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(v) 

A B S T RAe T 

In this report, Fourier Series is extensively discussed to 

meet expectations. It started with the discovery of trigono­

metrical series by Daniel Bernoulli and the recognition of 

the significance of the coefficients by Joseph Fourier, which 

brought about the series now called Fourier Series to the 

application of it. 

The mathematical part in subsequent chapter gave, explicitly 

though, the definition of some common terminologies and then 

discuss the calculation of trigonometric series coefficients 

which later gives the Fourier Series required. There are 

also good examples to show how Fourier Series may be generat­

ed depending on the function given. 

The application of Fourier Series is not left out. This was 

also discussed exhaustively and buttressed with good exam­

ples. For credibility sake, a computer result of one of the 

examples was obtained and compared later to the manually 

obtained results. The report shows with the aid of diagrams 

and examples how Fourier Series is involved in the field of 

engineering and mathematical physics at large. 

In a nutshell, the role and importance of Fourier Series in 

the field of technology is discussed. 
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INTRODUCTION 

Fourier Series was first introduced in mathematical physics 

into a pioneering work of a French mathematician called 

Joseph Fourier. The work was named, "The analytical theory of 

heat" and was completed in 1822. 

Actually the possibility of forming a trigonometrical expan­

sion of a periodic function had been recognised by predeces­

sors of Fourier. For instance, about 1750 Daniel BernouUI 

used a series of trigonometric terms in his proposed solution 

for representing the motion of vibrating string. He advocated 

this procedure as a general principle, but he did not calcu­

late the coefficients of the terms. 

Joseph Fourier was the first one to recognise the signifi­

cance of the coefficients. He then saw that the trigonometric 

expansion could be applied independently of whether a func­

tion, f(x) is periodic. He again saw that a function need not 

be smooth to have trigonometric expansion but could have 

steep sides like those of square wave. 

Fourier developed the use of his series into a powerful 

general method for solving problems such as those involved in 

heat diffusion and wave propagation. His work stimulated 

research in mathematical physics , and this is often identi­

fied with the solution of boundary-value problems, encom­

passing many natural occurrences such as sunspot, tides and 

the weather. The key to his methods is the distinction be­

tween the interior of a region and its boundary-value prob­

lems in the partial differential equations and which still is 

a basic tool in physics and engineering. 
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Fourier also extended this concept into the so-called Fourier 

series. Doubts of the validity of the Fourier series, which 

lead later mathematicians to a fundamental renewal of the 

concept of real function, were resolved by P.G.L. Dirichlet, 

Bernhard Riemann, Henri Lebesque and others. However, the 

mathematicalyf problems presented by the Fourier series have 

been a great stimulus to the development of mathematics in 

general. 

The application bf Fourier series is wide. More specifically, 

Fourier Series is used for representing the motion of vibrat-

ing string. This idea was introduced by Daniel Bernoulli in 

1750, when there was need to obtain~the Fourier analysis of 

some non-periodic functions. It was then concluded that if a 

function is defined only over a fixed interval (e.g Violin 

string) and the physical behaviors of the system is required 

only in that interval than Fourier Series and analysis may be 
....-;:-

used. 

In wave and electronics Fourier analysis is also used to 

determine the value and the nature of voltage and current 

used in a linear circuit with time. The employment of this 

idea has also been of great importance in the analysis of 

square wave voltage. Also in transmission line in terms of 

natural modes, Fourier analysis is also used. This is said to 

help demonstrate a technique used for solutions of wave 

problems earlier mentioned. 

When solving problem such as those involved in heat diffu-

sion Fourier series is also used. This is why it is employed 
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in heat transfer analysis to help predict heat flow. This is 

said to be even easier if the temperature distribution in a 

material is known since it would help in the establishing of 

the heat flow. 

Partial differential equation which is a basic tool in phys-

ics and engineering make use of Fourier analysis to obtain 

series solution to boundary-value problems, 

However, the mathematical problem presented by the Fourier 

series have been a great stimulus to the development of 

mathematics . 

In this project we have in Chapter 1 an introductory aspect 

of the Fourier Series. In chapter 2 we have preambles and the 

definitions of some concept or terms used extensively in the 

Fourier Series. In chapter 3 we have Fourier Series itself 

discussed with examples and theorems to buttress facts. In 

chapter 4, the application of Fourier Series is then giving 
// 

with good examples. And in chapter 5 we have conclusion which 

involve a comparison of the computer obtained result to the 

manually obtained result in chapter 4. 

3 



CHAPTER TWO 

PREAMBLES AND IMPORTANT TERMINOLOGIES 

PREAMBLES 

Fourier Series is extensively used in solving some problems 

in applied mathematics in the development of functions into 

trigonometric polymonials. Solution of problems in the par-

tial differential equations can be done by using Fourier 

series. It is also useful in boundary-value problems. 

In the course of studies we shall make use of some well 

known functional relations and some of them will be listed 

below for ease of reference. 

~ TRIGONOMETRIC FUNCTIONS 

We state without proof, the following well known trigono-

metric formula: 

1.1 

1.2 

1.3 

Cos2x = 1 - Sin2x 

COS2X = ~(1+Cos2x) 

Sin2x = ~(1- Cos2x) 

From the above, it is easy to see that J Sin2x dx 

= x/2 - Sin2x/4 + c 

(b) J Cos2x dx = x/2 + Sin2x/4 + c 

where c is an arbitrary constant of integration 

Also since 2SinACosB = Sin(A+B) + Sin (A-B) 

1.4 2SinACosB = ~[Sin(A+B) + Sin(A+B) 

Similarly, 

a, CosASinB = ~[Sin(A+B)- Sin(A+B)] 
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b, CosACosB = ~ COs(A-B)- Cos(A-B)] 

c, SinASinB = ~[Cos(A-B) - Cos(A-B)] 

Example 2.1 

The following integral can be evaluated thus: 

I = I CosSx Sin3xdx = ~ I(COSSX Sin3x)dx 

= ~ I[Sin(Sx+3X) Sin(Sx-3x)] dx 

= ~ I(Sin8X - Sin2x)dx 

= ~[-Cos8xj8 +Cos2xj2] +c Cos2xj4 - Cos8xj16 + c 

Example 2.2 

I = I SinSx Sin3x dx = ~I(2SinSX Sin3x)dx 

= ~ I[ Cos(S-3)x - Cos(S+3) ]dx 

= ~ I[ Cos2x - Cos8x] dx = 

= Sin2xj4 - Sin8xj16 + c 

PERIODIC FUNCTION 

Definition. 

~[Sin2xj2 - Sin8xj8] +c 

A function F(x) is said to be periodic with period T if for 

all x, F(x)=F(x+T). The least of T >0 is called the least 

period or simply the period of F(x). If T is then the least 

period, 2T, 3T, 4T, .... are also periods of f(x). 

Thus, given f(x) as function then f(x) = f(x+t} = f(x+2t} ... 

where T is the least period. 

Thus, a periodic function is a function that has values that 
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repeat at regular time interval. This is graphically shown 

below 

.. I~- - -­
< 

Graph of f(x) = sin x 

Fig (2.1) 

Remarks 

(i) The function Sinx has period T = 2n, 4n, 6n since 

sin(x+2n), 

Sin(x+4n), Sin(x+6n) ..... all equals Sin x. 

(ii) If f(x) = Sinnx, where n is a positive integer then the 

period is 2njn.That is for Sin nx to repeat itself after 

time T, nT = 2n and T = 2njn. 

(iii) A constant has any positive number as period. 

Example 2.3 

I
Sin, 0 ~ x ~'if 

F (x) = PE-1l10D -- 2;: 

0, n < x< 2n 
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Graphically we have :-

---/ " 
/ ' \ 

/ 

-2.x- -1= 

FICru~e- (i·2) 
From the above graph f(x) repeated itself at 2n, then 2n is 

the period 

f(x) = Sinx = Sinx (x+2n) = Sinx , O~~ n 

f(x) = 0, n < x < 2n. ..... 
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ORTHOGONAL FUNCTION 

Definition:-

Two functions ¢(x), p(x) are said to be orthogonal on an 

interval [a, b] if Jba¢(X)P(X)dX = 0 

for all x € [a,b] 

Example 2.4 

Given that ¢(x) = sinmx and P(x) = Cosnx where m,n = 

1,2,3 ... and in the interval [-n,n], show that they are 

orthogonal. 

solution: 

for m?! n 

. J~n Sinnx Cosnx dx = ~ In_n [Sin(n+m)x +Sin(n-m)x]dx 

= ~[-Cos(n+m)/n+m +(-)cos(n-m)x/n-m]~ 

= - ~ [Cos(n+m)x/n+m + cos(n-m)/n-m]~ 

• = -~ [Cos-(n+m)n/(m+n) + Cos(n-m)n/(n-m] -(-~) [Cos (n+m)n/n+m 

+ Cos (n-m)n/n-~} 

• = {-~ [Cos-(n+m)n/n+ m + cos-(n-m)n/n-~+ ~ [Cos(n+m)n/n+m + 

cos(n-m)n/n-~ 

= 0 + 0 + = 0 

Now, for m = n then 

, nometric~ function 
./ In_n sinnx Cosnx dx 

, = ~ [-Cos 2nx/2n]n_n 

the integral of the product of the trigo­
\".\-~,J... 

in this will be :­
I' 

= ~J~n [sin 2nx ]dx 

= ~f\ [-Cos 2nx] r -n 
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.. 

= {-~n [Cos2n (_n)] - (-) [Cos 2nn]} = {-~n [ Cos 2nn] 

+~n[COS2nn} 

But Cosx = Cos(-x) therefore 

~n{-[Cos-2nn] + [Cos2nn]} = 0 

Definition: 

A system of function < ¢n(x) > is called an orthogonal system 

in the interval [a,b] if the integral of the product of any 

two different functions of the system, taken over the inteL-

val [a,b] is equal to zero. 

and i,j =1,2,3 .. 

Example 2.5 

Consider z [l,Cosx Sinx, Cos2x Sin2x, 

prove that z is an orthogonal system in the interval [-n,n]. 

Solution 

. fn -n 1. Cosnx dx = Sinnx/n I_nn = [Sinnn/n - sin-nn/n] 

? 

Cosnx/n In -n = [- Cos nn/n - (~) 

Cos-(-n)/n] = 0 

In -n Cosmx Cosnxdx = ~Jn -n [Cos(m+n)x+ Cos(m-n)x] dx 

= ~[Sin(m+n)x + Sin(m-n)x/m-n]n -n 

= ~{[ Sin(m+n)n/m+n + Sin(m-n)n/m-n - [Sin(m+n)-n/m+n) 

+ Sin(m-n)-n/m-n]} = 0 + 0 = 0 

Also 

sinmx Cosnxdx = ~Jn-n [Sin(m+n)x + Sin(m-n)x]dx 

9 
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= ~[ - Cos(m+n)xjm+n) + (-)Cos(m-n)xjm-n ]rr -rr 

= ~{-[Cos(m+n)rrjm+n + Cos(m-n)rrjm-n] + [Cos(m+n)-rrjm+n + 

Cos(m-n)-rrjm-n]} 

= 0 + 0 = 0 

Finally, 

Jrr-rr Sinmx Cosnxdx = ~Jrr-rr Sin2nxdx = [-COs2nxjn]rr_rr 

= [Cos2nrrj2n] + [Cos2nx(-rrj2n])] 

= 0 + 0 =0 

Hence this system is an orthogonal system in the interval 

~,rr] 

It is not in all cases that we can obtain or thogonality in a 

system. In some cases orthorgonality may be achieved by the 

introduction of a function we call weight function. 

WEIGHT FUNCTION 

This is a function say q(x»O defined in the interval (a,b) 

such that for any two elements in a non-orthogonal set say, 

00 [Tr(k)] r=O = P we can get 

and r,k = 0,1,2,3 

The function q(x) is called the weight function. 

10 



CHAPTER THREE 

FOURIER SERIES 

Definition: 

A series of function say f(x) given by f(x) = a o /2 + a 1cosx 

+ b 1Sinx + a 2Cos2x + b 2Sin2x + ... + an Cosnx + bn Sinnx 

+ 

and defined in any finite interval (-L,L) is Called Fourier 

Series. It is always expressed in the form 

f(x) = a o /2 + L(anCosnx + bnSinnx) 

This implies that Fourier Series is used to represent a 

periodic function as shown above: 

It is true that there are many functions in existence, but 

not all of them can be represented by Fourier Series. There­

fore, we have some conditions put forward by Dirichlet that 

help to determine possible functions to be represented by 

Fourier Series. 

DIRICHLET CONDITIONS 

It says that for a function to be represented by Fourier 

Series such that putting x = xl and the value converging to 

f(x) with addition of more terms, the following condition 

must be satisfied . 

• (1) The function, f(x) must be defined and single value. 

(2) f(x) must be continuous or have a finite number of dis­

continuities within a periodic interval. 

(3) f(x) and f' (X) must be sectionally continuous in an 

interval say [-L.LJ 

11 



Example 3.1 

(a) f(x) = x 3 

• This function satisfy the Dirichlet condition and it Fourier 

series may be generated. 

(b) f(x) =2/x 

This function does not satisfy the Dirichlet conditions since 

it has infinite discontinuity at x=O 

DETERMINATION OF COEFFICIENTS 

Given that 

f(x) =ao /2 + a 1Cosx + b 1 Sinx +a2Cos2x + b 2Sin2x + ... 

.. . +anCosnx +bnSinnx + ... (2.1) 

then the coefficient a o ,a1 ,a2 ... b 1 P2 b 3 .. bn can be 

determined. 

Therefore, to find a o we integrate f(x) with respect to x 

from -TT to TT • 

-TT -TT 0 • ITT f(x) dx = ITT a /2 dx + ITT 

., + ITT -TT b1 sinx + ... 

+ ... 

TT a1 Cosx dx 
- ----

But [Sinx]TT -TT = [SinTT - Sin(-TT) ] o 

Also [-COSX]TT -TT = [-COSTT + COS(-TT)] = 0 

and [X]TT -TT = [TT+TT] = 2TT 

therefore, 
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and so, 

Example 3.2 

Given that f(x) 

Solution 

We know that, 

x/2, find a o in the interval [-n,n] 

a o = l/n In_nf(X)dX = l/nfn - n x/2)dx 

= ~n In-nXdX = 1/2n[X2]n_n = 1/2n { [n2+n2]} 

= 1/2n [2n2] = 2n 2/2n = n2/n = n 

Therefore, 

a o = n 

To find an' we then consider the equation (2.1) 

Multiplying both side by cos mx we have 

f(x) Cosnx = ao/2cosmx + a 1CosxCosmx + b 1SinxCosmx 

+ ... + anCosnxCosmx + bnSinnxcosmx 

Integrating we then have 

In_nf(X)cosmx = ' In_nao/2cosmx + In_nancosnxcosmxdx 

J 

But a o /2 In_nCosmxdx = a o /2[ Sinmx/m ]n_n 

= a o /2[Sinmn/m - Sin m/m (-n)] 0 

13 



, Also bnIrr_rrcosmxSinnxdx 

Sin(m-n)x]dx 

= bn /2[[ Cos(m+n)x/m+n + Cos -(m-n)x/m-n]_rrrr = 0+0 = 0 

Therefore, 

anJrr_rrcosnxcosmxdx = anJrr-rr Cos2mxdx 

Assuming m = n 

= an/2[[1+COS2X]rr_rr = a n /2 * 2rr = anrr 

Therefore, 

Jrr_rrf(X)COSmXdx = a o /2 [0] + anrr +bn[O] +... anrr 

then an = l/rrJrr_rrf(X)cosmx dx 

Example 3.3 

Given that f(x) = -x, find an in the interval [-rr,rr] 

Solution 

We know that 

an = l/rrJrr_rrf(X)COSmXdx 

Then an = l/rrJO -rr x Cos mx dx = 

Let u = x, du = dx 

Let du = Cosmx 

V = Sin mx/m 

= l/rrJO_rrxcosmx dx = -x/rrSinmx/m 10_rr - l/rr JO-rr Sinmxdu 

14 



= -[COsmxjrrm2]rr -rr = -Cos(mrr) + Cos(-mrr)jrrm2 

since Cos mrr = 1 we then have 

= =ljrr[l+ Cos mrrjm2] = -ljrrm2 [1 - Cos mrr] 

Considering that Cosmrr = 1, for n even and Cosmrr = -1 for n 

odd therefore, an = -2jrrn2 for n odd or 0 for n even then a 1 

a 2 ... an can now be determined. 

Now, to find bn, let us Consider the equation (2.1) and then 

multiply both side by Sinmx. And we then have 

f(x) Sinmx = a o j2 Sinmx + a 1CosxSinmx + anCosnxSinmx 

+ bnSinnxcosmx 

Integrating we again have 

Jrr _rrf(x)Sinmx = Jrr-rrao j2 Sinmxdx 

But 

= aoj2[-Cosmrrjm + Cos-rrjm)] = 0 

And 

n -rr n-rr = b Jrr Sin2mx dx = b j2Jrr [l-Cos2x]dx 

15 



Assuming m = n 

Therefore, fn_nf(X)SinmXdx = bn [x/2 - Sin2x/4] n_n =bnn 

Example 3.4 

Given that f(x) = (n-x) , find bn in the interval [-n,n] 

Solution 

We know that, 

bn = l/n fn_nf(X)SinmX dx 

Therefore, bn = -l/nfn_nSinmxdx = l/nfn -n (n-x)d(-Cos nx/n) 

= -l/nn[n-x] Cos mx In -n- l/nn fn -n Cos mx dx 

=l/nn * 2nCos(-nn)-1/n 2 Sinmx In -n = 2/nCosnn =2(-1)n/n 

But Cosnn = 1 for n even and Cosnn = -1 for odd 

bn = 2(-1)n/ 2 

Therefore the coefficient b 1 , b 2 , ... bn can then be deter­

mined. However, to generate a Fourier series for a function, 

the values of the coefficients. a o ' an and bn must be deter­

mined. The values obtained determines the nature of the 

Fourier Series to be generated. 

Example 3.5 

Given that f(x) = x, express the function in form of Fourier 

Series. 

16 



Solution 

We know that, F(x) 

00 b . + L n=l nSlnmx 

From our formula, 

Also 

Let u=x, du = dx 

dv = Sinnx dx, v = -Cosnxjn 

Therefore, 

= 1 j nJP_p xCosnxdx = 1jn[xSinnxjn]p_p 

- JP_pSinnXjndX 

= 1jn [cosnxjn 2 ]p_p = 1jn{[Cosnpjn2 - Cosn(-p)jn2] 

o 

= 1jn[-xCosnxjn + JP_p Cosnxjndx] = 1jn[-XCosnxjn]p_p 

= -ljn[pCosnp + pCos(-np)] = -ljnn*2pCosnp 

Therefore, bn -2jnCosnp 

But Cosnn = 1 for n even and Cosn n =-1 for n odd. 

We then have, 

n=l, b 1 = 2 

17 



n=2, b 2 = -2/2 = -1 

n=3, b3 3 = 2/3 

n=4, b 4 = -2/4 

Now, Since a o = 0, an = 0 and bn = -2/nCosnp 

Then we have 

X= 2/1 Sinx -2/2 Sin2x +2/3 Sin3x - 2/4 Sin4x + .... . 

X = 2[Sinx ~ 1/2Sin2x+ 1/3Sin3x -1/4Sin4x +1/5sin5x .. . 

ODD AND EVEN FUNCTION 

The idea of odd and even function was introduced into Fourier 

Series to save unnecessary calculations. The significance of 

this will seen later. 

EVEN FUNCTION:- A function is said to be even if f(-x) = 

f(x). That is the function value for a particular negative 

value of x is the same as that for the corresponding positive 

value-Example 3.6 

Let y = f(x) = x 2 

then 

f(-x) = (_X)2 = X2 

Therefore y = X2 is an even function. The graph of this even 

function is as shown below. It is symmetrical about the y 

-axis 
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Example 3.7 

Graph of an even function, f(x) =X2 

Fig (3.1) 

Let f(x) = x4 3x2 - 5 Cosx +1 

Therefore, f(x) = (-x)4 + 3(-X)2 - 5Cos(-x) +1 

= x4 +3x 2 - 5Cosx + 1 =f(x) 

Therefore, f(x) is an even function. 

Theorem 3.1 

If f(x) is defined over the interval -n < x < nand f(x) is 

even, then the Fourier Series for f(x) contain cosine terms 

only included in this is a o which may be regarded as anCosnx 

with n=O 

Proof:-

Since f(x) is even, JO_nf(X)dX = Jnof(X)dX 

a o = l/nJn _nf (X)dX = 2/nJn
of(X)dX 

Therefore, 

a o = 2/nJno f(x)dx 
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But f(x) Cosnx is the product of two even function and there-

fore itself even 

= l/nfn_nf(X)COSnXdx = 2/nfno f(x)Cosnxdx 

bn = l/nfn _nf (X)SinnXdx 

since f(x) Sinnx is the product of even function and odd 

function it is itself odd. 

Therefore, 

bn = o. Since bn = 0, sine terms in the Fourier Series for 

f (x) • 

Example 3.8 

The wave form shown below is symmetrical about the y axis. 

The function is therefore even and there will be no Sine 

terms in the Series. 

---.or - -- -- .......-.... +---r- - - - - - -.,.---

'f-, ~~1 --,: -"?2. 0 ~ 

Graph of even function with f(x) = 4 
Figure (3.2) 

since it is an even function then, 
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Solution 

a o = l/rrsrr_rrf(X)dX = 2/rr Srrof(X)dX 

= 2/rrs~rro4dX 

= 2/rr[4X]rr/2 = {[8rr/2rr - 8(O)/rr } = 4 

an = l/rrsrr_rrf(X)COSnXdX = 2/rrsrrof(X)COSnXdX 

= 2/rrsrr/ 20cosnXdX = 8/rr[Sinnx/n]rr/2 0 

= 8/rrn Sinnrr/2 

But Sinnrr/2 = 0 for n even 

= 1 for n = 1, S, 9, .... 

= -1 for n = 3, 7, 11, 

and a 1 = 8/rr, a 3 = 8/3rr, as = 8/Srr, = 8/7rr 

Therefore, the required Series is 

f(x)~+8/rr [Cosx -1/3Cos3x +l/SCosSx -1/7Cos7x+ ... 

ODD FUNCTION:-

A function is said to be odd if fe-x) = -f(x). That is, 

the function value for a particular negative value of x is 

numerically equal to that for the corresponding positive 

value of x but opposite in sign. 

Example 3.9 

Let y = f(x) = x 3 

Then fe-x) = (-x)3 = -x3 

Therefore, y = x3 is an odd function, the graph of this odd 
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function is as shown below. It is Symmetrical about the 

origin as shown below: 

~ 
Graph of odd function, f(x) = x 3 

Figure(3.3) 

Example 3.10 

Let f(x) = x 5 +3 x - Sinx +x, 

Then fe-x) = (-x)5 +3(-x)3 - Sine-x) +(-x) 

= (-x5-3x3 + Sin x -x) 

=-(x5+3x3 - sinx + x 

= -f(x) 

Therefore, f(x) is and odd function. 

Theorem 3.2 

If f(x) is an odd function defined over the interval 

-n< x < n, Then the Fourier Series for f(x) contains Sine 

terms only. 

Proof:-

Since f(x) is an odd function then In-nf(X)dX = -Jnof(X)dX 

therefore, a o = 1/nJn_nf(X)dX, But f(x) is odd 

a o = 0 

an = 1/nfn_nf(X)COSnXdx = 1/nfn _n (Odd function)dx = 0 
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since f(x) is odd and Sin nx is also odd, the product f(x) 

sinnx is even. 

Therefore, bn = 2/nJf(X)SinnXdx 

The Fourier Series in this case contains sine terms only 

since a = 0 n 

So, if f(x) is odd a o = 0, an = 0 

Therefore, bn = 2/nJn
o f(X)SinnXdx 

Example 3.11 

Consider the function represented graphically below 
y ---1IIf -----(,1---'" 

')(., o 

~ ____ ~-~6~ ~ ________ _ 
-", - ---

Graph of an odd function with f(x) = 6 

Fig (3.4) 

f(x) = -6, -n < x < 0 

f(x) = 6, 0 < x < n 

therefore, f(x) = f(x+2n) 

From the graph we can see that this is an odd function and 

therefore only sine terms are expected. 

00 b . then f(x) = ~ n=l nSlnnx 
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a = 0 and an = 0 0 

therefore, bn = Ijnfn_nf(X)SinnXdx 

f(x) Sin nx is a product of two odd functions and is there-

fore even 

= 2jnfno 6Sinnxdx = 12jn[-COsnxjn]no = 12jnn(1-Cosnn) 

bn = 12jnn(1-Cosnn) 

But bn = 0 for n even 

and bn = 24jnn for n odd 

Since Cosnn = 1 for even and Cosnn = -1 for odd 

b 1 = 24jn, b 3 = 24j3n, b S = 24jSn, 

So, the Fourier Series is 

f(x) = 24jn [Sinx + Ij3Sin3x + IjSSinSx + -----] 

There are situation whereby a function would be discovered 

not to belong to even nor odd functions. So, if f(x) is 

nether odd nor even function, then we must obtain expression 

for a o ' an and bn in full. 

This implies that, Given a function rex) and 

rex) = x 3 + 2x + 1 

r(-x) = (_x)3 +2(-x) +1 

= _x3 - 2x + 1 

hence, the function rex) is not even and not odd. 

Example 3.12 

Determine the Fourier Series for the function shown graphi-

cally below :-
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-%.~ -71:-
)<.1 

Graph of function that is niether odd nor even 

Fig(3.5) 

Solution 

We know that, 

f(x) = ~ao + ~oon=l [an Cosnx + bn Sinnx 

a o = 1/nJ2no f(x)dx = lin {Jno 2x/ndx + J2nn 2dx} 

= 1/n{[x2 /X]n 0 +[2X]}2nn 1/n[n+4n-2n] = 3 

Therefore, a o = 3 

+ J2n n 2Cosnxdx} 

= 2/n {l/n[nSin nx/n]n 0 - 1/nnJ2n
oSinnxdx +J2nn Cosnxdx} 

= 2/n{Sinnn/n +l/nn[COsnx/n]n 0 +[Sinnx /n]2n n 

=2/n Sinnn +2.l/n 2 n 2 Cosnn + 2/nn Sin2nn - 2/nn Sinnn 

=2.l/n 2 n 2 Cosnn + 2/nn Sin 2nn 

Therefore, an = 0 for even and an = -4/n 2 n 2 for n odd 

Then bn = l/nJn of(x)Sinnx dx = l/n{Jn 
0 (2x/n)Sinnxdx 

+ J2nn 2Sinnxdx} 

=2/n{1/n[-x cosnx/n]n 0 + l/nnJn 
0 Cosnxdx + J2n n Sinnxdx} 
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= 2/n{1/nn (-n Cos nn)+ l/nn [Sin nx/nJ n 0 + [-cosnx/nJ 2n n 

= 2/n{ - l/n Cosnn + (O-O)-l/n (Cos2nn 

= 2/n{-1/n Cos2nn} = -2/nn Cos2nn 

But Cos2nn = 1 

therefore, bn = -2/nn 

Cosnn)} 

Then, b 1 = -2/n, b 2 = -2/2n, = b 3 = -2/3n, b 4 = -2/4n 

therefore, 

f(x) = 3/2 -4/n 2 [Cosx + 1/9 Cos3x +1/25 Cos5x + .... J 

- 2/n[Sinx +1/2 Sin2x +1/3 Sin3x +1/4 Sin4x ..... J 

HALF = RANGE SERIES 

The idea of odd and even function is extended to half -range 

Series and this is really where the idea Saves time better 

and also points out a lot of difference. 

Here functioru of period 2n are defined over the range 0 to n 

instead of the normal 0 to 2n. The following graphs show 

different types of half range and tells the term to be ex­

pected in the Series. 

FIGURe (;H) 

Since the waveform is niether symmetrical about the y-axis 

nor the origin, then we say that f(x) here is niether odd nor 

even function. 
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"1<, o 
i=ICaUR.E C2>··n 

Graph of an even function, f(x) = 2x 

Here the waveform is symmetrical about the y-axis and the 

Fourier Series from here would have only Cosin terms. 

Now we can find the Fourier Coefficient and Series here as 

usual . 

From the graph above f(x) 2x, i.e figure (3.7) 

Therefore, a o = 2/rr Jrr 0 f(x)dx = 2/rr Jrr 0 2xdx = 

[X2]rr 0 = 2/rr 

SO, Q9 = 2/rr 

then, in = 2/rrJrr 
0 2xCosnxdx = 4/rrJrr 

0 xCosnxdx 

= 4/rr[(Sinnx~/n)rr 0 - l/n Jrr 0 Sinnxdx] 

2/rr 

= 4/rr{(O-O) -l/n [-cosnx/n]rr 0 } = 4/rrn2 (Cosnrr-1) 

but Cosnrr = 1 for n even and -1 for n odd. 

Therefore, an = 0 for n even and an = -8/rrn2 for n odd. 

Then a 1 = 8/rr, a 3 = 8/9rr, as = 8/2Srr, 

For the case of bn, it will surely be equal to zero Since 

f(x) is an even function, which implies that b n = 0 

Therefore, the Series is: 

f(x) = rr - 8/rr [Cosx + 1/9Cos3x + 1/25 Cos5x + ... 
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*"1-1 I~ 

I __ z __ 
Graph of an odd function, f(x) = l+x. 

FIGURE (~."&) 

From the graph above we can see that it is symmetrical about 

the origin, and then should be expected to have only Sin 

terms in the Fourier Series 

Now we can also find the Fourier Series and Coefficient here 

as usual. 

From the above graph f(x) = (l+x) 

Therefore, a o = 2/n Jno f(x)dx -2/nJno(l+X)dX 

= 2/ n [ (1 +x) ] n 0 

= 2/n{[1+n] - [l+O]} = 0 

For the an' it will surely be equal to zero Since f(x) is an 

odd function 

Therefore, an = 0 

For bn we have :-

bn = 2/nJn 
0 (l+n)Sinnxdx = 

+ l/n In 0 cosnxdx) 

2/n {[(l+X) - Cosnx/n] 

= 2/n {-(l+n)/n Cosnn + lin +~[Sin nx /n]no} 

= 2/n {lin - (l+n)/n Cosnn} = 2/nn {l-(l+n) Cosnn} 

But Cosnn = 1 for even nand Cosnn = -1 for odd n 

Therefore, bn = -2/2 for n even 

and bn = 4+2n for n odd 
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Then, the Series is :-

f(x) = 4+2rr/rr {Sin x + 1/3 Sin 3x + 1/5 Sin 5x + ... 

So, this shows that knowledge of odd and even functions and 

half range Series saves a great deal of unecessary work. 
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CHAPTER FOUR 

In this chapter we shall attempt to introduce some examples 

of areas of applicability of the Fourier Series. In a nut­

shell, we present the following: 

(i) In heating systems, the expression of the curve of solar 

radiation is done using Fourier Series. 

(ii) It is used in wave and electronics to determine the 

value and nature of voltage and current used in linear cir­

cuit with time. 

(iii) Fourier series is also used for representing the motion 

of vibrating string and when solving problems such as those 

• involve in heat diffusion. 

(iv) In transmission line in terms of natural, modes, Fourier 

Series analysis is also used. 

(v) Another aspect that can not be left out is the boundary 

value problems where Fourier Series is also extensively 

used. 

However, we have in this chapter some good examples of the 

use of Fourier Series to obtain desired results in the ap­

plied mathematics earlier mentioned. The detailed aspect with 

examples are consider here below. 

(4.1) ELECTRICAL CIRCUIT ANALYSIS 

In the analysis of waveforms generated from electrical cir­

cuits, Fourier Series is employed Moreover, it was suggested 

that terms of a voltage Series could be applied to linear 

network and then obtain the corresponding harmonic terms of 
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the current Series. Below is a diagram of a general circuit 

indicating harmonic terms. 

- 0.0/1 
l:o.'G~lwt 

.- Cl'l.c..o~ wt PASS IUS- LI",e-~(I. 

,... 0..) t.PS \loll:" Nli-TwoP.l<.. 

• , 
,.., b l SIt'\. WI:"" 

('oJ b'l.S,,, wI:" 

( ...... b, oS"" W~ 

Example 4.1 

Find the Fourier Series for the half - wave rectified sine 

wave shown below 

v 

o 
GRAPH 

Solution 

The wave above shows no symmetry and we therefore expect the 

Series to contain both Sine and cosine terms. 

We know that 

a o =l/nJn-n f(x)dx 

a o = l/n[Jno vSinwtdwt 

= v/nJnoSinwtdwt 

= vinE -Cos wt]n a = v/n{[ - Cos n+ Cos oJ} = 2v/n 

Next we determine an' and we know that 
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an = ~Jn n f(x)Cosxdx 

= l/n[Jn n vSinwtCoswtdwt] 

= v/n [(-Sinwtsinnwt - CosnwtCoswt)/-n 2 + 1)] 

= v/n{[(-n SinnSinn- CosnnCosn)/-n 2 + 1] 

- [(-nSinoSino -COSoCoso)/-n 2 + 1)]} 

an = v/n(1-n 2 ) (Cosnn+1) 

We know that Cosnn =1 for even nand Cosnn 

For n even an = 2v/n(1-n2 ) 

For n odd an 0 

Next we evaluate bn and 

bn = l/nJn-n f(x)Sinxdx 

= l/nJno vSinnwtsinwtdwt 

-1 for odd n 

= v/n[(nSinwtCosnwt - Sinwtcoswt)/-n2 + l]no 

= 0 

But here the expression is indeterminate 

For n =1 , and b 1 of evaluated separately. 

b 1 = l/nJno vSin2wtdwt = v/n[wt/2 - Sin2wt/4]no 

= v/2 

Then the required Series is f(x) =v/n[l+n/2Sin wt -2/3Cos wt 

- 2/15 Coswt - 2/35 Cos6wt .... ] 

4.2 ANALYSIS OF SQUARE WAVE SHAPE 

The current that flows when certain voltage is applied 

to a linear circuit can be found by determining the current 
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using the individual terms of the functions, say f(t) Fourier 

Series. 

Example 4.2 

Let us find by Fourier analysis the coefficients for the 

frequency Components in square wave shape voltage below -
I I I I , I I I 
t I I 

I I 
~ I I 
J 

I I 
f 
I I 

I I _' I V 
I 

I L 
I 
I 
~ j J I 

• -,-- I 
___ .1. __ 

-~ -T/'I- 0 "T/cr T/z. -t 
Graph of voltage against time fig (4.3) 

Voltage is U over half the period T and zero over the remain-

ing half. The origin will be Selected arbitrarily in the 

center of the constant portion as shown, in other to make the 

function even. Voltage then drops to zero at t =T/4, or wt 

=rr/2. The integral shows that the constant term a o is 

a o = 1/2rr Jrr-rr f(t)d(wt) 

= 1/2rrJrr / 2 _rr/2 Vd (wt) 

= v/2. 

This is clearly the average value of the wave and the inte-

gral gives the coefficient as :-

bn = l/rr Jrr-rr f(t) Sin(wt)d(wt) 

= l/rr Jrr / 2 _rr/2 vSinn(wt)dwt 

= 0 
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This coefficient of Sine terms are zero as would be expected 

since sine are odd functions, and we have selected the origin 

to make f(x) even. 

Finally, the an terms are: 

an = l/rrJrr-rr f(t)Cosn(wt)dwt 

= 1/rrJrr/2_rr/2VCOSn(wt)dt 

an = v/nrr[Sinn(wt)]rr/2_rr / 2 

Therefore the value of an is zero if n is even, and is v/nrr 

if n is 1,5,9 .... And is -2v/nrr if n is 3;7,11, ... There 

fore, the Series expansion of the square wave voltage may be 

written as :-

f(t) = v/2 + 2v/rr[Coswt -Cos3wt/3 + Cos5wt/5 - Cos7wt/7+ ... ] 

Then the current that flows when such voltage is applied to 

a linear circuit is found by determining the circuits using 

the individual terms and then superposing them 
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4.3 HEAT FLOW 

The objective of any heat transfer analysis is usually to 

predict heat flow or temperature which results from certain 

heat flow. So, considering a material the total heat flow 

vector is directed so that it is perpendicular to the lines 

of constant temperature in the material. And if the tempera-

ture distribution in the material is known, It is at this 

point that Fourier Series is employed to help do the perfect 

prediction of the heat flow or temperature. 

This idea of predicting heat flow is employed in the deduc-

tion of heat equation in one dimension. The heat equation 

obtained is then analyzed un Sing Fourier Series methods so 

that the heat flow could be well predicted. 

Example 4.3 

Given a bar of length I of uniform cross-sectional area A 

deduce the heat equation and then obtain a Fourier Series 

from the equation Let us consider figure (4.4) 

u(x,t) ~ U(X-tDX,t:) 

--4------o 

PI ) 
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solution 

Take the origin at one end of x -axis along the bar. 

Let u(x,t) be the temperature of the shaded section at x and 

time t. 

We know that heat flows from a higher temperature to a lower 

temperature. Therefore, the amount of heat flow per unit area 

per sec = Rate of heat flow = -kDU/DX 

Where k is the normal conductivity of the material. At 

limits as DU, Dt ~ 0 

Rate of heat flow = -kSv/St 

Therefore volume of material between x and x+Dx ADx 

Then mass of material between x and x+Dx = rADX 

NOw, let c be the heat capacity of the material, then the 

quantity of heat in the material is rACDXU(X,t) 

where U(x,t) is the mean temperature. The increase in the 

amount of heat in the time interval (t,t+Dt) is 

CrADXU(X,t+Dt) - CrADXU(x,t) 

= Dt * Rate of heat flow 

= KADtUx(X+Dx,t) - KADtD(x,t) 

where Ux is the mean value of Ux in the time interval 

(t,t+Dt) therefore, we have 

CrADXU(X,t+Dt)- CrADXU(X,t)=KADtux (x+Dx,t) - KADtux(X,t) 

Dividing through by ADXDt 

Cr[U(X,+Dt)-U(x,t)]/Dt 

= K[Ux(X+Dx,t)-Ux(x,t)]/DX 

At limits Dx,Dt ~ 0 

CrUt = KUxx 
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Su/St = K/CrS2u/SX2 

since a 2=k/cr ==> Su/St = aSu 2 /Sx 2 ----------(3.3) 

Now, to obtain a complete solution to the equation (3.3) 

above some boundary conditions would have to be satisfied. 

This is what would then take us into our required Fourier 

series 

Conditions :-

i) Ux(O,t) = ° 
ii) Ux(l,t) = ° 
iii) U(x,O) = f(x) 

with the condition above, the solutions to the partial dif-

ferential equations may be obtained 

which is the same as 

Ut = a 2 Uxx ' 

We can now proceed to solve the equation by var~able Separa-

ble method. 

Let U(x,t) = X(x) T(t) 

Su/St = XT and S2U/SX 2 = X"T 
. 

==> Ut = XT and Uxx = X " T 

==> Substituting into main equation (3.3) we have 

XT = a 2 X" T ------ (3.4) 

Dividing by XT we get 

" = a 2 X /X = 

where P is a constant 

Therefore, 

" X /X + p2/a 2 = ° ====> X" + P 2x/a 2 ° 
Then X = ACospx/a+ BSinpx/a ---- (3.5) 
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Also TjT = _p2 =====> dtjdt = _p2 

Therefore, T = e- p2t = 1jeP2t 

This is the same as 

==> In t = -p2t and T = -P2t e -----(3.6) 

The solution to equation 3.3 is 

U(x,t) = (ACospxja + BSinPxja) e-P2t 

Now applying condition (1) we get 

Ux(x,t) = e-p2t [-ApjaSinpxja + BpajCospxja] 

Ux(O,t) = e-p2t [0 + Bpja] = 0 

==> B = 0 

Hence U(x,t) = e-p2t [ACospxja] 

Applying second condition we get 

Ux(l,t) = e-P2t [ApjaSinplja] = 0 

==> Sinplja = 0 and plja = nn 

n = 1,2,3 ......... . 

==> P = annjl 

Therefore, U(x,t) = e-(annjl)2t [AnCosnnxjl ] -----------3.7 

considering the principle of superposition equation, (3.7) 

may be summed up and then rewritten as 

U(x,t) = ~oon=l e-(annjl)2t [A cosnnxjl] --- 3.8 

Finally, applying condition 3 to equation (3.8) we get 

U(x,O) = ~ An Cosnnxjl = f(x) (3.9) 

since e-(annjl)2t = 0 since t = 0 , 

Expanding equation (3.9) we have 
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A1 Cosnx/l + A2 Cos2nx/l + A3 Cos3nx/l + •... = f(x) 

This is a Fourier Cosine series and the coefficients A1 , A2 , 

A3 ... can be easily determined in the interval O<x<l 

==> An = 2/1Sno Cosnnx/l*f(x)dx. 

Now suppose that f(x) = x and 21 n 

==> 1 = n/2 

Therefore An = 2/nsnoxcosnxdx 

Using differentiation by parts 

Let u = x the du = dx 

dv = Cosnx then v = Sinnx/n 

then 

2/n[x Sinnx/n + cosnx/n2]no = 2/n 2 n [Cosnn - 1] 

But, for even n, Cosnn = 1 and Cosnn = - 1 for odd n. 

A1 , = 2/n * -2 = -4/n, A2 = 0, A3 = 4/3 2 n 

Hence 

f(x) = -4/n [Cos x + Cos3x/3 2 + Cos5x/5 2 + Cos7x/7 2 + 

Now let X = n, we get 

= x 

since Cosnn = 1 

Finally, 

(4.4) VIBRATION STRING 

= x. 

We know that Fourier Series is a mathematical expression 

that is important both in mathematics itself and in a wide 

variety of applications in the physical Sciences, especially 
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in the theory of wave motion and vibrations 

Therefore, in this section we would derive and solve the 

equation of the vibrating string. this equation is the wave 

equation, which occurs throughout many branches of mathemati­

cal physics. Meanwhile, let us consider the example below. 

Example 4.4 

Given an elastic string stretched between two support 0 and B 

along x axis, find the equation of the vibrating string and 

obtain Fourier Series from the equation derived. 

'U 

------
Fig (4.5) 

Solution 

Let U(x,t) be the VaticaL distance of the points P of the 

string at a distance x from 0 and at time, t. 

Let the distance PQ = Ds and r = density of the string. 

We know that the mass of the string Ds is = r Ds 

where r = density of string. Now, the complement of the 

vertical force of P is TSin9 Ix+Dx - TSin9 Ix 

But, vertical acceleration = 02U/ot2 

Since force = mass * acceleration, we then have that 

(3.11) - rDS 02U/ot2 = TSin9lx+dx - T Sine Ix 

Clearly, we know that Sin9 = tan9Cos9 
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= sins =tan 9/Sec 9 

Also we know that 

Sec 2 9 = 1 + tan2 9 

~ Sec9 = (1+tan 2 9) 2 

h f . t -~ T ere ore Slna = an9 [1+ tan 2 9] 2 

NOW, 

If U is small and T is approximately constant and 9 is 

small then tan9 = Ou/Ox 

And at limits Su/Sx = Ux 
. -~ ==> that Sln9 = tan9(1+tan29) 2 

= Ux(1+U2x)-~ = Ux 

Hence, by dividing equation 3.11 by Ox we then have 

rOs/Ox SU 2 /St2 = TSinelx+ox - TSin9 Ix 

Ox 

But, as Ox, Os ~ 0 we get 

rds/dx Ss2/dt 2 = TSSin9/dx = TSUx/Sx ---- (3.12) 

Clearly, ds/dx equal to a constant at a limit 

Hence, From (3.12) we get 

Therefore Utt = aUxx ' -------------(3.13) 

NOw, to obtain a complete solution to the equation(3.13) 

above, Some boundary conditions must be satisfied. This is 

what would then take us into our required Fourier Series. 

Conditions 

i) 

ii) 

Ux(O,t) = 0 

Ux(l,t) = 0 
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iii) Ux(x,O) = f(x). 

with the conditions above, the solutions to the partial 

differential equation may be obtained, that is 

This may be written as 

Utt = aUxx 

Using the method of variable separable we have: 

Let U(x,t) = X(x) T(x) which is the solution of equation 

(3.13) 

Su/St = XT and then SU 2/ot2 = XT 

S2U/SX2 = X"T 

= XT and U = X"T xx 

==> Substituting into main equation 3.13 

we have XT = a 2 X"T -------- (3.14) 

Dividing through by XT we get 

T/T = a 2 X"/X = _p2 

where P is a constant 

therefore, 

X"/X + p2/a 2 = ° ==> X" + p2x/a 2 = ° 
Then, X = A Cosp/ax + BSinp/ax ------(3.15) 

Also 

T/T = _p2 ==> T/T +P2 = ° 
==> T + PT = ° 

Therefore, T = (CCospt + BSinpt) -------------(3.16) 

Then the solution to the equation 3.13 is 

U(x,t) = (ACosp/ax + BSinp/ax) (CCospt + BSinpt) 

Now applying condition (1) we get 
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Ux(x,t) = -(ApjaSinpxja+BpjaCos pxja) (-CSinpt+Dcospt) 

Ux(O,t) = (O+Bpja) (-CSinpt + DCospt) = 0 

U(x,t) = (ACospxja (CCospt+BSinpt) 

Again, applying Condition (2) we get 

Ux(l,t) = - (ApjaSinplja) (CCospt + DSinpt) = 0 

==> Sinplja = 0 and plja = nn n=l,2,3 ... 

==> P = annjl 

Therefore, U(x,t) = (ACosnnxjl) (CCos(annjl)t + DSin(annjl)t) 

= 0 

Now Applying condition 3 we get 

U(x,O) = (ACosnnx/l) [CCos(ann/l)*0 + DSin(ann/l) *0) f(x) 

==> U(x,t) = ACosnnxjl = f(x) 

From the principle of superposition 

00 U(x,t) = L n=l AnCos nnxjl = f(x) (3.17) 

Expanding equation (3.17) we have 

This is a Fourier Cosine series and the coefficients A1 , A2 , 

A3 , ... can be easily determined in the interval 0< x < 1 

==> An = 2 j lJno Cosnnxjl*f(x)dx 

Now, Suppose that f(x) =X and 21 = n ==> 1 =nj2 

Therefore, An = 2/nJn 0 xCosnxdx. 

Using differentiation by part, we have :-

Let u = x Then du dx 

dv = Cosnx then v Sinnx/n 
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/ 

Then, 

2/n[xSinnx/n + cosnx/n2 Jno = 2/nn2[Cosnn - 1J 

But, for even n Cosnn = 1 and Cosnn = -1 for odd n 

Therefore, 

2/n*-2 = -4/n, A2 = 0, A3 

Hence, 

f(x) = -4/n[Cosx + Cos3x/3 2 + Cos5x/5 2 + ... J 

Example 4.5 

Find Fourier Series to represent the displacement of the 

string when it is pulled aside by Yo at the point x = 1/4 

Y(x) = 4Yox/l, 0< x< 1/4 

, 

= 4YO/3(1-x/l), 1/4 ~ x ~ 1 

Solution 

, , , , , 
/ 

/ 
/ 

/ 

/ 

Fig (4.6) 

Y(x) = Loo
n=l BnSin(nk'x) where k' 

Bn = 2/21J- l l Y(x)Sin(nk'x)dx 
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= 21/1Jl 0 Y(x)Sin(nk'x)dx 

since the integrand is symmetric about x = 0 

Therefore, Y(x) = 32Yo/3n2[(2)-~ Sin(nx/l)+ ~Sin(2nx/l) 
-~ . + (2) 2/9 Sln(3nx/l) + ... 
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CHAPTER FIVE 

CONCLUSION 

Soon after the recognition of the significance of the coeffi­

cient of Fourier Series, by Joseph Fourier, it became of 

great importance and virtually the only way of expressing 

heat flow, motion of vibrating string, voltage and currents 

in series forms. 

Today, in the field of engineering and physics, the practical 

use of Fourier Series is seen. This practical aspect include 

the process of predicting heat flow and analysis of wave. 

In the practical use of Fourier Series, the idea of one of 

its properties known as "odd and even function" is seen to be 

of great importance, that is, once a function is described as 

either odd or even, it is then dealt with depending on the 

kind of coefficients associated with such a description, 

thereby saving the time for calculating coefficients not 

needed in the problems. 

In chapter four (4) of this project, the manipulations in­

volved in the practical use of Fourier Series are given with 

some good examples. To then prove that the series obtained 

in every problem are credible, a computer solution of one of 

the problems was also obtained. 

The result of the heat problem in chapter 4, example (4.2) in 

comparison to that obtained on computer turned out to be the 

same. The only difference so far observed is the fact that 

the fractions in the series generated can only be expressed 
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in decimal forms. However, the procedure to the result of 

the heat flow problem is as expressed in chapter 4, example 

(4.2). The procedure to result on computer is not different. 

That is the program was designed and coded to follow the same 

pattern to compute the Fourier Series to the problem depend-

ing on the number of terms demanded. The various terms in 

the series are then summed up to give the exact value. The 

procedural design and codes are as shown in the appendix. 

RECOMMENDATION 

The computer language, TURBO BASIC was used in coding the 

de?ign of the heat problems. The language was chosen in 

preference to others due to its capability to handle mathe-

matical manipulations. It is also user friendly and flexi-

ble. However, it is successfully proved that the Fourier 

Series generated as the results to the heat problem is credi­

ble. 

Even though this project work covered alot of aspect of 

Fourier Series, there are still other aspect that if research 

is done further and included, this project would bring more 

of achievement than even expected. One of these aspects is 

the area that deals with the Convergence of Fourier Series. 

However, during this further research, much light should be 

thrown on the procedure to obtaining the final approximate 

value of any given Fourier Series. 

In conclusion, Fourier series is extensively in use and would 

with time gain more ground in the area of technology. 
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APPENDIX B 

FLOW CHART 

INTERGRATE 

An = j f(x)Cosnxdx 

I TAKE Cos n = -1 I 
t 

INPUT THE VALUE 
OF 

WRITE SERIES 
AND EXACT VALUES 

END 



:lude "a:fourier.txt" 
r 15,1 

'1 
i=l to 32 
.ct k$ 
,ate row,l:print k$ 
=row+1 
row>22 then 
row=l 
goto presskey 

l if 
ext i 
.elay 0.8 
oto 30 

skey: 
cate 23,25:print"Press any key to continue.. " 
=input$(l) 
s 

10 

solving the heat equation using the fourier 
series method. 
conditions are u(O,t)=u(x,O)=o and u(x,O)=f(x)=x 
in the interval ° to +D 

;ls 
i=22j7 

.nput"Enter the number of terms of series to be generated:",nt% 

lim a(nt%) ,b(nt%),p(nt%) 
.---- initialize a(n) values 
'or i=l to nt% 
a(i)=O 
text i 

compute values for cosine 
here we've assumed that f(x)=x and l=D 
the costant values for the fourier series is given by 

2 ~ 
A(n)= - °cos(nDjl) .f(x)dx [0,1] integration interval 

1 % 

Eor n=l to nt% 
q=pi*n 
p(n)=cos(q)-l 

next n 

----- compute the fourier constants---------

for n=l to nt% 
pie=pi*n*n 
a(n)=2*p(n)j(pie) 

next n 

the general solution for the eqation is sum[exp(anpjl) An Cos(npj l )x] 
at t=O we have a fourier cosine series 



)rint 
.nput"Enter the value of x: ", x 
rint 
rint"The series obtain is given below . . " 
rint 
'or j=l to nt% step 2 

TJU=a (j) *cos (j *x) 
pp=pp+uu 

print using "###.####"iuui:print" +"i 
text j 
rint" ... = "iX 
rint:print 
'olor 18,1 
rint"we see that as the number of terms of increases the" 
rint"sum approaches the exact value D." 
!olor 7 
:nd 


