

FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA,

NIGERIA

CENTRE FOR OPEN DISTANCE AND e-LEARNING
(CODeL)

INTRODUCTION TO DIGITAL DESIGN AND

MICROPROCESSOR

 (CPT 322)

2

COURSE DEVELOPMENT TEAM

CPT 322

INTRODUCTION TO DIGITAL DESIGN AND
MICROPROCESSOR

Course Developer/Writers

Dr. S. A. ADEPOJU

Department of Computer Science

Federal University of Technology, Minna, Nigeria.

Programme Coordinator

Mrs O. A. Abisoye

Computer Science Department

Federal University of Technology, Minna, Nigeria.

Instructional Designers

Prof. Gambari, Amosa Isiaka

Mr. Falode, Oluwole Caleb

Centre for Open Distance and e-Learning,

Federal University of Technology, Minna, Nigeria.

Editor

Chinenye Priscilla Uzochukwu

Centre for Open Distance and e-Learning,

Federal University of Technology, Minna, Nigeria.

Director

Prof. J. O. Odigure

Centre for Open Distance and e-Learning,

Federal University of Technology, Minna, Nigeria

3

INTRODUCTION

CPT 322 Introduction to Digital Design and Microprocessor is a 3 credit unit course for

students studying towards acquiring a Bachelor of Science in Computer Science and other

related disciplines. The course is divided into 4 modules and 13 study units. It will first

introduce the history of digital computers. Then number system with emphasis on binary

numbers will be discussed. Thereafter, logic circuit, Boolean algebra, K-map, combinational

circuit and sequential circuits will be discussed.

The course guide therefore gives you an overview of what the course; CPT 322 is all about,

the textbooks and other materials to be referenced, what you expect to know in each unit, and

how to work through the course material.

What you will learn in this Course

The overall aim of this course, CPT 322 is to introduce you to basic concepts of digital

electronic and microprocessor in order to enable you to understand the basic elements of

logic circuits used in building microprocessor used in today’s digital computer

Course Aim

This course aims to introduce students to the basics, concepts and design of digital circuits

and microprocessor. It is believed the knowledge will enable the reader understand the basic

logic circuits used to design the processors in use today and hence know how to build a

smaller and faster ones with minimal cost and stress

Course Objectives

It is important to note that each unit has specific objectives. Students should study them

carefully before proceeding to subsequent units. Therefore, it may be useful to refer to these

objectives in the course of your study of the unit to assess your progress. Youshould always

look at the unit objectives after completing a unit. In this way, you can besure that you have

done what is required of you by the end of the unit.

However, below are overall objectives of this course. On completing this course, you should

be able to:

now the history of digital computers.

Carry out binary arithmetic operations

Understand different codes used in computer

Describe logic circuits and gates, know their symbols and truth table

Simplify Boolean expressions

Know standard form and canonical expression

Know min term and max terms

4

Draw Karnaugth (K) map

Distinguish between combinational and sequential circuit.

Discuss the various types of combinational circuits and sequential circuit and their

operations

Working through this Course

To complete this course, you are required to study all the units, the recommended text books,

and other relevant materials. Each unit contains some self assessment exercises and tutor

marked assignments, and at some point in this course, you are required to submit the tutor

marked assignments. There is also a final examination at the end of this course. Stated below

are the components of this course and what you have to do.

Course Materials

The major components of the course are:

1. Course Guide

2. Study Units

3. Text Books

4. Assignment File

5. Presentation Schedule

Study Units

There are 13 study units and 4 modules in this course. They are:

Module 1: Introduction To Computer & Number System

UNIT 1 History of Digital Computer

UNIT 2 Number system

UNIT 3 Binary Codes and Arithmetic

Module 2: Logic Gates

UNIT 1 Basic Logic

UNIT 2 Boolean Algebra

5

UNIT 3 KarnaughMaps

UNIT 4 Standard forms, Min term and Max term

Module 3: Combinational Logic

UNIT 1 Adder and Subtractor

UNIT 2 Multiplexer and demultiplexer

UNIT 3 Decoder, Encoder and Comparator

Module 4: Sequential Logic

UNIT 1Latches and Flip flop

UNIT 2 multi vibrator

UNIT 3 Shift Register and counter

Recommended Texts

These texts and especially the internet resource links will be of enormous benefit to you in

learning this course:

Ronald J. T.& Neal S., (2001).WidmerDigital Systems: Principle and Applications

(8thEd.) Prentice Hall,

Thomas L F., (2006). Digital Fundamentals, (9th Ed.). Prentice Hall.

Morris M. & Charles R. K. (2004) Logic and Computer Design Fundamentals. (2004)

NJPrentice Hall

Wakerly J.F. (2000). Digital Design: Principles and Practices (3rd Ed.) Upper Saddle

River NJ; Prentice

http://www.computersciencelab.com/ComputerHistory/HistoryPt3.htm

http://drstienecker.com/tech-332/3-logic-circuits-boolean-algebra-and-truth-tables/

http://www.courses.ebe.uct.ac.za/eee317w/1.%20Basic%20Logic%20Design . pdf

http://www.circuitstoday.com/half-adder-and-full-adder

http://www.electronics-tutorials.ws/combination/comb_5.html

http://www.circuitstoday.com/half-adder-and-full-adder

http://www.ccse.kfupm.edu.sa/~amin/eCOE200/Lesson4_4.pdf

http://www.indiabix.com/digital-electronics/combinational-logic-circuits /116006

http://www.allaboutcircuits.com

https://maxwell.ict.griffith.edu.au/yg/teaching/.../dns_module3_p3.pd...

http://www.ce.rit.edu/studentresources/reference.../341/.../EECC341-08.pdf

http://www.techterms.com/definition/integratedcircuit

http://www.computersciencelab.com/ComputerHistory/HistoryPt3.htm
http://drstienecker.com/tech-332/3-logic-circuits-boolean-algebra-and-truth-tables/
http://www.courses.ebe.uct.ac.za/eee317w/1.%20Basic%20Logic%20Design%20.%20pdf
http://www.circuitstoday.com/half-adder-and-full-adder
http://www.electronics-tutorials.ws/combination/comb_5.html
http://www.circuitstoday.com/half-adder-and-full-adder
http://www.ccse.kfupm.edu.sa/~amin/eCOE200/Lesson4_4.pdf
http://www.indiabix.com/digital-electronics/combinational-logic-circuits%20%20%20/116006
http://www.allaboutcircuits.com/
https://maxwell.ict.griffith.edu.au/yg/teaching/.../dns_module3_p3.pd
http://www.ce.rit.edu/studentresources/reference.../341/.../EECC341-08.pdf
http://www.techterms.com/definition/integratedcircuit

6

Assignment File

The assignment file will be given to you in due course. In this file, you will find all the details

of the work you must submit to your tutor for marking. The marks you obtain for these

assignments will count towards the final mark for the course. Altogether, there are tutor

marked assignments for this course.

Presentation Schedule

The presentation schedule included in this course guide provides you with important dates for

completion of each tutor marked assignment. You should therefore endeavour to meet the

deadlines.

Assessment

There are two aspects to the assessment of this course. First, there are tutor marked

assignments; and second, the written examination. Therefore, you are expected to take note of

the facts, information and problem solving gathered during the course. The tutor marked

assignments must be submitted to your tutor for formal assessment, in accordance to the

deadline given. The work submitted will count for 40% of your total course mark.

At the end of the course, you will need to sit for a final written examination. This

examination will account for 60% of your total score.

Tutor Marked Assignments (Tmas)

There are TMAs in this course. You need to submit all the TMAs. The best 10 will therefore

be counted. When you have completed each assignment, send them to your tutor as soon as

possible and make certain that it gets to your tutor on or before the stipulated deadline. If for

any reason you cannot complete your assignment on time, contact your tutor before the

assignment is due to discuss the possibility of extension. Extension will not be granted after

the deadline, unless on extraordinary cases.

Final Examination and Grading

The final examination for CIT 322 will last for a period of 3 hours and have a value of 60%

of the total course grade. The examination will consist of questions which reflect the self

assessment exercise and tutor marked assignments that you have previously encountered.

Furthermore, all areas of the course will be examined. It would be better to use the time

between finishing the last unit and sitting for the examination, to revise the entire course. You

might find it useful to review your TMAs and comment on them before the examination. The

final examination covers information from all parts of the course.

The following are practical strategies for working through this course

1. Read the course guide thoroughly

7

2. Organize a study schedule. Refer to the course overview for more details. Note the time

you are expected to spend on each unit and how the assignment relates to the units. Important

details, e.g. details of your tutorials and the date of the first day of the semester are available.

You need to gather together all these information in one place such as a diary, a wall chart

calendar or an organizer. Whatever method you choose, you should decide on and write in

your own dates for working on each unit.

3. Once you have created your own study schedule, do everything you can to stick to it. The

major reason that students fail is that they get behind with their course works. If you get into

difficulties with your schedule, please let your tutor know before it is too late for help.

4. Turn to Unit 1 and read the introduction and the objectives for the unit.

5. Assemble the study materials. Information about what you need for a unit is given in the

table of content at the beginning of each unit. You will almost always need both the study

unit you are working on and one of the materials recommended for further readings, on your

desk at the same time.

6. Work through the unit, the content of the unit itself has been arranged to provide a

sequence for you to follow. As you work through the unit, you will be encouraged to read

from your set books

7. Keep in mind that you will learn a lot by doing all your assignments carefully. They have

been designed to help you meet the objectives of the course and will help you pass the

examination.

8. Review the objectives of each study unit to confirm that you have achieved them.

If you are not certain about any of the objectives, review the study material and consult your

tutor.

9. When you are confident that you have achieved a unit’s objectives, you can start on the

next unit. Proceed unit by unit through the course and try to pace your study so that you can

keep yourself on schedule.

10. When you have submitted an assignment to your tutor for marking, do not wait for its

return before starting on the next unit. Keep to your schedule. When the assignment is

returned, pay particular attention to your tutor’s comments, both on the tutor marked

assignment form and also written on the assignment. Consult you tutor as soon as possible if

you have any questions or problems.

11. After completing the last unit, review the course and prepare yourself for the final

examination. Check that you have achieved the unit objectives (listed at the beginning of

each unit) and the course objectives (listed in this course guide).

Tutors and Tutorials

There are 8 hours of tutorial provided in support of this course. You will be notified of the

dates, time and location together with the name and phone number of your tutor as soon as

8

you are allocated a tutorial group. Your tutor will mark and comment on your assignments,

keep a close watch on your progress and on any difficulties you might encounter and provide

assistance to you during the course. You must mail your tutor marked assignment to your

tutor well before the due date. At least two working days are required for this purpose. They

will be marked by your tutor and returned to you as soon as possible.

Do not hesitate to contact your tutor by telephone, e-mail or discussion board if you need

help. The following might be circumstances in which you would find help necessary: contact

your tutor if:

You do not understand any part of the study units or the assigned readings.

You have difficulty with the self test or exercise.

You have questions or problems with an assignment, with your tutor’s comments on

an assignment or with the grading of an assignment.

You should endeavour to attend the tutorials. This is the only opportunity to have face to face

contact with your tutor and ask questions which are answered instantly. You can raise any

problem encountered in the course of your study. To gain the maximum benefit from the

course tutorials, have some questions handy before attending them. You will learn a lot from

participating actively in discussions.

GOODLUCK!

9

Module 1

Introduction
UNIT 1: History of Digital Computer
UNIT 2 : Number system

UNIT 3 :Binary Codes and Arithmetic

10

Unit1

 History of Digital

Computer

Content

1.0 Introduction

2 .0 Learning Outcomes

3.0 learning Contents

3.1 Steps toward Modern Computing

3.2 The Technological Edge, Electronic

3.3 The Eniac

3.4 The Stored Program Concept

3.5 The Computer Generations

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Readings

11

1.0 Introduction

Digital Computer has undergone many developmental stages before we have what is

available today. The word ‘computer’ is an old word that has changed its meaning several

times in the last few centuries. Originating from the Latin, by the mid-17th century it meant

‘someone who computes’. The American Heritage Dictionary gives its first computer

definition as “a person who computes.” The computer remained associated with human

activity until about the middle of the 20th century when it became applied to “a

programmable electronic device that can store, retrieve, and process data” as Webster’s

Dictionary defines it. Today, the word computer refers to computing devices, whether or not

they are electronic, programmable, or capable of ‘storing and retrieving’ data.

 This unit examines the chain of events that led to today’s digital computers. We’ll

begin by looking at the computing equivalent of ancient history, including the first

mechanical calculators and their huge, electromechanical offshoots that were created at the

beginning of World War II. Next, you’ll examine the technology—electronics—that made

today’s computers possible, beginning with what is generally regarded to be the first

successful electronic computer, the ENIAC of the late 1940s. We’ll then examine the

subsequent history of electronic digital computers, divided into different “generations” of

distinctive—and improving—technology.

2.0 Learning Outcomes

At the end of this unit, you should be able to:

Define the term “electronics” and describe some early electronic devices that helped

launch the computer industry.

Discuss the role that the stored-program concept played in launching the commercial

computer industry.

List the generations of computer technology.

Identify the key innovations that characterize each generation.

3.1 Steps Toward Modern Computing

Today’s electronic computers are recent inventions, stemming from work that began during

World War II. Yet the most basic idea of computing—the notion of representing data in a

physical object of some kind, and getting a result by manipulating the object in some way—is

very old. In fact, it may be as old as humanity itself. Throughout the ancient world, people

used devices such as notched bones, knotted twine, and the abacus to represent data and

perform various sorts of calculations..

First Steps: CalculatorDuring the sixteenth and seventeenth centuries, European

mathematicians developed a series of calculators that used clockwork mechanisms and cranks

. As the ancestors of today’s electromechanical adding machines, these devices weren’t

computers in the modern sense. A calculator is a machine that can perform arithmetic

functions with numbers, including addition, subtraction, multiplication, and division.

12

 Figure1 :Pascal’s calculator (1642)

 French mathematician and philosopher Blaise Pascal, the son of an accountant, invents an

adding machine to relieve the tedium of adding up long columns of tax figures.

 Figure 2:Leibniz’s calculator (1674)

German philosopher Gottfried Leibniz invents the first mechanical calculator capable of

multiplication.

Figure 3: Babbage’s difference engine (1822)

13

 English mathematician and scientist Charles Babbage designs a complex, clockwork

calculator capable of solving equations and printing the results. Despite repeated attempts,

Babbage was never able to get the device to work.

Self Assessment Questions

Self Assessment Answers

3.2 The Technological Edge: Electronics

 Today’s computers are automatic, in that they can perform most tasks without the

need for human intervention. They require a type of technology that was unimaginable in the

nineteenth century. Nineteenth century inventor Charles Babbage came up with the first

design for a recognizably-modern computer. It would have used a clockwork mechanism, but

the technology of his day could not create the various gears needed with the precision that

would have been required to get the device to work.

 The technology that enables today’s computer industry is called electronics. In brief,

electronics is concerned with the behavior and effects of electrons as they pass through

devices that can restrict their flow in various ways. The earliest electronic device, the vacuum

tube, is a glass tube, emptied of air, in the flow of electrons that can be controlled in various

ways. Created by Thomas Edison in the 1880s, vacuum tubes can be used for amplification,

which is why they powered early radios and TVs, or switching, their role in computers. In

fact, vacuum tubes powered all electronic devices (including stereo gear as well as

computers) until the advent of solidstate devices. Also referred to as a semiconductor, a solid-

state device acts like a vacuum tube, but it is a “sandwich” of differing materials that are

combined to restrict or control the flow of electrical current in the desired way.

3.3. The Electronic NumericalIntegrator AndComputer (ENIAC)

 With the advent of vacuum tubes, the technology finally existed to create the first

truly modern computer—and the demands of warfare created both the funding and the

motivation. In World War II, the American military needed a faster method to calculate shell

missile trajectories. The military asked Dr. John Mauchly (1907–1980) at the University of

Pennsylvania to develop a machine for this purpose. Mauchly worked with a graduate

Identify the early types of Electronic calculators

Pascal Calculator

Babbage’s difference Engine

Leibniz’s calculator

14

student, J. Presper Eckert (1919–1995), to build the device. Although commissioned by the

military for use in the war, the ENIAC was not completed until 1946, after the war had ended

.Although it was used mainly to solve challenging math problems, ENIAC was a true

programmable digital computer rather than an electronic calculator.

 One thousand times faster than any existing calculator, the ENIAC gripped the

public’s imagination after newspaper reports described it as an “Electronic Brain.” The

ENIAC took only 30 seconds to compute trajectories that would have required 40 hours of

hand calculations.

 ENIAC

3.4 The Stored-Program Concept

 ENIAC had its share of problems. It was frustrating to use because it wouldn’t run for

more than a few minutes without blowing a tube, which caused the system to stop working.

Worse, every time a new problem had to be solved, the staff had to enter the new instructions

the hard way: by rewiring the entire machine. The solution was the stored program concept,

an idea that occurred to just about everyone working with electronic computers after World

War II.

 With the stored-program concept,the computer program, as well as data, is stored in

the computer’s memory.One key advantage of this technique is that the computer can easily

go back to a previous instruction and repeat it. Most of the interesting tasks that today’s

computers perform stem from repeating certain actions over and over. But the most important

advantage is convenience. You don’t have to rewire the computer to get it to do something

different. Without the stored-program concept, computers would have remained tied to

specific jobs, such as cranking out ballistics tables. All computers that have been sold

commercially have used the stored program concept.

Self Assessment Questions

What is full Meaning of the ENIAC

What is the fundamental electronic device employed on the ENIAC

15

Self Assessment Answers

3.5 The Computer Generations

 The computer has evolcved through many generations and it is being view differently

by many authors. According to The Computational Science Education Project, US, the

computer has evolved through the following stages from the mechanical era which have been

described above:

First Generation Electronic Computers (1937-1953)

These devices used electronic switches, in the form of vacuum tubes, instead of

electromechanical relays. The earliest attempt to build an electronic computer was by J. V.

Atanasoff, a professor of physics and mathematics at Iowa State in 1937. Atanasoff set out to

build a machine that would help his graduate students solve systems of partial differential

equations. By 1941 he and graduate student Clifford Berry had succeeded in building a

machine that could solve 29 simultaneous equations with 29 unknowns. However, the

machine was not programmable, and was more of an electronic calculator.

A second early electronic machine was Colossus, designed by Alan Turing for the British

military in 1943. The first general purpose programmable electronic computer was the

Electronic Numerical Integrator and Computer (ENIAC), built by J. Presper Eckert and John

V. Mauchly at the University of Pennsylvania. Research work began in 1943, funded by the

Army Ordinance Department, which needed a way to compute ballistics during World War

II. The machine was completed in 1945 and it was used extensively for calculations during

the design of the hydrogen bomb. Eckert, Mauchly, and John von Neumann, a consultant to

the ENIAC project, began work on a new machine before ENIAC was finished.

The main contribution of EDVAC, their new project, was the notion of a stored program.

ENIAC was controlled by a set of external switches and dials; to change the program

required physically altering the settings on these controls. EDVAC was able to run orders of

magnitude faster than ENIAC and by storing instructions in the same medium as data,

designers could concentrate on improving the internal structure of the machine without

worrying about matching it to the speed of an external control. Eckert and Mauchly later

designed what was arguably the first commercially successful computer, the UNIVAC; in

1952. Software technology during this period was very primitive.

ENIAC stands for Electronic Numerical Integrator And Computer

The fundamental Electronic device is the Vaccum Tube.

16

Second Generation (1954-1962)

The second generation witnessed several important developments at all levels of computer

system design, ranging from the technology used to build the basic circuits to the

programming languages used to write scientific applications. Electronic switches in this era

were based on discrete diode and transistor technology with a switching time of

approximately 0.3 microseconds. The first machines to be built with this technology include

TRADIC at Bell Laboratories in 1954 and TX-0 at MIT's Lincoln Laboratory. Index registers

were designed for controlling loops and floating point units for calculations based on real

numbers.

A number of high level programming languages were introduced and these include

FORTRAN (1956), ALGOL (1958), and COBOL (1959). Important commercial machines of

this era include the IBM 704 and its successors, the 709 and 7094. In the 1950s the first two

supercomputers were designed specifically for numeric processing in scientific applications.

The transistor heralded the second generation of computers.

Early second-generation computers were frustrating to use because they could run onlyone

job at a time. Users had to give their punched cards to computer operators, who would run

their program and then give the results back to the user.

Self Assessment Questions

What were the punched cards used for on the Second Generation computers

The main electronic device on the second generation computer is the ________

17

Self assessment Answers

Third Generation (1963-1972)

Technology changes in this generation include the use of integrated circuits, or ICs

(semiconductor devices with several transistors built into one physical component),

semiconductor memories, microprogramming as a technique for efficiently designing

complex processors and the introduction of operating systems and time-sharing. The first ICs

were based on small-scale integration (SSI) circuits, which had around 10 devices per circuit

(or ‘chip’), and evolved to the use of medium-scale integrated (MSI) circuits, which had up to

100 devices per chip. Multilayered printed circuits were developed and core memory was

replaced by faster, solid state memories.

In 1964, Seymour Cray developed the CDC 6600, which was the first architecture to use

functional parallelism. By using 10 separate functional units that could operate

simultaneously and 32 independent memory banks, the CDC 6600 was able to attain a

computation rate of one million floating point operations per second (Mflops). Five years

later CDC released the 7600, also developed by Seymour Cray. The CDC 7600, with its

pipelined functional units, is considered to be the first vector processor and was capable of

executing at ten Mflops. The IBM 360/91, released during the same period, was roughly

twice as fast as the CDC 660.

Early in this third generation, Cambridge University and the University of London

cooperated in the development of CPL (Combined Programming Language, 1963). CPL was,

according to its authors, an attempt to capture only the important features of the complicated

and sophisticated ALGOL. However, like ALGOL, CPL was large with many features that

were hard to learn. In an attempt at further simplification, Martin Richards of Cambridge

developed a subset of CPL called BCPL (Basic Computer Programming Language, 1967). In

1970 Ken Thompson of Bell Labs developed yet another simplification of CPL called simply

B, in connection with an early implementation of the UNIX operating system. comment):

The Punched cards were used as storage devices

The main electronic device on the second generation computer is the Transistors

18

Integrated chips are shown here with first-generation vacuum tubes and second generation

transistors

 An integrated circuit ("silicon chip") [photo courtesy of IBM]

Fourth Generation (1972-1984)

Large scale integration (LSI - 1000 devices per chip) and very large scale integration (VLSI -

100,000 devices per chip) were used in the construction of the fourth generation computers.

Whole processors could now fit onto a single chip, and for simple systems the entire

computer (processor, main memory, and I/O controllers) could fit on one chip. Gate delays

dropped to about 1ns per gate. Core memories were replaced by semiconductor memories.

Large main memories like CRAY 2 began to replace the older high speed vector processors,

such as the CRAY 1, CRAY X-MP and CYBER

In 1972, Dennis Ritchie developed the C language from the design of the CPL and

Thompson's B. Thompson and Ritchie then used C to write a version of UNIX for the DEC

PDP-11. Other developments in software include very high level languages such as FP

(functional programming) and Prolog (programming in logic).

IBM worked with Microsoft during the 1980s to start what we can really call PC (Personal

Computer) life today. IBM PC was introduced in October 1981 and it worked with the

operating system (software) called ‘Microsoft Disk Operating System (MS DOS) 1.0.

Development of MS DOS began in October 1980 when IBM began searching the market for

an operating system for the then proposed IBM PC and major contributors were Bill Gates,

Paul Allen and Tim Paterson. In 1983, the Microsoft Windows was announced and this has

witnessed several improvements and revision over the last twenty years.

Self Assessment Questions

 What electronic devices serve as backbone of the third and fourth generation computers.

19

Self assessment answers

Fifth Generation (1984-1990)

This generation brought about the introduction of machines with hundreds of processors that

could all be working on different parts of a single program. The scale of integration in

semiconductors continued at a great pace and by 1990 it was possible to build chips with a

million components - and semiconductor memories became standard on all computers.

Computer networks and single-user workstations also became popular.

Parallel processing started in this generation. The Sequent Balance 8000 connected up to 20

processors to a single shared memory module though each processor had its own local cache.

The machine was designed to compete with the DEC VAX-780 as a general purpose Unix

system, with each processor working on a different user's job. However Sequent provided a

library of subroutines that would allow programmers to write programs that would use more

than one processor, and the machine was widely used to explore parallel algorithms and

programming techniques.

*Please Insert Relevant Images /Graphics

The Intel iPSC-1, also known as ‘the hypercube’ connected each processor to its own

memory and used a network interface to connect processors. This distributed memory

architecture meant memory was no longer a problem and large systems with more processors

(as many as 128) could be built. Also introduced was a machine, known as a data-parallel or

SIMD where there were several thousand very simple processors which work under the

direction of a single control unit. Both wide area network (WAN) and local area network

(LAN) technology developed rapidly.

Sixth Generation (1990 -)

Most of the developments in computer systems since 1990 have not been fundamental

changes but have been gradual improvements over established systems. This generation

brought about gains in parallel computing in both the hardware and in improved

understanding of how to develop algorithms to exploit parallel architectures.

Workstation technology continued to improve, with processor designs now using a

combination of RISC, pipelining, and parallel processing. Wide area networks, network

bandwidth and speed of operation and networking capabilities have kept developing

tremendously. Personal computers (PCs) now operate with Gigabit per second processors,

multi-Gigabyte disks, hundreds of Mbytes of RAM, colour printers, high-resolution graphic

monitors, stereo sound cards and graphical user interfaces.

The Large scale Integrated Circuit and the Microprocessors respectively are the backbone electronics

for the third and fourth Generation computers

20

Thousands of software (operating systems and application software) are existing today and

Microsoft Inc. has been a major contributor. Microsoft is said to be one of the biggest

companies ever, and its chairman – Bill Gates has been rated as the richest man for several

years.

 Finally, this generation has brought about micro controller technology. Micro

controllers are ’embedded’ inside some other devices (often consumer products) so that they

can control the features or actions of the product. They work as small computers inside

devices and now serve as essential components in most machines.

Self Assessment Questions

.

Self Assessment Answers

4.0 Conclusion

 This unit has given a broad view of chronological order on the genesis of modern day

digital computers. You also read abou the various developmental stages which digital

computers have gone through. This is to enable us trace the history of the modern day digital

computers,

5.0 Summary

You have learnt:

The technology that enables today’s computer industry is called electronics.

Electronics is concerned with the behavior and effects of electrons as they

passthrough devices that can restrict their flow in various ways. The vacuum tube was

the earliest electronic device.

The first successful large-scale electronic digital computer, the ENIAC, laid the

foundation for the modern computer industry.

The stored-program concept fostered the computer industry’s growth because it

enabled customers to change the computer’s function easily by running a different

program.

First-generation computers used vacuum tubes and had to be programmed in difficult-

to-use machine languages.

Second-generation computers introduced transistors and high-level programming

languages such as COBOL and FORTRAN.

What is the common characteristic feature of the fifth and sixth generation computers

The common feature is the parallel computing capability

21

Third-generation computers introduced integrated circuits, which cut costs and

launched the minicomputer industry. Key innovations included timesharing, wide area

networks, and local area networks.

Fourth-generation computers use microprocessors. Key innovations include personal

computers, the graphical user interface, and the growth of massive computer

networks.

An unparalleled public medium for communication and commerce, the Internet has

created a massive public computer network of global proportions

As computers become more powerful and less expensive, the rise of global

networking is making them more valuable. The combination of these two forces is

driving major changes in every facet of our lives.

6.0 Tutor Marked Assignment

1.Explain why ENIAC is considered the first true programmable digital computer. What

kinds of problems did it have?

2. Explain the stored-program concept. How did this concept radically affect the design of

computers we use today?

3. What major hardware technology characterized each of the four generations of computers?

4. What are the differences between a command line interface and a user interface? Which

one is easier to use and why?

5. How does a machine language differ from a high-level programming language?

7.0 References/Further Readings

Ronald J. T. & Neal S., (2001). Widmer Digital Systems: Principle and Applications

(8th Ed.) Prentice Hall,

Thomas L F., (2006). Digital Fundamentals (9th Ed.). Prentice Hall.

Morris M. & Charles R. K. (2004) Logic and Computer Design Fundamentals.

(2004) NJPrentice Hall

Wakerly J.F. (2000). Digital Design: Principles and Practices (3rd Ed.) Upper Saddle

River NJ; Prentice

http//www.en.wikipedia.org/wiki/Computer

http://www.computersciencelab.com/ComputerHistory/HistoryPt3.htm

http://www.computersciencelab.com/ComputerHistory/HistoryPt3.htm

http://www.ieeeghn.org/wiki/images/5/57/Onifade.pdf

http://www.cs.ncl.ac.uk/publications/articles/papers/398.pdf

http://www.computersciencelab.com/ComputerHistory/HistoryPt3.htm
http://www.computersciencelab.com/ComputerHistory/HistoryPt3.htm
http://www.ieeeghn.org/wiki/images/5/57/Onifade.pdf
http://www.cs.ncl.ac.uk/publications/articles/papers/398.pdf

22

 Unit 2
Number Systems
Content

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Contents

3.1 Weighted Number System

3.2 Important Number System

3.3 Octal System

3.4 Hexadecimal System

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

23

1.0 Introduction

 Before the inception of digital computers, the only number system that was in

common use is the decimal number system which has a total of 10 digits (0 to 9). However,

signals in digital computers may represent a digit in some number system. It was also found

that the binary number system is more reliable to use compared to the more familiar decimal

system. The binary number system and digital codes are fundamental to computers and to

digital electronics in general.

 In this unit, the binary number system and its relationship to other number systems

such as decimal, hexadecimal, and octal is presented. Arithmetic operations with binary

numbers are covered to provide a basis for understanding how computers and many other

types of digital systems work. Also, digital codes such as binary coded decimal (BCD), the

Gray code, and the ASCII will be covered in the next unit..

2.0 Learning Outcomes

At the end of this unit, you should be able to:

Know what is meant by a weighted number system.

Know the asic features of weighted number systems.

Know and review commonly used number systems, e.g. decimal, binary, octal and

hexadecimal.

Convert from decimal to binary and from binary to decimal

Convert between the binary and hexadecimal number systems

Convert between the binary and octal number systems

How to convert from one number system to another

3.0 Learning Contents

3.1 Weighted Number Systems:

 A number D consists of n digits with each digit has a particular position.D = dn-1 dn-

2…….. d2 d2d0

 Every digit position is associated with a fixed weight. If the weight associated with the

ith.position is wi, then the value of D is given by:

D = dn-1 w n-1 + d n-2w n-2+…+ d2 w2+ d1 + d0 w 0

Example of Weighted Number Systems:

• The Decimal number system is a weighted system.

• For Integer decimal numbers, the weight of the rightmost digit (at position 0) is 1, the

weight of position 1 digit is 10, that of position 2 digit is 100, position 3 is 1000, etc.

24

Thus,

w0= 1, w1= 10, w2=100, w3= 1000, etc.

Example Show how the value of the decimal number 9375 is estimated

The Radix (Base)

 For digit position i, most weighted number systems use weights (wi) that are powers

of some constant value called the radix (r) or the base such that wi= ri.. A number system of

radix r, typically has a set of r allowed digits ∈ {0, 1, …, (r-1)}. The leftmost digit has the

highest weight Most Significant Digit (MSD). The rightmost digit has the lowest weight

Least Significant Digit (LSD)

Self assessment questions

Self assessment Answers

Position 3 2 1 0

Number 9 3 7 5

Weight 1000 100 10 1

Value 9x1000 3x100 7x10 5x1

Value 9000 +300+70+5

The weight value of 7 in 9786 is 100

What Is The Weight Value Of 7 In 9786

25

Example Decimal Number System

1. Radix (Base) = Ten

2. Since wi= ri, then w0= 100 = 1, w1= 101 = 10, w2= 102 = 100, w3= 103 = 1000, etc.

3. Number of Allowed Digits is Ten = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Thus:

9375 = 5x100 + 7x101 + 3x102 + 9x103

= 5x1 + 7x10 + 3x100 + 9x 1000

Position 3 2 1 0

Weight

1000

=103

100

=102

10

=101

1

=100

The Radix Point

Consider a number system of radix r, a number D of n integral digits and m fractional digits

is represented as shown

 Digits to the left of the radix point (integral digits) have positive position indices,

while digits to the right of the radix point (fractional digits) have negative position indices.

26

Position indices of digits to the left of the radix point (the integral part of D) start with a 0

and are incremented as we move lefts (dn-1 d n2 …..d 2 d 1d 0.)

Position indices of digits to the right of the radix point (the fractional part of D) are negative

starting with –1 and are decremented as we move rights (d -1d -2…..d -m).

 The weight associated with digit position i is given by wi= ri,where i is the position index

∀i= -m, -m+1, …, -2, -1, 0, 1, ……, n-1

 The Value of D is Computed as :

Example Show how the value of the following decimal number is estimated

D = 5 2. 9 4 6

Number 5 2 . 9 4 6

Position 1 0 . -1 -2 -3

Weight 101

 =

10

100

 =

 1

. 10-1

 =

 0.1

10-2

 =

0.01

10-3

 =

0.001

Value 5x10 2x1 . 9x0.1 4x0.01 6x0.001

Value 50 +2+0.9+0.04+0.006

 D=5x101 + 2x100 + 9x10-1 + 4x 10-2 +6x10-3

Notation

• Let (D) r denotes a number D expressed in a number system of radix r.

Note: In this notation, r will be expressed in decimal

Example:

(29)10 Represents a decimal value of 29. The radix “10” here means ten.

27

(100)16 is a Hexadecimal number since r = “16” here means sixteen. This number is

equivalent to a decimal value of 162.

(100)2 is a Binary number (radix =2, i.e. two) which is equivalent to a decimal value of 22 =

4.

Self assessment questions

Self assessment answers

3.2 Important Number Systems

The Decimal System

 In the decimal number system each of the ten digits, 0 through 9.represents a certain

quantity. The ten symbols (digits) do not limit you to expressing only ten different quantities

because you use the various digits in appropriate positions within a number to indicate the

magnitude of the quantity. You can express quantities up through nine before running out of

digits; if you wish to express a quantity greater than nine, you use two or more digits, and the

position of each digit within the number tells you the magnitude it represents. So,

 r = 10 (ten Radix is not a Power of 2)

 Ten Possible Digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

The Binary System

 The binary number system is another way to represent quantities. It is less

complicated than the decimal system because it has only two digits. The decimal system with

its ten digits is a base-ten system; the binary system with its two digits is a base-two system.

The two binary digits (bits) are 1 and O. The position of a 1 or 0 in a binary number indicates

its weight. or value within the number, just as the position of a decimal digit determines the

value of that digit. The weights in a binary number are based on powers of two. So,

r = 2

Two Allowed Digits {0, 1}

Show how the decimal value of 100.01 is evaluated

1x102+0x101 + 0x100 + 0x10-1 + 1x 10-2

28

A Binary DigIT is referred to as Bit

The leftmost bit has the highest weight i.e. Most Significant Bit (MSB)

The rightmost bit has the lowest weight i.e. Least Significant Bit (LSB)

Conversion from Binary to decimal

 The decimal value of any binary number can be found by adding the weights of all

bits that are 1 and discarding the weights of all bits that are 0.

Examples

Find the decimal value of the two Binary numbers (101)2 and (1.101)2

 (1 0 1)2 = 1x23 + 0x21 + 1x20

 = 1x4 + 0x2 + 1x1

 = (5)10

 (1. 1 0 1)2 = 1x20+ 1x2-1+ 0x2-2+ 1x2-3

 = 1 + 0.5 + 0.25 + 0.125

 = (1. 8 7 5)10

Conversion from decimal to base 2 (Binary).

 Example: Convert (53) 10 to base 2 (binary)(?)2

Soln

Division Step Quotient Remainder

53 ÷ 2 Q0 =26 1 = a0

26 ÷ 2 Q1 =13 0 = a1

13 ÷ 2 Q2 =6 1 = a2

29

6 ÷ 2 Q3 =3 0 = a3s

3 ÷ 2 Q4 =1 1 = a4

1 ÷ 2 0 1 = a5

Thus (53)10=(110101)2

Or by using sum of weigth method

 53= 32+16+4+1=25 + 24 + 22 +20 =1101012

To convert 54610 to binary

546 ÷ 2 Q0=273 R=0

273 ÷ 2 Q1=136 R=1

136 ÷ 2 Q2=68 R=0

68 ÷2 Q3=34 R=0

34÷2 Q4=17 R=0

17÷2 Q5=8 R=1

8÷2 Q6=4 R=0

4÷2 Q7=2 R=0

2÷2 Q8=1 R=0

1÷2 0 R=1

Thus 54610 = 10001000102

To convert Fraction:

Convert (0.731) 10 to base 2

soln

0.731*2=1.462

30

0.462*2=0.924

0.924*2=1.848

0.848*2=1.696

0.696*2=1.392

0.392*2=0.784

0.784*2=1.568

(0.731) 10 = (.1011101)2

For a number that has both integral and fractional parts, conversion is done separately for

both parts, and then the result is put together with a system point in between both parts.

E.gconvert 5. 27510 to base 2

For the integral part.

510 is 1012 from example above

Then the fraction part is computed as follows

.275 *2= 0.550

.550*2= 1.100

.100*2= 0.200

.200*2= 0.400

.400*2= 0.800

.800*2= 1.600

.600*2= 1.200

31

5. 27510 = 101. 01000112

Convert the following base 10 numbers into their binary equivalent

50 , 100, 10.2, 0.234

50 = 1100102

100 = 11001002

10.2 =

0.234 =

3.3 Octal System

 The octal number system provides a convenient way to express binary numbers and

codes. However, it is used less frequently than hexadecimal in conjunction with computers

and microprocessors to express binary quantities for input and output purposes. Here we

have,

 r = 8 (Eight = 23)

 Eight Allowed Digits {0, 1, 2, 3, 4, 5, 6, 7}

Conversion from octal to decimal

Examples

Find the decimal value of the two Octal numbers (375)8and (2.746) 8

(375) 8 = 3x82 + 7x81 + 5x80

= 3x64+ 7x8 + 5x1

= (253)10

(2.746)8 = 2x80 + 7x8-1 + 4x8-2 + 6x8-3

 =2 + 7/8+4/64 + 6/512

 = (2.94921875)10

32

Binary To Octal Conversion

Group of 3 binary bits Octal equivalence

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

Example :

Convert (1110010101.1011011)2 into Octal.

We first partition the Binary number into groups of 3 bits

001__110__010__101_._101__101__100

=1625.5548

Convert 11110010100010100 into octal

Group into group of 3 bits

011 /110 /010 /100 /010/100

=3624248

3.4 Hexadecimal System:

 The hexadecimal number system has sixteen characters; it is used primarily as a

compact way of displaying or writing binary numbers because it is very easy to convert

between binary and hexadecimal. As you are probably aware, long binary numbers are

difficult to read and write because it is easy to drop or transpose a bit.

33

 Since computers and microprocessors understand only 1 s and 0s, it is necessary to

use these digits when you program in "machine language." Imagine writing a sixteen bit

instruction for a microprocessor system in 1s and 0s. It is much more efficient to use

hexadecimal or octal; octal numbers are covered in the previous section. Hexadecimal is

widely used in computer and microprocessor applications. So,

 r = 16 (Sixteen = 24)

Sixteen Allowed Digits {0-to-9 and A, B, C, D, E, F} Where: A = ten, B = Eleven, C =

Twelve,D = Thirteen, E = Fourteen & F = Fifteen.

• Q: Why is the digit following 9 assigned the character A and not “10”?

• A: What we need is a single digit whose value is ten, but “10” is actually

two digits not one. Thus, in Hexadecimal system the 2-digit number (10)16 actually

represents a value of sixteen not ten {(10)16 = 0x161+1x160.=(16)10}.

Conversion from Hexadecimal to Decimal

 One way to convert a hexadecimal number to its decimal equivalent is to multiply the

decimal value of each hexadecimal digit by its weight and then take the sum of these

products. The weights of a hexadecimal number are increasing powers of 16 (from right to

left). Anotherway is to convert first to binary and then to decimal

Example

Find the decimal value of the two Hexadecimal numbers (9E1)16 and(3B.C)16

(9E1) 16 or 9E1hex = 9x162 + Ex161 + 1x160

= 9x256 x 14x16 x 1x1

 = (2529)10

(3B.C)16= 3x161 + Bx160 + Cx16-1

 = 3x161 + 11x160 + 12x16-1

 = (59.75)10

34

Conversion from Binary To Hexadecimal

 Converting a binary number to hexadecimal is a straightforward procedure. Simply

break the binary number into 4-bit groups, starting at the right-most bit and replaces each 4-

bit group with the equivalent hexadecimal symbol.

Group of 4 bits Hexadecimal

equivalence

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8

1 0 0 1 9

1 0 1 0 A

1 0 1 1 B

1 1 0 0 C

1 1 0 1 D

1 1 1 0 E

1 1 1 1 F

Example :

Convert (1110010101.1011011)2 into Hexadecimal.

First group into 4bits

0011__1001__0101_._1011__0110

 =(395.B6)16

 Convert 1100101001010111 in binary to hexadecimal

35

Break into four 4bits

 =1100/1010/0101/0111

 =CA5716

 To convert from a hexadecimal number to a binary number, reverse the process and

replace each hexadecimal symbol with the appropriate four bits.

CF8E I6= C-1100

 F-1111

 8- 1000

 E-1110

 = 11001111100011102

Conversion from Octal to Hexadecimal

Example: Convert 3568 to hexadecimal

Soln

3568 =111011102

= 1110/1110

 = EE16

Question. What is the result of adding 1 to the largest digit of some number system??

Answer.

For the decimal number system, (1)10 + (9) 10 = (10) 10

For the octal number system, (1) 8 + (7) 8 = (10) 8 = (8) 10

36

For the hex number system, (1) 16 + (F) 16 = (10) 16 = (16) 10

For the binary number system, (1) 2 + (1) 2 = (10) 2 = (2) 10

Conclusion. Adding 1 to the largest digit in any number system always has a result of (10) in

that number system.

Question. What is the largest value representable in 3-integral digits?

Answer. The largest value results when all 3 positions are filled with the largest digit in the

number system.

 For the decimal system, it is (999)10

 For the octal system, it is (777)8

 For the hex system, it is (FFF)16

 For the binary system, it is (111)2

Clarification (c)

Q. What is the result of adding 1 to the largest 3-digit number?

?

A.

 For the decimal system, (1)10 + (999)10 = (1000)10 = (103)10

 For the octal system, (1)8 + (777)8 = (1000)8 = (83)10

 For the hex system, (1)16 + (FFF)16 = (1000)16 = (163)16

For the binary system, (1)2 + (111)2 = (1000)2 = (23)10

In general, for a number system of radix r, adding 1 to the largest n-digit

number = r n

Accordingly, the value of largest n-digit number = r n-1

37

Self Assessment questions

Self assessment Answers

Conclusions.

1. In any number system of radix r, the result of adding 1 to the largest n-digit number equals

r n

2. Thus, the value of the largest n-digit number is equal to rn -1

3. Thus, n digits can represent r n different values (digit combinations) starting from a 0 value

up to the largest value of r n -1

The table below gives the comparison between decimal, binary, octal and hexadecimal

Table 1:Comparison Table

Base, b Byte (8-bits) Word (16-bits)

Decimal

0

to

25510

0

to

65,53510

Binary

0000 0000

to

1111 11112

0000 0000 0000 0000

to

1111 1111 1111 11112

Hexadecimal

00

to

FF16

0000

to

FFFF16

Octal

000

to

3778

000 000

to

177 7778

Convert A4C in Hex to Decimal

A4C= 2636

38

Self Assessment Questions

Self Assessment answers

4.0 Conclusion

In this unit various number system are considered namely decimal, binary, hexadecimal and

octal. How to convert from one number system to another were also discussed.

5.0 Summary

 You have learnt:

A binary number is a weighted number in which the weight of each whole number

digit is a positive power of two and the weight of each fractional digit is a negative

power of two.

The whole number weights increase from right to left-from least significant digit to

most significant.

. A binary number can be converted to a decimal number by summing the decimal

values of the weights of all the Is in the binary number.

.A decimal whole number can be converted to binary by using the sum-of-weights or

the repeated division-by-2 method.

1. The octal equivalent of 24710

2. The hexadecimal number for 95.5 10 is

3. Convert (10001011.011)2 to decimal

4. Convert 5678 to hexadecimal

5.The binary equivalent of FA 16 is

39

A decimal fraction can be converted to binary by using the sum-of-weights or the

repeated multiplication-by-2 method.

The hexadecimal number system consists of 16 digits and characters, 0 through 9

followed by A through F.

One hexadecimal digit represents a 4-bit binary number, and its primary usefulness is

in simplifying bit patterns and making them easier to read.

A decimal number can be converted to hexadecimal by the repeated division-by-16

method.

The octal number system consists of eight digits, 0 through 7.

A decimal number can be converted to octal by using the repeated division-by-8

method.

Octal-to-binary conversion is accomplished by simply replacing each octal digit with

its 3-bit binary equivalent. The process is reversed for binary-to-octal conversion.

6.0 Tutor Marked Assignment

Convert each binary number to decimal, octal and hexadecimal:

(a) 11001111 (d) 1111000.101 (g) 10110101010 (e) 101I100.10101 (h) 111111 1.1

1111

Convert the following from Hexadecimal to binary ,octal and decimal

ADE16 (b) FFFF16 (c) 52C16

Convert the following from decimal to binary, octal and hexadecimal

(a)245 (b)75 (c) 120

7.0 References/Further Reading

Ronald J. T. & Neal S., (2001). Widmer Digital Systems: Principle and Applications

(8th Ed.) Prentice Hall,

Thomas L F., (2006). Digital Fundamentals (9th Ed.). Prentice Hall.

Morris M. & Charles R. K. (2004) Logic and Computer Design Fundamentals.

(2004) NJPrentice Hall

Wakerly J.F. (2000). Digital Design: Principles and Practices (3rd Ed.) Upper Saddle

River NJ; Prentice

http://www.swarthmore.edu/NatSci/.../BinaryMath/BinaryMath.html

http://www.pages.cpsc.ucalgary.ca/~jacob/Courses/.../04-BitsAndArithmetic.pdf

http://www.allaboutcircuits.com

http://www.l3d.cs.colorado.edu/courses/CSCI1200-96/binary.html

http://www.swarthmore.edu/NatSci/.../BinaryMath/BinaryMath.html
http://www.pages.cpsc.ucalgary.ca/~jacob/Courses/.../04-BitsAndArithmetic.pdf
http://www.allaboutcircuits.com/
http://www.l3d.cs.colorado.edu/courses/CSCI1200-96/binary.html

40

 Unit 3

Binary Codes and

Arithmetic
Content

1.0 Introduction

2 .0 Learning Outcomes

3.0 Learning Contents

3.1 Binary Codes for Decimal

3.2 Compliment Representation

3.3 Error detection codes

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

41

1.0 Introduction

 Internally, digital computers operate on binary numbers. When interfacing to humans,

digital processors, e.g. pocket calculators, communication is decimal based. Input is done in

decimal then converted to binary for internal processing. For output, the result has to be

converted from its internal binary representation to a decimal form. To be handled by digital

processors, the decimal input (output) must be coded in binary in a digit by digit manner.

2.0 Learning Outcomes

At the end of this unit, you should be able to:

Explain several binary codes includingBinary Coded Decimal (BCD), Error detection

codes, and Character codes

Differentiate between coding and binary conversion.

Calculate the 2's complement of a given n-bit binary number.

Explain the differences between signed-magnitude, signed-1's complement and

signed-2's complement representations of negative binary numbers.

Perform subtraction problems in base 2 using the 2's complement method.

Express numbers in binary-coded decimal (BCD),

Perform integer binary arithmetic that is addition and subtraction

Describe and use two’s complement and sign and magnitude to represent negative

integers

3.0 Learning Contents

3.1 Binary Codes for Decimal Digits

There is a variety ofdecimal binary codesand they are shown in table 3.1

BINARY CODED DECIMAL (BCD)

One commonly used code is the Binary Coded Decimal (BCD) code which corresponds tothe

first 10 binary representations of the decimal digits 0-9. Binary Coded Decimal is one of the

early memory encodings. Rather than converting the entire denary value into its pure binary

form, it converts each digit, separately, into its 4-bit binary equivalent. The table below

shows the 4-bit BCD equivalents of the ten denary digits:

 The BCD code requires 4 bits to represent the 10 decimal digits. Since 4 bits may have up to

16 different binary combinations, a total of 6 combinations will be unused. The position

weights of the BCD code are 8, 4, 2, 1.

 Other codes (shown in the table) use position weights of 8, 4, -2, -1 and 2, 4, 2, 1.

What does the BCD stand for ?

42

BCD stands for Binary Coded Decimal

An example of a non-weighted code is the excess-3 code where digit codes is obtained from

their binary equivalent after adding 3. Thus the code of a decimal 0 is 0011, that of 6 is1001,

etc.

 Table 3.1 decimal codes

Decimal BCD

Digit 8 4 2 1 8 4 -2 -1 2 4 2 1 Excess-3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 0

2 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 1

3 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0

4 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1

5 0 1 0 1 1 0 1 1 1 0 1 1 1 0 0 0

6 0 1 1 0 1 0 1 0 1 1 0 0 1 0 0 1

7 0 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0

8 1 0 0 0 1 0 0 0 1 1 1 0 1 0 1 1

9 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0

U 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0

N 1 0 1 1 0 0 1 0 0 1 1 0 0 0 0 1

U 1 1 0 0 0 0 1 1 0 1 1 1 0 0 1 0

S 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1

E 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0

D 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1

Number Conversion VersusCoding

Converting a decimal number into binary is done by repeated division (multiplication) by

2for integers (fractions) (see lesson 2).Coding a decimal number into its BCD code is done by

replacing each decimal digit of thenumber by its equivalent 4 bit BCD code.

Example Converting (13)10 into binary, we get 1101, coding the same number into BCD,

weobtain 00010011.

43

Example: convert 011010000011 from BCD to decimal

Soln

Group in four bits 0110 1000 0011= 683

Convert (95)10 into its binary equivalent value and give its BCD code as well.

{(1011111)2, and 10010101}

3.2 Compliment Representation

Positive numbers (+N) are represented in exactly the same way as in signed magnitude

system

Negative numbers (-N) are represented by the complement of N (N’)

One’s and Two’s Compliment Notation:

Two’s compliment is a method of representing negative numbers in binary, whereby the most

significant bit maintains its magnitude, but is made negative. In order to subtract one number

from another, we need some means of representing negative numbers in binary notation. The

“two’s complement” convention is almost universally used for this purpose.

The ‘1’s complement’ of a binary number 0110 is just 1001 (obtained by inverting or

negating each bit in the number). i.e. by bitwise complementing of each bit, i.e. each 1 is

replaced by a 0 and each 0 is replaced by a 1.

The ‘2’s complement’ is formed by taking the ‘1’s complement’ and adding 1. Thus, the ‘2’s

complement’ of 0110 is 1001 + 0001 = 1010. To show that this is the negative of the initial

number (0110) simply add them 0110 + 1010 = 0000 plus a carry bit, which is ignored with

an 8 bit number

Negative numbers will always start with a ‘1’ and positives will start will a ‘0’;• the range of

integers that can be represented using one byte is from – 128 up to + 127.

e.g. decimal 18 is represented in a byte as 0 0 0 1 0 0 1 0 while -18 is 1 0 0 1 0 0 1 0

Likewise 1 0 0 0 0 0 0 0 = – 128

44

 0 1 1 1 1 1 1 1 = + 127

0 0 0 0 0 1 1 0 the number

1 1 1 1 1 0 0 1 its 1’s complement

1 1 1 1 1 0 1 0 its 2’s complement

0 0 0 0 0 1 1 0 number to be added

1 0 0 0 0 0 0 0 0 the sum (difference)

as before, we neglect the carry bit. Notice that the most significant bit of the negative number

is a 1 while that of the positive number is a 0. This is a necessary feature of two’s

complement arithmetic. This makes it easy to test whether a number is positive or negative,

you simply check its most significant bit.

Find the 1’s and the 2’s complement of 110101010

001010101- 1’s Complement

001010110- 2’s Complement

Converting A Negative Denary Integer Into Two’s Complement

Taking the denary integer – 52 as an example

First convert to unsigned binary

+52= 0 0 1 1 0 1 0 0

Convert to 1’s complement

1 1 0 0 1 0 1 1

45

Then finally to 2’s complement

1 1 0 0 1 1 0 0

Converting a Two’s Complement Number Into Denary

This is the same as converting any binary number into denary, as long as you remember that

the most significant bit is negative. For example the ‘signed’ binary number 1 1 0 1 0 1 0 1 is

converted as follows:

 – 128 64 32 16 8 4 2 1

 1 1 0 1 0 1 0 1

 = – 128 + 64 + 16 + 4 + 1

 = – 43

Sign and Magnitude

The alternative to using two’s complement to represent negative numbers is to use the ‘sign

and magnitude’ method – here, the most significant bit is used as a sign bit without a

numerical value.

Convert 1 1 0 0 1 1 0 0 in 2’s complement to decimal

– 64 32 16 8 4 2 1

1 1 0 0 1 1 0 0

= – (64 + 8 + 4)

= – 76

Notes:s

The range of integers that can be represented using one byte is from – 127 up to + 127.

although the sign and magnitude method is easier for humans it is much harder to use for

computers performing arithmetic.

46

Self Assessment Questions

a). Assuming a single byte is used, convert the following numbers into two’s compliment

binary:(a) – 5 (b) – 10 (c) – 20

(b). What is the denary value of 1010 1011 if the binary codes represent: (a) a two’s

compliment number (b) a sign and magnitude number

Addition And Subtraction of Numbers Using1’s And 2’s Compliment

Addition:Computers will only ever add two numbers at a time – if three numbers need to be

added, a computer will add the first two and then add the third number will be added to the

result.

Subtraction:To perform subtraction, the number to be subtracted is converted into its two’s

compliment negative and then added

Perform 12 + 25, 25-12, 12-25

12= 0 0 0 0 1 1 0 0

25 = 0 0 0 1 1 0 0 1

+ = 0 0 1 0 0 1 0 1

 = 37

– 12 = 1 1 1 1 0 1 0 0 (2’s compliment of 12)

 25 = 0 0 0 1 1 0 0 1

 + = 10 0 0 0 1 1 0 1

 = 13

Discard the carry 1

 12= 0 0 0 0 1 1 0 0

 -25= 1 1 1 0 0 1 1 1

 += 1 1 1 1 0 0 1 1

The answer is in two’s compliment which is equal to -13

47

NB 2’s compliment of 00001101 is 11110011. So the answer is -13

Try these questions

Computer the following using 2’s compliments arithmetic

34-78

34+78

100-34

34-100

3.3 Error-Detection Codes

Binary information may be transmitted through some communication medium, e.g.

usingwires or wireless media. A corrupted bit will have its value changed from 0 to 1 or vice

versa. To be able to detect errors at the receiver end, the sender sends an extra bit (parity bit)

with the original binary message.

A parity bit is an extra bit included with the n-bit binary message to make the total numberof

1’s in this message (including the parity bit) either odd or even. If the parity bit makes the

total number of 1’s an odd (even) number, it is called odd (even) parity.

The table shows the required odd (even) parity for a 3-bit message. At the receiver end, an

error is detected if the message does not match have the proper parity (odd/even). Parity bits

can detect the occurrence 1, 3, 5 or any odd number of errors in the transmitted message.

 Table 2

Three-Bit Message Odd Parity Bit Even Parity Bit

 X Y Z P P

 0 0 0 1 0

 0 0 1 0 1

 0 1 0 0 1

 0 1 1 1 0

 1 0 0 0 1

 1 0 1 1 0

 1 1 0 1 0

 1 1 1 0 1

No error is detectable if the transmitted message has 2 bits in error since the total number of

1’s will remain even (or odd) as in the original message.

48

 In general, a transmitted message with even number of errors cannot be detected by the

parity bit.

Self assessment Question

What do you understand by parity bit

Self Assessment Answers

A parity bit is an extra bit included with the n-bit binary message to make the total number of

1’s in this message either odd or even.

Gray Code

The Gray code is unweighted and is not an arithmetic code; that is, there are no specific

weights assigned to the bit positions. The important feature of the Gray code is that it exhibits

only a single bit change from one code word to the next in sequence..The Gray code consist

of 16 4-bit code words to represent the decimal Numbers 0 to 15.It is useful in applications

like analog to digital conversion. This property is important in many applications, such as

shaft position encoders, where error susceptibility increases with the number of bit changes

between adjacent numbers in a sequence For Gray code, successive code words differ by only

one bit from one to the next as shownin the table and further illustrated in the table below.

What is the

characteristic feature of the Gray Code

Gray Code Decimal Equivalent

0 0 0 0 0

0 0 0 1 1

0 0 1 1 2

0 0 1 0 3

0 1 1 0 4

0 1 1 1 5

0 1 0 1 6

0 1 0 0 7

1 1 0 0 8

1 1 0 1 9

1 1 1 1 10

1 1 1 0 11

1 0 1 0 12

1 0 1 1 13

1 0 0 1 14

1 0 0 0 15

49

The important feature of the Gray code is that it exhibits only a single bit change from one

code word to the next in sequence

Binary-to-Gray Code Conversion

Conversion between binary code and Gray code is sometimes useful. The following rules

explain how to convert from a binary number to a Gray code word:

1. The most significant bit (left-most) in the Gray code is the same as the corresponding MSB

in the binary number.

2. Going from left to right, add each adjacent pair of binary code bits to get the next Gray

code bit. Discard carries.

For example, the conversion of the binary number 10110 to Gray code is as follows:

1+0+l+l+0 binary

1 1 1 0 1 gray

 the gray code is 11101

Gray-to-Binary Conversion

To convert from Gray code to binary, use a similar method; however, there are some

differences. The following rules apply:

1. The most significant bit (left-most) in the binary code is the same as the corresponding bit

in the Gray code.

2. Add each binary code bit generated to the Gray code bit in the next adjacent position.

Discard carries.

For example, the conversion of the Gray code word 11011 to binary is as follows:

1 then 1+1= 0 then 0 + 0= 0 then 0+1=1 then 1 +0=0

=10010

Self Assessment Question

(a) Convert the binary number 11000110 to Gray code.

(b) Convert the Gray code 10101111 to binary.

50

Self Assessment Answers

Character Codes

ASCII Character Code

ASCII code is a 7-bit code.American Standard Code for Information Interchange (ASCII) is

used for character encoding by most Windows™ PCs. ASCII can be used to translate

alphanumeric characters into a 7-bit binary code that represents all the characters available

from the keyboard including punctuation and some special symbols such as ‘@’, # and $:

It is used in communicating information between a computer and its peripherals or other

computers.

A development of ASCII, known as Extended ASCII, uses an 8-bit code that also defines

codes for additional characters, including some graphical ones. Note that using an 8-bit code

means the maximum number of characters that can be represented is 256.

How Character Encoding Works

The diagram below shows how the message “Hello World” is stored in the memory of a

computer using the ASCII codes:

51

The message is typed at the keyboard. Electronics in the keyboard convert the typed

characters intoASCII binary codes that are sent from the keyboard along a cable to the

computer. The computerstores these codes in its internal memory. The computer also

provides a visual display of thecharacters as they are typed. To be able to do this, electronics

inside the computer convert thestored binary codes back into their character equivalents.

Extended Binary Coded Decimal Interchange Code (EBCDIC)

Extended Binary Coded Decimal Interchange Code (EBCDIC) was developed by IBM for

use in their mainframe systems. It has the same limitation as ASCII in that its 8-bit code can

only define 256 different characters. Notice how the EBCDIC codes are completely different

to ASCII – if a message was sent that had been encoded using ASCII, but received by a

system that used EBCDIC, then the resulting message would not make sense.

52

Unicode Character Code

Unicode is an international system of representing characters using 16 bits. Using 16 bits

means that 216 = 65 536 different characters can be represented (thus overcoming the

limitation of ASCII and EBCDIC).Unicode allows every character from most alphabets to

have a code of its own – Chinese, Russian, Greek, Urdu etc, including Egyptian

Hieroglyphics. Note that there are plenty of spare codes that are used for mathematical

symbols, common graphics and even the Braille symbols.

4.0 Conclusion

 This unit discussed the various codes that are used in digital computer. Binary Coded

Decimal (BCD) is also discussed as well as compliment arithmetic

5.0 Summary

You have learnt:

The 1's complement of a binary number is derived by changing 1s to 0s and 0s to 1s.

The 2's complement of a binary number can be derived by adding 1 to the l's

complement.

Binary subtraction can be accomplished with addition by using the 1 's or 2's

complement method.

A positive binary number is represented by a 0 sign bit.

A negative binary number is represented by a 1 sign bit.

For arithmetic operations. negative binary numbers are represented in I's complement

or 2's complement form.

A decimal number is converted to BCD by replacing each decimal digit with the

appropriate 4-bit binary code.

The ASCII is a 7-bit alphanumeric code that is widely used in computer systems for

input and output of information.

A parity bit is used to detect an error in a code.

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Alphanumeric Consisting of numerals, letters, and other characters.

ASCII American Standard Code for Information Interchange; the most widely used

alphanumeric code.

BCD Binary coded decimal; a digital code in which each of the decimal digits, 0

through 9, is represented by a group of four bits.

53

6.0 Tutor Marked Assignment

 1. Convert the following binary numbers to the Gray code:

 (a) 1100 (b) 1010 (c) 11010

 2. Convert the following Gray codes to binary:

 (a) 1000 (b) 1010 (c) 11101

 3. Convertthe following decimal numbers to BCD:

 (a) 124 (f) 520 (b) 128 (g) 329

4. Convert each of the BCD numbers to decimal:

 (a) 0001 (b) 0001 1000 (c) 01000101 (d) 0110

7.0 References/ Further Reading

Ronald J. T. & Neal S., (2001). Widmer Digital Systems: Principle and Applications

(8th Ed.) Prentice Hall,

Thomas L F., (2006). Digital Fundamentals (9th Ed.). Prentice Hall.

Morris M. & Charles R. K. (2004) Logic and Computer Design Fundamentals.

(2004) NJ Prentice Hall

Wakerly J.F. (2000). Digital Design: Principles and Practices (3rd Ed.) Upper Saddle

River NJ; Prentice

www.swarthmore.edu/NatSci/.../BinaryMath/BinaryMath.html

www.pages.cpsc.ucalgary.ca/~jacob/Courses/.../04-BitsAndArithmetic.pdf

www.allaboutcircuits.com

www.l3d.cs.colorado.edu/courses/CSCI1200-96/binary.html

http://www.swarthmore.edu/NatSci/.../BinaryMath/BinaryMath.html
http://www.pages.cpsc.ucalgary.ca/~jacob/Courses/.../04-BitsAndArithmetic.pdf
http://www.allaboutcircuits.com/
http://www.l3d.cs.colorado.edu/courses/CSCI1200-96/binary.html

54

Module 2

Logic Gates
UNIT 1 Basic Logic

UNIT 2 Boolean Algebra

UNIT 3 KarnaughMaps

UNIT 4 Standard form, Min term and Max term

55

Unit 1

Basic Logic Gates
Content

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Contents

3.1 Logic Representation

3.2 Truth Table

3.3 Logic Diagram

3.3 Universal Gates

3.4 EXOR Gate

3.5 EXNOR Gate

3.6 Equivalence Gates

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

56

1.0 Introduction

Digital circuits operate in the binary mode where each input and output voltage is either 0 or

1 which represent a pred defined voltage ranges. In this chapter basic logic circuits (logic

gates) which are the fundamental building block from which other logic circuits are

constructed will be studied.

2.0 Learning Outcomes

 At the end of this unit, you should be able to

Expalin the meaning logic

Contruct truth table is and how to consrtuct them

 List different types of gates and their symbol

Draw logic diagrams

 Explain boolean expression

 Describe boolean expression from truth table and vice versa

 Describe how to convert from truth table, logic circcuit diagrams and boolean

expression

Implement logic circuit using logic gates

KnowUniversal gates - NAND and NOR.

3.0 Learning Contents

3.1 Logic Representation

 The term logic is applied to digital circuits used to implement logic functions. Several

kinds of digital logic circuits are the basic elements that form the building blocks for such

complex digital systems as the computer.

There are three common ways in which to represent logic.

1. Truth Tables

2. Logic Circuit Diagram

3. Boolean Expression

We will discuss each herein and demonstrate ways to convert between them.

3.2 Truth Table

 A truth table is a chart of 1’s and 0’s arranged to indicate the results (or outputs) of all

possible inputs. The lists of all possible inputs are arranged in columns on the left and the

resulting outputs are listed in columns on the right. There are 2 to the power n possible states

57

(or combination of inputs). For example with three inputs there are 2^3=8 possible

combination of inputs.

Below are some example truth-tables:

1. Consider a CL block with two inputs, A&B, and a single output Y. The output Y has value

1 if one, but not both, of the inputs is a 1.

 (inputs) (output)

A B Y

0 0 0

0 1 1

1 0 1

1 1 0

2. a three input truth table with one output is shown below

For example the truth table for F=X + Y’Z is shown below

X Y Z Y’ Y’.Z F

0 0 0 1 0 0

0 0 1 1 1 1

0 1 0 0 0 0

58

0 1 1 0 0 0

1 0 0 1 0 1

1 0 1 1 1 1

1 1 0 0 0 1

1 1 1 0 0 1

N.B Y’ means Y complement and it could also be denoted as Y

Construct a truth table for a two input OR and AND operation.

X Y OR AND

0 0 0 0

0 1 1 0

1 0 1 0

1 1 1 1

3.3 Logic Diagram

At the most basic level, a computer is an electrical circuit. In this chapter, we'll examine a

system that computer designers use for designing circuits, called a logic circuit.Logic gates

are simple circuits (each with only a handful of transistors) that can be wired together to

implement any CL function. Consider logic gates are primitive elements; they are the basic

building blocks for circuits.

A logic circuit consists of lines, representing wires, and peculiar shapes called logic gates.

There are three baisctypes of logic gates:

The relationship of the symbols to their names can be difficult to remember. It is handy to

remember that the word AND contains a D, and this is what an AND gate looks like. We'll

see how logic gates work in a moment.

Each wire carries a single information element, called a bit. A bit's value can be either 0 or 1.

In electrical terms, you can think of zero volts representing 0 and five volts representing 1. It

can also means Low or High, False or True.(In practice, there are many systems for

representing 0 and 1 with different voltage levels. For our purposes, the details of voltage are

59

not important.) The word bit, incidentally, comes from Binary digIT; the term binary comes

from the two (hence bi-) possible values.

Here is a diagram of one example logic circuit.

We'll think of a bit travelling down a wire until it hits a gate. You can see that some wires

intersect in a small, solid circle: This circle indicates that the wires are connected, and so

values coming into the circle continue down all the wires connected to the circle. If two wires

intersect with no circle, this means that one wire goes over the other, like an Interstate

overpass, and a value on one wire has no influence on the other.

Figure3.1: Logicgate behaviour.

a o

0 1

1 0

a b o

0 0 0

0 1 0

1 0 0

1 1 1

A b O

0 0 0

0 1 1

1 0 1

1 1 1

(a) NOT gate (b) AND gate (c) OR gate

Suppose that we take our example circuit and send a 0 bit on the upper input (x) and a 1 bit

on the lower input (y). Then these inputs would travel down the wires until they hit a gate.

60

To understand what happens when a value reaches a gate, we need to define how the three

gate types work.

NOT gate

Takes a single bit and produces the opposite bit figure 3.1(a). In our example circuit, since

the upper NOT gate takes 0 as an input, it will produce 1 as an output.

AND gate

Takes two inputs and outputs 1 only if both the first input and the second input are 1 figure

3.1(b). In our example circuit, since both inputs to the upper AND gate are 1, the AND gate

will output a 1.

OR gate

Takes two inputs and outputs 1 if either the first input or the second input are 1 (or if both are

1). Figure 3.1(c)

After the values filter through the gates based on the behaviors of logic circuit below, the

values in the circuit will be as follows.

Based on this diagram, we can see that when x is 0 and y is 1, the output out is 1.

By doing the same sort of propagation for other combinations of input values, we can build

up a table of how this circuit works for different combinations of inputs. We would end up

with the following results.

x Y Out

0 0 0

0 1 1

1 0 1

61

Draw the symbolic representation for NOT AND and OR Gates

The symbolic representation of the NOT AND and OR gates is as given below

Self Assessment Question 1

Use truth table to verify

(XYZ)’ = X’+Y’+Z’

X+YZ =(X+Y).(X+Z)

Self Assessment Answers

1 1 0

62

3.4 Universal Gate

A universal gate is a gate which can implement any Boolean function without need to use any

other gate type.

The NAND and NOR gates are universal gates. In practice, this is advantageous since NAND

and NOR gates are economical and easier to fabricate and are the basic gates used in all IC

digital logic families.

In fact, an AND gate is typically implemented as a NAND gate followed by an inverter not

the other way around!!

Likewise, an OR gate is typically implemented as a NOR gate followed by an inverter not the

other way around!!

NAND Gate

The NAND gate represents the complement of the AND operation. Its name is an

abbreviation of NOT AND.

The graphic symbol for the NAND gate consists of an AND symbol with a bubble on the

output, denoting that a complement operation is performed on the output of the AND gate.

The truth table and the graphic symbol of NAND gate is shown in the figure below.

The truth table clearly shows that the NAND operation is the complement of the AND.

NOR Gate

The NOR gate represents the complement of the OR operation. Its name is an abbreviation of

NOT OR.

63

The graphic symbol for the NOR gate consists of an OR symbol with a bubble on the output,

denoting that a complement operation is performed on the output of the OR gate. The truth

table and the graphic symbol of NOR gate is shown in the figure below.

 OR

NAND Gate is a Universal Gate:

To prove that any Boolean function can be implemented using only NAND gates, we will

show that the AND, OR, and NOT operations can be performed using only these gates.

Implementing an Inverter Using only NAND Gate

The figure shows two ways in which a NAND gate can be used as an inverter (NOT gate).

1. All NAND input pins connect to the input signal Agives an output A’.

2. One NAND input pin is connected to the input signal A while all other input pins are

connected to logic 1. The output will be A’.

Implementing AND Using only NAND Gates

An AND gate can be replaced by NAND gates as shown in the figure (The AND is replaced

by a NAND gate with its output complemented by a NAND gate inverter).

64

An OR gate can be replaced by NAND gates as shown in the figure (The OR gate is replaced

by a NAND gate with all its inputs complemented by NAND gate inverters).

NOR Gate is a Universal Gate:

To prove that any Boolean function can be implemented using only NOR gates, we will show

that the AND, OR, and NOT operations can be performed using only these gates.

Implementing an Inverter Using only NOR Gate

The figure shows two ways in which a NOR gate can be used as an inverter (NOT gate).

1.All NOR input pins connect to the input signal A gives an output A’.

2. One NOR input pin is connected to the input signal A while all other input pins are

connected to logic 0. The output will be A’.

65

Self Assessment Questions

What is the common entity in the NOR NAND Gates

 Self Assessment Answers

The common entity feature in the NOR and NAND gates is the NOT gate

Implementing OR Using only NOR Gates

An OR gate can be replaced by NOR gates as shown in the figure (The OR is replaced by a

NOR gate with its output complemented by a NOR gate inverter)

Implementing AND Using only NOR Gates

An AND gate can be replaced by NOR gates as shown in the figure (The AND gate is

replaced by a NOR gate with all its inputs complemented by NOR gate inverters)

Thus, the NOR gate is a universal gate since it can implement the AND, OR and NOT

functions.

3.5 XOR Gate:

The exclusive-OR (XOR), operator uses the symbol ⊕, and it performs the following logic

operation:

X ⊕Y = X Y’ + X’ Y

66

The graphic symbol and truth table of XOR gate is shown in the figure.This gate gives a high

output when A OR B are high, but not both. The equivalent circuit is:

For more than two inputs, the XOR gate generates a 1 at its output if the number of 1’s at its

input is odd

3.6 XNOR Gate:

The exclusive-NOR (XNOR), operator uses the symbol 􀁿, and it performs the following

logic operation

X 􀁿 Y = X Y + X Y = (X ⊕Y)’

The graphic symbol and truth table of XNOR (Equivalence) gate is shown in the figure

The result is 1 when either both X and Y are 0’s or when both are 1’s. That is why this gate is

often referred to as the Equivalence gate.

67

The truth tables clearly show that the exclusive-NOR operation is the complement of the

exclusive-OR.

N.B: XOR and XNOR gates are usually found as 2-input gates. No multiple-input

XOR/XNOR gates are available since they are complex to fabricate with hardware.

Reconstruct the XOR Truth table for a two input system

The truth table for the XOR is as given below

3.7 Equivalent Gates

The shown figure summarizes important cases of gate equivalence

A NAND gate is equivalent to an inverted-input OR gate

An AND gate is equivalent to an inverted-input NOR gate.

A NOR gate is equivalent to an inverted-input AND gate.

An OR gate is equivalent to an inverted-input NAND gate.

Two NOT gates in series are same as a buffer because they cancel each other as A’’ = A.

68

STEPs In Designing A Circuit

Step Description

Step 1 Capture the function Create a truth table or equations, whichever is

most natural for the given problem, to describe

the desired behavior of the combinational logic.

Step 2 Convert to equations This step is only necessary if you captured the

truth table instead of equations.

Create an equation for each output by ORing all the minterms for that output. Simplify the

equations if desired.

Step 3 Implement as agate-based circuit For each output, create a circuit corresponding

to the output’s equation. (Sharing gates among

 multiple outputs is OK optionally.)

Design example:

1. Converting English Problem to Boolean Logic: A fire sprinkler system should spray water

if high heat is sensed and the system is set to enable.

Answer

Identify and label variables:

hrepresents “high heat is sensed”

erepresents “enabled”

F represents “spraying water”

 Write Boolean Equation expressing functionality described

F=h AND e

 Design example 2

69

2. Circuit Description. Turn warning light on if driver in driver’s seat, key inserted, seat belt

not fastened

answer

Identify and label variables

 s=1: seat belt fastened

 k=1: key inserted

 p=1: person in seat

 w=1: warning light on

The Boolean Equation expressing functionality described person in seat, and seat belt not

fastened, and key inserted is stated below.

w = p AND NOT(s) AND k

Self AssessmentQuestion

Circuit Description

Design an automatic sliding door. Open the door if the door is set to be manually held open,

Open the door if the door is not set to be manually open, and a person is detected, However,

in either case, we only open the door if the door is not set to stay closed. Drwa the circuit

Self assessment Answers

4.0 Conclusion

 This unit discussed truth tables, logic circuits and gates as well as universal gates and

their implementation. This has enabled you to know the different logic circuits and their

corresponding truth table.

5.0 Summary

 You have learnt:

The inverter output is the complement of the input.

The AND gate output is HIGH only when all the inputs are HIGH.

70

The OR gate output is HIGH when any of the inputs is HIGH.

The NAND gate output is LOW only when all the inputs are HIGH.

The NAND can be viewed as a negative-OR whose output is HIGH when any input is

LOW.

The NOR gate output is LOW when any ofthe inputs is HIGH.

The NOR can be viewed as a negative-AND whose output is HIGH only when all the

inputs

are LOW.

The exclusive-OR gate output is HIGH when the inputs aTe not the same.

The exclusive-NOR gate output is LOW when the inputs are not the same.

Distinctive shape symbols and truth tables for various logic gates (limited to 2 inputs)

are shown

6.0 Tutor-Marked Assignment

Draw the truth truth table and circuit diagram for the following expressios

Y= AB + BC

Z= AB’C

K= XYZ +XZ’

Design a circuit that can detect two consecutive 1s in a 4-bit input: abc for example:

0111 yields 1 while 1001 yields 0 etc

Verify that X’Y’+X’Y+XY=X’Y by using truth table

How can you implement an inverter using NAND and NOR gates respective

7.0 References/Further Reading

Ronald J. T. & Neal S., (2001). Widmer Digital Systems: Principle and Applications

(8th Ed.) Prentice Hall,

Thomas L F., (2006). Digital Fundamentals (9th Ed.). Prentice Hall.

Morris M. & Charles R. K. (2004) Logic and Computer Design Fundamentals.

(2004) NJPrentice Hall

Wakerly J.F. (2000). Digital Design: Principles and Practices (3rd Ed.) Upper Saddle

River NJ; Prentice

http://drstienecker.com/tech-332/3-logic-circuits-boolean-algebra-and-truth- tables/

http://www.courses.ebe.uct.ac.za/eee317w/1.%20Basic%20Logic%20Design.

http://ozark.hendrix.edu/~burch/cs/230/cso/ch07-gates/index.html

http://opencourseware.kfupm.edu.sa/colleges/ces/ee/ee200/files%5C3HandoutLecture

_19.pdf

http://www.indiabix.com/digital-electronics/combinational-logic-circuits

http://drstienecker.com/tech-332/3-logic-circuits-boolean-algebra-and-truth-%20tables/
http://ozark.hendrix.edu/~burch/cs/230/cso/ch07-gates/index.html
http://opencourseware.kfupm.edu.sa/colleges/ces/ee/ee200/files%5C3HandoutLecture_19.pdf
http://opencourseware.kfupm.edu.sa/colleges/ces/ee/ee200/files%5C3HandoutLecture_19.pdf
http://www.indiabix.com/digital-electronics/combinational-logic-circuits

71

Unit 2
 Boolean Algebra

Content

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Contents

3.1 Boolean Algebra

3.2 Algebraic Laws

3.3 Demorgan’s Theorem

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

72

1.0 Introduction

 In 1854, George Boole published a work titled An Investigation of the Laws of

Thought, on Which Are Founded the Mathematical Theories of Logic and Probabilities. It

was in this publiccationthe a “logica1 algebra:' known today as Boolean algebra, waa

formulated. Boolean algebral is a convenient and systematic way of expressing and analyzing

the operation of logic circuits. Claude Shannon was the first to apply Boole's work to the

analysis and design of logic circuits. In 1938, Shannon wrote a thesis at MIT titled A

Symbolic Analysis of Relay and Switching Circuits. This chapter covers the laws, rules, and

theorems of Booleanalgebral and their application to digita1 circuits. You willlearn how to

define a given circuit with a Boolean expression and then evaluate its operation. You will

also learn how to simplify logic circuits using the methods of Boolean algebra.

2.0 Learning Outcomes

At the end of this unit, you should be able to:

Apply the basic laws and rules of Boolean algebra

Apply DeMorgan's theorems to Boolean expressions

Describe gate networks with Boolean expressions

Evaluate Boolean expressions

Simplify expressions by using the laws and rules of Boolean algebra

3.0 Learning Contents

3.1 Boolean Algebra

In the previous section, we saw how logic circuits work. This is helpful when you want to

understand the behavior of a circuit diagram. But computer designers face the opposite

problem: Given a desired behavior, how can we build a circuit with that behavior?

It is a system of logic designed by George Boole in the middle of the nineteenth century,

forms the foundation for modern computers. George Boole noticed that logical functions

could be built from AND, OR, and NOT gates and that this observation leads one to be able

to reason about logic in a mathematical system.

As Boole was working in the nineteenth century, of course, he wasn't thinking about logic

circuits. He was examining the field of logic, created for thinking about the validity of

philosophical arguments. Philosophers have thought about this subject since the time of

Aristotle. Logicians formalized some common mistakes, such as the temptation to conclude

that if A implies B, and if B holds, then A must hold also. (Brilliant people wear glasses, and I

wear glasses, so I must be brilliant.)

73

As a mathematician, Boole sought a way to encode sentences like this into algebraic

expressions, and he invented what we now call Boolean expressions. An example of a

Boolean expression is y x+ y x. A line over a variable (or a larger expression) represents a

NOT; for example, the expression y corresponds to feeding y through a NOT gate.

Multiplication (as with x y) represents AND. After all, Boole reasoned, the AND truth table

is identical to a multiplication table over 0 and 1. Addition (as with x + y) represents OR. The

OR truth table doesn't match an addition table over 0 and 1 exactly although 1 plus 1 is 2, the

result of 1 OR 1 is 1 but, Boole decided, it's close enough to be a worthwhile analogy.

In Boolean expressions, we observe the regular order of operations: Multiplication (AND)

comes before addition (OR). Thus, when we write y x’+ y’x, we mean (y x’) + (y’ x). We can

use parentheses when this order of operations isn't what we want. For NOT, the bar over the

expression indicates the extent of the expression to which it applies; thus, (x + y)’ represents

NOT (x OR y), while x‘+ y’ represents (NOT x) OR (NOT y).

A warning: Students new to Boolean expressions frequently try to abbreviate x’ y’ as (x y)’ —

that is, they draw a single line over the whole expresion, rather than two separate lines over

the two individual pieces. This abbreviation is wrong. The first, x’ y’, translates to

(NOT x) AND (NOT y) (that is, both x and y are 0), while (x y)’ translates to NOT (x AND y)

(that is, x and y aren't both 1). We could draw a truth table comparing the results for these two

expressions.

x y x' y’ x' y’ x y (x y)’

0 0 1 1 1 0 1

0 1 1 0 0 0 1

1 0 0 1 0 0 1

1 1 0 0 0 1 0

NB x’= x

 (xy)’= xy

Since the fifth column (x’ y’) and the seventh column (x y)’ aren't identical, the two

expressions aren't equivalent. Every expression directly corresponds to a circuit and vice

versa.

74

Self Assessment Questions

In Boolean operation what logic gate is used to implement multiplication ?

In Boolean operation what logic gate is used to implement addition ?

Self Assessment Answers

The AND gate is used to implement Multiplication in Boolean operation

The OR gate is used to implement Addition in Boolean operation

3.2 Algebraic Laws

Boole's system for writing down logical expressions is called an algebra because we can

manipulate symbols using laws similar to those of algebra. For example, the commutative

law applies to both OR and AND. To prove that OR is commutative (that is, that

A + B = B + A), we can complete a truth table demonstrating that for each possible

combination of A and B, the values of A + B and B + A are identical.

Since the third and fourth columns match, we would conclude that A + B = B + A) is a

universal law.

Since OR (and AND) are commutative, we can freely reorder terms without changing the

meaning of the expression. The commutative law of OR would allow us to transform

y x’+ y’ x into y’ x + y x’, and the commutative law of AND (applied twice) allows us to

transform y ‘x + y x’ to x y’+ x’y.

Similarly, both OR and AND have an associative law (that is, A + (B + C) = (A + B) + C).

Because of this associativity, we won't bother writing parentheses across the same operator

when we write Boolean expressions. In drawing circuits, we'll freely draw AND and OR

A B A + B B + A

0 0 0 0

0 1 1 1

1 0 1 1

1 1 1 1

75

gates that have several inputs. A 3-input AND gate would actually correspond to two 2-input

AND gates when the circuit is actually wired. There are two possible ways to wire this.

Because of the associative law for AND, it doesn't matter which we choose.

 Table 3: A sampler of important Boolean identities

 AND OR

Commutative A .B = B. A A + B = B + A

Associative A (B C) = (A B) C A + (B + C) = (A + B) + C

Identity A ⋅ 1 = A A + 0 = A

Distributive A (B + C) = A B + A C A + B C = (A + B) (A + C)

one/zero A ⋅ 0 = 0 A + 1 = 1

Idempotency A A = A A + A = A

Inverse A A = 0 A + A= 1

DeMorgan's law A B = A + B A + B = A B

double negation

Other useful Boolean rules for simplification are:

 A+AB=A

A+A’B=A+B

NB A’= A

76

There are many such laws, summarized in table above. This includes analogues to all of the

important algebraic laws dealing with multiplication and addition.

Self Assessment Questions

What Law does the expression A + (B + C) = (A + B) + C) obeys?

Self Assessment Answers

The expression obeys the Associative Law

3.3 DeMorgan’s Theorem

DeMorgan, a mathematician who knew Boole, proposed two theorems that are an important

part of Boolean algebra. In practical terms.DeMorgan's theorems provide mathematical

verification of the equivalency of the NAND and negative-OR gates and the equivalency of

the NOR and negative-AND gates, which were shown in the table 3.

One of DeMorgan's theorems is stated as follows:

The complement of a product of variables is equal to the sum of the complements of the

variables.Stated another way, The complement of two or more ANDed variables is equivalent

to the OR of the complements of the individual variables.

The formula for expressing this theorem for two variables is

(XY)’ = X’ + Y’

77

DeMorgan's second theorem is stated as follows:

The complement of a sum of variables is equal to the product of the complements of the

variables. Stated another way, The complement of two or more ORed variables is equivalent

to the AND of the complements of the individual variables,

The formula for expressing this theorem for two variables is

 (X + Y)’ = X’Y’

The two laws can be confirmed by using truth table (exercise)

DeMorgan’s theorem can be applied to three or more variables.

e.g (ABC)’= A’+B’+C’ ==ABC =A+B+C

Example 1: Simplify (A+B) (A+C)

 Soln

78

 Simplify AB+ BC(B+C)

Simplify

The solution of the AB+ BC (B+C) is as given

Self Assessment Question 1

1. Simplify A + BC + AB

2. Simplify

A+BC

ABC + ABC + ABC +ABC

79

Also we have the following examples in addition to the above:

Simplify y = ab + a + c

= a(b + 1) + c distribution, identity

= a(1) + c law of 1’s

= a + c identity

Prove that X + X’Y=X +Y

X + X’Y = X.1 + X’Y

= X.(1+Y) + X’Y

= X + XY + X’Y

= X + (XY +X’Y)

= X + Y(X +X’)

= X + Y

Example ``Consensus Theory``

Show that XY + X`Z + YZ = XY + X`Z

Proof:

LHS = XY + X`Z + YZ

= XY + X`Z + YZ .1

= XY + X`Z + YZ .(X +X`)

= XY + X`Z + YZX + YZX`

= XY + YZX + X`Z + YZX`

= XY(1 + Z) + X`Z(1 + Y)

= XY .1 + X`Z .1= XY + X`Z = LHS

Example: Using the above laws, simplify the following expression: (A + B) (A + C)

Q = (A + B)(A + C)

80

 AA + AC + AB + BC - Distributive law

 A + AC + AB + BC - Identity AND law (A.A = A)

 A(1 + C) + AB + BC - Distributive law

 A.1 + AB + BC - Identity OR law (1 + C = 1)

 A(1 + B) + BC - Distributive law

 A.1 + BC - Identity OR law (1 + B = 1)

Q = A + BC - Identity AND law (A.1 = A)

Then the expression: (A + B)(A + C) can be simplified to A + BC

 Converting A Truth Table

Now we can return to our problem: If we have a particular logical function we want to

compute, how can we build a circuit to compute it? We'll begin with a description of the

logical function as a truth table. Suppose we start with the following function for which we

want a circuit.

x Y z out

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Given such a truth table defining a function, we'll build up a Boolean expression representing

the function. For each row of the table where the desired output is 1, we describe it as the

AND of several factors.

X Y z out description

81

0 0 1 1 x’y’ z

0 1 0 1 x’ y z

1 1 0 1 x y z’

1 1 1 1 x y z

To arrive at a row's description, we choose for each variable either that variable or its

negation, depending on which of these is 1 in that row. Then we take the AND of these

choices. For example, if we consider the first of the rows above, we consider that since x is 0

in this row, x’ is 1; since y is 0, y’ is 1; and z is 1. Thus, our description is the AND of these

choices, x’y’ z. This expression gives 1 for the combination of values on this row; but for

other rows, its value is 0, since every other row is different in some variable, and that

variable's contribution to the AND would yield 0.

Once we have the descriptions for all rows where the desired output is 1, we observe the

following: The value of the desired circuit should be 1 if the inputs correspond to the first 1-

row, the second 1-row, the third 1-row, or the fourth 1-row. Thus, we'll combine the

expressions describing the rows with an OR:

x’y’ z + x’yz’ + x yz’ + x y z

Note that we do not include rows where the desired output is 0 — for these rows, we want

none of the AND terms to yield 1, so that the OR of all terms gives 0.

This expression leads immediately to the circuit of Figure below

Figure : A circuit derived from a given truth table.

The final expression we get is called a sum of products expression. It is called this because it

is the OR (a sum, if we understand OR to be like addition) of several ANDs (products, since

AND corresponds to multiplication). We call this technique of building an expression from a

truth table the sum of products technique (next section).

http://ozark.hendrix.edu/~burch/cs/230/cso/ch07-gates/index.html

82

In general, this technique allows us take any function over bits and build a circuit to compute

that function. The existence of such a technique proves that circuits can compute any logical

function.

Note, incidentally, that the depth of this circuit will always be three (or less), since every path

from input to output will go through a NOT gate (maybe), an AND gate, and an OR gate.

Thus, this technique shows that it's never necessary to design a circuit that is more than three

gates deep. Sometimes, though, designers build deeper circuits because they are concerned

not only with speed, but also with size: A larger circuit can often accomplish the same task

using fewer gates.

More Boolean Algebra Examples

Here are a few examples of how to use Boolean Algebra to simplify larger logic circuits.

Example No1

Construct a Truth Table for the logical functions at points C, D and Q in the following circuit

and identify a single logic gate that can be used to replace the whole circuit.

First observations tell us that the circuit consists of a 2-input NAND gate, a 2-input EX-OR

gate and finally a 2-input EX-NOR gate at the output. As there are only 2 inputs to the circuit

labelled A and B, there can only be 4 possible combinations of the input (22) and these are: 0-

0, 0-1, 1-0 and finally 1-1. Plotting the logical functions from each gate in tabular form will

give us the following truth table for the whole of the logic circuit below.

Inputs Output at

A B C D Q

0 0 1 0 0

0 1 1 1 1

1 0 1 1 1

83

1 1 0 0 1

From the truth table above, column C represents the output function from the NAND gate and

column D represents the output function from the Ex-OR gate. Both of these two output

expressions then become the input condition for the Ex-NOR gate at the output. It can be

seen from the truth table that an output at Q is present when any of the two inputs A or B are

at logic 1. The only truth table that satisfies this condition is that of an OR Gate. Therefore,

the whole of the above circuit can be replaced by just one single 2-input OR Gate.

Find the Boolean algebra expression for the following system.

The system consists of an AND Gate, a NOR Gate and finally an OR Gate. The expression

for the AND gate is A.B, and the expression for the NOR gate is A+B. Both these

expressions are also separate inputs to the OR gate which is defined as A+B. Thus the final

output expression is given as:

The output of the system is given as Q = (A.B) + (A+B), but the notation A+B is the same as

the De Morgan´s notation A.B, Then substituting A.B into the output expression gives us a

final output notation of Q = (A.B)+(A.B), which is the Boolean notation for an Exclusive-

NOR Gate as seen in the previous section.

Inputs Intermediates Output

B A A.B A + B Q

0 0 0 1 1

0 1 0 0 0

84

1 0 0 0 0

1 1 1 0 1

Then, the whole circuit above can be replaced by just one single Exclusive-NOR Gate and

indeed an Exclusive-NOR Gate is made up of these individual gates.

Self Assessment Question

Find the Boolean algebra expression for the following system.

To summarize: We have seen three ways of describing a Boolean function: logic circuits,

truth tables, and Boolean expressions. Moreover, we have seen systematic ways to convert

between the three techniques, diagrammed as arrows in Figure 7below.

The only missing arrow is the conversion from truth tables to circuits; we can handle that,

though, by converting the truth table to a Boolean expression (using the sum of products

technique) and converting that into a circuit. This will be discussed in the next unit

http://ozark.hendrix.edu/~burch/cs/230/cso/ch07-gates/index.html

85

4.0 Conclusion

This unit examines the concept ofBoolean algebra ant its various laws including DeMorgan’s

theorem which all help in the simplification of logis circuit. We also discussed how to

convert among the three representations as represente in the diagram above

5.0 Summary

You have learnt:

Boolean algebra is a mathematical tool used in the analysis and design of digital

circuits

Tha basic Boolean operation are the OR,AND and NOT

Commutative laws: A + B = B + A, AB = BA

Associative laws: A + (B + C) = (A + B) + C A(BC) = (AB)C

Distributive law: A(B + C) = AB + AC

Boolean rules: . A + 0 = A ,. A+l=l, A. 0 = 0, A.1=A, A + A = A

DeMorgan's theorems:

The complement of a product is equal to the sum of the complements of the terms in

the product. (XY)’=X’+Y’

The complement of a sum is equal to the product of the complements of the terms in

the sum. (X + Y)’ = X’Y’

Complement is the inverse or opposite of a number. In Boolean algebra, the inverse

function, expressed with a bar over a variable. The complement of a 1 is O. and vice

versa.

Truth-table to Boolean Expression. Write the canonical form and follow with

algebraic simplification if desired.

Boolean Expression to Truth-table. Evaluate expression for all input combinations

and record output values.

Boolean Expression to Gates. Use AND gates for the AND operators, OR gates for

the OR operators, and inverters for the NOT operator. Wire up the gates the match the

structure of the expression.

Gates to Boolean Expression. Reverse the above process.

Gates to Truth-table. Pass through all input combination and evaluate output.

Truth-table to Gates. Map to Boolean expression then to gates.

6.0 Tutor-Marked Assignment

1.Show that (RXYZ)’ =R’+X’+Y’+Z’ by using a truth table

2. Show that A ‘B+ B’ C’ + AB + B’ C = 1

3 Simplify Y + X ‘Z + X Y’

4. Prove the following

86

5.

6.

.

7.0 References/Further Reading

Ronald J. T. & Neal S., (2001). Widmer Digital Systems: Principle and Applications

(8th Ed.) Prentice Hall,

Thomas L F., (2006). Digital Fundamentals (9th Ed.). Prentice Hall.

Morris M. & Charles R. K. (2004) Logic and Computer Design Fundamentals.

(2004) NJPrentice Hall

Wakerly J.F. (2000). Digital Design: Principles and Practices (3rd Ed.) Upper Saddle

River NJ; Prentice

http://drstienecker.com/tech-332/3-logic-circuits-boolean-algebra-and-truth-tables/

http://www.courses.ebe.uct.ac.za/eee317w/1.%20Basic%20Logic%20Design.pdf

http://ozark.hendrix.edu/~burch/cs/230/cso/ch07-gates/index.html

http://www.indiabix.com/digital-electronics/combinational-logic-circuits

http://drstienecker.com/tech-332/3-logic-circuits-boolean-algebra-and-truth-tables/
http://www.courses.ebe.uct.ac.za/eee317w/1.%20Basic%20Logic%20Design.pdf
http://ozark.hendrix.edu/~burch/cs/230/cso/ch07-gates/index.html
http://www.indiabix.com/digital-electronics/combinational-logic-circuits

87

Unit 3
Standard Form
Content

1.0 Introduction

2 .0 Learning Outcomes

3.0 Learning Contents

3.1 Sum of Product

3.2 Standard Sum of Product

3.3 Product of Sum

3.4 Standard Product of Sum

3.5 Minterm

3.6 Maxterm

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Readings

88

1.0 Introduction

 All Boolean expressions, regardless of their form, can be converted into either of two

standard forms: the sum-of-products form or the product-of-sums form. Standardization

makes the evaluation, simplification, and implementation of Boolean expressions much more

systematic and easier.

2.0 Learning Outcomes

At the end of this unit you should be able to:

Manipulate Boolean Expressions and Simplify Them

Learn how to derive a Boolean expression of a function defined by its truth table.

Identify a sum-of-products expression - Determine the domain of a Boolean

expression

Convert any sum-of-products expression to a standard form

Evaluate a standard sum-of-products expression in terms of binary values - Identify a

product-of- sums expression

Convert any product-of-sums expression to a standard form

Evaluate a standard product-of-sums expression in terms of binary values - Convert

from one standard form to the other

Derive expressions in one of two possible standard forms: The Sum of Min-terms or

the Product of Max-Terms.

Map these expressions into logic circuit implementations (2- Level Implementations).

3.1 Sum of Product (SOP) form

A product term was defined in Section 4-1 as a term consisting of the product (Boolean

multiplication) of literals (variables or their complements). When two or more product terms

are summed by Boolean addition the resulting expression is a sum-of-products (SOP). Some

examples are

AB + ABC

 AB’C + CD’E’ + BCD

In an SOP expression.a single overbar cannot extend over more than one variable; however,

more than one variable in a term can have an overbar.

Implementing an SOP expression simply requires ORing the outputs of two or more AND

gates. A product term is produced by an AND operation, and the sum (addition) of two or

more product terms is produced by an OR operation. Therefore, an SOP expression can be

implemented by AND-OR logic in which the outputs of a number (equal to the number of

product terms in the expression) of AND gates connect to the inputs of an OR gate,

89

3.2 Standard SOP Form

So far, you have seen SOP expressions in which some of the product terms do not contain all

ofthe variable in the domain of the expression. For example, the expression ABC + ABD +

ABCD has a domain made up of the variables A, B, C. and D. However, notice that the

complete set of variaes in the domain is not represented in the first two terms of the

expression; that is, D or D is missing from the first term and Cor C is missing from the

second term. A STandard SOP expression is one in which all the variables in the domain

appear in each product term in the expression. For example, ABCD + AB’C’D + A’B’C’D’ is

a standard SOP expression. Standard SOP expressions are important in constructing truth

tables covered in Unit 1, and in the Karnaugh map simplification method, which is covered

will be covered in the next unit. Any nonstandard SOP expression (referred to simply as

SOP) can be converted to the standard form using Boolean algebra.

3.3 Product of Sum

When two or more sum terms are multiplied, the resulting expression is a product-of-sums

(POS). Some examples are

(A + B)(A + B + C)

(A’ + B’ + C’)(C + D’s + E)(B + C + D)

(A + B)(A + B + C)(A + C)

A POS expression can contain a single-variable term, as in A(A + B + C)(B + C + D).

In a POS expression, a single overbar cannot extend over more than one variable; however,

more than one variable in a term c an have an o verbar. For example, a POS expression can

have the term A + B + C but not A + B + C.

Implementation of a POS Expression Implementing a pas expression simply requires

ANDing the outputs of two or more OR gates. A sum term is produced by an OR operation

nd the product of two or more sum terms is produced by an AND operation. Therefore.a POS

expression can be implemented by logic in which the outputs of a number (equal to the

number of sum terms in the expression) of OR gates connect to the inputs of an AND gate

3.4 The Standard POS Form

So far, you have seen POS expressions in which some of the sum terms do not contain all of

the variables in the domain of the expression. For example.the expression

(A + B’ + C) (A + B + D’) (A + B’ + C’ + D)

has a domain made up of the variables A. B. C, and D. Notice that the complete set of

variables in the domain is not represented in e first two tenns of the expression; that is, D or

90

D is missing from the first term and C or C is missing from the second term.

A standard POS expression is one in which all the variables in the domain appear in each

sum term in the expression. For example,

(A’ + B’ + C’ + D’)(A + B’ + C + D)(A + B + C + D’)

is a standard POS expression. Any nonstandard pas expression (referred to simply as POS)

can be converted to the standard form using Boolean algebra.

Self Assessment Questions

Identify each of the following expressions as SOP, standard SOP, POS, or standard POS:

(a) AB + A’BD + A’CD’

(c) A’BC + ABC’

(b) (A + B’ + C)(A + B + C’)

(d) A(A + C’) (A + B)

 Self Assessment Answers

a. SOP

b. Standard SOP

c. Standard POS

d. POS

3.5 Min Term

 Consider a system of 3 input signals (variables) X, Y, & Z. A term which ANDs all

input variables, either in the true or complement form, is called a minterm.

Thus, the considered 3-input system has 8 minterms, namely: X’ Y’ Z’, X’ Y’ Z , X’ Y Z’ , X’

Y Z , X Y’ Z’ , X Y’ Z , X Y Z’ &X Y Z

Each minterm equals 1 at exactly one particular input combination and is equal to 0 at all

other combinations.Thus, for example, X Y Z is always equal to 0 except for the input

combination xyz = 000, where it is equal to 1.

Accordingly, the mintermX Y Z is referred to as m0.

 In general, minterms are designated mi, where i corresponds the input combination at

which this minterm is equal to 1.

91

For the 3-input system under consideration, the number of possible input combinations is 23,

or 8. This means that the system has a total of 8 minterms as follows:

m0 = x’ y’ z’ =1 IFF xyz = 000, otherwise it equals 0

m1 = x’ y’z=1 IFF xyz = 001, otherwise it equals 0

m2 = x’yz’ =1 IFF xyz = 010, otherwise it equals 0

m3 = x’yz=1 IFF xyz = 011, otherwise it equals 0

m4 = x y’ z’ =1 IFF xyz = 100, otherwise it equals 0

m5 = x y’z=1 IFF xyz = 101, otherwise it equals 0

m6 = xy’z’ =1 IFF xyz = 110, otherwise it equals 0

m7 = xyz =1 IFF xyz = 111, otherwise it equals 0

In general,

For n-input variables, the number of minterms = the total number of possible input

combinations = 2n.

A minterm = 0 at all input combinations except one where the minterm = 1.

3.6 MaxTerm

 Consider a circuit of 3 input signals (variables) X, Y, & Z.A term which ORs all input

variables, either in the true or complement form, is called a Maxterm.

With 3-input variables, the system under consideration has a total of 8 Maxterms, namely:

(X + Y + Z),(X + Y + Z’), (X + Y’ + Z),(X + Y’ + Z’), (X’ + Y + Z),(X’ + Y + Z’), (X’ + Y’ + Z)

& (X’ + Y’ + Z’)

 Each Maxterm equals 0 at exactly one of the 8 possible input combinations and is

equal to 1 at all other combinations.

For example, (x + y + z) equals 1 at all input combinations except for the combination xyz =

000, where it is equal to 0.

 Accordingly, the Maxterm(x + y + z) is referred to as M0.

 In general, Maxterms are designated Mi, where i corresponds to the input combination

at which this Maxterm is equal to 0.

92

For the 3-input system, the number of possible input combinations is 23, or 8.

This means that the system has a total of 8 Maxterms as follows:

M0 = (x + y + z) =0 IFF xyz = 000, otherwise it equals 1

M1 = (x + y + z’) = 0 IFF xyz = 001, otherwise it equals 1

M2 = (x + y’ + z) = 0 IFF xyz = 010, otherwise it equals 1

M3 = (x + y’ + z’) = 0 IFF xyz = 011, otherwise it equals 1

M4 = (x’ + y + z) = 0 IFF xyz = 100, otherwise it equals 1

M5 = (x’ + y + z’) = 0 IFF xyz = 101, otherwise it equals 1

M6 = (x’ + y’ + z) = 0 IFF xyz = 110, otherwise it equals 1

M7 = (x’ + y’ + z’) = 0 IFF xyz = 111, otherwise it equals 1

Self Assessment Questions

What is the difference between the maxterm and minterm

Self Assessment Answers

The maxterm deals with OR’s operation while the Minterm deals with AND’s operation

In general,

 For n-input variables, the number of Maxterms = the total number of possible input

combinations = 2n.

 A Maxterm = 1 at all input combinations except one where the Maxterm = 0.

e.g Given the truth table below

x y z f(x,y,z) f’(x,y,z)

0 0 0 1 0

0 0 1 1 0

0 1 0 1 0

0 1 1 1 0

1 0 0 0 1

93

1 0 1 0 1

1 1 0 1 0

1 1 1 0 1

Sum of product

F =xyz+xyz’+xy’z+xy’z’+x’y’z’

 = m0+m1+m2+m3+m6

 = ∑m(0,1,2,3,6)

For product of sum

f = (x’ + y + z)(x’ + y + z’)(x’ + y’ + z’)

= M4 M5 M7

= ΠM(4,5,7)

For sum of product

F’= (x’yz+x’yz’+x’y’z’)

 =m4+m5+m7

 = ∑m(4,5,7)

f’ = (x + y + z)(x + y + z’)(x + y’ + z)(x + y’ + z’)(x’ + y’ + z)

 = M0 M1 M2 M3 M6

= ΠM(0,1,2,3,6)

f’ contains all the maxterms not in f

Minterms and maxterms are related

• Any minterm mi is the complement of the corresponding maxtermMi as shown in the table

below

94

Self Assessment Questions

1. Distinguish between Minterms and Maxterms

2. Obtain the truth table and find the SOP and POS

2.

Self Assessment Answers

Example:

Given that F (a, b, c, d) = Σ(0, 1, 2, 4, 5, 7), derive the product of maxtermsexpression of F

and the 2 standard form expressions of F’.

Solution

Since the system has 4 input variables (a, b, c & d) The number of minterms andMaxterms =

24= 16

F (a, b, c, d) = Σ(0, 1, 2, 4, 5, 7)

List all maxterms in the Product of maxterms expression

95

F = Π (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15).

Cross out maxterms corresponding to input combinations of the minterms appearing in the

sum of minterms expression

F = Π (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15).

F = Π (3, 6, 8, 9, 10, 11, 12, 13, 14, 15).

Similarly, obtain both canonical form expressions for F’

F’ = Σ (3, 6, 8, 9, 10, 11, 12, 13, 14, 15).

F’ = Π (0, 1, 2, 4, 5, 7)

Canonical Forms: The sum of minterms and the product of maxterms forms of Boolean

expressions are known as the canonical forms of a function.

Converting between standard forms

• We can convert a sum of minterms to a product of maxterms

From before f = ∑m(0,1,2,3,6) and

f’ = ∑m(4,5,7)

 = m4 + m5 + m7

complementing (f’)’ = (m4 + m5 + m7)’

so f = m4’ m5’ m7’ [DeMorgan’s law]

 = M4 M5 M7 [from the table on previous page]

 = ΠM(4,5,7)

In general, just replace the minterms with maxterms, using maxterm numbers that don’t

appear in the sum of minterms: e.g.

 f = Σm(0,1,2,3,6)

 = ΠM(4,5,7)

The same thing works for converting from a product of maxterms to a sum of minterms

96

4.0 Conclusion

This unit discussed sum of product (SOP), product of sum (POS) ,minterm, maxterm and

their standard form used in boolean expression

5.0 Summary

You have learnt:

A product term is a term with ANDed literals*. Thus, AB, A’B, A’CD are all product

terms.

A minterm is a special case of a product term where all input variables appear in the

product term either in the true or complement form.

A sum term is a term with ORed literals*. Thus, (A+B), (A’+B), (A’+C+D) are all

sum terms.

A maxterm is a special case of a sum term where all input variables, either in the true

or complement form, are ORed together.

Boolean functions can generally be expressed in the form of a Sum of Products (SOP)

or in the form of a Product of Sums (POS).

The sum of minterms form is a special case of the SOP form where all product terms

are minterms.

The product of maxterms form is a special case of the POS form where all sum terms

are maxterms.

The SOP and POS forms are Standard forms for representing Boolean functions.

6.0 Tutor-Marked Assignment

1. Develop a truth table for the standard SOP expression A’ B’C + AB’ C’ + ABC.

2.

97

7.0 References/Further Reading

Ronald J. T. & Neal S., (2001). Widmer Digital Systems: Principle and Applications

(8th Ed.) Prentice Hall,

Thomas L F., (2006). Digital Fundamentals (9th Ed.). Prentice Hall.

Morris M. & Charles R. K. (2004) Logic and Computer Design Fundamentals.

(2004) NJPrentice Hall

Wakerly J.F. (2000). Digital Design: Principles and Practices (3rd Ed.) Upper Saddle

River NJ; Prentice

http://drstienecker.com/tech-332/3-logic-circuits-boolean-algebra-and-truth-tables/

http://www.courses.ebe.uct.ac.za/eee317w/1.%20Basic%20Logic%20Design.pdf

http://ozark.hendrix.edu/~burch/cs/230/cso/ch07-gates/index.html

http://www.indiabix.com/digital-electronics/combinational-logic-circuits/16006

http://drstienecker.com/tech-332/3-logic-circuits-boolean-algebra-and-truth-tables/
http://www.courses.ebe.uct.ac.za/eee317w/1.%20Basic%20Logic%20Design.pdf
http://ozark.hendrix.edu/~burch/cs/230/cso/ch07-gates/index.html
http://www.indiabix.com/digital-electronics/combinational-logic-circuits/16006

98

Unit 4

Karnaugh Map
Content

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Contents

3.1 Karnaugh Map

3.2 Code Distance

3.3 Two Variable K Map

3.4 Three Variable K Map

3.5 Four Variable K Map

3.6 Prime Implicant

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

99

1.0 Introduction

 Even though Boolean expressions can be simplified by algebraic manipulation, such

an approach lacks clear regular rules for each succeeding step and it is difficult to determine

whether the simplest expression has been achieved.

 In contrast, Karnaugh map (K-map) method provides a straightforward procedure for

simplifying Boolean functions. K-maps of up to 4 variables are very common to uses.

Simplified expressions produced by K-maps are always either in the SOP or the POS form.

The map provides the same information contained in a Truth Table but in a different format.

2.0 Learning Outcomes

 At the end of this unit you should be able to:

Build a 2, 3, or 4 variables K-map.

Minimize Sum of Product(SOP) function using K-maps

Differentiate between prime implicants and essential prime implicants.

Minimize Sum of Product (SOP) andProduct of Sum (POS) function using a K-map.

Minimize a combinational circuit that is not completely specified (has don't care

conditions).

Construct a 5 and 6 variable K-map given a truth table or a SOP representation.

3.1 Karnaugh Map (K Map)

 A Karnaugh map provides a systematic method for simplifying Boolean expressions

and, if properly used, will produce the simplest SOP or POS expression possible, known as

the minimum expression. As you have seen, the effectiveness of algebraic simplification

depends on your familiarity with all the laws, rules, and theorems of Boolean algebra and on

your ability to apply them. The Karnaugh map, on the other hand, provides a "cookbook"

method for simplification.

 A Kamaugh map i similar to a tnJth table because it presents all of the possible values

of input variables and the resulting output for each value. Instead of being organized into

columns and rows like a truth table, the Karnaugh map is an array of cells in which each cell

represents a binary value of the input variables. The cells are ananged in a way so that

simplification of a given expression is simply a matter of properly grouping the cells.

Karnaugh maps can be used for expressions with two, three, four. and five variables, but we

will discuss only 3-variable and 4-variable situations to illustrate the principles.

 The number of cells in a Karnaugh map is equal to the total number of possible input

variable combinations as is the number of rows in a truth table. For three variables, the

number of cells is 23 = 8. For four variables, the number of cells is 24 = 16.

3.2 Code Distance

100

 The distance between two binary code-words is the number of bit positions in which

the two code-words have different values. For example, the distance between the code words

1001 and 0001 is 1 while the distance between the code-words 0011 and 0100 is 3.

This definition of code distance is commonly known as the Hamming distance between two

codes.

What is the significance of the K-Map

A Karnaugh map provides a systematic method for simplifying Boolean expressions and, if

properly used, will produce the simplest SOP or POS expression possible, known as the

minimum expression.

3.3 Two-Variable K-Maps

The 2-variable map is a table of 2 rows by 2 columns. The 2 rows represent the two values of

the first input variable A, while the two columns represent the two values of the second input

variable B.

Thus, all entries (squares) in the first row correspond to input variable A=0, while entries

(squares) of the second row correspond to A=1.

Likewise, all entries of the first column correspond to input variable B = 0, while entries of

the second column correspond to B=1.

Thus, each map entry (or square) corresponds to a unique value for the input variables A and

B.

For example, the top left square corresponds to input combination AB=00. In other words,

this square represents mintermm
0. Likewise, the top right square corresponds to input

combination AB=01, or mintermm
1and the bottom left square corresponds to input

combination AB=10, or mintermm2. Finally, the bottom right square corresponds to input

combination AB=11, or mintermm3.

In general, each map entry (or square) corresponds to a particular input combination (or

minterm).

Since, Boolean functions of two-variables have four minterms, a 2-variable K-map can

represent any 2-variable function by plugging the function value for each input combination

in the corresponding square.

101

Definitions/Notations:

Two K-map squares are considered adjacent if the input codes they represent have a

Hamming distance of 1.

A K-map square with a function value of 1 will be referred to as a 1-Square.

A K-map square with a function value of 0 will be referred to as a 0-Square.

The simplification procedure is summarized below:

Step 1: Draw the map according to the number of input variables of the function.

Step 2: Fill “1’s” in the squares for which the function is true.

Step 3: Form as big group of adjacent 1-squares as possible. There are some rules for this

which you will learn with bigger maps.

Step 4: Find the common literals for each group and write the simplified expression in SOP.

Example:

Consider the given truth table of two variable functions. Obtain the simplified function using

K-map.

First draw a 2-variable K-map. The function F is true when AB’ (m2) is true and when AB

(m3) is true, so a 1 is placed inside the square that belongs to m2 and a 1 is placed inside the

square that belongs to m3.

A B F

0 0 0

0 1 0

1 0 1

1 1 1

102

Since both of the 1-squares have different values for variable B but the same value for

variable A, which is 1, i.e., wherever A = 1 then F = 1 thus F = A.

This simplification is justified by algebraic manipulation as follows:

F = m2 + m3 = AB’ + AB = A (B’ + B) = A

To understand how combining squares simplifies Boolean functions, the basic property

possessed by the adjacent squares must be recognized.

In the above example, the two 1-squares are adjacent with the same value for variable A

(A=1) but different values for variable B (one square has B=0, while the other has B=1).

This reduction is possible since both squares are adjacent and the net expression is that of the

common variable (A).

Generally, this is true for any 2 codes of Hamming distance 1 (adjacent). For an n-variable K-

map, let the codes of two adjacent squares (distance of 1) have the same value for all

variables except the i
thvariable. Thus,

Code of 1stSquare: X1, X2 …, Xi-1, Xi, Xi+1......Xn

Code of 2ndSquare: X1, X2 …, Xi-1, Xi, Xi+1......Xn

Combining these two squares in a group will eliminate the different variable Xi and the

combined expression will be

X1, X2 …, Xi-1, Xi, Xi+1......Xn

since:

=(X2 …, Xi-1, Xi, Xi+1......Xn) + (X1, X2 …, Xi-1, Xi, Xi+1......Xn)

=(X1, X2 …, Xi-1, Xi+1......Xn)(Xi + Xi,)

103

==(X1, X2 …, Xi-1, Xi+1......Xn)

The variable in difference is dropped.

Another Example:

Simplify the given function using K-map method:

F = Σ (1, 2, 3)

In this example:

F = m1 + m2 + m3 = m1 + m2 + (m3 + m3)

F = (m1 + m3) + (m2 + m3) = A + B

Rule: A 1-square can be member of more than one group.

If we exchange the places of A and B, then minterm positions will also change. Thus, m1 and

m2 will be exchanged as well.

In an n-variable map each square is adjacent to “n” other squares, e.g., in a 2-variable map

each square is adjacent to two other squares as shown below:

104

Examples of non-adjacent squares are shown below:

Self Assessment Questions

How many terms does a 2 variable K- map contains?

Self Assessment Answers

A 2 variable K-Map contains 4 element

105

3.4 Three-Variable K-Maps:

There are eight minterms for a Boolean function with three-variables. Hence, a three-

variable map consists of 8 squares.

All entries (squares) in the first row correspond to input variable A=0, while entries (squares)

of the second row correspond to A=1.

Likewise, all entries of the first column correspond to input variable B = 0, C = 0, all entries

of the second column correspond to input variable B = 0, C = 1, all entries of the third

column correspond to input variable B = 1, C = 1, while entries of the fourth column

correspond to B=1, C = 0.

To maintain adjacent columns physically adjacent on the map, the column coordinates do not

follow the binary count sequence. This choice yields unit distance between codes of one

column to the next (00 – 01—11 – 10), like Gray Code.

Variations of Three-Variable Map:

The figure shows variations of the three-variable map. Note that the minterm corresponding

to each square can be obtained by substituting the values of variables ABC in order.

106

There are cases where two squares in the map are considered to be adjacent even though they

do not physically touch each other.

In the figure of 3-variable map, m0 is adjacent to m2 and m4 is adjacent to m6 because the

minterms differ by only one variable. This can be verified algebraically: m0 + m2 = A’B’C’ +

A’BC’ = A’C’ (B’ + B) = A’C’ m4 + m6 = AB’C’ + ABC’ = AC’ (B’ + B) = AC’

Rule: Groups may only consist of 2, 4, 8, 16,… squares (always power of 2). For example,

groups may not consist of 3, 6 or 12 squares.

Rule: Members of a group must have a closed loop adjacency, i.e., L-Shaped 4 squares do

not form a valid group.

107

Notes:

1. Each square is adjacent to 3 other squares.

2. One square is represented by a minterm (i.e. a product term containing all 3 literals).

3. A group of 2 adjacent squares is represented by a product term containing only 2 literals,

i.e., 1 literal is dropped.

4. A group of 4 adjacent squares is represented by a product term containing only 1 literal,

i.e., 2 literals are dropped.

3.5 Four-Variable K-Maps:

There are 16 minterms for a Boolean function with four-variables. Hence, four- variable

map consists of 16 squares.

 Notes:

Each square is adjacent to 4 other squares.

One square is represented by a minterm (a product of all 4-literals).

Combining 2 squares drops 1-literal.

Combining 4 squares drops 2-literals.

108

Combining 8 squares drops 3-literals.

1. 2. 3. 4. 5.

Rule: The combination of squares that can be chosen during the simplification process in the

n-variable map are as follows:

A group of 2n squares produces a function that always equal to logic 1.

A group of 2n-1 squares represents a product term of one literal.

A group of 2n-2 squares represents a product term of two literals and so on.

One square represents a minterm of n literals.

3.6 Prime Implicant

A product term of a function is said to be an implicant.

A Prime Implicant(PI) is a product term obtained by combining the maximum possible

number of adjacent 1-squares in the map.

If a minterm is covered only by one prime implicant then this prime implicant is said to be an

Essential Prime Implicant(EPI).

POS Simplification:

Until now we have derived simplified Boolean functions from the maps in SOP form.

Procedure for deriving simplified Boolean functions POS is slightly different. Instead of

making groups of 1’s, make the groups of 0’s.

Since the simplified expression obtained by making group of 1’s of the function (say F) is

always in SOP form. Then the simplified function obtained by making group of 0’s of the

function will be the complement of the function (i.e., F’) in SOP form.

Applying DeMorgan’s theorem to F’ (in SOP) will give F in POS form.

Examples 1: X = A + B

A B X

0 0 0

0 1 1

1 0 1

1 1 1

109

To do this we indicate simplifications by circling the adjacent ones as shown in Kmap above.

Each circle will represent one term in the expression (NB we use the term circle loosely here

to mean a closed boundary around adjacent squares on the Karnaugh map). The fact that a 1

in the Karnaugh map may appear in more than one circle is irrelevant. In K map above we

see that the last row circled together is independent of B, and corresponds to the term A, and

similarly the last column corresponds to the term B in the simplest form.

Figure below shows a four by four Karnaugh map, and indicates some possible circles on it.

To find the term that corresponds to a circle we find the inputs that do not vary in that circle.

The circle covering the second column is defined by C = 0, D = 1. The inputs A and B can be

either 1 or 0 within the circle. To make sure that the output is a 1 at all four input values

within that circle we simply need ensure that C’. D = 1. Notice that we always try to find the

largest possible circle since this will correspond to the greatest simplification. In Figure 2 we

could find a greater simplification by circling together all the ones in the fourth column rather

than the single one corresponding to input 0110.

Don’t Care Conditions:

In some cases, the function is not specified for certain combinations of input variables as 1 or

0.

There are two cases in which it occurs:

1. The input combination never occurs.

2. The input combination occurs but we do not care what the outputs are in response to these

inputs.

110

In both cases, the outputs are called as unspecified and the functions having them are called

as incompletely specified functions.

In most applications, we simply do not care what value is assumed by the function for

unspecified minterms.

Unspecified minterms of a function are called as don’t care conditions. They provide further

simplification of the function, and they are denoted by X’s to distinguish them from 1’s and

0’s.

In choosing adjacent squares to simplify the function in a map, the don’t care minterms can

be assumed either 1 or 0, depending on which combination gives the simplest expression.

A don’t care minterm need not be chosen at all if it does not contribute to produce a larger

implicant.

For the Kmap below

We can make these explicit in the truth table by placing a cross in the output column rather

than a zero or one. This has the advantage in minimisation problems that the corresponding

points in the Karnaugh map may be treated as either a 1 or a 0 for the purpose of

simplification. For example, considering again the four input majority circuit, if we happen to

know the input states 0000 and 0100 never occur we can treat them as “don’t cares” in the

Karnaugh map as shown in Figure . Clearly it is advantageous to treat 0100 as a 1 then we

can obtain a major simplification with the central block of eight which corresponds to the

term B in the second row.

Examples:

1.Minimize the following logic function using K-maps .

F(A,B,C,D) = ∑m(1,3,5,8,9,11,15) + d(2,13)

111

Soln

Ans:

Minimization of the logic function F(A, B, C, D) = ∑ m(1,3,5,8,9,11.15) + d(2,13) using

Karnaugh Map for the logic function is given in table below

The minimized logic expression in SOP form is F = A B’ C’ + C’ D + B’ D + AD

The minimized logic expression in POS form is F = (A + B’+C’) (C’+D) (B’+D) (A+D)

Minimize the logic functionY(A,B,C,D) =∑m(0,1,2,3,5,7,8,9,11,14) . Use Karnaugh map.

Draw logic circuit for the simplified function.

The figure below shows the Karnaugh map. Since the expression has 4 variables, the map has

16 cells. The digit 1 has been written in the cells having a term in the given expression. The

decimal number has been added as subscript to indicate the binary number for the concerned

cell. The term ABC D cannot be combined with any other cell. So this term will appear as

such in the final expression. There are four groupings of 4 cells each. These correspond to the

min terms (0, 1, 2, 3), (0, 1, 8, 9), (1, 3,5,7) and (1, 3, 9, 11). These are shown in the map.

Since all the terms (except 14) have been included in groups of 4 cells, there is no need to

form groups of two cells.

112

The simplified expression is Y (A,B,C,D) = ABC D’ + A’ B’ + B’ C’ + B’ D+ A’D

Self Assessment Questions

Simplify the following expression into sum of products using Karnaugh map

F(A,B,C,D) =Σ(1,3,4,5,6,7,9,12,13)

Self Assessment Questions

4.0 Conclusion

This unit considered the use of K map in simplifyiny logic expressions. 2 variable, 3 variable

and 4 variable K map were also considered.

5.0 Summary

In this unit the following aspects have been discussed:

Complement, the inverse or opposite of a number. In Boolean algebra, the inverse

function, expressed with a bar over a variable. The complement of a I is O. and vice

versa.

113

"Don't care" A combination of input literals that cannot occur and can be used as a I

or a 0 on a Karnaugh map for simplification.

Karnaugh map An arrangement of cells representing the combinations of literals in a

Boolean expression and used for a systematic simplification of the expression.

Minimization: The process that results in an SOP or POS Boolean expression that

contains the fewest possible literals per term.

6.0 Tutor-Marked Assignment

1. The circuit is to have three inputs and one output. One of the inputs is specified as a

control input (we shall designate it C). When this control input is at the logical 0 value, the

output is the logical (or Boolean) AND function of the other two inputs. When C is at the

logical 1 level, the output is equal to the Boolean OR function of the other two inputs.

2. You are to design a circuit that has three inputs A B C, and one output R. The output R

should be 1 if exactly one or exactly two of the inputs are 1. Fill up the truth table for the

circuit, then write down the canonical form of the boolean equation using a sum of minterms.

Simplify the resulting expression as far as you can.

3. Write down the equation for the circuit using maxterms. Verify that the result is the same

as your solution to Q2

4. Determine the minimum expression for each of the K map below

Use a Karnaugh map to find the minimum SOP form for each expression:

(a) A’B’C’ + A’B’C + AB’C

(c) AC(B’ + C)

Optimise the following Boolean function by means of a three variable map

114

REFERENCES

Ronald J. T. & Neal S., (2001). Widmer Digital Systems: Principle and Applications

(8th Ed.) Prentice Hall,

Thomas L F., (2006). Digital Fundamentals (9th Ed.). Prentice Hall.

Morris M. & Charles R. K. (2004) Logic and Computer Design Fundamentals.

(2004) NJPrentice Hall

Wakerly J.F. (2000). Digital Design: Principles and Practices (3rd Ed.) Upper Saddle

River NJ; Prentice

http://www.ccse.kfupm.edu.sa/~amin/eCOE200/Lesson4_4.pdf

www.doc.ic.ac.uk/~dfg/hardware/HardwareLecture03.pd

www.doc.ic.ac.uk/~dfg/hardware/HardwareHandout02.pdf

http://www.ccse.kfupm.edu.sa/~amin/eCOE200/Lesson4_4.pdf
http://www.doc.ic.ac.uk/~dfg/hardware/HardwareLecture03.pd
http://www.doc.ic.ac.uk/~dfg/hardware/HardwareHandout02.pdf

115

MODULE 3
Combinational Logic

116

Unit1

Adder and Subtractor
Content

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Contents

3.1 Combinational Versus Sequential Circuits

3.2 Binary Adder

3.3 Subtractor

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

117

1.0 Introduction

When logic gates are connected together to produce a specified output for certain specified

combinations of input variables, with no storage involved, the resulting circuit is in the

category of combinational logic. In combinational logic, the output level is at all times

dependent on the combination of input levels. This module expands on the material

introduced in earlier chapters with coverage of the analysis, design, and troubleshooting of

various combinational logic circuits. Specifically this unit covers adders and subtractors.

2.0 Learning Outcomes

At the end of this unit you should be able to

Differentiate between Combinational versus sequential circuits

Know Binary half adder and full adder and describe their functions

Differentiate between half adder and full adder

Know half subtractor and full subtractor and describe their functions

Differentiate between half and full subtractor

Know rhe circuit implementation of adder and subtractor

3.0 Learning Contents

3.1 Combinational versus. Sequential circuit

Digital circuits may be classified as combinational or sequential. In a combinational circuit,

the present outputs depend only on present inputs (subject to reaction times). In a sequential

circuit, the present outputs may also depend on past outputs and inputs. Sequential circuits

usually contain combinational subcircuits. The two classes of circuits have different

topologies. Sequential circuitscontain feedback paths from the outputs to the inputs, while

combinationalcircuits do not.

Combinational Logic Circuits

Unlike Sequential Logic Circuits whose outputs are dependant on both their present inputs

and their previous output state giving them some form of Memory, the outputs of

Combinational Logic Circuits are only determined by the logical function of their current

input state, logic "0" or logic "1", at any given instant in time as they have no feedback, and

any changes to the signals being applied to their inputs will immediately have an effect at the

output. In other words, in a Combinational Logic Circuit, the output is dependant at all

times on the combination of its inputs and if one of its inputs condition changes state so does

the output as combinational circuits have "no memory", "timing" or "feedback loops".

http://www.electronics-tutorials.ws/sequential/seq_1.html

118

Combinational Logic Circuits are made up from basic logic NAND, NOR or NOT gates

that are "combined" or connected together to produce more complicated switching circuits.

These logic gates are the building blocks of combinational logic circuits. An example of a

combinational circuit is a decoder, which converts the binary code data present at its input

into a number of different output lines, one at a time producing an equivalent decimal code at

its output.

Combinational logic circuits can be very simple or very complicated and any combinational

circuit can be implemented with only NAND and NOR gates as these are classed as

"universal" gates.

As combinational logic circuits are made up from individual logic gates only, they can also

be considered as "decision making circuits" and combinational logic is about combining logic

gates together to process two or more signals in order to produce at least one output signal

according to the logical function of each logic gate. Common combinational circuits made up

from individual logic gates that carry out a desired application include Multiplexers, De-

multiplexers, Encoders, Decoders, Full and Half Adders etc.

What is the fundamental difference between a Combinational Logic and the Sequential Logic

The outputs of Combinational Logic Circuits are only determined by the logical function of

their current input state, logic "0" or logic "1", at any given instant in time as compared to

theSequential Logic Circuits whose outputs are dependant on both their present inputs and

their previous output state giving them some form of Memory.

Classification of Combinational Logic

http://www.electronics-tutorials.ws/logic/logic_5.html
http://www.electronics-tutorials.ws/logic/logic_6.html
http://www.electronics-tutorials.ws/logic/logic_4.html
http://www.electronics-tutorials.ws/sequential/seq_1.html

119

One of the most common uses of combinational logic is in Multiplexer and De-multiplexer

type circuits. Here, multiple inputs or outputs are connected to a common signal line and

logic gates are used to decode an address to select a single data input or output switch. A

multiplexer consist of two separate components, a logic decoder and some solid state

switches, but before we can discuss multiplexers, decoders and de-multiplexers in more detail

we first need to understand how these devices use these "solid state switches" in their design.

3.2 The Binary Adder

A common and very useful combinational logic circuit which can be constructed using just a

few basic logic gates and adds together binary numbers is the Binary Adder circuit. The

Binary Adder is made up from standard AND and Ex-OR gates and allow us to "add"

together single bit binary numbers, a and b to produce two outputs, the SUM of the addition

and a CARRY called the Carry-out, (Cout) bit. One of the main uses for the Binary Adder

is in arithmetic and counting circuits.

Consider the addition of two denary (base 10) numbers below.

123 A (Augend)

+ 789 B (Addend)

912 SUM

Each column is added together starting from the right hand side and each digit has a weighted

value depending upon its position in the columns. As each column is added together a carry is

generated if the result is greater or equal to ten, the base number. This carry is then added to

the result of the addition of the next column to the left and so on, simple school math's

addition. The adding of binary numbers is basically the same as that of adding decimal

numbers but this time a carry is only generated when the result in any column is greater or

equal to "2", the base number of binary.

Half Adder:

A half adder is a logical circuit that performs an addition operation on two binary

digits. The half adder produces a sum and a carry value which are both binary digits. If A

andB are the input bits, then sum bit (S) is the X-OR of A and B and the carry bit (C) will be

the AND of A and B. From this it is clear that a half adder circuit can be easily constructed

using one X-OR gate and one AND gate. Half adder is the simplest of all adder circuit, but it

has a major disadvantage.

 The half adder can add only two input bits (A and B) and has nothing to do with the

carry if there is any in the input. So if the input to a half adder have a carry, then it will be

neglected it and adds only the A and B bits. That means the binary addition process is not

complete and that’s why it is called a half adder. The truth table, schematic representation

and XOR//AND realization of a half adder are shown in the figure below.

http://www.electronics-tutorials.ws/combination/comb_2.html
http://www.electronics-tutorials.ws/combination/comb_3.html

120

NAND gates or NOR gates can be used for realizing the half adder in universal logic and the

relevant circuit diagrams are shown in the figure below

What are Combinational Logic made up of and their applications

Comon combinational circuits made up from individual logic gates that carry out a desired

application include Multiplexers, De-multiplexers, Encoders, Decoders, Full and Half Adders

etc.

Full adder

Full adder circuit adds three bit binary numbers (X,Y,Z) & outputs two nos. of one bit binary

numbers, Sum & Carry . This type of adder is a little more difficult to implement than a half-

adder. The main difference between a half-adder and a full-adder is that the full-adder has

three inputs and two outputs. The first two inputs are A and B and the third input is an input

carry designated as CIN. When a full adder logic is designed we will be able to string eight of

them together to create a byte-wide adder and cascade the carry bit from one adder to the

next.

The output carry is designated as COUT and the normal output is designated as S

121

 There is a simple trick to find results of a full adder. Consider the second last row of

the truth table, here the operands are 1, 1, 0 ie (A, B, Cin). Add them together ie 1+1+0 = 10 .

In binary system, the number order is 0, 1, 10, 11……. and so the result of 1+1+0 is 10 just

like we get 1+1+0 =2 in decimal system. 2 in the decimal system corresponds to 10 in the

binary system. Swapping the result “10″ will give S=0 and Cout = 1 and the second last row

is justified. This can be applied to any row in the table.

 With this type of schematic,

we can add two bits together taking a carry from the next lower order of magnitude, and

sending a carry to the next higher order of magnitude. In a computer, for a multi-bit

operation, each bit must be represented by a full adder and must be added simultaneously.

Thus, to add two 8-bit numbers, you will need 8 full adders which can be formed by

cascading two of the 4-bit blocks. The addition of two 4-bit numbers is shown below.

122

 A Full adder can be made by combining two half adder circuits together (a half adder

is a circuit that adds two input bits and outputs a sum bit and a carry bit).

Self Assessment Questions

1. Describe the full Adder Circuit

2. What is the difference between Half and full adders

Self Assessment Questions

1. Full adder circuit adds three bit binary numbers (X,Y,Z) & outputs two nos. of one

bit binary numbers, Sum & Carry .

2. The main difference between a half-adder and a full-adder is that the full-adder has

three inputs and two outputs.

Realisea Full adder using NAND and NOR logic

Ripple Carry Adder Circuit:

Multiple full adder circuits can be cascaded in parallel to add an N-bit number. For an

N- bit parallel adder, there must be N number of full adder circuits. A ripple carry adder is a

logic circuit in which the carry-out of each full adder is the carry in of the succeeding next

most significant full adder. It is called a ripple carry adder because each carry bit gets rippled

into the next stage. In a ripple carry adder the sum and carry out bits of any half adder stage is

123

not valid until the carry in of that stage occurs.Propagation delays inside the logic circuitry is

the reason behind this. Propagation delay is time elapsed between the application of an input

and occurance of the corresponding output. Consider a NOT gate, When the input is “0″ the

output will be “1″ and vice versa. The time taken for the NOT gate’s output to become “0″

after the application of logic “1″ to the NOT gate’s input is the propagation delay here.

Similarly the carry propagation delay is the time elapsed between the application of the carry

in signal and the occurance of the carry out (Cout) signal. Circuit diagram of a 4-bit ripple

carry adder is shown below.

Sum out S0 and carry out Cout of the Full Adder 1 is valid only after the propagation

delay of Full Adder 1. In the same way, Sum out S3 of the Full Adder 4 is valid only after the

joint propagation delays of Full Adder 1 to Full Adder 4. In simple words, the final result of

the ripple carry adder is valid only after the joint propogation delays of all full adder circuits

inside it.

3.3 Subtractor

The subtraction of two binary numbers may be accomplished by taking the complement of

the subtrahend and adding it to the minuend. By this method, the subtraction operation

becomes an addition operation requiring full-adders for its machine implementation. It is

possible to implement subtraction with logic circuits in a direct manner, as done with paper

and pencil. By this method, each subtrahend bit of the number is subtracted from its

corresponding significant minuend bit to form a difference bit. If the minuend bit is smaller

than the subtrahend bit, a 1 is borrowed from the next significant position. The fact that a 1

has been borrowed must be conveyed to the next higher pair of bits by means of a binary

signal coming out (output) of a given stage and going into (input) the next higher stage. Just

as there are half- and full-adders, there are half- and full-sub tractors.

Half Subtractor

A half-subtractor is a combinational circuit that subtracts two bits and produces their

difference. It also has an output tospecify if a 1 has been borrowed. Designate the minuend

bit by x and the subtrahend bit by y. To perform x — y, we have to check the relative

124

magnitudes of x and y. If x ³y, we have three possibilities: 0 — 0 = 0, 1 — 0 = 1, and 1-1=0,

the result is called the difference bit. If x < y, we have 0-1, and it is necessary to borrow a 1

from the next higher stage. The 1 borrowed from the next higher stage adds 2 to the minuend

bit, just as in the decimal system a borrow adds 10 to a minuend digit. With the minuend

equal to 2, the difference becomes 2-1 = 1.

The half-subtracted needs two outputs. One output generates the difference and will be

designated by the symbol D. The second output, designated B for borrow, generates the

binary signal that informs the next stage that a 1 has been borrowed. The truth table for the

input-output relationships of a half-subtracter can now be derived as follows:

X Y B D

0 0 0 0

0 1 1 1

1 0 0 1

1 1 0 0

The output borrow B is a 0 as long as x³ y. It is a 1 for x = 0 andy = 1. The D output is the

result of the arithmetic operation 2B + x — y.

The Boolean functions for the two outputs of the halfsubtractor are derived directly from the

truth table:

D = x ‘y + xy’

B = x’y

It is interesting to note that the logic for D is exactly the same as the logic for output S in the

half-adder.

Full subtractor

A full-subtractor is a combinational circuit that performs a subtraction between two bits,

taking into account that a 1 may have been borrowed by a lower significant stage. This circuit

has three inputs and two outputs. The three inputs, x, y, and z, denote the minuend,

subtrahend, and previous borrow, respectively. The two outputs, D and B, represent the

difference and outputs borrow, respectively. The truth table for the circuit is

125

The eight rows under the input variables designate all possible combinations of 1’s and 0’s

that the binary variables may take. The 1’s and O’s for the output variables are determined

from the subtraction of x — y — z. The combinations having input borrow z = 0 reduce to

the same four conditions of the halfadder. For x = 0, y = 0, and z = 1, we have to borrow a 1

from the next stage, which makes B = 1 and adds 2 to x. Since 2 - 0 - 1 = 1, D = 1. For x = 0

and yz = 11, we need to borrow again, making B = 1 and x = 2. Since 2 - 1 - 1 = 0, D =0. For

x = 1 and yz = 01, we have x –y-z = 0, which makes B = 0 and D = 0.Finally, for x = 1, y = 1,

z = 1, we have to borrow 1, making B = 1 and x = 3, and 3 — 1 — 1 = 1, making D = 1.

The simplified Boolean functions for the two outputs of the full-subtractor are derived in the

maps of figure below. Thesimplified sum of products output functions are

D = x’y’z + x’yz’ + xy’z’ + xyz

B = x’y + x’z + yz

X Y Z B D.

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 0

1 0 0 0 1

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

126

A full subtractor circuit can be implemented with two half subtractors and one OR gate.

127

N.B Full adder can be converted into full subtractor with an additional inverter.

•Four bit binary parallel adder can be constructed by using three full adders and one half

adder or by using four full adders with input carry for least significant bit full adder is

zero.

• Four bit binary parallel adder shown in figure is also called as Ripple carry adder.

What is a Ripple Carry adder and why is it called a Ripple Carry adder.

What are the various types of subtractor.

A ripple carry adder is a logic circuit in which the carry-out of each full adder is the

carry in of the succeeding next most significant full adder. It is called a ripple carry

adder because each carry bit gets rippled into the next stage.

The various types of subtractor are: Full subtractor and Half Subtractor

4.0 Conclusion

In this unit we discussed adders and subtractor and how their circuit diagram andfuctions.

5.0 Summary

 You have learnt:

The half-adder accepts two binary digits on its inputs and produces two binary

digits on its outputs, a sum bit and a carry

The full-adder accepts two input bits and an input carry and generates a sum

output and an output carry.

The basic difference between a full-adder and a half-adder is that the full-adder

accepts an input carry

A half-subtractor is a combinational circuit that subtracts two bits and produces their

difference

A full-subtractor is a combinational circuit that performs a subtraction between two

bits, taking into account that a 1 may have been borrowed by a lower significant stage

128

6.0 Tutor-Marked Assignment

1. With the help of a truth table explain the working of a half subtractor. Draw the logic

diagram using gates.

2. Draw the logic diagram of a full subtractor using half subtractors and explain its

working withthe help of a truth table.

3. Discuss in detail, the working of Full Adder logic circuit and extend your discussion

to explain a binary adder, which can be used to add two binary numbers

4. Distinguish between adder and subtractor

7.0 References/Further reading

Ronald J. T. & Neal S., (2001). Widmer Digital Systems: Principle and Applications

(8th Ed.) Prentice Hall,

Thomas L F., (2006). Digital Fundamentals (9th Ed.). Prentice Hall.

Morris M. & Charles R. K. (2004) Logic and Computer Design Fundamentals.

(2004) NJPrentice Hall

Wakerly J.F. (2000). Digital Design: Principles and Practices (3rd Ed.) Upper Saddle

River NJ; Prentice

http://www.circuitstoday.com/half-adder-and-full-adder

http://www.matestop.com/forum/thread/1200/a-complete-discription-of-half-adder-

and-full-adder-circuit-with-diagrams-n/

http://www.scribd.com/doc/57832395/6/Half-Subtractor-x-y

http://media.careerlauncher.com.s3.amazonaws.com/gate/material/2.pdf

http://www.circuitstoday.com/half-adder-and-full-adder

http://www.electronics-tutorials.ws/combination/comb_5.html

http://www.electronics-tutorials.ws/combination/comb_8.html

http://www.circuitstoday.com/half-adder-and-full-adder
http://www.matestop.com/forum/thread/1200/a-complete-discription-of-half-adder-and-full-adder-circuit-with-diagrams-n/
http://www.matestop.com/forum/thread/1200/a-complete-discription-of-half-adder-and-full-adder-circuit-with-diagrams-n/
http://www.scribd.com/doc/57832395/6/Half-Subtractor-x-y
http://media.careerlauncher.com.s3.amazonaws.com/gate/material/2.pdf
http://www.circuitstoday.com/half-adder-and-full-adder
http://www.electronics-tutorials.ws/combination/comb_5.html
http://www.electronics-tutorials.ws/combination/comb_8.html

129

Unit 2

Multiplexer and

Demultiplexer

Content

1.0 Introduction

2 .0 Learning Outcomes

3.0 Learning Content

3.1 Multiplexer

3.2 De Multiplexer

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

130

1.0 Introduction

 Multiplexer (MUX) is a device that allows digital information from several sources to

be routed onto a single line for transmission over that line to a common destination. The basic

multiplexer has several data-input lines and a single output line. It also has data-select inputs.

which permit digital data on anyone of the inputs to be switched to the output line.

Multiplexers are also known as data selectors. On the other hand, a demultiplexer (DEMUX)

basically reverses the multiplexing function. It takes digital information from one line and

distributes it to a given number of outputs. This unit discusses both.

2.0 Learning outcomes

At the end of this unit you should be able to

Define a multiplexer

Explain the basic operation of a multiplexer

Define a demultiplexer

 Explain the basic operation of a de multiplexer

3.1 The Multiplexer

A data selector, more commonly called a Multiplexer, shortened to "Mux" or "MPX", are

combinational logic switching devices that operate like a very fast acting multiple position

rotary switch. They connect or control, multiple input lines called "channels" consisting of

either 2, 4, 8 or 16 individual inputs, one at a time to an output. Then the job of a multiplexer

is to allow multiple signals to share a single common output. For example, a single 8-channel

multiplexer would connect one of its eight inputs to the single data output. Multiplexers are

used as one method of reducing the number of logic gates required in a circuit or when a

single data line is required to carry two or more different digital signals.

Digital Multiplexers are constructed from individual analogue switches encased in a single

IC package as opposed to the "mechanical" type selectors such as normal conventional

switches and relays. Generally, multiplexers have an even number of data inputs, usually an

even power of two, n2 , a number of "control" inputs that correspond with the number of data

inputs and according to the binary condition of these control inputs, the appropriate data input

is connected directly to the output. An example of a Multiplexer configuration is shown

below.

4-to-1 Channel Multiplexer

 The diagram for a 4 to 1 channel multiplexer is shown below

http://www.electronics-tutorials.ws/combination/comb_1.html

131

Addressing
Input

Selected
B A

0 0 A

0 1 B

1 0 C

1 1 D

The Boolean expression for this 4-to-1 Multiplexer above with inputs A to D and data select

lines a, b is given as:

Q = abA + abB + abC + abD

In this example at any one instant in time only ONE of the four analogue switches is closed,

connecting only one of the input lines A to D to the single output at Q. As to which switch is

closed depends upon the addressing input code on lines "a" and "b", so for this example to

select input B to the output at Q, the binary input address would need to be "a" = logic "1"

and "b" = logic "0". Adding more control address lines will allow the multiplexer to control

more inputs but each control line configuration will connect only ONE input to the output.

Then the implementation of this Boolean expression above using individual logic gates would

require the use of seven individual gates consisting of AND, OR and NOT gates as shown.

Self Assessment Questions

What do you understand as a Multiplexer?

132

Self Assessment Answers

A Multiplexer isa combinational logic switching device that operate like a very fast acting

multiple position rotary switch and are used to connect or control, multiple input lines called

"channels" consisting of either 2, 4, 8 or 16 individual inputs, one at a time to an output.

4 Channel Multiplexer using Logic Gates

The symbol used in logic diagrams to identify a multiplexer is as follows.

Multiplexer Symbol

Multiplexers are not limited to just switching a number of different input lines or channels to

one common single output. There are also types that can switch their inputs to multiple

outputs and have arrangements or 4 to 2, 8 to 3 or even 16 to 4 etc configurations and an

example of a simple Dual channel 4 input multiplexer (4 to 2) is given below:

133

4-to-2 Channel Multiplexer

 Here in this example the 4 input channels are switched to 2 individual output lines but

larger arrangements are also possible. This simple 4 to 2 configuration could be used for

example, to switch audio signals for stereo pre-amplifiers or mixers.

Digital multiplexers are sometimes also referred to as "Data Selectors" as they select the data

to be sent to the output line and are commonly used in communications or high speed

network switching circuits such as LAN´s and Ethernet applications. Some multiplexer IC´s

have a single inverting buffer (NOT Gate) connected to the output to give a positive logic

output (logic "1", HIGH) on one terminal and a complimentary negative logic output (logic

"0", LOW) on another different terminal.

It is possible to make simple multiplexer circuits from standard AND and OR gates as we

have seen above, but commonly multiplexers/data selectors are available as standard i.c.

packages such as the common TTL 74LS151 8-input to 1 line multiplexer or the TTL

74LS153 Dual 4-input to 1 line multiplexer. Multiplexer circuits with much higher number of

inputs can be obtained by cascading together two or more smaller devices.

The Multiplexer is a very useful combinational device that has its uses in many different

applications such as signal routing, data communications and data bus control. When used

with a demultiplexer, parallel data can be transmitted in serial form via a single data link such

as a fibre-optic cable or telephone line. They can also be used to switch either analogue,

digital or video signals, with the switching current in analogue power circuits limited to

below 10mA to 20mA per channel in order to reduce heat dissipation.

Example: Implement the function below using multiplexer

 F(A,B,C,D)=Σ(1,2,3,11,12,13,14,15)

Answer: The function is implemented an 8X1 multiplexer as shown below

http://www.electronics-tutorials.ws/logic/logic_2.html
http://www.electronics-tutorials.ws/logic/logic_3.html

134

Example: A 4x1 Mux has 4 input lines (D0, D1, D2, D3), two select inputs (S0 & S1), and

one output

line Y.

IF S1S0=00, then Y= D0

IF S1S0=01, then Y= D1

IF S1S0=10, then Y= D2

IF S1S0=11, then Y= D3

Thus, the output signal Y can be expressed as:

mintermmintermmintermminterm

 m0 m1 m2 m3

135

Self Assessment Question

Consider the function F(A,B,C,D)=Σ(1,3,4,11,12,13,14,15). Implememt it using a 8X1

multiplexer

Self Assessment Answers

3.2 The Demultiplexer

The data distributor, known more commonly as a Demultiplexer or "Demux", is the exact

opposite of the Multiplexer we saw in the previous tutorial. The demultiplexer takes one

single input data line and then switches it to any one of a number of individual output lines

one at a time. The demultiplexer converts a serial data signal at the input to a parallel data at

its output lines as shown below.

1-to-4 Channel De-multiplexer

Addressing
Input

Selected
B a

0 0 A

0 1 B

1 0 C

http://www.electronics-tutorials.ws/combination/comb_2.html

136

1 1 D

The Boolean expression for this 1-to-4 Demultiplexer above with outputs A to D and data

select lines a, b is given as:

F = ab A + abB + abC + abD

The function of the Demultiplexer is to switch one common data input line to any one of the

4 output data lines A to D in our example above. As with the multiplexer the individual solid

state switches are selected by the binary input address code on the output select pins "a" and

"b" and by adding more address line inputs it is possible to switch more outputs giving a 1-to-

2n data line outputs. Some standard demultiplexer IC´s also have an "enable output" input pin

which disables or prevents the input from being passed to the selected output.

 Also some have latches built into their outputs to maintain the output logic level after the

address inputs have been changed. However, in standard decoder type circuits the address

input will determine which single data output will have the same value as the data input with

all other data outputs having the value of logic "0".

The implementation of the Boolean expression above using individual logic gates would

require the use of six individual gates consisting of AND and NOT gates as shown.

Self assessment Questions

What do you understand as a Demultiplexer?

Self Assessment Answers

Basically the demultiplexer is the opposite of the Multiplexer which takes one single input

data line and then switches it to any one of a number of individual output lines one at a time.

The demultiplexer converts a serial data signal at the input to a parallel data at its output lines

137

4 Channel Demultiplexer using Logic Gates

The symbol used in logic diagrams to identify a demultiplexer is as follows.

Demultiplexer Symbol

Standard Demultiplexer IC packages available are the TTL 74LS138 1 to 8-output

demultiplexer, the TTL 74LS139 Dual 1-to-4 output demultiplexer or the CMOS CD4514 1-

to-16 output demultiplexer. Another type of demultiplexer is the 24-pin, 74LS154 which is a

4-bit to 16-line demultiplexer/decoder. Here the individual output positions are selected using

a 4-bit binary coded input. Like multiplexers, demultiplexers can also be cascaded together to

form higher order demultiplexers.

Unlike multiplexers which convert data from a single data line to multiple lines and

demultiplexers which convert multiple lines to a single data line, there are devices available

which convert data to and from multiple lines and in the next tutorial about combinational

logic devices, we will look at Encoders which convert multiple input lines into multiple

output lines, converting the data from one form to another.

4.0 Conclusion

This unit takes a look at multiplexer and demultiplexer with the various types.

http://www.electronics-tutorials.ws/combination/comb_4.html

138

5.0 Summary

 You have learnt that:

A multiplexer (MUX) is a device that allows digital information from several sources

to be routed onto a single line for transmission over that line to a common destination.

The basic multiplexer has severa] data-input lines and a single output line.

Multiplexers are also known as data selectors.

A demultiplexer (DEMUX) basically reverses the multiplexing function. It takes

digital information from one line and distributes it to a given number of output lines.

the demultiplexer is also known as a data distributor

6.0 Tutor Marked Assignment

1.Using a suitable logic diagram explain the working of a 1-to-16 de multiplexer.

2. What is a digital multiplexer? Illustrate its functional diagram. Write the scheme of a 4-

input multiplexer using basic gates (AND/OR/NOT) and explain its operation.

3. Differentiate between multiplexer and de multiplexer

7.0 References/Further Reading

Ronald J. T. & Neal S., (2001). Widmer Digital Systems: Principle and Applications

(8th Ed.) Prentice Hall,

Thomas L F., (2006). Digital Fundamentals (9th Ed.). Prentice Hall.

Morris M. & Charles R. K. (2004) Logic and Computer Design Fundamentals.

(2004) NJPrentice Hall

Wakerly J.F. (2000). Digital Design: Principles and Practices (3rd Ed.) Upper Saddle

River NJ; Prentice

www.doc.ic.ac.uk/~dfg/hardware/HardwareLecture03.pd

www.doc.ic.ac.uk/~dfg/hardware/HardwareHandout02.pdf

www.itee.uq.edu.au/~engg1030/lectures/1perpage/lect14.pdf

http://www.indiabix.com/digital-electronics/combinational-logic-circuits/116006

http://www.doc.ic.ac.uk/~dfg/hardware/HardwareLecture03.pd
http://www.doc.ic.ac.uk/~dfg/hardware/HardwareHandout02.pdf
http://www.itee.uq.edu.au/~engg1030/lectures/1perpage/lect14.pdf
http://www.indiabix.com/digital-electronics/combinational-logic-circuits/116006

139

Unit 2

Digital Encoder, Decoder

and Comparator

Content

1 Introduction

2 Learning Outcomes

3.0 Learning Contents

3.1 Digital Decoder

3.2 Digital Encoder

3.3 Digital Comparator

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

140

1.0 Introduction

Decoder is a digital circuit that detects the presence of a specified combination of bits (code)

on its inputs and indicates the presence of that code by a specified output level. In its general

form, a decoder has n input lines to handle n bits and from one to 2" output lines to indicate

the presence of one or more n-bit combinations. An encoder is a combinational logic circuit

that essentially performs a "reverse" decoder function. An encoder accepts an active level on

one of its inputs representing a digit, such as a decimal or octal digit, and converts it to a

coded output, such as BCD or binary. Encoders can also be devised to encode var-ious

symbols and alphabetic characters. This chapter takes a look at both including comparator.

2.0 Learning Outcomes

At the end of this unit you should be able to

Define decoder

Design a logic circuit to decode any combination of bits

Determine the logic for a decimal encoder .

Explain the purpose of the priority feature in decoder

3.1 Digital Decoder

A Decoder is basically a combinational type logic circuit that converts the binary code data

at its input into one of a number of different output lines, one at a time producing an

equivalent decimal code at its output. Binary Decoders have inputs of 2-bit, 3-bit or 4-bit

codes depending upon the number of data input lines, and a n-bit decoder has 2n output lines.

Therefore, if it receives n inputs (usually grouped as a binary or Boolean number) it activates

one and only one of its 2n outputs based on that input with all other outputs deactivated. A

decoders output code normally has more bits than its input code and practical binary decoder

circuits include, 2-to-4, 3-to-8 and 4-to-16 line configurations.

A binary decoder converts coded inputs into coded outputs, where the input and output codes

are different and decoders are available to "decode" either a Binary or BCD (8421 code) input

pattern to typically a Decimal output code. Commonly available BCD-to-Decimal decoders

include the TTL 7442 or the CMOS 4028. An example of a 2-to-4 line decoder along with its

truth table is given below. It consists of an array of four NAND gates, one of which is

selected for each combination of the input signals A and B.

 A 2 line -to-4line Binary Decoders.

141

In this simple example of a 2-to-4 line binary decoder, the binary inputs A and B determine

which output line from D0 to D3 is "HIGH" at logic level "1" while the remaining outputs are

held "LOW" at logic "0" so only one output can be active (HIGH) at any one time. Therefore,

whichever output line is "HIGH" identifies the binary code present at the input, in other

words it "de-codes" the binary input and these types of binary decoders are commonly used

as Address Decoders in microprocessor memory applications.

74LS138 Binary Decoder

Some binary decoders have an additional input labelled "Enable" that controls the outputs

from the device. This allows the decoders outputs to be turned "ON" or "OFF" and we can

see that the logic diagram of the basic decoder is identical to that of the basic demultiplexer.

Therefore, we say that a demultiplexer is a decoder with an additional data line that is used to

enable the decoder. An alternative way of looking at the decoder circuit is to regard inputs A,

B and C as address signals. Each combination of A, B or C defines a unique address which

can access a location having that address.

142

Self Assessment Questions

What is a decoder?

Self Assessment Answers

A Decoder is basically a combinational type logic circuit that converts the binary code data at

its input into one of a number of different output lines, one at a time producing an equivalent

decimal code at its output.

Sometimes it is required to have a Binary Decoder with a number of outputs greater than is

available, or if we only have small devices available, we can combine multiple decoders

together to form larger decoder networks as shown. Here a much larger 4-to-16 line binary

decoder has been implemented using two smaller 3-to-8 decoders.

A 4 line -to-16 line Binary Decoder Configuration.

Inputs A, B, C are used to select which output on either decoder will be at logic "1" (HIGH)

and input D is used with the enable input to select which encoder either the first or second

will output the "1".

143

Memory Address Decoder.

Binary Decoders are most often used in more complex digital systems to access a particular

memory location based on an "address" produced by a computing device. In modern

microprocessor systems the amount of memory required can be quite high and is generally

more than one single memory chip alone. One method of overcoming this problem is to

connect lots of individual memory chips together and to read the data on a common "Data

Bus". In order to prevent the data being "read" from each memory chip at the same time, each

memory chip is selected individually one at time and this process is known as Address

Decoding.

Binary Decoders are very useful devices for converting one digital format to another, such

as binary or BCD type data into decimal or octal etc and commonly available decoder IC's are

the TTL 74LS138 3-to-8 line binary decoder or the 74ALS154 4-to-16 line decoder. They are

also very useful for interfacing to 7-segment displays such as the TTL 74LS47 which we will

look at in the next tutorial.

Decoders are available in two different types of output forms:

(1) Active high output type decoders: These types of decoders are constructed with AND

gates and will give the output high for given input combination and all other output are low .

(2) Active low output type of decoders. These types of decoders will give the output low for

given input combination and all other outputs are high. They are constructed with with

NAND gates.

Self Assessment Questions

Identify the two types of Decoder

Self Assessment Answers

The Active high output and the Active low output

BCD to 7-Segment Display Decoder

As we saw in the previous lesson, a DecoderIC is a device which converts one digital format

into another and the most commonly used device for doing this is the Binary Coded Decimal

(BCD) to 7-Segment Display Decoder. 7-segment LED (Light Emitting Diode) or LCD

(Liquid Crystal) displays, provide a very convenient way of displaying information or digital

144

data in the form of numbers, letters or even alpha-numerical characters and they consist of 7

individual LED's (the segments), within one single display package.

In order to produce the required numbers or HEX characters from 0 to 9 and A to F

respectively, on the display the correct combination of LED segments need to be illuminated

and BCD to 7-segment Display Decoders such as the 74LS47 do just that. A standard 7-

segment LED display generally has 8 input connections, one for each LED segment and one

that acts as a common terminal or connection for all the internal segments. Some single

displays have an additional input pin for the decimal point in their lower right or left hand

corner.

There are two important types of 7-segment LED digital display.

The Common Cathode Display (CCD) - In the common cathode display, all the cathode

connections of the LED's are joined together to logic "0" and the individual segments are

illuminated by application of a "HIGH", logic "1" signal to the individual Anode terminals.

The Common Anode Display (CAD) - In the common anode display, all the anode

connections of the LED's are joined together to logic "1" and the individual segments are

illuminated by connecting the individual Cathode terminals to a "LOW", logic "0" signal.

7-Segment Display Format

145

Truth Table for a 7-segment display

Individual Segments

Display

A b c d E f G

× × × × × × 0

 × × 1

× × × × × 2

× × × × × 3

 × × × × 4

× × × × × 5

× × × × × × 6

× × × 7

Individual Segments

Display

a b c D e f g

× × × × × × × 8

× × × × × 9

× × × × × × A

 × × × × × B

× × × × C

 × × × × × D

× × × × × E

× × × × F

7-Segment Display Elements for all Numbers.

What are the two types of 7 segment display?

The two types of 7 segment display are the Common Cathode Display and the common

Anode Display

It can be seen that to display any single digit number from 0 to 9 or letter from A to F, we

would need 7 separate segment connections plus one additional connection for the LED's

"common" connection. Also as the segments are basically a standard light emitting diode, the

driving circuit would need to produce up to 20mA of current to illuminate each individual

segment and to display the number 8, all 7 segments would need to be lit resulting a total

current of nearly 140mA, (8 x 20mA). Obviously, the use of so many connections and power

consumption is impractical for some electronic or microprocessor based circuits and so in

order to reduce the number of signal lines required to drive just one single display, display

decoders such as the BCD to 7-Segment Display Decoder and Driver IC's are used instead.

What are the two types of 7 segment display?

The two types of 7 segment display are the Common Cathode Display and the common

Anode Display

146

SELF ASSESSMENT QUESTION

1 Draw a 3line by 8 line decoder

2. Distinguish between active high and active low output decoders

3.2 The Digital Encoder

Unlike a multiplexer that selects one individual data input line and then sends that

data to a single output line or switch, a Digital Encoder more commonly called a Binary

Encoder takes ALL its data inputs one at a time and then converts them into a single encoded

output. So we can say that a binary encoder, is a multi-input combinational logic circuit that

converts the logic level "1" data at its inputs into an equivalent binary code at its output.

Generally, digital encoders produce outputs of 2-bit, 3-bit or 4-bit codes depending upon the

number of data input lines. An encoder is a digital function that produces a reverse operation

from that of a decoder

An "n-bit" binary encoder has 2n input lines and n-bit output lines with common types that

include 4-to-2, 8-to-3 and 16-to-4 line configurations. The output lines of a digital encoder

generate the binary equivalent of the input line whose value is equal to "1" and are available

to encode either a decimal or hexadecimal input pattern to typically a binary or B.C.D. output

code.

4-to-2 Bit Binary Encoder

One of the main disadvantages of standard digital encoders is that they can generate the

wrong output code when there is more than one input present at logic level "1". For example,

if we make inputs D1 and D2 HIGH at logic "1" at the same time, the resulting output is

neither at "01" or at "10" but will be at "11" which is an output binary number that is different

to the actual input present. Also, an output code of all logic "0"s can be generated when all of

its inputs are at "0" OR when input D0 is equal to one.

One simple way to overcome this problem is to "Prioritise" the level of each input pin and if

there was more than one input at logic level "1" the actual output code would only correspond

147

to the input with the highest designated priority. Then this type of digital encoder is known

commonly as a Priority Encoder or P-encoder for short.

Differentiate between the Encoder and the Multiplexer

Unlike a multiplexer that selects one individual data input line and then sends that data to a

single output line or switch, a Digital Encoder more commonly called a Binary Encoder takes

ALL its data inputs one at a time and then converts them into a single encoded outputPriority

Encoder

The Priority Encoder solves the problems mentioned above by allocating a priority level to

each input. The priority encoders output corresponds to the currently active input which has

the highest priority. So when an input with a higher priority is present, all other inputs with a

lower priority will be ignored. The priority encoder comes in many different forms with an

example of an 8-input priority encoder along with its truth table shown below.

8-to-3 Bit Priority Encoder

Priority encoders are available in standard IC form and the TTL 74LS148 is an 8-to-3 bit

priority encoder which has eight active LOW (logic "0") inputs and provides a 3-bit code of

the highest ranked input at its output. Priority encoders output the highest order input first for

example, if input lines "D2", "D3" and "D5" are applied simultaneously the output code

would be for input "D5" ("101") as this has the highest order out of the 3 inputs. Once input

"D5" had been removed the next highest output code would be for input "D3" ("011"), and so

on.

The truth table for a 8-to-3 bit priority encoder is given as:

Digital Inputs Binary Output

D7 D6 D5 D4 D3 D2 D1 D0 Q2 Q1 Q0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 X 0 0 1

0 0 0 0 0 1 X X 0 1 0

148

0 0 0 0 1 X X X 0 1 1

0 0 0 1 X X X X 1 0 0

0 0 1 X X X X X 1 0 1

0 1 X X X X X X 1 1 0

1 X X X X X X X 1 1 1

From this truth table, the Boolean expression for the encoder above with inputs D0 to D7 and

outputs Q0, Q1, Q2 is given as:

Output Q0

Output Q1

Output Q2

Then the final Boolean expression for the priority encoder including the zero inputs is defined

as:

149

In practice these zero inputs would be ignored allowing the implementation of the final

Boolean expression for the outputs of the 8-to-3 priority encoder above to be constructed

using individual OR gates as follows.

Digital Encoder using Logic Gates

Encoder Applications

Keyboard Encoder

Priority encoders can be used to reduce the number of wires needed in a particular circuits or

application that have multiple inputs. For example, assume that a microcomputer needs to

read the 104 keys of a standard QWERTY keyboard where only one key would be pressed

either "HIGH" or "LOW" at any one time. One way would be to connect all 104 wires from

the keys directly to the computer but this would be impractical for a small home PC, but

another better way would be to use a priority encoder. The 104 individual buttons or keys

could be encoded into a standard ASCII code of only 7-bits (0 to 127 decimal) to represent

each key or character of the keyboard and then inputted as a much smaller 7-bit B.C.D code

directly to the computer. Keypad encoders such as the 74C923 20-key encoder are available

to do just that.

Positional Encoders

Another more common application is in magnetic positional control as used on ships or

robots etc. Here the angular or rotary position of a compass is converted into a digital code by

an encoder and inputted to the systems computer to provide navigational data and an example

of a simple 8 position to 3-bit output compass encoder is shown below. Magnets and reed

switches could be used to indicate the compasses angular position.

150

Compass Direction

Binary Output

Q0 Q1 Q2

North 0 0 0

North-East 0 0 1

East 0 1 0

South-East 0 1 1

South 1 0 0

South-West 1 0 1

West 1 1 0

North-West 1 1 1

Interrupt Requests

Other applications especially for Priority Encoders may include detecting interrupts in

microprocessor applications. Here the microprocessor uses interrupts to allow peripheral

devices such as the disk drive, scanner, mouse, or printer etc, to communicate with it, but the

microprocessor can only "talk" to one peripheral device at a time. The processor uses

"Interrupt Requests" or "IRQ" signals to assign priority to the devices to ensure that the most

important peripheral device is serviced first. The order of importance of the devices will

depend upon their connection to the priority encoder.

IRQ Number Typical Use Description

IRQ 0 System timer Internal System Timer.

IRQ 1 Keyboard Keyboard Controller.

151

IRQ 3 COM2 & COM4 Second and Fourth Serial Port.

IRQ 4 COM1 & COM3 First and Third Serial Port.

IRQ 5 Sound Sound Card.

IRQ 6 Floppy disk Floppy Disk Controller.

IRQ 7 Parallel port Parallel Printer.

IRQ 12 Mouse PS/2 Mouse.

IRQ 14 Primary IDE Primary Hard Disk Controller.

IRQ 15 Secondary IDE Secondary Hard Disk Controller.

Because implementing such a system using priority encoders such as the standard 74LS148

priority encoder IC involves additional logic circuits, purpose built integrated circuits such as

the 8259 Programmable Priority Interrupt Controller is available.

SELF ASSESSMENT QUESTION

Identify two applications of the Encoder

The applications include: positional encoder as found in the mouse and also the keyboard

encoder as found in the keyboard

3.3 The Digital Comparator

Another common and very useful combinational logic circuit is that of the Digital

Comparator circuit. Digital or Binary Comparators are made up from standard AND, NOR

and NOT gates that compare the digital signals present at their input terminals and produce

an output depending upon the condition of those inputs. For example, along with being able

to add and subtract binary numbers we need to be able to compare them and determine

whether the value of input A is greater than, smaller than or equal to the value at input B etc.

The digital comparator accomplishes this using several logic gates that operate on the

principles of Boolean algebra. There are two main types of digital comparator available and

these are.

Identity Comparator - an Identity Comparator is a digital comparator that has only one

output terminal for when A = B either "HIGH" A = B = 1 or "LOW" A = B = 0

Magnitude Comparator - a Magnitude Comparator is a type of digital comparator that has

three output terminals, one each for equality, A = B greater than, A > B and less than A < B

The purpose of a Digital Comparator is to compare a set of variables or unknown numbers,

for example A (A1, A2, A3, An, etc) against that of a constant or unknown value such as

B (B1, B2, B3,Bn, etc) and produce an output condition or flag depending upon the result

of the comparison. For example, a magnitude comparator of two 1-bits, (A and B) inputs

would produce the following three output conditions when compared to each other.

152

Which means: A is greater than B, A is equal to B, and A is less than B

This is useful if we want to compare two variables and want to produce an output when any

of the above three conditions are achieved. For example, produce an output from a counter

when a certain count number is reached. Consider the simple 1-bit comparator below.

1-bit Comparator

Then the operation of a 1-bit digital comparator is given in the following Truth Table.

Truth Table

Inputs Outputs

B A A > B A = B A < B

0 0 0 1 0

0 1 1 0 0

1 0 0 0 1

1 1 0 1 0

You may notice two distinct features about the comparator from the above truth table. Firstly,

the circuit does not distinguish between either two "0" or two "1"'s as an output A = B is

produced when they are both equal, either A = B = "0" or A = B = "1". Secondly, the output

condition for A = B resembles that of a commonly available logic gate, the Exclusive-NOR

or Ex-NOR function (equivalence) on each of the n-bits giving: Q = A ⊕ B

Digital comparators actually use Exclusive-NOR gates within their design for comparing

their respective pairs of bits. When we are comparing two binary or BCD values or variables

against each other, we are comparing the "magnitude" of these values, a logic "0" against a

logic "1" which is where the term Magnitude Comparator comes from.

How many outputs does the identity Comparator have?

153

The comparator has only one output

As well as comparing individual bits, we can design larger bit comparators by cascading

together n of these and produce a n-bit comparator just as we did for the n-bit adder in the

previous tutorial. Multi-bit comparators can be constructed to compare whole binary or BCD

words to produce an output if one word is larger, equal to or less than the other. A very good

example of this is the 4-bit Magnitude Comparator. Here, two 4-bit words ("nibbles") are

compared to each other to produce the relevant output with one word connected to inputs A

and the other to be compared against connected to input B as shown below.

3.3.2 4-bit Magnitude Comparator

Some commercially available digital comparators such as the TTL 7485 or CMOS 4063 4-bit

magnitude comparator have additional input terminals that allow more individual

comparators to be "cascaded" together to compare words larger than 4-bits with magnitude

comparators of "n"-bits being produced. These cascading inputs are connected directly to the

corresponding outputs of the previous comparator as shown to compare 8, 16 or even 32-bit

words.

 8-bit Word Comparator

When comparing large binary or BCD numbers like the example above, to save time the

comparator starts by comparing the highest-order bit (MSB) first. If equality exists, A = B

then it compares the next lowest bit and so on until it reaches the lowest-order bit, (LSB). If

equality still exists then the two numbers are defined as being equal. If inequality is found,

either A > B or A < B the relationship between the two numbers is determined and the

comparison between any additional lower order bits stops.

154

Digital Comparatorare used widely in Analogue-to-Digital converters, (ADC) and

Arithmetic Logic Units, (ALU) to perform a variety of arithmetic operations.

5.0 CONCLUSION

This unit takes a look at binary decoder, encoder, and comparator with their types.

6.0 SUMMARY

 You have learnt:

(i). Decoders are widely used in the memory system of computer, where they respond

to the address code input from the CPU to activate the memory storage location

specified by the address code.

(ii). Decoders are also used to convert binary data to a form suitable for displaying on

decimal read outs.

(iii). Decoders can be used to implement combinational circuits, Boolean functions etc.

(iv). decoders can also be used as demultiplexers.

Digital Encoder is a combinational circuit that generates a specific code at its outputs

such as binary or BCD in response to one or more active inputs

There are two main types of digital encoder. The Binary Encoder and the Priority

Encoder.

The Binary Encoder converts one of 2n inputs into an n-bit output. Then a binary

encoder has fewer output bits than the input code.

Binary encoders are useful for compressing data and can be constructed from simple

AND or OR gates. One of the main disadvantages of a standard binary encoder is that

it would produce an error at its outputs if more than one input were active at the same

time. To overcome this problem priority encoders were developed.

The Priority Encoder is another type of combinational circuit similar to a binary

encoder, except that it generates an output code based on the highest prioritised input.

Priority encoders are used extensively in digital and computer systems as

microprocessor interrupt controllers where they detect the highest priority input.

A magnitude comparator is a combinational circuit that compares two numbers A &B

to determine whether:A B, orA = B, or A B

TUTOR MARK ASSIGNMENT

1. Implement full adder with a decoder.

2. What is an encoder? Draw the logic circuit of Decimal to BCD encoder and explain

its working.

3. Design a BCD to seven segment decoder that accepts a decimal digit in BCS and

generates the appropriate output for segments in display indicator

155

7.0 REFERENCES/FURTHER READING

Ronald J. T. & Neal S., (2001). Widmer Digital Systems: Principle and Applications

(8th Ed.) Prentice Hall,

Thomas L F., (2006). Digital Fundamentals (9th Ed.). Prentice Hall.

Morris M. & Charles R. K. (2004) Logic and Computer Design Fundamentals.

(2004) NJPrentice Hall

Wakerly J.F. (2000). Digital Design: Principles and Practices (3rd Ed.) Upper Saddle

River NJ; Prentice

http://www.circuitstoday.com/half-adder-and-full-adder

http://www.electronics-tutorials.ws/combination/comb_5.html

http://www.electronics-tutorials.ws/combination/comb_8.html

http://www.circuitstoday.com/half-adder-and-full-adder
http://www.electronics-tutorials.ws/combination/comb_5.html
http://www.electronics-tutorials.ws/combination/comb_8.html

156

MODULE 4

157

UNIT 1

SEQUENTIAL LOGIC BASICS: LATCHES AND FLIP FLOP

CONTENT

1.0 INTRODUCTION

2.0 OBJECTIVES

3.0 MAIN CONTENT

3.1 Sequential Logic circuits

3.2 Flip flop

4.0 CONCLUSION

5.0 SUMMARY

6.0 TUTOR-MARKED ASSIGNMENT

7.0 REFERENCES/FURTHER READING

1.0 INTRODUCTION

 This module begins a study of the fundamentals of sequential logic. Bistable,

monostable, and astable logic devices called multivibrators are covered. Two categories of

bistable devices are the latch and the flip-flop. Bistable devices have two stable states, called

SET and RESET; they can retain either of these states indefinitely, making them useful as

storage devices. The basic difference between latches and flip-flops is the way in which they

are changed from one state to the other. The flip-flop is a basic building block for counters,

registers, and other sequential control logic and is used in certain types of memories. The

monostablemultivibrator, commonly known as the one-shot, has only one stable state. A one-

shot produces a single controlled-width pulse when activated or triggered. The

astablemultivibrator has no stable state and is used primarily as an oscillator, which is a self-

sustained waveform generator. Pulse oscillators are used as the sources for timing waveforms

in digital systems.

2.0 OBJECTIVES

At the end of this unit you should be able to

Understand the meaning of sequential logic circuits

Be able to differentiate between sequential and combibatioal logic circuits

Use logic gates to construct basic latches

Explain the difference between an S-R latch and a D latch

158

Recognize the difference between a latch and a flip-flop

Explain how S-R. D, and J-K flip-flops differ

Understand the significance of propagation delays, set-up time, hold time, maximum

operating frequency, minimum clock pulse widths, and power dissipation in the

application of flip-flops

Apply flip-flops in basic applications

3.0 MAIN CONTENT

3.1 Sequential Logic Circuits

Unlike Combinational Logic circuits that change state depending upon the actual signals

being applied to their inputs at that time, Sequential Logic circuits have some form of

inherent "Memory" built in to them as they are able to take into account their previous input

state as well as those actually present, a sort of "before" and "after" is involved with

sequential circuits.

In other words, the output state of a sequential logic circuit is a function of the following

three states, the "present input", the "past input" and/or the "past output". Sequential Logic

circuits remember these conditions and stay fixed in their current state until the next clock

signal changes one of the states, giving sequential logic circuits "Memory".

Sequential logic circuits are generally termed as two state or Bistable devices which can have

their output or outputs set in one of two basic states, a logic level "1" or a logic level "0" and

will remain "latched" (hence the name latch) indefinitely in this current state or condition

until some other input trigger pulse or signal is applied which will cause the bistable to

change its state once again.

What is the basic difference between the Combinational and the Sequential Logic Circuit?

The fundamental difference is the fact that the sequential Logic circuit has some form of

inherent memory while the combinational Logic circuit does not have.

Sequential Logic Representation

 The word "Sequential" means that things happen in a "sequence", one after another

and in Sequential Logic circuits, the actual clock signal determines when things will happen

next. Simple sequential logic circuits can be constructed from standard Bistable circuits such

as Flip-flops, Latches and Counters and which themselves can be made by simply connecting

together universal NAND Gates and/or NOR Gates in a particular combinational way to

produce the required sequential circuit.

http://www.electronics-tutorials.ws/combination/comb_1.html
http://www.electronics-tutorials.ws/waveforms/bistable.html
http://www.electronics-tutorials.ws/logic/logic_5.html
http://www.electronics-tutorials.ws/logic/logic_5.html

159

Classification of Sequential Logic

As standard logic gates are the building blocks of combinational circuits, bistable latches and

flip-flops are the building blocks of Sequential Logic Circuits. Sequential logic circuits can

be constructed to produce either simple edge-triggered flip-flops or more complex sequential

circuits such as storage registers, shift registers, memory devices or counters. Either way

sequential logic circuits can be divided into the following three main categories:

1. Event Driven - asynchronous circuits that change state immediately when enabled.

2. Clock Driven - synchronous circuits that are synchronised to a specific clock signal.

3. Pulse Driven - which is a combination of the two that responds to triggering pulses.

As well as the two logic states mentioned above logic level "1" and logic level "0", a third

element is introduced that separates sequential logic circuits from their combinational logic

counterparts, namely TIME. Sequential logic circuits that return back to their original state

once reset, i.e. circuits with loops or feedback paths are said to be "cyclic" in nature.

We now know that in sequential circuits changes occur only on the application of a clock

signal making it synchronous, otherwise the circuit is asynchronous and depends upon an

external input. To retain their current state, sequential circuits rely on feedback and this

occurs when a fraction of the output is fed back to the input and this is demonstrated as

160

Identify the various classes of the sequential Logic Circuit.

The various classes includes;

1. Event Driven - asynchronous circuits that change state immediately when enabled.

2. Clock Driven - synchronous circuits that are synchronised to a specific clock signal.

3. Pulse Driven - which is a combination of the two that responds to triggering pulses.

Sequential Feedback Loop

The two inverters or NOT gates are connected in series with the output at Q fed back to the

input. Unfortunately, this configuration never changes state because the output will always be

the same, either a "1" or a "0", it is permanently set. However, we can see how feedback

works by examining the most basic sequential logic components, called the SR flip-flop.

LATCHES

 The latch is a type of temporary storage device that has two stable states (bistable)

and is normally placed in a category separate from that of flip-flops. Latches are similar to

flip-flops because they are bistable devices that can reside in either of two states using a

feedback arrangement, in which the outputs are connected back to the opposite inputs. The

main difference between latches and flip-flops is in the method used for changing their state.

3.2 SR Flip-Flop

The SR flip-flop, also known as a SR Latch, can be considered as one of the most basic

sequential logic circuit possible. This simple flip-flop is basically a one-bit memory bistable

device that has two inputs, one which will "SET" the device (meaning the output = "1"), and

is labelled S and another which will "RESET" the device (meaning the output = "0"), labelled

R. Then the SR description stands for "Set-Reset". The reset input resets the flip-flop back to

its original state with an output Q that will be either at a logic level "1" or logic "0"

depending upon this set/reset condition.

A basic NAND gate SR flip-flop circuit provides feedback from both of its outputs back to its

opposing inputs and is commonly used in memory circuits to store a single data bit. Then the

SR flip-flop actually has three inputs, Set, Reset and its current output Q relating to it's

current state or history. The term "Flip-flop" relates to the actual operation of the device, as it

can be "flipped" into one logic Set state or "flopped" back into the opposing logic Reset state.

161

What is the main difference between Latches and Flip Flops

The main difference between latches and flip-flops is in the method used for changing their

state.

The NAND Gate SR Flip-Flop

The simplest way to make any basic single bit set-reset SR flip-flop is to connect together a

pair of cross-coupled 2-input NAND gates as shown, to form a Set-Reset Bistable also known

as an active LOW SR NAND Gate Latch, so that there is feedback from each output to one of

the other NAND gate inputs. This device consists of two inputs, one called the Set, S and the

other called the Reset, R with two corresponding outputs Q and its inverse or complement Q

(not-Q) as shown below.

The Basic SR Flip-flop

The Set State

Consider the circuit shown above. If the input R is at logic level "0" (R = 0) and input S is at

logic level "1" (S = 1), the NAND gate Y has at least one of its inputs at logic "0" therefore,

its output Q must be at a logic level "1" (NAND Gate principles). Output Q is also fed back

to input "A" and so both inputs to NAND gate X are at logic level "1", and therefore its

output Q must be at logic level "0". Again NAND gate principals. If the reset input R changes

state, and goes HIGH to logic "1" with S remaining HIGH also at logic level "1", NAND gate

Y inputs are now R = "1" and B = "0". Since one of its inputs is still at logic level "0" the

output at Q still remains HIGH at logic level "1" and there is no change of state. Therefore,

the flip-flop circuit is said to be "Latched" or "Set" with Q = "1" and Q = "0".

Reset State

In this second stable state, Q is at logic level "0", (not Q = "0") its inverse output at Q is at

logic level "1", (Q = "1"), and is given by R = "1" and S = "0". As gate X has one of its inputs

at logic "0" its output Q must equal logic level "1" (again NAND gate principles). Output Q

is fed back to input "B", so both inputs to NAND gate Y are at logic "1", therefore, Q = "0". If

162

the set input, S now changes state to logic "1" with input R remaining at logic "1", output Q

still remains LOW at logic level "0" and there is no change of state. Therefore, the flip-flop

circuits "Reset" state has also been latched and we can define this "set/reset" action in the

following truth table.

Truth Table for this Set-Reset Function

State S R Q Q Description

Set

1 0 1 0 Set Q » 1

1 1 1 0 no change

Reset

0 1 0 1 Reset Q » 0

1 1 0 1 no change

Invalid

0 0 0 1 memory with Q = 0

0 0 1 0 memory with Q = 1

It can be seen that when both inputs S = "1" and R = "1" the outputs Q and Q can be at either

logic level "1" or "0", depending upon the state of inputs S or R BEFORE this input condition

existed. However, input state R = "0" and S = "0" is an undesirable or invalid condition and

must be avoided because this will give both outputs Q and Q to be at logic level "1" at the

same time and we would normally want Q to be the inverse of Q. However, if the two inputs

are now switched HIGH again after this condition to logic "1", both the outputs will go LOW

resulting in the flip-flop becoming unstable and switch to an unknown data state based upon

the unbalance. This unbalance can cause one of the outputs to switch faster than the other

resulting in the flip-flop switching to one state or the other which may not be the required

state and data corruption will exist. This unstable condition is known as its Meta-stable state.

Then, a bistable SR flip-flop or SR latch is activated or set by a logic "1" applied to its S

input and deactivated or reset by a logic "1" applied to its R. The SR flip-flop is said to be in

an "invalid" condition (Meta-stable) if both the set and reset inputs are activated

simultaneously.

The NOR gate SR Flip-flop

As well as using NAND gates, it is also possible to construct simple one-bit SR Flip-flops

using two cross-coupled NOR gates connected in the same configuration. The circuit will

work in a similar way to the NAND gate circuit above, except that the inputs are active HIGH

and the invalid condition exists when both its inputs are at logic level "1", and this is shown

below.

163

Gated or Clocked SR Flip-Flop

It is sometimes desirable in sequential logic circuits to have a bistable SR flip-flop that only

changes state when certain conditions are met regardless of the condition of either the Set or

the Reset inputs. By connecting a 2-input AND gate in series with each input terminal of the

SR Flip-flop a Gated SR Flip-flop can be created. This extra conditional input is called an

"Enable" input and is given the prefix of "EN". The addition of this input means that the

output at Q only changes state when it is HIGH and can therefore be used as a clock (CLK)

input making it level-sensitive as shown below.

Gated SR Flip-flop

When the Enable input "EN" is at logic level "0", the outputs of the two AND gates are also

at logic level "0", (AND Gate principles) regardless of the condition of the two inputs S and

R, latching the two outputs Q and Q into their last known state. When the enable input "EN"

changes to logic level "1" the circuit responds as a normal SR bistable flip-flop with the two

AND gates becoming transparent to the Set and Reset signals. This enable input can also be

connected to a clock timing signal adding clock synchronisation to the flip-flop creating what

is sometimes called a "Clocked SR Flip-flop". So a Gated Bistable SR Flip-flop operates as

a standard bistable latch but the outputs are only activated when a logic "1" is applied to its

EN input and deactivated by a logic "0".

Identify the basic Problems with the SR Flip Flops

The basic problem of the SR Flip Flops are number one, the S = 0 and R = 0 condition or

S = R = 0 must always be avoided, and number two, if S or R change state while the enable

input is high the correct latching action may not occur

164

The JK Flip-flop

JK Flip-flopis named after its inventor, Jack Kilby. The JK flip-flop is the most widely used

of all the flip-flop designs as it is considered to be a universal device.From the previous

lessonsl we now know that the basic gated SR NAND flip-flop suffers from two basic

problems: number one, the S = 0 and R = 0 condition or S = R = 0 must always be avoided,

and number two, if S or R change state while the enable input is high the correct latching

action may not occur. Then to overcome these two fundamental design problems with the SR

flip-flop, the JK flip-Flop was developed.

This simple JK flip-Flop is the most widely used of all the flip-flop designs and is

considered to be a universal flip-flop circuit. The sequential operation of the JK flip-flop is

exactly the same as for the previous SR flip-flop with the same "set" and "reset" inputs. The

difference this time is that the JK flip-flop has no invalid or forbidden input states of the SR

Latch (when S and R are both 1).

The JK flip-flop is basically a gated SR flip-flop with the addition of a clock input circuitry

that prevents the illegal or invalid output condition that can occur when both inputs S and R

are equal to logic level "1". Due to this additional clocked input, a JK flip-flop has four

possible input combinations, "logic 1", "logic 0", "no change" and "toggle". The symbol for a

JK flip-flop is similar to that of an SR Bistable Latch as seen in the previous tutorial except

for the addition of a clock input.

The Basic JK Flip-flop

Both the S and the R inputs of the previous SR bistable have now been replaced by two

inputs called the J and K inputs, respectively after its inventor Jack Kilby. Then this equates

to: J = S and K = R.

The two 2-input AND gates of the gated SR bistable have now been replaced by two 3-input

NAND gates with the third input of each gate connected to the outputs at Q and Q. This cross

coupling of the SR flip-flop allows the previously invalid condition of S = "1" and R = "1"

state to be used to produce a "toggle action" as the two inputs are now interlocked. If the

circuit is "SET" the J input is inhibited by the "0" status of Q through the lower NAND gate.

If the circuit is "RESET" the K input is inhibited by the "0" status of Q through the upper

NAND gate. As Q and Q are always different we can use them to control the input. When

both inputs J and K are equal to logic "1", the JK flip-flop toggles as shown in the following

truth table.

http://www.electronics-tutorials.ws/sequential/seq_2.html
http://www.electronics-tutorials.ws/sequential/seq_1.html

165

The Truth Table for the JK Function

same as

for the

SR Latch

Input Output

Description

J K Q Q

0 0 0 0
Memory

no change
0 0 0 1

0 1 1 0

Reset Q » 0

0 1 0 1

1 0 0 1

Set Q » 1

1 0 1 0

toggle

action

1 1 0 1

Toggle

1 1 1 0

Then the JK flip-flop is basically an SR flip-flop with feedback which enables only one of its

two input terminals, either SET or RESET to be active at any one time thereby eliminating

the invalid condition seen previously in the SR flip-flop circuit. Also when both the J and the

K inputs are at logic level "1" at the same time, and the clock input is pulsed either "HIGH",

the circuit will "toggle" from its SET state to a RESET state, or visa-versa. This results in the

JK flip-flop acting more like a T-type toggle flip-flop when both terminals are "HIGH".

Although this circuit is an improvement on the clocked SR flip-flop it still suffers from

timing problems called "race" if the output Q changes state before the timing pulse of the

clock input has time to go "OFF". To avoid this the timing pulse period (T) must be kept as

short as possible (high frequency).

 As this is sometimes not possible with modern TTL IC's the much improved Master-Slave

JK Flip-flop was developed. This eliminates all the timing problems by using two SR flip-

flops connected together in series, one for the "Master" circuit, which triggers on the leading

edge of the clock pulse and the other, the "Slave" circuit, which triggers on the falling edge of

the clock pulse. This results in the two sections, the master section and the slave section being

enabled during opposite half-cycles of the clock signal.

The 74LS73 is a Dual JK flip-flop IC, which contains two individual JK type bistable's within

a single chip enabling single or master-slave toggle flip-flops to be made. Other JK flip-flop

IC's include the 74LS107 Dual JK flip-flop with clear, the 74LS109 Dual positive-edge

triggered JK flip-flop and the 74LS112 Dual negative-edge triggered flip-flop with both

preset and clear inputs.

166

Dual JK Flip-flop 74LS73

The Master-Slave JK Flip-flop

The Master-Slave Flip-Flop is basically two gated SR flip-flops connected together in a

series configuration with the slave having an inverted clock pulse. The outputs from Q and Q

from the "Slave" flip-flop are fed back to the inputs of the "Master" with the outputs of the

"Master" flip-flop being connected to the two inputs of the "Slave" flip-flop. This feedback

configuration from the slave's output to the master's input gives the characteristic toggle of

the JK flip-flop as shown below.

The input signals J and K are connected to the gated "master" SR flip-flop which "locks" the

input condition while the clock (Clk) input is "HIGH" at logic level "1". As the clock input of

the "slave" flip-flop is the inverse (complement) of the "master" clock input, the "slave" SR

flip-flop does not toggle. The outputs from the "master" flip-flop are only "seen" by the gated

"slave" flip-flop when the clock input goes "LOW" to logic level "0". When the clock is

"LOW", the outputs from the "master" flip-flop are latched and any additional changes to its

inputs are ignored. The gated "slave" flip-flop now responds to the state of its inputs passed

over by the "master" section. Then on the "Low-to-High" transition of the clock pulse the

167

inputs of the "master" flip-flop are fed through to the gated inputs of the "slave" flip-flop and

on the "High-to-Low" transition the same inputs are reflected on the output of the "slave"

making this type of flip-flop edge or pulse-triggered.

Then, the circuit accepts input data when the clock signal is "HIGH", and passes the data to

the output on the falling-edge of the clock signal. In other words, the Master-Slave JK Flip-

flop is a "Synchronous" device as it only passes data with the timing of the clock signal.

The D flip-flop

One of the main disadvantages of the basic SR NAND Gatebistable circuit is that the

indeterminate input condition of "SET" = logic "0" and "RESET" = logic "0" is forbidden.

This state will force both outputs to be at logic "1", over-riding the feedback latching action

and whichever input goes to logic level "1" first will lose control, while the other input still at

logic "0" controls the resulting state of the latch. In order to prevent this from happening an

inverter can be connected between the "SET" and the "RESET" inputs to produce another

type of flip-flop circuit called a Data Latch, Delay flip-flop, D-type Bistable or simply a D-

type flip-flop as it is more generally called.

The D flip-flop is by far the most important of the clocked flip-flops as it ensures that ensures

that inputs S and R are never equal to one at the same time. D-type flip-flops are constructed

from a gated SR flip-flop with an inverter added between the S and the R inputs to allow for a

single D (data) input. This single data input D is used in place of the "set" signal, and the

inverter is used to generate the complementary "reset" input thereby making a level-sensitive

D-type flip-flop from a level-sensitive RS-latch as now S = D and R = not D as shown.

D flip-flop Circuit

We remember that a simple SR flip-flop requires two inputs, one to "SET" the output and one

to "RESET" the output. By connecting an inverter (NOT gate) to the SR flip-flop we can

"SET" and "RESET" the flip-flop using just one input as now the two input signals are

complements of each other. This complement avoids the ambiguity inherent in the SR latch

when both inputs are LOW, since that state is no longer possible.

Thus the single input is called the "DATA" input. If this data input is HIGH the flip-flop

would be "SET" and when it is LOW the flip-flop would be "RESET". However, this would

be rather pointless since the flip-flop's output would always change on every data input. To

http://www.electronics-tutorials.ws/sequential/seq_1.html

168

avoid this an additional input called the "CLOCK" or "ENABLE" input is used to isolate the

data input from the flip-flop after the desired data has been stored. The effect is that D is only

copied to the output Q when the clock is active. This then forms the basis of a D flip-flop.

The D flip-flop will store and output whatever logic level is applied to its data terminal so

long as the clock input is HIGH. Once the clock input goes LOW the "set" and "reset" inputs

of the flip-flop are both held at logic level "1" so it will not change state and store whatever

data was present on its output before the clock transition occurred. In other words the output

is "latched" at either logic "0" or logic "1".

Truth Table for the D Flip-flop

Clk D Q Q Description

↓ » 0 X Q Q
Memory

no change

↑ » 1 0 0 1 Reset Q » 0

↑ » 1 1 1 0 Set Q » 1

Note: ↓ and ↑ indicates direction of clock pulse as it is assumed D flip-flops are edge

triggered

The Master-Slave D Flip-flop

The basic D flip-flop can be improved further by adding a second SR flip-flop to its output

that is activated on the complementary clock signal to produce a "Master-Slave D flip-flop".

On the leading edge of the clock signal (LOW-to-HIGH) the first stage, the "master" latches

the input condition at D, while the output stage is deactivated. On the trailing edge of the

clock signal (HIGH-to-LOW) the second "slave" stage is now activated, latching on to the

output from the first master circuit. Then the output stage appears to be triggered on the

negative edge of the clock pulse. "Master-Slave D flip-flops" can be constructed by the

cascading together of two latches with opposite clock phases as shown.

Master-Slave D flip-flop Circuit

169

We can see from above that on the leading edge of the clock pulse the master flip-flop will be

loading data from the data D input, therefore the master is "ON". With the trailing edge of the

clock pulse the slave flip-flop is loading data, i.e. the slave is "ON". Then there will always

be one flip-flop "ON" and the other "OFF" but never both the master and slave "ON" at the

same time. Therefore, the output Q acquires the value of D, only when one complete pulse,

i.e. 0-1-0 is applied to the clock input.

There are many different D flip-flop IC's available in both TTL and CMOS packages with the

more common being the 74LS74 which is a Dual D flip-flop IC, which contains two

individual D type bistable's within a single chip enabling single or master-slave toggle flip-

flops to be made. Other D flip-flop IC's include the 74LS174 HEX D flip-flop with direct

clear input, the 74LS175 Quad D flip-flop with complementary outputs and the 74LS273

Octal D flip-flop containing eight D flip-flops with a clear input in one single package.

4.0 CONCLUSION

In this unit various types of sequential logic circuits were discussed. These include flip flop

and latches.

5.0 SUMMARY

 You have learnt that:

Latches are bistable devices whose state normally depends on asynchronous inputs

and is a bistable digital circuit used for storing a bit

A latch is a level sensitive device. 􀁿 Because of this the state of the latch may keep

changing in circuits with feedback as long as the clock pulse remains active.

Thus, instead of having output change once in a clock cycle, the output may change a

number of times resulting in latching of unwanted input to the output. Due to this

uncertainty, latches can not be reliably used as storage elements.

To overcome this problem of undesired toggling, we need to have a mechanism in

which we have higher degree of control on the output of the memory element when

the clock pulse changes. This is achieved by introducing a special clock-edge

detection logic, such that the state of the memory element is switched by a momentary

change in the clock pulse (i.e. an edge). This is effective because the clock changes

170

only once during a clock period. Such a memory element is "edge-sensitive", i.e., it

changes its state at the rising or falling edge of a clock. Edge-sensitive memory

elements are called Flip-Flops

Edge-triggered flip-flops are bistable devices with synchronous inputs whose state

depends on the inputs only at the triggering transition of a clock pulse. Changes in the

outputs occur at the triggering transition of the clock.

D flip-flop is a type of bistablemultivibrator in which the output assumes the state of

the D input on the triggering edge of a clock pulse.

Edge-triggered flip-flop is a type of flip-flop in which the data are entered and appear

on the output on the same clock edge.

Setup time (T
s
) refers to a constant duration for which the inputs must be held prior

to the arrival of the clock transition

(i). Hold time(T
h

)is the time interval required for the control levels to remain on the

inputs to a flip-flop after the triggering edge of the clock in order to reliably activate

the device.

J-K flip-flop is a type of flip-flop that can operate in the SET. RESET. no-change, and

toggle modes.

SELF ASSESSMENT QUESTION

1. What is a flip-flop? What is the difference between a latch and a flip-flop? List out the

application of flip-flop

6.0 TUTOR-MARKED ASSIGNMENT

1. Give the truth table of S-R and D-flipflops. Convert the given S-R flipflop to a D-flipflop

2. What is a flip-flop? Write the truth table for a clocked J-K flip-flop that is triggered by the

positive-going edge of the clock signal.

3. With relevant diagram explain the working of master-slave JK flip flop

7.0 REFERENCES/FURTHER READING

Ronald J. T. & Neal S., (2001). Widmer Digital Systems: Principle and Applications

(8th Ed.) Prentice Hall,

Thomas L F., (2006). Digital Fundamentals (9th Ed.). Prentice Hall.

Morris M. & Charles R. K. (2004) Logic and Computer Design Fundamentals.

(2004) NJPrentice Hall

Wakerly J.F. (2000). Digital Design: Principles and Practices (3rd Ed.) Upper Saddle

River NJ; Prentice

www.doc.ic.ac.uk/~dfg/hardware/HardwareLecture03.pd

www.doc.ic.ac.uk/~dfg/hardware/HardwareHandout02.pdf

http://www.doc.ic.ac.uk/~dfg/hardware/HardwareLecture03.pd
http://www.doc.ic.ac.uk/~dfg/hardware/HardwareHandout02.pdf

171

www.itee.uq.edu.au/~engg1030/lectures/1perpage/lect14.pdf

http://www.indiabix.com/digital-electronics/combinational-logic-circuits/116006

http://www.itee.uq.edu.au/~engg1030/lectures/1perpage/lect14.pdf
http://www.indiabix.com/digital-electronics/combinational-logic-circuits/116006

172

UNIT 2

MULTIVIBRATOR

CONTENT

1.0 INTRODUCTION

2.0 OBJECTIVES

3.0 MAIN CONTENT

3.1 Multivibrator

3.2 Monostable circuits

3.3 Astable circuits

3.4 Bistable circuits

4.0 CONCLUSION

5.0 SUMMARY

6.0 TUTOR-MARKED ASSIGNMENT

7.0 REFERENCES/FURTHER READING

1.0 INTRODUCTION

This unit introduces multivibrator which is a class of digital circuits.

2.0 OBJECTIVES

At the end of this unit you should be able to:

Expalin the meaning of multivibrators

List the different types of multivibrators

Describe each type and give example

3.0 MAIN CONTENT

173

3.1 Multivibrators

Individual Sequential Logic circuits can be used to build more complex circuits such as

Multivibrators, Counters, Shift Registers, Latches and Memories etc, but for these types of

circuits to operate in a "sequential" way, they require the addition of a clock pulse or timing

signal to cause them to change their state. Clock pulses are generally continuous square or

rectangular shaped waveform that is produced by a single pulse generator circuit such as a

Multivibrator.

Multivibrator is a class of digital circuits in which the output is connected back to the input

(an arrangement called feedback) to produce either two stable states, one stable state, or no

stable states, depending on the configuration.

They are used as waveform generators to produce the clock signals to switch sequential

circuits.Thismultivibrator circuit oscillates between a "HIGH" state and a "LOW" state

producing a continuous output. Astablemultivibrators generally have an even 50% duty cycle,

that is that 50% of the cycle time the output is "HIGH" and the remaining 50% of the cycle

time the output is "OFF". In other words, the duty cycle for an astable timing pulse is 1:1.

What are Multivibrators used to produce?

Multivibrators are used to as pulse generators to produce continuous square or rectangular

shaped waveform.

Sequential logic circuits that use the clock signal for synchronization are dependant upon the

frequency and and clock pulse width to activate there switching action. Sequential circuits

may also change their state on either the rising or falling edge, or both of the actual clock

signal as we have seen previously with the basic flip-flop circuits. The following lists are

terms associated with a timing pulse or waveform.

Active HIGH - if the state changes occur at the

clock's rising edge or during the clock width.

Clock Signal Waveform

Active LOW - if the state changes occur at the

clock's falling edge.

Duty Cycle - is the ratio of clock width and

clock period.

Clock Width - this is the time during which the value of the clock signal is equal to one.

Clock Period - this is the time between successive transitions in the same direction, i.e.,

174

between two rising or two falling edges.

Clock Frequency - the clock frequency is the reciprocal of the clock period, frequency =

1/clock period

Clock pulse generation circuits can be a combination of analogue and digital circuits that

produce a continuous series of pulses (these are called astablemultivibrators) or a pulse of a

specific duration (these are called monostablemultivibrators). Combining two or more of

multivibrators provides generation of a desired pattern of pulses (including pulse width, time

between pulses and frequency of pulses).

There are basically three types of clock pulse generation circuits:

Astable - A free-running multivibrator that has NO stable states but switches continuously

between two states this action produces a train of square wave pulses at a fixed frequency.

Monostable - A one-shot multivibrator that has only ONE stable state and is triggered

externally with it returning back to its first stable state.

Bistable - A flip-flop that has TWO stable states that produces a single pulse either positive

or negative in value.

One way of producing a very simple clock signal is by the interconnection of logic gates. As

NAND gates contains amplification, they can also be used to provide a clock signal or timing

pulse with the aid of a single Capacitor, C and Resistor, R which provide the feedback and

timing function. These timing circuits are often used because of there simplicity and are also

useful if a logic circuit is designed that has un-used gates which can be utilised to create the

monostable or astable oscillator. This simple type of RC Oscillator network is sometimes

called a "Relaxation Oscillator".

3.2 Monostable Circuits.

MonostableMultivibrators or "one-shot" pulse generators are used to convert short sharp

pulses into wider ones for timing applications. Monostablemultivibrators generate a single

output pulse, either "high" or "low", when a suitable external trigger signal or pulse T is

applied. This trigger pulse signal initiates a timing cycle which causes the output of the

monostable to change state at the start of the timing cycle, (t1) and remain in this second state

until the end of the timing period, (t1) which is determined by the time constant of the timing

capacitor, CT and the resistor, RT.

The monostablemultivibrator now stays in this second timing state until the end of the RC

time constant and automatically resets or returns itself back to its original (stable) state. Then,

a monostable circuit has only one stable state. A more common name for this type of circuit

is simply a "Flip-Flop" as it can be made from two cross-coupled NAND gates (or NOR

gates) as we have seen previously. Consider the circuit below.

Simple NAND Gate Monostable Circuit

http://www.electronics-tutorials.ws/capacitor/cap_1.html
http://www.electronics-tutorials.ws/resistor/res_1.html

175

Suppose that initially the trigger input T is held HIGH at logic level "1" by the resistor R1 so

that the output from the first NAND gate U1 is LOW at logic level "0", (NAND gate

principals). The timing resistor, RT is connected to a voltage level equal to logic level "0",

which will cause the capacitor, CT to be discharged. The output of U1 is LOW, timing

capacitor CT is completely discharged therefore junction V1 is also equal to "0" resulting in

the output from the second NAND gate U2, which is connected as an inverting NOT gate will

therefore be HIGH.

Monostablemultivibrators are also known as ________?

MonostableMultivibrators are also known as one shot Timer

The output from the second NAND gate, (U2) is fed back to one input of U1 to provide the

necessary positive feedback. Since the junction V1 and the output of U1 are both at logic "0"

no current flows in the capacitor CT. This results in the circuit being Stable and it will remain

in this state until the trigger input T changes.

If a negative pulse is now applied either externally or by the action of the push-button to the

trigger input of the NAND gate U1, the output of U1 will go HIGH to logic "1" (NAND gate

principles). Since the voltage across the capacitor cannot change instantaneously (capacitor

charging principals) this will cause the junction at V1 and also the input to U2 to also go

HIGH, which inturn will make the output of the NAND gate U2 change LOW to logic "0"

The circuit will now remain in this second state even if the trigger input pulse T is removed.

This is known as the Meta-stable state.

The voltage across the capacitor will now increase as the capacitor CT starts to charge up

from the output of U1 at a time constant determined by the resistor/capacitor combination.

This charging process continues until the charging current is unable to hold the input of U2

and therefore junction V1 HIGH. When this happens, the output of U2 switches HIGH again,

logic "1", which inturn causes the output of U1 to go LOW and the capacitor discharges into

the output of U1 under the influence of resistor RT. The circuit has now switched back to its

original stable state.

Thus for each negative going trigger pulse, the monostablemultivibrator circuit produces a

LOW going output pulse. The length of the output time period is determined by the

176

capacitor/resistor combination (RC Network) and is given as the Time Constant

T = 0.69RC of the circuit in seconds. Since the input impedance of the NAND gates is very

high, large timing periods can be achieved.

As well as the NAND gate monostable type circuit above, it is also possible to build simple

monostable timing circuits that start their timing sequence from the rising-edge of the trigger

pulse using NOT gates, NAND gates and NOR gates connected as inverters as shown below.

NOT Gate Monostable Circuit

As with the NAND gate circuit above, initially the trigger input T is HIGH at a logic level "1"

so that the output from the first NOT gate U1 is LOW at logic level "0". The timing resistor,

RT and the capacitor, CT are connected together in parallel and also to the input of the second

NOT gate U2. As the input to U2 is LOW at logic "0" its output at Q is HIGH at logic "1".

When a logic level "0" pulse is applied to the trigger input T of the first NOT gate it changes

state and produces a logic level "1" output. The diode D1 passes this logic "1" voltage level

to the RC timing network. The voltage across the capacitor, CT increases rapidly to this new

voltage level, which is also connected to the input of the second NOT gate. This inturn

outputs a logic "0" at Q and the circuit stays in this Meta-stable state as long as the trigger

input T applied to the circuit remains LOW.

When the trigger signal returns HIGH, the output from the first NOT gate goes LOW to logic

"0" (NOT gate principals) and the fully charged capacitor, CT starts to discharge itself

through the parallel resistor, RT connected across it. When the voltage across the capacitor

drops below the lower threshold value of the input to the second NOT gate, its output

switches back again producing a logic level "1" at Q. The diode D1 prevents the timing

capacitor from discharging itself back through the first NOT gates output.

Then, the Time Constant for a NOT gate MonostableMultivibrator is given as

T = 0.8RC + Trigger in seconds.

One main disadvantage of MonostableMultivibrators is that the time between the

application of the next trigger pulse T has to be greater than the RC time constant of the

circuit.

http://www.electronics-tutorials.ws/rc/rc_1.html

177

What are the basic three types of clock pulse generation circuits?

Astable - A free-running multivibrator that has NO stable states but switches continuously

between two states this action produces a train of square wave pulses at a fixed frequency.

Monostable - A one-shot multivibrator that has only ONE stable state and is triggered

externally with it returning back to its first stable state.

Bistable - A flip-flop that has TWO stable states that produces a single pulse either positive

or negative in value.

3.3 Astable Circuits.

AstableMultivibrators are a type of free running oscillator that have no permanent "meta" or

"steady" state but are continually changing there output from one state ("LOW") to the other

state ("HIGH") and then back again. This continual switching action from "HIGH" to "LOW"

and "LOW" to "HIGH" produces a continuous and stable square wave output that switches

abruptly between the two logic levels making it ideal for timing and clock pulse applications.

As with the monostablemultivibrator circuit above, the timing cycle is determined by the time

constant of the resistor-capacitor, RC Network. Then the output frequency can be varied by

changing the value(s) of the resistors and capacitor in the circuit.

NAND Gate AstableMultivibrators

The astablemultivibrator circuit uses two CMOS NOT gates such as the CD4069 or the

74HC04 hex inverter ICs, or as in our simple circuit below a pair of CMOS NAND such as

the CD4011 or the 74LS132 and an RC timing network. The two NAND gates are connected

as inverting NOT gates.

Suppose that initially the output from the NAND gate U2 is HIGH at logic level "1", then the

input must therefore be LOW at logic level "0" (NAND gate principles) as will be the output

from the first NAND gate U1. Capacitor, C is connected between the output of the second

NAND gate U2 and its input via the timing resistor, R2. The capacitor now charges up at a

rate determined by the time constant of R2 and C.

As the capacitor, C charges up, the junction between the resistor R2 and the capacitor, C,

which is also connected to the input of the NAND gate U1 via the stabilizing resistor, R2

decreases until the lower threshold value of U1 is reached at which point U1 changes state

http://www.electronics-tutorials.ws/rc/rc_1.html

178

and the output of U1 now becomes HIGH. This causes NAND gate U2 to also change state as

its input has now changed from logic "0" to logic "1" resulting in the output of NAND gate

U2 becoming LOW, logic level "0".

Capacitor C is now reverse biased and discharges itself through the input of NAND gate U1.

Capacitor, C charges up again in the opposite direction determined by the time constant of

both R2 and C as before until it reaches the upper threshold value of NAND gate U1. This

causes U1 to change state and the cycle repeats itself over again.

Then, the time constant for a NAND gate AstableMultivibrator is given as T = 2.2RC in

seconds with the output frequency given as f = 1/T.

For example: if resistor R2 = 10kΩ and the capacitor C = 45nF, then the oscillation frequency

will be given as:

then the output frequency is calculated as being 1kHz, which equates to a time constant of

1mS so the output waveform would look like:

What is the basic difference monostable and Astable multivaibrators?

The bsic difference is that the monostable as a permanent state and a one shot timer while the

Astable Monostable as no permanent state, but continually changes states.

3.4 Bistable Circuits.

The BistableMultivibrators circuit is basically a SR flip-flop that we look at in the previous

tutorials with the addition of an inverter or NOT gate to provide the necessary switching

function. As with flip-flops, both states of a bistablemultivibrator are stable, and the circuit

will remain in either state indefinitely. This type of multivibrator circuit passes from one state

to the other "only" when a suitable external trigger pulse T is applied and to go through a full

"SET-RESET" cycle two triggering pulses are required. This type of circuit is also known as

a "Bistable Latch", "Toggle Latch" or simply "T-latch".

NAND Gate BistableMultivibrator

179

The simplest way to make a Bistable Latch is to connect together a pair of Schmitt NAND

gates to form a SR latch as shown above. The two NAND gates, U2 and U3 form the bistable

which is triggered by the input NAND gate, U1. This U1 NAND gate can be omitted and

replaced by a single toggle switch to make a switch debounce circuit as seen previously in the

SR Flip-flop tutorial. When the input pulse goes "LOW" the bistable latches into its "SET"

state, with its output at logic level "1", until the input goes "HIGH" causing the bistable to

latch into its "RESET" state, with its output at logic level "0". The output of a

bistablemultivibrator will stay in this "RESET" state until another input pulse is applied and

the whole sequence will start again.

Then a Bistable Latch or "Toggle Latch" is a two-state device in which both states either

positive or negative, (logic "1" or logic "0") are stable.

BistableMultivibrators have many applications such as frequency dividers, counters or as a

storage device in computer memories but they are best used in circuits such as Latches and

Counters.

SELF ASSESSMENT QUESTION

What are the three types of multivibrator?

4.0 CONCLUSION

This unit describesmultivibrator, its type and functions.

5.0 SUMMARY

 In this unit the following aspects have been discussed:

Monostablemultivibrarors (one-shots) have one stable state. When the one-shot is

triggered, the output goes to its unstable state for a time determined by an RC circuit.

Astablemultivibrators have no stable states and are used as oscillators to generate

timing waveforns in digital systems. It oscillates between two quasi-stable states.

Bistable Having two stable states. Flip-flops and latches are bistablemultivibrators.

http://www.electronics-tutorials.ws/sequential/seq_1.html
http://www.electronics-tutorials.ws/sequential/seq_1.html
http://www.electronics-tutorials.ws/counter/count_1.html

180

6.0 TUTOR-MARKED ASSIGNMENT

 Describe the mode of operation of the monostablemultivibrator

7.0 REFERENCES/FURTHER READING

Ronald J. T. & Neal S., (2001). Widmer Digital Systems: Principle and Applications

(8th Ed.) Prentice Hall,

Thomas L F., (2006). Digital Fundamentals (9th Ed.). Prentice Hall.

Morris M. & Charles R. K. (2004) Logic and Computer Design Fundamentals.

(2004) NJPrentice Hall

Wakerly J.F. (2000). Digital Design: Principles and Practices (3rd Ed.) Upper Saddle

River NJ; Prentice

http://www.tech.mtu.edu/~alaraje/.../EET2141_Outline_Fall2009.pdf

http://www.courses.cs.tamu.edu/rabi/.../Lecture_2_DD_vahid_ch1.p

http://www.en.wikibooks.org/wiki/Microprocessor_Design/Introduction

http://www.engr.sjsu.edu/tle/120syl.pdf

http://www.cs.ucla.edu/Logic_Design

http://www.allaboutcircuits.com

http://www.tech.mtu.edu/~alaraje/.../EET2141_Outline_Fall2009.pdf
http://www.courses.cs.tamu.edu/rabi/.../Lecture_2_DD_vahid_ch1.p
http://www.en.wikibooks.org/wiki/Microprocessor_Design/Introduction
http://www.engr.sjsu.edu/tle/120syl.pdf
http://www.cs.ucla.edu/Logic_Design
http://www.allaboutcircuits.com/

181

STUDY UNIT 3

SHIFT REGISTER AND COUNTER

CONTENT

1.0 INTRODUCTION

2.0 OBJECTIVES

3.0 MAIN CONTENT

3.1 Shift Register

3.2 Serial-in to Parallel-out (SIPO)

3.3 Serial-in to Serial-out (SISO)

3.4 Parallel-in to Serial-out (PISO)

3.5 Parallel-in to Parallel-out (PIPO)

3.6 Universal Shift Register

3.7 Ring Counter

4.0 CONCLUSION

5.0 SUMMARY

6.0 TUTOR-MARKED ASSIGNMENT

7.0 REFERENCES/FURTHER READING

1.0 INTRODUCTION

Shift registers are a type of sequential logic circuit, mainly for storage ofdigital data. They are

a group of flip-flops connected in a chain so thatthe output from one flip-flop becomes the

input of the next flip-flop.Most of the registers possess no characteristic internal sequence of

states.All flip-flopsis driven by a common clock, and all are set or resetsimultaneously.

In this unit, the basic types of shift registers are studied, such asSerial In - Serial Out, Serial

In - Parallel Out, Parallel In – Serial Out,Parallel In - Parallel Out, and bidirectional shift

registers. A special formof counter - the shift register counter, is also introduced.

2.0 OBJECTIVES

At the end of this unit you should be able to:

182

Identify the basic forms of data movement in shift registers

Explain how serial in/serial out, serial in/parallel out, parallel inlserial out, and

parallel in/parallel out shift registers operate

Describe how a bidirectional shift register operates

Determine the sequence of a Johnson counter

Set up a ring counter to produce a specified sequence

Construct a ring counter from a shift register

3.1 The Shift Register

The Shift Register is another type of sequential logic circuit that is used for the storage or

transfer of data in the form of binary numbers and then "shifts" the data out once every clock

cycle, hence the name "shift register". It basically consists of several single bit "D-Type Data

Latches", one for each bit (0 or 1) connected together in a serial or daisy-chain arrangement

so that the output from one data latch becomes the input of the next latch and so on. The data

bits may be fed in or out of the register serially, i.e. one after the other from either the left or

the right direction, or in parallel, i.e. all together. The number of individual data latches

required to make up a single Shift Register is determined by the number of bits to be stored

with the most common being 8-bits wide, i.e. eight individual data latches.

The Shift Register is used for data storage or data movement and are used in calculators or

computers to store data such as two binary numbers before they are added together, or to

convert the data from either a serial to parallel or parallel to serial format. The individual data

latches that make up a single shift register are all driven by a common clock (Clk) signal

making them synchronous devices. Shift register IC's are generally provided with a clear or

reset connection so that they can be "SET" or "RESET" as required.

What type of Logic Circuit are the shift registers

The Shift registers are a type of sequential Logic circuit

Generally, shift registers operate in one of four different modes with the basic movement of

data through a shift register being:

Serial-in to Parallel-out (SIPO) - the register is loaded with serial data, one bit at a time,

with the stored data being available in parallel form.

Serial-in to Serial-out (SISO) - the data is shifted serially "IN" and "OUT" of the register,

one bit at a time in either a left or right direction under clock control.

Parallel-in to Serial-out (PISO) - the parallel data is loaded into the register simultaneously

and is shifted out of the register serially one bit at a time under clock control.

Parallel-in to Parallel-out (PIPO) - the parallel data is loaded simultaneously into the

register, and transferred together to their respective outputs by the same clock pulse.

183

The effect of data movement from left to right through a shift register can be presented

graphically as:

Also, the directional movement of the data through a shift register can be either to the left,

(left shifting) to the right, (right shifting) left-in but right-out, (rotation) or both left and right

shifting within the same register thereby making it bidirectional. In this tutorial it is assumed

that all the data shifts to the right, (right shifting).

3.2 Serial-in to Parallel-out (SIPO)

4-bit Serial-in to Parallel-out Shift Register

The operation is as follows. Lets assume that all the flip-flops (FFA to FFD) have just been

RESET (CLEAR input) and that all the outputs QA to QD are at logic level "0" i.e, no parallel

data output. If a logic "1" is connected to the DATA input pin of FFA then on the first clock

pulse the output of FFA and therefore the resulting QA will be set HIGH to logic "1" with all

the other outputs still remaining LOW at logic "0". Assume now that the DATA input pin of

FFA has returned LOW again to logic "0" giving us one data pulse or 0-1-0.

The second clock pulse will change the output of FFA to logic "0" and the output of FFB and

QB HIGH to logic "1" as its input D has the logic "1" level on it from QA. The logic "1" has

now moved or been "shifted" one place along the register to the right as it is now at QA.

184

When the third clock pulse arrives this logic "1" value moves to the output of FFC (QC) and

so on until the arrival of the fifth clock pulse which sets all the outputs QA to QD back again

to logic level "0" because the input to FFA has remained constant at logic level "0".

The effect of each clock pulse is to shift the data contents of each stage one place to the right,

and this is shown in the following table until the complete data value of 0-0-0-1 is stored in

the register. This data value can now be read directly from the outputs of QA to QD. Then the

data has been converted from a serial data input signal to a parallel data output. The truth

table and following waveforms show the propagation of the logic "1" through the register

from left to right as follows.

Basic Movement of Data through a Shift Register

Clock Pulse No QA QB QC QD

0 0 0 0 0

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

5 0 0 0 0

Note that after the fourth clock pulse has ended the 4-bits of data (0-0-0-1) are stored in the

185

register and will remain there provided clocking of the register has stopped. In practice the

input data to the register may consist of various combinations of logic "1" and "0".

Commonly available SIPO IC's include the standard 8-bit 74LS164 or the 74LS594.

3.3 Serial-in to Serial-out (SISO)

This shift register is very similar to the SIPO above, except were before the data was read

directly in a parallel form from the outputs QA to QD, this time the data is allowed to flow

straight through the register and out of the other end. Since there is only one output, the

DATA leaves the shift register one bit at a time in a serial pattern, hence the name Serial-in

to Serial-Out Shift Register or SISO.

The SISO shift register is one of the simplest of the four configurations as it has only three

connections, the serial input (SI) which determines what enters the left hand flip-flop, the

serial output (SO) which is taken from the output of the right hand flip-flop and the

sequencing clock signal (Clk). The logic circuit diagram below shows a generalized serial-in

serial-out shift register.

4-bit Serial-in to Serial-out Shift Register

You may think what's the point of a SISO shift register if the output data is exactly the same

as the input data. Well this type of Shift Register also acts as a temporary storage device or

as a time delay device for the data, with the amount of time delay being controlled by the

number of stages in the register, 4, 8, 16 etc or by varying the application of the clock pulses.

Commonly available IC's include the 74HC595 8-bit Serial-in/Serial-out Shift Register all

with 3-state outputs.

3.4 Parallel-in to Serial-out (PISO)

The Parallel-in to Serial-out shift register acts in the opposite way to the serial-in to parallel-

out one above. The data is loaded into the register in a parallel format i.e. all the data bits

enter their inputs simultaneously, to the parallel input pins PA to PD of the register. The data is

then read out sequentially in the normal shift-right mode from the register at Q representing

the data present at PA to PD. This data is outputted one bit at a time on each clock cycle in a

serial format. It is important to note that with this system a clock pulse is not required to

parallel load the register as it is already present, but four clock pulses are required to unload

the data.

4-bit Parallel-in to Serial-out Shift Register

186

As this type of shift register converts parallel data, such as an 8-bit data word into serial

format, it can be used to multiplex many different input lines into a single serial DATA

stream which can be sent directly to a computer or transmitted over a communications line.

Commonly available IC's include the 74HC166 8-bit Parallel-in/Serial-out Shift Registers.

3.5 Parallel-in to Parallel-out (PIPO)

The final mode of operation is the Parallel-in to Parallel-out Shift Register. This type of

register also acts as a temporary storage device or as a time delay device similar to the SISO

configuration above. The data is presented in a parallel format to the parallel input pins PA to

PD and then transferred together directly to their respective output pins QA to QA by the same

clock pulse. Then one clock pulse loads and unloads the register. This arrangement for

parallel loading and unloading is shown below.

4-bit Parallel-in to Parallel-out Shift Register

The PIPO shift register is the simplest of the four configurations as it has only three

connections, the parallel input (PI) which determines what enters the flip-flop, the parallel

output (PO) and the sequencing clock signal (Clk).

Similar to the Serial-in to Serial-out shift register, this type of register also acts as a

temporary storage device or as a time delay device, with the amount of time delay being

187

varied by the frequency of the clock pulses. Also, in this type of register there are no

interconnections between the individual flip-flops since no serial shifting of the data is

required.

What are the various modes of operation of the shift registers.

The various modes of operation includes

Serial-in to Parallel-out (SIPO) - the register is loaded with serial data, one bit at a time,

with the stored data being available in parallel form.

Serial-in to Serial-out (SISO) - the data is shifted serially "IN" and "OUT" of the register,

one bit at a time in either a left or right direction under clock control.

Parallel-in to Serial-out (PISO) - the parallel data is loaded into the register simultaneously

and is shifted out of the register serially one bit at a time under clock control.

Parallel-in to Parallel-out (PIPO) - the parallel data is loaded simultaneously into the

register, and transferred together to their respective outputs by the same clock pulse.

3.6 Universal Shift Register

The registers discussed so far involved only right shift operations. Each right shift operation

has the effect of successively dividing the binary number by two. If the operation is reversed

(left shift), this has the effect of multiplying the number by two. With suitable gating

arrangement a serial shift register can perform both operations.A universal bidirectional, or

reversible, shift register is one in which the data can be shift either left or right.Today, high

speed bi-directional "universal" type Shift Registers such as the TTL 74LS194, 74LS195 or

the CMOS 4035 are available as a 4-bit multi-function devices that can be used in either

serial-to-serial, left shifting, right shifting, serial-to-parallel, parallel-to-serial, and as a

parallel-to-parallel multifunction data register, hence the name "Universal". These devices

can perform any combination of parallel and serial input to output operations but require

additional inputs to specify desired function and to pre-load and reset the device.

4-bit Universal Shift Register 74LS194

188

Universal shift registers are very useful digital devices. They can be configured to respond to

operations that require some form of temporary memory, delay information such as the SISO

or PIPO configuration modes or transfer data from one point to another in either a serial or

parallel format. Universal shift registers are frequently used in arithmetic operations to shift

data to the left or right for multiplication or division.

3.7 The Ring Counter

In the previous lesson on Shift Register we saw that if we apply a serial data signal to the

input of a serial-in to serial-out shift register, the same sequence of data will exit from the

last flip-flip in the register chain after a preset number of clock cycles thereby acting as a sort

of time delay circuit to the original signal.

But what if we were to connect the output of this shift register back to its input so that the

output from the last flip-flop, QD becomes the input of the first flip-flop, DA. We would then

have a closed loop circuit that "recirculates" the DATA around a continuous loop for every

state of its sequence, and this is the principal operation of a Ring Counter. Then by looping

the output back to the input, we can convert a standard shift register into a ring counter.

Consider the circuit below.

4-bit Ring Counter

http://www.electronics-tutorials.ws/sequential/seq_5.html

189

The synchronous Ring Counter example above, is preset so that exactly one data bit in the

register is set to logic "1" with all the other bits reset to "0". To achieve this, a "CLEAR"

signal is firstly applied to all the flip-flops together in order to "RESET" their outputs to a

logic "0" level and then a "PRESET" pulse is applied to the input of the first flip-flop (FFA)

before the clock pulses are applied. This then places a single logic "1" value into the circuit of

the ring counter . On each successive clock pulse, the counter circulates the same data bit

between the four flip-flops over and over again around the "ring" every fourth clock cycle.

But in order to cycle the data correctly around the counter we must first "load" the counter

with a suitable data pattern as all logic "0"'s or all logic "1"'s outputted at each clock cycle

would make the ring counter invalid.

This type of data movement is called "rotation", and like the previous shift register, the effect

of the movement of the data bit from left to right through a ring counter can be presented

graphically as follows along with its timing diagram:

Rotational Movement of a Ring Counter

190

Timing diagram

Since the ring counter example shown above has four distinct states, it is also known as a

"modulo-4" or "mod-4" counter with each flip-flop output having a frequency value equal to

one-fourth or a quarter (1/4) that of the main clock frequency.

 The "MODULO" or "MODULUS" of a counter is the number of states the counter

counts or sequences through before repeating itself and a ring counter can be made to output

any modulo number. A "mod-n" ring counter will require "n" number of flip-flops connected

together to circulate a single data bit providing "n" different output states. For example, a

mod-8 ring counter requires eight flip-flops and a mod-16 ring counter would require sixteen

flip-flops. However, as in our example above, only four of the possible sixteen states are

used, making ring counters very inefficient in terms of their output state usage.

Johnson Ring Counter

 The Johnson Ring Counter or "Twisted Ring Counters", is another shift register with

feedback exactly the same as the standard Ring Counter above, except that this time the

inverted output Q of the last flip-flop is now connected back to the input D of the first flip-

flop as shown below. The main advantage of this type of ring counter is that it only needs

half the number of flip-flops compared to the standard ring counter then its modulo number is

halved. So a "n-stage" Johnson counter will circulate a single data bit giving sequence of 2n

different states and can therefore be considered as a "mod-2n counter".

4-bit Johnson Ring Counter

191

 This inversion of Q before it is fed back to input D causes the counter to "count" in a

different way. Instead of counting through a fixed set of patterns like the normal ring counter

such as for a 4-bit counter, "0001"(1), "0010"(2), "0100"(4), "1000"(8) and repeat, the

Johnson counter counts up and then down as the initial logic "1" passes through it to the right

replacing the preceding logic "0". A 4-bit Johnson ring counter passes blocks of four logic

"0" and then four logic "1" thereby producing an 8-bit pattern. As the inverted output Q is

connected to the input D this 8-bit pattern continually repeats. For example, "1000", "1100",

"1110", "1111", "0111", "0011", "0001", "0000" and this is demonstrated in the following

table below.

Truth Table for a 4-bit Johnson Ring Counter

Clock Pulse No FFA FFB FFC FFD

0 0 0 0 0

1 1 0 0 0

2 1 1 0 0

3 1 1 1 0

4 1 1 1 1

5 0 1 1 1

6 0 0 1 1

7 0 0 0 1

How different is the Johnson Ring Counter from the standard Ring Counter

The Johnson Ring Counter or "Twisted Ring Counters", is another shift register with

feedback exactly the same as the standard Ring Counter above, except that this time the

192

inverted output Q of the last flip-flop is now connected back to the input D of the first flip-

flop as shown below. The main advantage of this type of ring counter is that it only needs

half the number of flip-flops compared to the standard ring counter then its modulo number is

halved.

As well as counting or rotating data around a continuous loop, ring counters can also be used

to detect or recognise various patterns or number values within a set of data. By connecting

simple logic gates such as the AND or the OR gates to the outputs of the flip-flops the circuit

can be made to detect a set number or value. Standard 2, 3 or 4-stage Johnson ring counters

can also be used to divide the frequency of the clock signal by varying their feedback

connections and divide-by-3 or divide-by-5 outputs are also available.

A 3-stage Johnson Ring Counter can also be used as a 3-phase, 120 degree phase shift square

wave generator by connecting to the data outputs at A, B and NOT-B. The standard 5-stage

Johnson counter such as the commonly available CD4017 is generally used as a synchronous

decade counter/divider circuit. The smaller 2-stage circuit is also called a "Quadrature"

(sine/cosine) Oscillator/Generator and is used to produce four individual outputs that are each

"phase shifted" by 90 degrees with respect to each other, and this is shown below.

2-bit Quadrature Generator

Output A B C D

QA+QB 1 0 0 0

QA+QB 0 1 0 0

QA+QB 0 0 1 0

QA+QB 0 0 0 1

2-bit Quadrature Oscillator, Count Sequence

As the four outputs, A to D are phase shifted by 90 degrees with regards to each other, they

http://www.electronics-tutorials.ws/logic/logic_2.html
http://www.electronics-tutorials.ws/logic/logic_3.html

193

can be used with additional circuitry, to drive a 2-phase full-step stepper motor for position

control or the ability to rotate a motor to a particular location as shown below.

Stepper Motor Control

2-phase (unipolar) Full-Step Stepper Motor Circuit

The speed of rotation of the Stepper Motor will depend mainly upon the clock frequency

and additional circuitry would be required to drive the "power" requirements of the motor. As

this section is only intended to give the reader a basic understanding of Johnson Ring

Counters and its applications, other good websites explain in more detail the types and drive

requirements of stepper motors.

Johnson Ring Counters are available in standard TTL or CMOS IC form, such as the

CD4017 5-Stage, decade Johnson ring counter with 10 active HIGH decoded outputs or the

CD4022 4-stage, divide-by-8 Johnson counter with 8 active HIGH decoded outputs.

SELFASSESSMENT QUESTION

1 What is a shift register? Can a shift register be used as a counter? If yes, explain how?

2. What is a Shift Register? What are its various types? List out some applications of Shift

Register.

5.0 CONCLUSION

This unit discusses shift register and shift register counter which are a type of sequential logic

circuit mainly for storage of digital data.

5.0 SUMMARY

You have learnt that::

http://www.electronics-tutorials.ws/io/io_7.html

194

A register is a digital circuit with two basic functions: data storage and data move

ment.

Shift Registeris used to convert parallel data into serial data and vice versa.

A simple Shift Register can be made using only D-type flip-Flops, one flip-Flop for

each data bit.

Shift registers hold the data in their memory which is moved or "shifted" to their

required positions on each clock pulse.

Each clock pulse shifts the contents of the register one bit position to either the left or

the right.

The SISO shift register accepts data serially-that is, one bit at a time on a single line.

It produces the stored information on its output also in serial form.

SIPO Data bits are entered serially (right-most bit first) into this type of register in the

same manner as in SISO. The difference is the way in which the data bits are taken

out of the register; in the parallel output register. the output of each stage is availahle.

Once the data are stored, each bit appears on its respective output line, and all bits are

available simultaneously, rather than on a bit-by-bit basis as with the serial output.

PISO For a register with parallel data inputs, the bits are entered simultaneously into

their respective stages on parallel lines rather than on a bit-by-bit basis on one line as

with serial data inputs. The serial output is the same as SISO, once the data are

completely stored in the register.

PIPO the parallel in/parallel out register employs both methods for parallel in and

parallel out. Immediately following the simultaneous entry of all data bits, the bits

appear on the parallel outputs.

The data bits can be loaded one bit at a time in a series input (SI) configuration or be

loaded simultaneously in a parallel configuration (PI).

Data may be removed from the register one bit at a time for a series output (SO) or

removed all at the same time from a parallel output (PO).

One application of shift registers is converting between serial and parallel data.

Johnson counter the complement of the output of the last flip-flop is connected back

to the D input of the first flip-flop (it can be implemented with other types of flip-

flops as well).

The ring counter utilizes one flip-flop for each state in its sequence. It has the

advantage that decoding gates are not required.

6.0 TUTOR-MARKED ASSIGNMENT

1. Describe the operation of parallel in parallel out (PIPO) shift register.

2. Using D-Flip flops and waveforms explain the working of a 4-bit SISO shift register

3. Design a 3-bit shift register which has 4 operating modes.

4. Define a register. Construct a shift register from S-R flip-flops. Explain its working.

7.0 REFERENCES/FURTHER READING

http://www.electronics-tutorials.ws/sequential/seq_5.html

195

Ronald J. T. & Neal S., (2001). Widmer Digital Systems: Principle and Applications

(8th Ed.) Prentice Hall,

Thomas L F., (2006). Digital Fundamentals (9th Ed.). Prentice Hall.

Morris M. & Charles R. K. (2004) Logic and Computer Design Fundamentals.

(2004) NJPrentice Hall

Wakerly J.F. (2000). Digital Design: Principles and Practices (3rd Ed.) Upper Saddle

River NJ; Prentice

http://www.cs.ucla.edu/Logic_Design

http://www.allaboutcircuits.com

https://maxwell.ict.griffith.edu.au/yg/teaching/.../dns_module3_p3.pdf..

http://www.ce.rit.edu/studentresources/reference.../341/.../EECC341-08.pdf

http://www.techterms.com/definition/integratedcircuit

http://www.cs.ucla.edu/Logic_Design
http://www.allaboutcircuits.com/
https://maxwell.ict.griffith.edu.au/yg/teaching/.../dns_module3_p3.pdf
http://www.ce.rit.edu/studentresources/reference.../341/.../EECC341-08.pdf
http://www.techterms.com/definition/integratedcircuit

196

ANSWERS TO SELF ASSESSMENT QUESTIONS

MODULE 1

UNIT 1

SAQ 1: Blaise Pascal invents an adding machine to relieve the tedium of adding up long

columns of tax figures.

 Gottfried Leibniz invents the first mechanical calculator capable of multiplication.

Charles Babbagedesigns a complex, clockwork calculator capable of solving equations and

printing the results

UNIT 2

1. 8 247

 8 30 R 7

8 3 R 6

0 3 R 3

= 3678

2. (95.5)10 = (5F.8)16

Integer part Fractional part

16 95 0.5x16=8.0

16 5 R 15

0 5 R 5

 =5F.816

3. (10001011.011)2=27+23+21+20+2-2+27-3

=139.375

4. 5678= 1011101112

197

 = 0001/0111/0111

 = 17716

5. FA16= 111110102

UNIT 3

1 (a) A byte is 8 bits

1 1 1 1 1 0 1 1

1 1 1 1 0 1 1 0

1 1 1 0 1 1 0 0

1 (b), By using 2’s compliment

 1 0 1 0 1 0 1 1=

 -128 64 32 16 8 4 2 1

1 0 1 0 1 0 1 1

 = -128 +32+8+2+1

 = -85

 By using signed magnitude

0 1 0 1 0 1 1

64 32 16 8 4 2 1

1 0 1 0 1 0 1 1

 = -(32+8+2+1)

 = -43

2

The gray code is 101 00 10 1

The binary equivalence is 11001010

MODULE 2

198

UNIT 1:

SAQ 1

 (XYZ)’ = X’+Y’+Z’

X Y Z XYZ (XYZ)’

 X’+Y’+Z’

0 0 0 0 1 1

0 0 1 0 1 1

0 1 0 0 1 1

0 1 1 0 1 1

1 0 0 0 1 1

1 0 1 0 1 1

1 1 0 0 1 1

1 1 1 1 0 0

 X+YZ =(X+Y).(X+Z)

X Y Z YZ X+YZ X+Y X+Z (X+Y)(X+Z)

0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1

1 0 1 0 1 1 1 1

1 1 0 0 1 1 1 1

1 1 1 1 1 1 1 1

SAQ: 2

The Identify and label variables are as follows

p=1: person in front of door

h=1: held open manually

c=1: force door to stay closed

199

f=1: open sliding door

Write Boolean Equation expressing functionality described: not forced close and manually

held open, or not forced closed and not manually held open and person detected

 f = hc’ + h’pc’

The circuit is shown below

UNIT 2

Solutions to SAQ

1. A + BC + AB

200

2.

.

 SAQ2

UNIT 3

1

(i) Each individual term in standard Sum Of Products form is called as minterm whereas

each individual term in standard Product Of Sums form is called maxterm.

ABC + ABC + ABC +ABC

201

(ii) The unbarred letter represent 1’s and the barred letter represent 0’s in min terms,whereas

the unbarred letter represent 0’s and the barred represent 1’s in maxterms.

(iii) If a system has variables A, B, C then the minterms would be in the form ABC,whereas

the maxterm would be in the form A+B+C.

(iv) The minterm designation for three variable expression beY=Σm (1, 3, 5, 7) Where the

capital Σ represents the product and m stands for minterms Whereas the Maxterm designation

for three variable expression be Y=∏M (0, 1, 3, 4) Where the capital ∏ represents the

product and M stands for maxterms

ANSWERS TO SAQ

Karnaugh Map for the expression F(A,B,C,D) = S (1,3,4,5,6,7,9,12,13) is shown The

grouping of cells is also shown in the Figure.

 The equations for (1) is A’B; (2) is C’ D; (3) is A’D; (4) is BC’

Hence, the Simplified Expression for the above Karnaugh map is

202

F(A,B,C,D) = A’B+C’ D+ A’D+BC’

= A’ (B + D) +C’ (B + D)

MODULE 3

UNIT 1

ANSWERS TO SAQ

Full adder using NAND and NOR gates

UNIT 2

Answers to SAQ

This function can be implemented with an 8-to-1 line MUX

203

A, B, and C are applied to the select inputs as follows:

A ⇒S2 , B ⇒S1, C ⇒S0

The truth for its implementation and its implementation are shown below

UNIT 3

SAQ 1

1. a 3 to 8 decoder

204

2. (1) Active high output type decoders are constructed constructed with AND gates and

will give the output high for given input combination and all other output are low .

While Active low output type of decoders will give the output low for given input

combination and all other outputs are high. They are constructed with NAND gates

SAQ2

Octal to binary encoder consists of eight inputs, one for each of eight digits and three outputs

that generate the corresponding binary number. For example: low order output bit Z is if the

input octal digit is odd. Here DO input is not connected to any O R gate; the bin

ary output must be all zeroes in this case and all 0’s output is also obtained, when all inputs

are zeroes. This discrepancy can be resolved by providing one more output to indicate the

fact that all inputs are not zeroes.

 MODULE 4

UNIT 1

Flip-Flop: A flip-flop is a basic memory element used to store one bit of information. Both

Flip-flops and latches are bistable logic circuits and can reside in any of the two stable states

due to a feedback arrangement. The main difference between them is in the method used for

changing the state

Applications of Flop-Flops:

205

(1) Bounce elimination switch

(2) Parallel Data Storage in Registers

(3) Transfer of Data from one bit to another.

(4) Counters

(5) Frequency Division

 UNIT 2

Monostable, Astable, and bistable

UNIT 3

ANSWER

1. A register in which data gets shifted towards left or right when clock pulses are

applied is known as a Shift Register. A shift register can be used as a counter. If the output of

a shift register is fed back to serial input, then the shift register can be used as a Ring

Counter.

2. Shift Register: A register in which data gets shifted towards left or right when

clockpulses are applied is known as a Shift Register.

Types of Shift Registers:

(i) Serial-In Serial-Out (SISO) Shift Register

(ii) Serial-In Parallel Out (SIPO) Shift Register

(iii) Parallel-In Serial Out (PISO) Shift Register

(iv) Parallel-In Parallel Out (PIPO) Shift Register

Applications of Shift Registers:

(i) Serial to Parallel Converter

(ii) Parallel to Serial Converter

(iii)Delay line

(iv) Ring Counter

(v) Twisted-ring Counter

 (vi) Sequence Generator

206

