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ABSTRACT 

This project will be design to give an introduction to the study of computer programme DX 

solving reaction kinetics and Quantum Mechanical Problems. 

The project is an introduction to the essential ideas in differential equation rather than a 

comprehensive account of the subject. It considers some types of reactions, Quantum, classic:al 

mechanics, Schrodinger equation and wave equations are considered in the work were calculated. 

While in the study of most of differential equations, the tools used are restricted almost 

completely to algebra, here in this course work one use much of differential calculus and some time 

integral calculus. Therefore, the work deals essentially with simple reactions of kinetics and Quantum. 

In chapter tour, one shall be discuss mainly on programming. 
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CHAPTER ONE 

1.1 INTRODUCTION 

A differential equation is a equation involving one dependent variable and its derivative 

with respect to one or more independent variable. Or an equation that contains derivatives are 

called differential equation. For example dy/dx + f (x, y) = 0 is an example Of differential 

equation. 

The above equation is an example of differential equation and arises in many areas of 

chemistry, physics, Biology and Astronomy. The most important thing here is to know how to 

solve the reaction kinetic and quantum mechanical problems with the application of differential 

equation. 

Applications of differential equation are not only applicable to Mathematics itself, 

especially in Geometry, and In Engineering Economics, Geography and many other fields of 

applied science. Chemical reaction do not occur instantaneously. Some of them, become of 

their rapidity, appear to do so. For example, the neutralization of an acid by a base, others 

take a longer time as in the case of the appearance of sulphur precipitate resulting from the 

action of hydrochloric acid on a hypothetical solution. 

Infant, it is evident that even the fastest reaction occurring during an interval of time, in 

the combustion of mixture of air and gas at the tip of a Bunsen burner, will be the time 

necessary for the fresh gas to appear, otherwise, the flame would not be stationary. 

One could cite many example, it is thus to generalize that all chemical reaction 

Are function of time, all occurs at a finite rate. 
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This facts has been known for a long period of time, but Wenzel (1740-1793) Working on 

the corrosion of metals by acids (1777) was the first to introduce the idea of relationship 

between the acid concentration and the rate of attach the metal or the weight devolve in unit 

time. 

It was not until or 1850 that Wilhelmy, using the inversion of sugarcane by acid, Showed 

the proportionality of the reaction rate with the concentration of the reagents. 

This becomes the first experimental fact in kinetics although at the time it past almost 

unnoticed. 

Chemical kinetic did not come on its own however, until 1884 with vanthoff (1852-1911) 

and is classic works. A study of chemical dynamics therefore Vanthoff and Withelmy, can both 

be considered the true founders of this branch of chemistry. 

Up to that time-and one must not forget that the first edition of Mendeleef' speriodic 

classification of chemistry only appeared in 11870 chemist had restricted themselves to the 

study of what is easiest in a chemical reaction, that is initial and final state. All of the static 

characteristics in a chemical reaction are beginning to be properly explored, the reagents the 

products of the reaction, are all balance the energy involved etc The manner however, in 

which the reaction took place was completely known, its mechanism and the relationship would 

have with the reaction rate or with the structure of the different reacting species had not been 

foreseen nor the dependence of the mechanism on the external condition of temperature, 

pressure physical rate of the reagent etc. 
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Thermodynamics, this science which developed long before chemical kinetics, predict 

whether a reaction will proceed under a given set of conditions of temperature and pressure. It 

can also predict the direction in which the equilibrium will be shifted in response to a variation 

, in these parameters. However, it can not tell us what the rate of the reaction will be nor how 
~ . • 
;~ this rate will vary with the significant factors such as temperature pressure composition of the 
'1 

reaction mixture etc. 

The Quantum mechanical plays an essential role in our understanding of 

1 molecular vibrations. Their spectra, and their influence on thermodynamic properties. The , 
problem provides a good domestication of mathematical techniques that are important in 

;~ 

.. ~ quantum chemistry. Since many chemists are overly familiar with some of the 
~' 

mathematical concepts, one shall deal with them in detail in the context of this problem. 

1.2 CLASSIFICATION OF DIFFERENTIAL EQUATION 

Differential equation is classified into two main categories- partial and Ordinary 

differential equation One of the must obvious classifications is based on whether the unknown 

function depend on a single independent variables or in several independent variable. In the 

first case only portion derivatives appear is called partial differential equation. 

Example d\J/dx2(x,y) +du/dy(x,y) =0 is called second order partial differential equation. 

In the second case only ordinary derivatives appear in the differential equation, 

and it is said to be an ordinary differential equation. 

Example dRJdt(t)=-kR(t) where k is a known constant is called first order ordinary 

differential equation 
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(i) Ld2 9(t)/de+ Rd9(t)/dt+ 1 9(t) =E(t) for the charge 9(t) on a condenser in a circuit with 
c 

capacity c, resistance R, inductance L, and impressed voltage E(t), is the example of second 

order ordinary differential equation. 

1.3 ORDER OF DIFFERENTIAL EQUATION 

The order differential equation is the order of the high power derivatives 

Example-: 

(i) dy/dx +f(x,y) =0 is called first order differential equation 

(ii) dy/dx+f(x,y)= is called first differential equation. 

(iii) d2y/dx2+dy/dxp(x)+q(x)y=o is called second order 

differential equation etc 

1.4 DEGREE OF DIFFERENTIAL EQUATION 

The degree of differential equation is the exponent of the 

highest power of the highest order derivative. 

Example-: 

(i) dy/dx=x/y is called differential equation of degree one. 

(ii) dy/dx=(9x2+2xy+3y2)/2x(x+y) is differential equation of degree two etc 

1.5 ORDINARY DD'FERENTIAL EQUATION 

If in a differential equation, the dependent variable is a function of only one 

Independent variable Example dy/dx=3x+7x+5 
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Ordinary differential equation is further classified as linear or non-linear 

homogenous or nono-homogeneous and first order or second order or third order. 

A differential equation is said to be linear if each term is linear (degree one or Zero) 

in term of all dependent variable and their derivatives. For example dx/dt+x = e 
So it is called a non linear differential equation Example (dx/dt)2 +dx/dt-x-y=7t 

If in the differential equation the only term consisting entirely of the independent 

variable is zero, then the differential equation is called a homogeneous differential equation. 

An example of homogeneous differential equation is d2y/dx2+xdy/dx+y=O 

An equation that is not homogeneous is called non-homogeneous equation. An example 

of non homogeneous equation is dy/dx+y=3x 

A differential equation can be linear and homogeneous equation. An example of linear 

homogeneous equation is dy/dx + = 0 It can be linear non homogeneous. 

This is called a linear non-homogeneous equation. An example of linear non 

homogeneous equation is dy/dx + y = 3x. All these types of differential equation can be of 

first order or second order or otherwise. 

These are further categorized as first order homogeneous, first order linear, 

first order exact and variable separable equations. Second order equations 

are also further classified or non linear, homogeneous or non homogeneous differential 

equations. 
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CHAPTER TWO 

2.1 FIRST ORDER REACTIONS 

Let us consider a first reaction, let a be the initial concentration of the reactant A and X 

the concentration which has reacted at the time (in order words oc = x/a is the fraction of A 

which has reacted). Obviously the concentration present at time is a-x and we have 

dx/dt = k(a-x) 

To integrate this differential equation separate the variables 

i.e. I dx/(a-x) = Ikdt 

Ln a/(a-x) = kt 

which may be written as 

(a-x)ae-kt 

If log a/(a-x) is plotted as a function of t gives a straight line graph of slope( -k). The units of 

the first order constant are S-l 

For example:- The liquid phase dissociation of dicyclopentadience has been studied 

longer and patton using gas chromatographic techniques. The techniques involved measured a 

quantity proportional to dc/dt rather than -dc/dt 

Solution:-

Then, one can apply first order equation as dctdt = kc (rather than -dc/dt). The one of the 

reactant and the positive of the products. 

Idc/c = Ikdt 

Lnc = kt+c 
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If t = 0 

c= lnco 

then, the equation becomes 

Inc = lnco + kt 

Where c and co are the equations that are proportional to the concentration. The value of k can 

be determined from the following data at 190°c 

(a) separating the variables and integration have 

C (co) t(second) Lnc 

1.85 524 0.6125 

2.04 620 0.7129 

2.34 752 0.8502 

2.70 876 0.9933 

3.83 1188 1.3428 

5.25 1452 1.6585 

Then, one can plot graph of Inc against t a straight line which is linear is obtained as first order 

reaction satisfy. 
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3 
2 cm = 1 unit on Inc 

2 2 cm = 500 units on taxis 

In c 1 

o~---------------------------------
500 1000 1500 2000 t (second) 

22. SECOND ORDER REACTIONS 

If we call a and b the initial concentration of the reactions A and B respectively in the 

following type of reaction. 

A + B - > products 

and x the concentration of A and B reacted at time, it is evident that dx/dt = k(a-x)(b-

x) ......................... (1) 

(a) if, at the start, the reactants are of equal concentration (a = b), this equation becomes 

dx/dt = k(a-x)2 

(b) dxl dt = k( a-X)2 This expression is also obtained for a reaction of the type A + A - > 

products. 

And X the concentration of A and B reacted at time t, it is evident that dx/dt = k(a-x)(b-

x) ....................... (1) 

(a) if at the start, the reactants are of equal concentration (a=b), this equation becomes 

dx/dt = k(a-x)2 

This expression is also obtained for a reaction of the type 
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A + A - > Products 

Separating the variables and integration have 

Jdx/(a-x)2 Jkdt 

l/(a-x) = k+c (where c is constant) 

with the condition that x = 0 at t = 0 the constant become l/a and the final expression is 

x/a(a-x) = kt 

b. if a and b are different (i.e. b > a), then separating the variables 

Jdx/(a-x)(b-x) = Jkdt 

By using the partial fraction we have 

l/b-a In(b-x)(a-x) = kt+c 

if a-x = 0 at f = 0 one have 

-l/(b-a)ln b/a = c 

then, the final expression becomes l/(b-a) lna(b-x)/b(a-x) = kt 

it is clear that if the reaction is really second order, then 

(1) for the case a = b, if we plot x/a(a-x) as a function of t a straight line will result which 

passes through the origin and slope ak i.e. if a=b 

(2) if a = b, we plot Ioga(b-x)/b(a-x) as a function of t a straight line is also obtained. The 

units of the second order concentration are mor1 cm3 S-l 

2.3 THIRD ORDER REACTIONS 

A third order reaction may be first order with respect to three reactants of A.B and C such that 

the rate of the reaction is then of the form V = K. [A]. [B]. [C]. it may also be of third order 

9 



with respect to a single reactant when V = K[A]3 i.e. 

V = dx/dt or first order with respect to another 

i.e. V = K[A].[B]2 

of these three types of reactions, the last is the most frequent 

The rate expression for the first of these corresponding to the reaction these are 

A+B+C-.. products 

This is easily to integrate if the initial concentration of the three reactants are equal (a=b=c) 

and one have 

V = dx/dt = K.(a-x)3 

The above equation is known as the case of third order reaction with respect to a single 

reactant. And if one integrate have 

fdx/(a-x)3 = fkdt 

1I2(a-x)2 = kt+c(where c is constant) 

when x = 0 at t = 0 then, the constant is equal to 

1I2a2 = c and the final equation becomes 

2kt = 1I(a-x)2 - lIa2 

if t is plotted as function of 1I(a-x)2, straight line of slope 2k is obtained. The constant k is 

expressed in units of time-1 concentration-2 (i.e. r 1c-2) 

Example:- For the reaction 

A + B + ~ products, with CA, 0 :;tCB, o:;tCc,o ,the differential rate equation is dx/ dt = -dcA / dt 

= kCA CBCc ............. (i) 
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and the integrated equation is 

KT Ln (CA/CA,O+ln(CB/CB, O)+(CC ICc, 0) 

(CA,O-CB,O)(Cc,O-CA"O)(CA,O-CB,O)(CB,O-Cc,O)(CB,O-Cc,O)(Cc,O-CA,O) 

Where CA,O is a concentration of order A and CA = concentration of A, for further reaction. 

For the case where CB, O;t:CA,O=Cc,o in equation (i) above, the reaction is 2A + B - > product(2 

atoms combined in presence of another molecule) Where CA,O:;t:CB,O= Cc,o, 

The differential rate equation is 

-dcA = KCA2CB ........................................ (2) 
dt 

and the integrated equation is 2 [2(2CB, O-CA, O)(CA, O-CA) + LnCB, OCA] = kt 
(2CB, O-CA, 0)2 CA, OCA CA, OCB 

For the reaction A + B~Products, with CA,O :;t:CB,O Where equation (2) is valid, the 

integrated form is 

I (CB,O-CA,O)(CA,O-CA)+LnCB,OCA = kt ........... (3) 
CA,OCA CA,OCB 

For the case where CA,O = CB,O = CC,O for the equation (i) or CA,O = CB,O or CA,O = 

2CB,0 for equation (2) or for the reaction 3A- > products, the differential rate equation is -

dc/dt = kC3 .... (4) which integrates to gives 

i.e I-dc = Ikdt 
C3 

= >- 1 12LnC2 x-I = kt+C(where C is constant) 

= > 1/2 InC2 =kt+C if t = 0 = > C = 1I2LnC2o the equation becomes 
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1/2 InC2 =kt+ 1I2lnCo2 = > 1I21nC2-1I21nCo2 = kt 

= > 1/z(C2_Co2
) =kt 

or 1/2(lIC2_lICo2
) = kt 

If one plots the graph of equation (1) or (2) or (4) against t a straight line is obtained which is 

linear and slope in each case equal to k 

2.4 ZERO ORDER REACTIONS 

These occur when the rate is entirely independent of the concentration of reacting 

substance. 

i. e V = k i. e dxl dt == V = k 

= > dx/dt = k 

Here n is zeroExample The decomposition of some gases, such as ammonia, on metal 

catalysts. For the overall reaction i.e A- > products, the differential rate equation is 

Rd[A]/dt = k[A]o 

= >-A[A] = kdt 

integrating gives 

-[A] = kt +[A] where [A] is constant, at t = 0 

= > -[A]o = [A] 

Equation becomes 

-[A] =kt-[A]o ........................................... (7) 

[A] = -kt+[A]o 
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So, in the zero order case also a plot of concentration verses time a straight line graph of slope 

(-k) is obtained, the units zero order constant are mol cm -3 

2.5 HALF LIFE ORDER REACTION 

Another important quantity is the reaction half life t1l2. It is the time at which the 

concentration of the reactant has fallen to half its value. Under these condition and taking into 

consideration that at t = t1l2 (in first order reaction is independent or the initial concentration 

at t = t1l2 then, [A]t = 1I2[A]o and this lead to t1l2 = lIk[A]o 

If one plotted the graph against lI[A]o. A straight line is obtained which is second order 

kinetics and the slope gives (-k) 

Example:- The half life of a chemical reaction, t1l2 is defined by the condition [A]t = 112 at t 

= t1l2. For a zero order reaction in equation (7) gives 

i.e [A]t = 1I2[A]o ................................... (8) 

Put equation (8) into (7) and we have 

i.e 1I2[A]o = -kt+[A]o 

= > 2kt =2[A]o -[A]o 

2kt = [A]o 

but t = t1l2 

= >t1l2 = 2[A]o/2k 
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TABLE (RATE EXPRESSIONS) 

Let list the differential equation at order reaction in the table below 

Order Differential Integral t1l2 reaction 

half life 

0 dx/dt = k kt =X 

1 dx/dt= (a-x) kt =k loga/(a-x) t1l2=lIk 

2 dx/dt = k(a-x)2 kt = lI(a-x)-lIa t1l2= lIka 

2 dx/dt = k(a-x)(b-x) kt =k/(b-a)loga(b-x)/b(a-x) 

3 dx/dt = k(a-x)3 kt = 1I2[1I(a-x)2-lIa~ 

3 dx/dt =k(a-x)2 (b-x) kt= lI(b-a) [x-k t1l2= lIka2 

loga(b-x)/a(a-x)(b-a) 

2.6 A REACTIONS OF SIMPLE ORDER (EQUATIONS OF FIRST ORDER AND 

FIRST DEGREE) 

These equations only contain dy/dx and a function of x and y and are of the general form of 

equation 

dy/dx+f(x,y) =0 

The nature of above equation depends on function f(x,y) Example if f(x,y)is a function 

of x alone, the solution of the problem simply involves integration if dy/dx=f(x) 

y=[f(x)dx+c(where c is arbitrary constant) 
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2. 7 VARIABLES SEPARABLE 

The equation of the form 

dx/dt=k(a-x)(b-x)can be solve by separable variable as 

dx/(a-x)(b-x) = kdt 

Then, one can integrates both sides Jdx/(a-x)(b-x) = Jkdt 

lIa-b In (a-x)(b-x)=kt+c(where c is constant), and assuming at t=o,x=o 

= > lIa-b In(a/b) = c 

Then, the above equation becomes 

lIa-b In (a-x)/(b-x) = kt + lIa-b In (a/b) 

= > lIa-b In(a-x)/(b-x)-lIa-b In(a/b) = kt 

= > lIa-b [(a-x)/(b-x)/a/b] = kt 

= > lIa-b In(a-x)b/(b-x)a = kt 

= > lIa-bln(a-x)/a(b-x) = kt 

Example:- xcosy-e-X secy dy/dx = 0 

Rearranging gives 

Sec2 dy = xexdx 

Jsec2 ydy = Jxe but sec2 y = tany 

tany = Jxex dx uv - Jvdu 

= > tany = xe -Jex dx 

tany = xex-e +c 

= > tany = e(x-l)+e 
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2.8 HOMOGENEOUS EQUATION 

A function f(x,y) is said to be homogeneous of degree n if f(Ax,AY) =Anf(x,y) 

Example:- the function X4 _x3y is homogeneous and of degree 4 since 

f(Ax, AY) = (AX)4 -(AX)3 (AY) = A4(X4 _x3y) = A4f(x,y) 

Where as the function X4_X3 +y2 is not homogeneous i.e f(Ax,AY) =(Ax)4_(Ax)3 =7:Anf(x,y) 

A homogeneous first order differential equation is of the form A(x,y)dx + B(x,y)dy = 0 

where A(x,y) and B(x,y) are homogeneous functions of the same degree. 

i.e A(AX,AY) = An A(x,y) and B(AX,AY) = AnB(x,y) 

such equation can often be reduced to the variable separable type by the substitution 

y = vx 

Example dy/dx =(9x2+2xy+3y2)12X(X+Y) is homogeneous of degree two 

Applying the chain rule to y vx gives 

dy/dx = xdv/dx+v and y/x = v and eliminating and dy/dx from equation (1) 

i.e xdv/dx+v = (9x2+2xy+3y2)/2x(x+y) 

xdvdx+v =9+2v+3v2/2(1 +v) 

= > xdv/dx = 9+v2/2+2v 

which is now of the variable separable type. Separable of the variables gives 

Jdx/x = J2(1 +v)dv/v2+9 

Lnx = In(v2+9) +2/3 tan- iv/3+c 

The general solution is obtained by substituting for v to give 

Lnx =In (y2/x2+9)+2l3tan-1y/3x+c 
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2.9 EXACT DIFFERENTIAL EQUATIONS 

The exact differential equations is of the form 

M(x,y)dx+ N(x,y)dy=O is exact if 

8M(X, Y)/8Y =8N(X, Y)/8X 

The consequence of this is that some function 

Z=f(X,Y)exists such that 

8Z/ ax = M( x,y); 8Z1 ay = N(X, Y) 

If one have differential equation 

M(x,y)dx+N(x,y)dy=O and the left hand side is an exact differential dZ, then dZ is zero and 

f(x,y)is a constant. The solution of this equation is equivalent to the determination of the 

function f(x,y) often this can be done by inspection For example 

(4X3y3 -2xy)dx + (3x\,Z-x2)dy =0 

Here 8ZIax =4X3l-2xy, 8Z/8y=3x4y2x2 and one see of once that 

Z = X4y3_x2y 

Thus, the solution to the equation is 

x4l-x2y=C 

One can proceed more formally as follows:-Given 

M(x,y)dx + N(x,y)dy==O 

We are looking for function Z=f(x,y)such that 

8Zlax=M(x,y)and 8Z/8y=N(X,Y) 

let us integrate with respect to x 
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Z(X,Y) iM(x,y)dx+0(x) 

Since Z is a function of two variables, the constant of integration will be a function of y 

To determine 0(y), we now consider the y derivative of ZN(x,y)=0Z/0y=0/0y 

[iM(x,y)dx +0(y)] 

This enables us to find 0(y) and hence the function Z 

Example (y2eXY2+ 4x3)dx + (2xyeXY2-exy2)dy =0 

Z(x,y) = Jy2eXY2+4x3)dx+0(y) 

= exy2+x4 +0(y) ................ (2) 

But az/ay must be equal to 2xyeeXY2_3y2 

From the equation (2) above 

az/Oy = 2z/2y = 2xyeXY2 

and hence, d0/dy must be equal to -3y2and 0 =_y3 

Thus Z(x,y) =exy2+x4 i 

and the general solution to the equation A above is 

= >eXY2+x4_y3=C 

Differential equation occurring in practice are rarely exact but can often easily be transformed 

into exact equations by use of integrating functions 

For example 

dy/y+[lIx-x/y]dx =0 

Here, is not exact, but multiplication by xy gives 

xdY+(Y_X2)dx =0 
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Which is now exact and can be solved by inspection to give the general solution 

i.e. [xy-x3]/3 = C 

2.10 LINEAR EQUATIONS 

A particular important type of differential equation is the linear equation which has the 

general form. 

dy/dx+p(x)y=Q(X) 

The equation is of the form 

dx/dt+-kt for successive first order reaction. 

To solve linear equation is to find an integrating factor U(x) that will transform 

dy+p(x)dx into exact differential. Thus, one require U(x)dy+p(x)u(x)dx. 

To be an exact differential, there is some function 

Z=f(x,y) such that 

0Z/0x=p(x) and (;Jz/0y=u(x) 

Applying the criterion for an exact differential we get 

0u/0x(x) = 0/0y [p(x)u(x)y] 

i.e. 0u/0x(x) = p(x)u(x) 

Hence, lIU0u/0x = p(x) 

0/0x In u(x) = p(x) 

In u(x) = ip(x)dx and u(x) = eP(X)dx 

then, the equation becomes 
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eP(X)dxdy/dx+p(x)y ep9x)dx ~ Q(x)eP(X)dx 

The left-hand side is the differential of yeP(X)dx and the equation becomes 

d/dx [yeP(X)ruc:J = Q(x)eP(X)dx 

We shall now apply this technique to the differential 

equation for successive first order reaction consider the process 

Akl ~Bk2~C in which the concentration of A,B,and C~AKI~Bk2~C 

at time t are a, band c respectively, and rate constant for 

the two reactions are kl and k2.The rate of appearance of A is given by dal dt = kla 

which has the solution 

a=ao e-k,t 

Where is the concentration of A at time t = ° the rate of change of concentration of B is 

given 

Therefore, 

and applying the initial condition that t = 0, b = ° leads to the equation of the solution 

b k [ -k t -k2t ] = laoe l-e 
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Example: -The equation 

(x-2)dy/dx =y+ 2(x-2)3 

is linear as can be seen by rearranging it to give 

dy/dx=y/(x-2)+ 2(x-2)2 

in this case the integrating factor is 

eJ-dxl(x-2) = 1 /x -2 

and the equation becomes 

[1/x-2]dy/dx-y/(x-2)2=2(x-2) 

i,e d/dx[y/(x-2) =2(x-2) 

Therefore. 

y/(x-2) = (x-2i + C 

y=(X_2)3 + c(x+2) 

2.11 RADIOACTIVE DISINTEGRATIONS 

Among reaction of first order, particular mention must be made of those reactions for 

which the rate is always proportional to the remaining concentration of radioactive substance, 

with a constant proportionality h, independent of temperature. If Nt represents the number of 

radioactive atoms present at a time t, we have 

dNt/dt=hnt 

Then, if No is the initial number of atoms, can be written as the first order law 

i.e. Nt = Noe-n1 
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Where h is characteristics of the substance under study and is called the disintegration or decay 

constant 

2.12 B COMPLEX REACTIONS (FIRST EQUATION OF HIGHER DEGREE) 

These are of little importance in chemistry and we have the following 

2.13 LINEAR SECOND ORDER DIFFERENTIAL EQUATIONS 

These equations have the general form 

d2y/dx2+x)dy/dx + q(x)y~f(x) 

If f(x) =0, the equation is termed homogenous, where as equation with f(x):;t:O are 

inhomogeneous. Here one shall be concerned only with the case in which p(x) and q(x)are 

constants, that is with linear equation and constant coefficients 

Before consider the solution of second order equation let us look again of the first order 

case consider the equation 

dy/dx+xy=f(x) .............. 1 

~dy/dx+xy= .............. 2 

That is, the inhomogeneous and homogenous case 

Equations are above has the solution 

Whereas equation(2)above has the solution 

Y=ce-ax 
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Thus, the solution to the inhomogeneous equation consists of the general solution to the 

homogenous or reduced equation plus another term, which is a particular solution (the solution 

with c=o) to the inhomogeneous equation is the general function. This is also true for second 

order equation so one can write general solution =particular solution complementary function. 

Thus the solution of a linear second order inhomogeneous differential equation with constant 

coefficients involve two processes, the solution of the reduced equation and the determination 

of a particular integral 

2.14 SOLUTION OF THE HOMOGENEOUS EQUATION 

Consider the equation 

d2 y/dx2+ady/dx+by=0 

Let D = d/ dx( differential operator 

i.e. D2y +aDy+by==o 

One can envisage factorising this by the methods of elementary algebra to give 

~(D-Kl)(D-K2)Y =0 

Remembering that D is an operator Expansion gives 

D2y_(kl +k2)Dy+klk2y=oand one see that kl and k2 are roots of the auxiliary 

equation = >k2+akl+b=0 

The general solution to the homogeneous equation kritk2 i.e. 

= > y = cleklx+c2ek2x 

Where Cl and C2 are arbitary constant. This is a result that can be remembered easily 
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Example:- Find the general solution of D2y-Dy-6y = 0 

solution 

The Auxiliary equation is m2-m-6 = 0 

(m + 2)(m-3) = 0 

So, its roots are m := -2, m = 3. The general solution of the differential equation is 

y = cle-2x +c2e3X (Where cland C2 are arbitrary constants) 

2.15 SOLUTION OF THE INHOMOGENEOUS EQUATION 

The solution of this type of equation is more difficult and one still only consider a method 

applicable to fairly straight forward cases. More powerful method such as the D - operator 

method. The general solution of an equation of this type can be exposed as the sum of 

complementary function 

d2y/dx2+ady/dx+by = f(x) 

2A-1OAx-5B+6Ax2 +6Bx+c = 4x2 

Equating the coefficient of x2 one have 

6A = 2/3 

Equating the coefficient of x, we have 

-1OA+6B = 0 

= > 6B = 10*2/3 

= >6B = 20/3 

=>6B =20/18=10/9 
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Equating the constants term, one have 

2A-5B+6C = 0 

6C = 5B+2A 

6C = 5*10/9+2*2/3 
t 
! 6c = 50/9+4/3 

6c = 38/9 

C = 19/27 yp(x) == 2/3x2+ 1O/9x+ 19/27 

The general solution is y(x)-yc(x)+yp(x) 

REACTIONS IN OPPOSITION 

These types of reaction based on forward and backward reactions and one shall treats the 

following 

2.16 THE TWO REACTION IN OPPOSITION ARE OF THE FIRST ORDER 

The equilibrium is the form 

The function f(x) is polynomial 

For example. Find the general solution of D2Y-5Dy+6y=4x2 

Solution 

One begin by finding the general solution of complementary equation 

D2y-5Dy+6y = 0 
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The auxiliary equation for this homogeneous equation is 

m2-5m +6 = 0 = > (m-2)(m-3) = 0 

The roots are m = 2 and m = 3. Thus, the general solution of yc{x) of the complementary 

equation is 

Where Cl and C2 are arbitrary constants 

The technique is try the polynomial 

AX2+Bx+C 

and to determine coefficient A,B,C such that the polynomial 

solution of the equation 

Thus 

yp = Ax2+Bx+C 

II 

Then, substitute in to general equation have 

2A-5(2AX + B+6(AX2Bx +c) =4x2 

Now determine A,B and C by equating the right hand sides of equation 

-. 
R P .-
Let a be the initial concentration of R, when the concentration of P is zero, x and xc represent 

the concentration of R at time t and at equilibrium (t=2) respectively 

dx/dt = Kl~(a-x)-kl~-x 
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e = kl~(a-xe)-kl~Xe 

If one compare this with the expression 

dx/dt = kl~(a-x)its order reaction 

Obtained for a complete reaction one can conclude, as a treaty stated, that as a general rule this 

reaction can be mathematically treated as if it were complete the initial concentration a being 

replaced Xe and the rate constant by the sum 

(kl~+kt~). One can immediately obtained 

(~kl + ~kl)t = lnxe/xe-x 

Example:- Maturation of oc-glucose, which in solution is partially transfomled into B-glucose 

according to an equilibrium reaction. This cases a variation of the specific rotation roc], of 

polarised light. The following data was obtained of 150°c 

TIME 0 4 0 

roc] 110 74.6 52.6 

Solution 

Form this one can obtain (~kl + ~kl)in min-I, although the specific rotation of B- glucose 

is not given, it will be recalled that the difference from the initial value is proportional to the 

function of substance transformed 

x/xe = (110-74.6)/(110-52.6) = 0.616 

(~kl+~kl)*4=log xe/xe-x=log l/(1-x)/xe 
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Hence, -+kt +-+kl = 114 log 1I(1-0.616)hour-l 

In min-l this becomes 

-+kl +-+kl = 0.0017319 min-l 

Example 2 Given an equilibrium whose forward and backward reactions are first order, 

express the reaction half-life as a function of k and kl discuss 

Solution :- Making use of the relationship previously demonstracted one can replace 

x = a/2 for t'h = tt/2 

kl + kl = lIt1l2 In Xc/Xe -a/2 = lIt1l2 In (l-a/2xe 

Xe can be easily be found in terms of k 

xe/a-xc = k 

Hence xc = a.k/(k+ 1) 

and therefore, 

l-al2xc = k -1I2k 

hence 

= > ~kl + ~kl = lItt/2 In 2k/(k-l) 

Dividing both sides by -+kl 
-+ 

i.e. l+lIk = -lIklttl2ln2k/(k-l) 

hence, tt/2 = lIkl (1 +k) In 2k(k-l) 

if k < 1, t1l2 has no meaning. To understand for this one need only examine the expression for 

Xc as a function of k 

i.e. (xc = ak/k+ 1); 
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Under these conditions 

Xe> a/2 and it is therefore, impossible to transform one-life of the initial reactant 

2.17 THE TWO REACTION IN OPPOSITION ARE SECOND ORDER 

The equilibrium is of the form 

.-
= >RI+ ~ PI+P2 

To simplify this, let assume that the initial concentration of RI and R2 are equal to a, and that 

of PI and P2 are zero 

Consider V = dx/dt 

One simply replace k: by 

= > k2.a(2xe-a)/xe2 ,abxe and b by aXe12xe-a 

If this is done in the integrated equation are arrive at 

t = xe/2k2 a(a-xe) In x(a-2xe+ax3)/a(xe-x) 

Example;- How many days are required to transform one-life of the alcolol in the esterification 

of an equimolar ,2/3 of the alcohol is transform and that is 64 days 114 has been transformed? 

Solution 

One will make use of the preeceding formula by letting 

Xe = 2a/3 

One will first apply it to the case of hand 

t unknown, x = a12, and then to know case 

t = 64, x = a/4 
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t = constant. Ln (2a2-a2)/36 /(3a-a)/2 

= > 64 = constant. In (2a2-a2)/312*a(2/3a-a/4) 

Dividing the first equation by the second 

t/64 = In3/lnl4 = log3/log14 = 3.35 

Example 2 The equilibrium constant of the esterification reaction 

CHOOH +C2HSOH H20 +CH3COOHS 

is H and both the forward and backward reactions obey, veri Hoff's low. A small quantity of 

acetic acid is dissolved in 50% by weight aqueous alcohol. Calculate bb knowing that after 

159 minutes one quarter of the acid has reacted 

Solution 

Molecular weights of water = 18 

Molecular weights of alcohol = 46 

At equilibrium 

[Ester]e[water]e[Alcohol]e = ~k2/~b = k = 4 

But in 50% aqueous alcohol 

[water]/[Alcohol] = m/18*46/m = 2.5 

Since this ratio is the one in the equilibrium expression one can obtain 

[Ester]e/[Acid]e = 412.5 = xe/l-xe 

From which Xe = 0.61 

To calculate b b one will apply the formula 

i.e b~b+b~c = lit lnxee/xe-x 
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taking the following into consideration 

k2~ = k2~/k = b~/4 

=> C = 2.26 

One deduce that 

k2~C = 2.5/4 k2~b and 

k2~b+k2~c = 6.5/4~b 

and conclude that 

6.5/4k2~b = 1/150 * 2.3+log 0.61/(0.61-0.25) 

and k2~b = 2.2*1Q-3min-1 
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CHAPTER THREE 

3.1 QUANTUM MECHANICAL PROBLEM 

The application of quantum mechanical principle to chemical problems has 

revolutionised the field to chemistry our understanding of chemical bonding, spectral 

phenomena, molecular reactivates and various other fundamental chemical problems rest 

heavily an our knowledge of the detailed behavious of electrons in atoms and molecules. 

In this chapter one shall described in detail some of the basic principles, methods and 

result of quantum chemistry that lead to our understanding of electron behaviour 

3.2 CLASSICAL MECHANICS 

The way in which classical mechanics describes systems can be illustrated by two 

equations and these are 

1. One equation express the total energy of a particle in terms of its kinetic energy + mu2
, 

where u is its speed at the potential energy v at the location at the particle. 

eg E = 112 mu2 +v, v and u are function of t 

in terms of the linear momentum p = mu 

i.e E = p2/2m +v 

This equation can be used in a number of ways. Example:-

Since p =mdx/dt it is differential equation for x as function of t and its solution gives the 

position (and momentum) of the particle as function of time. A statement of both x(t) and p(t) 

is called the trajectory of the particle. The simplest example of this procedure is the case of a 

32 



uniform, constant potential, so that v is indendependent of x and t. Then with v set equal to 

zero for simplicity the equation is 

E = p212m or (2E/m)1I2 = dx/dt 

The solution being 

x(t) = x{O)+{2E/m)/ht 

The constant energy E can be expressed in terms of the initial momentum p(O) and so the 

trajectory is U(t) = x(O)+p{O)t/m 

p(t) =p(O) 

Hence, knowing the initial and momentum, all later positions and momentum can be 

predicted 

2. The second law of motion: i.e pI = f = > dt/dt = f 

Where pI dp/dt, the rate of change of momentum which is proportional to the acceleration. 

i.e pI = m( d2:x:!de) end F is the acting on the particle. It following that if we know the 

force acting every where and at all times, then solving this equation will also give the 

trajectory. This calculation is equivalent to the one based on E. 

For example consider the case of a particle that is subject to a constant force F for a 

time t, and it then allowed to travel freely. The Newton's equation becomes 

dp/dt = F, a constant, for time between t = 0 and t = tdp/dt = 0 for times later than t = t 

the first equation had the solution p( t) = p(O) + FtOstst and at the end of period the particle's 

momentum is p{t) = p(O)+pt 
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Example 2 

The harmonic oscillation occurs when a particle experience a restoring force with a 

straight linearly proportional to the displacement, so that F = -kx, being the force constant, a 

strong spring has a large force constant. The negative sign in F signifies that the force is 

directed opposite to the displacement when x is positive (displacement to the right), the force is 

negative (pushing towards the left) and vice versa. 

Newton's equation is now m(d2x/de) = -kx and a solution is 

x(t) = Asinwt, with w = (k/m)1I2 

The momentum is mx, and so p(t) = mwAcoswt 

i.e. x(t) = wAcoswt but P = m'x 

= >p(t) = m'x = mwAcoswt 

3.3 THE DIFFERENTIATION OF OPERATORS WITH RESPECT TO TIME 

The concept of the derivative of a physical quantity with respect to time cannot be 

defined in quantum mechanics in the same way as in classical mechanics. For the definition of 

derivative in classical mechanics involves the consideration of the, values of the quantity of 

two neighboring but distinct instant of time. In quantum mechanics, however, a quantity which 

at same instant has a definite value does not in general have definite values at subsequent 

instants. 

Hence, the idea of the derivative with respect to time must be differently defined in 

quantum mechanics. It is natural to defined the derivative of a quantity f as the quantity whose 
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mean value is equal to derivative with respect to time, of the mean value f. Thus, we have the 

definition f = f starting from this definition, it is easy to obtain an expression for the quantum 

mechanical operator f corresponding to the quantity f. i.e. f = f 

= d/dtf'P· f'Pdq 

= J'P·of/Ot\j1dq + ilh J(H\V*)f\vdq-i/h",*f(H",)dq 

Since the operator H is hermitian, we have 

f(H·",*)(f\v)dq = f",·Hf\vdq 

Thus, f = f",*(Of/ot)+(i/hHf-ilhfH)",dq 

Since, on the other hand, one must have by the definition of mean values 

i.e f = f",·f\vdq 

It is seen that the expression in parenthesis in the integral is the required operator f 

i.e f= Of/ot +i/h(Hf-fH) 

If the operator f is independent of time t reduces a part from a constant factor, to the 

commulator of the operator f and the Hamiltonian 

A very important class of physical quantities is formed by those whole operators do not 

depend explicity on time and also compute with the Hamiltonian, so that f = 0, such quantities 

are said to be conserved 

For those f = f = 0, that is f is constant. In other wards, the mean value of the quantity 

remains constant in time. One can also assert that, if is a given function of the operator f 
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3.4 THE SCHRODINGGER EQUATION 

In 1926 Erwin schrodinger proposed an equation which, when solved, gives the wave 

function for any system. Position is as central to quantum mechanics as Newton's equations 

one to classical mechanics. Just as Newton's equation were an inspired postulate which, when 

solved give the trajectories of particles, so schrodinger's equation can be regarded as an 

inspired postulate which solved gives wave function. For a particles of mass m moving in one 

dimension with energy E the equation is 

-(h2/2m)d~/dx2 =E\jf and a solution is 

\j1 = eikx =coskx+isinkx where k = -V2mE/h2 

Coskx or Sinkx is a wave of wave lenght ')... = 2 7r Ik. This can be seen by comparing coskx the 

standard form of a harmonic wave, i.e. cos2 7r xl')... 

The energy of the particle is entirely kinetic because v = 0 every where and so 

E = p2/2m 

But since, the energy is related to by E = k2h2/2m it follows that p = kh 

Therefore, the linear momentum is related to the wave length of the p = kh = 

(27r 1')...)(h/2 7r) = hi')... 

i.e. p = 27r 1')...*h/27r =h/')... 

Which is the Broglies relation. If the particle is in a region where its potential energy is 

uniform but non zero, the Schrodinger equation is 

(_h2 12m)d~/dx2 = (E-V)\j1 
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3.5 THE PARTICLE IN A ONE-DIMENSIONAL "BOX" 

For one-dimensional system one have 

(-h212m)d~/dx? + V'" = E"" V = vex), 'II = \V(x) 

or d~/dx2+(2m/h2)(E-V)\V = 0 

V is the potential energy of the particle 

For example, for a free particle v = 0 (or some constant) and for a harmonics oscillator 

V = 112kx2 

For three-dimensional system 

(-h2/2m)V~+V", = E"" V(x,y,z), 'II = ",(x,y,z) where V2 = (82/8x2)+(82/8y2)+(82/8z1. 

In system with spherical symmetry z it is more appropriate to take", as a function of the 

spherical polar co-ordinates 

see fig(l) 

Then, we have 

V2 = (82/8r)+(2/r)(8/8r) (1/r)~2 

z 

y 

Where ~2 = (l/sin2B)(82/8B2)+(1/sinB)(8/8BsinB(8/8B)(8/8B) in the general case, 

the schrodinger equation is written as H", = E", 

Where H is Hamiltonian operator for the system 
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H = (h2/2m)V2 +V 

When the system is time-dependently, use the time- dependent schrodinger equation is 

H", = ih( eS",/eSt) 

But E-V - h2~ 12m 

Now the relation A = 2 Jr Ik leads to 

Jr = h/(2m(E-V)/1/2) 

3.6 THE POTENTIAL FOR THREE DIMENSIONAL HARMONIC OSCILLATOR 

v = dx/dt = 1I2kx2+ 1I2ky2+ 1I2kz2 and the schrodinger equation for this problem is 

eS~/eSx2+eS~/eSy2+eS~/eSz2 +8Jr 2/h2M[E-1I2kx2-1I2ky2-1I2kz2] = 0 -----(1) 

Where ",(x,y,z) is the wave function, m is the mass of the particle, h is plank's constant. E is 

the total energy and v is the potential energy. 

The one using the separation of variables approach and write the wave function 

(x,y,z) in product form i.e ",(x,y,z) = x(x)y(y)z(z) and subsititute into equation (1) we have 

Y(y)Z(z)eS2/eSx2+ X(x)Z(z)eS2y/eSy2 + X(x)Y(y)eS2Z/eSz2+ 8IJ2m/h2 

[E-1I2kx2+ 1I2ky2+ 1 12ki] X(x)Y(y)Z(z) = 0 

If one introduce the separation constant EX,Ey, Ez such that 

E=Ex+Ey+Ez 

One can separate equation (2) into three one-dimensional equations 

i.e lIX(x)d2x(x)dx2+8Jr 2m/h[Ex-1I2kx1 =0 

lIY(y)d2/dy2+8Jr 2m/h2[Ey-1I2kyY] =0 
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In this example one have carried out the separation in cartesian co-ordinates, but this may 

,~ 

1 not necessarily always be the best co-ordinates system, it is better to the spherical polar co­
I 

ordinates in the case of the hydrogen atom, where the potential is of the form 1I-V(X2+y2+ Z2). 

The schrodinger equation in polar co = ordinates for the hydrogen atom is 

Where e is the electric: charge and w is the permutivity of free space. One write the wave 

function in produced form 

i.e '1'(r,8,0) =R (r)S(9)0(0) 

and proceed as before to substitute this into the original equation (a) to give 

At this stage we can separate to give two equations 

Rearrangement gives 

i.e. lIR(r)()for[r oR] + 1 sin So [sinS Qill +8Jr Ur22 [E+ 42 ]_M2 = 0 
or 8(9) 09 09 - h2

- 4JrL,or sin28 

Which can also be separated to give 

118(9) sind/dS[sin8dS/d9]-M2/sin2S = -E 
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------------

Thus, the separation of variables technique results in the resolution of the partial differential 

equation (A) in three dimensional in to the following ordinary differential equation 

_1 __ d_ [sine de (e)] + Be(e)-m2e(e) = 0 
sine de de sin2e 

_1 ~ [rdR (r) - BRid +§.Jl" 2U [E+ ~]R(v) = 0 
r dr dr r2 h2 4Jl" ~or 

The first of these is a standard form and has the general solution 

3.7 THE WAVE EQUATION 

The vibration of a string, for example, is described by the wave equation 

Where x is the position along the x-axis the time and 'I' is the displacement of the string 

perpendicular to the x-axis 

\jI (x,t) 

x 

fig 2 
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Let consider a string of length L when it is unstreched and assume that it is fixed at the 

points x = 0 and x = L as shown fig (2) above 

i.e. ",(0, T) = ",(L, T) = 0, for T~O (B) 

The constant V is given by 

dx/dt = V = ~T/M 

Where T is the tension and M is the mass per unit length we shall also have to specify the 

shape of the string when it is released at time t = ° 
Let this be defined by a function f(x) 

",(u,O) = f(x), for ° ~x~L 
We also have to specify the value at t = ° of the derivative of", with respect to t. 

Let this be g(x) 

i.e (i",/(it(x,t)g(x), for OsxsL .................. (1) 

These are the boundaries condition which will enable us to give a specific solution for a 

particular set of initial condition 

The technique of separation of variable assumes that we can write the solution U(x,t) as 

a product of two function of a single variable x(x) and T(t) 

i.e ",(x,t) = X(x).T(t) ........................... (2) 

and uses the assumption to reduce the partial differential equation to two ordinary differential 

equations, which hopefully, can be solved by standard techniques 

Substituting equation (2) into equation (1) gives 
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y2 T(t) 8ZX(x) - x (x) 8~(t) 

That is 

y2 1 
X(x) 

8x2 8e 

-----------~ 

In this equation the left-hand side depends only on x and the right hand side only on t 

Since x and t are independent of each other, each side of this equation must be equal to a 

constant so we can write 

y2 1 

X(x) 

y2 1 

T(t) 

82X(x) = - w2 

8x2 J ............. (3) 

Where _w2 is the separation constant. Thus, we have two ordinary differential equations are 

y2_1_ d2X(x) = w2 

X(x) dx2 

y2 _1 _ d~(t) = _w2 

Tt de 

J ................. (4) 

Which are both of the form of equation of simple harmonic motion which is 

We can therefore, write down their general solution as 

X(x) = Acos(wx/v)+Bsin(wx/v) 

T( t)cos( wt) + Dsin( wt) 

Where A,B,C and Dare arbitary constants whose values are to be determined from the 
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boundary conditions the function '!'(x, t) is then given by 

'!'(X,t) = (Acoswx/v = Bsinwx/v)(Ccoswt+ Dsinwt) 

The condition that ,!,(O,t) ~ ° gives 

° = (Acose+Bsine)(Ccoswt+Dsinwt) 

So, A = 0. Similary requiring that (x,y) = ° gives 

° = (Bsinwt/v)(Ccoswt+ Dsinwt) 

since B= 0 would give the trivial solution (x,y) = 0, we require sin(wt/v) be zero and hence 

wt/v = n7r 

Where n = 1,2,3 ..... " 

Thus, we have 

'!'(x,t) = sin[g 7r!.l [CI coswt+ Dl sinwt] 
t 

Where Cl = BC,Dl =BD 

Since n can be have an infinite number of values, there is an infinite number of solution 

,!,n(X, t) = sin[g 7r !l[Cn coswt+ Dn sinwt] 
t 

Which satisfy the boundary conditions of equation (b). Any linear combination of these 

functions is also Cn and On in such a way as to satisfy the boundary conditions of equation 

(0) and 0 when t = ° we have 

'!'n(X,O) = ~Cr sin(r 7r x/l)[Cr cose + Dr sine] = f(x) 

From equation Cr so in order to determine the coefficients Cr are require the fourier expansion 

of f(x) in the interval 

43 



------------, 
OsxslL 

Similarly the condition of equation D leads to the following expression for the value of 

the derivatives chvldt at t = 0 

co 

i.e o,!,/dt(x,t) = L (-Crsinwt+ DrCoswt)wsin[ lZ" rx]/It = 0 
r=1 

co co 

= L Drwsin[~~= ~~L rDrsin[lZ"!!J 
r=l r=l 

L L 

co 

i.e g(x) = ~Y.....L rDrsin[lZ" rx ] 
r=l 

L L 

for the interval Osxsl 

But taking care to change the variable to allow for the interval being from 0 to I, gives the 

following values for the coefficient Cr and Dr 

L 

i.e Cr = Z/L f f(x)sin[~~dx 
o 

L 
L 

= > Dr = ~ f g(x)sin[ lZ" ~dx 
o 

L 

3.8 LEGENDRE'S DIFFERENTIAL EQUATION 

Legendre function arise as solution of the differential equation of the form 

(1_X2)yll-2xyl+n(n+ l)y = 0 ............................ (1) 

The general solution of equation (1) in the case where n = 0,1,2,3 ................. is given by 

y = Cl pn (x) +C2 Qn (x) 
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Where Pn(X) are polynomials and Qn(X) are called legendre functions of the second kind 

The Qn are unbounded at x ±legendre polynomials are defined by 

Pn(X) = (2n-1)(2n-3) .... 1[xn -n(n-1)xn2-1 + n(n-1)(n-2)(n-3)xn+4 
n! 2(2n-1) 2.4(2n-1)(2n-3) 

The legendre polynomials can also be expressed by Rodriques formula which is given by 

Pn(X) = _1 ~ (X2-l)n for n = 0,1,2,3, 
2~! dxn 

The first legendre polynomials are as follow 

Po(X) = 1 

Pl(X) = x 

P2(X) = 1 (3x2-1) 
2 

P3(X) = 1 (5X2-3x) 
2 

3.9 RECURRENCE FORMULA 

Pn+l (x) = 2n + 1 X Pn (x) -~ Pn-l(X) 
n+1 n+1 

p1n+l (X)-p1n_l (x) = (2n+2)Pn(x) 

3.10 ORTHOGONALITY OF LEGENDRE POLYNOMIALS 

Ex. Prove that P-IPm(X)Pn(x)dx = 0 if m :;t:n 
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Solution 

Since, Pm{X), Pn{X) satisfy legendre's equation 

• 2 11 1 _ 
I.e (I-x) p - 2xP +m{m + l)Pm - 0 ........ (1) also 

m m 

2 11 1 _ 
(I-x) p -2xP n+n{n+ l)Pn - 0 ........... (2) 

n 

Then, multiplying the equation (1) by Pn and equation (2) by Pm and substituting, 

we have 

2 11 11 1 1 
(I-x )[Pn -Pm ]-2x[PnP mPmP ] = [n(n+ l)-m(m + l)]pnpm 

m n n 

11 11 1 1 
(I-x2)d/dx[PnP -PmP ]-2x[PnP PmP = [n{n+1)-m(m+1)] PmPn 

m n m n 

Thus, by integrating we have 

JIll JI [n(n+ l)-m(m+ 1)] Pm (X)Pn (x) dx = (l-X2)[PnP -PmP ] 
-I m n-I 

Then, since m:t:n = > fIPm(x)Pn(x)dx = 0 

3.11 SERIES OF LEGENDRE POLYNOMIALS 

<X) 

If f(x) = LAkpk(X), -l~x~l, show that 
k=o 

At. = 2k+ 1 fl Pk(n)f(x)dx 

2 
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Solution 

Multiplying the given series by Pn(X) and integrating from -1 to 1, we have 

I 1 co I I L Pm (x)f(x)dx = ~ Ak L Pm (x) pn(x)dx =Am L [Pm(x)]2dx = 2Am 

Then as required, Am = 2m + 1 t Pm(x)f(x)dx 

2 

3.12 HERMITES DIFFERENTIAL EQUATION 

2m+1 

An importantant equation which arieses in problems of physics is called Hermite I s 

differential equation, it is given by 

yll-2xyI+2ny = 0 ................... (2) 

Where n = 0,1,2,3 ............ .. 

The equation (2) has polynomial solutions called Hermites polynomials given by 

Rodrigues formula 

i.e. Hn(x) = (_l)nex2 dn (e-x2
) for n = 0,1,2,3 ....... 

dxn 

The first few Hermite polynomial are 

Ho(x) = 1 HI (x) = 2x 

H2 (x) = 4x2-2 

3.13 RECURRENCE FORMULA FOR HERMITE POLYNOMIALS 

Hn (x) = 2xHn(x)-2nHn-I (x) 

Hln (x) = 2nHn-l (x) 
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3.14 ORTHOGONALITY OF HERMITE POLYNOMIALS 

From first problem of legendre we have 

1: e- x2 Hm(x)Hn(X) dx = 0 i.e m = n 

So that the Hermite polynomials are mutually orthogonal with respect to the weight or density 

function e-x2 

In the case where m = n we can show as in problem of legendre and we have 

From this, we can normalize the Hermite polynomials so as to obtain an orthogonal set 

3.15 SERIES OF HERMITE POLYNOMIAL 

Using the orthogonality of the Hermite polynomial it is possible to expand a function in a 

series having the form f(x) = Ao Ho (X)+Al HI (X)+A2H2(X)t.. .. 

Where An = _~1 _ I: ex2f(x)Hn (x) dx 

2n n! .J 7( 

3.16 LAGURRE'S DIFFERENTIAL EQUATION 

Another differential equation of importance in physics is laguerr's differential equation 

given by 

Where n = 0,1,2,3 ......... . 
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This equation has polynomial solution called laguerre polynomials given by 

Ln(X) = e dn (xne-X) for n = 0,1,2,3 ........ . 
dxn 

Which is also referred to as Rodrigues formula for the laguerre polynomials 

Lo(x) = 1 Ll(X) = X 

3.17 SOME IMPORTANT PROPERTIES OF LAGUERRE POLYNOMIALS 

co 

1. Generating function e- xf /(l-t) =L: Ln(x)tn 
n~o 

1 - 6 n! 

2. Recurrence formula 

Ln+l(X) = (2n+1) - x) Ln(x) - n2Ln_l(X) 

Un(X) - nU-n (x)+nU-n (x) = 0 

XU-n (x) = nLn (x) - n2 ln -leX) 

3. Orthogonality roco J, e- XLm (x)Ln (x) dx = 0 if m =n 

4. Series Expansions 

Then, An = 1 r e-xf (x) Ln (x) dx 

(nli 

Example 

Prove that the laguerre polynomials Ln(x) are orthogonal in (0,8.J with respect to the 
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weight function e-(x) 

Solution 

From laguerr's differential equation we have for any two laguerre polynomials 

Lm(x) 

L+(I-x)L1
m+mLm = 0 ............ (1) 

Multiplying these equations (1) by Ln and (2) by Lm and then subtracting and we have 

X(LnLllm-LmLnll)+(I-X)[LnLlm-LmLn] = (n-m)LmLn 

or d/dx(LnLllm-LmLnll)+(1-x)/x[LnLlm-LmLn] =(n-m)/xLmLn-LmLnll]= (n-m)/x 

Multiplying by the integrating factor 

i.e. (1-x)/xdx = einx
-
x 

=: xe-x 

This can be written as 

_d_ (xe-X(LnLlm-LnlLn i
) = (n-m)e-xLmLn 

dx 

So that by integrating from 0 to 00, we have (n-m) f' e-xLm (x) Ln(x) dx = x e-x(LnL1
m-

LmLn) f' 

Which prove the required result 
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if) 

Example (2) Expand X3+X2 -3x+2 in a series oflanguerre polynomials i.e. L = 0 ~Lk(X) 

Solution 

Then, we need to applying the formula 

Ln(x) = eXdn (xne-X) for n = 0,1,2,3 ........ . 
dx2 

Therefore, Lo (x) = LI (x) = I-x 

L2 (x) = eX d2 (x2e-X) = 2-4X+X2 
dx2 

L3 (x) = eXd3 (x3e-X) =: 6-18x+9x2-x3 

dx3 

Then, we have 

~ Lo (x) Al LI (X)+A2 L2 (x)+A3 L3 (x) = x3 +x2 -3x +2 

~ + Al (l-x)+A2 (2-4x+x2 )+A3 (6-18x +9x2_X3) 

(~+ Al +2A2 +6A3 )-(AI +4A2 +18A3)x + (2A2 +9A3)x2- A3 x3 

Then, equating like powers of x on both sides we have 

~ + Al +2A2 +6A3 = 2 .............................................. (1) 

Al +4A2 +18A3= ...................................................... (2) 

A2 +9A3 = 1 .............................................................. (3) 

A3= 1 ...................................................................... (4) 

Solving these, and we have 

~ = 7, Al = -19, A2 =: 10, A3=-1 
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Then, the require expression is 

X
3 +x2_3x +2 = 7Lo(x)-19L1(x) +lOL2(x)-L3(x) 
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CHAPTER FOUR 

4.1 PROGRAM DEVELOPMENTIIMPLENTATION 

PROG~GLANGUAGE 

Before looking into programming language in the computer, itself? 

Computer can be defined as an electronic device which is used to input data (raw information), 

processed the in-puted data, store the data in the man memory and give it out as output for future 

managerial and administrative uses. 

The programming language refers to the computer understands or converts to its machine 

code needed for the solution of a particular problem. The language of the computer have under 

one changes and development since the first set of computer programmes were written in binary 

based machine language. 

The current used high level languages are Basic, Cobol, Fortran, Pascal etc. the common 

used high level language is basic. It is an acronym for, Beginners All symbolic instruction code. 

The programming language is widely used because of its advantage in both commercial and 

scientific application. It can also be converted into its various versions (GW Basic, Q Basic, 

Turbo Basic), This language is capable of running the IBM and compatible computer systems. 

4.2 CHIOCE OF PROGRAMMING LANGUAGE 

The program at hand is academically in nature therefore we require a language, which is easy 

to write by non-programmers. 

The problem to be solved is technical and so it requires proper planning and development of a 
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good program to meet up the requirement. 

Because of the above requirement Basic has been chosen as the most suitable language for 

this project. Specifically, Q Basic is the program I used for this project work. Basic can be used 

for both commercial and scientific application. Basic also has some flexible features such as 

screen design to create user friendly screen, directly output to printer for the production of hard 

copies. Basic is usually used and it is usually installed by most computer hardware manufactures 

without having to buy the software. 

4.3 PROGRAMME INSTALATION AND OPERATION. 

The installation of the program into the computer is quite easy. 

This was done by creating a batch file solely for installation purposes. 

The steps for installing the program are as follows: 

1). Make sure your system is switched on and has booted successfully. 

2). At the system prompt (i.e. C:/.» change the derive to the diskette derive i.e. typing A: 

or B: at the prompt. 

3). At the new prompt type STARTUP 

4). The files to installed are displayed 

5) Answer the un-screen questions like strict any key to continue 

6) You will also be required to supply the password to be used by the installation. 

7) When you are true with the set up menu control will be taken back to the batch file in order to 

perform the carrying of all files in the system diskette to the hard disk and latter returning you to 

the system prompt. 
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4.4 STARTING THE PROGRAM 

This refers to getting the program to use in order to solve the problem encountered when 

running the program. 

1) At the system prompt (i.e. C:\» or change the drive to the diskette drive (if you want 

to work on the diskette i.e. A: or B:) 

2) Type file name· at the prompt, and you are taken to the introductory part of the 

program. If usually shows the name of the software and other necessary information 

relating to the use of the program. After the introduction, down arrow keys or depressing 

the first letter of the intended menu can be using to select the option for the operation you 

want to perform. This will actually allow you to highlight the menu options but their 

selection is completed by repressing the enter key. 

Program to solve reactions, kinetic and Quantum mechanical problems 

10 Screen 9:CIs 

20 Line (1,1)-(630,300), 4,B 

30 Line (3,3)-(627;297), 4, B 

40 Locate 4,30: Print "A Computer Programme for solving Reaction Kinetic" 

50 Locate 6,35 : Print" And " 

60 Locate 8,25 : Print "Quantum Mechanical Problems" 

70 Locate 12,32 : Print "By" 

80 Locate 12,27 : Print "Mohammed Abdullahi" 

90 Locate 14,29 : Print "PGDIMCS/98/991770" 
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100 Locate 20,24 : Print "Strike any key to continue ":A$=input$( 1): CIs 

110 CIs 

120 Line (1,1)-(620,300),4, B 

130 Line (3,3)-(627,297), 4, B 

I 140 Locate 3,5 : Print "Menu" 

150 Locate 6,20: Print "(1) Equation of Reactions" 

160 Locate 8,20 : Print "(2) Add more value oft (N/Y)?" 

170 Locate 10,2.0 : Print "(3) Exit" 

180 Locate 20,40 : Print" input select your choice";ch 

190 if ch = 1 then go to 240 

200 if ch = 2 then go to 240 

210 ifch = 3 then go to 230 

211 220 ifch>l or ch <> 2 or ch <> 3 then go to 110 

230 CIs: Beep: Print "Program terminated" : End 

240 Rem on ch 

250 CIs 

260 Print "dy/dt = kt" 

270 input "Enter value oft";t 

280 input "Enter value of k" ;k 

290 Ans = k*t 

300 Print "dy/dt := ";Ans 
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310 Locate 25,10: input "Goto the next page (YIN)" ;R$ 

320 ifR$= '''y'' then go to 110 Else: Cis: Print "Program terminated" 

330 End 
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CHAPTER FIVE 

5.1 FINDINGS SUMMARY AND RECOMMENDATION 

It could be the major points to be used for any irrespectively students who want to be 

copy of this project, because it can help then in studies or researching their differential 

equation in related to chemistry. 

The investigation of a reaction to determine the rate law and value of the rate 

constant, often at several temperatures, ideally, the first step is to identifY all the products, 

and to investigate whether transient intermediates and side reactions are involved. The 

isolation method may then be used to examine the role of each component in tum, and to 

determine the order with respect to each one. The order with respect to each substance 

can be gulged form the method of initial slopes or the dependence of the half life of the 

concentration and then the order confirmed, and k determined by a plot of the appropriate 

function of the concentration against time using one of integrated laws expression such as 

equation (T) or equation (M). However, since all the laws considered so far disregarded 

the possibility that the reverse reaction is important, more of them is reliable when the 

reaction is close to equilibrium. Therefore, all plots can be expected to acquire some 

curative for times, so long that the reactions involving the products become important. In 

the case of more intricate rate laws (such as those we encounter later) the concentrations 

of reactants, intermediates and products are computed numerically and the rate constant 

are varied until the experimental data are produced. 
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Associated with any particle is a wave function having wave length relented to 

particle momentum by h = v'2m(E-V). The wave function \If for time-independent states 

are eigen functions of Schrodinger equation can be constructed from the classical wavl~ 

equation. The wave function for particle in a varying potential oscillation most rapidly. 

Find the condition that must be satisfied by a and 13 in order that \jI(x) = Asinax +Bcos13x 

satisfy. 
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CONCLUSION 

This project has shown the basic definition of differential equations, and computer 

programme for solving reaction kinetics and quantum mechanical problems, widely 

explained and field work in kinetics mostly a straight lines (k constants) is obtained when 

plotted on the graph. The structure manifests themselves in quantum properties. 

The extend of congregation is a useful measure of bond length and is directly 

contributory to the total energy of the system. 
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RECOMMENDATIONS 

Quantum mechanical prediction must approach classical prediction in the limits of 

large E, or large m~ss, or very high Quantum number value motion of a particle on a ring 

has Quantum mechanical solutions very similar or to those for free particle motion in one 

dimension. The basic steps were 

1. Determine the a symbolic behaviour of the schrodinger equation and function. This 

produces a guess in factor exp( _lI2) times function ofy, f(x). 

2. Obtain a differential equation for the next of the wave function, f(y) 

3. Represent f(y) as a power series in y, and find a recursion relation for the coefficient 

in the series. The symmetries of the wave, function are linked to the symmetries of 

the series. The· schrodinger equation for an electron moving in the field of a fixed 

nucleus is almost identical with equation obtained from separation of variable in 

reduced mass co-ordinates in the moving, nucleus case. The bound state energies for 

time independent states of the hydrogen like ion depend on the quantum number n (a 

positive integer) and vary as -lIn2 
. \jJ describes a state as completely as possible and 

must meet certain mathematical requirements (single value etc) \jJ*\jJ is the density 

distribution for the system for any observable these is an operator (hermitic) which is 

constructed from the classical expression according to a simple n:cipe if the 

Hamiltonian operator for a system is time independent, stationary eigen function 

exist, and the time dependent exponential does not effect the measurable properties of 

a system in this state and is almost always completely ignored in any time-
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independent problem. Any operation that leaves H unchanged also commutes with H. 

Recognise the polynomials are as being Hermite, Legendre and laguere polynomials and 

utilize some of the known properties of these functions to establish orthogonality and 

normalization constants for the wave function. 
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