
CONSTRASTING THE FOUR BASIC SORTING
ALGORITHMS

BY

GARB A ABDULLAHI
PGDIMCS/97/98/726

A PROJECT SUBMITTED IN PARTIAL FULFILMENT OF
THE DEPARTMENT OF MATHEMATICS/COMPUTER

SCIENCE REQUIREMENTS FOR THE AWARD OF A POST
GRADUATE DIPLOMA IN COMPUTER SCIENCE ()F
FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA.

DECEMBER, 2001

CERTIFICATION

This is to certify that this research was carried out by Garba Abdullahi PGDIMCS/97/981726 of the
Department of Mathematics/Computer Science is fully adequate in scope and quality for the award
of the Post Graduate Diploma in computer Science of Federal University of Technology, Minna.

Mallam Isah Audu
Project Supervisor

Dr. N. I. Akinwande
Head of Department

External Examiner

11

Date

Date

Date

ACKNOWLEDGEMENT

My gratitude is to Almighty Allah the most beneficent and the most merciful for

keeping me alive and granting me the good health to undertake this task. I will

also like to express my gratitude to all the lecturers of the department of

Mathematics and Computer, especially the following: Professor K. R. Adeboye

who urged me to carry on with the programme, Malam Isah Audu, a friend turned

lecturer who also served as a source of inspiration to me and Malam Danladi

Hakimi (Sarki Yakin Egwa).

My gratitude also goes to Dr. Aiyesimi, Prince R. O. 8admus. May Allah reward

all your efforts.

111

DEDICATION

This is dedicated to my numerous friends, well wishers and colleagues.

IV

ABSTRACT

The project studied four sorting techniques. Sorting is the process of rearranging

a given set of objects in a specific physical order. The first case is a list of

integer of a certain size generated and passed to each of the four sorting

techniques. Four sorting techniques were considered. And in each case the

time taken is recorded in to a text file. This process is repeated for a list of five

different sizes.

In the second case, an array of strings will be stored in ·a text file (input file), a

certain size of this strings will be revolved and passed to each of the four sorting

techniques. Again in each case the time taken is recorded on to a text file (out

file). This process if repeated for five different sizes.

Then for the two cases, a graph will be plotted of the measured time against size.

Then the result from the graph will be interpreted and some conclusion drawn.

v

TABLE OF CONTENTS

Cover Page

Title Page ii

Certification iii

Dedication iv

Acknowledgment v

Abstract vi

CHAPTER ONE GENERAL INTRODUCTION

1.1 Significance of the study

1.2 Analysis of Research problem

1.3 Research Question

1.4 Objective of the Study

1.5 The scope of the Study

1.6 Limitation of the Study

1.7 Definition of Terms

CHAPTER TWO LITERATURE REVIEW

2.1 Review of Algorithms

2.2 Properties of Algorithms

2.3 Review, of Sorting

Vl

CHAPTER THREE METHODOLOGY

3.1 Data Type

3.2 Source of Data

3.3 Selection of Data Size

3.4 Method of Data Collection

3.5 Description of some sorting algorithms

3.5.1 Insertion sort

3.5.2 Merge Sort

3.5.3 Quick Sort

3.5.4 Bubble Sort

CHAPTER FOUR DATA ANALYSIS

4.1 Tabulation of Data

4.2 Graph

4.3 Analysis of data from sorting array of integer

4.4 Analysis of data from sorting array of string

CHAPTER FIVE

5.1 Conclusion

5.2 Recommendation

References
Appendix

CONCLUSION AND RECOMMENDATION

vn

CHAPTER ONE

GENERAL INTRODUCTION

1.1 INTRODUCTION:

This unit is an insight to what the search is all about, and discuses in details the

objectives of the research work, its scope and limitation.

This project work with the title "comparism of some sorting algorithms" is a great

effort in computing. It is an analysis of various sorting techniques whose result

will reveal the performance of the various sorting techniques; from which a

deduction will be made on the performance to determine which of the methods is

best for a given set of data. Sorting is generally understood to be the process of

rearranging a given set of objects in a specific physical order.

A good deal of effort in computing is related to putting data available to users in

some particular order. For example, the organization of a telephone directory,

entries are ordered in strict alphabetical order by name. To find a telephone

number, all you need is the name of the person to which the call will be made,

then using the first few letters of the surname and locating the appropriate

section of the directory, you can then search several pages until a match is found

for the surname. The address and telephone number of the person will be listed

against the surname.

1

Another example of information origination is that of a bus timetable from a

control station. The destinations of buses are ordered alphabetically by town or

village. Other examples includes, mailing label which was printed in a zip code

order and delinquent accounts are often in order according to the length of time

the account has been delinquent. Objects are sorted in table of contents, in

libraries, in dictionaries and almost everywhere that information stored has to be

searched and retrieved.

Ordering of data has an important impact on searching. Data that are not

ordered must normally be searched using a sequential scan of all the data.

Ordered data lend themselves to simple search techniques.

1.2. SIGNIFICANCE OF THE STUDY

The purpose of sorting is to facilitate the later search for members of the sorted

set. It allows an orderly presentation of information when producing reports. It

simplify modifications, insertions, amendment and deletion of information without

destroying the key order of the remaining information.

Our primary interest in sorting is devoted to the more fundamental techniques

used in constructions of algorithms. In particular, sorting is an ideal, subject to

demonstrate a great deal of diversity of algorithms, all having the same purpose,

many of them being optimal in one sense, and most of them having advantages

over the others. It is therefore an ideal subject to demonstrate the necessity of

2

performance analysis of algorithms. It is well suited for showing how a very

significant gain in performance may be obtained by the development of

sophisticated algorithms when obvious methods are readily available.

Analysis of Algorithms is of great significance to new programmers in the sense

that it enables them understand an efficient way of coding algorithm.

Performance of an algorithm is important for various representation of the list

data structure. The analysis reveals the method that is suitable for the user

when ordering data, depending on the data type and the size of the data to be

sorted.

We need to obtain estimates or bounds on the runtime which the algorithm will

need to successfully process a particular input. Computer time is a relatively

scare and expensive resource which is often sought by the users. It is to

everyone advantage to avoid runs that are aborted because of an insufficient

time allocated on a job card. A good analysis is capable of finding bottlenecks in

our programs.

Many programmers will find this analysis useful in application software

development, which require sorting of items. It minimizes the total cost of soft

ware development by minimizing the cost 0 f running the programme.

3

Finally, one will like to have some quantities standard for comparing more than

one algorithm which claims to solve the same problems. The weaker algorithm

should be improved or discarded. It is desirable to have a mechanism for filtering

out the efficient algorithm and replacing those that have been rendered obsolete.

1.3 ANALYSIS OF RESEARCH PROBLEM

Many different sorting algorithms have been invented, each method has its own

disadvantage(s) and advantage(s) over the others, which makes them to

outperforms the others on some configurations of data and hard ward. The user

of an algorithm may find it difficult to select a suitable algorithm for the application

at hand.

It is in due cause that this analysis is undertaking to compare some sort

algorithms. Performance is determined by the number of movies, the number of

compares, the complexity of the inner loop, the size and nature of the sort item.

The initial order of the elements being sorted. It is impossible to consider the

interaction of all these variables, but some rules of thumb can be applied.

1.4 RESEARCH QUESTIONS

Below are the questions, which this project will attempt to answer.

I. Is there any sorting algorithm which is the best when the value stored in

each component of an array is a whole number?

4

II. Is there any sorting algorithm which is the best when the value stored in

each component of an array is a string?

III. Will the size of data affect the time it takes to sort a list of a given data

type?

IV. Is there any sorting algorithm among the ones considered which is

optimal? That is, which is so good given any date type and size?

1.5 OBJECTIVES OF THE STUDY

The objectives of the project are as follows:

i. To compare four different sorting algorithms, and deduce from the result

obtain the best method for sorting an array list of string.

ii. To identify the best method for sorting an array of whole numbers.

iii. To find whether or not the size of elements to be sorted has any effect 0

the performance of an algorithm.

iv. To identify an optimal sorting method (if any) which is good for any given

type of data type and size.

1.6 THE SCOPE OF THE STUDY

Below is the area covered by the project internal sorting is used to sort the items

that are use as input. Sets of random whole numbers will be generated by the

computer and these numbers will be sorted using the various sorting methods

selected. Also, an array of strings (for examples UDUS students' admission

number) will be sorted.

5

The research will be sorted. Sorting methods which are:-

Insertion sort, quick sort, bubble sort and merge sort. That is, it involves both

simple and advance sort techniques.

The above algorithms will be studied in details, interprets results, drawn. Some

conclusions and make recommendations.

This research is limited to only four sorting methods out of the several methods

of sorting devised so far.

The sorting algorithms are implemented in one programming language alone

(turbo pascal). It is restricted to sorting array of strings and whole numbers

alone. Other data types are not taking into consideration.

Some of the limitations above are due to:-

(1) Insufficient time:- The time is very limited. There is no enough time to

undergo the research for this analysis properly if the scope is wider than

above.

(2) Lack of some language compliers is one of the problems facing computer

centre in some Nigeria Higher Institutions, Sokoto State Polytechnic

6

inclusive that is why the algorithm used for this analysis are coded

(implemented) in Pascal language alone.

1.7 DEFINITION OF TERMS

Random numbers:- Random numbers are unbiased numbers. In random

numbers there can be no digit or number which is found more or less frequently

than the others.

The values must be non predictive. A zero cannot foretell the appearance of

another zero or some other particular value. This also applies to the size of the

values. The production of a small or large value should not give any clue about

the size of the subsequent values.

Complexity:- Complexity of an algorithm is the timing function of the algorithm

and the order of that algorithm.

Run time:- Compilers are translators, it is a program which translates a program

codes in high level language, known as the source code into an equivalent

program in the machine code of the computer, known as the object code.

Compilers:- Compilers are translators, it is a program which translates a

program code in high level language, known as the source code into an

equivalent program in the machine code of the Computer, known as the object

code.

7

2.1 INTRODUCTION

CHAPTER TWO

LITERATURE REVIEW

This chapter reviews the literature of related subject matter of the project.

The chapter discusses issues such as the review of algorithm and its properties

and the review of sorting.

2.2 REVIEW OF ALGORITHM

Computer is an electro-mechanical machine, which takes in data as input.

Process it and produce output at tremendous speed. It is also called electronic

data processing (EDP) machine, which handle data, make ' arithmetic

calculations, analyze data and make logical decision.

Any person who used digital computer to solve problems has some intuitive idea

of the meaning of the word "Algorithm". Because a computer is nothing more

than an electro-mechanical machine, which cannot do anything on his own

without being instructed on what to do, how to do it, where and when to do it.

Although there are some cases when the computer is instructed on what to do

alone, and the computer will perform the task, as in the case of declarative

programming language(s).

8

Computer executes an action based on the instruction/command given to it by

the programmer or user. The computer does only what it is asked to do.

Garbage in, Garbage out (GIGO).

For a computer to solve a given problem, it has to follow some steps, this lead to

the concept of an algorithm. Algorithms can be said to be the central concept of

computer science.

The work ALGORITHM was derived from the name AI-khowarizmu who authored

an Algebra text in the 9th century. However, more precisely, the word was a

refashioning ALGORISM which was used for several years to refer to arithmetic

procedures like long division and finding square roots.

The'S' was later interchanged with 'th' by association with arithmetic and

logarithm, and the most famous algorithm historically dated from the time of the

Greeks, that is, the Euclid's algorithm for calculating the greatest common

division of two integers.

With the advent of computers, the term algorithm has got a new lease, since

every computer program is an algorithm. According to Adhert, o. J. et al (1968);

Algorithm is defined as:-

9

"A term derived from the word algorithm which meant the art of computing with

Arabic numerals. The term algorithm is now used to denote any method of

computation consisting of comparatively small number of steps or any methods

of computation , whether algebraic or numerical.

From the definition above, we can say that algorithm initially meant computing

with Arabic numerals, but it is now an algebraic or numerical method of

computing with comparatively small number of steps.

Furthermore, Adhert, O. J. et al (1968) says that "An algorithm is a detailed

logical procedure that is, it is logical procedure by which a particular problem can

be solve".

Algorithm is defined by George, O. A. et al (1987) as"-

"A precise formulation of a method of doing something. In computers, an

algorithm is usually a collection of procedural steps or instructions organized and

designed so that computer process results as the solution of a specific problem"

it is an actual way of designing a collection of steps to follow in order to solve a

specific problem.

2.3 PROPERTIES OF ALGORITHMS

Algorithms are characterized by several properties, some of these properties

are:-

10

(1) PRECISION:- Algorismic steps should be void of vagueness.

(2) EFFECTIVENESS OR EFFICIENCY:- Execution of impossible ask must

be avoided in an algorithm.

(3) FINITENESS:- There must be an exact number of instructions in an

algorithm.

(4) TERMINATION:- There should be a stopping criterion to terminate an

algorithm, especially in a case of an instruction with repeated execution.

(5) OUTPUT:- An algorithm should provide an output of implementation.

2.4 REVIEW OF SORTING

Having understood what an algorithm is generally, that is, what the concepts is

all about, the next step for us now to review sorting.

According to Tremblay, J. P. and Sorenson, P. G. (1967); define sorting as:­

"Sorting is the operation of arranging records of a table into some sequential

order according to an ordering criterion. The sort is perform according to the key

value of each record".

11

A sorting method is called stable if the relative order of items with equal keys

remains unchanged by the sorting process. Stability of sorting is often desirable

if items are already ordered (sorted) according to some secondary keys, i.e.

properties not reflected by the primary key itself.

There are two important and largely disjoint categories related to sorting data,

there is the internal and external sorting. Internal sorting algorithms are often

classified according to the amount of work required to sort a sequence of

elements.

The amount of work refers to the two basic operations of sorting. Comparing two

elements and moving an element from one place to another. Internal sorting

involves the storage of all the data to be sorted in the main memory.

In external sorting algorithm, the data is stored in an external secondary medium,

such as tape or disk, when the amount of data is too large to be stored and

sorted in the main memory, and successive parts of the data are stored in the

main memory. In computer, arrays are stored in the fast high-speed random

access "internal" storage, array sorting is considered to be internal sorting.

Because the predominant requirement that has to be made for sorting methods

on arrays is an economical use of the availability store, this implies that the

permutation of items which brings the items into order has to be performed "in

12

situ". Thus, methods which transport items from an array A to a result in array B

are of no interest.

Sorting methods which sorts' items "in situ" can be classified into three principal

categories to their underlying methods:

(1) Sorting by insertion

(2) Sorting by selection

(3) Sorting by exchange

From the various definitions of algorithms and sorting above, sorting algorithms

can be explain as the detailed logical procedure which represents the operation

of arranging the records of a table into some sequential order according to an

ordering criterion. It can also be explain as the collection of a procedural steps or

instructions organized and designed so that computer can rearrange elements in

a specific physical order.

List are generally sorted on the value of a particular field. The sort process may

involve moving entire elements or the elements of an index list or not moving

elements at all. The basic mechanisms, however, are not affected by how much

of each element participates in the sorting process/operation.

13

Below is some of the sorting algorithms definition. Tha~ is, the definition of the

algorithms used for this analysis.

1. Insertion sort:

According to Stubbs and Webre (1987).

"Insertion sort is a sorting method in which the basic operation is the insertion of

a single element into a sequence of sorted elements, so that the resulting

sequence is still sorted".

2. Merge sort:

Stubbs and Webre (1987) state that:

"Merge sort is a sorting method in which two sub list, each already sorted are

merged together to form one aggregate list that is also sorted"

3. Quick sort

Stubbs and Webre explain Quick sort as:- "A method which consist of a series of

steps, each of which take a list of elements to be sorted as input. The output

from each step is a rearrangement of the elements so that one elements is in it's

sorted positive and there are two sublist that remain to be sorted. One less than

and the other greater than the sorted element".

4. Bubble Sort

14

Another well-known sorting methods is the bubble sort, according to Jean

Tremblay, J. P. and Sorenson P. G. state that:- "in bubble sort items are

interchanged immediately upon discovering that they are out of order".

15

3.1 DATA TYPE

CHAPTER THREE

METHODOLOGY

The test data used in this comparison are of two types:

Numeric

II Strings

(1) NUMERIC DATA TYPE:- under this category numbers are used as data,

this is further divided into:-

1. Integer

2. Real

1. Integer:- Integer whole numbers will be generated using random number

generator. All the numbers generated will be use as test data in this

comparism. The using generated numbers will consist of different values.

The numbers are generated as follows:

Procedure Generation (Var Table: data; Var N: integer);

Var 1, Numb, seed: integer

Procedure Randomize (var seed: integers);

Var hr, min, sec, sec100:word;

Begin

Gettime (hr, min, sec, sec100);

Seed: = hr*360 - min * 60 + sec + sec1 00:

16

End;

Function Random (Var seed: integer): Real;

Const M = Maxint; A = 2743; C = 5923;

Begin

Seed: = (seed * A + C) MOD M;

If seed < a then seed: = seed + m;

Random: = seed 1m;

End;

Begin

Randomize (seed);

For i: = 1 to N do

If (i > 1) and (table [i + 1] <> table [i] then

Tablle [i]: = Trunc (Random (seed) * 10000);

End ;

THE PROCEDURE GENERATION: this generates the random numbers it calls

procedure randomize.

PROCEDURE RANDOMIZE: this initializes the random number generator, it

calls an in built function gettime use in finding the seed which the function

random will use.

17

FUNCTION RANDOM: returns a random number Y of type integer in the range

o <=Y <Argument.

2. Real:- the time taken to sort the elements is of type real, it is use in this

project to analyze the performance of the setting methods. An in built function

gettime (argument) is use to get the executing time. For example:

Gettime (hr, min, sec, sec100);

(ii) STRINGS: A string is a finite sequence of characters; in this project

strings will be sorted using different sorting methods. Examples of string that will

be use are student's Admission number in UDUS. In particular, admission

number of students from the department of Mathematics.

3.2 SOURCE OF DATA

The data use for the research work are the random numbers generated and the

students admission numbers obtained from the registration forms of course in the

Mathematics Department collected directly from Mathematics Department Exams

Officer. That i$ the data is from random number generating function and the

department Exam Officer. Therefore, the source data is a secondary source.

3.3 SELECTION OF DATA SIZE

Different sizes of the data are used in sorting array of integer. Also, when sorting

array of strings, the elements that were sorted (admission number) were of

different sizes.

18

3.4 METHOD OF DATA COLLECTION

Random number generating function is used to generate the data, and these sets

of numbers are passed to each of the sorting algorithms that are considered in

this project. The size of the number generated, the name of the sorting

algorithms and the time taken to sort this numbers are recorded on to a text file

(output file). The program consists of a main menu which comprises six options

one to six. Representing generate list, insertion sort, bubble sort, merge sort,

quick sort and display the result.

If the user select one, a message will appear on the screen as "ENTER THE

NUMBER OF ELEMENTS TO GENERATE". If the user type the desired number

list of random number will be generated. And then the system will take you to the

main menu again. You then select 2, 3,4, 5, to sort the number generated using

the four sorting methods respectively. In each case, the time it takes to sort the

list by a particular method is recorded in a text file against the name of the

method. The system will take you back to the main menu again, if you select,

you are generating another list of different sizes.

If you type the number, the system will take you back to the main menu, then by

selecting 2,3,4, and 5 these numbers also will be sorted by the four sorting

methods respectively. In each case recording the time against the name of the

method in a text file. This process continues until at least five different sizes

19

were generated and sorted. To see the result press 6 and press 0 to escape

from the main menu and the system will take you back to the program.

Then after obtaining the various sizes and time a graph of measured time against

the elements sizes will be drawn, containing the four methods used (insertion,

bubble, merge and quick sorts).

From the graph generated, result will be interpreted and deductions made,

conclusion will be drawn based on this data type.

Secondly, an input file will be created, in which admission numbers will be stored,

a program will be coded which call this file, retrieve a certain size out of the four

methods. This program also consists of a main menu, which comprises five

numbers one to five. Representing generate list, insertion sort, bubble sort,

merge sort and Quick sort.

If the user select 1, a message will appear on the screen as "ENTER THE

NUMBER OF ELEMENTS TO RETRIEVE" if the user type the desire number,

admission numbers of that size will be retrieved from the file. And then the

system will take you to the main menu again. You then select 2,3,4,5 to sort

these elements using inserts, bubble, merge and quick sort respectively. In each

case, the time taken to sort out the elements by a particular method is recorded

in atent file against the name of the methods. The system will take you back to

20

the main menu again, if you select 1, you are retrieving another list of different

size. You type the number, the system will take you back to the main menu, then

by selecting 2,3,4 and 5 these numbers also will be sorted by the four sorting

methods respectively. In each case recording the time against the name of the

method in a text file. This process continues 8520/until at least five differente

sizes were generated and sorted. To see the result press 6 and press 0 to

escape from the main menu and the system will take you back to the program,

then after obtaining the various sites and time, a graph of measured time against

the element size will be drawn, containing the four methods used (insertion,

bubble, merge and quick sorts).

From the graph generated, result will be interpreted and deductions, made,

conclusion will be drawn based on this data type.

Then the two sets of results will be compared that is result obtained when the

data is from an array of integer and when it is from an array of strings will be

compared and a final conclusion made.

3.5 DESCRIPTION OF SORTING ALGORITHMS

The sorting algorithm used in this project are described below:

3.5.1 INSERTION SORT

21

The separation performed by insertion sort is inserting an element in a sorted list.

This is performed by scanning the elements below the element to be sorted.

Each element that is smaller compared to the element to be inserted is moved up

by the position. As soon as an element is found that is large compared with the

element to be inserted, the seen terminates and the insertion occurs ahead of the

larger elements.

For example, if the input data to be sorted is an array of five elements 36.0,75,

280,235,534 say. The fifth element is 534, when considered by itself, it is a

sorted list of length one. The transition from fig. 1 (a) to 1 (b) consist of inserting

235 in the sorted list, 235 is inserted at the top of the list because it is less than

534. The sorted segment is of length two. From fig. 1 (b) to (c) the transition is

accomplished by inserting 280 in between 235 and 534, since it is less than 235.

This is down by moving 235 up to make room for 280, and the sorted sublist has

a length of three.

To obtain fig. (1) 75 is inserted at the top of the sorted list since it is smaller than

all the elements in the sorted subset. Finally, fig (e) is obtained by inserting 360

in the list. This can be achieved by moving 75, 235 and 280 up to make room for

the insertion of 360 in between 280 and 534. The figures referred to above are

as shown below:-

Figure 1

22

360 360 360 360 75

75 75 75 95 235

280 280 235 235 280

235 235 280 280 360

534 534 534 534 534

A B C 0 E ,

In each of the figures above, the number(s) written boldly show the sorted sub -

list.

Algorithm insertion sort.

Step 1

Step 2

Step 3

Step 4

Step 5

[start insertion] For K f-N - 1 down to 1 do through step 5

[take next key] set j f- K + 1; and save f-d[k]

[compare save! Om] whi le save> dOl do

Set d [j - 1] f- d 0) ; and j f- j + 1

[compare j:n] IF j > N THEN goto 5

[insert item] set d [j - I] f- save

3.5.2 MERGE SORT

A procedure merge sort is used to implement the sort. It begins by comparing

pairs of elements, one from each sub list. The smallest element is appended to a

sorted list and is replaced by the next element from its sublist. This continues

23

until there are no more elements in one of the sublist. The remaining in the other

sub lists are the appended to the sorted list, and the sort is completed .

For example, if A and B are two sorted sublists. A is of length four and B is of

length six. Supposing both A and B are already sorted. To sort both A and B

and put the result into C we have:

A

B

C

70

60

70

55

50

60

30

45

55

5

20

50

10

45

3

30 20 10 5 5

Length of C is the same as the length of A and B the general algorithm perform

simple.

1. Merge two ordered sub-tables into a temporary vector

2. Copy the temporary vector into k.

Below is an algorithm for simple merge.

Procedure simple-merge (first, second, third).

Step 1 (initialize) 1 ~ First and J ~ Second and L ~ 0

Step 2 (compare corresponding elements and output the smallest)

Repeat while 1 < Second and J < = third

24

If K [I] < = k [J] THEN

L+-I+1

ELSE

Temp [L] +- K [L]

L+-L+1

Temp [L] +- K [J]

J+-J+1

Step 3 [copy the remaining unprocessed elements in output area]

If 1 > = second THEN

ELSE

Repeat while j < = Third

L+-L+1

Temp {I} +- K {J}

J+-J+1

Repeat while 1 < Second

L +- L+1

Temp [L] +- k {I}

1+-1+1

Step 4 [copy elements in temporary vector into original area}

Repeat for 1 = 1,2,3, L

K [First, 1 + 1] +- temp [I]

Step 5 {finished} return .

25

3.5.3 QUICK SORT

If the elements to be sorted are stored in an array of a N components, d [1], d[2],

d[3], d[n] say, then one step of the quick sort process would rearrange the

elements. Each step of the Quick sort partitions a given list into three disjointed

sUb-lists. One of these sub-lists is a single element that is in its sorted position.

The other two sub-lists share a common property each of them contains

elements that are either larger than or smaller than the element that is in its

sorted position. This permits each of these sublist to be sorted without reference

to any element in the other sublist. Each step of Quick sort replaces the problem

of sorting one long list by the problem of sorting two short list.

Figure 2a

53 59 56 52 55 58 52 57 54

To sort the elements in fig. 2 above so that 53 is in its sorted form using Quick

sort we have:

Figure 2b

52 51 53 56 58 57 54

From fig 2b, is in its sorted position. All elements smaller than 53 and are

arranged to the left of 53 and all elements greater than 53 are to the right of 53.

ALGORITHM QUICK SORT

Step 1 [initialize push-down] set k ~ 1; Left [k] ~1, Right [k] ~ 1;

26

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

Step 12

Step 13

Step 14

Step 15

Step 16

3.5.4

[iterate] While k> 0 Do through step 13; and stop.

[pop of push down] set L +-- Left [k]; R +-- Right [k]; k+--k-1.

[sort large set] While R-L> =m do through step 12.

[initialize] set 1 +--L; and Mid +--A [I].

[compare Mid: A[J]] while Mid <A[J] Do set J+--J-1.

[pass compare?] if J<=1 THEN set A[I] +--Mid, and goto step 12.

[interchange] setA [I] +--A[J]; A[J] +--Mid, and 1] +--1+1.

[compare] A[I]: Mid]n while A[I] < Mid do set 1+--1+1.

[pass complete?] If L<=1 THEN set I+--J; and go to step 11.

[interchange] set A [J] +--A[I]; J+--J-I; and go to step 5.

[push down] set K+--K + I; IF R-I <= I - L THEN set Left [K}+--1-1;

Right [K] +--R; and R+--I-I ELSE.

[start insertion] FOR J+--L +1 to R DO THROUGH STEP 15.

[take next key] set B+--A[J], and I+--J-I.

[compare B:A[I]] while B<A[I} and I>=L do set A[I+1] +--A[I] and 1+--1

+ 1.

[inset] set A [I + 1] +--B

BUBBLE SORT

When bubble sort is used, there is always N - 1 passes required. During the first

pass, the content of components one and two are compared, if they are out of

order, then they are interchanged this process is repeated for elements in

component two and three. There and four and so on. This method will cause

27

items with small elements to move or "Bubble up" After the first pass, the largest

element will be in the position. On each successive pass, elements with the next

largest value will be place in position N-1, N-2, ... 2, respectively, thereby resulting

in a sorted order.

After each pass through the table, a check can be made to determine whether

any element interchanges were made during the pass. It no interchanges

occurred, then the table must be sorted and no further passes are required.

Procedure Bubble Sort (K, N,)

Step 1 [initialize) Last +-N (entire list assumed unsorted at his point)

Step 2 [Loop on pass index) Respect through step 5 for pass = 1,2, ... N-1

Step 3 [initializes exchanges to counter for this pass] EXCHS+-O

Step 4 [Perform pairs wise comparisons on unsorted elements] Repeat

FOR 1=1,2, ... ,Last -1 IF K [I] > [1+1] THEN K[I] <> K [1+1]; EXEHS+-EXEHS + 1

Step 5 (were any exchanges made 0 this pass?] IF EXEHS = 0 THEN

Return (Mission accomplished, return early} ELSE

LAST +- LAST - 1 (maximum of passes required).

28

4.1 INTRODUCTION

CHAPTER FOUR

DATA ANALYSIS

This chapter deals with the analysis of data. The result obtained from running

the coded program is presented below. The execution time of algorithms can be

affected by the capacity of the system on which the program is run, and also by

the cycle in which the processor is in.

The time given below is obtained by running the coded program on a particular

system. (American Mega trends 80386 with a memory capacity of 686k, 1024k

ext, and operating system of Ms-Dos version 6.22)

For systems with higher capacity, the time is expected to be smaller than the one

given below.

4.2 TABULATION OF DATA

Table 4.1 (a): FOR SORTING ARRAY LIST OF INTEGER INITIALLY IN

RANDOM ORDER

Time taken to sort (Us)

No. of items

200

400

Insert

1.2100

2.2000

Bubble

1.3200

3.5200

29

Merge

. 1.1600

2.0300

Quick

1.1600

0.3300

600 3.3500 5.3800 1.7500 0.3300

800 4.500 9.8900 1.7600 0.5500

1000 7.1400 15.3800 1.4300 0.6600

1200 10.1000 29.9700 1.5900 . 0.7600

1400 13.3600 26.4200 1.8100 0.7600

1600 13,1200 38.8900 2.0300 1.1000

1800 16.3200 40.5900 3.5700 0.9900

2000 18.8400 47.1800 2.4200 1.2100

Table 4.(b): FOR SORTING ARRAY LIST OF STRING

Time taken to sort (us)

No. of items Insert Bubble Merge Quick

20 1.1000 0.6600 0.7200 0.7700

40 0.7100 0.6600 0.6600 1.2100

60 0.8200 0.7200 0.7200 0.6600

80 1.7500 0.7100 0.6000 1.1000

100 0.7700 0.7700 0.6600 1.2100

120 0.8200 1.0400 0.8300 0.7100

140 0.8300 0.9900 0.9300 0.7700

160 0.9300 1.1500 0.9900 1.2100

..

30

I
I ,
I

I
I

I
!

z

:-:: i

;~ 1
l~ i
'.J '
lJ) !
0 1 ,- ,

::: I
II! I

::~ : , '

, .~ : !

v

"\
\

\

" '\ ,

"\.

\
" '.)

\
\

11
\

\
\
:;]

\.

\
\

.,
\

iii

\ ,

\
\.

\
II

\
\

-l
,:~ !jl I §
i : . rt
I '
I I

I i
i I !

.... :! I" ~ ,.'Q

\ I
\ I
\ i ~ J § .. j

11 '
, i t

-"I !;;

I : :
• I
• I

,: -<I ,!: '
Ii
! '

I ~ " C?

I "
I

\ :

" i
r} r"':l

\ "
\ 'i
\ \
\ .~

\ ",
,)
\\ ;
I.""',· ' . -,

w
~
t-
O
lU
~
:::J
r.J)

<l:
I!J
2

1.G

1.e

1.4

1 ~,

[j

O.S
.. .

0.6 ,-

fdj 4.'l(b): TIP/IE TAI{E I: TO SORT AI~ AR.RAY LIST 6i=-ST·RING----
- -'-"'-'--'- - ... _-_ . __ .-. __ ._-_ .. .• . __ ._-_ .. __ ... -..... -- ._-."-._-_ .. _.- -------------

.- .

' -'"
r:

. - -:. -: -, ~
'-.

G
./ , __ .

=--- --

k:

- - - . . ~:. '-

~. ~

. ' ~(;
'. - .. / . - - // ., .

; u ~==:;,)~ -::=::~
;-;. ~-

t,.-----..

. i
-13 insErt I

I -<.~ bubble

l -'" me'ge I
= qUiC~J ~

no.

04 L ---- ----- -------- I
. I

2Q 40 EO 00 100 120 120 160
LIST SIZE

____ . __ . __ ... __ . ____ . _____ ._. _________ . ____ I

r .
r.

r .

4.3 Analysis of Data From Sorting Array of Type Integer

From the graph, it can be observed that, the time taken for the Bubble sort to sort

elements increases rapidly as the list size increases. While for the insert sort,

the time taken to sort elements increases as fasten rate then in merge and Quick

sorts as the size increases. For the merge sort, the time taken to sort elements

in the list fluctuates at a very low rate. While for the Quick sort, as the size

increases there is a very little or no change at all for the time taken to sort

elements in the list.

In a not shell, the Quick sort is the fastest in terms of time taken to sort elements

in an array of type integer and closely followed by merge sort, while insert sort is

the moderate of the four considered methods of sorting, and the bubble sort is

the slowest method of all the methods of sorting considered.

4.4 Analysis of Data From Sorting Array of Type String

From the graph, it can be seen that, the time taken for merge sort to sort the

elements of type string increases at lower rate as the list size increases. While

for insert sort, the time taken to sort the elements increases at low rate as the list

·size increases when compared to Quick and Bubble sort. While for the Quick

sort the time taken to sort element fluctuates at some intervals of list sizes. For ,

the Bubble sort, the time increases at faster rate than the remaining sorting

methods as the list size increases.

33

Thus, this enable us to say that Merge sort is the fastest of all the sorting

techniques considered when sorting elements of type string, and Bubble sort is

the, slowest when compared to the remaining sorting techniques.

34

CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

From the research conducted, we can conclude that, the sorting algorithm which

is the best for sorting elements of type string is MERGE SORT. While the sorting

algorithm which is best for sorting elements of type integer is Quick sort. And

also we can conclude from the graph and the analysis, that the size of the data to

be sorted affects the time taken for a particular sorting algorithm to sort the

elements in an array, this is so because, as the list size increases the time taken

to sort also increases depending on the speed of the system. Finally the optimal

sorting algorithm, which is good for both integer sorting and string sorting, is

INSERT SORT.

5.2 RECOMMENDATIONS

I will like to make recommendation to programmers in general, that is to say,

since time in particular is very important in every aspect of life, and computer

programming is not an exception. Then, I will suggest that when the need of

sorting elements of integer elements arises, the programmer should simply make

use of Quick SORT. While in terms of sorting elements of type string, the

MERGE SORT method should be used to solve the problems.

35

Finally, I will like to make use of this medium, to call on researchers who are

interested in this topic to try and make research on the performance of other

sorting algorithms such as Radix sort, Selection sort, Heap sort e.t.c.

36

Adhert, O.J. (19~8):

REFERENCES

Van Nostrands Scientific Encyclopedia. Fifth Edition.
Can Nostrand Reinbod Company, pg. 87

George, O.A. (1987): Encyclopedia of Science and Technology I, McGraw-Hili
pp.339-240.

Hedetnienmi, S.T. and S. E. Goodman, (1977): Introduction to the Design and
Analysis of Algorithms. McGraw-Hili International
Editions, Computer Science Series, University of
Virgina, pp.207, 210, 215.

Holmes, B.J. (1989): Pascal Programming, Second Edition, DP
Publications Ltd . Pp. 199-158.

Neil, W.W. and F.S. Daniel, (1989): Data Structures with Abstract Data types
and Pascal Second Edition. California Polytechnic
State University, pp.240-265.

Tremblay, J.P. and Hedetniemi, S.T. (1967): An Introduction to Data
Structures with Applications. McGraw-Hili book
company, Department of Computational Science
University of Saskatchewan, Saskatoon, pp. 540-545.

37

program sorter:
lIses crt, clns;
·collsllim = 2560: no
.TYPE

time = J():

Data = :\RR.\ 'y- [1. .LlI\'D OF illtegel' ~.

VAR
0: OAT .. \ : N.I : JNT[GER:
chuice,a : Ch~lr: st_.timc : real;·

H R.ivlIN .~cc,SEC lOO:w()l'cI : END _ TIME:renl;
Gutl' :tcxl:

PROCEDURE Gcneratioll (VAR Table:c.bta; VAR N:integer);

V.~\R i. Nt!i\·If3. SLED: INTEGER:
I)ROCEOl;RE R;lI1domizc(VAR SEED:lNTEGER);

\t' /\R l'IR. \ 11N .S [C.SEC I ()O:WORD:

I1[GIN
(i [TTl ~II :lllR.i\ II N.SI.T .SEC I (0);
S r:[D := I W* J(l()+i'v! IN ';' O()-!-S E:: C+S EC lOll:

I:N D:
FljNCTI() ~< IZ- \ N DOi\ 1 (\':\R SEED: lNTEGER):REAL;
CO\:--;"[" \ I -= i\·[;\XINT: :\ = n·.f3; C =:5923 ;

13r GI~
SIT [) ::.:: I --.; U: 0:' t\ + (_') ,\ I 0 0 i\Il;
IF SH:I)·- I) Tfll~N Sf:TD := SlED I· tv!:
I~;\I nO\1 :: SITD/ i\l:

I:N D:
I ~ r:: Ci I i'i

R .. \ 1',) 1)()J\ II /. 1:: (SLLJ)) :
FOR i ':: ill) N [)()
i " (i . 1) \ ~'.! {) (I;thlcl i+ 1.1 <> tahleliD THEN

l;thkl il : ' "Rl I~JC (R. '. N r lOi\·1! SEED)* 10000):

U,! i'):

I'I~{)(T!)I . ! ~ I -': !\/IS\II·llll)\\ .ll ig!l:illrcgcr):

\, ! \I~ Illid . II1IC~c r :

!)'~(j ('1-:1): iZI·: :\ kr~t.: I i .I 1\\'. lltid.lti glt : Inleger) :
::.! "·\T. j : I l:i l:i.

,.

h := Ill\v : i :-= LllW:j :~mid + I;
WHILE (h <= mid) AND U <= high) DO

f1EGIN
IF A[111 <= ALi] T[l EN

BECIN
n[il := A[hl ; h := 11 + 1;

END
ELSE

BECIN
8[i1 := AU); j:=j+ I;

END: l if}
i := i+ l :

[NO; r while)
IF h > mill THEN

FOR k :=.i TO high DO
I3EG[N
B[i 'l := A[kJ; i:=i+ 1;

END
ELSE
FOR k := h TO mid DO
BEGIN

!3[il :-'"' ,\[k.1; i:= i+ l :
END; : I I')

FOR k :'" 10\\' T() high DO
Ark] :.= 13[k];

END; :" IL~RG[],

I3EGIN : ,vlSURT)
IF low < hi~ll TI [EN
Sr::G1N
mid := (I,)\\, T high) eli" 2:
Il1 SOrt (I u \\ . Il1 i d ') ;
Ill sorl(lllid - I ,liighl;
Il1crgc(Ill\\ .mid .high):

END: :ii':
U~J); : 1\1 \() :~T :

BEG IN
i'v ISORT (1,\):

I":N D; r !\' lcr~~,:Surt :

,
I)R()l'r::DI 1 1 ~ L IltsCrlSllrl (\1; 11' D:lbt :l;N: inrcger);

Vi\l~ j.k. ,,«'. <.: :illl<.:~t:r:

I3[CIN

FOR k := 11-1 dl)\\'11l0 I DO

BEGlN
j := k+ I; S~lve := d[k];
WHILE save> drj] DO
13EGfN
clfj-I] := d[j];
j := j+l:
IF j > 11 THEN GOTO 1

[::ND; (\\ 'hile]
I : dlJ-l] := saw;

CND;

END: [inSel"I SOrrl

proc~dLlrc S\·\8\J (\ 'ar '\, y :integcr);
vnr r:inreger:

begin
t := '\;
'\:=y:
y :=r;

end;
procedure BUbl~!~sllr! l \'ar A. :darn; N:inreger);
vari,j:integer;

begill
l'or i := :::! ro t1 LI. ,

begin
li)r .i := 11 Lil)\\ lllu i dll

ii ' d Ij - I I --. J L I 111 L 11

::i \V~1p(~lLi-1 !.: I\j I);
end:

el1L!:

~ rr--i- -r- :-·t-+""'~-- I----- I--,--,--: '-n 13[(ilNINC OF QUlel" So.RT ++-i-+,+,+-i-++,,-,-+-r,+-:

I) I ~ l K' I .: [) II ' i: (Y< () I \ 1':2 (I . (l,] II : I NT [Ci E R); .

V \I(
:\IIIJ :IN 'IT' iH::

I: l.i NeTI () '. I ' :\ !~TI '1'1 ON (! .,1l:INTE<J 12R): INTEC; I~:r<.:

\ ' : \ R TK :: '-iT I (i 1 ~ R :
I ~ 1"-:(11 N

1'1(:-= \[!.I:
\\' I II L L I 1_ -- I I) DO
13EGIN
W[lIlL: ITI(.':= X[lIn. ,-\ND (1. < H) DO

11 :=11-1 ;
IF (1.. < I-I) '1'1 Ir::N
I3r:GIN
XIL] := X[I II ; L:=LI-I;
\,vl [[U': (TI(>= X[LJ) AND (L < H) DO

L: =L -1- [;

1fo(L< H) THG:N
BEGIN

\:1"111:= XrLI;
1 !: =11-1 ;

END
END

END;
X[LJ :=- TI(: PART1TION := L

END;
13EGIN

IF (LO <: II [) Tr-rI~N
BEGIN

tvll D:= PAR r1T!ONILO,HI);
Q S \) I ~ '1".2 (U L\.l l D - I) ;
QS(JI(T:2(i'v1l D-:- I ,I-I!)

END
/·:ND:

hC~ln : ljuick :;ort :
q SO I·I.2(1 ,0i I:

ell,-I: ~ quickst)n]
: -:-'++++-:-'---'--:--"''''-++ '-, [NO OF QUICK SORT ++++++++++++,,++-!-++}

PI~()CC O I i l ~ l ~ tlITLt"\ k t111 (V _·\R choice : char);
\':\R.
IlL 1111 1. :iLC. ,ccl() : \\ord :

l3 [0 IN
CLRSCR:
~\)ruxy(~~ . (l): 'V,'t"ileln(' IvlAIN IvIENU ') ;\vRlTr:LN;
t'\) I ().\y(25.~L \Vri kln('I. GENEl"0\TE LIST');
t'1)l l)XY l :2.:' .1) I: WrilL'ln('2. IN SERT SURT ');
gLl luX)'1 .25. ! I)); \\'ril c lll('3. BUBBLE SORT ');
~tl l!l.,y(~ :;. III; Wr ile lt1(' -~ I\IERGE SORT ') ;
~ll l() :--:) 1.: 5. 1_: J; \\·ril \..' II1(' :5 QU ICK SORT '):
~!I l\l .\) (.:' :5.1 ' I; "'t"il ei lt('() ·. DISrl_ : \ Y RESlil.T');
~ tllll .'\:. · (:-1.1 ;!; \\ li lel'l .' ill et" y UUt" c lwice (() III SLOP) : '): I~e;ldlnleil()ice):

choice :-= L11!L~)S~(Lhoicc) ;

: tcxtb<lckgwlll1d(10);]
[ND; [()n~ri\knLlJ

procedure Display lD:dLlta; N:integer);
vari :inregcl':

begin
CLRSCR;GOTOXY(1,2);
fur i := I [n N Jo
1.3 [:G [N
\Vrite(dlil:5):
11-;' [i'vIOD :20 -= 0 THI::N

[ND;
rcadln ;

[NO;

proceJure di s r)_RcslIlt (VAR time:text);

VAR SZ :il1lcgcr:T.)S ,-CBS,TJ\ '.lS ,T_QS: n.:al; .
13[GIN
R[SET(lil1h:l:
while nor Ll)JiTl:\/ II~) do

131~ GJN

RLadlll(linh:' :-';Z ,T . IS. r _l3S,T _~.dS :CQS);

\Vri klIH:--;1 5. 1'_1:-): I X :-U '_13S: 1 3 :4,T_f\.IS: 1 J :...J..T _ QS: lJ A);

FND:

WI(IT[I .~1 "" r~.r IIJ .N;
[I'll): : DI SP._i'. l:Sr.:L I']

prnccd Lire: 11 iii :: I isc(v ~lr [.[R.N! IN ,sec,S EC ! O(hvord):
begin
HR :-= 0: \II:--! -= (); s...: c:-= O;SECIOO:=O;

end:

I'!~UC,[D[fRi: l)i s p!~I~.:2 (V.-\R time:te:{t):
V . \ R .1\ 1'1 S : l ' i !: \, !.:. :
r.~[(JIN

c! r ~; cr ;

(,I i'\'O\ \"12' I. ! 2): W!U1TI 'W<ln t Scc: r<.:sLllt '? (YiN): '); l(r::A DLN(A.NS) ;

I r: U PCAS l:(. \NS) -' '\"' llll:N
UI:::GIN

CLRSCR;
writelnCTimc lakcn tu surt ':50);
Writeln;
WritelnCNC) . n([Icms Insert Bubble fYkrge Quick');

Writeln;
Di sr _Resull (TI i'vl 1":);
\\,RITL('I)IU~SS :\NY K[,{ TO CONTINUE . .'); RI2ADLN;

t::ND;

El'JD:

BEGlN
assign(Olltl".' t\ I y I i k .d~ll') :rcwri tel out£);

clrscr: [c:\tcolor(I igIHl.:yan);
[SETTrrvlE(1·1 R.!\I! N.S r::C,S [C 100);}

R[I)[AT
o Ue:rtvl ellll(ch ..) i Cc) :
C:-\SE choicc OF

'I' : begin
clrscr; t!. , lil.)\:, (211.10):
\VriIL(':--illlllhcr Ill' clements to generntc : '):

I~c~)dlnl >i J: \\ri IC I')lI[LN : ~);

I:: N[):
'2' : bL~in

ini(i ,t1i:-il'II II~ .\ II0J.scc.~CCIO());

;jd rimci i lR.\ II \ 1.scc.St::CIOO):

Cicner:lli l. ll(D.\i J:
Sl_ti ll1e :" I liZ ';' .1 ()()lhi',, 1I N'~()O+S EC+SEC 100*0.01;
: \VRITU . \ (~TJ' I:VII":)·)

: lew I : I TU Ill) _lil1lc DO)
I n ~ ,c n:--; , '.-II I) . \ 1 1:

\\rild' !·" ", :.l :=' I\~~ldkcy;

.' 11 i Illl'l I i IZ .. \ II ~! ,:)CL.S [C I 00);
L' lhl Ii I l L ° 111~ ") ()I)()' \IIN*h() ' I- Sl~C 'rS[C It)() * {),()I;

: \\ ' I ~ I'l'l • .'« I> :D _' IT\ lr:J;Rr::.·\OLN ;J
\\TiIC(llLl :.(L'i1l1 lime-sr time):l5A);

: di ::, pl ~ l~ I ,i. 11):

[NO :

'j' : hc~ in
\ 11 ili :1I i ~; ,: ! II ~ ,\ 11 ~·Ll'l:.S I: C I (0);

-J(i-

gelTil11L'(I-IIU"II N _scc,S [C 100);
C1eI1CI":11 il ' ll l [). N);
SI_ lill1l' : -= r 1I("J()OOHvlIN* 60rSEC+;SCC I O()*OJ) I;
llOR I : ' I TO nO_lime DO}

11 LlbbkSllr l (\J,N):

[dclay(idOl))::
wrilc(, * ';"); ~l: = 1"l':ldkcy;

gcllil1lt.'(! IR,i\'[1 N,scc,SEC I 00) ;
end _til11c: = I'1 R*]600+rvt IN*60+scc+SEC 1 00*0.0 I;
wl"i te(OLlll·.(L'lll'-.! i l1le-st_ time): 15 :4);
(display! ll.l1) :]

I:::ND;
'o~' : BEG IN

ini~i<.lli :;e (I [1 (';\ II N.sec,S[C 100);

gt.'ITil1l(l! IR.\[I>-J,sec.S[CIOO);
Generalil)n(D.N);
St_limc :_7" III ~ * ~(;()() -H'vIIN*60+SEC+SEC 1 00* 0.0 I;
(FOR I :''' I TO no_lime DO }
rvkrgc ,,_."; 01· 11 \J.~'j:

:Llelay(Il iO()j::
\\ I"i(((' ':::;. ,!: :1:'"" 1"(:ldkcy:

g(II i 1llC:(: ! I ~ . \ II :'-!. S(C. S [C 1'00);
':11,1 __ liil :': . ,, : II ~ ' .~()()(hi" II N '~60+sec+S[:C I OU*O.U I ;
\\ 1"1(((llll!! .(l·Il,! lime-:;t lime): 15:-+);

: ,lisp!:I)'(, 1.1 ; J::
[ND:

, 5 1 : 13 r-: (j 11'!

il1ili ; tli ~;c:',! 1I ·~ . \II\i.sct.'_S r:C I O());

~ L'II'II1IC(: II~.\ II ',j.:>(c .:'lEC I ()O);

Cil'lll'I":I(i"tl(I).:.. I:

Sl liI1IL" I W ' ;(;(J() ; - I\ II N*6U+SEC+S~C 1 (H.FO.O I ;
: I : {)I~ J : I! l Jill) l imc DO]
()ui"k ' .I·: .2i!) :'l i:

L~(lI ill1l'l! :1 -: .\11 : ;. :; (c.SU~ I()());

(illi liP I = j i i~ '.) (j l)() :,, \ 11 N*W-I"scc+SEC I OO'I'().O I;

\ \ r i I l·1111 11. ('.': I ,.1 I i II h':- 'i I "t i 111 e): l 5 : - ~);

: LI i:, 1'1 <\ :.' : II I: :

END;

'6' : BEG[N , : LOSl~(OUTF); display?(OUTF);END;

'0' : clOSl:':(Ollll ');

END;
UNTIL (choice '~ 'O') O R (choice = '6');

END,

Llses crr, dl)S;
const lim = I ()()();
TYPE

STRI = STR I ~l G[l()l:

Data = ARR.-\ 'I' [1..I.IIVII OF STR I;

VAR
D : DATA; N.; : Il'iT I ~Cir:: R;

choice,a : ch~\I': st_timc : reul;
HR.f\·1 IN s~t.:,SrT I 00: word; EN [) _ TltvIE:real;
outf,lNPr: :(ext :

PROCEDURE G~nl!r~\t i on lVAR ati le:Tcxt; VAR Table:data; VAR N:integer);
VAR ADNO : STlz I:

BEGiN
RESET(~1fi Il' l;
FOR i := I to N])0 ,
BEGIN

REf\DLNI alik .. -\DNO);
Tableli] :-:: ADi'\J();

END;
12ND;

PROCT I)l .: ~E i\ ISdn (lu\V.high:inreger);
\:,:\I(:1li,1 inlt.:~t.:r:

1)1"~.lK 1:1 j! RI": \kr~ -: (Luw,mid,high :jl1[cgcr);
V . \I~ il .!. : k : iltl-: :~'..:r: 13 : Dura;

8[(11\
h :=11,1,\ :i . -=Lli",:j := l1liLi + I;
WI-ilLI: I II <= il1i~l) AND (j <= high) DO ,
B[(jl \

I F .,\!l! <= . \ l.il TIl [N
11 L(j: ~

I: I i I . ; :\ I : I I: 11 : = 11 -;- 1 ~
1>,1 j

I: I 'i I'
1\ I:' l ;: "J
i q : 1 ' . i\ 1 i I: i: ~"j r 1 :

I .~ 1 y. : iI' :

i ' - i ··"
r-:~\ 1):: -: 11 ii- :

IF h 11 :: '1'1 ; I .'.

170lz k : j TO hit!,h DO
13 H J 10-

I1l i 1 : ' .-\ [l j; i : ~-.: i + I ;
END

ELS[
FOR k :::: h TO mid DO

8EllIN
8 Ii 1 := .\[k]: i :=i+ 1:

END; lit']
FOR k := low TO high DO

t\ III : .~ : ~ [k]:
END: : ~ · EI~(jr:)

13EGIN : ~vIS()I\.T)
IF low <: hi:)1 TI-IL:N

BEGIN
mid := (k,\V + high) div 2;
mso rl(I 0 \ ... m i d);

I1lson(mid+ 1 ,high);
Il1crgc:(lu\\,m id.h igh);,

END: lil':
l:::ND: l ivlS'.)RT]

13EG[N
~ISORT (1 .:-·1);

END· I t\ kr~"SL)ll I
0: " "'~ :". J

" .
1

PR6cl~ DI : I ~:: Ill s~rlSort (val' D:data;N:inregc:r);

l~bL:I I :
\' .'\I ~ i .:·. illlL·gL·!·; SAVE: STR1;

13[GIN

FOR k :-= n -! 1..1 ()\ \ Illl) 1 0 ()
111:(::;IN
j := k :- /: ": : \ ' ~ := L11 kJ;
\V1·III..E :;;,\ 'C:> '-'iii DO
13L~C I~

d I.i -11 :. -.. 1[j 'I:
j : ==, ,- I :
IF j -'IIi 11[:--lliOT(l I

I.J~D: : ., ... ili!..: :
I: dlj- I I : ' :;;1 \ L:

I~ND:
"\

proc~durc S\\,:IP ('. ~1I' ' ..) :STR 1 L
vat" t: STR 1:

begin
t := x;
x:=y;
y:=t;

end;
procedure [3Ubbl ~S()rt (\:I r A :Liuw; N:integer);
var i.j :intcgcr:
begin

for i := :2 to Il d,',

begin
t'u r j := n dO\\llro i Lil)

it'afj-l\ > :ll.ii tliell
s\~/ ap(~1\.i-I\ · : : U]):

end;
end;

(-H-+++++..,.. .. -..;.. , +~-" 'T -i+ [3 r: GIN IN G 0 F Q Ul C K SO R T +++++++-t-+++++++++++]

pl"Ocedure qui cl _Sun2 (V::ll' X:data;n:integer);

PRocrl~t ' I '. i: (lS()RT~ (LO,HI: fNTEGER);
VAI~ ,
l'v I ID: f?',fTi j I·:R:

FUNCI'fl "\ fl . \ 1([-[T[ON' 1 L,I-I:INTEGER):[NTEGE R;
VAR lk: > m.l:
8F:GI~i
' 1-1' r . = '\' I'l i ·

'-. . ' .. I '

\VHILI~l.r . : IIJDO
8[G I:-l

'vVIII U: i l-K <--= \:1'111) .\ND (1.< H) DO
1\ : : 11- :

IF (I . I TIll-' ,,",
. 1\ I > i i'

\11.j : ,\ 1.111 : L :""' l . !- I;
\\·!. I~I : ('1'1< c=X \I·I)AND(L < H)DO

I. : . : I :
11-:- I I . , I) -I I I 1-:1<
!51-:(" .' .

·'\II! := \:\ 1· 1:
I I: i-I ~

I ,

L":ND
t:N I)

[NO:
XrL.I: -' ' 11< 11

.. \RTIT!ON:= L.
t:ND:
DI:::GIN

IF (LO · . , II) Tl 'lI:N
BCClIN
MIl) :~ It\RTITION(LO,/-I[);

QSOIU 2(LO.i'vllD-I) ;
QSOIZ 1·2(i'vIlD+1 ,I-II)

END
END;

b~gin { l\uicl'.; lnr)

q,SOfl2(I.N):
end; [quick sc,nj

[T+++++++++-;- - + +-d --:-+ END OF QUICK SORT ++++++++++++-i-t-+++++}

PROCEDURL olkri\knll (VAR cho ice: char);

V:\R
Hr, n1n . s~c . . ~ ,-' C 1 () : \Vord:

B I:::G IN
CLRSCR:
~Oll)xy(::2 ~,I) \VriLLln(' i'v·I.\IN MENU ') :WRITELN;
. ~()t()X~ · (25.:: \V I ilLin(' I. CIL: N ER.:\TE LIST') ;

O:lI)ln x YI ~~.5." \\'ril..:III(' ::2 , IN SERT SORT ');
gl)I()Xy(~5,! . . j: \\rilLlil(' J. I3UBBU:::· SORT '):

') -, I: \\ 'ri l~II1I'-+. i\'IERC L: SORT ')', gOlOXYI _), I \

gl>lllX> I ~5 , 1 . 1: \\'rilellli'5, QlJ1CK SORT ');
gOlnxYl 25. 1 I: \\'fil~II1('(\' DISPLAY RESULT);
::;Oloxy l :2-L I · l: \\ ' filLl' I~ Ilt.:;r your choice (0 [Q srop) : '); Rcadln(choice);

Chllic~ :-=: 11! ': I ~; ~(cIH)ic:c):

~lC \ lbac k g !' l Illd! IU J; :
1:'\J D: ~ I) l "l' ... ~· •. ~ 11 LI :

pr (H:~dLlrc I) i:: I _~ I\ · II) : d ~IILL N: il1lcgcrL

' ·: 11' I :In k ~!',:.

heO:lill
CI,RSCI {.: ' ()T()\ YiI. 2 1:

1;)1' i := I t l ; 1,1
II Uil !')

.. \ ri Le! til i 1' 1 '
II ' I~ II ; I) · :>1 '111 ,:--1

\\ l'ik' I:l:
I ·: ~-.,; I) :

rcadlll ;
eND;

procedure di s" I{cs llil (VAI~ timc:lcxl);

V;\ R S/ :illl"~l:r: ' I ' _ .. IS ,' I' __ I\ S,T _ fvIS,T_ QS:rea l;

1l1~CJIN

Rr: SI~T(lilll l: I·
whi k Ill l i LIlli i l i\'II '.) dll
1II ,:CiIN
IZc;l dl111 Ii Ill l· . ;/,T I S.TJ \S.T_rvIS,T_(2S);

Wrilellll ');:).'!' IS: I ~:-I.T __ I3S : 13A ,'I'_ t\ 'IS : I JA,'I'_QS: 13:.:1);

END;

WRITEI ,N: \'/ IZITH,N;
END: {DIS I) 1: 1·:S lll.'I'J

prucedure illil i;1I is--:(\-', 11' IlleM IN,sec,SCC I OO:worc\);

begin
III~ := 0 ; [vii h' .=' l!: ~;l'C : '''' ():SJ:C I 00:= 0;

ellll;

PIZOC IJ) t IIZI : .)isI11;ly2 (V /\IZ time:t~xl);
V/\IZ !\N~~ : l . I,\IZ :

UUIIN
clrsn:
(iOTOXY (211 1:'):W IZITr:('Willll sec result'? (YIN): '); IZ I2ADLN(ANS);

II~ lJ P (' /\ :-) I (. N S) .. 'Y' T II EN

13H.iIN
CI.I~SCIZ ;
writcllll'Tilllc [;l kC I1 to sorl' :5 0);

Writelll;
Wril ell1(, I'H).ol · ll l' IlIS Illsert Bllbble ' Ivkrge Quick');

Writl' IIL
iJ isp __ I ZL~; lI ('I' I HI':):
WIZITI ·Tl l ! I ':SS !\;\J \ ' , KI ~ Y TO CONTINU I~ .. '); I~EADLN;

I ~ND:

END;
PROl' I ~ Ut IIZI ,: iZl',ldSil.c (val' N : illteger);

const Il si l.l.' - : 72;
nLC.iIN

IH: P[AT
clrscr; glllll\\ (2ll,1 Il):
WrilL'('Nlllll\lL'r lli" L'iL'IllCI1Is III gellemle : ');

IZcmllll(N) :
UNTIL N' :: I ,S I/ I'::

END;

BUilN
~lssigl1(()llIL'I\I \: 1I , I ':, d~II');rl'\\TilL;(lllllr;; [OPI2N OUT FILE)
ils s i t'-I1(INIII : ,'~ .. :' I)A I ,\ D Ar):rcS I ~T(INPF); (OPL~N lNI)LJT FllE}

clrsCI': lL'\IC\!\ I, (I i~llky;tll):

l S F:TTI Ivll ': (III ' "II H ,:.; I ,:e,S H~' I 00); 1

IU': PI~>\T
II rkrf"\cllll(c I, icc l:
C/\S[Chllil'l. ',)1:
'I' : hcgill l ~l':JSi/c (N); WRITE(OlJTF, N:S); END;

'2', : lX'gill
illiliidi ~;I' IIIIZ.1\ II N,s(,l',S r~C I DO);
gdl illl'_' i IIU'll i'-l,scc, SI ~CI()O);
(I l' Ill' I: Il i· ,II I ! ,II ' I ', I) , N);
Sl _, lillll" IIIZ ': ,1 ('()lll-I\·11 N*(lO+Sr~C-! 'SEC I 00*0,0 I;
:WIZI 'II .,N (ST TII\'II ':);1
: 101\ I : I T() 110_ l i Il1C \)O}

111 :;\.' 11 '-;' ':' 11 I),N l:

\Vri IL'(' ':";,' :; ~l := I'l'lIdkcy;
gl'l I i III I.'! ! : Ie 1\11 \J,sl'e ,S I'T 100);
cllLl Ii: :: IIIZ ';') (lll()I.I\'IIN *(iO+scc+SLC IOO*ll.OI;
: WIU 'II I'~(IYI) Tllvlr-:);I~E/\Dr.N;)
\\ TIll' ((II : : ! ~' II" I i Illl> S! .l i III C): I 5 : tl);
: <i i~; Jl \; I) 1 1.11) : :

I':N I):
'3' : hl'~ ill

illili:t\ i ',I.' IIIU\ II N,sL'c ,SLC 1(0);
gl' ITilll "~ IIIU\IIN,scc,SL:CIOO);
(ICIIL'I:lli , 1\1l1l~ PI:,[),N);
SI liI11'': ,'' IIIZ:::jWO+M IN*60+SnC+SEC 1 OO*(l.O I;
: 10 I Z I I 1'1 1 Ilo_.l i III C D () 1

1IIIhhi :-i1111(I)N);

(d~I~I~ ' l i I(Jllj::
write("I,'" l: it: -' 1\ .. :ldkl'Y;

gl'llilll':" 11:,,\III~,Sl'C,SI~CI no);
~Ild III :,:' III~I " WO 1 .. 1\1 I N *CJO-I-scc+S I-::C 100*(1.0 I ;

\\'l'i IL'I'lll : ,(:lld'illlC-SI_,lilllL'): 15:<1);

[dispLI \'"Jl ll:]
r:NIl;

'4' : nr:UIN
i 11 iii iii iSl'll llUVl1 N ,sec,S [C I (0);

gc ITi l11l'(II':' ,!vll :\1 ,sec,S [~C I 00);
(;L'II I.'I';II i, 1111 N I 'I:,I),N);

SI lill1 l' III ,: " :()()() IIVIIN*('()+S[C+S[C I OO*(),O I;

(HllZ I I TC) Illl liIIlC 1)0]

rVkn.'l' ,()l'lill " I);

Wl'ilL'(" :' ,; il: --= iCildkcy;

g L' II i Illl 'I ' , I ~ , 1\ II N , S C'L. S I~ C I 00);

elld lill l: "' II!':"! ,(jOO)'MIN*60"I'sec+SEC1 OO*(),()J ;

\\, I'i Il'(()li , (l.'nL! Ii IlIC-SI._1 i me) : 15:4);

I di sl)!;I\ ' I,ll):

r': NI r
'5': IIUII I-';

illiliill i ~;(', 1I': ,i\ II :\I,sL:c.SEC I (0);

gclTillll'1 IIU\II ' .. Lscc,SC~C l (0);

Cil'IiCl'illi lll (INI'I ', i),N);

Sl lilll L' III', ' : (.()() I rvllN*60+SEC+SEC 1 00*0,0 1;
fn)/{ I : I T() 'lll .. lill1c DO}
()lIid~ ~\I 112(I) ,i'~):

\\'I' il c(, "':" I: ~ I := 1'1'iHlkcy;

gcll i 1111.'1 i IU, II N ,SL:L:,S EC I 00);
CllLllilll ," III':": ,;I>l)O 'I'MIN*60+sec+SEClOO*O,OI;

\\,I'i IC 1111 ' , .l j',(l'llli . l i Illc-Sl_ti me) : 15 :4);
t displil \ I ,II)::

I ':N I):

'()': I\I-:lil~,:' ' ,1)~,Il(ILrlT); displi\)'2(OUTF);I~NI);
'()' : CI()~; I.'(()II' I:

'-':NI):
UNTil , (l:II(,il' " Il') (liZ (choice = 'CJ');

l del;I)'(i Jl)() i: 1
\\'rill'CI.: 'L ;): " rl.';ltlkey:
gellillll'(IIZ.h lli'-l,sl'C,S[C l()OL
~I\ll li II I :"' 11 Wi' .j ClOU+fvl l N * (i()1-scc+S I"2C 100* 0.0 I;
\\'rilc(llll : .(1.: 1:" , lil1ll~-SI ,Iimc): lSA);

l diSIILI\ · 1.11)::
END;

'4' : 13ECilN
illili;tli ~;l: i 111UVll N,seL:,SEC I (0);

gelTi 111 1.'; 11Z,\ 11 N ,sec,S 12C I (0);
C;CIll't':lli·. ':1111'11 11', 1).N);
SI 1 i Inc I WI ;(Ji IOI-rvl l N * MH'S r~c+s [C 1 ()()*O.O I ;

: 1:()I Z I I 'Ii.) Illl_. lime: DO J

rVkt'!2 '.' ·1)rUI) . '.!);

gCII i 111C(I ,IZ ,1\ 11 1' ~ ,sceS EC 100);
cnd lilll '.: °IIlZ * '(100 I-MIN*(i()+s!.;c+SCC 100*0 .0];

wriiL'((l~I:.(l'lhl , li lllC-sl_tiIllC): 15:4);

f c.li :; pl;l~ I 1.11):
I :NI) :

, 5' : 1 \ H 1I1'~

inili;lk;.'~ , IIZ. \ \ i I'\Lsce,SL~C I (0);
gdl illl '~ 1IZ.:dIN.sce,S r;:C IOO);

(kill' 1':1 \1'. n(11'11'1: .1\ N);

Sl lilll , .
[I,' (JI-: I
()uid, ~

\\Ti I VI' " .

gl'llilll"1
I: IlLI 1 i III·
\\Ti 11." I I'

l c.lispl:I\I,

r::N \):

I II'- 'I)C)()() 1'1\'11 N * 6(HS [C+S CC I qO* 0.0 I ;
I '\'() III 1_'. 1 i Ill!,; 1)01

1'1 :~(I).~" L

; :1 : ' t'l'"c1kcy:
-I{.I\ II ~~ .~;cc : S LC' 1 ()O);

ii, ': ;()()() 1·I\'IIN*()()·I's!.;c-t-SEC IOO'I'll.OI;
1 .. (.' II -I I i mc -sit i nIL:): \ 5 : ~ I) ;

I!): :

'6': nr:C;I N (U):: I-:(CllITF); cl ispl:ly2(OUTr);END;

'(J' : elllSl'! (lill ',:

l~N D;
UNTIL (clil1in ' '()'J (W (t:lh)ic~ = '(I') ;

END.

