
COMPUTATIONAL METHOD fOR SOLVING A SYSTEM Of 

l.INEAR Al.Gt:lBRAIC EQUATIONS 

ADAGHE OSAZUWA JOSEPH 

( PO.z, I tY!JC-S I 10; I 96) 

A PROJECT SUBMITTED TO THE DU'ARTMENT OF MATHS I COMPUTER SCIENCE, 

FEDERAL UNIVER SITY Of TECHNOLOGY MINNA, IN PARTIAL FUlfILMENT OF THE 
REQUIREMENT FOR THE A W' ARD OF POST-GRADUATE DIPLOMA IN COMPUTER 

SCIENCE. 

MARCH 1998 
i 



CERTIFICATION 

We hereby certify that I have supervised, read and approved this project which I found in 

scope and quality for the partial fulfilment of the requirement for the award of Post-graduate 

Diploma in computer science of the Federal University of Technology, Minna, Niger state. 

PRINCE .R. BADMOS 
(Project supervisor) 

DR K.R ADEBOYE 
(H.O.D Maths/Computer science) 

EXTERNALEXANITNNER 

DATE 

DATE 

DATE 

II 



DEDICATION 

I shall forever be grateful to almighty God and my loving parent late Mr John Idahosa 

Adaghe and Theresa Adaghe also to my kind and lovng brother, Mr Lucky Adaghe for their 

sincere parental care, moral, financial supports and great advice throughout the course. To them 

all, I dedicate this work. 

iii 



ACKNOWLEDGEMENT 

My profound gratitude goes to almighty God for providing me the wisdom that guided 

me through this Project work and for sparing my life to complete yet another stage in my 

academic pursuit. 

lowe a great debt of gratitude to my project supervisor, Prince R. Badmos for his 

invaluable guidance, comment and suggestions which enable me accomplished my desire goals. 

Also my appreciation goes to my able lecturers like Dr K.R. Adeboye (HOD Math/Computer), 

Dr S.A Reju, Dr YM Ayesimi, Mr Kola R, Mr L.N Azeako, Mr I K Adewale and Mr Dogara all 

of the Maths/Computer department. 

I acknowledge and appreciate the efforts of Mrs Theresa Adaghe, Mr Lucky Adaghe and 

my guidance-Major Joe Komolafe for their endless support towards the successful completion of 

this program. I am also indebted to express special gratitude to my colleagues in person of Mr 

Sani S.I Atsu and my good friend Turayo Falade and Adegbola Steve for their advice and 

suggestions during the completion of this project. 

iv 



ABSTRACT 

Algebraic equation is an equation in which factors on both sides of an equality sign(=) are the same 

, but if the highest power of the variable that occurs in the equation is one (1), that equation is 

regarded as a system oflinear algebraic equation and if otherwise, it is non-linear equation. 

This project focused on the computational method for solving a system of linear algebraic 

equation by the use of computer application, due to complexity of the topic itself and the 

repetitive nature involve in the solving of linear algebraic equation using iterative method (i. e 

Gauss-Seidel and Jacobs methods), the adoption of the computer application inton the 

computation of linear algebraic eliminate the complexities involved in the computation of linear 

algebraic equation manually. 

Besides the Direct methods and Indirect methods under which the Gauss and Gauss­

Jordan elimination also Jacobs and Gauss -Seidel iterative methods considered some system of 

linear algebraic equation with the use of computer application written in dbase Language on the 

different system discussed with the output attached. In addition, the project looked also into 

linear algebraic equation with matrices and the various types of matrix and their meaning with 

examples. 

In conclusion, the use of computer application in computations of linear algebraic 

equation fasten the process in solving such equation and getting accurate result in shortest 

possible time 
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CHAPTER ONE 

1.0 INTRODUCTION 

In the simplest term an algebraic equation is a statement stating that whatever is to 

the left of the equality symbol (=) names the same thing as whatever is to the right of the 

symbol. There is nothing in this statement that requires it to be true. A mathematical 

equation may be always true, always false, or true sometimes and false sometimes. Any 

equation contains at least one variables. 

To solve an equation implies to find it's solution set, i.e the set of all valves of the 

variables (s) employed for which the equation is a true statement. The elements in the 

solution set are called the Roots of the equation and these are said to satisfy the equation. 

1.1 SYSTEM OF LINEAR ALGEBRAIC EQUATIONS. 

An algebraic equation is linear if the highest power of the variables(s) that occur is 

one otherwise it is non-linear. A system of n linear equation is unknown has the general 

form 

• • • • 

• • • • 

• • • • 

Where the a's i.e all, an, a13' ........... aln ] 

a2l> all, a23'·····.·· ... a2n aij i = 1(1) n 

an, a32, a33' •. · .. ·.··.·a3n j = 1(1) n 

anI, an2, anJ·········.·ann 

are constant coefficients and the C's i.e C\, C2, C3, ••••• Cn are given real constant in a 

systems of n linear algebraic equation in n unknowns. 
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In finding the solution of a system of Linear algebraic equation, one need to write 

out the full equation at each step taken or to carry the variables Xl, X2, XJ •••••••••••••••• Xn-

1 and Xn through calculations since they always remain in the same column. The only 

variation from system to system occurs in the coefficients of the unknowns and in the 

values on the right side of the equations. Due to this, a linear system is often replaced by a 

matrix which contains all the information about the system that is necessary to determine 

its solution sett. But in a computer form one can represent the above system of equations 

by 

AX=C 

where A is called the coefficient MATRIX 

all all a13 ..................... aln 

A= 

ani anz an3 .................... . 

X is the vector or matrix of unknown variables. 

x 

_XI\..! 

and C is the vector of constants 

C 

Cn 
When the vector C is the zero vector, the set of equation is called homogeneous 

otherwise it is non-homogeneous. Greatest emphasis will be placed on finding numerical 

solution of sets of a simultaneous linear equations with n unknowns, this is the general 
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form of a linear system. As a rule, the if m > n, the equations cannot be satisfied. If m < 

n, the system usually has an . Infinite number of solutions. For m = n 

and the systems usually has well defined solution set. Further, as much as possible we shall 

give considerations to simple linear system of n equations with n unknowns if only for 

illustration and clarity purposes. Where n is 3 < = n < 5 

1.2 SOLUTIONS FOR SYSTEM LINEAR ALGEBRAIC EQUATION 

Suppose matrix A is non-singular then n-1 exists and we can multiply both sides of 

linear equations (1.2) by A-I so that A-I AX = Ix = X 

and so X = A-I C 

which gives formally the solution of the equations. However, obtaining A-I manually gives 

much trouble in terms of the significant and often unnecessary computation involved. 

Finding A-Ion a computer is rarely attempted because it is not only a space consuming 

process but also a time, hence money consuming process. Due to these reasons numerical 

approaches are adopted for finding the solution of singular equations. Before proceeding 

to give the analysis of the various numerical method to be considered in this project it is 

essential for us to stress the need for employment of computer. Manually, the solutions of a 

given linear system can be obtained by using any of the existing methods for solving 

linear systems. For simple linear system (e.g three-equations in three unknowns) obtaining 

solution manually does not give much trouble. However, the solution of a linear system 

(equation) of quite order. ( e.g fifty linear equations in fifty unknowns) is tedious unless 

arithmetic are mistakes are no occurring often since a considerable amount of arithmetic is 

involved. 

On the alternative, a digital computer may be relied upon to solve a very large 

system of equation without making any mistakes. The flexibility, precise details of 

arithmetical facilities as well as fixed point operation are particularly advantageous and 

that is why attention is focused on computer. 
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1.3 OBJECTIVE OF THE STUDY 

The main purpose of this project is to consider various computational method for 

solving a system of linear algebraic equations with the use od camputer which give fast 

and more accurate result. Therefore, eliminating the complementing (i.e repetitive nature) 

involved and solving linear algebraic equations manually. 

Also, more details meaning with example about most linear algebraic equation 

with matrices and types of matrix are emphasis in this project by the use of Computer 

application written in Qbasic which now pointed out the advantages and disadvantages of 

the Computer and manually method of computational method for solving a system of 

linear algebraic equation. 

4 



CHAPTER TWO 

2.0 LITERA TURE REVIEW 

The references that have most influenced the presentation of Gaussian elimination 

and other topics in this project are the texts of forsythe and Moler (1967), Golub and Van 

Loan (1983) , Isaacson and Keller (1966), Wilkmson (1963), (1965), along with the paper of 

Kahan (1966). Other very good Methods are given in Conte and Deboor (1980), Noble 

(1969) and Sewart(1973), more elementary introductions are given in Anton (1984) and 

Strang (1980). 

The best codes for the direct solution of both general and special forms of linear 

systems of small to moderate size, are based on those given in the package LINP A CK, 

described in Dongaract (1979). These are completely portable programs, and they are 

available in single and double precision, in both real and complex arithmetic. Along with 

the solution of the systems, they also can estimate the condition number of the matrix 

under consideration. The linear equation programs in IMSL and NAG are variants and 

improvements the programs in LINPACK. 

There is a very large literature on solving the linear equation arising from the 

numerical solutions of partial differential equations (PDES). For some general texts on the 

numerical solutions of PDES see Birthoff and Lynch (1984), Forsyth and Wasow (1960), 

Lapidus and Rinder (1982), for texts denoted to classical iterative method for solving the 

linear equation arising from the numerical solutions of PDES, see Hageman and Young 

(1981) and Varga (1962). 

Integral equation head to dense linear system (equation) and other types of 

iterative methods have been used for their solutions for some finite successful methods. 

One of the most important forces that will be determining the direction of future 

research in numerical linear algebra is the growing use of Vector and parallel 

processor computers. The vector machines such as the CRA Y -:!, work best when doing 

basic operations on Vector quantities, such as those specified in the BLAS used in 

LINPACK. 
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2.1 MA TRICES AND LINEAR ALGEBRAIC EQUATIONS 

Many of the problems of numerical analysis can be reduced to the problems of 

solving linear equations. Among the problems which can be so treated are the solution of 

ordinary or partial differential equation by finite difference methods, the solution of 

linear algebraic equations, the eigenvalues problems of mathematical physics, 

ploymominal approximation. 

The use of matrix notation is not only convenient but extremely powerful, in 

bringing out fundamental relationships, the abstract mapping transformations and 

function between vectors. Matrix notation and algebra are useful because they provide a 

concuse way to represent and manipulate linear algebraic equa!ions. 

2.2 MATRIX 

A matrix is a rectangular array of numbers in which not only the number is 

important but also its position in the array. The size of the matrix is described by the 

number of its rows and columns. Capital letters are used to refer to matrices e.g (2.1). As 

doputed in (2.1) [A] is the shorthand notation for the matrix and aij designates an 

individual element of the matrix 

A 

[ 

al1 an ...................... In 
a2l a22 ....................... a2n 

. . . 

. . . 
ami a m2 a mn 

A horizontal set of element is called a row and a vertical set is called a column. The 

first subscript I is always designates the number of the row in which the element lies. The 

second subscript j designates the column. For example, in 2.1 has m row and n column 

and is said to have a dimension of m by n ( or mXn) it is referred to as an m-n matrix. 

2.3 ROW VECTOR 

Matrices with row dimension m = 1, such as [B] = [ bh b2, bJ , .......... bn ] are 

called row vectors. 

Note: 

That for simplicity the first subscript of each element is dropped. Also, it should be 

mentioned that there are times when it is desirable to employ a special shorthand notation 
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to distinguish a row matrix from other types of matrices. One way to accomplish this is to 

employ special open-topped bracket as in [B] 

2.4 COLUMN VECTOR 

Matrices with column dimension n = 1, such as 

C1 

C2 

C3 

A= 

are referred to as column vectors. For simplicity, the second subscript is dropped. As with the 

row vector, there are special shorthand notation to distinguish a column matrix from other types 

of matrices. One way to accomplish this is to employ special brackets as in [B], where this special 

brackets are called curly brackets. We have the left curly brackets (c) and the right curly 

bracket ( ) ). 

2.5 SQUARE MATRICES 

Matrices where m = n are called square matrices e.g 4 - by - 4 matrix is 

Note 

Square matrices are particularly important when solving sets of simultaneous linear 

algebraic equation for such systems, the number of equations (corresponding to rows) must be 

equal in order for unique solution to be possible. 

2.6 SPECIAL TYPES OF SQUARE MATRICES 

SYMMETRY MATRIX 

A square matrix is said to be symmetric ifit is symmetric about the leading diagonal, i.e 

fi 11 1 f · d' I' l' h h ·th ·th 1 ·th ·th 1 . aij = aij or a va ues 0 I an J. t Imp les t at tel row, J co umn = J row, I co umn In a 

symmetric matrix the diagonal will be like a mirror. A symmetric matrix must be equal to its own 

transpose, i.e A = AT, symmetric matrices frequently a rise in the analysis of conservative 

systems and least squares minimisation and the symmetric property can normally be utilised in 

numerical operations. 
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[A] [ 2 
3 

2 
4 

-1 

2.7 SKEW SYMMETRY MATRIX 

A skew symmetric matrix is such that aij 

element aji must be zero. 

aji, hence AT = -A and the leading diagonal 

Any square matrix may be split into the sum of symmetry and askew symmetric matrix 

thus 

A = 1Iz( A + AT ) + 1Iz( A _ AT ) 

where liz ( A + AT ) is symmetric and V2( A - AT ) is skew symmetric. 

2.8 RECTANGULAR MATRICES 

Otherwise i.e m<>n are called rectangular matrices e.g a 2-by-4 matrix is 

[B] a2l a22 a23 a24 

It is a 2-by-4 matrix, where m = 2 = number of rows and n =4 number of column. 

2.9 THE PRICIPAL OR MAIN DIAGONAL OF THE MATRIX 

The diagonal consisting of the elements all, a22, a33 & a44 in (2.4) is termed the principal 

or main diagonal of the matrix 

all al2 a13 aln 

a2l a22 a23 a2n 

a3l a32 a 33 a3n 

a4l a42 a43 ~n 

2.10 HERMITIAN MATRIX 

A square matrix having A = A is called a Hermitan matrix and if it is written as 

A = C + i D and must be symmetric and D skew symmetric. 

2.11 HERMITIAN TRANSPOSE 

This is the same as the normal transpose except that the complex conjugate of each 

element is used. Thus if 

8 



[

5 +1 

A= 6i 

5 - i 

2+1 
1 

2 - 1 

4 9-~ 

2.12 DIAGONAL MATRIX 
A square matrix where all the element of the main diagonal are equal to ZERO is called a 

diagonal matrix, i. e aij = 0 for i = 

[A] 

NOTE: That where large blocks of elements are Zero, they are left blanks, The importance of the 

diagonal matrix is that it can be used for row and Column sealing. 

2.13 AN IDENTITY MATRIX 

An identity matrix is a diagonal matrix where all the elements on the main diagonal are 

equal to 1 as in 

The symbol [1] is to denote the identity matrix the identity matrix has the properties similar to 

unity 

2.14 TRIANGULAR MATRICES 

2.14.1 UPPER TRIANGULAR MATRIX 

An upper triangular matrix is one where all the element below the main diagonal 

are ZERO as in 
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2.14.11 

as m 

2.15 

o 
o 
o 

o 
o o 

LOWER TRIANGULAR MATRIX 

A lower triangular Matrix is one where all elements above the main diagonal are ZERO, 

[ all 0 0 0 ] a21 a22 0 0 
a31 a32 a33 0 
a41 a42 a43 a44 

BANDED MATRIX 

A banded matrix has all elements equal to ZERO, with the exception of a band centred on 

the main diagonal. This matrix has a band width of three and is given a special name- the tri­

diagonal matrix. An example below of a tri-diagonal 4 by 4 matrix is shown below. 

[ all al2 0 0 ] a21 a22 a23 0 
0 a32 a33 a34 

0 0 a43 a44 

2.16 TRANSPOSE OF A MATRIX 
The transpose of a matrix involves transforming its row into columns and its Columns 

into rows e.g 
A=( aij) 

AT = (bij ) where bij = aji 
A is a symmetric matrix if A = AT 

~I ~2 ........ ·····················~n 

a21 a22 .. · ..... · .. · .. · .. · .. · .. · .... a2n 

[AJ 

am I a m2 ........................... a nm 

The transpose, designated [ A] T is defined as 

\0 



all a21··· ......................... aml 

al2 an··· ..... , ................... am2 

In other words, the element aij of the transpose is equal to the aij element of the original 

matrix. The transpose has a variety of functions in matrix algebra. One simple advantage is that it 

allows a column vector to be written as a row vector e.g if. 

[C] = 

Then [Cf = [ CI, C2, C3, C4] Where the superscripts T designates the transpose. For 

example, this can save space when writing a column vector in a manuscript. In addition, the 

transpose has numerous applications. 

2.17 THE TRACE OF A MATRIX 

When a matrix is squared, a quality called its trace is defined. The trace of a square matrix 

is the sum of the elements on its main diagonal it is designated as tr [A] and is computed as 

n 

tf [A) = L all+a22+ ........ ann 
i =1 

where n = number of rows or columns, since it is a square matrix where number of rows equals 

number of columns. It should be obvious that the trace remain the same if a square matrix is 

transposed for 

example 

[A) D -1 

~lJ 2 

trIA) = 3+2+2 = 7 

[~I 
0 

iJ 2 
-3 
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tr[A]T = 3+2+2 = 7 

The trace will figure prominently is eigen values problems. 

2.18 NULL OR ZERO MATRIX 
A null or zero matrix is any matrix with all its elements zero matrix of order 2-by-2 

[0] = [~ ~ ] 

FULLY POPULATED AND SPARSE MATRICES 

A matrix is fully populated if all of its elements are non-zero and is aparse if only a small 

proportion of its element are non-zero. 

2.20 AUGMENTED MATRIX 

A matrix is augmented by the addition ofa column (or columns) to the original matrix e.g 

suppose when a matrix of coefficients. 

[A] 

We might wish to augment this matrix [A] with an identify matrix to yield a 3-by-6 
dimensional matrix. 

I 
o 
o 

o 

o ~J 
such an expression has utility where we must perform a set of identical operations on two 

matrices. Thus we can perform the operations on the single augmented matrix rather than on two 

individual matrices. 
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CHAPTER THREE 

DIRECT METHOD FOR SOLVING A SYSTEM OF LINEAR 
ALGEBRAICEQUATIONS 

Method for solving a system linear algebraic equation can be broadly classified into 

two. These are direct and indirect method. We also have method that can be classified as 

simi-direct or semi-indirect but we limit ourselves to only direct and indirect methods. 

3.1 DIRECT METHODS 
Direct methods are methods that give solution to a system linear algebraic 

equations in a fixed number of steps. Subject only to rounding errors, that is in the 

absence of round-ofT errors, these methods will yield exact solution of linear equations 

after performing a finite number of operations on the system. 

Given a system of linear equations 

Rl: allXl + a12X2 + ••••.•.••.••••••..... +alnXn = Cl 

R2: a2lXl + a22X2 + ..••...••.•....•••... +a2nXn = C2 (3.1) 

AX = C •••••...••.•••.••...••••.....•••• (3.2) 

as explained in chapter one. We can also represent the system by the corresponding 

augmented matrix A formed by the coefficients of unknowns and constants where 

This augmented matrix is such that row 1 or Rl, represents the first equation of the 

system, Row 2, or R2, the second, and so on, in column 1 are the coefficient of Xl and finally 

in the last column is the constant term in each equation. This shows that the matrix is an n 

by (n+l) matrix. 

To solve the above system(equation) using direct method, some or all of the 

following elementary operations can be performed on the equations. 

(i) Row 1, Rl(or equation Rl) can be multiplied by a non- zero constant k and the 

resulting row now used in place of Rl i.e KRI ~ Rl 

13 



(ii) ~ can be multiplied by a non-zero constant K, added to row j, Rj, and resulting row 

used in place of Rj i.e ( Rj + KRj ) • Rj 

(iii) ~ and Rj can be interchanged i.e ~ -----+. Rj by performing a finite number of 

these elementary operations a linear equation (system) can be transformed into a more 

easily solved equation with the same set of solution. 

This is the principle on which direct methods are based. Some of the known direct 

methods that will be considered in this project include: 

(i) Gauss elimination 

(ii) Gauss-Jordan elimination. 

3.2 GAUSS ELIMINATION 

Gauss elimination method may be regard as a systematic treatment of the basic 

elimination method in elementary algebra. The main objective is to transform a given 

system of equation represented by (3.2) into 

UX=C 

where UX is an upper triangular matrix and C is a column vector and finally the solution 

set X are obtained by back substitution. 

A systematic method for accomplishing this required transformation is briefly 

discussed below. Provided a11 not equal the operations corresponding to ( Rj - ( 

Rj, where ( aj/aij) is called a multiplier, are performed for each j = 2, 
• 

3, ............. , n to eliminate the coefficient of Xl in each of these rows. Following a 

sequential procedure for I = 2, 3, ............ , n - 1 and performing the operation ( Rr ( 

Rj for each j = i + 1, i + 2, ............ n provided all is not equal to all 

the coefficients of Xl and will be changed to zero. 

The resulting matrix will hence have the form 

al2 ..................... aln: alo n+l ] 
an •••••••••••••••••••••• aln: al. n +1 
O •••..........•••....•••.. ann: anlo n +1 

(3.5) 

We need to take care here, in each operation some of the elements of the original 

augmented matrix will be changed for illustration purposes, these new elements or 

14 



resulting elements supposed to be differentiated by superscripts which will tell the number 

of times the elements are modified but for neatness and case of notation we leave the 

element as they are above. 

The new matrix given by (3.5) represents a linear equation (system) with the same 

solution set as that of equation represented by (3.4). Since the new equivalent linear 

equation is triangular we can write 

allX1 + a12X2 + ........................... + alnXn = aI, n+ 1 

a22X2 + .••.••..•.....••....••....• + a2nXn = a2, n + 1 

and back substitution can be performed. By this, the nth equation can be solved for Xn to 

solving the (n - 1) at equation for Xm , and using Xn gives Xn_1 = an-I, n+l - an-I> nXn 

by successive substitution of known values of X all the unknowns can be found, using the 

·th d ·th k .. b I rowan J un nown IS given y 

X; =[0;' • +1 - 0;, D X. - 0;, n -1 Xu - 1.. •••••••••••••••••••• 0;,; +1 X; 1 
au 

n 

( ( ah n + 1 - L aij Xj ) )/ aii 

j = i+l 

for each i = n - 1, n -2 .................... 2, 1 

from the foregoing discussion we realise how a given equation may be transformed into an 

upper triangular matrix and how the complete solution of the equation is obtainable using 

back substitution. 

In the ith divided operation it is always assumed that all where i = 1, 2, ............ n is 

non-zero. Actually the elements aii are called pivot elements and in our elimination 

process, to proceed from one stage to another, it is necessary for the pivot elements to be 

non-zero as they are used as divisor. Modification is necessary at any stage a pivot 
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elements vanishes. This modification may be in the form of row interchange in order to 

have non-zero pivot. 

Further if a pivot element is small compared with the elements in its column which 

have to be eliminated a multiplier used at that stage will be greater than one. The use of 

large multiplier undoutedly, leads to a magnification of round-otT error. To avoid this we 

also need some modification. All the necessary modification analysed above accounted for 

the two classes of this method. 

These are looked at shortly. 

3.2.1 GAUSS ELIMINATION WITHOUT PIVOTING 

This may be regarded as ordinary Gauss-elimination and all the things said in 

section 3.2 hold for Gauss elimination without pivoting. The only necessary and sufficient 

condition is to ensure that none of the pivot element vanishes. 

We can have a look at a systematic Gauss elimination without pivoting in the 

following example. 

Example 3.1 

Use Gauss elimination without pivoting to solve the following systems (equation). 

R I : Xl + X2 + XJ = 3 

R2 : Xl - X2 + 2XJ = 1 

RJ: -Xl + X2 +XJ =-1. 

The augmented matrix is 

~ 
1 1: 

~J -1 2: 
1 1: 

basic operations to be operate is given by 
( Rj - (aj;!aii) Ri ) ~ Rj 
where i = 1,2, ................... n - 1: j =i +1, i + 1, ............... n: but n = 3 
where I = 1 we perform ( Rj - ( aj;!aii) Rj ) • Rj 
j = 2, 3 
for j = 2: (a21/aii) = iii =1 
R2=1-121 
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( a2l/all ) Rl =1 1 1 3 
R2 - (a2dall ) Rl = 0 -2 1 -2 • R2 
for J = 3, (a3l/a11) = -111 = 1 
R3 = -1 1 1 -1 
(a3l/all)Rl=-1 -1 -1-3 
RJ - ( a3l/all) Rl = 0 2 2 2 • R3 
These operations reduce the system to 

[~ 
1 
-2 
2 

1: 
1: 
2: 

where i = 2 we perform ( ~ - aj2/a22) R2 • Rj 
j=3 
for j = 3, (a32/a22) = -2/2 =-1 
R3= 0 2 2 2 
(a32/a22) R2 = 0 2 -1 2 
R3 - (a32/a22) R2 = 0 0 3 0 • R3 
thus the new equivalent linear equation ( system) is given by 

1 1 1: 3 
0 -2 1: -2 
0 0 3: 0 

i.e 
Xl + X2 + X3 = 3 

-2X2 + X3 =-2 
3X3 = 0 

finally, with backward substitution we obtain X3 = 0/3 = 0 
X2 = -2 -X3 =1 and Xl = 3 -X2 - X3 = 2 

-2 1 

by direct substitution with the left hand side, LHS of the given equation we obtain 

Rl: Xl + X2 + X3 = 2 + 1 + = 3 

R2: Xl X2 + 2X3 =2 - 1 + 0 = 1 

R3: -Xl + X2 X3 = -2 + 1 + 0 =1 

Compared with the values on the right hand side RHS of the equation we can say 

that the equation obtained is the exact solution set. 

3.2.2 GAUSS ELIMINATION WITH PARTIAL PIVOTING 

Gauss elimination with partial pivoting is a modification of Gauss elimination 

without pivoting. During the derivation of ordinary Gauss elimination, it was found that 

obtaining a zero for a pivot element necessitated a row interchange. Attention was 
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drawn to the fact that when large multipliers ( a rising as a result of small pivot elements) 

are employed they could lead to substantial round-ofT errors. Row interchanges is often 

desirable too and this is achieved by a process referred to as pivotal condensation or Gauss 

elimination with partial pivoting. 

The rule is quite simple. Before Gauss elimination processes the rows of the 

augmented matrix are interchanged such that every pivot element is larger in absolute 

value than ( or equation to ) any element beneath it in its column. Consequently, the 

multipliers used at each stage is less then ( or equal to one in magnitude ). 

We summarised the procedure in example 3.2 

solve the linear equation 

RI: 2XI + 4X2- X3 =-5 

R2: Xl + X2 -3X3 = -9 

R3: 4XI + X2 +2X3 = 9 

by Gauss elimination with partial pivoting. The above linear equation can be 

represented by the matrix 

4 
1 
1 

-1 : -5~ 
-3 : -9 
2 : 9 

since the pivot elements are not the largest element in their respective column, we need to 

interchange rows. So the final rearranged augmented matrix assumes form below: 

1 
4 
1 

2 :9~ -1: -5 
-3: -9 

We can now eliminate Xl from R2 and R3 when i = 1, perform (Rj - ( a/aii) R ----+ Rj 

j = 2, 3 
for j = 2, ( a21/all ) = 2/4 =112 
R2 = 2 4 4 -1 -5 
(a21/all) RI = 2 Yz 1 9/2 
R2 - (a21/all)RI = 0 7/2 -2 -19/2 • R2 
for j =3, (a31/all) = Y4 
R3 = 1 1 -3 -9 
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( a3,/all) R, = 1 v.. Yz 9/4 
R3 - (a3da, = 0 % -3/4 -7/2 -45/4 • R3 
The equation now takes the following form. 

412 9 
o 7/2 -2 -19/2 
o % -7/2 -45/4 

To eliminate X2 from R3 we perform 
Rj - ( aj2/a22 ) R2 • Rj , where j = 3 
( a32/a22 ) R2 ) = % * 2/7 = 3/14 
R3 = 0 % -7/2 -45/4 
( a32/a22 ) R2 = 0 % -3/7 -57/28 
R3 - ( a32/a22 ) R2 = 0 0 -43/14 -129/14 • R3 
we now have:-

1 
7/2 
o 

2 :9 ] 
-2 : -19/2 
-43/14 : -129/14 

and on applying back substitution we have 
X, + X2 + 2X3 = 9 

7/2X2 - 2X3 = -19/2 

-43/14X3 = -129/14 

X, = ( 9 -X2 - 2X3 ) * v.. = 1 

X2 = ( -19/2 + 2X3 ) * 2/7 = -1 

X3 = -129/14 * -14/43 = 3 

To check our solution set we now substitute for X" X2, X3 in the original linear equation. 

R,: 2X, + 4X2 - X3 = 2(1) + 4(-1) -3 =-5 

R2: X, + X2 - 3X3 = 1 + 1(-3) (3) ) =-9 

RJ: 4X, + X2 + 2X3 = 4(1) + (-1) + 2(3) = 9 

Since substitution of the solution set into LHS of the equation gives same result as 

in RHS, we may say that the solution set is exact for the equation. 

3.3 GAUSS-JORDAN ELIMINATION 

The Gauss-Jordan elimination method is a modification of the Gauss 

elimination method for solving linear algebraic equation. The purpose of the modification 

is to eliminate the need for applying back substitution in the gauss-elimination by reducing 

a linear equation to an equivalent linear equation with zero off diagonal elements. This 

method can be described as follows. 
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For row Ri and Rj of linear equation (2.1) perform the operation ( Rj - (aj/aii) Ri) .... --.... 

Rj 

where i, j = 1,2 ........... n : i not equal j. 

In essence Gauss-Jordan elimination uses the ith equation to eliminate not only Xi 

from the equation ~ + h ~ + 2 ...................... Rn of a linear equation as was done in the 

Gauss elimination method, but also form equation Rh R2 .............. , ~ _ I. 

If we now consider (2.4) which is the matrix form of the equation of n linear algebraic 

equations in (2.1) where the constants C have been denoted by ai, n + 1 after the 

computation routine of Gauss-Jordan elimination method. The final form for the matrix 

will be 

o o 
o 

It must be noted that the entry in each row, say row 1, is expected to change the 

original value in the augmented matrix (2.4). We retain the entry all in the form above 

just for ease of notation and neatness. Clearly each equation represented by matrix ( 

2.6) takes a reduced form 

i = 1, 2, 3 ............ n 

with solution 

i = 1, 2, ............... n 
an 

we apply this method to solve the linear equation given below 

example 2.3 

using Gauss-Jordan method, solve the equation. 

XI + 2X2 + 5X3= 20 

2XI + X2 + X3 = 7 

5XI -3X2 + 2X3 = 5 

The augmented matrix of the above equation is given by 

2 
1 
-3 

5 : 20J 
1 : 7 
2 : 5 
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Gauss-Jordan entats the performance of the operation 
( Rj - ( aji/aii) ~) • Rj 

j = 2, 3 
for j = 2 
( a21/all) = 211 = 1 
(a21/al1) Rl = 2 4 10 40 
R2 = 2 1 1 7 
R2 - (a21/a11) Rl = 0 -3 -9 -33 --------+. R2 
for j = 3 
(a31/al1) = 5/1 = 5 
(a31/al1) Rl = 5 10 25 100 
R3 = 5 -3 0.2 0.5 
R3 - (a31/a11) Rl = 0 -13 -23 -95 -----+. R3 

Thus the equation is first reduced to 

2 
-3 
-13 

5 
-9 
-23 

20~ -33 
-95 

when i = 2, perform (Rj - (aj2/a22) R"--2 ----+. Rj 

j = 1,3 
for j = 1 
( a12/a22) = -2/3 
(a12/a22) R2 = 0 2 6 22 
Rl = 1 2 5 20 
Rl - (a12/a22) R2 = 1 0 -1 -2 ------+~ Rl 
for j = 3 
(a13/a33) = -1/16 
(a13/a33) R3 = 0 0 -1 -3 
Rl = 1 0 -1 -2 
R i - (a13/a33) R3 = 1 0 0 1 -------+. ~ 
for j = 2 
(a23/a33) = -9/16 
(a23/a33) R3 = 0 0 -9 -27 
R2 - (a23/a33) R30 -3 0 -6---------+. R2 

The final reduced equation is given by 

i.e 

[~ o 
-3 
o 

Xi= 1 
-3X2 =-6 
16X3 = 48 

o 
o 
16 
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We put the solution set XI = 1, X2 = 2, and X3 = 3 into the given equation to prove 

the validity of Gauss-Jordan elimination 

LHS 

XI + 2X2 +5X3 = 1 + 2(2) + 5(3) = 20 

2XI + X2 + X3 = 2(1) + 2 + 3 = 7 

5XI - 3X2 + 2X3 =5(1) +3(2) + 2(3) = 5 

RHS 

20 

7 

5 

LHS = RHS by direct substitution of the solution set into the equation, Thus Jordan 

elimination remains valid. 
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CHAPTER FOUR 

4.0 INDIRECT METHOD FOR SOLVING A SYSTEM OF LINEAR ALGEBRAIC 
EQUATION 

Various elimination and factorisation methods for solving linear equation would be 

discussed. These methods belong to a class of method called Direct methods. The common 

characteristics is the exact result they give after a finite number of computations and of 

course, in the absence of round-off errors. 

4.1 INDIRECT METHODS. 

Indirect methods or iterative methods for solving equation give exact solution to the 

equation in an infinite number of operations. 

This statement reveals the fact that indirect methods do not always give exact 

solution since we cannot perform an infinite number of operation but get closer and closer 

to solutions as number of operation increases, provided the methods converge to solutions 

Broadly speaking, an indirect method to solve the equation AX = C starts with an 

initial approximation X(O) to the solution XI and generates a sequence of vectors X(k) k = 0, 

1, ............. That converges to X. 

Most of the indirect methods involves a process that converts the equation Ax = C 

into an equivalent equation of the form X = C + TX, where C is a vector and T a matrix. 

After selecting the initial vectors X (0), the sequence of approximated solution vector 

is generated by computing 

X(k+ I) = C + TX(k) K = 0, 1,2 ...................... . 
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This computation can not be carried out indefinitely so we need to apply a suitable 

termination exterior. Most commonly use stopping criteria include. 

1. X(k+l) - X(k) < E 

2. X(k+l) - X(k+l) < E 
X(k+I) 

where E is a prescribed tolerance i.e an acceptable error exterior. By formulating the 

general iterative methods for approximating the solution of linear equation AX = C. The 

linear system (equation) to be consider is that of (1.1) and would replace this in the form 

(4.1) below. 

XI = (CI - a12X2 - a13X3 .................... alnXn) lall 

X2 = (C2 - a21X I - a23X3 .................... a2nXn) la22 

Xn = (C2 - a21XI - a23X3 .................... ann, n -lXn -I) lann 

equation (3.1) can be written more concisely as 

Xi = (C - L aij Xj )j=i n/au 

which is in the j 7:- i form. X = C + 'tX 

i = 1, 2, .......... n. (3.2) 

From the above rearrangement is predicted on aii not equal to O. Usually, rearrange the 

equations and the unknown so that diagonal dominance is obtained. Then making initial 

quesses for the Xi and insert these values into the right hand side of (3.1) and generate new 

and better approximations by successively repeating the process. The following iterative 

methods will be considered in this section. 

(i) Jacobian's iterative methods 

(ii) Gauss-seidel iterative method. 

4.2 JACOBI ITERATIVE METHOD 

Suppose substituting the initial quesses into (3.2) to generate the new 

approximations for successive approximation then after the (k + 1 )st iteration we will have 

Xi (k+ I) = (C - L aiX/ k
) lau i = 1,2 ....................... , n (3.3) 

The above method is the Jacobi iterative method. Let us see how it works 
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Example (3.1) 

Solve to an accuracy of four places of decimal 

4XI + X2 + 2X3 = 4 

3XI + 8X2 - X3 = 20 

2XI - X2 - 4X3 =4 

Using Jacobi method. 

NOTE:- The exact solution set is (1, 2, -1) we rewrite the equations as 

XI = (4 - X2 - 2X3) /4 

X2 = (20 - 3XI + X3) /8 

X3= (4 - 2XI + X2) /4 

for an initial approximation let XI (0) = (0, 0, 0). We generate XI (I) by: 

XI(I) = (4 -X2 (0) - 2X3(0) /4 = (4 - 0 - 0) /4 = 1.0000 

X2(1) = (20 - 3XI(0) + X3(0) /8 = (20 - 0 + 0) /8 = 2. 5000 

X3(l) = (-4 + 2XI(0) - X2(0) /4 = (-4 + 0 - 0) /4 = 1. 0000 

Additional iterative Xi (k), i = 1,2,3 are generate in a similar manner and presented in table 

1. 
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TABLE 4.1 

K X
1
(k) X

2
(k) X

3
(k) 

0 0.0000 0.0000 0.0000 

1 1.0000 2.5000 -1.0000 

2 0.8000 2.0000 -1.1250 

3 1.0625 2.0313 -10625 

4 1.0234 1.9687 -0.9766 

5 0.9961 1.9941 -0.9805 

6 0.9917 2.0039 -1.0005 

7 0.9993 2.0030 -1.0051 

8 0.0018 1.9996 -0.0110 

9 1.0006 1.9992 -1.9999 

10 0.9997 1.9998 -1.9995 

11 0.9998 2.0002 -1.0001 

12 1.0000 2.0000 -1.0002 

13 1.0000 1.9990 -1.0000 

14 1.0000 1.9999 -0.9999 

15 0.9999 2.0000 -0.9999 

16 1.0000 2.0000 -1.0000 

Hence to 4D the solutions are XI = 1.0000, X2 = 2.0000, X3 = -1.0000. 

It is iterative that the approximations computed at the fifth iteration are roughly within 

0.4%,0.3%,2.0% i.e the approximations are on the average within 0.3% of the exact 

solution. The accuracy was improved by performing more iterations. For example at the 

tenth iteration the approximations are roughly within 0.03% of the exact solution set. 

Finally, at the fifteenth iterations the approximations are within 0.0 % of the exact 

solution it is also observed that a whole new solution set is computed before it is used in 

the next iteration. 
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4.3 GAUSS-SEIDEL ITERATIVE METHODS 

Just as Gauss elimination is the most heavily used method, of the direct methods, 

Gauss seidel method is the most heavily used, of the iterative method. The major 

difference between Jacobi and Gauss seidel iterations the newly generated components of 

the solution set are always used as soon as they are available, whereas in Jacobi iterations 

the new components are not used until all component of the solution set have been found. 

Considering equation (1.1) again, the application of Gauss-seidel method starting with an 

initial quess for the unknowns equation (3.2) which has been proved to be a rephased form 

of equation (1.1) will take the form 

Xi (k + I) = ( C - L aij Xj j =1 i-I - L aijX/k) ) /ai; j = i +n n 

1= 1,2, .......•..........•......•. n (3.4) 

after (k + 1) st iteration let us see an application of this method. 

Example 3.2 

4X1 + 3X2 = 24 

3X 1 + 4X2 - X3 = 30 

X2 + 4X3 = -24 

Which has the solution (3, 4, -5) for an accuracy of four decimal places using. 

Gauss-seidel method on rewriting the above equations we have for Gauss-seidel method. 

XI(k+ I) = (24 - 3X2(k» /4 

X
2
(k+ I) = (30 _ 3X

2 
(k+ I) + X3(k) /4 

X3(k+ I) = ( -24 - X
2
(k+ I» /4 

we choose X/Oj = (0, 0, 0,) i = 1, 2, 3. The first iteration gives 

XI(I) = ( 24 - 3X2(O) /4 = (24 - 0) /4 = 6.0000 

X2(1) = (30 - 3XI(1) + X3(O) )/4 = (30 -3(6.0000) + 0) /4 = 3.0000 

X3(1) = (-24 + X2(1) ) /4 = (-24 + 3 ) /4 = -5.2500 

The results of first and other iterative generated in the above manner as tabulated 

below. 
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TABLE 4.2 

K Xl(k) X
2
(k) X

3
(k) 

0 0.0000 0.0000 0.0000 
1 6.0000 3.0000 -5.2500 
2 3.7500 3. 7500 -5. 1563 
3 3.4688 3.6094 -5.0977 
4 3.2930 3. 7559 -5.0610 
5 3. 1831 3.8474 -5.0382 
6 3.1144 3. 9046 -5.0238 
7 3.0715 3.9404 -5. 0149 
8 3.0447 3. 9627 -5.0093 
9 3.0279 3. 9767 -5.0058 
10 3.0175 3.9854 -5.0036 
11 3.0109 3. 9909 -5.0023 
12 3.0068 3.9943 -5.0014 
13 3.0042 3. 9964 -5.0009 
14 3.0027 3. 9977 -5.0006 
15 3.0016 3.9986 -5.0003 
16 3.0010 3. 9991 -5.0002 
17 3.0006 3.9995 -5.0001 
18 3.0004 3. 9996 -5.0000 
19 3.0002 3.9997 -5.0000 
20 3. 0001 3.9998 -5. 0000 
21 3.0001 3.9999 -5.0000 
22 3.0000 3. 9999 -5.0000 

To 4D therefore the required solutions are Xl = 3.0000, X 2 = 4.0000, X3 = -5.0000. 

It is necessary to make some remarks about Jacobi and Gauss-seidel methods. Example 3.1 

requires 16 iterations suppose we use Gauss-seidel, we require just 8 iterations. 

This gives the feeling that the Gauss-seidel method is superior to the Jacobi 

method. Well, thi is generally the case but is not always true. There are systems of linear 

equations for which the Jacobi method converges and the Gauss-seidel method does not 

and vice-visa. 
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CHAPTER FIVE 

5.0 SUMMARY, CONCLUSION AND RECOMMENDATION 

Various methods discussed for solving a system of linear equations have been 

considered in this project. This points to the fact that no single method is best in all 

situation. Computational time and accuracy of solutions are measure of efficiency and 

sufficiency of the methods. Time is of importance in solving large system of linear algebraic 

equation because of large volume of computation involved. Furthermore, because of the 

round off error involved in performing large volume of computations, accuracy is of 

concern. This lead to the development of computer programs for computation of such 

large and small system of linear algebraic equation. 

5.1 CONCLUSION 

This project have successfully looked into the various types of matrix and express 

their meaning with examples, also in this project the various method for solving a system 

of linear algebraic have been applied on some linear algebraic equation and it revealed 

that, depending on the nature of the system of linear algebraic equation that would 

determined whether a direct or indirect or an iterative technique (method) is to be apply 

to give exact solution to the system linear algebraic equation. 

5.2 RECOMMENDATIONS. 

As it has been explained, the use of the various known methods for solving system 

of linear algebraic equations is based on the computational the kind of system of linear 

algebraic equations one intend to solve. 

Gauss-Jordan elimination method which is the variant of Gauss elimination is 

relatively less efficient computation wise. When the system of linear algebraic equation 

have identical coefficient matrices but different vector constants( as in repeated 

measurements on a single sample) direct method are generally most efficient since one does 

not need to solve complete problem for each new vector. Generally, direct methods are 

used for solving a system of linear algebraic equation of small dimension. 
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Indirect method are considered for solving a system of linear algebraic equation 

because the round off errors produced is comparative less seen. There are extremely 

efficient for solving system of linear algebraic equation with large and random sparse 

matrices equations of this type arise naturally, For instance, in the numerical solution of 

partial differential equations efficiency of both direct and indirect techniques can be 

improved if the coefficient matrices of the system linear algebraic equation exploitable 

structure, when coefficient matrix is strictly diagonally dominant Gauss-Seidel is most 

efficient. 

However based on various examples computation is recommended that: 

a. Direct method is of great benefit in solving a system of linear algebraic equations due to 

less computation and time involve. 

b. Direct method is preferable when a system of linear algebraic equation have similar 

coefficient matrices but different vector constants 

c. The same method is recommended for a system of linear algebraic equation with little 

dimension. 
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APPENDICES 

1. PROGRAMS AND DOCUMENTATION 

This appendix contains the steps in each of the methods so far considered. Efforts 

are made to combine the descriptions of similar methods in order to avoid unnecessary 

repetitions. 

Flowcharts describing the operation and the order of performance of the steps in 

machine computation as well as the corresponding programs are also included. Sample 

inputs to the programs are the various example used for illustration in chapter three and 

four. Of course, the sample outputs from the programs on comparison with results 

obtained manually confirm the efficiency or effectiveness of the programs. 
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i+i~i 

NO 

FLOW CHART FOR GAUSS JORDAN 
ELIMINATION PROCESS 

Ajj == 0 
? 

ISA ROW 
INTERCHANGE 

NECESSARY 

IS 
i == n == i 

? 

NO 

YES 

ELIMINATE xj FROM 
THE n EQUATIONS 
FOR i == i ....... N 

RjN + j/Rjj ~ xi 
FOR i == i. . N 
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FLOW CHART FOR GROSS ELIMINATION 

NO I FIND ajj f-I-------" YES 
/--1I~------lIFIND LARGEST I 

. Ajj FOR L > = I . 

YES 

OUTPUT SYSTEM HAS 
NO UNIQUE SOLUTION 

19 
Ajj ZER 

ISAROW 
INTERCHANG 
NECESSARY 

NO 

ELIMINATE YI 
FROM LAST M-I 

EQUATION 

NO 

~ES IINTERCHANGE 
. ROWS 

i+l-'j 
~ ______ ~N_O ____ ~ 

t ~-------

USE BACK-SUBSTITUT:ON 
TO CALCULATE FOR 

i = n ..... 2.1 
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FLOW CHART ITERATIVE TECHNIQUES, CHOICE OF METHOD DEPENDS ON THE 
STATEMENT USED IN COMPUTING NEW X (I) 

STORE NEW X (I) r-----'-.. 
AS OLD X (I) 

READ IN 
CO-EFFICIENT A 

AND CONSTANTS B 

IS R 
GREATER 

THAN 

YES OUT PUT NO 
r---~--~CONVRGENCE 

HAS 
CONVERGENCE 
OCCURRED? 
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10 SCREEN 0: WIDTH 80: CLS : KEY OFF 
20 PRINT * * * * * * * * * * * * * * * * * * * * * * * * * * * * * II 
~O PRINT * THE GAUSS ELIMINATION *" 
o PRINT * METHOD FOR SIMULTANEOUS *" 

)0 PRINT * LINEAR ALGEBRAIC EQUATION *" 
60 PRINT * * " 
70 PRINT * (GAUSS BAS.) * " 
80 PRINT " * *" 
90 PRINT" *****************************" 
100 PRINT" ******MAIN PROGRAM**********" 
110 PRINT "ENTER THE NUMBER OF EQUATIONS, THE COEFFICIENT AND CONSTANT" 
120 PRINT: PRINT" NUMBER OF EQUATIONS", : INPUT N 
130 DIM A(N, N + 1), B(N, N + 1), X(N), NP1VROW(N.2), NPIVCOL(N.2) 
140 PRINT PRINT "ENTER COEFFICIENTS AND CONSTANT FOR EACH EQUATIONS" 
150 FOR K 1 TO N 
160 PRINT PRINT" EQUATIONS"; K; 
170 FOR J 1 TO N 
180 PRINT "COEFFIENT ("; K, " "; J; ") = , ", B (K.J) 
190 NEXT J 
200 PRINT: PRINT "CONSTANT", K: 
210 NEXT K 
220 NC = N + 1 
230 PRINT 

: INPUT B(K, N + 1) 

240 PRINT, " GIVE THE MINIMUM ALLDWABLE VALUE OF THE PIVOT ELEMENT": INPUT EI 
250 PRINT CHR$(12) 
260 DET 1 
~70 FOR K = 1 TO N 

SO FOR J = 1 TO NC 
·0 A(K.J) = B(K.J) 
') NEXT J.K 

PRINT : PRINT 
PRINT "*******************" 
PRINT "AUGMENTED MATRIX" 
GOSUB 130 
PRINT, "IS THE AUGMENTED MATRIX CORRECT (yiN) "; 0: PRINT 
=F 0$ = "Y" OR 0$ = "Y" THEN 430 
RINT "GIVE THE POSITION OF THE ELEMENT TO BE CORRECTED"; 
-JPUT "ROW NUMBER"; NROW: INPUT "COLUMN NUMBER, "; NCOL 
.INT : INPUT "CORRECT VALUE OF THE ELEMENT", B (NROW, NCOL) 
~O 250 

;ning of the Gauss elimination procedure. 

PRINT 

T " DO YOU WANT TO SEE STEP-BY-STEP RESULT YIN "! Q2$ PRINT. 
" "********************" 

= 1 TO N 
COMPLETE PIVOTING STRATEGY 
IT = AB S (A ( K . K) ) 
~(K, 1) K: NPl VROW(K.2) K 

(K, 1) = K: NP1 VCOL(K.2) K 
TO N 
TO N 
OT >= ABS(A(I,J)) GO TO 560 

ABS(A. (I, J)) 
) K: NP1 VROW(K.2) I 
) = K: NPl VCOL(K.2) J 

~ ERS GOTO 590 
'LEMENT SMALLER THAN: EPS: MATRIX MAY BE SINGULAR, GOTO" 
.2) = K GOTO 660 
) Q2$ = "Y" THEN PRINT INTERCHANGE; ROWS, NP1; VROW(K.2); " 

(K.2) .J) ,A(K,J) 

.) 
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650 
660 
670 
~80 

690 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
800 
810 
820 
850 
860 
870 
880 
890 
900 
910 
920 
::j30 

IF Q2$ = "y" OR Q2$ = "Y" THEN GOSUB 1300 
IF NP1 VCOL(K.2) = K GOTO 740 
Q2$ = "Y" OR Q2$ = "Y" THEN PRINT "PIVOTINGE COLUMNs" 
IF Q2$ = "Y" OR Q2$ = "Y" THEN PRINT "INTERCHANGE COLUMNS"; NP1VCOL(K.2); 
FOR I = 1 TO N 
SWAP A(I,NP1VCOL(K.2) , A(I,K) 
NEXT I 
DET = DET * (-1) 
IF Q2$ "Y" OR Q2$ = "Y" THEN GOSUB 1300 
IF K = N THEN GOTO 850 
IF Q2$ = "Y" OR Q2$ ="Y" THE PRINT "PERFORM ELIMINATION" 
FOR I = K + 1 TO N 
IF Q2$ = "Y" OR Q2$ = "Y" THEN PRINT "DIVIDE ROW": K: BY ":A(K.K)" 
IF Q2$ = "Y" OR Q2$ = "Y" THEN PRINT "MULTIPLY ROW" :K:BY A(I .K) : "AND SUBTF 
MULT = -A(J.K) I A(K.K) 
FOR J = NC TO K STEP -1 
A(I.J) = A(I.J) + MULT * A(K.J) 
NEXT I 
NEXT K 

APPLY THE BACK-SUBSTITUTION FORMULAS 
RANK = K - 1: PRINT "RANK: NMR = N-RANK" 
IF RANK = N THEN X(N) = A(N.N + 1) I A(N.N): NCOUT = N - 1: GOTO 940 
PRINT "THE PROGRAM SETS "i NMRi "UNKNOWN(S) TO UNITY" 
PRINT "AND REDUCES THE PROBLEtIl TO FINDING OTHER": RANK: "UNKNOWNS 
FOR JJ = 1 TO NMR: X(N + 1 - JJ) = 1; NEXT JJ 
NCOUNT = RANK 

40 FOR I NCOUNT TO 1 STEP -1 
~ 0 SUM 0 
o FOR J 1 TO N 
\ SUM SUM + A(I.J) * X(J) 

NEXT J 
X ( I ) = (A ( I, N + 1) - SUM) I A ( 1. I ) 

NEXT I 

INTERCHANGE THE ORDER OF THE UNKNOWNS TO CORRECT FOR THE COLUMN PIVOTING 
FOR K = N TO 1 STEP -1 
)WAP X(NP1 VCOL(K.2) , X(NP1 VCOL(K.1) 
"EXT K 

ALUATE THE DETERMINANT OF THE MATRIX 
1 I = 1 TO N 

= DET * A ( I . I) 
" J 

PRINT "RESULTS BY BACK SUBSTITUTION: "PRINT 
= 1 TO N 
'X(",J;") = ";X(J) 

PRINT "VALUE OF DETERMINANT = ": DET: PRINT 

"{INT "DO YOU WANT TO REPEAT THE CALCULATIONS": PRINT "WITH MINOR 
FFICIENTS (yiN)":: INPUT V$ 

OR V$ = "Y" THEN 1200 ELSE 1210 
;0 
, "DO YOU WANT TO RESET ALL THE COEFFIENTS (yiN)": W$ 
iR W$ "Y" THE NEW SET OF THE SAME ORDER AS THE PREVIOUS SET", 

OR INW$ = "n" THEN CHR$(12): RUN 100 

3M-



1290 SUBROUTINE 1 : PRINT thei MATRIX 
1300 FOR KA = 1 TO N 
1310 PRINT I TO K 

320 FOR J = 1 TO NC 
1330 A(KA, 7) 
1340 NEXT J: PRINT NEXT KA: PRINT 
1350 FOR DELAY = 1 TO 270.1, NEXT 
1360 RETURN 



10 CLS : KEY OFF 
20 PRINT "* * * * * * * * * * * * * * * * * * * * * * * * * * * * * II 
30 PRINT "* GAUSS-SEIDEL ITERATIVE *11 
40 PRINT "* METHOD * 
50 PRINT "* * 
60 PRINT "* * 
70 PRINT "* SEIDEL.BAS * 
80 PRINT "* * 
90 PRINT "***************************** 
100 FOR DEL = 1 TO 5000: NEXT DEL: CLS 
110 INPUT " ITERATION NUMBER"; IN 
120 R = 0: X = 0: Y = 0: Z = 0 
130 FOR ITER = 1 TO N 
140 X (10 - Y - Z) / 5 
150 Y (7 - X + 2 * Z) / 6 
160 Z (16 - X + 3 * Y) / 7 
170 R R + 1 
180 PRINT "X (II :R: ") =11: X 
190 PRINT "Y(:R:) II. Y 
200 PRINT "Z(:R:) = ": Z 
210 PRINT 
220 NEXT ITER 
230 PRINT 
240 LOA II A : MA . BAS": R 
250 END 

10 SCREEN 0 WIDTH 80 CLS KEY OFF 
~O PRINT *********************************** 
;0 PRINT * THE GAUSS-JORDAND * 
) PRINT * REDUCTION METHOD FOR * 
\ PRINT * SIMULTANEOUS LINAER ALGEBRAIC * 

PRINT * EQUATIONS AND MATRIX INVERSION * 
PRINT * (JORDAN. BAS) * 
PRINT *********************************** 
lRINT ***********MAIN PROGRAM************ 

'RINT 
'RINT 
'.INT 
TNT 
'NT 

PRINT II YOU MAY USE THE THIS PROGRAM TO :" 
PRINT 1; " SOLV LINEAR ALGEBRAIC EQUATIONSII 
PRINT 2; FIND; THE; INVERSE; OF; A; MATRIX; II II 
PRINT 3 DO BOTH OF THE ABOVE 
INPUT II THE NUMBER OF YOUR SELECTION", SEL 

~R THE NUMBER OF EQUATIONS THE COEFFICIENT AND CONSTATNTS. 

, IF SEL: = 2 THEN INPUT "NUMBER OF ROWS OF THE MATRIX"; N 
<> 2 THE INPUT "NUMBER OF EQUATIONS: N 
1, 2 * N + 1), B(N, N + 1), C(N, N), XC(N) 

IF SEL = 21 THEN PRINT II ENTER ELEMENTS OF MATRIX II ELSE 
ENTER COEFFICIENTS AND CONSTANT FOR EACH EQUATIONS: 

TO N 
-;' SEL = 2 THEN PRINT "ROW II ; K ELSE PRINT II EQUATIONSII: K 

'0 N 
PRINT "ELEMENT (II;KII;"J,II)=II:: INPUT B(K,J) 

'N PRINT IICOEFFICIENT (";K;"J";): INPUT B(K,J) 

HEN PRINT "CONSTANT"; K, " _11. - , : INPUT B(K, N + 1) 

~ MINIMUM ALLDWABLE VALUE OF THE PIVOT ELEMENT"; 

+ 1 39 
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370 A(K, J) B(K, J) 
380 NEXT J 
390 FOR J = N + 2 TO 2 * N + 1 
400 A (K, J) 0 
410 NEXT J 
420 A(K, K - 1 + N + 2) = 1 
430 NEXT K 
440 PRINT PRINT: PRINT 
450 PRINT 
460 PRINT AUGMENTED MATRIX 
470 GOSUB 560 
480 PRINT: INPUT "IS THE AUGMENTED MATRIX CORRECT (yiN) "; Q$PRINT 
490 IF Q$ = "Y" OR Q$ = "Y" THEN 
500 PRINT "GIVE THE POSITION OF THE ELEMENT TO BE CORRECTED: PRINT" 
510 INPUT "ROW NUMBER"; NROW: INPUT "COLUMN NUMBER"; NCOL: B 
520 PRINT: INPUT "CORRECT VALUE OF THE ELEHSNT: B(NROW,NCOL): PRINT 
530 GOTO 350 
540 
'550 IIBegining of the Gauss-Jordan reduction procedure. 
560 INPUT "DO YOU WANT TO SEE SEPS-BY-SEPS RESULTS (yiN) II. Q2$: INPUT 
570 PRINT 
580 FOR K = 1 TO N 
590 "APPLY PARTIAL, PIVOTING STRATEGY 
600 MAX PIVOT = ABS (A(K,K): NPIVOT = K 
610 FOR I = K TO N 
620 IF MAXPIVOT >= ABS(A(I,K) GOTO 640 
630 MAXOIVOT = ABS (A (I, K): NPIVOT =1 
640 NEXT I 
650 IF MAXPIVOT >= EPS GOTO 670 
S 6 0 PRINT II PIVOT ELEMENTS SMALLER THAN, II EPS: MATRIX MAY BE SINGULAR 
-70 RANK = iK-l: GO TO 1100 
30 IF NPIVOT = K GOTO 740 
~o IF Q2$ = "Y" OR Q2$ = "Y" THEN PRINT "PARTIAL PIVOTING" 
o IF Q2$ = "Y" OR Q2$ = "Y" THEN PRINT "INTERCHANGE ROW" i NPIVOT; IIAND:K" 
) FOR J = K TO 2 * N + 1 

SWAP A(NPIVOT, J), A(K, J) 
NEXT J 
IF Q2$ = "Y" OR Q2$ "Y" THEN GOSUB 1150 
IF Q2$ = "Y" OR Q2$ = "Y" THEN PRINT II PERFORM NORMALIZATION" 
CF Q2$ = "Y" OR Q2$ = "Y" THEN PRINT "DIVIDE ROW" :K; "B"; A(K,K) 

= A(K, K) 
lR J = 2 * N + 1 TO K STEP -1 
~, J) = A(K, J) I D 
'T J 
"22$ = "Y" OR Q2$ Ilyll THEN GOSUB 1150 

'2$ = "Y" OR Q2$ "Y" THEN PRINT PERFORM; REDUCTIONi "" 
= 1 TO N 

K GO TO 900 
A(J, K) 
="Y" OR Q2$ ="Y" THEN PRINT "MULTIPLY ROW" :K: "BY A(I,K) :AND SUB' 
'. I 
~ * N + 1 TO K STEP -1 

A(I, J) - MULT * A(K, I) 

THEN GO TO 1100 

"RESULTS II, PRINT 
N 

r + 1) 
: ") = ":X (J) 

40 



1010 PRINT 
1020 IF SEL > 1 THEN GOSUB 1250: GOSUB 1340 
1030 PRINT 
1040 PRINT: PRINT "DO YOU WANT TO REPEAT THE CALCULATIONS": PRINT WITH MINOR 
1050 IF V$ = "Y" OR V$ "Y" THEN 1150 ELSE 1100 
1060 CLS : GOTO 340 
1070 PRINT: INPUT "DO YOU WANT TO RESET ALL THE COEFFICIENTS (yiN) ": W$ 
1080 IF W$ = "Y" OR W$ = "Y" THEN 990 ELSE 1100 
1090 PRINT: INPUT "IS THE NEW SET OF THE SAME ORDER AS THE PREVOUS SET" WW$ 
1100 IF WW$ = "N" OR WW$ ="n" THEN PRINT CHR$ (12) RUN 100 
1110 CLS GOTO 220 
1120 PRINT : PRINT 
1.130 PRINT ** END OF PROGRAM*** 
1140 LOAD "MAT, BAS", R 

1150 END 

1160 SUBROUTINE 1: PRINT THE; MATRIX 
1170 
1180 FOR KA = 1 TO N 
1190 PRINT 
1200 FOR J = 1 TO N + 1 
1210 PRINT A(KA, J) 
1220 NEXTJ: PRINT : NEXT KA: PRINT 
1230 PRINT 
1240 FOR DELAY = 1 TO 3000: NEXT 
1250 RETURN 

260 SUBROUTINE 2: PRINT THE; INVERSE; OF; THEi MATRIX 
~70 PRINT INVERSEi OFi MATRIX 
80 FOR KA = 1 TO N 
10 PRINT 
o FOR J = N + 2 TO 2 * N + 1 
) PRINT A(KA, J) 

NEXT J: PRINT : NEXT KA: PRINT 
PRINT 
RETURN 

~UBROUTINE 3: CHECK THE PRODUCT OF THE MATRIX AND INVERSE 
RINT " PRODUCT OF THE MATRIX AND INVERSE SHOULD BE THE IDNTITY MATRIX" 
),INT 
~ I 1 TO N , J 1 TO N 

J) 0 
l{ = 1 TO N 

J) C(I, J) + B(I, K) * A(K, J + N + 1) 

-JSING" :C(J.J) 
,J AND ABS (C (I, J) - 1) < EPS THEN GOTO 1490 

J AND ABS(C(J, J)) < EPS THEN GOTO 1490 
--:AUTION: INVERSE MAY NOT BE CORRECT" 
~INT 

'INT 

jO CLS KEY OFF 
************************* 

3S-JORDAND 
)N METHOD FOR 

* 
* 41 



10 CLS KEY OFF 
20 PRINT 11***************************11 
30 PRINT * * 
40 PRINT * JACOBI'S ITERATIVE 

METHOD 
* 
* 
* 

50 
60 
70 
80 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 

PRINT * 
PRINT * 
PRINT * (JACOBIS.BAS) * 
PRINT * * 
PRINT **************************** 

FOR D = 1 TO 5000: NENT D: CLS 
INPUT II ITERATION NUMBER lI i N 
R = 0: X 0: Y = 0: Z = 0 
FOR ITER = 1 TO N 
Xl (10 - Y - Z) / 5 
Y1 = (7 - X + 2 * Z) / 6 
Zl = (16 - X + 3 * Y) / 7 
R = R + i 
X = Xi: Y = Yi: Z = Zi 
PRINT II X II i ( II : R: II ) II : X II 
PRINT II Y II i (II: R: II) II : Y II 
PRINT IIZII i (II :R: ") II :ZII 
PRINT 
NEXT ITER 
IF X = xi AND Y = yi 
PRINT : GO TO 150 
LOAD IIA: MAT. BASil , R 
END 

AND Z zi GOTO 270 

LS KEY OFF 
~INT 11***************************11 
INT * * 
TNT * JACOBI'S ITERATIVE * 
'NT * METHOD * 
\JT * 
-T * 
" * 

(JACOBIS.BAS) 
* 
* 
* 

**************************** 
) = 1 TO 5000: NENT D: CLS 

II ITERATION NUMBERlIi N 
X 0: Y = 0: Z = 0 
'R = 1 TO N 

, - Y - Z) / 5 
- X + 2 * Z) / 6 

- X + 3 * Y) / 7 

, Yi: Z = zi 
(II :R: II) 
'II :R: II) 

II :R: II) 

II :XII 
II :YIl 

": Z" 

y = yi AND Z 
50 

zi GOTO 270 

,S", R 

42 



K X
1
(k) 

0 0.0000 

1 6.0000 

2 3.7500 

3 3.4688 

4 3.2930 

5 3. 1831 

6 3.1144 

7 3.0715 

8 3.0447 

9 3.0279 

10 3.0175 

11 3.0109 

12 3. 0068 

13 3. 0042 

14 3. 0027 

15 3. 0016 

16 3. 0010 

17 3. 0006 

18 3. 0004 

19 3. 0002 

20 3. 0001 

21 3. 0001 

22 3. 0000 

PROGRAM OUTPUT- TEST DATA 

GAUSS-SIEDEL ITERATIVE METHOD 

o. 0000 0.0000 

3. 0000 -5.2500 

3. 7500 -5. 1563 

3. 6094 -5.0977 

3. 7559 -5.0610 

3.8474 -5.0382 

3. 9046 -5.0238 

3.9404 -5.0149 

3. 9627 -5.0093 

3. 9767 -5.0058 

3. 9854 -5.0036 

3.9909 -5.0023 

3.9943 -5.0014 

3.9964 -5.0009 

3.9977 -5.0006 

3.9986 -5.0003 

3.9991 -5.0002 

3.9995 -5.0001 

3.9996 -5.0000 

3.9997 -5.0000 

3.9998 -5.0000 

3.9999 -5.0000 

3. 9999 -5.0000 
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PROGRAM OUTPUT - TEST DATA 

JACOBI ITERATIVE METHOD 

K X
1
(k) X

2
(k) X

3
(k) 

0 0.0000 0.0000 0.0000 

1 1.0000 2.5000 -1.0000 

2 0.8000 2.0000 -1.1250 

3 1.0625 2.0313 -10625 

4 1.0234 1.9687 -0.9766 

5 0.9961 1.9941 -0.9805 

6 0.9917 2.0039 -1.0005 

7 0.9993 2.0030 -1.0051 

8 0.0018 1.9996 -0.0110 

9 1.0006 1.9992 -1.9999 

10 0.9997 1.9998 -1.9995 

11 0.9998 2.0002 -1.0001 

12 1.0000 2.0000 -1.0002 

13 1.0000 1.9990 -1.0000 

14 1.0000 1.9999 -0.9999 

15 0.9999 2.0000 -0.9999 

16 1.0000 2.0000 -1.0000 
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