block Hybrid Backward Differentiation Formulae (BHBDF) for the 

step number K= 4,5 and 6 were developed for the solution of  general second order  

ordinary differential equations ODE.  The Order of the Block methods are 5,6 and 7 

respectively. The Continuous formulations of this methods were done through 

interpolation and collocation approaches. The power series polynomial was used as 

basis function at some selected grids and off-grids points. The continuous schemes were 

further evaluated at those points to produce discrete schemes which are combined to 

form block method. Analysis of the basic properties of the discrete schemes investigated 

showed consistency, zero stability and convergence of the proposed block methods. 

Numerical examples were solved to examine the efficiency and accuracy of the 

proposed method. The results showed that the proposed methods with relatively small 

errors performed favorably in comparison with the existing methods.  
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CHAPER ONE 

1.0                                                   INTRODUCTION 

1.1          Background to the Study  

Some real-life physical problems that arise in various fields of study, be they 

engineering, medicine, the sciences, or others, when modeled mathematically, lead to 

differential equations (Abada et al., 2017). Many of these equations do not have 

solution in closed forms. There is need to provide good numerical methods to 

approximate their solutions. Development of linear multi-step methods (LMMs) for 

solving ordinary differential equations (ODEs) can be generated using some methods 

such as Taylor series, numerical interpolation, numerical integration and collocation 

techniques. Block methods for solving ordinary differential equations (ODEs) have 

been proposed by Milne (1953) The Milnes idea of proceeding in blocks was developed 

by Rosser (1967) 

The general second-order ordinary differential equation of the form 

        (1.1) 

Where is assumed to satisfy a Lipchitz condition as given in Henrici (1962). 

A differential equation can be defined as an equation that contains a derivative or 

involve a dependent variable (y) an independent variable (x) and one or more 

differential co-efficient of y with respect to x. An example of a differential equation is 

𝑦′′ = 2𝑥𝑦. Differential equations are categorized to two forms which are: Ordinary 

Differential Equations (ODEs) and Partial Differential Equations (PDEs). An ordinary 

differential equation (ODEs) is one in which the unknown function is dependent 

variable with a single independent variable. An Ordinary Differential Equations (ODEs) 

is classified according to the order of the highest derivative with respect to the 

dependent variable appearing in the equations. The most important cases for application 

     , , , ,o oy f x y y y a y y a     

f



2 
 

are the first and second orders. Partial Differential Equations (PDEs) are differential 

equation in which the unknown function is a function of multiple independent variables 

and the equation involves its partial derivative.  

Several numerical methods have been designed and proposed in literature for solving 

second order ordinary differential equations. For example, Areo and Adeniyi (2013) 

developed a self-starting linear multistep method and applied it to solve second order 

IVPs of ODEs directly. Two intra step grid points were considered by means of 

collocation and interpolation approach. Omar and Abeldrahim (2016) proposed a single-

step hybrid block method of order five to solve second order ODEs. In the work, three 

off step points were approximated by collocation approach. 

In the work by Olabode and Momoh (2016), continuous hybrid multistep method with 

Legendre polynomial as the approximate solutions was investigated to obtain the 

approximation of the solution of second order ODEs. Also, two intra step grid points 

were considered by means of collocation and interpolation approach. Moreso, Sunday et 

al. (2014) developed numerical solution of stiff and oscillatory first order differential 

equations, using the combination of power series and exponential function to produce a 

new numerical integrator for the solution of stiff first order ODEs. Most of the methods 

proposed for the solution of stiff problems are numerically unstable unless the step size 

is taken to be extremely small and the adoption of implicit A-stable schemes is better 

for the solution of stiffness problems.  

Especially methods for the numerical solutions of the second order Ordinary 

Differential Equations (ODEs). The integer k is called the step number of the method 

for k ≥ 1  is called a multi step or k –step method. Linear multi step method of step 

number k or a linear k-step method, can be written in the general form as follow: 
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∑𝛼𝑗𝑦𝑛+𝑗

𝑘

𝑗=0

= ℎ𝑚∑𝛽𝑗

𝑘

𝑗=0

 𝑓(𝑥𝑛+𝑗 )                                                                                         (1.2) 

Where 𝛼𝑗 and 𝛽𝑗are continuous coefficients to be determined h is the step size 

k is the step number. M is the order of the differential equation. 

1.2 Statement of the Research Problem 

Numerical analyst are usually faced with the challenge of obtaining starting or initial 

values for Linear Multistep Methods (LMMs) when step number  in solving 

differential equations numerically before now, one step methods like Taylor series, 

Euler method Runge-Kutta or Trapezoidal methods are used to obtained the starting 

values for such methods (Omar and Abeldrahim, 2016). The hybrid method is not 

exempted from this problem as it shares the same standard methods (Ibrahim et al., 

2020). The need for special predictors to predict the off-grid values in hybrid forms of 

the Linear Multistep Methods (LMMs) (Sunday et al., 2014). The discrete schemes 

obtained from the continuous formulation of k-step block hybrid backward 

differentiation formulae can be used in block form to obtain the block solution.  

1.3    Aim and Objectives of the Study 

The aim of this research is to developed block hybrid backward differentiation formulae 

for solving class of second order ordinary differential equations (ODEs). Hence the 

following objectives are to: 

1.  Developed block hybrid backward differentiation formulae for step numbers k=4, 5 

and 6 with two off-grid points at interpolation. 

2. Perform analysis of the basic properties of the proposed method in terms of order, 

error constant, zero stability, consistency and convergence. 

3. Apply the developed block hybrid backward differentiation formulae to solve some 

second order ordinary differential equations (ODEs). 

2k 
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4. Compare the results of the proposed methods with some existing methods and exact 

solutions.  

1.4 Significance of the Study 

The development of Block Hybrid Backward Differentiation Formulae (BHBDF) for 

solving a class of second-order ordinary differential equations (ODEs) holds 

considerable significance within the realm of numerical methods and mathematical 

modelling (Kayode and Obarhua, 2017; ). This research addresses a crucial need for 

efficient and accurate techniques to tackle the complexities inherent in solving general 

second-order ODEs. 

Advancement of Numerical Methods: The study contributes to the advancement of 

numerical methods for solving ODEs. The creation of Block Hybrid Backward 

Differentiation Formulae introduces a novel approach that combines the strengths of 

backward differentiation and block methods. This innovation expands the toolkit 

available to researchers and practitioners, enabling them to tackle a wider array of 

differential equations more effectively. 

Enhanced Solution Accuracy: The development of Block Hybrid Backward 

Differentiation Formulae has the potential to offer enhanced accuracy in solving 

second-order ODEs. By incorporating power series polynomials as basis functions and 

utilizing interpolation and collocation approaches, the study seeks to provide solutions 

that are not only accurate but also adaptive to the characteristics of the problem at hand. 

Broad Applicability: The research's focus on general second-order ODEs underscores 

its broad applicability. Many scientific disciplines, including physics, engineering, 

biology, and economics, rely on ODEs to model real-world phenomena. The methods 

developed in this study could find practical utility across these domains, enabling 

researchers to derive more accurate and insightful results from their models. 
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In conclusion, the development of Block Hybrid Backward Differentiation Formulae for 

solving second-order ordinary differential equations signifies a substantial contribution 

to the field of numerical methods and mathematical modeling. Its potential to enhance 

accuracy, broaden applicability, and strike a balance between efficiency and precision 

reinforces its importance in addressing complex ODEs prevalent across various 

scientific disciplines. The rigorous analysis and validation offered by the study further 

solidify the significance of the proposed methods within the realm of practical 

implementation and theoretical advancement. 

1.5 Scope and Limitation of the Study 

This research is restricted to solving second order ordinary differential equations 

(ODEs). The major focus of this study is on developing k-step of block hybrid 

backward differentiation formulae (BHBDF) for solving some class of second order 

ordinary differential equations (ODEs) with two off-grids points. The performance of 

these schemes in the solution of differential equations shall be checked and it is 

restricted to numerical solutions of 𝑘 = 4, 5 𝑎𝑛𝑑 6 with two off-grids points at 

interpolation point which is only used to obtain  numerical schemes. 

1.6 Justification for the Study 

The justification for this study rests upon the need to address existing challenges in 

numerical methods for solving second-order ODEs and the potential benefits that the 

development of Block Hybrid Backward Differentiation Formulae offers. The diverse 

applications, complexities of real-world problems, and the advancement of 

computational techniques all underscore the relevance and significance of this research. 

The empirical validation and potential for future research further affirm the importance 

of exploring this innovative approach to solving ODEs (Jator, 2001).  This research 

would contribute to numerical analysis through the formulation of new classes of 
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efficient consistent block hybrid backward differentiation formulae for the direct 

solution of ordinary differential equations. 

1.7 Definition of Terms 

Linear Multistep Methods (LMMs): Given a sequence of to  be an approximation 

to  and let .If a computational method for determining the sequence 

 takes the form of the linear relationship between  

𝑦𝑛+𝑗,𝑓𝑛+𝑗 𝑖.𝑒∑𝛼𝑗𝑦𝑛+𝑗

𝑘

𝑗=0

= ℎ𝑚∑𝛽𝑗

𝑘

𝑗=0

 𝑓(𝑥𝑛+𝑗 ) 

(1.2) Then (1.2) is a linear multistep method (LMM) of step number k. 

Order of Linear Multistep Methods: A LMMs is said to be of order 𝜌 if  

 

𝑐0 = 𝑐1 = 𝑐2… = 𝑐𝑝 = 0 , 𝑐𝑝+2 ≠ 0 is the error constant  

Error Constant: The term  is called error constant and it implies that the local 

truncation error is given by  

Consistency of LMM: A Linear Multistep Method is said to be consistent if it has the 

order and satisfies the following axioms or conditions 

i.           ∑ 𝛼𝑖
𝑘
𝑖=𝑜 = 0 

ii.          𝜌(𝑟) = 𝜌′(𝑟) = 0 

iii.        𝜌′′(𝑟) = 2! 𝜎(𝑟) 

Where 𝜌(r) and 𝜎(𝑟) are the first and second characteristics polynomial of our method 

respectively  

  

ny

 ny x  ,n n nf x y

 ny

     
0

:
k

j n j n

j

L y x h y x jh h y x jh 
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Zero stability of Hybrid Block Methods: The Hybrid Block Method is said to be zero 

stable if the roots of of the characteristic polynomial  satisfies 

 and every root with  has multiplicity not exceeding two in the limit as 

 

Convergence of linear Multistep Methods: a LMMs is said to be convergent if and 

only if it satisfies both consistency and zero stability. 

Absolute Stability: The linear multi-step method is said to be absolutely stable if its 

region of absolute stability contains the whole of the left hand half 𝑅𝑒(ℎ𝞴) < 0  𝑜𝑟for a 

given  and for all the root of satisfy

and it is absolutely unstable for that  otherwise. 

Absolute Error: Let 𝑋∗ be any estimate to the number X, the absolute error in 𝑋∗ is 

referred to ∆=∣ 𝑋 − 𝑋∗∣, in which ∆ is distant between the numbers X and 𝑋∗. 

 Collocation Point:  a point at which the derivative of the function is evaluated. 

Interpolation Point:  a point at which the solution function is evaluated. 

Degree of Differential Equation:  the highest power which the differential equation is 

raised. 

For example(
𝑑𝑦

𝑑𝑥
)
2

− (
𝑑𝑦

𝑑𝑥
) + 𝑦 = 0 

The degree of the differential equation above is two 

Ordinary Differential equation (ODE): a differential equation that consists of   

functions of an independent variable and its derivatives.  

For example     
𝘥𝑦

𝘥𝘹
− 𝑥𝑦 = 0. 

 

 

R   det op R RA A   

1R  1oR 

0h
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CHAPTER TWO 

2.0                                            LITERATURE REVIEW 

2.1 Review of Previous Related works 

2.1.1 Linear multistep methods 

A linear multistep method (LMMs) is known for solving ordinary differential equation 

(ODEs) and also higher order differential equations. The introduction of continuous 

collocation schemes is of more importance as better global error can be estimated and 

approximations can be equally obtained, the gap between the discrete collocations’ 

methods and the conventional multistep method is bridged (Yahaya and Tijjani, 2015). 

In recent times, discrete methods have been extended to continuous forms based on 

multistep collocation and by this extension, there is increase in their ability to solve the 

ordinary differential equations (ODEs): the discrete ones are self-starting they overcome 

the  problems of overlap solution models usually related with multistep finite difference 

methods and on the same fixed meshes. The higher order methods can be applied 

successively by selected different points of the step number. Differential equations first 

came in to existence with the invention of calculus by Newton and Leibnitz. Isaac 

(1671) listed three kinds of differential equations: 

          (2.1) 

          (2.2) 

         (2.3) 

In all the three classes, y is an unknown of  (or of  and ), and  is a given 

function. He solved these equations using infinite series and discussed  the non- 

uniqueness of solutions. 

( )
dy

f x
dx



( , )
dy

f x y
dx



1 2

1 2

y y
x x y

x x

 
 

 

x 1x 2x f
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The first two classes contained only ordinary derivatives of one or more dependent 

variables, and are called ordinary differential equations (ODE). The third class involved 

the partial derivatives of one dependent variable which is known as system of partial 

differential equations (PDEs). Jacob Bernoulli proposed the Bernoulli differential 

equation in 1695. This is an ordinary differentiation equation of the form

. Differential equations are among the most important 

mathematical tools used in producing models in physical sciences, Biological sciences, 

and Engineering. Over the years, several researchers developed methods in finding 

analytical solutions of initial value problem (IVP) in ordinary differential equations 

(ODEs) of the form. 

      (2.4) 

The improvement of numerical methods for the solution of initial value problem (IVP) 

in ordinary differential equations (ODEs) of the form (2.4) gave mount to two major 

discrete variable methods namely: single step (one step) methods and multistep 

methods, most especially the linear multistep method. The single step methods are very 

low order of accuracy and they are suitable for first order IVPs of ODEs. Such as 

Euler’s methods, Runge-kutta methods etc. 

The numerical solution of higher order single step methods such as Runge-kutta 

methods, in terms of the number of function evaluation per step, is sacrificed since more 

function evaluations are required. Hence, solving (2.4) using any single step methods 

means reducing it to an equivalent system of first order IVPs in ODEs which increase 

the scale of the problem, thus increasing its size, reducing to first order is ineffective 

due to computational burden and also uneconomical arising from computer time 

wastage and gives results of low accuracy. 

   1 ny p x y Q x y 

     '' ' ' '

0 0 0 0, , , ,y f x y y y x y y x y  
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However, Linear Multistep Methods include methods such as Numerov method, 

Adams-Bashforth method, Adam-Multon method. These methods give more accuracy 

and are appropriate for the direct solution of (2.4) without necessarily reducing it to an 

equivalent system of first order IVPs of ODES. 

Ordinary Differential Equations of the form (2.4) are examined by some authors 

including Jator (2001), Mohammed (2010); Areo and Adeniyi (2013), Adamu et al. 

(2019) and Ra’ft et al. (2020) among others, by first reducing them to an equivalent 

system of first order ordinary differential equations and then using any appropriate 

numerical method to solve the resultant system. The disadvantage of this is that it 

consumes more time, human efforts and computer program to check the accuracy of 

these methods are usually complicated (Adamu et al., 2019).  

Moreso, in consideration of these setbacks, we considered a method that can solve 

LMM without reduction. Some prominent scholars have made efforts to solve higher 

order initial value problems of second order ordinary differential equations by a number 

of different methods, these includes the work Momoh et al. (2014), Abdelrahim et al. 

(2016), Adamu et al. (2019) and Ibrahim et al. (2020) among others. The direct 

methods are self-starting methods which are formulated in terms of LMMs called block 

methods. The block method offers the traditional advantage single step methods for 

instance, Rung-Kutta methods of been self starting and allow easy change of step 

length. Another important attribute of the block method is that all the discrete schemes 

are of uniform order and are obtained from a single continuous formula unlike the non-

starting predictor corrector technique.  

Ibrahim et al. (2020) construct two-step second derivative hybrid block backward 

Differentiation formula. The newly proposed scheme was derived based on 
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interpolation and collocation approach. The discrete schemes were obtained from the 

continuous schemes. The derived method is applied to solve non-linear systems of stiff  

ordinary differential equations. Numerical experiments show that the method is suitable 

for stiff differential equations. In this research, we shall adopt the block method 

approach to formulate a second order numerical scheme using power series 

approximation as basis function.  

Other numerical methods that are useful while solving ODEs are the collation methods 

and hybrid methods. In mathematics, collocation method for ordinary differential 

equation is a method for the numerical solution of ordinary differential equations, 

partial differential equations and integral equations. Collocation methods were used 

over the past decades in search of solution to a wide class of ordinary differential 

equations, partial differential equations, Integra-differential equations and functional 

equations. The attractiveness of such methods is owing to their abstract simplicity and 

also large applicability. According to Popov et al. (2017), the method was first proposed 

by Frazer, Jones. The work of Frazer et al. (1938) was dedicated to the solution of 

PDEs. Collocation at the family of orthogonal polynomials is often called orthogonal 

collocation. Orthogonal collocation is the method for the numerical solution of partial 

differential equations. It uses collocation at the zeros of some orthogonal polynomials to 

transform the partial differential equation (PDE) to a set of ordinary differential 

equations (ODEs). The ODE can then be solved by any method (Ramos, 2017).  

Chebyshev orthogonal collocation methods are described by Fox and Parker (1968). 

Special collocation methods are very much related to this form of collocation, Henrici 

(1962). There is a quick improvement as reported in the literature on the use of 

collocation methods on the use of numerical solutions of first order ODEs. The 

multistep collocation techniques involve obtaining solution of a set of function of a 
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linear combination of a function known as the trial function. The analytical solution of 

an IVP is assumed to be approximated by the basis function. The linear combination of 

this basis is required to satisfy the approximation at some certain grid points called the 

collocation points. 

The hybrid method has been anticipated in the literature. The methods share the 

property of utilizing data at other points other than the points the step points 

while retraining uniqueness of the continuous linear multistep methods.  

The Method involves the determination of an approximate solution in a suitable set of 

functions, sometimes called basis function. Hybrid method is not a method in its own 

accurate since particular predictors were needed to estimate the solution of the off-step 

point \and the derivative function as well. In view of the disadvantage mentioned above, 

many researchers focused on efforts in improving the numerical solution of IVPs of 

ODEs. One of the outcomes is the development of a class of methods called Block 

method. The contribution of Bolaji (2017) also proposed for a family of Hybrid 

Backward Differentiation Formulae and a three step Hybrid Linear Multistep method 

for a direct solution of second and third order ODEs and the solution of second order 

IVPs. 

 

2.2 Collocation Method 

A collocation method can simply be described as a method, which involves the 

determination of an approximate solution in a suitable set of functions, sometimes 

called basis function. The approximate solution is required to satisfy the initial or 

boundary conditions along with the differential equations (2.4) at certain points called 

the collocation points. 

 ;n j n j n jhx x x   
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Continuous collocation schemes is of  more importance as better  global error can be 

estimated and approximations can be equally obtained, the gap between the discrete 

collocations methods and the conventional multistep method is bridged. 

In recent times discrete methods have been extended to continuous forms based on 

multistep collocation and by this extension, there is this an increase in their ability to 

solve the ordinary differential equations (ODEs) the discrete one are self-starting they 

overcome the problems of overlap solution models usually related with multistep finite 

difference methods and on the same fixed meshes the higher order methods can be 

applied successively by selected different points of the step number. Obviously over the 

past years, collocation methods evolved as valuable methods for the solution of abroad 

class of problems covering ordinary and partial differential equations, functional 

equations and Butcher (2008) first proposed the collocation method, specifically 

intended for the solution of partial differential equations in two variables, with 

collocation being applied in two variables, with collocation being applied in one 

variable for each fixed value of the second. This actually is a method of lines procedure. 

The work of Kayode and Obarhua (2017) was dedicated to the solution of ODEs. While 

the applicability of collocation method to the solution of partial differential equations 

was mentioned in (Kayode and Obarhua, 2017), not only discussed collocation for both 

ordinary and partial differential equations, but also provided some numerical examples. 

These methods have in common the option of   polynomial for the basis function. 

2.3 Block Methods 

The narrative property of the method that can be briefly discussed in this chapter is that 

of simultaneously producing approximations to the solution of initial value problem at k 

points . Although these methods will be formulated in terms of linear 

multistep methods, it can be observed that they are equivalent to certain Runge- Kutta 

1, 2,n n n Nx x x  
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method and preserve the traditional Runge – Kutta advantage of being self –starting and 

permitting easy change of step length. Their advantage over conventional Runge – 

Kutta method lies in the fact that they are less expensive in terms of function 

evaluations forgiven order blocks method appear to have been  proposed by Mohammed 

and Adeniyi (2014)  use to obtaining starting values of corrector of block method 

consists of a set of all new functions values which are evaluated during each application 

of the relative formula to produce k new set of values of solution in each computational 

step (Akinfenwa, 2011). Although these methods is formulated in terms of linear multi-

step methods, it can be observed that they are equivalent to certain Runge- Kutta 

methods advantage of being self- starting and permitting easy change of step length 

their advantage over conventional Runge – Kutta method lies in the fact that they are 

less expensive in terms of function evaluations forgiven order method, predictor – 

corrector algorithms (Areo and Adeniyi, 2013). 

2.4 Hybrid Methods 

 According to Kayode and Obarhua (2017) numerical analysis has over the years been 

determined on solution at the grid points ignoring what happens at other points than the 

grid points. Searching for higher order numerical methods has led to researchers 

throwing in additional off-step points in the process of formulation. Methods formulated 

using this approach are called hybrid methods, they preserve the self-starting property 

of Runge-Kutta methods as well as being able to provide more solutions at a single 

application. They are also said to be capable of overcoming Dalquist barrier theorem 

which states that a linear multistep method cannot have order greater than k+1 for k odd 

and k + 2 for k even. There have been successful methods developed in this area too. 

Like the methods in (Areo and Adeniyi, 2013; Badmus et al., 2014; Kuboye and Omar, 

2015 and Kayode and Obarhua, 2017). 
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2.5 The Backward Differentiation Formula (BDF)  

Backward differentiation formula (BDF) is a linear multistep method suitable for 

solving differential equations and stiff initial value problems. The Backward 

Differentiation Formulae is an example implicit multistep method with a strange 

uniqueness of function evaluation at a single point. There are other modifications of this 

method such as the blended backward differentiation formula and the extended 

backward differentiation formula. 
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CHAPTER THREE 

3.0             MATERIALS AND METHODS 

3.1 Derivation of the Numerical Schemes 

We present the derivation of some Hybrid Backward Differentiation Formula (HBDF) 

for solving some class of second-order ordinary differential equations of the form 

𝑑2𝑦(𝑥)

𝑑𝑥2
= 𝑓 (𝑥, 𝑦,

𝑑𝑦(𝑥)

𝑑𝑥
)                                                                                                  (3.1) 

         

coupled with appropriate initial conditions 

𝑦(𝑥0) =  𝜑1,
𝑑𝑦(𝑥0)

𝑑𝑥
=  𝜑2                                                                                                    (3.2) 

where 𝑓 is a continuous function such that 𝑓:ℝ𝑛+1 → ℝ𝑛, 𝑥0 is the initial point, 𝑦 ∈ ℝ 

is an 𝑛 −dimensional vector, 𝑥 is a scalar variable, 𝜑1 and 𝜑2 are the initial values.  

In this research, we seek to develop numerical schemes in the form of HBDF as: 

𝑌(𝑥) = ∑𝛼𝑗(𝑥)𝑦𝑛+𝑗 + 𝛼𝑣(𝑥)𝑦𝑛+𝑣 + ℎ
2𝛽𝑘(𝑥)𝑓𝑛+𝑘

𝑘−1

𝑗=0

                                                    (3.3) 

where ℎ is the chosen step size and 𝛼𝑗(𝑥): 𝑗 = 0,1,2, … , 𝑘, 𝛼𝑣(𝑥), 𝛽𝑘(𝑥) are unknown 

continuous coefficients to be determined. For Backward Differentiation Formula, we 

note that 𝛼𝑘 = 1 and 𝛽𝑘 ≠ 0. In this study, we will derive HBDF for the step 

numbers 𝑘 = 4, 5 𝑎𝑛𝑑 6 step numbers of the proposed method using power series 

function as the basis function.  
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3.2 Specifications of the Method  

3.2.1 4-Step block hybrid backward differentiation formulae (4SBHBDF) 

We seek an approximation of the form; 

𝑌(𝑥) =  ∑ 𝛼𝑗𝑥
𝑗

𝑡+𝑐−1

𝑗=0

                                                                                                                  (3.4) 

where 𝑡 is the interpolation points, 𝑐 is the collocation points and 𝛼𝑗 are unknown 

coefficients to be determined. Then, we take  

𝑌(𝑥) = 𝑦𝑛+𝑗, 𝑗 = 0,1,2, … , 𝑘 − 1                                                                                          (3.5) 

𝑌′′(𝑥𝑛+𝑘) = 𝑓𝑛+𝑘                                                                                                                    (3.6) 

To derive 4SBHBDF, we take 𝑡 = 6, 𝑐 = 1 and 𝑥 ∈ [𝑥𝑛, 𝑥𝑛+4]. Therefore, (3.4)  

becomes; 

 

𝑌(𝑥) =  𝛼-0 + 𝛼1𝑥 + 𝛼2𝑥
2 + 𝛼3𝑥

3 + 𝛼4𝑥
4 + 𝛼5𝑥

5 + 𝛼6𝑥
6  

𝑌′(𝑥) =  𝛼1 + 2𝛼2𝑥 + 3𝛼3𝑥
2 + 4𝛼4𝑥

3 + 5𝛼5𝑥
4 + 6𝛼6𝑥

5      

           𝑌′′(𝑥) = 2𝛼2 + 6𝛼3𝑥 + 12𝛼4𝑥
2 + 20𝛼5𝑥

3 + 30𝛼6𝑥
4                                       (3.7) 

Interpolating (3.5) at 𝑥𝑛+𝑖; 𝑖 = 0,
1

2
, 1,

3

2
2, 3 and collocate (3.6) at 𝑥𝑛+𝑖; 𝑖 = 4. This 

results in a system of equations; 

 𝑌′′(𝑥𝑛+4) = 2𝛼2 + 6𝛼3𝑥𝑛+4 + 12𝛼4𝑥𝑛+4
2 + 20𝛼5𝑥𝑛+4

3 + 30𝛼6𝑥𝑛+4
4   

𝑌(𝑥𝑛+𝑖) =     𝛼0 + 𝛼1𝑥𝑛+𝑖 + 𝛼2𝑥𝑛+𝑖
2 + 𝛼3𝑥𝑛+𝑖

3 + 𝛼4𝑥𝑛+𝑖
4 + 𝛼5𝑥𝑛+𝑖

5 + 𝛼6𝑥𝑛+𝑖
6   

𝑌(𝑥𝑛) =   𝛼0 + 𝛼1𝑥𝑛 + 𝛼2𝑥𝑛
2 + 𝛼3𝑥𝑛

3 + 𝛼4𝑥𝑛
4  + 𝛼5𝑥𝑛

5 + 𝛼6𝑥𝑛
6 
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𝑌 (𝑥
𝑛+

1

2

) =   𝛼0 + 𝛼1𝑥𝑛+1
2

+ 𝛼2𝑥𝑛+1
2

2 + 𝛼3𝑥𝑛+1
2

3 + 𝛼4𝑥𝑛+1
2

4  + 𝛼5𝑥𝑛+1
2

5 + 𝛼6𝑥𝑛+1
2

6  

𝑌(𝑥𝑛+1) =   𝛼0 + 𝛼1𝑥𝑛+1 + 𝛼2𝑥𝑛+1
2 + 𝛼3𝑥𝑛+1

3 + 𝛼4𝑥𝑛+1
4  + 𝛼5𝑥𝑛+1

5 + 𝛼6𝑥𝑛+1
6  

𝑌 (𝑥
𝑛+

3

2

) =   𝛼0 + 𝛼1𝑥𝑛+3
2

+ 𝛼2𝑥𝑛+3
2

2 + 𝛼3𝑥𝑛+3
2

3 + 𝛼4𝑥𝑛+3
2

4  + 𝛼5𝑥𝑛+3
2

5 + 𝛼6𝑥𝑛+3
2

6  

𝑌(𝑥𝑛+2) =   𝛼0 + 𝛼1𝑥𝑛+2 + 𝛼2𝑥𝑛+2
2 + 𝛼3𝑥𝑛+2

3 + 𝛼4𝑥𝑛+2
4  + 𝛼5𝑥𝑛+2

5 + 𝛼6𝑥𝑛+2
6  

𝑌(𝑥𝑛+3) =   𝛼0 + 𝛼1𝑥𝑛+3 + 𝛼2𝑥𝑛+3
2 + 𝛼3𝑥𝑛+3

3 + 𝛼4𝑥𝑛+3
4  + 𝛼5𝑥𝑛+3

5 + 𝛼6𝑥𝑛+3
6  

                                                                                                                                    (3.8)  

𝐷𝜓 = 𝑌                                                                                                                                      

where 

𝜓 = (𝛼0, 𝛼1
2

, 𝛼1, 𝛼3
2

, 𝛼2, 𝛼3, 𝛽4)
𝑇

, 𝑌 = (𝑦𝑛, 𝑦𝑛+1
2

, 𝑦𝑛+1, 𝑦𝑛+3
2

, 𝑦𝑛+2, 𝑦𝑛+3, 𝑓𝑛+4)
𝑇

and the 

matrix 𝐷 of the proposed method is expressed as 

D=    (3.9) 

Solving (3.8) using matrix inversion method with the aid of Maple 2017 software to 

obtain the following continuous coefficients; 
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(3.10) 

 

           (3.11) 
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           (3.12) 

(3.13) 
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(3.14) 

 

 

(3.15) 
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           (3.16) 

The values of the continuous coefficients are then substituted in to the proposed method 

in (3.3) to obtain  

𝑦(𝑥) = 𝛼0(𝑥)𝑦𝑛 + 𝛼1
2

(𝑥)𝑦
𝑛+

1

2

+𝛼1(𝑥)𝑦𝑛+𝑦𝑛+1 + 𝛼3
2

(𝑥)𝑦
𝑛+

3

2

+ 𝛼2(𝑥)𝑦𝑛+2 +

𝛼3(𝑥)𝑦𝑛+3 + ℎ
2𝛽4(𝑥)𝑓𝑛+4                                                                            (3.17) 
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24 
 

 



25 
 

 

(3.18) 

Evaluate (3.18) at 𝑥 = 𝑥𝑛+4, gives the discrete scheme as 

𝑦𝑛+4 = −
18515

7563
𝑦𝑛 +

38144

2521
𝑦
𝑛+

1

2

−
95480

2521
𝑦𝑛+1 −

66710

2521
𝑦𝑛+2 +

41608

7563
𝑦𝑛+3 +

356608

7563
𝑦
𝑛+

3

2

+
420

2521
ℎ2𝑓𝑛+2                                                            (3.19)                                     

To obtain the sufficient schemes required, we obtain the first derivative of (3.18) and 

evaluate the continuous function at 𝑥 = 𝑥𝑛, 𝑥 = 𝑥𝑛+1
2

, 𝑥 = 𝑥𝑛+1, 𝑥 = 𝑥
𝑛+

3

2

, 𝑥 =

𝑥𝑛+2, 𝑥 = 𝑥𝑛+3 and 𝑥 = 𝑥𝑛+4 

ℎ𝑧𝑛+4 = −
175261

45378
𝑦𝑛 +

892864

37815
𝑦
𝑛+

1

2

−
146742

2521
𝑦𝑛+1 −

578929

15126
𝑦𝑛+2 +

669398

113445
𝑦𝑛+3 +

1607104

22689
𝑦
𝑛+

3

2

+
1163

2521
ℎ2𝑓𝑛+4         

ℎ𝑧𝑛+3 = −
5235

7563
𝑦𝑛 +

55008

12605
𝑦
𝑛+

1

2

−
58275

5042
𝑦𝑛+1 −

26055

2521
𝑦𝑛+2 +

62759

25210
𝑦𝑛+3 +

118880

7563
𝑦
𝑛+

3

2

+
45

2521
ℎ2𝑓𝑛+4  
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ℎ𝑧𝑛+2 =
1525

15126
𝑦𝑛 −

27136

37815
𝑦
𝑛+

1

2

+
5724

2521
𝑦𝑛+1 +

43195

15126
𝑦𝑛+2 +

3556

37815
𝑦𝑛+3 −

34816

7563
𝑦
𝑛+

3

2

−

3

2521
ℎ2𝑓𝑛+4           

ℎ𝑧𝑛+1 =
2023

22689
𝑦𝑛 −

35936

37815
𝑦
𝑛+

1

2

−
3747

5054
𝑦𝑛+1 −

3305

7563
𝑦𝑛+2 +

4591

226890
𝑦𝑛+3 +

45856

22689
𝑦
𝑛+

3

2

−

1

2521
ℎ2𝑓𝑛+4  

 

ℎ𝑧𝑛 = −
23685

5054
𝑦𝑛 −

134208

12605
𝑦
𝑛+

1

2

−
28206

2521
𝑦𝑛+1 −

12267

5054
𝑦𝑛+2 +

5626

37815
𝑦𝑛+3 +

56896

7563
𝑦
𝑛+

3

2

−

9

2521
ℎ2𝑓𝑛+4  

 

ℎ𝑧
𝑛+

3

2

= −
887

15126
𝑦𝑛 +

5913

12605
𝑦
𝑛+

1

2

−
39861

20168
𝑦𝑛+1 +

8739

10084
𝑦𝑛+2 −

8147

302520
𝑦𝑛+3 +

1831

2521
𝑦
𝑛+

3

2

+
9

20168
ℎ2𝑓𝑛+4  

 

ℎ𝑧
𝑛+

1

2

= −
2840

7563
𝑦𝑛 −

86401

37815
𝑦
𝑛+

1

2

+
84825

20168
𝑦𝑛+1 +

18485

30252
𝑦𝑛+2 −

10217

302520
𝑦𝑛+3 +

56896

7563
𝑦
𝑛+

3

2

+
15

20168
ℎ2𝑓𝑛+4         (3.20) 

      

where 𝑧 is the first derivative of 𝑦. 

Likewise, we further obtain the second derivatives of (3.18), thereafter, evaluating at 

𝑥 = 𝑥
𝑛+

1

2

, 𝑥 = 𝑥
𝑛+

3

2

, 𝑥 = 𝑥𝑛+1,𝑥 = 𝑥𝑛+2 and 𝑥 = 𝑥𝑛+3 to obtain; 

𝑦𝑛+3 =
64139

92191
𝑦𝑛 −

400032

92191
𝑦
𝑛+

1

2

−
1010475

92191
𝑦𝑛+1 +

679401

92191
𝑦𝑛+2 −

1261792

92191
𝑦
𝑛+

3

2

−

81

3179
ℎ2𝑓𝑛+4 +

22689

92191
ℎ2𝑓𝑛+3  
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𝑦
𝑛+

1

2

=
10433

14364
𝑦𝑛 −

1145

2128
𝑦𝑛+1 −

473

1064
𝑦𝑛+2 +

1637

57456
𝑦𝑛+3 +

4409

3591
𝑦
𝑛+

3

2

−
31

44688
ℎ2𝑓𝑛+4 −

2521

11172
ℎ2𝑓

𝑛+
1

2

  

𝑦𝑛+1 = −
785

24597
𝑦𝑛 +

4384

8199
𝑦
𝑛+

1

2

−
193

8199
𝑦𝑛+2 −

23

24597
𝑦𝑛+3 +

12832

24597
𝑦
𝑛+

3

2

+
1

24597
ℎ2𝑓𝑛+4 −

2521

24597
ℎ2𝑓𝑛+1          

𝑦𝑛+2 = −
5353

15471
𝑦𝑛 +

1312

573
𝑦
𝑛+

1

2

−
8269

15471
𝑦𝑛+3 +

88736

15471
𝑦
𝑛+

3

2

+
19

3438
ℎ2𝑓𝑛+4 +

2521

3438
ℎ2𝑓𝑛+2  

           (3.21) 

3.2.2 5-Step block hybrid backward differentiation formulae (5SBHBDF) 

To derive 5SBHBDF, we take 𝑡 = 7, 𝑐 = 1and 𝑥 ∈ [𝑥𝑛, 𝑥𝑛+5]. Therefore, (3.4) 

becomes; 

𝑌(𝑥) =  𝛼-0 + 𝛼1𝑥 + 𝛼2𝑥
2 + 𝛼3𝑥

3 + 𝛼4𝑥
4 + 𝛼5𝑥

5 + 𝛼6𝑥
6 + 𝛼7𝑥

7                    (3.22) 

Interpolating (3.5) at 𝑥𝑛+𝑖; 𝑖 = 0,
2

5
1 
6

5
, 2, 3,4 and collocate (3.6) at 𝑥𝑛+𝑖; 𝑖 = 5. This 

results in a system of equations; 

 𝑌′′(𝑥𝑛+5) = 2𝛼2 + 6𝛼3𝑥𝑛+5 + 12𝛼4𝑥𝑛+5
2 + 20𝛼5𝑥𝑛+5

3 + 30𝛼6𝑥𝑛+5
4  + 42𝛼7𝑥𝑛+5

5  

𝑌(𝑥𝑛+𝑖) =    𝛼0 + 𝛼1𝑥𝑛+𝑖 + 𝛼2𝑥𝑛+𝑖
2 + 𝛼3𝑥𝑛+𝑖

3 + 𝛼4𝑥𝑛+𝑖
4 + 𝛼5𝑥𝑛+𝑖

5 + 𝛼6𝑥𝑛+𝑖
6  +𝛼7𝑥𝑛+𝑖

7  

𝑌(𝑥𝑛) =   𝛼0 + 𝛼1𝑥𝑛 + 𝛼2𝑥𝑛
2 + 𝛼3𝑥𝑛

3 + 𝛼4𝑥𝑛
4  + 𝛼5𝑥𝑛

5 + 𝛼6𝑥𝑛
6+𝛼7𝑥𝑛

7 

𝑌 (𝑥
𝑛+

2

5

) =   𝛼0 + 𝛼1𝑥𝑛+2
5

+ 𝛼2𝑥𝑛+2
5

2 + 𝛼3𝑥𝑛+2
5

3 + 𝛼4𝑥𝑛+2
5

4  + 𝛼5𝑥𝑛+2
5

5 + 𝛼6𝑥𝑛+2
5

6

+ 𝛼7𝑥𝑛+2
5

7  

𝑌(𝑥𝑛+1) =   𝛼0 + 𝛼1𝑥𝑛+1 + 𝛼2𝑥𝑛+1
2 + 𝛼3𝑥𝑛+1

3 + 𝛼4𝑥𝑛+1
4  + 𝛼5𝑥𝑛+1

5 + 𝛼6𝑥𝑛+1
6 +𝛼7𝑥𝑛+1

7  

𝑌 (𝑥
𝑛+

6

5

) =   𝛼0 + 𝛼1𝑥𝑛+6
5

+ 𝛼2𝑥𝑛+6
5

2 + 𝛼3𝑥𝑛+6
5

3 + 𝛼4𝑥𝑛+6
5

4  + 𝛼5𝑥𝑛+6
5

5 + 𝛼6𝑥𝑛+6
5

6 +𝛼7𝑥𝑛+6
5

7  
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𝑌(𝑥𝑛+2) =   𝛼0 + 𝛼1𝑥𝑛+2 + 𝛼2𝑥𝑛+2
2 + 𝛼3𝑥𝑛+2

3 + 𝛼4𝑥𝑛+2
4  + 𝛼5𝑥𝑛+2

5 + 𝛼6𝑥𝑛+2
6

+ 𝛼7𝑥𝑛+2
7  

𝑌(𝑥𝑛+3) =   𝛼0 + 𝛼1𝑥𝑛+3 + 𝛼2𝑥𝑛+3
2 + 𝛼3𝑥𝑛+3

3 + 𝛼4𝑥𝑛+3
4  + 𝛼5𝑥𝑛+3

5 + 𝛼6𝑥𝑛+3
6

+ 𝛼7𝑥𝑛+3
7  

𝑌(𝑥𝑛+4) =   𝛼0 + 𝛼1𝑥𝑛+4 + 𝛼2𝑥𝑛+4
2 + 𝛼3𝑥𝑛+4

3 + 𝛼4𝑥𝑛+4
4  + 𝛼5𝑥𝑛+4

5 + 𝛼6𝑥𝑛+4
6

+ 𝛼7𝑥𝑛+4
7  

                                                                                                                                (3.23) 

𝐷𝜓 = 𝑌                                                                                                                                      

where 

𝜓 = (𝛼0, 𝛼2
5

, 𝛼1, 𝛼6
5

, 𝛼2, 𝛼3, 𝛼4, 𝛽5)
𝑇

, 𝑌 = (𝑦𝑛, 𝑦𝑛+2
5

, 𝑦𝑛+1, 𝑦𝑛+6
5

, 𝑦𝑛+2, 𝑦𝑛+3, 𝑦𝑛+4, 𝑓𝑛+5)
𝑇

 

and the matrix 𝐷 of the proposed method is expressed as 

  (3.24) 
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30 
 

 

 



31 
 

 

 



32 
 

 

 

               (3.25) 

𝑦(𝑥) = 𝛼0(𝑥)𝑦𝑛+𝛼2
5

(𝑥)𝑦
𝑛+

2

5

+ 𝛼1(𝑥)𝑦𝑛+𝑦𝑛+1 + 𝛼6
5

(𝑥)𝑦
𝑛+

6

5

+ 𝛼2(𝑥)𝑦𝑛+2 +

𝛼3(𝑥)𝑦𝑛+3 + 𝛼4(𝑥)𝑦𝑛+4 + ℎ
2𝛽5(𝑥)𝑓𝑛+5          (3.26) 



33 
 

 



34 
 

 



35 
 

 



36 
 

 

           (3.27) 

Evaluate (3.27) at 𝑥 = 𝑥𝑛+5 gives the discrete scheme as 

𝑦𝑛+5 =
1175093

1900638
𝑦𝑛 −

861828125

29739528
𝑦
𝑛+

2

5

+
14402209

95319
𝑦𝑛+1 +

3094397

84728
𝑦𝑛+2 +

51879766

3717441
𝑦𝑛+3 +

2887259

571914
𝑦𝑛+4 −

10421875

67284
𝑦
𝑛+

6

5

+
1748

10591
ℎ2𝑓𝑛+5                                                                     (3.28) 

To obtain the sufficient schemes required, we obtain the first derivative of (3.27) and 

evaluate the continuous function at 𝑥 = 𝑥𝑛, 𝑥 = 𝑥𝑛+2
5

, 𝑥 = 𝑥𝑛+1, 𝑥 = 𝑥
𝑛+

6

5

, 𝑥 =

𝑥𝑛+2, 𝑥 = 𝑥𝑛+3, 𝑥 = 𝑥𝑛+4 𝑎𝑛𝑑 𝑥 = 𝑥𝑛+5 to obtain;  

ℎ𝑧𝑛+5 =
22312067

2287656
𝑦𝑛 −

16280496875

356874336
𝑦
𝑛+

2

5

+
673500379

2859570
𝑦𝑛+1 +

93913213

1694560
𝑦𝑛+2 −

2218967221

111523230
𝑦𝑛+3 +

181271233

34314840
𝑦𝑛+4 −

194153125

807408
𝑦
𝑛+

6

5

+
144

7565
ℎ2𝑓𝑛+5  
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ℎ𝑧
𝑛+

6

5

= −
42397

945625
𝑦𝑛 +

136285

472056
𝑦
𝑛+

2

5

−
2411136

4728125
𝑦𝑛+1 +

8545473

37825000
𝑦𝑛+2 −

13249088

553190625
𝑦𝑛+3 +

246209

99290625
𝑦𝑛+4 +

26435

5607
𝑦
𝑛+

6

5

−
288

4728125
ℎ2𝑓𝑛+5  

 

ℎ𝑧
𝑛+

2

5

= −
3855982

6619375
𝑦𝑛 −

18653885

9913176
𝑦
𝑛+

2

5

+
246481664

33096875
𝑦𝑛+1 +

129246273

264775000
𝑦𝑛+2 −

92231296

1290778125
𝑦𝑛+3 +

2462486

297871875
𝑦𝑛+4 −

20215

3738
𝑦
𝑛+

6

5

−
7488

33096875
ℎ2𝑓𝑛+5  

 

ℎ𝑧𝑛+4 =
10657

6052
𝑦𝑛 −

11928125

1416168
𝑦
𝑛+

2

5

+
343648

7565
𝑦𝑛+1 +

731511

60520
𝑦𝑛+2 −

1745792

295035
𝑦𝑛+3 +

4385621

1906380
𝑦𝑛+4 −

353125

7476
𝑦
𝑛+

6

5

+
144

7565
ℎ2𝑓𝑛+5  

 

ℎ𝑧𝑛+3 = −
4316

10591
𝑦𝑛 +

6678125

3304392
𝑦
𝑛+

2

5

−
1246843

105910
𝑦𝑛+1 −

1756053

423640
𝑦𝑛+2 +

18095591

12391470
𝑦𝑛+3 +

26143

158865
𝑦𝑛+4 +

40625

3204
𝑦
𝑛+

6

5

−
117

52955
ℎ2𝑓𝑛+5  

 

ℎ𝑧𝑛+2 =
42430

28957
𝑦𝑛 −

71065625

89218584
𝑦
𝑛+

2

5

+
8152832

1429785
𝑦𝑛+1 +

690877

423640
𝑦𝑛+2 +

13351552

55761615
𝑦𝑛+3 −

11902

612765
𝑦𝑛+4 −

696875

100926
𝑦
𝑛+

6

5

+
64

158865
ℎ2𝑓𝑛+5  

 

ℎ𝑧𝑛+1 =
13247

254184
𝑦𝑛 −

4928125

13217568
𝑦
𝑛+

2

5

−
1386829

317730
𝑦𝑛+1 −

296487

1694560
𝑦𝑛+2 +

258371

12391470
𝑦𝑛+3 −

947

423640
𝑦𝑛+4 +

434375

89712
𝑦
𝑛+

6

5

+
3

52955
ℎ2𝑓𝑛+5  

 

ℎ𝑧𝑛 = −
709531

127092
𝑦𝑛 +

106346875

9913176
𝑦
𝑛+

2

5

−
3045472

158865
𝑦𝑛+1 −

709353

423640
𝑦𝑛+2 +

182592

688415
𝑦𝑛+3 −

60619

1906380
𝑦𝑛+4 +

115625

7476
𝑦
𝑛+

6

5

+
48

52955
ℎ2𝑓𝑛+5                                                         (3.29) 
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where 𝑧 is the first derivative of 𝑦. 

Likewise, we further obtain the second derivatives of (3.27), thereafter, evaluating at 

𝑥 = 𝑥
𝑛+

2

5

, 𝑥 = 𝑥𝑛+1, 𝑥 = 𝑥𝑛+6
5

, 𝑥 = 𝑥𝑛+2 , 𝑥 = 𝑥𝑛+3 and 𝑥 = 𝑥𝑛+4 to obtain; 

𝑦
𝑛+

2

5

= −
1650327432

2487990625
𝑦𝑛 −

5163285504

123439953125
𝑦𝑛+1 −

1979742141

123439953125
𝑦𝑛+2 +

344635904

123439953125
𝑦𝑛+3 −

42573544

123439953125
𝑦𝑛+4 +

705874

796157
𝑦
𝑛+

6

5

+
28664064

286118921875
ℎ2𝑓𝑛+5 −

59479056

457790275
ℎ2𝑓

𝑛+
2

5

  

 

𝑦
𝑛+

6

5

= −
5236008

106409375
𝑦𝑛 +

221984256

532046875
𝑦𝑛+1 +

405735723

1064093750
𝑦𝑛+2 −

247228928

6916609375
𝑦𝑛+3 +

1897816

532046875
𝑦𝑛+4 +

250423

885326
𝑦
𝑛+

2

5

−
857088

101108890625
ℎ2𝑓𝑛+5 −

134568

951425
ℎ2𝑓

𝑛+
6

5

  

 

𝑦𝑛+1 = −
213247

4242320
𝑦𝑛 +

1794717

16969280
𝑦𝑛+2 −

149567

10340655
𝑦𝑛+3 +

20551

12726960
𝑦𝑛+4 +

2815625

5090784
𝑦
𝑛+

6

5

+

53509375

132360384
𝑦
𝑛+

2

5

−
9

212116
ℎ2𝑓𝑛+5 −

95319

1060580
ℎ2𝑓𝑛+1  

𝑦𝑛+2 = −
56632

314037
𝑦𝑛 +

404480

104679
𝑦𝑛+1 +

8344064

12247443
𝑦𝑛+3 −

4712

104679
𝑦𝑛+4 −

2656250

942111
𝑦
𝑛+

6

5

+

390625

453609
𝑦
𝑛+

2

5

+
256

314037
ℎ2𝑓𝑛+5 −

169456

314037
ℎ2𝑓𝑛+2  

𝑦𝑛+3 = −
26878449

23292272
𝑦𝑛 −

41370927

1455767
𝑦𝑛+1 −

444206997

93169088
𝑦𝑛+2 +

24262771

23292272
𝑦𝑛+4 +

1343265625

46584544
𝑦
𝑛+

6

5

+
509046875

93169088
𝑦
𝑛+

2

5

−
29133

2911534
ℎ2𝑓𝑛+5 −

3717441

2911534
ℎ2𝑓𝑛+3  

𝑦𝑛+4 = −
7947519

3991321
𝑦𝑛 −

197072832

3991321
𝑦𝑛+1 −

192559275

15965284
𝑦𝑛+2 +

222129536

51887173
𝑦𝑛+3 +

405078125

7982642
𝑦
𝑛+

6

5

+
1951328125

207548692
𝑦
𝑛+

2

5

−
118368

3991321
ℎ2𝑓𝑛+5 +

1143828

3991321
ℎ2𝑓𝑛+4  

           (3.30) 

The equation (3.30) is the proposed 5SBHBDFfor solving second order ordinary 

differential equations. 
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3.2.3 6-Step block hybrid backward differentiation formulae (6SBHBDF) 

To derive 6SBHBDF, we take 𝑡 = 8, 𝑐 = 1and 𝑥 ∈ [𝑥𝑛, 𝑥𝑛+6]. Therefore, (3.4) 

becomes: 

𝑌(𝑥) =  𝛼-0 + 𝛼1𝑥 + 𝛼2𝑥
2 + 𝛼3𝑥

3 + 𝛼4𝑥
4 + 𝛼5𝑥

5 + 𝛼6𝑥
6   + 𝛼7𝑥

7 + 𝛼8𝑥
8       (3.31) 

Interpolating (3.5) at 𝑥𝑛+𝑖; 𝑖 = 0, 1,
3

2
, 2,

5

2
, 3,4,5,6 and collocate (3.6) at 𝑥𝑛+𝑖; 𝑖 = 6. 

This results in a system of equations; 

 𝑌′′(𝑥𝑛+6) = 2𝛼2 + 6𝛼3𝑥𝑛+6 + 12𝛼4𝑥𝑛+6
2 + 20𝛼5𝑥𝑛+6

3 + 30𝛼6𝑥𝑛+6
4  +

42𝛼7𝑥𝑛+6
5 +56𝛼8𝑥𝑛+6

8  

𝑌(𝑥𝑛+𝑖) =    𝛼0 + 𝛼1𝑥𝑛+𝑖 + 𝛼2𝑥𝑛+𝑖
2 + 𝛼3𝑥𝑛+𝑖

3 + 𝛼4𝑥𝑛+𝑖
4 + 𝛼5𝑥𝑛+𝑖

5 +

𝛼6𝑥𝑛+𝑖
6  +𝛼7𝑥𝑛+𝑖

7  +𝛼8𝑥𝑛+𝑖
8  

𝑌(𝑥𝑛) =   𝛼0 + 𝛼1𝑥𝑛 + 𝛼2𝑥𝑛
2 + 𝛼3𝑥𝑛

3 + 𝛼4𝑥𝑛
4  + 𝛼5𝑥𝑛

5 + 𝛼6𝑥𝑛
6+𝛼7𝑥𝑛

7+𝛼8𝑥𝑛
8 

𝑌 (𝑥
𝑛+

3

2

) =   𝛼0 + 𝛼1𝑥𝑛+3
2

+ 𝛼2𝑥𝑛+3
2

2 + 𝛼3𝑥𝑛+3
2

3 + 𝛼4𝑥𝑛+3
2

4  + 𝛼5𝑥𝑛+3
2

5 + 𝛼6𝑥𝑛+3
2

6 +

𝛼7𝑥𝑛+3
2

7 + 𝛼8𝑥𝑛+3
2

8   

𝑌(𝑥𝑛+1) =  𝛼0 + 𝛼1𝑥𝑛+1 + 𝛼2𝑥𝑛+1
2 + 𝛼3𝑥𝑛+1

3 + 𝛼4𝑥𝑛+1
4  + 𝛼5𝑥𝑛+1

5 +

𝛼6𝑥𝑛+1
6 +𝛼7𝑥𝑛+1

7 + 𝛼8𝑥𝑛+1
8  

𝑌(𝑥𝑛+2) =   𝛼0 + 𝛼1𝑥𝑛+2 + 𝛼2𝑥𝑛+2
2 + 𝛼3𝑥𝑛+2

3 + 𝛼4𝑥𝑛+2
4  + 𝛼5𝑥𝑛+2

5 + 𝛼6𝑥𝑛+2
6

+ 𝛼7𝑥𝑛+2
7  

𝑌 (𝑥
𝑛+

5

2

) =   𝛼0 + 𝛼1𝑥𝑛+5
2

+ 𝛼2𝑥𝑛+5
2

2 + 𝛼3𝑥𝑛+5
2

3 + 𝛼4𝑥𝑛+5
2

4  + 𝛼5𝑥𝑛+5
2

5 +

𝛼6𝑥𝑛+5
2

6 +𝛼7𝑥𝑛+5
2

7 +𝛼8𝑥𝑛+5
2

8  

𝑌(𝑥𝑛+3) =   𝛼0 + 𝛼1𝑥𝑛+3 + 𝛼2𝑥𝑛+3
2 + 𝛼3𝑥𝑛+3

3 + 𝛼4𝑥𝑛+3
4  + 𝛼5𝑥𝑛+3

5 + 𝛼6𝑥𝑛+3
6

+ 𝛼7𝑥𝑛+3
7 + 𝛼8𝑥𝑛+3

8  
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𝑌(𝑥𝑛+4) =   𝛼0 + 𝛼1𝑥𝑛+4 + 𝛼2𝑥𝑛+4
2 + 𝛼3𝑥𝑛+4

3 + 𝛼4𝑥𝑛+4
4  + 𝛼5𝑥𝑛+4

5 + 𝛼6𝑥𝑛+4
6

+ 𝛼7𝑥𝑛+4
7 + 𝛼8𝑥𝑛+4

8  

𝑌(𝑥𝑛+5) =   𝛼0 + 𝛼1𝑥𝑛+5 + 𝛼2𝑥𝑛+5
2 + 𝛼3𝑥𝑛+5

3 + 𝛼4𝑥𝑛+5
4  + 𝛼5𝑥𝑛+5

5 + 𝛼6𝑥𝑛+5
6

+ 𝛼7𝑥𝑛+5
7 + 𝛼8𝑥𝑛+5

8  

                                                                                                                                    (3.32) 

𝐷𝜓 = 𝑌                                                                                                                                     

where 

𝜓 = (𝛼0, 𝛼1, 𝛼3
2

, 𝛼2, 𝛼5
2

, 𝛼3, 𝛼4, 𝛼5,𝛽6)
𝑇

, 𝑌 =

(𝑦𝑛, 𝑦𝑛+1, 𝑦𝑛+3
2

, 𝑦𝑛+2, 𝑦𝑛+5
2

, 𝑦𝑛+3, 𝑦𝑛+4, 𝑦𝑛+5,𝑓𝑛+6)
𝑇

  

and the matrix 𝐷 of the proposed method is expressed as 

D=  

  



41 
 

 



42 
 

 

 



43 
 

 

 



44 
 

 



45 
 

 

 



46 
 

 

           (3.33) 

𝑦(𝑥) = 𝛼0(𝑥)𝑦𝑛+𝛼1(𝑥)𝑦𝑛+𝑦𝑛+1 + 𝛼3
2

(𝑥)𝑦
𝑛+

3

2

+ 𝛼2(𝑥)𝑦𝑛+2 + 𝛼5
2

(𝑥)𝑦
𝑛+

5

2

+

𝛼3(𝑥)𝑦𝑛+3 + 𝛼4(𝑥)𝑦𝑛+4 + 𝛼5(𝑥)𝑦𝑛+5 + ℎ
2𝛽6(𝑥)𝑓𝑛+6     (3.34) 



47 
 

 



48 
 

 



49 
 

 



50 
 

 



51 
 

 



52 
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                                                                                                                               (3.35) 

Evaluate (3.35) at 𝑥 = 𝑥𝑛+6gives the discrete scheme as 

𝑦𝑛+6 = −
24619

44900
𝑦𝑛 +

8757

449
𝑦𝑛+1 +

161217

898
𝑦𝑛+2 +

46298

449
𝑦𝑛+3 −

195111

8980
𝑦𝑛+4 −

196096

2245
𝑦
𝑛+

3

2

−
2216448

11225
𝑦
𝑛+

5

2

+
63

449
ℎ2𝑓𝑛+6      (3.36) 

To obtain the sufficient schemes required, we obtain the first derivative of (3.35) and 

evaluate the continuous function at 𝑥 = 𝑥𝑛, 𝑥 = 𝑥𝑛+3
2

, 𝑥 = 𝑥𝑛+1, 𝑥 = 𝑥
𝑛+

5

2

, 𝑥 =

𝑥𝑛+2𝑥 = 𝑥𝑛+3,𝑥 = 𝑥𝑛+4, 𝑥 = 𝑥𝑛+5𝑎𝑛𝑑 𝑥 = 𝑥𝑛+6  to obtain;  

ℎ𝑧𝑛 = −
564917

161640
𝑦𝑛 −

2200832

28287
𝑦
𝑛+

3

2

+
26245

898
𝑦𝑛+1 +

189255

1796
𝑦𝑛+2 +

118165

4041
𝑦𝑛+3 −

10373

3592
𝑦𝑛+4 +

8763

31430
𝑦𝑛+5 −

179456

2245
𝑦
𝑛+

5

2

−
5

161640
ℎ2𝑓𝑛+6  
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ℎ𝑧
𝑛+

5

2

=
41233

20689920
𝑦𝑛 −

33515

344832
𝑦𝑛+1 −

484245

229888
𝑦𝑛+2 +

454915

517248
𝑦𝑛+3 −

53569

1379328
𝑦𝑛+4 +

11457

4023040
𝑦𝑛+5 +

16481

28287
𝑦
𝑛+

3

2

−
5

114944
ℎ2𝑓𝑛+6  

ℎ𝑧𝑛+6 = −
7450459

8082000
𝑦𝑛 −

18002048

56125
𝑦
𝑛+

5

2

+
291757

8980
𝑦𝑛+1 +

5294343

17960
𝑦𝑛+2 +

6667789

40410
𝑦𝑛+3 −

5885119

179600
𝑦𝑛+4 +

10611327

1571500
𝑦𝑛+5 −

102251648

707175
𝑦
𝑛+

3

2

+
3727

8980
ℎ2𝑓𝑛+6  

ℎ𝑧𝑛+5 = −
12467

96984
𝑦𝑛 −

353024

6735
𝑦
𝑛+

5

2

+
25445

5388
𝑦𝑛+1 +

246715

5388
𝑦𝑛+2 +

351470

12123
𝑦𝑛+3 −

84539

10776
𝑦𝑛+4 +

474937

188580
𝑦𝑛+5 −

1835776

84861
𝑦
𝑛+

3

2

+
35

2694
ℎ2𝑓𝑛+6  

ℎ𝑧𝑛+4 =
16987

808200
𝑦𝑛 +

557824

141435
𝑦
𝑛+

3

2

−
2213

2694
𝑦𝑛+1 −

16029

1796
𝑦𝑛+2 −

30247

4041
𝑦𝑛+3 +

32731

17960
𝑦𝑛+4 +

19539

157150
𝑦𝑛+5 +

381184

33675
𝑦
𝑛+

5

2

−
1

898
ℎ2𝑓𝑛+6  

ℎ𝑧𝑛+3 = −
30457

8082000
𝑦𝑛 −

623744

707175
𝑦
𝑛+

3

2

+
42969

17960
𝑦𝑛+2 +

743

4490
𝑦𝑛+1 +

111067

40410
𝑦𝑛+3 +

23843

179600
𝑦𝑛+4 +

3201

392875
𝑦𝑛+5 −

255104

56125
𝑦
𝑛+

5

2

+
1

8980
ℎ2𝑓𝑛+6  

ℎ𝑧𝑛+2 = −
57397

24246000
𝑦𝑛 −

2347904

2121525
𝑦
𝑛+

3

2

−
28871

53880
𝑦𝑛+2 +

3731

26940
𝑦𝑛+1 −

50573

121230
𝑦𝑛+3 +

14863

538800
𝑦𝑛+4 −

10559

4714500
𝑦𝑛+5 +

319616

168375
𝑦
𝑛+

5

2

+
1

26940
ℎ2𝑓𝑛+6  

ℎ𝑧𝑛+1 = −
138217

4041000
𝑦𝑛 +

5649152

707175
𝑦
𝑛+

3

2

−
64791

8980
𝑦𝑛+2 −

35193

8980
𝑦𝑛+1 −

30368

20205
𝑦𝑛+3 +

35609

269400
𝑦𝑛+4 −

18873

1571500
𝑦𝑛+5 +

768256

168375
𝑦
𝑛+

5

2

+
1

4490
ℎ2𝑓𝑛+6  

ℎ𝑧
𝑛+

3

2

=
590359

103449600
𝑦𝑛 −

264487

141435
𝑦
𝑛+

3

2

+
830697

229888
𝑦𝑛+2 −

57547

114944
𝑦𝑛+1 +

259721

517248
𝑦𝑛+3 −

91469

2298880
𝑦𝑛+4 +

69423

20115200
𝑦𝑛+5 −

19243

11225
𝑦
𝑛+

5

2

−
7

114944
ℎ2𝑓𝑛+6   (3.37) 

Likewise, we further obtain the second derivatives of (3.35), thereafter, evaluating at 

𝑥 = 𝑥𝑛, 𝑥 = 𝑥
𝑛+

3

2

, 𝑥 = 𝑥𝑛+1, 𝑥 = 𝑥𝑛+5
2

, 𝑥 = 𝑥𝑛+2, 𝑥 = 𝑥𝑛+3,𝑥 = 𝑥𝑛+4 𝑎𝑛𝑑 𝑥 = 𝑥𝑛+5, to 

obtain;  
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𝑦𝑛+4 = −
528391

1502695
𝑦𝑛 +

3913540

300539
𝑦𝑛+1 +

37786230

300539
𝑦𝑛+2 +

19696840

300539
𝑦𝑛+3 −

5706396

1502695
𝑦𝑛+5 −

17954816

300539
𝑦
𝑛+

3

2

−
209471488

1502695
𝑦
𝑛+

5

2

+
1616400

300539
ℎ2𝑓𝑛+4 +

7740

300539
ℎ2𝑓𝑛+6  

𝑦𝑛+5 =
8388983

64512072
𝑦𝑛 −

4192775

896001
𝑦𝑛+1 −

52297525

1194668
𝑦𝑛+2 −

206983100

8064009
𝑦𝑛+3 +

37584095

7168008
𝑦𝑛+4 +

170256640

8064009
𝑦
𝑛+

3

2

+
43578112

896001
𝑦
𝑛+

5

2

+
67350

298667
ℎ2𝑓𝑛+5 +

31175

1792002
ℎ2𝑓𝑛+6  

𝑦𝑛+3 =
73411

1759700
𝑦𝑛 −

60039

35194
𝑦𝑛+1 −

675243

35194
𝑦𝑛+2 −

805401

351940
𝑦𝑛+4 +

107433

879850
𝑦𝑛+5 +

740864

87985
𝑦
𝑛+

3

2

+
6861312

439925
𝑦
𝑛+

5

2

+
40410

17597
ℎ2𝑓𝑛+3 −

27

1759700
ℎ2𝑓𝑛+6  

𝑦𝑛+1 = −
543963

13678400
𝑦𝑛 −

1361421

273568
𝑦𝑛+2 −

41511

34196
𝑦𝑛+3 +

306113

2735680
𝑦𝑛+4 −

8883

854900
𝑦𝑛+5 +

154848

42745
𝑦
𝑛+

3

2

+
749344

213725
𝑦
𝑛+

5

2

+
4041

34196
ℎ2𝑓𝑛+1 −

27

136784
ℎ2𝑓𝑛+6  

𝑦𝑛+2 =
178627

376964550
𝑦𝑛 −

334

8133
𝑦𝑛+1 −

282628

7539291
𝑦𝑛+3 −

1393

8376990
𝑦𝑛+4 +

578

6980825
𝑦𝑛+5 +

20417536

37696455
𝑦
𝑛+

3

2

+
11236352

20942475
𝑦
𝑛+

5

2

−
26940

279233
ℎ2𝑓𝑛+2 −

2

837699
ℎ2𝑓𝑛+6  

𝑦
𝑛+

3

2

= −
2496761

574791680
𝑦𝑛 +

16704585

28739584
𝑦𝑛+1 +

8124165

57479168
𝑦𝑛+2 −

2600795

14369792
𝑦𝑛+3 +

2011131

114958336
𝑦𝑛+4 −

234279

143697920
𝑦𝑛+5 +

31356

70165
𝑦
𝑛+

5

2

−
33675

224528
ℎ2𝑓

𝑛+
3

2

+
885

28739584
ℎ2𝑓𝑛+6 (3.38) 

 

3.3 Analysis of Basic Properties 

In this section, we address the order, error constants, consistency, stability and 

convergence of the developed methods.  

3.3.1 Order and error constants of the developed methods 

Following the works of (Areo and Adeniyi, 2013) and Ra’ft et al. (2020), the Local 

Truncation Error (LTE) for a block method of the form (3.3) is defined with the linear 

operator; 
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ℒ[𝑦(𝑥), ℎ] =  ∑[𝛼𝑗𝑦(𝑥 + 𝑗ℎ) − 𝛼𝑣(𝑥)𝑦𝑛+𝑣

𝑘

𝑗=0

+ ℎ2𝛽𝑘(𝑥)𝑓𝑛+𝑘]                                                                                          (3.39) 

We assume that 𝑦(𝑥) is sufficiently differentiable such that the linear operator defined 

above can be expanded as a Taylor’s series about the point 𝑥. Then,  

ℒ[𝑦(𝑥), ℎ] = 𝐶0𝑦(𝑥) + 𝐶1ℎ𝑦
′(𝑥) + 𝐶2ℎ

2𝑦 ′′(𝑥) + ⋯+ 𝐶𝑞ℎ
𝑞𝑦𝑞(𝑥) + ⋯               (3.40) 

The method above will be consistent if ℒ[𝑦(𝑥), ℎ] → 0as ℎ → 0. Therefore, we can 

compare the coefficient to have 

𝐶0 = 𝛼0 + 𝛼1 + 𝛼2 +⋯+ 𝛼𝑘 =∑𝛼𝑗

𝑘

𝑗=0

𝐶1 = (𝛼1 + 2𝛼2 +⋯+ 𝑘𝛼𝑘) − (𝛽0 + 𝛽1 + 𝛽2 +⋯+ 𝛽𝑘) =∑(𝑗𝛼𝑗 − 𝛽𝑗)

𝑘

𝑗=0

⋮

𝐶𝑞 =
1

𝑞!
(𝛼1 + 2

𝑞𝛼2 +⋯+ 𝑘
𝑞𝛼𝑘) −

1

(𝑞 − 2)!
(𝛽1 + 2

𝑞−1𝛽2 +⋯+ 𝑘
𝑞−1𝛽𝑘) }

 
 
 
 

 
 
 
 

    (3.41) 

The method is consistent if 𝐶0 = 𝐶1 = ⋯ = 𝐶𝑝 = 𝐶𝑝+1 = 0,for 𝐶𝑝+2 ≠ 0. The constant 

𝐶𝑝+2 is the error constant. After defining the concept of error constant, we shall obtain 

the error constants of the proposed discrete hybrid block methods for 𝑘 = 4, 𝑘 = 5, and 

𝑘 = 6.  

From 4SBHBDF, we developed the proposed method in (3.19) as 

𝑦𝑛+4 = −
18515

7563
𝑦𝑛 +

38144

2521
𝑦
𝑛+

1

2

−
95480

2521
𝑦𝑛+1 −

66710

2521
𝑦𝑛+2 +

41608

7563
𝑦𝑛+3

+
356608

7563
𝑦
𝑛+

3

2

+
420

2521
ℎ2𝑓𝑛+2 

where; 
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𝛼0 =
18515

7563
𝛼1
2

= −
38144

2521
, 𝛼1 =

95480

2521
, 𝛼3

2

= −
356608

7563
, 𝛼2 =

66710

2521
, 𝛼3

= −
41608

7563
, 𝛼4 = 1, 𝛽4 =

420

2521
 

Applying (3.41), we have 

𝐶0 =∑𝛼𝑗

𝑘

𝑗=0

=
18515

7563
−
38144

2521
+
95480

2521
−
356608

7563
+
66710

2521
−
41608

7563
+ 1 = 0

𝐶1 =
1

1!

(

 
 01 (

18515

7563
) + (

1

2
)
1

(−
38144

2521
) + 11 (

95480

2521
)

+(
3

2
)
1

(−
356608

7563
) + (2)1 (

66710

2521
) + (3)1 (−

41608

7563
) + (4)1(1)

)

 
 
= 0

𝐶2 =
1

2!

(

 
 02 (

18515

7563
) + (

1

2
)
2

(−
38144

2521
) + 12 (

95480

2521
)

+(
3

2
)
2

(−
356608

7563
) + (2)2 (

66710

2521
) + (3)2 (−

41608

7563
) + (4)2(1)

)

 
 
− (

420

2521
) = 0

𝐶3 =
1

3!

(

 
 03 (

18515

7563
) + (

1

2
)
3

(−
38144

2521
) + 13 (

95480

2521
)

+(
3

2
)
3

(−
356608

7563
) + (2)3 (

66710

2521
) + (3)3 (−

41608

7563
) + (4)3(1)

)

 
 
− 42 (

420

2521
) = 0

𝐶4 =
1

4!

(

 
 04 (

18515

7563
) + (

1

2
)
4

(−
38144

2521
) + 14 (

95480

2521
)

+(
3

2
)
4

(−
356608

7563
) + (2)4 (

66710

2521
) + (3)4 (−

41608

7563
) + (4)4(1)

)

 
 
−
1

2!
43 (

420

2521
) = 0

𝐶5 =
1

5!

(

 
 03 (

18515

7563
) + (

1

2
)
5

(−
38144

2521
) + 15 (

95480

2521
)

+(
3

2
)
5

(−
356608

7563
) + (2)5 (

66710

2521
) + (3)5 (−

41608

7563
) + 45(1)

)

 
 
−
1

2!
44 (

420

2521
) = 0

𝐶6 =
1

6!

(

 
 06 (

18515

7563
) + (

1

2
)
6

(−
38144

2521
) + 16 (

95480

2521
)

+(
3

2
)
6

(−
356608

7563
) + (2)6 (

66710

2521
) + (3)6 −

41608

7563
+ 46(1)

)

 
 
−
1

2!
45 (

420

2521
) = 0

𝐶7 =
1

7!

(

 
 05 (

18515

7563
) + (

1

2
)
7

(−
38144

2521
) + 17 (

95480

2521
)

+(
3

2
)
7

(−
356608

7563
) + (2)7 (

66710

2521
)+37

41608

7563
+ (4)7

)

 
 
−
1

5!
46 (

420

2521
) = −

1163

30252

}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     (3.45) 

Since 𝐶𝑝+2 = 𝐶7. The 𝑝 = 5 implies the method is of order 5 with error constant 𝐶7 =

−
1163

30252
 

For the first discrete method in (3.20) 
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ℎ𝑧𝑛+4 = −
175261

45378
𝑦𝑛 +

892864

37815
𝑦
𝑛+

1

2

−
146742

2521
𝑦𝑛+1 −

578929

15126
𝑦𝑛+2 +

669398

113445
𝑦𝑛+3 +

1607104

22689
𝑦
𝑛+

3

2

+
1163

2521
ℎ2𝑓𝑛+4  

where; 

𝛼0 =
175261

45378
𝛼1
2

= −
892864

37815
, 𝛼1 =

146742

2521
, 𝛼3

2

= −
1607104

22689
, 𝛼2 =

578929

15126
, 𝛼3 =

−
669398

113445
, 𝛾4 = 1, 𝛽4 =

1163

2521
  

Applying (3.41), we have 

𝐶0 =∑𝛼𝑗

𝑘

𝑗=0

=
175261

45378
−
892864

37815
+
95480

2521
−
1607104

22689
+
578929

15126
−
669398

113445
+ 1 = 0

𝐶1 =
1

1!

(

 
 01 (

175261

45378
) + (

1

2
)
1

(−
892864

37815
) + 11 (

146742

2521
)

+ (
3

2
)
1

(−
356608

7563
) + (2)1 (

578929

15126
) + (3)1 (−

669398

113445
)
)

 
 
= 0

𝐶2 =
1

2!

(

 
 02 (

175261

45378
) + (

1

2
)
2

(−
892864

37815
) + 12 (

146742

2521
)

+ (
3

2
)
2

(−
1607104

22689
) + (2)2 (

578929

15126
) + (3)2 (−

669398

113445
)
)

 
 
− (4)1(1) − (

1163

2521
) = 0

𝐶3 =
1

3!

(

 
 03 (

175261

45378
) + (

1

2
)
3

(−
892864

37815
) + 13 (

146742

2521
)

+(
3

2
)
3

(−
1607104

22689
) + (2)3 (

578929

15126
) + (3)3 (−

669398

113445
)
)

 
 
−
1

2!
(4)2(1) − 42 (

1163

2521
) = 0

𝐶4 =
1

4!

(

 
 04 (

175261

45378
) + (

1

2
)
4

(−
892864

37815
) + 14 (

146742

2521
)

+(
3

2
)
4

(−
1607104

22689
) + (2)4 (

578929

15126
) + (3)4 (−

669398

113445
)
)

 
 
−
1

3!
(4)3(1) −

1

2!
43 (

1163

2521
) = 0

𝐶5 =
1

5!

(

 
 03 (

175261

45378
) + (

1

2
)
5

(−
892864

37815
) + 15 (

146742

2521
)

+(
3

2
)
5

(−
1607104

22689
) + (2)5 (

578929

15126
) + (3)5 (−

669398

113445
)
)

 
 
−
1

4!
(4)4(1) −

1

3!
44 (

1163

2521
) = 0

𝐶6 =
1

6!

(

 
 06 (

175261

45378
) + (

1

2
)
6

(−
892864

37815
) + 16 (

146742

2521
)

+(
3

2
)
6

(−
1607104

22689
) + (2)6 (

578929

15126
) + (3)6 (−

669398

113445
)
)

 
 
−
1

5!
(4)5(1) −

1

4!
45 (

1163

2521
) = 0

𝐶7 =
1

7!

(

 
 05 (

175261

45378
) + (

1

2
)
7

(−
892864

37815
) + 17 (

146742

2521
)

+ (
3

2
)
7

(−
1607104

22689
) + (2)7 (

578929

15126
)+37

669398

113445)

 
 
−
1

6!
461 −

1

5!
46
1163

2521
= −

823159

1270540

}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     (3.46) 

Since 𝐶𝑝+2 = 𝐶7. The 𝑝 = 5 implies the method is of order 5 with error constant 𝐶7 =

−
823159

12705840
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For the first discrete method in (3.21) 

𝑦𝑛+3 =
64139

92191
𝑦𝑛 −

400032

92191
𝑦
𝑛+

1

2

−
1010475

92191
𝑦𝑛+1 +

679401

92191
𝑦𝑛+2 −

1261792

92191
𝑦
𝑛+

3

2

−

81

3179
ℎ2𝑓𝑛+4 +

22689

92191
ℎ2𝑓𝑛+3  

where 

𝛼0 = −
64139

92191
𝛼1
2

=
400032

92191
, 𝛼1 =

1010475

92191
, 𝛼3

2

=
1261792

92191
, 𝛼2 = −

679401

92191
, 𝛼3 = 1, 𝛼4 =

0, 𝛽4 = −
81

3179
, 𝛽3 =

22689

92191
  

Applying (3.41), we have 

𝐶0 = ∑ 𝛼𝑗
𝑘
𝑗=0 = −

64139

92191
+

400032

92191
+

1010475

92191
+

1261792

92191
−

679401

92191
+ 1 = 0

𝐶1 =
1

1!
(
01 (−

64139

92191
) + (

1

2
)
1

(
400032

92191
) + 11 (

1010475

92191
)

+ (
3

2
)
1

(
1261792

92191
) + (2)1 (−

679401

92191
) + (3)1(1)

) = 0

𝐶2 =
1

2!
(
02 (−

64139

92191
) + (

1

2
)
2

(
400032

92191
) + 12 (

1010475

92191
)

+ (
3

2
)
2

(
1261792

92191
) + (2)2 (−

679401

92191
) + (3)2(1)

) − (−
81

3179
) − (

22689

92191
) = 0

𝐶3 =
1

3!
(
03 (−

64139

92191
) + (

1

2
)
3

(
400032

92191
) + 13 (

1010475

92191
)

+ (
3

2
)
3

(
1261792

92191
) + (2)3 (−

679401

92191
) + 33

) − 42 (−
81

3179
) − 32 (

22689

92191
) = 0

𝐶4 =
1

4!
(
04 (−

64139

92191
) + (

1

2
)
4

(
400032

92191
) + 14 (

1010475

92191
)

+ (
3

2
)
4

(
1261792

92191
) + (2)4 (−

679401

92191
) + 34

) −
1

2!
43 (−

81

3179
) −

1

2!
33

22689

92191
= 0

𝐶5 =
1

5!
(
03 (−

64139

92191
) + (

1

2
)
5

(
400032

92191
) + 15 (

1010475

92191
)

+ (
3

2
)
5

(
1261792

92191
) + (2)5 (−

679401

92191
) + (3)5(1)

) −
1

2!
44 (−

81

3179
) −

1

2!
34

22689

92191
= 0

𝐶6 =
1

6!
(
06 (−

64139

92191
) + (

1

2
)
6

(
400032

92191
) + 16 (

1010475

92191
)

+ (
3

2
)
6

(
1261792

92191
) − 26

679401

92191
+ 36

) −
1

2!
45 (−

81

3179
) −

1

2!
35

22689

92191
= 0

𝐶7 =
1

7!
(
05 (−

64139

92191
) + (

1

2
)
7

(
400032

92191
) + 17

1010475

92191

+(
3

2
)
7 1261792

92191
− 27

679401

92191
+ 37

) +
1

5!
46

81

3179
−

1

5!
36

22689

92191
=

148311

14750560
}
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

   (3.47) 

Since 𝐶𝑝+2 = 𝐶7. The 𝑝 = 5implies the method is of order 5 with error constant 𝐶7 =

148311

14750560
. 

For the second discrete method in (3.21) 



60 
 

𝑦𝑛+1 = −
785

24597
𝑦𝑛 +

4384

8199
𝑦
𝑛+

1

2

−
193

8199
𝑦𝑛+2 −

23

24597
𝑦𝑛+3 +

12832

24597
𝑦
𝑛+

3

2

+
1

24597
ℎ2𝑓𝑛+4 −

2521

24597
ℎ2𝑓𝑛+1  

where 

 𝛼0 =
785

24597
𝛼1
2

= −
4384

8199
, 𝛼1 = 1, 𝛼3

2

= −
12832

24597
, 𝛼2 =

193

8199
, 𝛼3 =

23

24597
, 𝛼4 = 0, 𝛽4 =

1

24597
, 𝛽1 = −

2521

24597
  

Applying (3.41), we have 

𝐶0 = ∑ 𝛼𝑗
𝑘
𝑗=0 =

785

24597
−

4384

8199
+ 1 −

12832

24597
+

193

8199
+

23

24597
= 0

𝐶1 =
1

1!
(

01 (
785

24597
) + (

1

2
)
1

(−
4384

8199
) + 11(1)

− (
3

2
)
1 12832

24597
+ (2)1 (

193

8199
) + (3)1 (

23

24597
)
) = 0

𝐶2 =
1

2!
(

02 (
785

24597
) + (

1

2
)
2

(−
4384

8199
) + 12(1)

− (
3

2
)
2 12832

24597
+ (2)2 (

193

8199
) + (3)2

23

24597

) − (
1

24597
) +

2521

24597
= 0

𝐶3 =
1

3!
(
03 (

785

24597
) + (

1

2
)
3

(−
4384

8199
) + 13(1)

+ (
3

2
)
3 12832

24597
+ (2)3

193

8199
+ (3)3

23

24597

) − 42 (
1

24597
) − 12

2521

24597
= 0

𝐶4 =
1

4!
(

04 (
785

24597
) + (

1

2
)
4 4384

8199
+ 14(1)

− (
3

2
)
4

(−
12832

24597
) + (2)4

193

8199
+ (3)4

23

24597

)−
1

2!
43

1

24597
−

1

2!
13

2521

24597
= 0

𝐶5 =
1

5!
(

03 (
785

24597
) + (

1

2
)
5

−
4384

8199
+ 15(1)

− (
3

2
)
5

(−
12832

24597
) + (2)5

193

8199
+ (3)5

23

24597

)−
1

2!
44

1

24597
+

1

2!
14

2521

24597
= 0

𝐶6 =
1

6!
(

06 (
785

24597
) − (

1

2
)
6 4384

8199
+ 16(1)

− (
3

2
)
6 12832

24597
+ (2)6

193

8199
+ (3)6

23

24597

) −
1

2!
45

1

24597
+

1

2!
15

2521

24597
= 0

𝐶7 =
1

7!
(
05 (

785

24597
) − (

1

2
)
7 4384

8199
+ 17(1)

− (
3

2
)
7 12832

24597
+ 27

193

8199
+ 37

23

24597

) +
1

5!
46

1

24597
+

1

5!
16

2521

24597
= − 79

1311840
}
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  (3.48) 

Since 𝐶𝑝+2 = 𝐶7. The 𝑝 = 5 implies the method is of order 5 with error constant 𝐶7 =

−
79

1311840
 

We follow similar procedure for others and even for cases 𝑘 = 5 and 𝑘 = 6 and present 

the Order and Error constants for the proposed methods as follows;  
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Table 3.1 Order and Error Constants of the 4SBHBDF 

method Order(p) Error Constants (𝑪𝒑+𝟐) 

(3.19) 5 
−
1163

30252
 

 

(3.20) 5  

−
823159

12705840
 

 

(3.20) 5  

−
4847

564704
 

 

(3.20) 5  

−
307

352940
 

 

(3.20) 5  

−
2909

3630240
 

 

(3.20) 5  
1241

282352
 

 

(3.20) 5  

−
17257

45176320
 

 

(3.20) 5  

−
1370713

1626347520
 

 

(3.21) 5  

−
79

1311840
 

 

(3.21) 5  
991

275040
 

 

(3.21) 5  
1739

2042880
 

 

(3.21) 5  

−
148311

14750560
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 Table 3.2 Order and Error Constants of the 5SBHBDF 

Method Order(p) Error Constants (𝑪𝒑+𝟐) 

(3.28) 6 31668953

667233000
 

(3.29) 6 939263

556027500
 

(3.29) 6 390199

4448220000
 

(3.29) 6 24451283

125106187
 

(3.29) 6 −1503671

741370000
 

(3.29) 6 303803

26477500
 

(3.29) 6 3169035811

40033980000
 

(3.29) 6 −5989

66193750
 

(3.30) 6 −11384321

28959765625
 

(3.30) 6 −56100696

465541015625
 

(3.30) 6 2096458572

10884958984375
 

(3.30) 6 1023157

133446600
 

(3.30) 6 15483281

266893200
 

(3.30) 6 
−

6722843

133446600
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Table 3.3 Order and Error Constants of the 6SBHBDF 

Method Order(p) Error Constants (𝑪𝒑+𝟐) 

(3.36) 7  

−
3727

143680
 

 

(3.37) 7  
4381

517248
 

 

(3.37) 7   

−
26177

90518400
 

 

(3.37) 7  

−
7229

18103680
 

 

(3.37) 7  

−
17197

181036800
 

 

(3.37) 7  
12707

18103680
 

 

(3.37) 7  

−
913

172416
 

 

(3.37) 7  
89

1379328
 

(3.37) 7  
9721

231727104
 

 

(3.38) 7  

−
5983

82759680
 

(3.38) 7  

−
8233129

181036800
 

 

(3.38) 7  

−
261523

965529600
 

 

(3.38) 7  
82123

306396160
 

 

 

3.38 7  
11719

2814668640
 

 

3.38 7  

−
47101

39417280
 

 

3.38 7  

−
539907687

33660368
 

 

3.38 7  

−
13934665

2408450688
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3.3.2 Consistency 

The sufficient conditions for a linear multistep to be consistent are;  

i. 𝑝 ≥ 1( i.e. the method has at least order of one). 

ii. ∑ 𝛼𝑗 = 0
𝑘
𝑗=0  

iii. 𝑝(𝑟) = 𝜌′(1) = 0 

iv. 𝜌′′(1) = 2! 𝜎(1) 

where 𝜌(𝑟) and 𝜎(𝑟) are the first and second characteristic polynomials respectively.  

In section 3.3.1, we have established the axioms. 

(i) where 𝑝 = 5, 𝑝 = 6, and 𝑝 = 7 for cases of the 4SBHBDF, 5SBHBDF, and 

6SBHBDFrespectively. 

 (ii) It satisfied  𝐶0 = ∑ 𝛼𝑗 = 0𝑘
𝑗=0  in at each cases of 4SBHBDF, 5SBHBDF, and 

6SBHBDF.  

 (iii), we shall consider (3.19) and obtain the first and second characteristic polynomials 

as;  

𝜌(𝑟) = 𝑟4 −
41608

7563
𝑟3 +

66710

2521
𝑟2 +

95480

2521
𝑟 −

38144

2521
𝑟
1

2 −
356608

7563
𝑟
3

2 +
18515

7563
 

Then 𝜌′(𝑟) = 4𝑟3 − 3
41608

7563
𝑟2 + 2

66710

2521
𝑟1 +

95480

2521
−
1

2

38144

2521
𝑟−

1

2 −
3

2

356608

7563
𝑟
1

2 

𝜌′′(𝑟) = 12𝑟2 − 6
41608

7563
𝑟 + 2

66710

2521
+
1

4

38144

2521
𝑟−

3

2 −
3

4

356608

7563
𝑟−

1

2  

Therefore,  

𝜌′′(1)  =
840

2521
  

and 

𝜎(1) =
420

2521
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2! 𝜎(𝑟) =
840

2521
  

Hence, 𝜌′′(1) = 2! 𝜎(𝑟)which satisfied the condition (iii). Since the three conditions are 

satisfied, it follows that (3.19) is consistent.  

We follow similar procedure for others and even for cases 𝑘 = 5 and 𝑘 = 6 and present 

the first and second characteristic polynomials for the other in the table. 

Table 3.4 Condition for Consistency of the 4SBHBDF 

Method 𝜌′′(1) 2! 𝜎(𝑟) 

(3.19) 
−
840

2521
 −

840

2521
 

 

(3.20) 560

2733
 

 

560

2733
 

 

(3.20)  

 

 

 

(3.20)  

 

 

 

(3.20)  
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Table 3.5: Condition for consistency of the 5SBHBDF 

method  

𝜌′′(1) 
 

2! 𝜎(𝑟) 
(3.28)  

 

 

 

(3.30) 

 
 

 
  

 

 

(3.30) 

 
 

 
  

 

 

(3.30) 

  
 

 
   

 

 

(3.30) 

 
 

 
  

 

 

(3.30)  
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Table 3.6 Condition for Consistency of the 5SBHBDF 

method 𝜌′′(1) 2! 𝜎(𝑟) 

(3.36) 126

449
 

126

449
 

(3.37)  

 

 

 

(3.37) 

             
 

 

              

 

(3.37) 

              
 

 

                
 

 

(3.37) 

             
 

 

               
 

 

(3.37) 

              
 

 

                   
 

 

(3.37) 

             
 

 

                 
 

 

(3.37) 
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3.3.3 Zero stability  

According to Awari (2017), a linear multistep method is said to be zero-stable if no root 

of the first characteristic polynomial has modulus greater than one, if every root with 

modulus one is simple, i.e.  and has multiplicity not greater than the order of the 

differential equation.  

To obtain the zero-stability of HBDF, we shall express the proposed methods in matrix 

difference equation form; 

𝐴(1)𝑌𝑛+1 = 𝐴
(0)𝑌𝑛 + ℎ

2𝐵(0)𝐹𝑛 + ℎ
2𝐵(1)𝐹𝑛+1                                                              (3.49) 

Where 

𝑌𝑛+1 =

(

 
 
 

𝑦
𝑛+

1

2

𝑦𝑛+1
𝑦
𝑛+

3

2

𝑦𝑛+2.
..

𝑦𝑛+𝑖)

 
 
 

𝑌𝑛 =

(

 
 
 

𝑦
𝑛−

1

2

𝑦𝑛−1
𝑦
𝑛−

3

2

𝑦𝑛−2...
𝑦𝑛 )

 
 
 

 

𝐹𝑛+1 =

(

  
 

𝑓
𝑛+

1

2

𝑓𝑛+1.
..

𝑓𝑛+𝑖)

  
 
𝑓𝑛 =

(

  
 

𝑓
𝑛−

1

2

𝑓𝑛−1.
..
𝑓𝑛 )

  
 

 

𝐴(1),𝑃(0), 𝐵(1), and 𝐵(0) are (𝑘 + 1) × (𝑘 + 1) matrices obtained from the combined 

coefficients of the HBDF. The roots of the first characteristics polynomial 𝜌(𝑟) is 

obtained from; 

𝜌(𝑟) = |𝑟𝑃(1) − 𝑃(0)|                                                                                                        (3.50) 

 

  

1r 
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3.3.3.1 Zero stability of 4SBHBDF 

We express the schemes in 4SBHBDFin the form (3.41) and obtain the𝑃(1),𝑃(0), 

and 𝜌(𝑟) as 

 

 

 

 

𝜌(𝑟) =
4101649090816

34344479374931
𝑟6 −

19345025348830499072

3166251898054263821
𝑟5  

Then𝑟 = (0,0,0,0,0,1), therefore 4SBHBDFis zero-stable since |𝑟𝑗| ≤ 1 

3.3.3.2 Zero stability of 5SBHBDF 

We express the schemes in 5SBHBDFin the form (3.42) and obtain the𝑃(1),𝑃(0), 

and 𝜌(𝑟) as 
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𝜌(𝑟) =
88631239741749381578565209075712

9525053801400413472826151066005
𝑟7

−
15030987135768493855250992132608

501318621126337551201376371895
𝑟6 

Then𝑟 = (0,0,0,0,0,0,1), therefore 5SBHBDFis zero-stable since |𝑟𝑗| ≤ 1.  

3.3.3.3 Zero stability of 6SBHBDF 

We express the schemes in 6SBHBDFin the form (3.41) and obtain the𝑃(1),𝑃(0), 

and 𝜌(𝑟) as 
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𝜌(𝑟) =
6307394468528942600453890891938984375

73427223545846056684211247872029743584
𝑟7

−
47437229545846256684211263427872027434

538282623545846052619683242110247772402
𝑟6 

Then 𝑟 = (0,0,0,0,0,0,0,1), therefore 6SBHBDFis zero-stable since |𝑟𝑗| ≤ 1 
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3.4 Convergence 

The necessary and sufficient condition for a Linear Multistep Method to be convergent 

is the method to be consistent and zero-stable. Since, the proposed Backward 

Differentiation Formulae are both consistent and zero-stable, we conclude that the 

proposed methods are convergent. 
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CHAPTER FOUR 

4.0    RESULTS AND DISCUSSION 

4.1 Results 

Problem: 1 

Constant Coefficient Linear Type   

𝑑2𝑦(𝑥)

𝑑𝑥2
= 8

𝑑𝑦(𝑥)

𝑑𝑥
− 17𝑦(𝑥) 

𝑦(0) = −4, 𝑦′(0) = −1, ℎ = 0.01 

Exact solution: 

𝑦(𝑥) = 15𝑒4𝑥 sin(𝑥) − 4𝑒4𝑥 cos(𝑥) 

Source Hussaini  and Muhammad (2021) 

Results of Problem 1 is presented in Table 4.1 and Table 4.2 
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Table 4.1 Numerical Comparison of Exact Solution and the Proposed Methods for 

Problem 1 at 𝒉 =  𝟎. 𝟎𝟏 

x Exact 4SBHBDF 5SBHBDF 6SBHDF 

0.0 4 4 4 4 

0.1 3.703477803016 3.703477800904654 3.70347780303625 3.7034778030095 

0.2 2.092512222723 2.092512211056652 2.09252222790784 2.0925122226926 

0.3 2.030109209389 2.030109247870297 2.03010920922489 2.0301092094835 

0.4 10.68384526906 10.68384536914484 10.6838452687145 10.683845269302 

0.5 27.19950587509 27.19950610485733 27.1995058743943 27.199505875615 

0.6 56.97102341802 56.97102390216715 56.9710234167154 56.971023419096 

0.7 108.5987462326 108.5987471960738 108.598746230267 108.59874623471 

0.8 195.6104858887 195.6104877209509 195.610485884562 195.61048589256 

0.9 339.0264188636 339.0264222318543 339.026418856481 339.02641887047 

1.0 571.1433607200 571.1433667080193 571.143360708019 571.14336073189 

 

The Table 4.1 shows the numerical results of problem 1. The results show that the 

proposed methods 4SBHBDF, 5SBHBDF and 6SBHBDF agree well with the exact 

solution as illustrated in the tabulated results. The results also proved that as the number 

of step size 𝑘 increases, the accuracy increases.  
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Table 4.2 Absolute Error |𝒀(𝒕) − 𝒚(𝒕)| in proposed methods for Problem 1  

x 4SBHBDF 5SBHBDF 6SBHBDF Hussaini and 

Muhammad (2021) 

0.0 0 0 0 0 

0.1 2.111386E-09 2.021077E-11 6.511951E-12 1.3159E-07 

0.2 1.166701E-08 6.712188E-11 3.104634E-11 6.7720E-07 

0.3 3.848114E-08 1.642611E-10 9.438140E-11 2.1628E-06 

0.4 1.000783E-07 3.520264E-10 2.363964E-10 5.5378E-06 

0.5 2.297648E-07 6.981589E-09 5.226320E-10 1.2576E-05 

0.6 4.841329E-07 1.313958E-09 1.067437E-09 5.2072E-05 

0.7 9.634269E-07 2.378996E-09 2.065300E-09 9.8616E-05 

0.8 1.832210E-06 4.178189E-09 3.833801E-09 2.6315E-05 

0.9 3.368216E-06 7.156504E-09 6.833380E-09 1.8063E-04 

1.0 6.015070E-06 1.199823E-08 1.187924E-08 3.2162E-04 

 

The results of the errors of problem 1 at h=0.01, proved that as the number of step size 

𝑘 increases, the accuracy increases.  

 

 

 

 

 

 

 



76 
 

Problem: 2 

Constant Coefficient Linear Type 

𝑦′′(𝑥) = 3𝑦′ + 8𝑒2𝑥 

𝑦(0) = 1, 𝑦′(0) = 1, ℎ = 0.01 

Exact Solution  

𝑦(𝑥) = −4𝑒2𝑥 + 3𝑒3𝑥 + 2 

Source: Badmus et al.  (2014)  

Results of Problem 1 is presented in Table 4.3 and Table 4.4 
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Table 4.3 Numerical Comparison of Exact Solution and the Proposed Methods for 

Problem 2 at 𝒉 =  𝟎. 𝟎𝟏  

x Exact 4SBHBDF 5SBHBDF 6SBHBDF 

0 0 0 0 0 

0.1 1.00513852551048 1.005138525510492 1.005138525510484 1.005138525510484 

0.2 1.01055824175352 1.010558241753543 1.010558241753527 1.010558241753527 

0.3 1.01626544391208 1.016265443912109 1.016265443912083 1.016265443912083 

0.4 1.02226654286652 1.022266542866562 1.022266542866525 1.022266542866525 

0.5 1.02856806714979 1.028568067149859 1.028568067149798 1.028568067149798 

0.6 1.03517666493419 1.035176664934279 1.035176664934192 1.035176664934192 

0.7 1.04209910605024 1.042099106050362 1.042099106050249 1.042099106050249 

0.8 1.04934228403829 1.049342284038433 1.049342284038292 1.049342284038292 

0.9 1.05691321823310 1.056913218233285 1.056913218233101 1.056913218233102 

1.0 1.06481905588225 1.064819055882486 1.064819055882258 1.064819055882258 

 

The Table 4.3 shows the numerical results of problem 2. The results show that the 

proposed methods 4SBHBDF, 5SBHBDF and 6SBHBDF agree well with the exact 

solution as illustrated in the tabulated results. The results also proved that as the number 

of step size 𝑘 increases, the accuracy increases.  
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Table 4.4 Absolute Error |𝒀(𝒕) − 𝒚(𝒕)| in proposed methods for Problem 2 

x 4SBHBDF 5SBHBDF 6SBHBDF Badmus et al. 

(2014) 

0.0 0 0 0 0 

0.1 7.307217E-15 6.163983E-17 5.166811E-18 2.021077E-11 

0.2 1.657122E-14 1.344640E-16 1.184919E-17 6.712188E-11 

0.3 2.577850E-14 2.103543E-16 1.860079E-17 1.642611E-10 

0.4 3.695325E-14 2.911278E-16 2.546709E-17 3.520264E-10 

0.5 6.058473E-14 3.468657E-16 3.239023E-17 6.981589E-09 

0.6 8.653712E-14 4.193913E-16 3.969403E-17 1.313958E-09 

0.7 1.126725E-13 5.010015E-16 5.334440E-17 2.378996E-09 

0.8 1.411474E-13 5.859614E-16 6.877556E-17 4.178189E-09 

0.9 1.831217E-13 6.762430E-16 8.440513E-17 7.156504E-09 

1.0 2.278189E-13 7.395821E-16 1.002848E-16 1.199823E-08 

 

The results show that errors become smaller as the step size k increases. It also observed 

that there is accuracy as step size k increases. 
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Problem: 3 

Constant Coefficient Linear Type 

𝑦′′ =
6

𝑥2
𝑦′ −

4

𝑥
𝑦 

𝑦(1) = −1, 𝑦′(1) = 1, ℎ =
1

320
 

Exact solution as: 

𝑦(𝑥) =
5

3𝑥
−

2

3𝑥4
 

Source: Abada  et al. (2017) 

 

 

Results of Problem 3 is presented in Table 4.5 and Table 4.6 
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Table 4.5 Numerical Comparison of Exact Solution and the Proposed Methods for 

Problem 3 at 𝒉 =  
1

320
 

X Exact 4SBHBDF 5SBHBDF 6SBHBDF 

1.00 1 1 1 1 

1.003125 1.00307652585769 1.00307652585771 1.003076525857696 1.003076525857696 

1.006250 1.00605750308351 1.00605750308355 1.006057503083516 1.006057503083516 

1.009375 1.00894499508883 1.00894499508889 1.008944995088838 1.008944995088837 

1.012500 1.01174101816798 1.01174101816806 1.011741018167989 1.011741018167988 

1.015625 1.01444754268641 1.01444754268653 1.014447542686415 1.014447542686414 

1.018750 1.01706649423567 1.01706649423584 1.017066494235674 1.017066494235673 

1.02187 5 1.01959975475628 1.01959975475650 1.019599754756289 1.019599754756288 

1.025000 1.02204916362943 1.02204916362969 1.022049163629433 1.022049163629432 

1.028125 1.02441651873840 1.02441651873873 1.024416518738405 1.024416518738403 

1.031250 1.02670357750080 1.02670357750121 1.026703577500808 1.026703577500806 

 

The Table 4.5 shows the numerical results of problem 3. The results show that the 

proposed methods 4SBHBDF, 5SBHBDF and 6SBHBDF agree well with the exact 

solution as illustrated in the tabulated results. The results also proved that as the number 

of step size 𝑘 increases, the accuracy increases.  
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Table 4.6 Absolute Error |𝒀(𝒕) − 𝒚(𝒕)| in prosed methods for Problem 3  

x 4SBHBDF 5SBHBDF 6SBHBDF Abada et al. 

(2017) 

1.000000 1 1 1 1 

1.003125 1.584762E-14 2.902001E-16 6.035170E-17 1.0000E-14 

1.006250 3.538009E-14 6.233869E-16 1.362264E-16 2.0000E-14 

1.009375 5.409330E-14 9.585251E-16 2.105833E-16 3.0000E-14 

1.012500 7.645367E-14 1.306081E-15 2.836268E-16 2.0000E-14 

1.015625 1.218539E-13 1.526144E-15 3.537719E-16 2.0000E-14 

1.018750 1.698903E-13 1.716720E-15 4.242471E-16 2.0000E-14 

1.021875 2.166456E-13 1.943949E-15 5.103597E-16 3.0000E-14 

1.025000 2.660267E-13 2.173730E-15 6.497260E-16 4.0000E-14 

1.028125 3.349836E-13 2.414736E-15 7.865096E-16 4.0000E-14 

1.031250 4.057153E-13 2.550703E-15 9.208023E-16 4.0000E-14 

 

The errors of this method at each k-step compared with the abada solution shows that 

error becomes smaller as the step size increases. it is also observed that there is efficient 

and accuracy as step size increases. 
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Problem: 4 

Linear System of Second Order Initial Value problem (IVP) 

𝑑2𝑦1
𝑑𝑥2

=
𝑑𝑦1
𝑑𝑥

+
𝑑𝑦2
𝑑𝑥

 

𝑑2𝑦2
𝑑𝑥2

=
𝑑𝑦1
𝑑𝑥

+
𝑑𝑦2
𝑑𝑥

 

𝑦1(0) = 1, 𝑦1
′(0) = 2, 𝑦2(0) = 1, 𝑦2

′(0) = 2, h=0.01 

Exact Solution: 

𝑦1(𝑥) = 𝑒
2𝑥,   𝑦2(𝑥) = 𝑒2𝑥 

Source: Hussaini and Muhammad (2021) 

Results of Problem 4 is presented in Table 4.7 and Table 4.8 
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Table 4.7a Numerical Comparison of Exact Solution and the Proposed Methods 

for Problem 4 at 𝒉 =  𝟎. 𝟎𝟏 for 𝒚𝟏(𝒕) 

X Exact 4 SBHBDF 5 SBHBDF 6 SBHBDF 

0.0 1.0000000000000 1.0000000000000 1.0000000000000 1.000000000000 

0.1 1.221402758160169 1.2214027581980047 1.221402758160167 1.221402758160167 

0.2 1.491824697641270 1.4918246977910167 1.491824697641264 1.491824697641272 

0.3 1.822118800390508 1.8221188007610667 1.822118800390498 1.822118800390513 

0.4 2.2255409284924676 2.2255409292307309 2.225540928492451 2.225540928492476 

0.5 2.7182818284590453 2.7182818297719146 2.718281828459022 2.718281828459060 

0.6 3.3201169227365474 3.3201169248974443 3.320116922736516 3.320116922736572 

0.7 4.0551999668446745 4.0551999702285565 4.055199966844632  

0.8 4.9530324243951148 4.9530324294908558 4.953032424395059 4.953032424395173 

0.9 6.0496474644129460 6.0496474718788228 6.049647464412873 6.049647464412931 

1.0 7.3890560989306501 7.3890561096167800 7.389056098930556 7.389056098930675 

 

The Table 4.7a shows the numerical results of Problem 4. The results show that the 

proposed methods 4SBHBDF, 5SBHBDF and 6SBHBDF agree well with the exact 

solution as illustrated in the tabulated results. The results also proved that as the number 

of step size 𝑘 increases, the accuracy increases.  
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Table 4.7b Absolute Error |𝒀(𝒕) − 𝒚(𝒕)| in prosed methods for Problem 4 

X 4SBHBDF 5SBHBDF 6SBHBDF Hussani and 

Muhammad 

(2021) 

0.0 0.0 0.0 0.0 0.0 

0.1 1.584762E-14 2.902001E-16 6.035170E-17 3.782E-11 

0.2 3.538009E-14 6.233869E-16 1.362264E-16 1.496E-10 

0.3 5.409330E-14 9.585251E-16 2.105833E-16 3.704E-10 

0.4 7.645367E-14 1.306081E-15 2.836268E-16 7.379E-10 

0.5 1.218539E-13 1.526144E-15 3.537719E-16 1.312E-09 

0.6 1.698903E-13 1.716720E-15 4.242471E-16 2.160E-09 

0.7 2.166456E-13 1.943949E-15 5.103597E-16 3.382E-09 

0.8 2.660267E-13 2.173730E-15 6.497260E-16 5.094E-09 

0.9 3.349836E-13 2.414736E-15 7.865096E-16 7.464E-09 

1.0 4.057153E-13 2.550703E-15 9.208023E-16 1.068E-08 

 

The errors of this method at each k-step compared with the exact solution shows that 

error becomes smaller as the step size increases. it is also observed that there is efficient 

and accuracy as step size increases. 
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Table 4.8a Numerical Comparison of Exact Solution and the Proposed Methods 

for Problem 4 at 𝒉 =  𝟎. 𝟎𝟏 for 𝒚𝟐(𝒕) 

X Exact 4 SBHBDF 5 SBHBDF 6 SBHBDF 

0.0 1.000000000000000 1.0000000000000000 1.000000000000000 1.000000000000000 

0.1 1.2214027581601698339 1.2214027581980047 1.2214027581601671 1.2214027581601671 

0.2 1.4918246976412703178 1.4918246977910167 1.4918246976412642 1.4918246976412721 

0.3 1.8221188003905089748 1.8221188007610667 1.8221188003904986 1.8221188003905132 

0.4 2.2255409284924676045 2.2255409292307309 2.2255409284924519 2.2255409284924762 

0.5 2.7182818284590452353 2.7182818297719146 2.7182818284590227 2.7182818284590603 

0.6 3.3201169227365474895 3.3201169248974443 3.3201169227365164 3.3201169227365723 

0.7 4.0551999668446745872 4.0551999702285565 4.0551999668446328 4.0551999668447133 

0.8 4.9530324243951148036 4.9530324294908558 4.9530324243950594 4.9530324243951731 

0.9 6.0496474644129460837 6.0496474718788228 6.0496474644128736 6.0496474644130312 

1.0 7.3890560989306502272 7.3890561096167800 7.3890560989305563 7.3890560989307722 

 

The Table 4.8a shows the numerical results of problem 4. The results show that the 

proposed methods 4SBHBDF, 5SBHBDF and 6SBHBDF agree well with the exact 

solution as illustrated in the tabulated results. The results also proved that as the number 

of step size 𝑘 increases, the accuracy increases.  
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Table 4.8b Absolute Error |𝒀(𝒕) − 𝒚(𝒕)| in prosed methods for Problem 4  

x 4SBHBDF 5SBHBDF 6SBHBDF Hussani and 

Muhammad 

(2021) 

0.0     

0.1 1.584762E-14 2.902001E-16 6.035170E-17 3.782E-11 

0.2 3.538009E-14 6.233869E-16 1.362264E-16 1.496E-10 

0.3 5.409330E-14 9.585251E-16 2.105833E-16 3.704E-10 

0.4 7.645367E-14 1.306081E-15 2.836268E-16 7.379E-10 

0.5 1.218539E-13 1.526144E-15 3.537719E-16 1.312E-09 

0.6 1.698903E-13 1.716720E-15 4.242471E-16 2.160E-09 

0.7 2.166456E-13 1.943949E-15 5.103597E-16 3.382E-09 

0.8 2.660267E-13 2.173730E-15 6.497260E-16 5.094E-09 

0.9 3.349836E-13 2.414736E-15 7.865096E-16 7.464E-09 

1.0 4.057153E-13 2.550703E-15 9.208023E-16 1.068E-08 

 

The errors of this method at each k-step compared with the exact solution shows that 

error becomes smaller as the step size increases. it is also observed that there is efficient 

and accuracy as step size increases. 
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Problem: 5   

Variable Coefficient Linear Type  

𝑥2
𝑑2𝑦(𝑥)

𝑑𝑥2
+
3𝑥𝑑𝑦(𝑥)

2𝑑𝑦
−
1𝑦(𝑥)

2
= 0 

𝑦(1) = 2, 𝑦′(1) = 5, ℎ = 0.01 

Exact solution: 

𝑦(𝑥) =
14

3
√𝑥 −

8

3𝑥
 

Source: Badmus et al. (2014) 

Results of Problem 5 is presented in Table 4.9  

 

 

 

 

 

 

 

 

 

 

 



88 
 

Table 4.9 Numerical Comparison of Exact Solution and the Computed Results 

from the proposed method.  

X Exact 4SBHBDF 5SBHBDF 6SBHBDF 

1.0 1 1 1 1 

1.1 2.4701988672182829 2.4701988672608552 2.4701988672187693 2.4701988672182877 

1.2 2.8898549811593281 2.8898549812856299 2.8898549811605495 2.8898549811593207 

1.3 3.2695365991805926 3.2695365994060417 3.2695365991826082 3.2695365991805986 

1.4 3.6169125594644035 3.6169125597911295 3.6169125594672004 3.6169125594644255 

1.5 3.9376982887163044 3.9376982891421087 3.9376982887198388 3.9376982887163082 

1.6 4.2362516323143080 4.2362516328346191 4.2362516323185326 4.2362516323143180 

1.7 4.5159614605420799 4.5159614611519441 4.5159614605469496 4.5159614605420382 

1.8 4.7795088555179296 4.7795088562122628 4.7795088555234023 4.7795088555179716 

1.9 5.0290473123789455 5.0290473131530200 5.0290473123849836 5.0290473123789457 

2.0 5.2663299577411102 5.2663299585905134 5.2663299577476803 5.2663299577410391 

 

The Table 4.9 shows the numerical results of problem 5. The results show that the 

proposed methods 4SBHBDF, 5SBHBDF and 6SBHBDF agree well with the exact 

solution as illustrated in the tabulated results. The results also proved that as the number 

of step size 𝑘 increases, the accuracy increases.  
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4.9b Absolute Error |𝒀(𝒕) − 𝒚(𝒕)| in proposed methods for Problem 5 

x 4SBHBDF 5SBHBDF 6SBHBDF Badmus et al. 

(2014) 

1.0 0 0 0 0 

1.1 4.257245E-11 4.954632E-13 4.794671E-15 2.021077E-11 

1.2 1.263052E-10 1.289621E-12 1.118039E-15 6.712188E-11 

1.3 2.254480E-10 2.034710E-12 6.058695E-15 1.642611E-10 

1.4 3.267263E-10 2.811952E-12 9.758609E-15 3.520264E-10 

1.5 4.258054E-10 3.554371E-12 3.835802E-15 6.981589E-09 

1.6 5.203131E-10 4.276249E-12 9.720218E-15 1.313958E-09 

1.7 6.098615E-10 4.801756E-12 4.168247E-14 2.378996E-09 

1.8 6.943314E-10 5.456282E-12 4.202684E-14 4.178189E-09 

1.9 7.740732E-10 6.023162E-12 2.180659E-14 7.156504E-09 

2.0 8.494079E-10 6.567251E-12 7.110028E-14 1.199823E-08 

 

The errors of this method at each k-step compared with the exact solution shows that 

error becomes smaller as the step size increases. it is also observed that there is efficient 

and accuracy as step size increases. 
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Problem: 6 

Consider the system of equations of Stiefel and Bettis problem  

𝑦1
′′ + 𝑦1 = 0.001 cos(𝑥) 

𝑦2
′′ + 𝑦2 = 0.001 sin( x) 

𝑦1(0) = 0, 𝑦1
′(0) = 0, ℎ =

1

320
 

𝑦2(0) = 0, 𝑦2
′(0) = 0.9995 

Exact Solutions are given as; 

𝑦1(𝑥) = cos( 𝑥) + 0.0005(𝑥) sin( 𝑥) 

𝑦2(𝑥) = sin(𝑥) − 0.0005(𝑥) cos( 𝑥) 

Source: Yahaya and Tijjani (2015) 

 

Results of Problem 6 is presented in Table 4.10 and Table 4.11. 
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Table 4.10a Numerical Comparison of Exact Solution and the Proposed Methods 

for Problem 6 at ℎ =
1

320
for 𝒚𝟏(𝒕) 

x Exact 4SBHBDF 5 SBHBDF 6SBHBDF 

0.000000 0 0 0 0 

0.003125 0.999995122074278 0.999995122074278 0.999995122074278 0.999995122074278 

0.006250 0.999980488344701 0.999980488344701 0.999980488344701 0.999980488344701 

0.009375 0.999956098954032 0.999956098954032 0.999956098954032 0.999956098954032 

0.012500 0.999921954140212 0.999921954140212 0.999921954140212 0.999921954140212 

0.015625 0.999878054236352 0.999878054236352 0.999878054236352 0.999878054236352 

0.018750 0.999824399670731 0.999824399670731 0.999824399670731 0.999824399670731 

0.02187  0.999760990966796 0.999760990966796 0.999760990966796 0.999760990966796 

0.025000 0.999687828743151 0.999687828743151 0.999687828743151 0.999687828743151 

0.028125 0.999604913713556 0.999604913713556 0.999604913713556 0.999604913713556 

0.031250 0.999512246686917 0.999512246686917 0.999512246686917 0.999512246686917 

 

The Table 4.10a shows the numerical results of problem 6. The results show that the 

proposed methods 4SBHBDF, 5SBHBDF and 6SBHBDF agree well with the exact 

solution as illustrated in the tabulated results. The results also proved that as the number 

of step size 𝑘 increases, the accuracy increases.  
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Table 4.10b Absolute Error |𝒀(𝒕) − 𝒚(𝒕)| in proposed methods for Problem 6 

x 4SBHBDF 5SBHBDF  6SBHBDF Error in 

Yahaya and 

Tijjani (2015) 

0.000000 0 0 0 0 

0.003125 2.381376E-22 7.298480E-23 1.041200E-26 5.6685E-22 

0.006250 5.405120E-22 1.581604E-22 2.380000E-26 9.2282E-22 

0.009375 8.316330E-22 2.454614E-22 3.716060E-26 2.0528E-22 

0.012500 1.205856E-21 3.374029E-22 5.041800E-26 3.0176E-21 

0.015625 2.552634E-21 3.987581E-22 6.357000E-26 2.6388E-21 

0.018750 4.099494E-21 4.649762E-22 7.859600E-26 1.8847E-22 

0.02187 5 5.619969E-21 5.433785E-22 1.304450E-25 4.5946E-21 

0.025000 7.359366E-21 6.239018E-22 1.917050E-25 3.8066E-21 

0.028125 1.094169E-20 7.090608E-22 2.527360E-25 3.9205E-21 

0.031250 1.485984E-20 7.636379E-22 3.138200E-25 1.2096E-21 

 

The errors of this method at each k-step compared with the exact solution shows that 

error becomes smaller as the step size increases. it is also observed that there is efficient 

and accuracy as step size increases. 
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Table 4.11a Numerical Comparison of Exact Solution and the Proposed Methods 

for Problem 6 at ℎ =
1

320
for 𝒚𝟐(𝒕) 

x Exact 4SBHBDF 5SBHBDF 6SBHBDF 

0.0000 0 0 0 0 

0.003125 0.003123432421368 0.003123432421368 0.003123432421368 0.003123432421368 

0.006250 0.006246834371010 0.006246834371010 0.006246834371010 0.006246834371010 

0.009375 0.009370175377494 0.009370175377494 0.009370175377494 0.009370175377494 

0.012500 0.012493424969984 0.012493424969984 0.012493424969984 0.012493424969984 

0.015625 0.015616552678538 0.015616552678538 0.015616552678538 0.015616552678538 

0.018750 0.018739528034400 0.018739528034400 0.018739528034400 0.018739528034400 

0.021875 0.021862320570301 0.021862320570301 0.021862320570301 0.021862320570301 

0.025000 0.024984899820758 0.024984899820758 0.024984899820758 0.024984899820758 

0.028125 0.028107235322366 0.028107235322366 0.028107235322366 0.028107235322366 

0.031250 0.031229296614099 0.031229296614099 0.031229296614099 0.031229296614099 

 

The Table 4.11a shows the numerical results of problem 6. The results show that the 

proposed methods 4SBHBDF, 5SBHBDF and 6SBHBDF agree well with the exact 

solution as illustrated in the tabulated results. The results also proved that as the number 

of step size 𝑘 increases, the accuracy increases.  
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Table 4.11b Absolute Error |𝒀(𝒕) − 𝒚(𝒕)| in proposed methods for Problem 6  

x 4SBHBDF 5SBHBDF 6SBHBDF Error in Yahaya and 

Tijjani (2015)  

0.000000 0 0 0 0 

0.003125 4.312814E-20 3.292285E-22 1.242837E-24 5.6685E-22 

0.006250 9.713139E-20 3.185519E-22 2.829327E-24 9.2282E-22 

0.009375 1.499253E-19 2.506054E-23 4.408140E-24 2.0528E-22 

0.012500 2.135932E-19 1.127375E-21 5.990016E-24 3.0176E-21 

0.015625 3.469364E-19 4.921169E-21 7.360440E-24 2.6388E-21 

0.018750 4.911499E-19 6.255357E-21 9.197510E-24 1.8847E-22 

0.02187 5 6.341507E-19 5.901612E-21 1.221512E-23 4.5946E-21 

0.025000 7.880187E-19 4.661617E-21 1.557615E-23 3.8066E-21 

0.028125 1.011539E-18 9.136466E-21 1.892938E-23 3.9205E-20 

0.031250 1.245920E-18 1.636987E-20 2.228554E-23 1.7865E-20 

The errors of this method at each k-step compared with the exact solution shows that 

error becomes smaller as the step size increases. it is also observed that there is efficient 

and accuracy as step size increases. 
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CHAPTER FIVE 

5.0                  CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

 In this research, block hybrid backward differentiation of order (k+1) have been 

developed by the interpolation and collocation techniques with  off- grids points for the 

solution of second order ordinary differential equations (ODEs). The power series 

expansion technique was used as the basis function. Analyses of the basic properties of 

the methods have also been verified which shows that the methods are of order (k+1). It 

also showed that the methods are consistent, zero- stable and convergent. Some selected 

problems showed that second order ordinary differential equations (ODEs) have been 

considered and agree strongly with the exact solution to determine the efficiency and 

accuracy of the methods. It was also observed from the error tables and figures that the 

block hybrid backward differentiation formulae (BHBDF) performed better in solving 

problems of second order ordinary differential equations (ODEs) as they produce 

smaller errors.  

The accuracy of the methods developed was tested with nine test problems (Real-life 

problem, stiefel and bettis problem and highly stiff problem) and their corresponding 

results were compared with other methods develop by researchers. Moreover the 

outcome of the comparison of the method to the results of exact solution showed that, 

the proposed methods is more efficient. It should be note that the accuracy and 

efficiency of the method is dependent on the implementation strategies. If economical 

computation is required, then the new method is a better choice. The proposed method 

is therefore recommended for general purpose used. Maple 17 software package was 

employed to generate the schemes and results.  
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5.2 Recommendations 

It is proposed for further research that; 

i. Researchers should try other basis functions different  from power series  to develop 

scheme . 

ii. The number of k- steps  to be increased as the performance of the method is 

investigated. 

iii.  More off-grid points should be focused in order to enhance global error estimations. 

iv. Researchers should consider developing computer software for solution of initial 

value problems of the proposed method. 

5.3 Contributions to Knowledge 

The following contributions were made: 

i. Formulation of new class of hybrid methods which are based on block hybrid 

backward differentiation formulae (BHBDF) for the solution of second order 

ordinary differential equations.  

ii. Derivation of some hybrid methods which are self-starting. 

iii. The methods are applicable to stiff system, non linear and system of second 

order ordinary differential equations (ODEs). 

iv. The efficiency and accuracy of the proposed method were proven to be 

relatively high at error analyses ranging between E-14 and E-26, with the lowest 

error obtained with the method at K = 6. The study introduces new approaches 

for discretization, interpolation, and collocation, contributing to the evolution of 

techniques used in computational mathematics. 
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