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ABSTRACT

An algebraic equation P (x), have at least one root lying in
a separated interval [a, b] wherse P“(a) and Pn(b) have opposite
signs. The methods for separating the roots of any algebraic
aquation as well as the raspective itesrative methods for
obtaining the approximate value £, of the roots are discussed

in the main body of this project.

In the last chaptar computer application to the iterative

mathods and BASIC language programs are discussed.
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CHAPTER OME

IHNTRODIXCTION
1.1 Why Iterative Method?

Tn practice, most problems are reduced to mathamatical

equations in order to abtain their solutions. Some of these

e

o, integral,

aquations  includs:  Aiffsrantial algsebra
3 s

s}

transcendental, stc. equations. Tn this project, howevar,
we are going to concantrate on non-linsar  algehraic

gquations in one wvariable. This typa of squation is

The main aim of convarting problems to mathematic:) modsls,

3

. earlisr mentionad, is to cbhtain =olutions which are then

e
{1
gil
L

to answer gquestions or sclva thae problems which the

srauations  reprasent, £lthough  the =nlubtinns of =g

ggquatinns can ba obtainad by avact methnds | most equations

data obtainnd from exwperimants, maeasurements, ote. arse

or rounded off denimal number=s. Hance . the

roafficients of some equations are approvimate numbhers e_g.




The issus then nf finding the axact roote or solution of such

cquatinns may ha aquite impos=ible.

Tn =such situations whevre the sxacht roots of the mathsmatical
medels are either too complicatad or qguite impossible to
aktain, the approximate so0lubtions ars calculated and uzed.
The approximate so0lution is not the sxact solution but differs
=lightly from it and can he used to substitute far 1t
Itaerativa mathods are uzsed to obtain the approximata =solutinns

of mathematical squations. Tha iterative methnd used

on the type of squation invalved. MNormally, iterative met!

involved the ewscution of sevaral computations
sgmetimes guits cumbarsoms to carry ont manually. The

ion of the computer has been of immense halp Lo

o
o
b}
pet
ey

)

mthods beacause 1t facilitates the processzes

T & & 2 %
iterative m

9

invaolved in the method=s

el o

Az wz gn on in this projsct, we shall s=s the various
iterative methond=s for obtaining the roots of non-linear

Alagebriic pauations and al=o how the computar can bhe apnlied

1.2 Ganazval Properties of Algebraic Fquation

i o
pax |
v
"
pory

We re-write the nth-degres algebraic esquation

above:

n

P (%) = axi+a HW1+f>ﬁ” - e R g ¥TE
ﬁ( > gt T I * o it R

Where n is the highest degree of tha unknown ¥, and a_. 2 are

|

real coafficiants. ¥, s a root of the equation if B (%) -

0. Also if ¥, is a root, then P (x) is divisible by (x x)




Theorem 1.1 {The fundamental theorem of algebra) Fvary
palynonial with any numerical coafficients whnse dagroe. i
not lowsr than unity has at lasast ogne root which may he
complax in the general case.

Corollory 1.1:  Fvary polynomial F%(E} of degres nin>t}
with any numeriral coefficient has exactly n roat=, rezal ar

Tk g
COlpix.

Tha function Pﬁ(x) can be re-writtan in the form

Hence a{x)- x P, (x) and x is the root of the aguation gﬂﬂ

The funchtion a{x) has a unique solution in 2 given interval

Wy th)if it =ati=afiss the conditions in theaorem 1 2.

Theoram 1.2: Lat on tha intarval [x, Xoty

o
4
Nt

1 tha function @

=ati=fy a lipchits condition with constant ¢ and

0 £ gl )% £ {1 -a)

Than the sguation has the unigque =olution

and a = Max/al(:0/ if al(x) i=
fa, b}

conptinuously diffarantiable on the internal [xn, xnv], Tha

lipschitz condition

iz fulfilled it /a(x) ~ a(x)/< a/x=x,/

whare Xy X F [Xm “Ygtr )

e




TQpaﬂ of Frror
Nuring tha =eolution of majority of practical problems
with a certain degree of conventionality, the problem can be
represantad as  two successive etages: (1) Mathematical
description of the problem and (2) the =clution of the

formutatad mathematical model .

Fach of ths stages introduces one form of arror or the
other which nontributes to the final arror of approximation
in final rasults. Tn thae first stage, errore are introduced
whan  there is  lack of correspondence between the
mathematical equation and the problem under study, and alzc
when ths parameters for the mathematical equation are
inexact since thay ars obtained from an experiment which
givas only approximate results. Errors due to this are non-
removable and indspendent of the second stage while the

processes of aolution continuas.

In the second stage, the errors are introduced during
rounding off and othar typs operations on the numbars
involved, and also during the exascution of the proces=zes of
the iterative mathod employad. Frrors involved in the

second stage may be avoidahle and alsoc dependent an the

The =arror batween the avact =solution and approvimate

solution is callad the arvor of approximation. Ah=nluts




Where A iz the exact =solution and a ia tha approvimate
solution, Ganerally éﬁ i= the uppsr hound of the deviation
of tha exact number A from its approximate.

i.8e. a - 6, 2 A < a 1A

Errors of itoarative method =hall ba discussed in chaphtar Z.




CHAFTER THWO

Methods For Separating Rools

Introduction

Rafore calculating the approximate roots of an algsbraic
equation, we must (3) determine the number of roots that the
equation has, (bh) =eparate the roots and () compute the
valuez of the approximate roots with specified degrea of
accuracy. In thecrem 1.1 in chapter 1, we have seen that
the function FH(X) with dagrea n23) has= n numbar of
roots which are sither real or complex. Descartes’ rule of
sign can be used to datearmina tha number of positive or

negative real roots of an algebraic eguation.

iode
iy

Descartes’ rule of sign: Jf an aquation P (X} = 0

incomplatae, thae numbasr of positive real roscts of ths

Y

algebraic aquation Pn(x) = 0 with raal coefficients aithar
is aqual to the npumbar of =ign changs= in the sequanca of

the coefficients ¢f the saguation P

= D

“(X} = 0 or is less than
the number of sign changes by an even integer (the
coefficiants squal to zaro are not considaerad)., Tha numbar
of negative roots of the equation is squal to the numbor of
s1gn changes in the ssquance of the cosfficients of Pﬁ{ ¥y
or i smaller by an aven integar. 0On the other hand, if theo

aquation P.(X) is complata, then tha number of its positivae

raal roots ie squal to the numbar of variations of sian in

g
zr
»
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]
£
o
m
=
0
m
Q
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mallinr by an even integer and the numbear

5




of negative ronts is squal to the number of constancies nf
sign or i= =smaller by an esven integer. Ry ths number of
constancies of sign, we mean the numbar of tima tha =siagn
remaine rmanstant, that is the numbar of time the =ign (¢ or
-} did not vary from one term to the next. The following

evamples 11lustrates Descartes’® rulaes of signs.

Example 2.1: Find tha numbar of positive and negative r=2)

roots of the sguation.
k4 )
oe1e e 1 10w - 5 - Qe (2.1

Fquation 2.1 i= complets in tha sense that no term ic

mi=ting. The amuatian has four racts {(at laast ons of which

-

iz roal).  The sagquence of the coafficients in +-+1 . Thave

ded o

are thres =ign changes and thizs means that thersa arsa either

three aor ona positive rootse or there are none. The numbar of

-

2ign constanciss is ! and constanniss is 1 and

conmequantly, tha equation has one negative root.

x&vgyg*vslygwl = 0

T RN A SR AR AN S B NS B € RE AT A A

i

2.2)

The aguation (2.7) is incomplete (with zaro coafficiants
. . . 5
for x? and ¥) and it has six roots according to theorem !.1.
The =equence of sign is +t- = + -, Thaere are three =zign

changes and consequently thare ara aither threes positive roots

ar ona roct. Alsc




In equation 2.3, the sequance of signs is + -~ + + -~ _  Thara
are al=o thres signs changes here and =g there ara sither

thras nagative roots or one.

Having determinad the number of positive and negative

real ropts of ths squation ng), wae then saparate tha root=s

ey
0

of the equation. The root ¥, of tha equation P (x) = 0

ot
=
|

considered to be separated on the intarval [a, b}l if
aquation &#x} = 0 has no othar root aon this interval. in
othar words, to separate the rood means to divide the whole
domain of pesrmissible values inte intervals in sach of which
tharae is one root of the aquation P (x). Refore going ovar to
the methods of =separating roots the following defipnitions

would be ussful to know.

Definition 2.1 & function Pn(x) which is single valued in a
domain [z, bl i= =aid to bs differentiable within the domain

if wt [a, b1, &Jx) exists and it is unigua.

Dafinition 2.2: a function Péx) iz continous with a domain

Definition 2.3: The function Pn(x) iz =aid to be apalvtic
{or ragular) in a domain [a, bl if the function i= one valuad

and differaentiable VW £ [a, bl.

Definition  2.4: If the function P (x) is dafined
analytically, than the domain of eaxistence {(domain of
definition) of the function iz the set of all the real valuess
of the argument %, for which the analytical exprassion

dafining tha function doss not loose the numarical sanss and

o




assumes only real values.

Definition 2.5: The functiaon Pn(z} is said to ba monotonous
in a givan intarval [a, b] if it satisfies the condition Fix,)

> Flx) or the condition F(x) 2 F(x) for any xp > % ¢ [&, b,

Thera is also Sturm’s theorem which enable us to be mars
precisa in datermining the numbar of roots of an algebraic
equation. Without loosing generality, we assume that the

roots of ths aquation P . {x) = 0 are 2all simple roots. Alsc

!.!1"!
H

let us assums that all the roots are in the interval [a, h)

whare a<bh. We find the first darivative P% ¥) and divide
I%(x) by it. Wa take the remainder of the division Pn(x) by
P%(X) with tha oppo=ite sign and denote it by ng), Next, we
divide P%(x) by Sl(x), take the remainder obtainad with the
opposite sign and denote it by S,(x). Again, we divide §,(x)
by S?(x} and taking the remainder with the opposite sign ue
dennte it hy SE(H). This dividing process continuas until us

et a remainder which is a constant quality. We then take

s}

ct

hz

= a
B A

t quantity also with the opposite =sign. The rosult

seguance of funpctions:

ot
o

P (%), ph(x), 8,(x), 5,00, N 3 PR

L{¥). SM = Constant.

.

z
This system is known as stum’s sv=tem, Newxh, we substitute =
first and then b for «  in this sequasnce and oount tha

number of =sign changes in hoth cases. WrE de=zignats the

T e

£

numbers of sign changss in both casss with W(a) and W(h)

ol 4

reapectivaly.




Theorem 2.1 {Sturm’s Theaorem): Tf tha r=31 nmumhars a
and b (a < b) are not roots of the polynomial P X)), which
does not have multiple roots, then Wia) > ¥{h)Y and the
differance W(a) Wb} i~ squal to the number af rez) ronts of

the polynomial P_(¥) which lies in the intarval [a, bl.

.-

2 1 - .- -~ 3 = 3 T = . 3
Sturm’s theorem oan 2Ysn be utilised o find the number

)

mponitive ronhs. The following syompls wi

this theorem morks .

Fxample 2.3:

E
3 P el S = - 4 £y o -
Find the numbsr of real rocts of the cquation SY20¥% 1+ 2

Te abtain §;(X), we divide Pi(x) by P (x).
plix) = 155%-20
7%,
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15x%-20%

-40x+9

S;, S(x) = ~(-40%x+9) = 40x-9 which is the opposite =i

i

W]
=
0
-~

the remainder.

Naxt, we divide P%(x) with ?1{4). Tao simply division, wus

multiply Pg(x} with 8 befors dividing by Sg{x)_




Ix + 27

40%-9 120% 2140
e YRR TN
(27%~160)x40
5 1080% - 6400
1080x-234
-1970

Pas) L) 15,00 274 €9 N 1169 N
- + = + __!’:‘3 o
o iz - - iF o
¥ ¥ 1 . fa

Tha numbar of real roots is given by W(-m) - W(+e) - 3-0 = 5.
Hance there are thres real roots. The numher of npegative
roots i= given by W(-o) - W({0) = 3-2 - 1. The numbar of

positive real roots is given by W(Q) - W{+=) = 2-0-7

2.2 Graphical MHethod

One of the methods for separating roots is the graphical

method., This maethod can ke applied in twn ways.

,;ﬁ_I@thiqyg: This mathod involves the construction of the

CER R =

graph of the function vy = F}{x). The points of inter
=gction of the graph and the »-axis yields the wvaluses of
tha root. From the graphs we can easily locate two numbers

2 and b which include ane root hetweaen them. For

axample, we can separate the roots of the aguation

L

xl FE~1

o (2.4)
M RERERE BT RSpmAmaaR n, o eMNEe £ -
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Example 2.4

Laet us first determine the maximum and minimum points (if they
hoth exist) of squation 2.4. This will halp in determining

how tha graph must look lika.

at 1, ph1) >0

Honce we have a minimum point at x = 1
Hence we have a maximum point at x = 1
Table 2.2
x | -3 |=-2 | ~1 | 0 |1 | g 1 3
¥ i =19 | -3 i1 i -1 { =3 i1 | 17
Fig. 2.1
74
25t
70
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From figure 2.1 we can =as that the graph of yv = » - 3x ~ 1
cuts the x-axis at the points 3, b and . Thase are tha
roote of the equation in (2.4). They lie in the domains [-2,

- 131, I=1, 01 and [1, 2] respectively.

> X

gﬁngth;gggg: In this technigues, 2311 tha tarms of the
aquation Pﬁ(z}. iz re-written in the form Fix) = gi{x). The
graphs at F{x) and g{x) are then plottad and the abscis=sas of
the points of intar-section of the two graphs are the roots of
Pix). Finally, from tha graph plotiad, ths domains

containing the noints are detarminsd. We =hall apply this

technigus to the squation 2.4

Exampla 2.5

¥y = Iz = 1 = 0
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From Fig. 2.2, we can saes that g{x) and f{x) inter=act
at the points a, b and © which are contained in the

intarvals [-2, =17, [-1, 01, [1, 21.

Figure 2.1 =shows the graph F%(x) cuts the graph at three
points and hence it has three ronts. Tf. however the curve
touches the abspis=sa, Fig. {2.3), then the pguation has a
repeated root at that point. Tt mean=s that the values of
Pﬁ(x) and P“R(x) at that point is zarc. If Pﬁ(x) ha= thras
roots (whare n = 3) and it’s curve cuts tha ¥-awis at just
or@ point, than the equation P (x) has a real root which is
being repeatad thres times, fig. 2.4: In othar words, the
root has a multiplicity of three or a2 multiple vroot. In
this case, the valuss of Pn(x), P%(z} and Puﬁ(x} at that

paint are all equal to 7eic.

Fig. 2.3 Fig, 2.4

71
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ery preciss but gives a
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roughly determinad intarval of ssparation of the roots.

Howewver, it is very halpful in cases of rapeated roots.

Analytical Method

ol &

Uzing =oma proparties of funchtions studisd in the course

of mathamatical analysis, we can separate the roots of the

valus theorem):

. A
ronh of the saustion 000y -4

Thaoram 2.3 - If a function P MY is continunus and
monotonic on bBha intsrval [z, bl and aszumses wvaluss of

£ {x) = 0 within the interval and Hhe

tha function P.{vY i=s rcontinunus on tho

intarval [z, bl and assumez valuss

interweal and the ront

Thae following sequenosr of nperations is usad o




-
;;. b
.

Find tha first darivative Ft(ﬁ) of the funcotion PQ(H},

-,
(3
L
s

tCompile a2 tahle of signs of the function Pq{y} shere

is the critical value {(or root) of the darivative P ()

and/or wvaluas close to it and the boundary valuas

¥ o

S

{chtainmad from the domain of parmi=s=sible value=s of the

unknown, xJ.
(=} Detarmins the end-points of the intarvals in which the
functions P, (x) assumes opposite signs. The=se
intervals contaips only one roobt within sach

intarior.

Example 2.6

We =hall apply, ths analytical method to sguation (2.4) to

illustrate how the method works.

NS I

pa% o
iy ?
P! (%) = 3x*~3 = 0

i
The roots of P% area x = 1 and ¥ = -1.
We than compile a tabls of signs of the funchtion P _{») at

and arcund these points.

Tabla 2.5

X @ -1 0 i om |
signs of | + . N t N
) [
P00 A

From the signe of Pn(x) in table 2.5% we can =ee that
the rocts according to theorem 7.1 lies in the interval [-=,

=13, [~1, 0] and [1, + o]. Wa now have tn obtain the snd-

o=




points aand b to replace - and to in the first and

la=st intervals such that the signs of tha valuss of Pﬁ(a}

-

and P&(b) correspands to the =ign=s of !H(~m) and B, (+m)
respechtivaly. Mow, we have that %‘-‘n(~-£-.’) = =3 20 and ?—'“{2)

= >0,

)
oy
o
]

s1gns of |- 1 - = +

Hance we choose -2 and 2 to replace the end-points -o
and 4o reaspactively. Hence, the roots lis in the intarvals

i-Z, =11, (-1, 03 amd [1, 2]




CHAPTER THREL

Iterative Methods and Their Apclications

L]

- | Bizechtion Mathod
Let us consider an algebraic sqguation PR(X).: 0 which
ie continuous and =eparatad on an interval [a, bl. We
have to find an approximate root ¢ F [a, Rl with an
accuracy €. Since the ecquation is separatsd on the
intarval [a, b] then tharm axists an avact aolution ¥, E
[a, B] and ths end point a, b have apposite =ign=s or the

function P (X). That iz P la).P,(b) <0,
B i

The error of the approximate =olution # must not

avceed the length of the interval b - a. That i= b - a2

»

€. If however, b-a>s than the reguirement for accuracy
of calculation has not hesn attained, To atbtain ths
requirament 1.a. b-ads, we must choozse new values of the

and-point=  as a, and b = b, so that Pnﬁ%).F%(bg) <G, He

continue this process of replacing the end-points a,

until we ohizin  the  Intarval {an tm] =zuch  that

0D fa Y p{RYD 2 3 Lg
*‘F’p"("!* 0 and bEi a,5€.

In arder to achisve thea aforesaid replacemants of the
and-points a, b, we have to obtain the mid-point c, of the

intarval [a tb] whera a=ay and b:bn, Where

(1

C;ak+bk/2 !"'w = O, l 2 :} Y R B A W S i A A e {3 - } }




Having obtainad C,, we nots that the sign of P (C,) must
coincide either with tha sign of P(a;) or with the =ign of
Pn{QJ, At the end-points of the interval [a,, o] or the
intarval [gqg, qﬂ'the function Pn(x) ha= the same signs, but
has opposite signs at the end-points of the other interval.
We choss the interval in which Pn(x) has oppo=sites signs at
the end-points and reject the othar intarval =ince the root

£ of the eqguation Fm(x) = 0 is contained in thae cho=sen

interval, according to the theorem.

We denogta the retainsd interval by [al, bg

where:
.a_x = { CU’ :.ign F(ac) = sign r(ra}
{ by, sign F(g) # sign F(g,)
bl = { Co, Sign F(ha) = gign F(CQ)

g =ign F(b,) # =sign Flc,)

In other words,

Gy {cy. sign Fa) = =ign F(Cy)
{a, sign F(a) # sign F(Ck)
by = {c,, =ign F(b@ = =sign F(Cy)

If how=aver, F(CQ:O,(Oﬁkim) then €, is tha axact root
of the equation P"(x)ro. The graph Pﬁ(x) balow axplains the

binnction mathod geonclrically.
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Whean we finally cbtain an interval [ay t%] such that b’.i -

a® <¢, then numbers a_ and bqara the approximatse ronte of the

i

aquation P (X) and we may choose £ such that & = a3, o £ -

b,

Ervor of Approximation: The arvor of approximation £ 1

il

givan by:

L

b - a

iy

At the kih interval {3y, b1, we obtain the length of the

R

interval hy thae formulas
~a = bh-a/2

whare & indinates how many divisions have bean performed.  TF

g = {Sgﬂﬁﬂfg i= taken to ba the approximats ront. then tho
- i

1
arror £ doss not excead (b z)/2M
v £f - hea ¢ hep ot ;
H g’f_ T o R




Wa =hall now apply the bisection mathod to equation 3.2

el owe

2

7
ps(:‘{) = l‘i"’f'?;ﬂ"’z?( = O B L L L S (

whora € = 107 {(0.001)
2.2 using

Firat, wa shall saparate the ronts of the equation 3

the analytical method,

1

Palx) = 3x 16

3xliéx = 0

Sulut?) = 0 %y, = 0 and %, = -2

Wa =hall now compile a table of signz of tha function

L] 1 .
Zxt -3 for some valuss of % to determine the placas of

‘5 ~ i
sign changes and hence the intervals of tha roots.

Table 3.1

i
n)

-1 0O 1 +m
= # + +

R

o

s1gns of [~ ¥
P00

There are three sign changes. The first raoot lie=s in the

interval [, -2].

it

=¥ %

Pi{(-3)=_3. Since Fk(wﬁ) has tha =ama sign with Pi(-o), we
replace -o with ~3. Also Ps(l) = + 1 and since P:(1) has the

same positiva sign with P;(+=), we replace +o with 1.

Table 3.7

s1gns af | - + = ; 4
) |

-3 -2 -1 0 I
k4




2 o o 2
This masans that ths roots of the equation ez Lz-0 Yie in

or
=
)

4

ntervals [-3, -2 [-2, ~1], [0, 1].

lat us ahtain an approximate value of the root #

Lot

aqual to & = 107(0.001). lat tha root

smallest root lying in the intarval [~-3, =2].

Wz havae that

?3(1::‘} = —‘7} .-%"}d p:'(,_n} = H
r(-3) . Pl(*g) = =3 £ 0,

R it
Ho let Ay = 3 and b, = -2,

Using equation 3.1, we obtain £y

C,~3+(-2)/2 = -~5/2 = -2.500

i

{~2.500) = 0.125

)

Sinca Py(c,) and Ps(w?) hava the =same =ign.

Wa now have the naw interval [~-Z, ~2_.500]

P
=
0
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L
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with an

+ ha thae
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-16.390 { 19.356 | -0.034

i} & ”]ﬁ TQ ’."0.'{ D N1 A

ol

= .‘! ’ . ";II‘!

e - ~0 I‘,f\"" .
— o s B F

| ~16.250 8 ~0.007

P

<

FEESIE AR SO —— - s

Tn tha table above, the signs - and + at the uppsy
indices of a, and h, means that P.(a,) <0 and P, /HY 0 The
td & 3 & :

ronot of the squakion # = ~2.532. Note that the above

procadure could al=a be applied to obhtain the ronts in the

Thia mathod is also know as the “falee position mobhod”

ar tha mathod of linear interpnlation. Tha idea of this

method iz that on a cufficiently small interval [z, b1, the
arz of the curva vy = P(x) i= raplaced by tha chord and
.

ront.  Where the function R&x} is conkirnunous with first
and sescond derivations in  the interval fa, bl and

(kY *0. Tha mathad nf chords comprises of two caszaa.

In this casa, the first and the sscond darivatives

o ‘n
S

of Pa(x) are of the same =sign. That ic, P (.}.P; (2} ¢ in

haoth nases, Tha graph of the equation F&Li) T Y passas




I T he¥ o

appraximation to the required root ¥, To obtain tha value
of x,, wa considar tha aguation of the chord AR. Thi=s is

given as:

y=P,la) ¥y

s e . T I i
P (6P (a) b-a
=ince we are interssted in obtzining the valus of
ront of squation - 2.3, at which yooT O then

aguation 2.3 bacomas:

K

i,
4
=Y

e

Tha root is now within tha intarval [w,, bl. Howsver, we
can refins this interval until 1t suits cur purpnse. The
graphs bzelow illustrates tha idea nf this mathod in a

gaometric mannar.

lb) 0 Fig. 3.2
g ¢ R 71‘ Pﬂ@O?O
A~ P, (L)/, o
VA
I ﬂ'”ét)é()

fkt)?o F’ 0

\




In Fig. 3.2(a), we connent point ﬁ,ﬁfj%(y} with point

"(R,P’W‘) and find 2. %2 is the point of intereecting of

the chord ﬁgﬂ and the w-axis,.

Py 0D ()

v = A B T

{ & ws
pnx"—} 'l)

Continuing this procass, we hava:

]

= 8 - e e e e v e e s i q‘-
= f“.%: L w3 . eed g

P,(b) P, ()
Cazae 7:- In this case, we have that FQ(%), p %Y 20 and

%Ja),Pﬁ{b}io, of coursa.

Lat Ps(x){ﬂ and pxi(ﬁ) 0. The graph of tha squation P_{v) =
y is given balow: LO P ()70
P(\(?\) . l’()éé

Vs L)LO Fig. 3.3 ) '70 f,\ =

L a7y [er”” O
Q;(?QL.O/é&} R

L
—>

£




midar Fig. 3.3{a) whare P {(a) >0, and P {(h) <0 and

e * ﬁ\ 4 i ] a
T ; %
?n{y}fﬁi Pn“(ﬁ} 0. We connect the points a(a, P“(n) and Bﬂ(h,

P(B)) and write tha equation of tha chord which passes

through the points A& and Ry

e

- r <. '3
= : 2 o SR e :“3 -y

P, (b)-P, (2) h-a

" e %
b
o}
S
o
o
W
e
o]
o)
k4

Fquation {(3.4) is similar Lo eaguation

A1 fferenre is that whils b is a stationary point in
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#%. ¥, is the intersection of the chaord AR and ths w-avi=s
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Tha root & is now I which is in the interval (a3, x). U=
can determina the stationary and-point and have the fornula to

apply by applying the following rula:

The =t=ztipnary end-point of an intarval is the snd-point for

which the sign of the function coincides with the sign of the
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point iz b and hence we make use of aguation (3.5)

Howover, if Pn(x) b Pﬁd(x)}o, than the stationary point i=

a and 0 we make use of equation (3.7).

Error of Estimation: 1f we have that Mi?m whore ™ -

Max/P 'Y/ and m = HMin P’

P,

5

-

formula below to determine the ervor of the root lying in the

B : e 5 =z
T L e U e AP (O - 3 |

Where £ is the approximata of the root x. x and x, are the

appraximationz at the kth and {k-1)th stages respesctively

Wa zhall once again consider aquation 3.2 in suample I
Again lat ¢ = )O%(i,a, 0.001) and 1ot us considar the ront

-

in tha interval [~-3,-2].

Before wa start, wo must verify

o
e
»"l,‘
e
;1
)
)
|
5
e
ot
«h-'-
ol
i
i
%)
\
J

is fulfillad in the interval [-3, -2]

"
il ()! = e ST R !
[RR L - 1 ~ L 1
o
e $ 1 age g § . oy P -~
M Max | P{x)] = 127 - 18] -
3
-z -9
L Sy )
1
M — I~ P LY -t 12t -
i Min M (x}, 12 = 12, G
B
&1 0l
2y A

Henoe nsPm. 20 tha condition iz not Tulfillasd. MWe now raducs




are positive. Hence we consider the new intsrval

[=3, =2.51.
M = Max ! P; {x)}! = 9,
[-3,-2.5]
m = Min ! PJ(x): 2 J.75
[-3,-2]

fgain M>2m. So we find the midpoint of the interval [-3, -

2.5). The midpoint is x = 2.75 and F(=2.75)<0.

Hence, we replace =3 with =2.75 and so we again have a naw

interval [-2.75,-.25].

M= Max ! Pl () = 6.189,
[-2.75,-2.5)

So M<2m is fulfilled. Therefore, to estimate the arror
of the root lying on the interval [-2.75, -2.5], we may apply

eguation 3.8.

The next thing is now to determine tha formula that must be
used for calculation by determining the sign of the second

derivation.
Pn“(x) = 6x + 6. <0 for all «x
P,(-2.75)<0 and P (2-5) >0, P,(-2.75). P 1(x)>0

Hence x = =2.75 is the stationary point i.e. a is the

stationary point. Hence we employ aquation 3.7

Xkﬂ = Kk = e e m e e —
Pl‘l (xk)-Pn(a)




~2.75 and P (a) = -i.1n

Where a
Table 3.4 below gives the valuss of ¥

where = I —2.5.

k&%

N 5 2 . -
K 4 ¥y 3¥ P, (<) % - a
0 7.5 15 675 118,75 0.175
1 ~2.525 | -16.098 1191248 | 0. 0288 o006
£ ~?.531 | ~16.213{19.2180 | 0.0050 ~0.000%
3 2.5319 | |~ '

¥==2.531L and x;==2.5319 (xlwxz) = 0.0001 <0.001 and so

rounding off to the thousands place, we get £ = 2.532.

Hewton s Method

(o
&)

The idsa bahind Newton’s method, geometrically, i=s ths
raplacemant of tha arc of the curve P (X) = y with tangant
to the curve. Like in the msthod of chords, the Newmbon’s

mathed involvas two oases.

Casg 1: In this case the =signz of the first and
second derivatives of the function P (x) are alika. That
iz assuming that gﬁx};o has besn saparatsd on the
interval [a, b] and QQ(H} and Qli{x} ares continuous and

i
reftain con=tant signs throughout the interwval [a, b].

S0, considering cases whara P."(x). P

Pr(&){Q, P IBY>0, P {0, PQ'(E)>Q ar P {a)>0, P [(hlc0,

Tha graphs in fig. 3.4 <show the tangant=s to thesa curves




fﬂ(o) >0, K,@ 20
by L0, (el

In Fig. 3.4(a) we draw a tangent to the curve v = P {x) at the
point B (b, F(b) and find the abscissa of the point of
intersection of the tangent and ths x—-axis. Tha squation of

the tangent at the point Bq(b, F(b)) is given hy:-
y = P (b). = PIB) (b)Y sovrnren (3.9)
XX and y = 0 at ¥y, Hance (Z.9)

bacomes -

Py(b).
e b i R
P‘ﬁ(b)-

The root i= now on the interval [a, 1 Fig. [Z.4Y.

ey
‘.

Arntying
tha Nowton’s method again, we draw a tangant hto tha curve at

the point B, Fx))




We obtain

[
2 4
v
:‘('} = :,:z - P
i

}’:gé_i = )‘k e g ol A A S WS :7) - ] O)

r o

i
=4

i, Z.4, we can smRe that all the valus=s of ¥, ars

approximata values af the exact root x, by oxcess.

Case ?: 1In this case, P%(x). Pun(x)fo_

P00 or where P (a) >0, P (h)<0,

--/;@)40, C(D?"

5 we can sac that if we dram = hangent to the curve
Pﬁ%):? at tha point B it wil)l cut the = - axis at tha
point which doas not belnng inside the intarval (g, B]. &=

a result of this, we draw a tangant at 4, {a, 7 (&)




The saquation for this tangent i=:

y =~ P a) = Pl(a) (xra) —mmememecoee e (3011)

At tha point % - %, wa sea from fig. 3.5 that vy =

%]
Ju
o

thae fir=et tangent. Hence equation (3.11) becomes:

1 .
- p(a) = Rl (xa)
¥ = a - )
I ,££n3~ ) {z Ty
1 - F———— Loy, ¥ 8}
i ﬁ(v‘a)

Tha root of tha equation i= now in tha interval [»,, bhl.
Caontinuing this process of replacing X, b7 Lk, T e
in sach of the tangents to the curve (fig. 3.5), whare = in

each cases have a valus q@f vy = 0, we obtain the gensral

ey

ggquation

g = My - Pn(}"’k)
ki1 1 .
m———— . {(Z.13)

o
In this case, the successive approximate valuas =, obtained

1 ¢
P{k_)

are less than the exact valus x,. That i= the approrimate

valus & approximates x; by defect.

Like in the method of chords, the formula used depsnds on
tha stationary point. In this method, the stationary point in
the interval [a, bl is the endpoint ab ghich tha sign of ths
function doss not coincide with the =ign of bthe =sacond
derivative. That is to say that the andpoint whose =ign
coincidas with the <ign of tha second derivative is the
varying endpoint. For example, if Pﬁ(b)_ P’%(y)}a then b

is the varying endpoint and the initial point i= b

~t

~




Blternativaly, if PJa).P”&(x) >0, than the initial point is

a

»
Error of approximation:- tat us asaume thatb
£ = Xy Than wae have that:

" £S5 0 My - Yy

but in {(3.13) we have

Henono LNy )
- ! ’a"%” Vk ) o E ’_517(35_ ' !
e = ' )
Pﬁ(xk}
Therefora (¥, - & | £ g
] Y
2 N (:‘/k;
Generally, we use the formulz
' X == & ! ' B (){ ) !
1708 SO 1 B ks
: uuuuu : LR LT LR R S (‘7) 14’)
'om )

Whare m = Min !Pln ¥ |
[ b]

The formula in (3.14) can be usad in tha chords method. Also
like in the chords mathod; M<?m must be fulfilled, in the

interval [a,bk].

H
Finally, if the derivative Pm(x) varie= =slightly on the
interval [a, bl or if it i=s computer in 2 complicated way, we

may u=e the formula in 3.15 to simplify calculaticons.

o/




b4 =y I (3. 15

W om oW W s e = e

Formula 3.15 iz callad the Newton’s simplifiad formula. That

sufficiant to calculate the valus of tha darivativa

i

ig, ik 1
at the aorigin only once. Geometrically, this means that thes
tangant at the point B (P ()

we rveplaced by straight lines which are parallel to the

tangent drawn to the curve y = pa{;"-“ at. the point R {x,

7 il coart
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We =hall again solve eqguation

&Yready, ws have szman in svampls 2.2 that the ront nof the
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Ffor the =zke of conveniasnns and aasy computation, ws

formula in eguation 2.15.
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Continuing this process of substitution,

= of the form:

Generally, equation {(2.18) i

R e




TIf therse exist a limit lim . then tha limit is the eswact

solution v, of equation (2.16)

wharo n 1= sufficisntly largs and (3.19) i= convergent.
We have already mantionsed that there are numarous ways of
arriving at the asquivalent equation oflx}. Tt i= important fo
note that tha equation e{¥)=x which we choose to replace
P{x)=0 must ba tha appropriate onm. Tt must ba convargant,
Bafoie we discuss tha general technique for constructing the
function o{x), lat us introduce a theorem which dafines the

conditions for convergence of the function e(x).

Thearem 3. 1: Let us  a2=ssume  that tha following

conditions are fulfillad:

(1) The function e{x). is dafinad and differentiable on the

interval [a, b].
(2) a1l the valus=s of o(x). £ [a, b) for % & [a, b].
(3) There is a number =« < T such that
m%< 2 = <] Vasla, bl

{(in thaorem 1.2 we have alresady saan that

n

Max ¢ (x))

fa b]
is, @
Than, the sguation (3.19) converges irrespective of tha

choice of the initial approximation %, €[a, bl and the lim

o= o¥ is the unique and simple rocot the

\;L7




aquation (3.19) on the interval [a, b]l.

In order to generate the function o{x), we will considser

first the case where P;(M)>0. Let P (x) have a unique
H

=o0lution »&£[a, bl and 1at P%(M} hava 2 uniqua solution we=la,

b)Y and 1t P%(y) exist ¥ % & [a, bl and ratain sign =o that

M}whargfmfminfpz{x}}and MfMax/Pﬁ(x)/‘ Wa will replacse

fo =
Pn\;‘ij =S

with an srquivalent equatian » = ¥ - A 6.9 PRRRRREG—_——— IS B

Tn order o fulfil  condition (3) of theorem 3.1 above, wo

must choose the right value for the constant a.

*J
")
S

'P{f’i } = ‘f" - .h PF(X) R et e L (\7} . &

o'(X) = x - arlx oo (327
In condition (3) of theorem 3.1, wse have that
@%ﬁ}fl, Hanoa | 1 - A Ps(x}: € 1 mesamaveson » Lo s B8 §

Solving inequality (Z.24), ws have.
= l & } o )\P3q {:‘f. ) < 1 RS L e e g (:?l _. P"S )

From tha right hand side of 2.25, we have

-




From the left hand side of 3.25 we have
=1 < 1 = ARG
A P;(x) < 2

A< 2/el0

Hence 0« A < 2f P;(x).
Usually, we assume I/Ml to bha A. Where M, - Max | P% (x)!}
{a, &}
Hence, equation (3.22) becomas:
e (x) = x - P
S e e R R R (3,?6)

M
i
Howsver, if P%(x) <0, than sguation 3.24 becomes

1t A P#(K) i £ 1 semeseseses e (57
Tnaquality (3.26 becomes
-1 < 1 +A_P;(x) € ] e e v v s e (3.28)
The right hand sida of (3.78) gives:

1+ A Pﬁ(ﬁ) < 1

The left-hand side of (3.28 gives:

~4 < 1+ A Pnl(t{}

-2 S ,A_Pg(x)

-2/ PG < A




Hance we have

2 PJ(K) <A <0

Let us assume ~----— = A_ Then aquation 3%.26 bhecomee
i

hetunen the exact and the approximats

B ata s m{ E} = + and mr\-;‘},“}" Ty in squations = 17
and 3
4 = ¥ 3 ] U " -, 4
2 = 1 Ky T - o Hp ’{%‘."!'
spe Bz e - % v ' ) [ (" '
e x FO - ST s - R o0,y e X i (5. 81
V Ry + “x k-1 = 1% <kl 1 ¥y ISL (3.2
From equation 3.31 we have
i . < i ' " p ' ' '
,,}{'3 g ;{-k 5 5 = ;{!': i v i = ,3{,% }':S'E‘
i i i " . ] Z ¥y Sk i
(B ig_ i = 4 ‘"k ) - = §< }r “Lrll
! 5 ! = ' "
t e k ) ( 4 o ) £ o lxj - xk,!l
| - % 1 7 ! B o s e =
. N }k ' % o l."f'.x }{'k“l' {31:’3?)

i 1 "I g

ol S w g el St - gleemees (3.33)
i ] ~

Hence for [x, ~xk:n0t to be longer than git is sufficient that
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Now, from (3.34) :-

w"h £ (1-w)

= mm e mer am e e e m

:xl "7':0:




Taking the log of both sides, we have

"

long = < (oY

My T K
x < 1, hapce Jog o« < 0 "
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caloulate the approximate ront with the spacial accuracy

Whore X ¢ 4.
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_ 1 # By I Vi dis s i Sews sias e i W A X
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n anlve squation (3.2) using tha mathnd of

yccessive approximation. .

In equation (3.2} the =quaticn

s




7 . .
ps(;{) - 2z’ 7 - 0 has a root lying on tha interval [~-2.75,

3 [} = ]
-2.5] with an accuracy of 0.001,

w! 3.75
W x| e e = § = cevmean = 0.39 ¢ 05

M, 6.189

B

Hence, we may maks use of relation (3.36) to m=stimate the

error of approximation. TIn other words for ¥, — », net to

ba largar than ¢, it is necessary and sufficient that  |x
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S e e Whora M, = 4
Hence according to (3.19)
y L 3 o
'P“E-"H = ;-._k il bt k i - )
L. S—. S R (7. 28)
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CHAPTFR  FOUR

Developmant of an itarative Methnd

4.1 Introduction
cn %4, we did mention that the saquivalant
aguatinn {efx) =x)} given in equation 3.16 nan ha derived in

DURETOUS  mave . Rasad on this atatemant of farnt, ws shal)d

S

ariva an iterative msthod which must, of course, =sati=fy all

“3

tha condition=s given in theorem 2.1, latar in this chapter,
we ~hall anply tha itarative method to equation 3.2 and cihar
non linear algebraic equations Lo sas how it worke.

Tn 2 hranch of Mathematics called functinnal anxly=in, =

strictly onnvey functional, g, is definsd ad follows:

space, %, Than a functiona a dafined an ki nallsed

How, 1=t gf=) = =« . TF v - o, and

v o= e | £. P ey r " L
Y ;-:‘n ] % &3 ation {.;-1:\,
~f -
"‘i’*‘:‘,} - Aot
] 13
€ $hp pwert satebdomm w2 -

i
B
=
P




Therafara, gflvy) = g {x). SRh=tituting the=s in =2gquation
{1.4Y, we have

aflx) = axt{i1-adglx

3 ‘} R P B N R PSR S (

™)
R

We =hall re=-write eguation 4.2 as thus

g{x) 7 2AT{1-R) G0 urerrmnsmresresramemmeme L4 . 3
whevre A im a constant, to be datermined,
Now,g{x) and f{x} - G whare

P {x) 1i= the initial algehraic equation

*
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|

(W)
2
4
Mo
=)
==
=
W
g

l

- AY
- - X - P{'}{) = g(}f) LSO S R e e {4 - '4-_;;

Subatituting equation {(4.4) into {4.3) we have. -

|

w = }fh%(lfh)(:\{—Pa(z))

4
i

o7 whH(x-P (O~ xM AP (%))

¥ T oH e Pﬁ{‘:{)’#’ 1S Pq(:{) SRS < S

Equation (4.5) is the equivalant squation wa nand.

4, this egquation must =satisfy all  the

oy 5 o 3 ez o
g} ! (Condition 3, thaorem 3.1)

i t ok
¥
= ¥ : i", L y ¢ b > &= 3 3
1< 1 Pr{x) + & Fﬁ(Yj < 3 1% 2 necessary condition
"
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The inequality in 4.8 gives. the interval within which A
evists. |et y=
assuma then that  a - Pg(x) - 1

e LA )

p;(g) otk

Since PL(x) = 2 P 0x) 1
e e e & e e .

i
i
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i
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3
1
1
i
1
i
i
4
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i
i
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Whare P](x) = Mayx yop ey o - M

Hance, aquation (4.%5) hecomas

a(x) = x - ’a(ﬁ} + M=1
e o (-’,_5)_ (‘4 1"»)
AR e awnw s 2. 10

Howaver, if P#(x) <0 ¥ x ¢ [a, h]

than aguation (4.6) bacomss
iy

g'i{x) = 1 + an(x} - X Pﬁl(x) senrsspmnsiannsmmenee (4. 17 )

Then,

R "
s and e 3
- H
pﬁ\"{) PF% (x}
i.e 1 <« A < 2% Dﬁ(y}
o e SIS O L 5.




i
whore PE () = M = Maw | P!{x) :

i =
LU S
Faquation ({4 5) hecomas e
s s & g e v R
‘_-5(~} # n,,(’, ! 1M D"(J. TR
" ST & A 5 s A 3

M

Sa, given an intarval [a, b] which contain=s one snlution

= 0O arnd such that the condibtion M < 2o

e

M
where v x, & [a, b], g(x)e [a, b], g’ (%) < 1, and Pnl(x) > 0

¥ e W _ - . Hocs R 4 - : 5 F
1.8 S{‘ﬁ'n"}) = ,-—.,ﬁ_,‘ Pnl_,,",l_; & ﬁ l Pn(:{ﬂ'!) Sy W, (1‘ < 1 1}

glx. ) + %, - P{x,4) +1+HM )
i al AN R Eanﬂem Pn(ﬁml) R {4.15)

where ¥ x € [a, bl, g(»} & [a, bl, g'(x) <t and

Lot us now apply squations 4.14 and 4.1% to thres
diffarent algebrain equations. Tn each equation, we shall
chtain at lsast two aolutions of the equations. MWe =hall be

considering third, fourth and fifth order algehraic equations.

)




fpplication 1 Third ordaer Fguation

The third order squation wa shall consider is equation
3.2. Already this aguation has bsen separated in tables 3.1
andd 2.2, The roote of thes squation lie in the intarvale [-3,
21, [-2, =11 and [0, 1], respectively.

In chapter 3, the raot of the equation lying in the
intarval [-3,-2] was obtained using the four iterative methods
dincussed. In this section, howevar, we shall obtain the reoot
lying in thi=s intarval a= wall as tha largest root lving in
the interval [0, 1], using ocut iterative method.

Pi(x) = W+ 3 - 3 = 0

= [=3, -2] and « = 0,001

PR(-3) = 9 Pi(-2) = ©
Hence M > 2m
S0 we reduce the interval finally to
(-2.75, ~2.5) (=ae =saection 3.1)

Psl(-::’..?.'i) z 6.19 P (2.5) = 3.75

il
N
£
o)
=
L
=
|
N
~d
Wi

whare M
S we have
Flx) = » * 3¢ - 3
XxXe [2.75, -2.5]
since PM(x) >0 ¥ x € [-7.75, -2.5]
than wa =hall ceploy aquation 4.14

gl ¥ = ‘ - : 4
glgq) = %y Prlogq) + M-l Py

o

M
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(8) P,(~2.5372) g =0 . 00044

g(~? 8322} = -2. 5322 4 0.00044 - 0

! -P.SZ217 + 2.5322 ! = 0.00007 <0.001

%
|
)
W
)
J

Henrnon

5 i = L 5 R

e [0, 1] L 0._001

3
d.—--
~~
g
I
W0
)
Lol -
-
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-
|
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Mx2m So, we nesd to reducs ths intarya? n, 11.
Now, P,(0.5) = (-2.125). alsa P, (0) = kS

So, 0.5 replaces O in the interval [0,1]

e bia r c
Wz have LQ,.:,’.}
nlrn e - i 4 T - 4 nirany - €
LA L = et = A Fy oak g =
N &
M £ 9, n: 3.75
b o
| e 111
1H0.5 1.5
- = o e = .75
5 ~
. £
i.’.f\ i 4 = - S onnng -
P,_ LA 3 - i ":-_?{.?.{., sy G075
¥
- . JU e ~ ¥ v 3 — et
replacy 5 in the interval [0.5%, 1]
Ules,  bymasim ' D 4
i'!it (RIS N {‘\.!,1 iz l}
N :
n s/ =2C - 1o o s sy
1{0.75) - 6.1875 rd (1) 9
* .
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So ths intarval we noend is [0 7S 1]
25

11~ i - h—n_ -
L
7 n
n{wY = S T =
L S - ~F ~
=

wo zhall make use of equatinn (4.14)

N

®_ ) = = 3 £ b4
i

where M-1 8
PR = ) = s":} ) Qq

g {xgﬂ) T Hpy < Pl{ﬁwi) + 0.89 PI(X )
g} {x) = 1 - Pl(}‘f:) t 0.8% Py(x)
(0.75) = 1= 6.1875 + 5.5069
: 0.3194 < 1
g 1) = 1~ 9+ B.OL = B.H7 £ 1
(1) P(0.75) = ~0.8906
g{0.75) = 0.75 + 0.8906 - 0.79724

+ 0.848

(2) F3{0,848) - -0 _.2379

3
S
ih

O.848 + 0,237 ~ 0.2073

= 0.8736




g{0. 8784 - O0.R784 + 0.0074 - 0.004F4
= 0.R792
{5} P,(0.8792) = -0.0014
g(0.8792) = 0.8792 + 0.0014 - 0.0Mm?
= 0.8794
(6) P,(0.8794) = 0.00008

g{0.8794) =< 0.8794 + 0.00D0D0R - 0.0000N7

Mow, 0.87%94) -~ 0.5794 1 - D_00001

Hance

}
o
0
w
D
L

Application 7 Fourth arder eqguation

PdaAx) = vg b Gy =~ 3F ST D00

iy ¥
4

Lat us usa the analytical method discussed in chapter twn to

—

eparate the roots of the fourth order squation above,

Table 4.1

el §;3 {;? %;1 ;? ,fi | %%W“W,W*EVw,wﬁi}E:mmw

Hence, from table 4.1 we can see that the roots lies in
the intervals [-2, =11 and [0.11. HWs shall ohtain the twn
rocts in thaszs intervals

P () SRR R

RE[-2. *1} € = 0.01

P, 00

oo

wy

"
i
Vi

o

Lo

g
n

M=) 1 s 1270 2 27 5 oM

; p; (-1 = ‘11 = 1 = m




=1.7%1 by using

So we reduce [-2, -1] finally to [-2,
the procedure wa
usad in application 1 above.

T = 3 =271 = 27 = M

Whera :

il

Hance

since Pl(x) <0 Vv x € [-2,
4.15

We shall employ esquation

glx) = x - P (x) + 1

2

1+M
= 1.04

L

3 Utgi) 7
1 - P;(z) + 1.04 P,(x)

7808 s

94(Kw1) + 1.04 Pﬂ(ﬁml)

+ 27 -

g(0.11) = -2 =2 43.12 = 1.8

0.092 + 0_09%7

= “1, -537{:::
9753) = 0.0D124

1.B7465 - Q.0124 + 0.0129

0.0005<0 .00

T 2




(B Py = A b s - 3

v e [0,1] & - 0.001

PPy - s (1) = 9

M= and M = 5

M < 2m  Hence we may usa the intarval [0,1].
Now, since 941(35) >0 v ow e [0, 1].
We ahall usa equation 4.14

' : - : h e o R h}
1.8 Q(Xn} = %a-1 PQ(X‘E“! 3 1 M .1' ?1( )

G (7@:3,‘1) S 94(3{;3,,) + 0.89 94(}:?;}
91("{) = 1 - Pé"{:{) + 082 Péz(;w:-\,

b - 5 + 4.45 = 0.45 <

i}
ey
5
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o
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w
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o =
{3 5471

g{0.4772) = 04777 4+ 0.S621 - 0.5003
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g{D.53%) = 0.539 + 0.2206 -~ 019630066
(s) P (0.5633) = -0.08278
= 0.5724

(&) P,{0.5724) - - 0.0307

g{0.5774)

0.5724 + 0.0307 - 0.00773
£ 05,758
(7> PL0.5758) = =~ 0.111

g{0.5758%) - 0.5758 + 0.0111 - 0 .0099

[y P,(0.577) = = nD_0047
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Application 3 Fifth ardar sqguation

el un aeparatn the rant= naing thn amlvtical method.

<




The roots of the »mation lie in thae intervals -2

-
v

Fre §F wet F 3 w53
£ K] e R & 3%
v let 1= Find in =mallsst roct in thae interval

-2, 11 ana the largost ront in the intsrval [}, 2]
£ i . =
Ce r'%(;) e 5 P2 G
[ S y — A e
[T Y & oy R i
1
i on - A
P%(aj = 5% ~= 5
lpi <y 4 - e Yipg s £y BE - e}
l:( L o IFQ\ & >
M = 75 m =
o Pm
We raducs [=2, 1] to =2, =1.75]

where :D’("?): = 75 and :PE

Hancae, we have
Pe(x) = % - 5 + 2 = 0
x & [-2, -1.75] £ = 0.001
Sinos Pﬁ{x\ M ¥ w = -2 -1.7%] then wr wil)

; & = L 3

make une of pauation 4.14

1.8 glx.q) = x = Pelq) ¥ Mol R(x, )

s
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™
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o
§
)
wn
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g{~1.8) = =1.8 + 7.8957 - 7.R8147
= “Leind
(33 Pel=1.721) 2 =4 4925
G{~1.721) = ~1.721 + 4.492%5 4 _447¢6
= =1 . &7&L
{(4) P{-1.4761) = ~2.8477
g{~1.6761) = ~1.6761 + 2_R477 -~ ?_R19?
& =1.46476
{5) P(-1.6476) = ~1.3031
rf{»- ! ,5{1-‘7!5} = =}1.68476 + 1. 2031 1.8841
= =1.6272R4

(6}

i |
~d
Ry

~~
)
Ry

{
T

-

Pe(~1.6286)

=1 A o DY =3
E 41.).-.“'){5_; 22

P(~1.6155)

-1 56168} =

L.A067Y -
7
Pe(~1.5996)

= o1 F140
=1.6286 + 1.3140

=1 .8155
= -0.9261

=3 . 6IRS 1 O_9PE]

= =0_.6595

~1.6067 + 0_£595

ol 0

D

0.46579




(10)

(11)

{(13)

(14)

o~
s
W

C—

PS(“1.5949) =

Pe(~1.5914) =

g{-1.5914)

-0 .34572

-1.5942 + O.3452 -~ 0_.3417
= ~1.5914

=0, 2500

~1.5914 + 0.25 ~ 0.2475

= -1.5889

ps(mlnﬁggq) = =0.1825

g{-1.5889)

P.{-1.5871)

g{~1.5271)

Pe(~1.5R48)

g{-1.584R)

Mow, !-1_585% !

Henoo, +

-1.5889 + D.1B25 - 0.1807
= ~1 . 9871
= =D_13Z43
-1.5871 + 0.1343 + 0-13'30
z ~1.5848
= ~0.0996
=1.5858 + 0.09%96 ~ §_0784
= =

e
. 5048

5 ~0.0751

=1.5848 + 0. 0731 -~ 0.0724

= =1 .55

e

1.5848 | = 0.0003 <0.001

| g : - B A
[-2,-1] a.0n1
4
S’ 5
- r '-:35 %Y -
/ l't,("'!x




21 toy M.?28. 1.2751 wusing the

P {1.25) = 7.2070 P (13753 = 12.8733
Mz 7.72070 M = 1?.8773
M 2m
So, () = VI 2 £ 0

= {1.25, 1.275] then ws will make

Py 1 sz” Pe (¥ )

Whers the constant H~1 11.8723

g 12,8723

o
o
Nt
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t
o~
-y
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)
W1
"
-
'
Sors.
il
i85
%

- 3 A

(3) P(1.370%) = - 0.0125

S




g(1.3709) = 1.3709 + 0.0125 - 0.0115
= 1.371¢9
(4)  pP(1.3719) = 0.00023
g({1.3719) = 1.3719 -~ 0.00023 + 0.0021
= ~1.37188
MNow, 11.37188 -~ 1,3719) = 0.00002

0.00002< 0.00

Henca, - 1.372
A4 Frror of sstimation: -

) the itarative method,

Since g(x,) = » and g(nd) = ¥
ynas the same principlas as in the estimation of arvor in ths
mathod of succsssive approximation.

Thae ineqguality relation in 3.36 is used to estimate ths
arror whare the constant « < 0.5 ({sme aguation 3.30 to

%.36)

- T T
1
Where = = Max g'{X).

Wharse R = M-1 in (4.14 and R = M+l in (4.15)
M i

= 1-M + RM whare M

i

Max :P;(x):
fa,b]




CHAPTER FIVE

COMPUTER AFPPLICATION AND CORICLUSION

5.1 Computer Application

The developmant of computere have heen of immen=Fs hanefit
to tha soionce world in genaral and Mathematics in particular.
Time spent in manual works of all typas is bhenn saved and
hanca anhancing auality and quantity of prodoction.

Tn chapteres thras and  four, we obzasrved that the

itarative wmathods discussed involve  hims consuming and

wintoake-nrone computations.  For higher ardsr equatinns tibkn

el 4

tho fifth, =ixth, ete, orders, wa are requirad to carry nut
mera computabtions. This is whers the comruter applic=ation

drmignsd o swecuts these

P
i

comas in. The computar
cumbarsome compubtations in minittss and thershy caving timo.
Al=n, the compnter 19 mnore accurate and snahlaes the u=er to

have tims tn =anlwvs other probhlems. T fact

£oa

the immonoo

the anmputer nannnt hae avar

0

mphasi=sed

Tf the nimber of computationzs does not eveesd a thousand,
inn tha desk niann kay computar can be ussd.  Tf howsvar tha
computations are more than a thnusand then, ons needs a3 high
spoad computer 80 a2 to facilitate the an0lution being found in
thae shortest pos=ible tLima. Howsvar, in ordsr to use the

comnputar o carry oub any mathematical computation. the

2

rocesses in the computation will have to be writtan in high-
lavel languages like Basic, Fortran, Pascal, atc. The =at of

, written in any high=level languagn, which iz




o+
de
]

daesigned tn =nlva a particular probleam and ohtain resul

After writing the program, in any desired language, it is
then coded into the computer for execution. Coding involves

tho transoription of ipstructinons o the form of languags

accaptable by the computsr. This language is callaed the

and it axits in binary number=s. The source

nto =

and 4

in high level language is translated

Ay
ol

maconing language gbject program with the help nof another

]

program called a compiler.

1]

In thiz chapter, we =shall construcht program in hasic

e

languags to carry oub the computations in the svamples given
in chapter four. The results of tha program =hall also bs
di=zplayed. et us now emse the differant stages of a program

dovelopuent befors going to Lthe program=s in saction 5.3,

5.2 Stages of Program Development

Program Planping:~ This 1is the first stage in & program
dovelopment. AL this
stagn, tha aim of the program must be understood. That is the
praoblem which the program would solve must be defined and tha
input data must be identified.
(b) Program design:- This is the listing and ordering of
the cuccessive steps and instructions in a high lavs)

language, required to make tha computer achisvae the dezirad

results. This, af course i=s tha most important stags of

i

.




program devalopment. Tha instructions, p=seudicndis must be
clearly and properly mwrittan.

- Coding:- 0Once thes steps of the program has haan outlined
and ardarasd. thas next stage is to transfar the program to the
form undarstandable by the computer. A= we have earlisr cean
in section 5.1, this language is called the machine language.
{4)Y Debugging: The cnding process involves the heln of the
compiler, which tftranslats=s  the program from high-level
languane to machine languags. Normally, the compiler may
dotoct ona or more arvors (bhugs). The detecting and removing
of the=as srrors is callsd debugging.  There arse two kinds of
arror:  syntar and logic error. Syntax srror involves
incorrect punctuation, incorrect word saquance, undeclarod
identifisrs or misuae of tarms. These arrors are also called
coded errore and are sasily found the language compiler pointa
them out to the programmer . lngic ervor is the error that
makes the computer to fail to print the svpacted result ovon
whan therae i= no more ayntay arror. logic arror is associated
with the prohlem of the program logic and the way tn romove it

i= hy checking the planning and design aof ths proaram.

(=) Testing: - Thia refers tn the proces=s of running tho

and evaluating the program result in arder to

detarmine if any arror eviata. The testing i= done by running

ram using or imputing valuss with known results as to

-

he =ure the expreted rosult is got
{(£) Toaplementatinn-~  Dnee tha nrogram has boen tested and

fournd to be working, 1t may than be applied to the problem it

("




was d=ssignad for.

{2}  Documentation:-~ This i= tha desaription of the
proper form for users and to enhance maintainability, It

dascoribes tha working of the program and how the sxpected
rrablem could be eolvad. Documentation ronables the ussers o
understand the program batter and also gives room  for

modi fying the program whenevar necassary.

5.3 PROGAAM

In ardar to sas the plan of a2 program at a glarnce and to
fanilitata the construction of the program it=elf, it is
aavisable to draw up a flow chart of the program. 2 flow
chart i= 2 design which shows the ghijectives and proces=es of
the program. Flow chart is made up of arrvows, circles, boxes
and rhombusas . A1 thsse have special and important functions
in a flow chart. Before wa go to tha flow chart in fig. 5.1,
it will be most halpful to look at the different parts of a2

flow chart and also their various functions.
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Fig. 5.1

Flow Chart for Progam 5.1
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SYMRBOLS FUNCTION

Bage connaector

Start anpd and symbnl

Process Symbol

Dacision Symhol

Input and output symbal

RCM SOLUTION OF AN A GFRRATC FOUATTION LSTHG
REM THC DERTVED ITERATTIVE METHOD TN CHAPTER 4
THOUT "INTER THE I TMITS OF THE FOUATION as (a.h)": a,h
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5.4 Conclusion

The methods discussed 1in chapters three and four
converga, howsver the method of chords converges faster than
the rest. The iterative method developed in chapter four
converges slower than the bisection which is the slowest of
all the methods.

However, the main advantage of the iterative method in
chapter four is that the operations carried ocut at each stage
are very easy and are of the same kind and hence this makes it
considerably easier to set up programs for a computer.

A good knowledge of computer programming language is
required if one must write programs for any of the iterative
methods. Also, the programs must be tested to ensure that
they run. This is a major problem. Making a program run
takes time, patience and a good knowledge of the chosean
programming language. Otharwise, one may write programs that
will never run. 1In developing an iterative method like we did
in chapter four, patience and persistence is alsc needed. In
the iterative method of chapter 4, it was discovered that if
the condition M>2m is not fulfilled where M = Max :P;(x):
and M = Min :Pf(x). the method will not be applicable to some
intervals of an algebraic equation even when it is applicable
to the other intervals of the same equations.

Finally, in the solution of algsbraic eguations, the
method of chords is good for quick convergency however, the
method of successive iteration is recommended since it is vary

easy to set up a program for the computer using this method

O




and besides it converges faster than the other methods except

the method of chords.




