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ABSTRACT 

Since the inception of this world, everything was created mathematically. 

That is, world was planned numerically. Nothing in this world that cannot 

describe Of expressed numerically. Everything was built numerically. 

This representation of things numerically was to make things in their 

rightful and appropriate place so that world can better place to live. With 

this building of things numerically, everything will be in control and 

checked for appropriate organisation and proper administration. 

Therefore, life without number that life will not be easy or worth living. 

However, in order to have well organized and planned environment that 

we intend to construct the Fisher' s discriminant analysis function to 

classify remedial student of Federal university Technology, Minna, to the 

appropriate (suited) school in order to have better and well organized 

school based on good administration. 

The classification of these students will be based on their numerical 

characteristics which are their examination's score (marks) obtained. It is 

on these characteristics that we reclassified them to appropriate schools. 

The topic of this project work- construction of discriminant analysis-has 

been widely used statistical technique in many areas of applications in 

many fields. It is a very useful good technique in classification analysis. 
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CHAPTER ONE 

, ' INTRODUCTION 

1.1. GENERAL INTRODUCTION ON DISCRIMINANT ANALYSIS 

AND CLASSIFICATION. 

Discriminant analysis is concerned with the problem of identifying the 

population from which (a vector (x) have come from one or two or 

more popUlation) was Drawn. Discriminant analysis deals with the 

assignment of an observation say x of an unknown origin to one of 

two (or more) distinct populations on the basis of the value of the 

observation. According to PETER A. LACHENBRSUCH (1975) 

discriminant analysis was viewed as the problem of assigning an 

unknown observation to a group with low error rate. COOLEY and 

LOHNES (1962) defined discriminant analysis as a technique for 

description and testing of between group difference" 

Linear discriminant analysis (LDA) is per haps the most widely used 

method for classification because of it simplicity and optimal 

properties. Linear discriminant analysis is known to be optimal (in the 

sense of minimizing the expected cost of classification for two 

multivariate nonnal group with equal covarIance matrices). 

Estimation of linear discriminant function is considered for the 

problem of discriminant between P-dimensional normal popUlation 

and with mean vectors and common covariance matrix. 

Discriminant and classification one quite separate, though closely 

related, concepts. Classification consist of an attempt to discover, 

usually with no prior infonnation, the number of groups that exit 
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within a given data-set, together with details of group membership. If 

the number of group is known, as well as the characteristic of each 

group, the problem of assigning unclassified observation to their most 

likely group becomes logically possible. Discriminant involves the 

assignment of newly acquired or previously uncategorized samples to 

one of the existing classes. Classification is the identification of the 

category or group to which an individual or object belongs on the 

basis of its observed characteristics. When the characteristic are a 

number of numerical measurements, the assignment of group is called 

by some statistician DISCRIMINATION and the combination of 

measurement used is called DISCRIMINANT FUNCTION. The 

discriminant function discriminates between two (or more) completely 

specified popUlations. Therefore, the procedure of assigning an 

observation, X of unknown origin to one of two (or more) distinct 

group on the basis of the value of the observation is called 

DISCRIMINANT ANAL YIS. 

The main assumptions of discriminant analysis are that group have 

homogenous variance-covariance matrices, and that the variables are 

normally distributed. The second assumption is necessary of 

significance test are to be applied. In discriminant analysis often a two 

step procedure is to be followed. First, training samples are obtained 

to set Up a discriminant rule, and then individuals are classified using 

the sample-base rule. However, if the criterion for assigning the 

training samples for their true classes is imperfect, some training 

samples may be classified. To classify an individual into either of the 

few groups, (or more) we need a criterion of goodness of 
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classification. This implies that we need a rule that will lead to an 

optimum classification rule. We need a discriminant function to 

construct our assignment rule. The classification procedure is to 

regard the observed value x as coming from either the first population, 

or the second population (or other population) according to 

discriminant value. 

Although, two-group discriminant function analysis has been widely 

used, it is more often the case that several groups are thought to exist 

in a given set of data. While it is true that each pair of group could be 

analysis separately. Therefore, two-group discriminant analysis has 

been generalized to deal with k-group case called Multiple 

Discriminant Analysis (MDA). The number of comparison grows 

rapidly with k, the number of groups. It is assumed that each of the 

"n" samples is drawn from a separate population. The "n" population 

will differ in their means (otherwise there would be no point in 

discriminating between them) but their variance-covariance matrices 

should be equal and the variables on which measurement are made 

should be normally distributed. It is considered that moderate 

departure from these ideal conditions do not have a serious effect on 

the results. 

Multiple discriminant analysis (MDA) provides for the simultaneous 

comparison of several group, every member of each group being 

measured on a number of variables. The assumptions of multiple 

discriminant analysis are the same as those of two-group discriminant 

analysis, namely, Multivariate normality and equality of the within 
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group covanance matrices. A logical pre-requisite of multiple 

discriminant analysis is that the group are, infant separate. 

1.2 EXAMPLES OF DISCRTMlNANT ANALYSIS PROBLEM. 

(i) A geologist has obtained the mean, variance, skewness and 

kurtosis of the size of particular deposited in a beach. How can 

these statistics be used to determine if the beach is wave laid or 

colin in origin? Of course these statistics through the 

measurement can be used to detennine whether the beach is 

wave laid or colin in origin. 

(ii) Prospective students applying for admission into college are 

given a battery of test, the vector of scores is a set of 

measurements x. The prospective student may be a member of 

one population consisting of those students who will 

successfully complete the training or rather have potentialities 

for successfully completing the training or he may be a member 

of the other popUlation, those who will not complete the college 

COlITse successfully. The problem is to classify a student 

applying for admission on the basis of his scores on entrance 

examination. 

(iii) A patient is admitted into a hospital with a diastolic of 

myocardinal infection, a systolic blood pressure, diagnose 

blood pressure, stroke index heart rate and mean curterial are 

obtained. Is it possible to predict whether the patient will 

survive? Can we use these meaSlITements to compute the 

probability of survival for the patient? The answer is yes, it is 

possible to predict whether the patient will survive and also that 
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measurement can be used to compute the probability of 

survival. 

(iv) In routine banking or commercial finance an officer or analyst 

may wish to classify loan applicants as low or high credit risk 

on the basis of the elements of celtain accounting statements. 

(v) Indian man have been classified into three centres on the basis 

of stature, sitting, height and nasal depth and height (RAO 

1984). 

(vi) Six measurements on a skull found in England were used to 

determine whether it belongs to the Bronze Age or the iron age 

(RAO 1952). 

1.3. THE PROBLEMS OF CLASSIFICATION. 

The problem of Classification in its most basic form arises when it is 

required to allocate an individual to one or other of two population on 

the basis of a measurement of a p-dimensional random variables on 

the individual. It is presumed that the random variable has a different 

distribution for each of the populations. The problem of classification 

also arises when an investigator makes a number of measurements on 

individual and wishes to classify the individual into one of two (or 

more) distinct groups on the basis of those measurements. 

Similarly, the problem of classification arises when the investigator 

cannot associate the individual directly with a category but must infer 

the category from the individual's measurement, response or other 

characteristics. In many cases, it can be assumed that there are a finite 
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number of populations from which the individual may have come and 

that each Population is described by a statistical distribution of the 

characteristics of individuals. The individual to be classified is 

considered as a random observation from one of the populations. The 

question is, given an individual ' with certain measurements, from 

which population did he arises? 

1.4. mSTORICAL BACKGROUND OF THE CASE STUDY 

The Federal University of Technology, Minna established on 1st 

February, 1983 was the last of the seven Federal Universities of 

technology established by the defunct civilian administration of the 

second republic in Nigeria. 

1.4.1 THE GOALS AND OBJECTIVES OF THE UNIVERSITY 

1. To encourage the advancement of learning and to hold out all 

persons, without distinction of race, religion, creed, sex, or 

political conviction the opportunity of acquiring a higher 

education in Technology. 

11. To develop and offer academic and professional programmes 

leading to the award of certificates, diplomas, first degree, post 

graduate research and higher degrees, which emphasize 

planning, adaptive, technical, maintenance, development and 

productive skills in the engineering scientific, agricultural, 

medical and allied professional discipline with the aim of 

producing socially matured men and women with the capability 
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not only to understand, use and adapt existing technology but 

also to develop new ones. 

iii To act as agents and catalyst, through post graduate training, 

research and innovation for the effective and economIC 

utilization, exploitation and conservation of the country's 

national economic and human resources. 

IV To offer to the general public, as a forum of public service, the 

result of training and research and to foster the practical 

application of these results. 

v. To establish appropriate relationship with other national 

institutions involved in training, research and development of 

technology. 

VI. To identify technological problems based on the needs of 

society and to find a solution to them within the context of 

overall national development. 

VB. To provide and promotes sound basic scientific training as a 

foundation for the development of technology and the applied 

science, taking into account the indigenous culture and the need 

to enhance national unity. 

Vlll. To undertake another activities appropriate for a University of 

Technology of the highest standard. 

1.4.2 ACADEMIC PROGRAMMES 

The University presently runs different types of academic 

programmes. These are-pre-degree, full degree and postgraduate 

degree programmes. 
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The Federal University of Technology is divided into four schools. 

These are: 

1 School of Agriculture and Agriculture Technology. 

11 School of Engineering and Engineering Technology. 

111 School of Science and Science Education. 

tV School of Environmental Technology. 

104.3. PRE - DEGREE PROGRAMMES 

The University offers a one-year remedial programme designed to 

prepare candidates for admission into the five - year, full - time 

degree programme. Such candidates when admitted will be attached to 

the school of science and science education and take courses in the 

following five compulsory subjects - Mathematics, English Language, 

Physics, Chemistry, Biology. 

10404. ADMISSION REQUIREMENTS 

Admission into the pre - degree programmes will usually require: 

1. At least four-credit level passes at West Africa School 

Certificate in Science subjects. 

11 At least four passes at General certificate of Education, ordinary 

level. 

111. At least four-creditlMerit level passes at Grade II Teachers' 

Certificate, passes in English Language and Mathematics will 

be an added advantage. 

8 



1.5 OBJECTIVES OF THE STUDY 

The main objectives of this study include: 

1. To construct the discriminant analysis for remedial programme. 

11 To use a classification rule using Fisher's criterion to classify 

students into appropriate (suited) schools. 

111. To examine an apparent error rate from such a classification 

rule. 

IV. To advice future remedial programme entrants on the 

appropriate (suited) schools. 

1.6. SCOPE OF THE STUDY 

1 Analysis is bare on two - group fisher's discriminant analysis 

function due to lack of materials on multiple discriminant 

analysis on the part of the researcher. 

11 Analysis is based between two schools. 

iii Study only based on three compulsory subjects. 

IV Study does not concerned about how admission were given to 

the students. 

v. Only limited to the randomly selected students offer a one year 

remedial programme admission into university. 

1. 7 SOURCES OF THE DATA 

The data (Secondary data) used for the analysis of this project work 

were collected from the office of Dean of school of science and 

Science Education, Federal University of Technology, Minna. The 

data are the 2000/2001 session Examination results of candidates who 
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applied for admission into school of Science and Science Education 

and School of Environmental Technology. 
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2.1. INTR.ODUCTION 

CHAPTER TWO 

LITERATURE REVIEW 

The aim of discriminant analysis is to find the line which best separate 

the groups in form of the projection of the group characteristics. The 

characteristics of the group can then be used to assign individual to 

their most probable class. Discriminant analysis is equivalent to the 

regression of inter - group mean different on the P - variable 

KENDALL (1965). 

AFIFI and CLARK (1990) describe discriminant analysis as a 

technique, which are used to classify individual into one of two or 

more alternative groups (or population) on the basis of a set of 

measurement. The populations are known to distinct and each 

individual belongs to one of them. 

FISHER (1936) introduced the method of discriminant analysis to 

deal with the problem of correctly assigning fossil remains to come of 

two classes (homimaid and ape) on the basis of measurement of 

several variables. Since then the topic has been discussed in the 

context of psychology, geography and geology. 

THOMAS (1969) used two - group discriminant analysis in a study of 

glacial and periglacial sediments taken from slop deposited of the 

northern uplands of the Isle of Man. Group I consisted of colifcuxion 

deposited, and Group II was made up of interbedded gravels. The 

purr se of the analysis was to determine whether there was a 

statistically significant different between the two groups in term of the 
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four variables XI (mean), X2 (sorting), X3 (skewness) and X4 (kurtosis) 

computed according to the methods of Folk and Ward. Secondly, if it 

was found that there was a significant difference between the groups 

on the basis of these variables, an allocation procedure was required 

whereby future samples of sediment from this particular area of the 

Isle of man could be placed in group 1 or group 2 on the basis of their 

scores on the four variables. 

KLOV AN (1966) employed Q- mode factor analysis (i.e analysis of a 

similarity matrix of individuals ) to classify a group of 69 mean shore 

sediment samples from Baratria bay, on the Mississippi delta. 

Studies on discrete data were performed by GILBERT (1969) and 

MOORE (1973) usmg multivariate Bernoulli distributions. 

LACHENBRUEH et aI., (1973) considered the robustness to certain 

types of continuous non- normality. They transformed p-independent 

normal variables to the lognormal, and the Sinh-I normal distributions. 

As a result of these non- linear transformations, the underlying 

observations no longer have the same covariance matrices. Therefore, 

the total misc1assification rate was often greatly increased and the 

total individual misc1assification rate were distorted in such a way that 

are error rate was increased and other was decreased. The smallest 

effect was for the logit - normal distribution, which are highly 

skewed. 

CHERNOFF (1972, 1973) suggested some measures that indicates 

how well one can discriminate between Multivariate normal 
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population with unequal covanance matrices usmg a linear 

discriminant functions. Chernoff used such criteria to compare the 

performance of linear discriminant functions based on balanced and 

unbalanced design. 

ANDERSON and BAHADUR (1962) studies procedures for 

classifying two multivariate distributions with unequal covariance 

matrices. They showed how to construct a discriminant function that 

minimizes one probability of misclassification given the other and 

how to obtain a minimax discriminant procedure. But these 

discriminant procedures are non- linear. The best linear discriminant 

for these unequal covariance matrix context was found by CLUNIES 

-ROSS and RlFFENBERG (1960) and ANDERSON and 

BAHADUR (1962). 

The effect of unequal covariance matrices on the linear discriminant 

analysis were studied by GILBERT (1969) for the large - sample case 

and by MARKS and DUN (1974) for small - sample case. They both 

concluded that the linear function quite satisfactory provided that the 

covariance matrices are not too different. An important result on non­

parametric estimation of linear classification was suggested by 

GREER (1979, 1984). Greer considered algorithms designed to 

produce hyperplanes on a completely non- parametric manner for a 

large set of loss function. The estimation produce associated with a 

suitable loss function is consistent for any two underlying 

distributions, whether these are continuous, discrete or mixture of the 

two. 
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The principal features of discrinunant analysis is that it allows several 

characters COlnmon to the two group to the examined but collapses 

these multiple characters into one for purpose of testing. The 

robustness of linear discriminant analysis and the effect of failure of 

assumptions to hold have been studies by GILBERT (1969), MOORE 

(1973), MARKS and DUNN (1974), LACHENBRUCH, 

SNEERINGER and REVO (1973) and LACHENBRUCH (1975). 

BRElMAN et al (1984) proposed a non- parametric method that 

yields a perfect selection of two groups, when possible. Their method, 

however, has no continuos scoring system. 

JEAN (1988) used a non- parametric discriminant analysis based on 

the construction of a binary decision tree procedure. He concluded 

that the discriminant tree procedure is a non- parametric method of 

discrimination of qualitative variables (binary, normal or ordinal). 

Its prediction rule, given in the form of a binary decision tree, is easy 

to understand, use, explain, interpret and close to the physician 

reasoning. The method takes into account interaction between 

variables, is able to handle missing data, provides the possibilities of 

selecting splits to include Boolean combination of variables and is 

also able to deal with different cost of misclassification. Unlike the 

standard classical method of classification problems discriminant 

analysis and logistic regression but these cases, the prediction rule are 

given in the form of algebraic expression that are sometimes, difficult 

to understand and interpret. 

14 



AKlHIKO (1987) studied experiment companson between the 

optimal discriIninant plane based on samples and general discriminant 

analysis where he obtained optimal discriminant function (0. D. F) 

from the ratio between the population distributions functions of two 

group in which the boundary is determined differently by the 

likelihood, Bayes, risk methods. 

He stated that when two populations are normal, optimal discriminant 

function is of quadratic form and it coincides with Anderson -

Bahodour linear discriminant function. When their varIance 

covariance matrices are equal it is linear form and it coincides with 

optimal discriminant function. 

In comparison with the standard discriminant analysis, the linear co­

efficient of which maximizes the ratio of the between -class variance 

to the . within -class variance is frequently used as standard linear 

discriminant function- Fisher linear discriminant function (F.L.D.F). 

He concluded that it is doubtless that fisher linear discriminant 

function is every useful, especially efficient at small sample size. 

Nevertheless, when population distribution, Fisher linear discriminant 

function does not converge to the optimal linear discriminant function 

for the population distribution as sample size be comes infinitely 

large. 

On the other hand, the sample optimal linear discriminant functions 

needs vast calculation to obtain it, but it logical is very clear and 
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always converges to the optimal linear discriminant function for any 

population. 

Occasionally, this non- parametric method may be very useful. 

In some situation quantitative measurement of the attributes of interest 

are not possible. Instead, binary (presence-absence) measures may be 

considered. 

RAMSAYER and BONHAM-CARTER (1974) describe a technique, 

which they term "adaptive pattern-recognition" which allows the 

discrimination between two groups on the basis of binary attributes 

alone. The adaptive pattern - recognition model can be represented by 

a linear equation except that the X's denote binary variables. The 

procedure begins with a trial set of coefficients, which are 

progressively modified until maximum discrimination is attained. 

One drawback of the method is that the order in which the individual 

are presented may have an effect on the resulting coefficients. It can 

be shown that if a linear function exists which can separate the groups 

then the coefficients vector will converge to a solution. This solution 

will not necessarily be unique, for if the individuals had been listed in 

a different order then the vector could have converge to a different 

and equally feasible solution. 

Ramsayer and Bonham - carter report their expenence with the 

algorithm using actual geological data. For the sedimentological data 

recorded and analysed by Purdy, they find that the adaptive pattern -
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recognition algorithm was approximately as successful as the 

discriminant fimction. In a second application to the study of 

breachiopod diversity patterns in Permian marine roots, Ramsayer and 

Bonham - carter carried out pair - by - pair analyses for every 

possible pair out of seven groups. Some difficulty was experienced in 

that situations where an individual could not be allocated to any 

particular group with any degree of certainty there is no clear basis for 

making probability statements about the likelihood of the individual 

belonging to any particular group. But, this is possible with both two -

group and multip le group discriminant analysis. 

FISHER (1936) suggested using a linear combination of observations 

and choosing the coefficients so that the ratio of the difference of the 

means of the linear combination in the two groups to its variance is 

maximized. 

Fisher' s linear discriminant function is frequently used for the two 

group discriminant analysis problems. It minimizes the expected loss 

in the case of unknown prior probabilities and it is an admissible 

procedure when prior probabilities are not known (ANDERSON 

1958). However, in most practical situations, only sample data (one 

set from each population) are availabJe and the parameters as well as 

the shapes of the two distributions are not known. 

In this case, use of the linear discriminant fimction is defended by the 

argument that it maximizes the sample Mahalanobi's (squared) 

distance between the two data sets (Fisher 1936). This argument 
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nonetheless does not imply that the linear discriminant function 

(L.D.F) is the best procedure for these situations. 

Although, Fisher's linear discriminant function has been used in many 

practical applications, its statistical properties under non - optimal 

conditions have met received much attention until recently. 

In research paper (project work), reviewing of some literatures on the 

subject matter (topic) is very important because of some advantages 

attached to it. However, we would like to point - out (emphasize) 

from this paper some advantages derived from reviewing this 

(Statistical tool) topic - discriminant analysis that are widely applied 

(used) in many areas or fields of research and these as follows; 

1. In reviewing, we are able to understand the detail concept of the 

subject matter. Insight into the meanings presented with 

examples able to give us clear concise and precise understand 

of the topic. Different view points put forward through 

definitions so as to let us know what this topic is all about and 

how important in the context of our finding (research). 

11. From the literature review of this paper one is able to get 

acquainted with different methodology of application to 

different situations. Alternative methods were proffered in a 

situation where failure of assumption could not longer be held 

of a certain technique. Testing different methods to different 

situation whether it is applicable to be employ to that situation 

or not were given so that we would be able to know which 

method is applicable to our situation in terms of optimal 
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method. We know how feasible certain methodology in teons 

of flexibility, analysis, interpretation, explanation and cost to 

suite our problem at hand 

lll. We able to known or learned the limitation of hypothesis or 

theory put forward in some areas of findings in this particular 

topic. Its shortfall, problems and effect in comparing different 

methodology to different situations whether it is appropriate in 

terms of applicability. 

IV. Another advantage is that it open - up further area of research 

in some fields. From the literature review we are able to detent 

some area of further study. Which open - up to carry out 

research on it, in terms of its principles and laws. 

v. Exposure and awareness we are able to achieved from this 

literature review. Exposure to the latest research work or some 

new studies to various application of areas or fields. Dynamic 

aspects of the subject matter as relating to the contemporary 

issue were fully aware about. 

2.2 FISHER'S CRITERION AND DERIVATION 

In Fisher's approach, let the linear combination be denoted by Y=AX. 

Then, the mean ofY in the first population 7tl is A1!l1; and the mean of 

Y in the second population 7t2 is Al !l2; its variance is A 1 LA in either of 

the groups if we assume that the covariance matrices is equal. 

i.e. L 1 = L2 = L 
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Then we wish to choose to maximize 

~ = A\ll - A\ll 

AI~A 

Differentiating ~ with respect to A I, we have 

a~ = 2 (~I - ~2) AI~A - 2~A (AI~I - AI~2) 
aA (A1LAi 
Equating 

we have ~I - ~2 = ~A (AI~I - AI~2) 
AI~A 

Since A is used only to separate the two population then A may be 

multiplied by any constant. Thus, A is proportional to ~ . I (~I - ~2) 

i.e. Aoc~ . 1 (~I - ~2) 

Therefore A = k~· I (~I - ~2) where k is a constant 

Then 

If the parameters ~1~2 and ~ are unknown, it is the usual practice to 

estimate them by XI , X2 and S respectively. The discriminant function 

for known parameters is Y = A'X = (~l - ~2) ~ . IX. The discriminant 
1\ 

function for unknown parameters is Y = (XI - X2) I S· I X 
- - - I 1-

The mean ofY in 7t1 is Y I = (Xl - X2) S· Xl 

The mean ofY in 7t2 is Y2 = (XI - X2)1 S· IX2 

The mid - point of the interval between mean 
- - --
Y I and Y2 is Y2 (Y1 + Y2). 

The assignment procedure is to assign an individual to 7t t 
-

ifY > .Y2 (Y t + Y2) and assign to 7t2 ifY < Y2 (Y1 + Y2). 
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The mid - point Y2 (Y I + Y 2) IS used as the cut off point for the 

assignment procedure. The difference between the means Y I and Y 2 
- - I -I - - I -I 

is Y I - Y2 = (XI - X2) s X - (XI - X2) S X2 

- - I -I - -
= (XI -X2) S (XI -X2) 

= D2 which is called the Mahalanobi's (squared) distance 

for unknown parameters. The distribution of D2 is used to test if there 

are significant differences between the two groups. 

In general, P - measurements made on sample of size nl and n2 from 

populations trl and tr2 respectively are discussed as follows: 

The mean vector of measurement in tr I is given by 

X, =( x,x, ............... x,}p 

The mean vector of measurement in tr2 is given by 

X, =( x,x, .............. xp}p 

The covariance between measurement in trl is given by P x P matrix. 

The covariance between measurement in tr2 is given by P x P matrix. 

The covariance between measurement in trj is given by 

Where i = 1,2, ..... ~j j = ],2 ...... . 
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The discriminant score for nl and n2 individuals ill 1t1 and 1t2 

respectively are given below. 

1t1 

Y 1 = A\X11+ ...... + ApXpl 

Ynl = A\Xnl + ...... + ApXpnl 

1t2 

Y I = AIX II+ ...... + ApXPI 

Yn2 = A\Xn2 + ...... + ApXpn2 

2.3. TEST BETWEEN - GROUP DIFFERENCES 

The distribution of Mahanlanobi's (squared) distance, D2 is used to 

test if there are significant differences between the two groups. 

F = TIJ.!12..fuL + n2 - K - 1) D2 

nln2 (nl + n2 - 2)k 

Where: 

nl is the sample size in the first population 

n2 is the sample size in the second population. 

K is the number of variables, has an F - distribution with k and 

nl + n2 - 1 degree of freedom. 

HYPOTHESIS: The null hypothesis, Ho States that there are no 

significant differences between the two populations. While the 

alternative hypothesis, HI States that there are significant differences 

between the two populations. 
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TEST STATISTICS: Let the probability of committing type I error, 

(1 - a) = 95%, that is, a is at 5% significant level (a = 0.05). 

DECISION RULE: We reject the null hypothesis if the calculated F is 

greater than Fo, k, nl + n2 - k - 1. OthelWise we do not reject null 

hypothesis, Ro. 

CONCLUSION: If the null hypothesis is rejected, we conclude that 

there are significant differences between the two population at 5% 

significant level. 

2.4. PROCEDURE FOR CALCULATING PROBABILITY OF 

MISCLASSIFICATION USING FISHER'S CRITERION. 

STATISTICIANS DECISION TABLE 

1t1 1t2 

1t1 CORRECT M I 
TRUE 

POPULATION 
POPULATION 

-1t2 M2 C ORRECT 

P OPULATION 

TOTAL 

Therefore, 

PI = M 1 ; P 2 = M2 ; P = M 1 + Mz 
111 112 nl + 112 

Where 

P I is the probability of misclassification in 1t I. 

P2 is the probability of misclassificatio11 in 1t2. 
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P is the probability of error rate. 

N is the grand total 

MI is the number of the misclassification in 7(1' 

M2 is the number of the misclassification in 7(2' 

2.5. OTHER CRlTERIONS. 

1. WELCH'S CRITERION 

This is a discriminant function which follows a likelihood ratio 

approach. This linear discriminant function was discovered by Welch 

(1936), although it follows the operation of Fisher's linear 

discriminant function. 

Suppose the random variable X has either the density function fl 

(X I8J) or f2 (X2~) where parameters ~ are unknown and 

mathematical forms of the densities are specified. If the likelihood fl 

(X I8J) is large relative to f2 (X2~)' we could be inclined to believe 

that x come from the first population, if f2 (X2~) has the large value, 

the second population would seem more likely. This rule may be 

written in tenns of the likelihood ratio 

A = fllXl8J.l 

f2 (X2~) 

I.e. classifY x as from first popUlation if A = 1 and from second 

population if A < 1. Welch obtained a discriminant function by 

minimizing the total probability of misclassification. 

Let fl (x) be the density function of Xi 
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Let PI be the proportion of TCI in the general population and P2 = 

1 - P, be the proportion of TC2 in the second population. 

We think of an observation as a point on a k - dimensional space. We 

divide this space into two regions RJ and R2' where R J and R2 are 

mutually exclusive and these Union includes the entire space R. If the 

observation X falls in R J, we classify it as coming from TC J and if it 

falls in R2, we classify it as coming from TC2. 

In the following any gIven classification procedure, there are two 

kinds of error in classification. The first type of misclassification is 

PI = f RI fl (x) dx and the 

Second type is 

P2 = f R2 f2 (x)dx 

Welch suggested minimizing the Total probability of 

misc1assification. 

T(Rd) = PI SRI fl (x) dx + P2 SR2 f2 (x) dx 

= PI {I - SRI fl (x) dx} + P2 SR2 (x) dx 

= PI + SRI {P2 f2 (x) - PI f, (l)}dx. 

This quantity is minimized if RI is chosen so that P2 f2 (x) PI fl (x) < 

0, for all points in R I . Thus, the classification rule is 

Assign x to TCI iffi~} > ~_and 
f2(x) PI 
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Assign x to 1t1 ifflOO < ~ 
f2(x) PI 

An important special case on Fisher's criterion is when 1t I and 1t2 are 

multivariate normal with meanJ..lI, J..l2 and common covariance 

matrixL. 

The optimal rule is to assign x to 1t1 ifDT (x) = log P2/Pl and assign x 
, 

to 1t2 otherwise. 

If parameters are unknown, the sampling analogue is 

Ds (x) = [x - Y2 (Xl - X2)] S - I (XI - X2) 

This is called Welch's sample discriminant function while DT (x) is 

called true discriminant function due to Welch. The mean of DT (x) in 

X comes from the population, the variance is 

E{DT (x) - DT}2 = (J..l1 - J..l2)iL-l (!-l' - !-l2) = D2 

The quantity (12 is the Mahalanolities distance for unknown 

parameters. The probabilities of misc1assification are 

ll. BAYE'S THEOREM APPROACH. 

This is the assignment of an observation, x to the population with the 

largest posterior probability. The conditional density of x given 1tj is 

~(x). Some of the prior probability of 1tj is Ph the posterior probability 

by Baye' s theory is 

Pr (1tj Ix) = PlEihl = P1tloo 
PrCx) P,fl(x) + P2f2(x) 
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If an observation is assign to 1t( when Pr (1ti Ix) > Pr (1t lx) , this is 

equivalent to the rules that minimizes the total probability of 

misclassification. When estimating the risk of belonging to, the 

posterior probability is useful. The Baye' s approach towards 

classification when all parameters are known and misclassification 

costs are equal will begin with an evaluation of the posterior 

probability that XL1tj given for each j = 1, 2 ..... k. Then posterior 

odds might be computed for each pair of population, alternatively, 

with k > 2, the population with the greater posterior probability 

density can be selected. When the cost of misclassification is unequal, 

the Bayesian would select the population that produced a minimum 

cost when average with respect to the posterior distribution. 

Moreover, this result also holds for all k > 2 when all parameters are 

known. 
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3.1. INTRODUCTION 

CHAPTER THREE 

ANALYSIS OF DATA 

In this chapter, we are going to employ fisher's linear discriminant 

analysis function procedure to construct an assignment rule in our 

classification. The choice of chosen Fisher's criterion for our 

analysis of data is due to the following reasons: 

1. It is very efficient at small sample size. 

11. It is useful when the population is multivariate normal. 

lll. It is a reasonable criterion for constructing a linear 

discriminant contribution. 

IV. It is extremely simple to apply and interpret. 

v. It maximizes the difference between groups relative to the 

standard deviation within the groups. 

VI. It is optimal in its classification. 

The Federal University of Technology, Minna, is divided into four 

schools and under each of these schools are different (various) 

departments. It . is these departments that constitute or comprises of 

these schools. Out of these four schools, two schools were selected 

as our two populations (two - group). This is done in order to come 

in line with our states scope of study in chapter one of this paper­

study will base on Two - group fisher's discriminant analysis 

function. From these two schools, fifty samples of students were 

randomly selected. 

The data for this analysis were obtained from three compulsory 

subjects of examination's marks (scores) of each of fifty selected 

student from each schools. The students are pre-degree students of 
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the University and the Three compulsory subjects they offer during 

the course of programme are physics, chemistry and Biology. 

However, frrst population shall be referred to as School of Science 

and Science Education while the second popUlation shall be 

referred to as school of Environmental Technology. We take each 

of these subjects as our variables, say X and each of these subjects 

shall be labeled as Xj, X2 and X3 variables accordingly with 

foll~wing order of arrangement as physics, Chemistry and Biology 

respectively. 

3.2 COMPUTATION OF THE ESTIMATES OF PARAMETERS 

FOR THE SCHOOL OF SCIENCE AND SCIENCE 

EDUCATION. 

The sums of measurements in the School of Science and Science 

Education are computed below: 

100 

LXii =3878 
i-I 

100 

LX2i =3898 
i~ 1 

100 

LX3i =3662 
i=1 

This means measurements computed for the school 

XI =_1 ~ . = 3878 =77.56 
50 ftXII 50 

X2 =_1 ~ . = 3898 =77.96 
50 f.:X2

1 50 
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The mean vector Xl of the measurement for the school is given by 

Xl 77.56 
= 77.96 

X3 73.24 

The sum of squares and cross product terms computed for 

the school is given below 

100 

Ixl: =302100 
1=1 

100 

I Xii = 305334 
i =1 

100 

IX;; = 269102 
i~ 1 

100 

IX li X 2; = 301655 
I~I 

100 

L X II X3; = 284029 
;=1 

100 

L XIiXli = 284816 
;=1 

The sum of squares and cross product matrix for the school are 

calculated below and labeled VI 

v l = 

100 

Ix,~ =nX2 I 
I- I 

100 

I xiixii - nX2X 1 
1=1 

100 

I X;iXIi - nX3 X I 
i=1 

1322.32 

-673.88 

4.28 

100 100 

IXI~ X 2i -nXI X 2 I XI~ X 31 - nXl X3 
I~ I I- I 

100 100 

I xi; 
-2 

= nX2 Ixii X 3; -nX2 X 3 I_I i-I 

100 100 

IX;i X 2i - nX3X 2 IX;i 
-2 = nX3 

;=1 

-673.88 

1445.95 

-673.52 

30 

;x l 

4.28 

-693.52 

897.12 



3.3 COMPUTATION OF THE ESTIMATES OF PARAMETERS 

FOR THE SCHOOL OF ENVIRONMENTAL TECHNOLOGY 

The sums of measurements in the School of Environmental 

Technology are computed below: 

100 

LXii = 2748 
1=1 

100 

LX21 =2832 
1=1 

100 

LX31 = 2933 
I~ I 

The means measurement computed for the school 

XI =_1 ~ . = 27488 = 54.96 
50 ftX11 50 

- 1 100 2832 
X2 = - LX2i =--= 56.64 

50 ix l 50 

X3 = _1 ~X . = 2933 =58.66 
50 f;( 31 50 

The mean vector X2 of the measurement for the school is given by 

XI 

= 
54.96 

56.64 

X3 58.66 

The sum of squares and cross product terms computed for the 

school is given below: 

100 

L XI~ = 157098 
1=1 

100 

LX~i = 165984 
1=1 
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100 

L X 3
2
; = 17483 

i~ 1 

100 

L XliX 2 ; = 157166 
;=al 

100 

LXI/X31 = 161991 
/e l 

100 

LXI/XI; = 167169 
; ~ I 

The sum of squares and cross product matrix for the school are 

calculated below and labeled V 2 

V2 = 

100 

LX,~ =nX2 
I 

;al 

100 
L 2 --XliX I; - nX2X 1 
i .. 1 

100 

L X32;XI; - nX3X I 
1=1 

6067.92 

15-19.28 

793.32 

100 100 

LX,~ X 2; -nXl X 2 LXI~ X 31 -nXl X3 
;=1 I~I 

100 100 

LX~; 
-2 

= nX2 Lxi; X 3/-nX2 X 3 
;=1 1=1 

100 100 

LX;; x 2; - nX3X2 L X 3
2
; 

""-2 = nX3 
;=1 

1519.28 

5579.52 

1043.88 

1=1 

793.32 

1043.88 

3432.22 

3.4 COMPUTATION OF POOLED SAMPLE COVARIANCE 

MATRIX 

The pooled covariance matrix is calculated as follows 

s= V;+V2 
nl +n2 -2 

7390.24 845.40 797.60 

s = 1198 845.40 7025.44 44370.36 

797.60 370.36 4330.34 
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75.41061224 

S = 8.626530612 

8.13877551 

8.626530612 

71.68816327 

3.779183673 

The inverse of matrix is given below. 

sol = adjoint of S 
det er min ant of S 

813877551 

3.779183673 

44.18714296 

0.013692952 -0.00151632 -0.002391947 

S-I = 0.00 :: 521632 0.01481574 -0.0009326636 

-0.002391947 -0.0009326636 0.0231511352 

3.5 COMPUTATION OF FISHER'S LINEAR DISCRIMINANT 

FUNCTION FOR TWO POPULATIONS 

Fisher's linear discriminant function is given by the following 

formula 

Y = (XI - X 2 ) S-IX 

Where X is the three X vector 

Xl 

I.e. X2 

X3 

0.0136929526 -0.001521632 -000239194 XI 

Y=[22.621.3214.58] -0.001521632 0.01481574 -000932636 X2 

-0.002391947 -0.000932636 0.023151352 X3 

XI 

= [0.242144899 0.254364405 0.263604868] X 2 

X 
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,.. 

~ = 0.242144899Xli + 0.254364405X2i + O.263604868X3i 

Which is the Fisher' s j near discriminant function. 

The formula for the mean of the function in the School of Science and 

Science Education is given by 

~ = (x) -X2)l S-1X ) 

0.136929526 -0.001521632 -0.002391947 77.56 

~ = [22.6 21.32 14.58] 0.0015216332 0.01418115743 -000932636 77.96 

-0.002391947 -0.000932636 0.023151352 73.24 

77.56 

= [0.242144899 0.254364405 0.263604868] 77.96 

73.24 

~ = 57.91742791 

The fonnula for the mean of the School of Environmental Technology 

is given by 

1; =(X
t
-X

2
)I S -IX

2 

0.136929526 -0.001521632 -0.002391947 

~ = [22.6 21.32 14.58] 0.0015216332 0.01418115743 -000932636 

-0.002391947 -0.000932636 0.023151352 

54.96 

= [0.242144899 0.254364405 0.263604868] 56.64 

58.66 

1; = 43.17854511 

The fonnula for the cut-off point is given by 

1I2(~ + 1;)= 1I2(X
J 

- X 2 )' S-l (X
J 

- x2 ) 
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= ~(57.91742791 +43.17854511) 

= 50.5480 

The Maharianobi' s (sq uared distance, D2 between the two populations 

(schools) is given by the following formula 

~ -~ = (xl - X 2J S-I(X1 - X 2) 

= 57.91742791 - 43.17854511 

= 14.7389 

Assignment Rule: 

Assign an individual (student) to the first population (School of 

Science and Science Education) if (XI - xJ S-I(X1 - x2» ~(~ + YJ and 

assign an individual to the second population (School of 

Environmental Technology) if (Xl - X 2J S-1 (XI - X 2) ~ Y2( ~ + ~ ) 

i.e. assign to 1Z"J if Y; > 50.5480 and assign to 1Z"2 if 1'; ~50.5480 

3.6 COMPUTATION OF DISCRIMINANT SCORES FOR THE TWO 

SCHOOLS 

We shall use the discriminant function 

" Y; = 0.242144899X1i + 0.254364405X2i + 0.263604868%3; to obtain 

discriminant scores in the two schools. See Appendix at back for 

generated scores for the two schools. 
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3.7 PROBABILITY OF MISCLASSIFICATION FOR THE TWO 

SCHOOLS USING FISHER'S LINEAR DISCRIMINANT 

FUNCTION 

SCHOOL SCIENCE 

EDUCATION 

ENVIRONMENTAl TOTAL 

SCIENCE EDUCATION 50 

ENVIRONMENTAL 6 

TOTAL 56 

o 
44 

44 

The probability of misclassification into the School of Science 

Education 

P I= Ml/n) = 0150 =0 

50 

50 

100 

The probability of misclassification into the School of Environment 

P2= M2/n2 = 6150 =0.12 

The total probability of misclassification IS 

P = M1M2/nln2 = 0+61100 = 0.06 

Where 

P I is the probability of misclassification of the School of Science 

Education 

P2 is the probability ofmisclassification of the School of Environment 

P is the probability of misclassification of the two schools 

MI is the number of students who are misclassified into the School of 

Science Education 

M2 is the number of students who are misclassified into the School of 

Environment. 

nl and n2 are the number of students in the two schools respectively. 
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3.8 TESTS BETWEEN GROUP DIFFERENCES 

We shall make use ofF-distribution to find out the observed 

differences between the groups 

Therefore 

D2 = Y,-Y2 = 14.7389 

F = 50 x 50(50 + 50 - 3 -1) x 14.7389 

50 + 50(50 + 50 - 2) x 3 

= 120.3176 ~ 120.32 

Fb nr+nr k- 1, 0.10= F3, 98, 0.10 = 2.68 

Hypothesis: Ho: !.11= !.12 Vs HI: !.11* !.12 

Decision: We reject the null hypothesis, I-lo 

Conclusion: We then conclude that there are significant 

differences between the two schools. 
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CHAPTER FOUR 

SOFTWARE DEVELOPMENT AND IMPLEMENTATION. 

4.1 INTRODUCTION 

This Chapter will concentrate on software development 

implementation. The chapter will discuss the software to be used, its 

programming language and the programming detail. 

4.2 CHOICE OF SOFTWARE PACKAGES AND PROGRAMMING 

LANGUAGE. 

In selecting a software packages certain criteria needed to be 

considered. These criteria are; 

1. The effe~tiveness and efficiency of the packages with regard 

to the functions of the developed programmes. 

2. The facilities for different types of file processing. 

3. The security of the records in the files. 

4. The facilities for maintaining the files e.g. adding new 

records, easy retrieval, modifying of records, etc. 

5. The flexibility of the packages 

6. User's friendliness of the packages. 

Based on the above criteria, the application software package that will 

be able to solve this problem will be - Statistical Package for the 

Social Science SPSS. And the programming language that will be 

developed for solving this problem will be Qbasic programming 

language. 

4.3 FEATURES OF SOFTWARE / PROGRAMMING LANGUAGE 

Sta . tical packages are well-defined integrated set of programs 

designed for performing various statistical analyses bore on user's 

specification using statistical techniques. There are lots of application 
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packages that requires just data definition and specification of the 

desired operation. 

The processes involves are usually; 

1. Establishing the set of ideas or concepts 

ii. Collecting data and analyzing them and establishing facts using 

the various statistical techniques contained in the packages. 

Examples of Statistical packages include: ' 

1. Statistical packages for the social (SPSS) 

2. Statistical Analysis system (SAS) Professional Statistics and 

graphic packages (MYST AT). 

Basic programming language, which uses complier as translator. It 

can handle large data in which relative computation is involved. It is 

easy to learn and user friendly. And it is one of high level language 

that takes care of mathematical formula. The following are procedures 

for entering the program environment through Disk Operating system. 

1. Booting system. 

11. C:\> ~~ 

Ill. C:\>cd Qbasic .. 
IV. C:\>Qbasic > Qb. ... 

4.4. PROGRAM DEVELOPMENT 

Program is defined ' as an instruction set describing the logical steps 

the computer will follow to solve a particular problem. The act of 

p ' gram writing is programming and it involved the following steps. 

1. Problem definition: Before a program can be written to perform 

a particular task the nature and complexity of the problem or 
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task must be known. That is, s,-:!b task procedures and routines 

that must be well defined and fonnulates using mathematical 

statements and operators. It is when problem are well defined 

that the problems can be processed. 

11. Problem Analysis: It involves . analysis the various procedures 

or routines defined to fmd a method of solution. That involves 

manipulating the records in a file, establishing a relationship 

between the various data elements and the description of the 

medium storage. 

111. Algorithm is a step by step method or rules for solving a 

problem in a finite sequence of steps. It involves describing in 

literal tenns the steps to be taken to solve a given problem. 

IV. Flowchart can simply be defined as diagrammatic 

representation of algorithms. It is a pictorial representation of a 

complex procedure with considerable charity. Two major types 

of flowchart and they are system and program flowchart, 

system flowchart give a general pictorial representation of the 

system overview. It shows the various relationships among the 

input data, the processing and the desired output. While 

program flowchart is a pictorial representation of the logical 

steps the computer takes to solve a problem. 

v. Coding program: is the actual writing of the instructions set the 

computer follows to solve the problem according to a specified 

rate. 

VI. Testing program: this step is more to test data to see the 

effectiveness or adequacy of the program through run and 

debug the program. 
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Vll. Program documentation: Entails giving a concise description of 

programs in form of user manual and operating instructions. it 

gives details of what the program can do and what it cannot do 

as well as simplifying the task of a maintenance programmer 

and making provision for future amendments. 
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CHAPTER FIVE 

SUMMARY, CONCLUSION AND RECOMMENDATION 

5.1 SUMMARY 

From the analysis, Fisher's linear discriminant function was computed 
thus: 

Vi = O.022144899XIi + O.2544364405X21 + O.263604868XJi 

Given the function, we shall see that there are no much differences in 

the coefficient of the three variables Xl, X2, X3. This implies that 

nearly all three subjects contributed to the function. Since 

0.263604868 is greater than the other two coefficients, we can say that 

Biology contributed more significantly to the function than Physics 

and Chemistry. 

In test of between group-differences, we used F-statistics to find out 

the observed group-differences. The result is that the two population 

(School of Science Education and Environmental Technology) are 

entirely different, and that is why we want to further to discriminate 

between the two populations. 

The value of the mean in the first population was computed as 

Yt = 57.9174 while the value of the mean in the second population 

was computed as Y2 = 43.1785. We noticed that the mean in the 

School of Science and Science Education is greater than the mean of 

the school of Environmental Technology. This means that, mean 

increases with greater viability of scores in the populations. 
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The value of the Mahalanobics, D2 is large i.e D2 = 14.7389. This 

implies that we have few classifications. The probability of 

misclassification in the School of Science was 0 and probability of 

misclassification in the School of Environmental was 0.12. The total 

probability of misclassification was obtained as 0.06. The total 

probability of mlsclassification very small, this is because the value of 

Mahanalobics distance is very large. 

As for the performance of the discriminant function, smce the 

probability of misclassification is very small, then the discriminant 

function performed very well. Another factor that influence 

performance of the function is the fact that data used construct the 

function was re-used to classify the observations. 

The Fisher's linear discriminant scores for the students from the two 

schools were computed. The discriminant scores for the students in 

the school of SCIence were greater than those of School of 

Environmental. 

5.2 CONCLUSION 

We have been able to construct a classification rule using Fisher's 

linear discriminant function. Using the function, individual students 

from the two schools were reclassified into either of the two schools 

or the basis of the cut off point and their discriminant scores. 

The apparent error rate for the two schools was obtained from the 

Fisher's linear discriminant function. 
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Since all the students in the school of Science were correctly classified 

and only six were wrongly classified into the school of Environment, 

then it is appropriate to use the Fisher's discriminant function for 

constructing classification rate. . 

5.3 RECOMMENDATION 

Base on the data collected and the analysis out a student should be 

advised to be in the school of Science Education if his discriminant 

score is above the cut-off point, otherwise he should be advised to be 

in the School of Environmental Technology if his discriJninant score 

falls below the cut off point. 

Moreover, we can use the discriminant function for the subsequent 

years. This can be achieved by reviewing the function sequentially 

every year until the estimated coefficients are constant 
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APPENDIX] 

THE STUDENTS SCORES FOR THE SCHOOL OF SCIENCE AND 
SCIENCE EDUCATION 

PHYSICS CHEMISTRY BIOLOGY 
I. 89 78 72 
2. 87 82 70 
3. 82 78 78 
4. 82 76 79 
5. 82 78 76 
6. 75 82 78 
7. 83 74 78 
8. 76 82 76 
9. 87 80 68 
10. 80 83 70 
II. 80 76 76 
12. 78 80 74 
13. 80 76 74 
14. 83 71 76 
15 . 87 67 76 
16. 75 85 70 
17. 76 76 78 
18. 75 76 78 
19. 75 80 74 
20. 76 85 68 
21. 68 85 76 
22. 85 65 79 
23. 82 72 74 
24. 76 74 78 
25. 80 69 79 
26. 76 80 72 
27. 80 74 74 
28 75 80 72 
29 75 85 67 
30 71 82 74 
31 73 82 72 
32 69 80 78 
33 82 74 72 
34 83 80 63 
35 75 83 68 
36 78 78 70 
37 76 85 65 
38 69 85 72 
39 73 87 65 
40 75 85 65 
41 78 67 79 
42 80 72 72 
43 76 74 74 
44 82 74 68 
45 76 74 74 
46 76 69 79 
47 73 76 74 
48 69 82 72 
49 71 78 72 
50 68 81 74 
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APPENDIX II 
THE STUDENTS SCORES FOR THE SCHOOL OF ENVIRONMENTAL 
TECHNOLOGY 

I 
2 
3 
4 
5 
6 
7 
8 
9 
10 
II 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

PHYSICS CHEMISTRY BIOLOGY 
83 
85 
62 
73 
75 
69 
66 
68 
59 
69 
55 
46 
52 
55 
52 
60 
57 
55 
62 
45 
53 
53 
60 
48 
46 
20 
50 
50 
52 
48 
59 
60 
50 
60 
52 
48 
52 
53 
55 
43 
41 
50 
45 
59 
60 
52 
48 
38 
45 
50 

65 
80 
80 
72 
71 
78 
71 
61 
60 
40 
65 
72 
51 
58 
67 
56 
65 
63 
40 
51 
61 
54 
54 
60 
65 
71 
60 
54 
56 
43 
43 
52 
60 
49 
43 
54 
52 
58 
45 
54 
54 
45 
54 
45 
43 
43 
43 
52 
52 
47 

46 

76 
58 
78 
70 
65 
61 
67 
68 
68 
70 
58 
59 
72 
61 
54 
56 
50 
52 
67 
72 
54 
61 
52 
58 
54 
74 
54 
59 
54 
70 
58 
47 
47 
47 
61 
54 
50 
43 
54 
56 
58 
58 
54 
48 
48 
56 
59 
59 
52 
52 



APPENDIX III 

CALClJLATED FISHERS DISRIMINANT SCORES FOR THE SCHOOL 

OF SCIENCE AND SCIENCE EDUCATION 

1. 0.242144899(89) + 0.254364405(78) + 0.26304868(72) = 60.3708 

2. 0.242144899(87) + 0254364405(82) + 0.263604868(70) = 6.3768 

3. 0242144899(82) + 0.254364405(78) + 0.263604868(78) =60.3575 

4. 0.242144899(82) + 0.254364405(76)+ 0.26304868(79) = 60.0124 

5. 0.242144899(82.) + 0.254364405(78)+ 0.26304868(76)= 59.7303 

6. 0.242] 44899(75)+ 0.254364405(82)+ 0.26304868(78)= 59.5800 

7. 0.242144899(83)+ 0.254364405(74)+ 0.26304868(78)= 59.4822 

8. 0.242144899(76)+ 0.254364405(83)+ 0.26304868(76)=59.5492 

9. 0.242144899(87)+ 0.254364405(80)+ 0.26304868(68)= 59.3409 

10.0.242144899(80)+ 0.254364405(83)+ 0.26304868(70)=58.9362 

11.0.242144899(80)+ 0.254364405(76)+ 0.26304868(76)=58.7373 

12.0.242144899(78)+ 0.254364405(80)+ 0.26304868(74)=58.7432 

13.0.242144899(80)+ 0.254364405(76)+ 0.26304868(74)=58.2101 

14.0.242144899(83)+ 0.254364405(71)+ 0.26304868(76)=58.1919 

15.0.242144899(87)+ 0.254364405(67)+ 0.26304868(76)=58.1430 

16.0.242144899(75)+ 0.254364405(85)+ 0.26304868(70)=58.2342 

17.0.242144899(76)+ 0.254364405(76)+ 0.26304868(78)= 58.2959 

18.0.242144899(75)+ 0.254364405(76)+ 0.26304868(78)=58.0537 

19.0.242144899(75)+ 0.254364405(80)+ 0.26304868(74)=58.0168 

20.0.242144899(76)+ 0.254364405(85)+ 0.26304868(68)=57.9491 

21.0.242144899(68)+ 0.254364405(85)+ 0.26304868(76)=58.1208 

22.0.242144899(85)+ 0.254364405(65)+ 0.26304868(79)=57.9408 

23.0.242144899(82)+ 0.254364405(72)+ 0.26304868(74)=57.6769 

24.0.242144899(76)+ 0.254364405(74)+0.26304868(78)=57.7872 

25.0.:> ') 1 ~ 899(80)+ 0.254364405(69)+0.26304868(79)=57.7475 

26.0.24L ,4" .9(76)+ 0.254364405(80)+0.26304868(72)=57.7317 
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27.0.242144899(80)+ 0.254364405(74)+0.26304868(74)=57.7013 

28.0.242144899(75)+ 0.254364405(80)+0.26304868(72)=57.4896 

29.0.242144899(75)+ 0.254364405(85)+0.26304868(67)=57.4434 

30.0.242144899(71)+ 0.254364405(82)+0.26304868(74)=57.5569 

31.0.242144899(73)+ 0.254364405(82)+0.26304868(72)=57.5140 

32.0.242144899(69)+ 0.254364405(80)+0.26304868(78)=57.6183 

33.0.242144899(82)+ 0.254364405(74)+0.26304868(70)57.1312 

34.0.242144899(83)+ 0.254364405(80)+0.26304868(63)=57.0543 

35.0.242144899(75)+ 0.254364405(83)+0.26304868(68)=57.1982 

36.0.242144899(78)+ 0.254364405(78)+0.26304868(70)=57.1801 

37.0.242] 44899(76)+ ~.254364405(85)+0.26304868(65)=57.1583 

38. 0.242144899(69)+ 0.254364405(85)+0.26304868(72)=57.3085 

39.0.242144899(73)+ 0.254364405(87)+0.26304868(65)=56.9406 

40.0.242144899(75)+ 0.254364405(85)+0.26304868(65)=56.9162 

41.0.242144899(78)+ 0.254364405(67)+0.26304868(79)=56.7545 

42.0.242144899(80)+ 0.254364405(72)+0.26304868(72)=56.6654 

43.0.242144899(76)+ 0.254364405(74)+0.26304868(74)=56.7327 

44. 0.242144899(82)+ 0.254364405(74)+0.26304868(68)=56.6040 

45.0.242144899(76)+ 0.254364405(74)+0.26304868(74)=56.7327 

46.0.242144899(76)+ 0.254364405(69)+0.26304868(79)=56.7789 

47.0.242144899(73)+ 0.254364405(76)+0.26304868(74)=56.5150 

48.0.242144899(69)+ 0.254364405(82)+0.26304868(72)=56.5454 

49.0.242144899(71)+ 0.2~4364405(78)+0.26304868(74)=56.5395 

50.0.242144899(68)+ 0.254364405(81 )+0.26304868(74)=56.5761 
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APPENDIX IV 

CALCULA TED FISHERS DISRIMINANT SCORES FOR THE SCHOOL 

OF ENVIRONMENTAL TECHNOLOGY 

1. 0.242144899(83) + 0.254364405(65) + 0.26304868(76) = 56.6657 

2. 0.242144899(85) + 0254364405(80) + 0.263604868(58) = 22.2206 

3. 0242144899(62) + 0.254364405(80) + 0.263604868(78) =55.9233 

4. 0.242144899(73) + 0.254364405(72)+ 0.26304868(70) = 54.4432 

5. 0.242144899(75) + 0.254364405(71)+ 0.26304868(65)= 53.3551 

6. 0.242144899(69)+ 0.254364405(78)+ 0.26304868(61)= 52.6283 

7. 0.242144899(66)+ 0.254364405(71)+ 0.26304868(67)= 51.7030 

8. 0.242144899(68)+ 0.254364405(61)+ 0.26304868(68)=49.9072 

9. 0.242144899(59)+ 0.254364405(60)+ 0.26304868(68)= 47.4735 

10.0.242144899(69)+ 0.254364405(40)+ 0.26304868(70)=45.3349 

11.0.242144899(55)+ 0.254364405(65)+ 0.26304868(58)=45.1407 

12.0.242144899(46)+ 0.254364405(72)+ 0.26304868(59)=45.0060 

13.0.242144899(52)+ 0.254364405(51)+ 0.26304868(72)=44.5437 

14.0.242144899(55)+ 0.254364405(58)+ 0.26304868(61 )=44.151 0 

15.0.242144899(52)+ 0.254364405(67)+ 0.26304868(54)=43.8686 

16.0.242144899(60)+ 0.254364405(56)+ 0.26304868(56)=43.5350 

17.0.242144899(57)+ 0.254364405(65)+ 0.26304868(50)= 43.5162 

18.0.242144899(55)+ 0.254364405(63)+ 0.26304868(52)=43.0504 

19.0.242144899(62)+ 0.254364405(40)+ 0.26304868(67)=42.8499 

20.0.242144899(45)+ 0.254364405(51)+ 0.26304868(72)=42.8487 

21.0.242144899(53)+ 0.254364405(61)+ 0.26304868(54)=.42.5846 

22.0.242144899(53)+ 0.254364405(54)+ 0.26304868(61 )=42.6493 

23.0.242144899(60)+ 0.254364405(54)+ 0.26304868(52)=41.9718 

24.0.242144899( 48)+ 0.254364405(60)+0.26304868(58)=42.1739 

25.0.2 '")' ~ '<"l 99(46)+ 0.254364405(65)+0.26304868(54)=41.9070 

26.0.242 4'-1 8<)0(20)+ 0.254364405(71)+0.26304868(74)=42.4095 
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27.0.242144899(50)+ 0.254364405(60)+0.26304868(54)=41.0638 

28.0.242144899(50)+ 0.254364405(54)+0.26304868(59)=41.3956 

29.0.242144899(52)+ 0.254364405(56)+0.26304868(54)=41.0706 

30. 0.242144899(48)+ 0.254364405(43)+0.26304868(70)=41.0130 

31.0.242144899(59)+ 0.254364405(43)+0.26304868(58)=40.5133 

32.0.242144899(60)+ 0.254364405(52)+0.26304868(47)=40.1451 

33.0.242144899(50)+ 0.254364405(60)+0.26304868(47)=39.7585 

34.0.242144899(60)+ 0.254364405(49)+0.26304868(47)=39.3820 

35.0.242144899(52)+ 0.254364405(43)+0.26304868(61 )=39.6091 

36.0.242144899(48)+ 0.254364405(54)+0.26304868(54)=39.5933 

37.0.242144899(52)+ 0.254364405(52)+0.26304868(50)=38.9987 

38.0.242144899(53)+ 0.254364405(58)+0.26304868(43)=38.9218 

39.0.242144899(55)+ 0.254364405(45)+0.26304868(54)=38.9990 

40.0.242144899(43)+ 0.254364405(54)+0.26304868(56)=38.9098 

41 .0.242144899( 41)+ 0.254364405(54)+0.26304868(58)=38.9527 

42.0.242144899(50)+ 0.254364405(45)+0.26304868(58)=38.8427 

43.0.242144899(45)+ 0.254364405(54)+0.26304868(54)=38.8669 

44.0.242144899(59)+ 0.254364405( 45)+0.26304868( 48)=38.3860 

45.0.242144899(60)+ 0.254364405( 43)+0.26304868( 48)=38.1194 

46.0.242144899(52)+ 0.254364405(43)+0.26304868(56)=38.2911 

47.0.247144899(48)+ 0.254364405(43)+0.26304868(59)=38.1 ] 33 

48.0.242144899(38)+ 0.254364405(52)+0.26304868(59)=37.9811 

49.0.242144899(45)+ 0.254364405(72)+0.26304868(52)=37.8309 

50.0.242144899(50)+ 0.254364405(47)+0.26304868(52)=37.7698 
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REM PROGRAM TO CONSTRUCT DISCRIMINANT ANALYSIS 
CLS 

DIM SA(50, 3), 8B(50, 3) 
ATA 
9,78,72,87,92,70,82,78,78,82,76,79,82,78,76,75,82,78,93,74,79,76,83,76,97,80,68,80,83 
0,80,76,76,78,80,74,80,76,74,83,71,76,87,67,76,75,85,70,76,76,78,75,76,78,75,80,74,7 

,85,60,68,85,76,85,65,79,82,72,74,76,74,78,80,69,79,76,80,72,80,74,74,75,80 
ATA 

,75,95,67,71,92,74,73,92,72,69,80,79,92,74,70,83,80,63,75,83,68,79,79,70,76,85,65,69 
85,72,73,97,65,75,85,65,78,67,79,80,72,72,76,74,74,82,74,68,76,74,74,76,69,79,73,76,7 
,69,92,72,71,78,74,68,81,74 
ATA 
3,65,76,85,80,58,62,80,78,73,72,70,75,71,65,69,78,61,66,71,67,68,61,68,59,60,68,69,40 
70,55,65,58,46,72,59,52,51,72,55,58,61,52,67,54,60,56,56,57,65,50,55,63,52,62,40,67,4 
,51,72,53,61,54,53,54,61,60,54,52,48,60,58,46,65,54,20,71,74,50,60,54,50,54,59,52,56, 
4,48,43,70,59,43,58,60,52,47,50,60,47,60,49,47,52,43,61,48,54,54,52,52,50,53,58,43,55 
45,54,43,54,56,41,54,58,50,45,58 
ATA 45,54,54,59,45,48,60,43,48,52,43,56,48,43,59,38,52,59,45,52,52,50,47,52 
RINT " DATA FOR GROUP 1" 

INT 
OR K 1 TO 3 

SUMSA(K) ,.. ° 
XT K 

OR J = 1 TO 50 

FOR K 0: 1 TO 3 
READ SA(J, K) 

SUMSA(K) - SUMSA(K) + SA(J, K) 
NEXT K 

EXT J 

OR K = 1 TO 3 
UMSB(K) ... 0 
!EXT 

RINT " DATA FOR GROUP 2" 
OR J .., 1 TO 50 

FORK ... 1T03 
READ SB(J, 
SUMSB (K) 

NEXT K 
mXT J 
:LS 
)RINT 

K) 
SUMSB(K) + SB(J, K) 

?RINT TAB(20); "SCORES FOR GROUP 1" 
I?RINT 
A - 20 

R J ID 1 TO 50 
PRINT J; 
FOR K ... 1 TO 3 

PRINT TAB(A); SA(J, K); 
A .. A + 10 

NEXT K 
A ... 20 
PRINT 

NEXT J 
PRINT 

Page 1 



PRINT "TOTAL"; 
A :0: 20 

FOR K .., 1 TO 3 
PRINT TAB (A) ; SUMSA(K); 
A ,.. A + 10 

NEXT K 
PRINT : PRINT 
ANS$ = INPUT$(I) 
PRINT TAB(20); "SCORES FOR GROUP 2" 
PRINT 

A ... 20 
FOR J '"' 1 TO 50 

PRINT J; 
FOR K "" 1 TO 3 

PRINT TAB(A); SB(J, K); 
A = A + 10 

NEXT K 
PRINT 
A == 20 

NEXT J 
PRINT 
PRINT "TOTAL"; 
A = 20 
FOR K "" 1 TO 3 

PRINT TAB(A); SUMSB(K>; 
A "" A + 10 

NEXT K 
ANS$ .. INPUT$(1) 
REM COMPUTATION OF THE MEANS OF THE POPULATIONS 
REM MEAN OF GROUP 1 
PRINT : PRINT 
PRINT TAB (20) ; "THE MEAN OF INDIVIDUAL VARIABLES IN GROUP 1" 
PRINT 
A = 20 
n "" 50 
PRINT "MEAN FOR GROUP 1"; 
FOR K = 1 TO 3 

MEANSA (11:) ... SUMSA (K) / n 
PRINT TAB(A); MEANSA(K); 
A = A + 10 

NEXT K 
PRINT : PRINT 
PRINT TAB (20); "THE MEAN OF INDIVIDUAL VARIABLES IN GROUP 2" 
PRINT 
A 2C 20 

PRINT "MEAN FOR GROUP 2"; 
FORK=1T03 

MEANSB(K)" = SUMSB(K) / n 
PRINT TAB (A); MEANSB (K) ; 
A .. A + 10 

NEXT K 
PRINT 
ANS$ - INPUT$(I) 
REM COMPUTATION OF THE SUM OF SQUARES 
PRINT 
PRINT TAB (20); "THE SUM OF SQUARES OF VARIABLES IN GROUP 1" 
PRINT 
FOR l< ... 1 TO 3 
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SUMXASQ(K) .: 0 
NEXT K 
FOR J ... 1 TO 50 

FOR K = 1 TO 3 
XSQA(K) "" SA(J, K) ~ 2 
SUMXASQ(K) ~ SUMXA8Q(K) + XSQA(K) 

NEXT K 
NEXT J 
PRINT 

A ". 20 
FOR J - 1 TO 50 

PRINT J; 
FOR K .... 1 TO 3 

PRINT TAB(A); XSQA(K); 
A lIZ A + 10 

NEXT K 
PRINT 
A "" 20 

NEXT J 
PRINT 
PRINT "SUM OF SQUARES"; 
A ... 20 
FOR K "" 1 TO 3 

PRINT TAB(A); SUMXASQ(K); 
A :: A + 10 

NEXT K 
PRINT 
PRINT TAB(20); "THE SUM OF SQUARES 011' VARIABLES IN GROUP 2" 
PRINT 
FOR K .. 1 TO 3 

SUMXBSQ(K) = 0 
NEXT K 

FOR J "" 1 TO 50 
FOR K ... 1 TO 3 

XSQB(K) = SB(J, K) ~ 2 
SUHXBSQ(K) = SUMXBSQ(K) + XSQB(K) 

NEXT K 
NEXT J 
PRINT 
A - 20 

FOR J '" 1 TO 50 
PRINT J; 

FOR K ... 1 TO 3 
PRINT TAB (A) ; XSQB(K); 
A "" A + 10 

NEXT K 
PRINT 
A = 20 

NEXT J 
PRINT 
PRINT "SUM OF SQUARES"; 
A ... 20 
FOR K <:: 1 TO 3 

PRINT TAB (A); SUMXBSQ (K) ; 
A "" A + 10 

NEXT K 
PRINT 
ANS$ - INPUT$(1) 
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PRINT 
REM COMPUTATION OF THE SUM OF CROSS PRODUCT FOR THE FIRST POPULATION 

SUMAS = 0 
FOR J ... 1 TO 50 

X(J) a SA(J, 1) * SA(J, 2) 
SUMAS ... SUMAS + X(J) 

NEXT J 

SUMAC" 0 
FOR J "" 1 TO 50 

X(J) D SA(J, 1) * SA(J, 3) 
SUMAC = SUMAC + X(J) 

NEXT J 

SUMaC == 0 
FOR J ... 1 TO 50 

X(J) = (SA(J, 2» * (SA(J, 3» 
SUMBC = SUMBC + X(J) 

NEXT J 
PRINT 
PRINT "CROSS PRODUCT AB"; 
PRINT TAB (20); SUMAS 
PRINT : PRINT 
PRINT "CROSS PRODUCT AC"; 
PRINT TAB(20); SUMAC 
PRINT : PRINT 
PRINT "CROSS PRODUCT BC"; 
PRINT TAB(20); SUMBC 

REM COMPUTATION OF THE SUM OF SQUARES AND CROSS PRODUCT MATRICES FOR SCHOOL A 
SQUARES AND CROSS PRODUCT OF VARIABLE A SQUARED REM CPAA - SUM OF 

CPAA .. SUMXASQ (1) -

CPAB = SUMAS - (n * 
CPAC ~ SUMAC - (n * 
CPBB = SUMXASQ(2) 
CPBC • SUMBC - (n * 
CPCC a SUMXASQ(3) 
PRINT 
ANS$ = INPUT$(l) 

(n * (MEANSA(l» ,.. 2) 
MEANSA(l) * MEANSA(2» 
MEANSA(l) * MEANSA(3» 
(n * (MEANSA(2» ,.. 2) 

MEANSA(2) * MEANSA(3» 
(n * (MEANSA(3» ,.. 2) 

PRINT "THE SUM OF SQUARES AND CROSS PRODUCT MATRIX OF THE FIRST POPULATION" 
PRINT CPAA, CPAB, CPAC 
PRINT CPAB, CPBB, CPBC 
PRINT CPAC, CPBC, CPeC 

REM COMPUTATION OF THE SUM OF CROSS PRODUCT FOR THE SECOND POPULATION 

SUMAS2 = 0 
FOR J ... 1 TO 50 

X(J) = (SB(J, 1» * (SB(J, 2» 
SUMAS2 ... SUMAS2 + X(J) 

NEXT J 

SUMAC2 "" 0 
FOR J = 1 TO 50 

X(J) = SB(J, 1) * SB(J, 3) 
SUMAC2 a SUMAC2 + X(J) 
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NEXT J 

SUMBC2 ... 0 
FOR J lC 1 TO 50 

X(J) - (SB(J, 2» * (SB(J, 3» 
SUMBC2 - SUMBC2 + X(J) 

NEXT J 
PRI NT 
PRINT "CROSS PRODUCT FOR THE SECOND POPULATION" 
PRINT "CROSS PRODUCT AB"; 
PRINT TAB(20); SUMAB2 
PRINT : PRINT 
PRINT "CROSS PRODUCT AC"; 
PRINT TAB(20); SUMAC2 
PRINT : PRINT 
PRINT "CROSS PRODUCT BC"; 
PRINT TAB(20); SUMBC2 

REM COMPUTATION OF THE SUM OF SQUARES AND CROSS PRODUCT MATRICES FOR SCHOOL B 
REM CPAA ... SUM OF SQUARES AND CROSS PRODUCT OF VARIABLE A SQUARED 
CPAA2 = SUMXBSQ(l) - (n * (MEANSB(l» ~ 2) 
CPAB2 .. SUMAB2 - (n * MEANSB(l) * MEANBB(2» 
CPAC2 = SUMAC2 - (n * MEANSB(l) * HEANBB(3» 
CPBB2 - SUMXBSQ(2) - (n * (MEANSB(2» A 2) 
CPBC2 a SUMBC2 - (n * MEAN~B(2) * MEANSB(3» 
CPCC2 = SUMXBSQ(3) - (n * (MEANSB(3» ~ 2) 

PRINT "THE SUM OF SQUARES AND CROSS PRODUCT MATRIX OF THE SECOND POPULATION" 
PRINT CPAA2, CPAB2, CPAC2 
PRINT CPAB2, CPBB2, CPBC2 
PRINT CPAC2, CPBC2, CPCC2 
PRINT 
REM ANS$ * INPUT$(l) 

REM COMPUTATION OF POOLED SAMPLE COVARIANCE 
PCAA ... (CPAA + CPAA2) / (n + n - 2) 
PCAB = (CPAB + CPAB2) / (n + n - 2) 
PCAC '" (CPAC + CPAC2) / (n + n - 2) 
PCBB - (CPBB + CPBB2) / (n + n - 2) 
PCBC ... (CPBC + CPBC2) / (n + n - 2) 
PCCC .. (CPCC + CPCC2) / (n + n - 2) 
PRINT " THE POOLED SAMPLE COVARIANCE 
PRINT PCAA, PCAB, PCAC 
PRINT PCAB, PCBB , PCBC 
PRINT PCAC, PCBC, PCCC 
PRINT 

MATRIX S" 

REM THE INVERSE OF THE MATRIX S i.e S~-l IS ADJOINT OF S/DETERMINANT OF S 
REM THE ADJOINT OF MATRIX B 

CFA - (PCBB * PCCC) - (PCBC • PCBC) 
CFB == - «PCAB * PCCC) - (PCAC • PCBC» 
CFC ... (PCAB * PCBC) - (PCAC * PCBB) 
CFD ... - «PCAB * PCCC) - (PCBC * PCAC» 
cn '" (PCAA * PCCC) - (PCAC *. PCAC) 
CFF .. - «PCAA • PCBC) - (PCAC • PCAB» 
CFG - (PCAB * PCBC) - (PCBB * PCAC) 
cm := - «PCAA * PCBC) - (PCAB * PCAC» 
CFI - (PCAA * PCBB) - (PCAB * PCAB) 
PRINT 
PRINT "THE COFACTORS OF MATRIX S" 
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PRINT CFA, CFB, CFC 
PRINT crn, CFE, CFF 
PRINT CFG, CFH, CFI 
PRINT 
PRINT "THE ADJOINT OF MATRIX S" 
REM TRANSPOSE THE ABOVE COFACTOR 
PRINT CFA, CFD, CFG 
PRINT CFB, CFE, CFH 
PRINT CFC, CFF, CFI 
PRINT 
REM COMPUTATION OF THE DETERMINANT OF MATRIX S 
DETERHS ~ PCAA * «PCBB * PCCC) - (PCBC * PCBC» - PCAB * «PCAB * PCCC) - (PCAC * 
PCBC» + PCAC * «PCAB * PCBC) - (PCAC * PCBB» 

PRINT "THE DETERMINANT OF MATRIX S = "; DETERHS 
S REM COMPUTATION OF INVERSE OF MATRIX 

INVA ... CFA I DETERHS 
INVB "'CFB I DETERHS 
INVC - CFC I DETERHS 
INVD =crn I DETERHS 
INVE z: CFE / DETERHS 
INVF ... CFF / DETERHS 
INVG .. CFG / DETERHS 
INVH =CFH / DE TERMS 
INVI CFI / DETERHS 

PRINT 
PRINT "THE INVERSE OF MATRIX S = S"-l = " 
PRINT INVA, 
PRINT TAB (30) ; INVD; 
PRINT TAB(60); INVG 
PRINT 
PRINT INVB, 
PRINT TAB (30) ; INVE; 
PRINT TAB(60); INVH 
PRINT 
PRINT INVe , 
PRINT TAB (30) ; INVFi 
PRINT TAB(60); INVI 
PRINT 
REM COMPUTATION OF FISHER'S LINEAR DISCRIMINANT FUNCTION 
REM FOR THE TWO POPULATIONS 
REM FISHER'S LINEAR DISCRIMINANT FUNCTION IS GIVEN BY THE FOLLOWING FORMULAR 
REM Y~ (MEANSA-MEANSB)*(S"-l)*X, WHERE X IS A 3X VECTOR 
REM Xl 
REM X .., X2 
REM X3 
REM COMPUTATION OF MEANDIFF (MEANSA-MEANSB) 
A ." 20 
FOR K .. 1 TO 3 

MEANDIFF (K) ... HEANSA (K) - MEANSB (K) 
PRINT TAB (A); HEANDIFF (K) ; 
A ... A + 20 

NEXT K 
MEAN1 =- HEANDIFF(l) 
HEAN2 = HEANDIFF(2) 
HEAN3 = HEANDIFF(3) 
E1 .., (MEAN1 * INVA) + (HEAN2 * INVB) + (HEAN3 * INVC) 
E2 = (MEANl .. INVD) + (HEAN2 .. INVE) + (HEAN3 .. INF) 
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E3 c (MEANl * INVG) + (MEAN2 * INVH) * (MEAN3 * INVI) 
PRINT 
PRINT "El="; El, 
PRINT "E2="; E2, 
PRINT "E3="; E3 

Y1 ... E1 * MEANSA(l) + E2 * MEANSA(2) + E3 * MEANSA(3) 
PRINT Yl 

Y2 = (E1 * MEANSB(l» + (E2 * MEANSB(2» + (E3 * MEANSB(3» 
PRINT Y2 
REM THE FORMULAR FOR CUT-OFF POINT 
COP = (Yl + Y2) / 2 
ANS$ '" INPUT$ (1) 
PRINT "THE CUT-OFF POINT 

FOR J = 1 TO SO 
FOR K = 1 TO 3 

=u. , COP 

YSA(J) c (E1 * SA(J, 1» + (E2 * SA(J, 2» + (E3 * SA(J, 3» 
NEXT K 

NEXT J 
PRINT 

PRINT YSA(J) 

FOR J ... 1 TO 50 
FOR K = 1 TO 3 

YSB(J) - (El * SB(J, 1» + (E2 * BB(J, 2» + (E3 * BB(J, 3» 
NEXT K 
PRINT YBB(J) 

NEXT J 
PRINT 
FOR J ... 1 TO SO 

IF YSA(J) > COP THEN 
SAY(J) := YSA(J) 

ELSE 
SBY(J) ... YSA(J) 

END IF 

NEXT J 

PRINT 
FOR J ... 1 TO SO 

IF YSB(J) > COP THEN 
SAY(J) = YSB(J) 

ELSE 
SBY(J) = YSB(J) 

END IF 

NEXT J 
PRINT 
PRINT "GROUP 1" 
FOR J ... 1 TO 50 

PRINT SAy (J) 
NEXT J 
PRINT 
PRINT "GROUP 2" 
FOR J .. 1 TO SO 

PRINT BBY (J) 
NEXT J 
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