STRUCTURAL DESIGN OF AN OFFICE COMPLEX

BY

JAGUN BOLAKALE
PGD/CIVIL/2009/075

DEPARTMENT OF CIVIL ENGINEERING FEDERAL UNIVERSITY OF TECHNOLOGY MINNA NIGER STATE.

MARCH, 2012

STRUCTURAL DESIGN OF AN OFFICE COMPLEX

BY

JAGUN BOLAKALE PGD/CIVIL/2009/075

THESIS SUBMITTED TO THE POSTGRADUATE SCHOOL,

FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA, NIGERIA IN

PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE

AWARD OF THE POST GRADUATE DIPLOMA

IN CIVIL ENGINEERING

MARCH, 2012

CERTIFICATION

The thesis titled by meets the regulations governing the award of the Post Graduate Diploma of the Federal University of Technology, Minna and it is approved for its contribution to scientific knowledge and literary presentation

Engr. S.F. Oritola (Project Supervisor)	Signature & Date
Engr. Professor S. Sadiku (Head of Department)	Signature & Date
Professor M. S. Abolarin Dean SEET	Signature & Date
Professor Mrs S. N. Zubairu Dean PG School	Signature & Date
External Examiner	Signature & Date

DECLARATION

I hereby declare that this thesis titled STRUCTURAL DESIGN OF AN OFFICE COMPLEX is a collection of my original research work and it has not been presented for any other qualification anywhere. Information from other sources (published or unpublished) has been duly acknowledged.

JAGUN BOLAKALE PGD/CIVIL/2009/075 FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA, NIGERIA.

Signature & Date

Agn ostoch

ACKNOWLEDGEMENTS

All praise and thanks to Almighty Allah who has no beginning and no end. I am grateful for His protection, guidance and love.

I acknowledge my supervisor Engr. S. F. Oritola, for his guidance that inspired me to the completion of this work. I also acknowledge Engr. Professor S. Sadiku (HOD), Engr. Professor O. D. Jimoh, Engr. Dr. Aguwa, Dr. P.N Ndoke and all lecturers in the department.

I also acknowledge Engr. Richard Adesiji for his brotherly advice throughout this program. Thanks so much may God reward you abundantly. I also acknowledge Engr. I. Jolaosho of Ladiom Associates for his contribution towards completion of this project and the program in general.

Finally, my acknowledge goes to my wife Hajia Kafilat Omolara Jagun, my children Sidiqot, Moshkurat, Abdul Satar and Muhammed, for their perseverance and support.

Thank you all God bless.

ABSTRACT

Presented in this project is the Analysis and Design of an Office Complex. The purpose of this project is to enable me have an idea of the structural members of a building using as offices and how to calculate using the limit state method to determine the ultimate limit state in accordance to BS 8110.

Although the project research seems to be simple job at first instant, but in the course of the research, there were many challenging factors, these therefore broaden my understanding in analysis and design of structure.

NOTATIONS

AS Area of tension reinforcement

AS¹ Area of compression reinforcement

AC Area of concrete section

Asc Area of vertical reinforcement in column

Asprov Area of reinforcement provided

Asv Area of shear reinforcement

bf Breadth of flange

bw Breadth of rib

fy Characteristics strength of steel

fyv Characteristics strength of links

Φ Steel diameter

Asreq reinforcement area required

Fcu Characteristics strength of concrete

M Bending moment

h overall thickness of slab

qk Characteristics of live loads

gk characteristics of dead loads

C concrete cover

Lx length of short span

Ly Length of long span

n Design ultimate load per unit are area

Vc Shear force

Mf Modification factor

Fyv Characteristics strength of shear reinforcement

Fs Estimated design service stress of steel

d Effective depth of tension reinforcement

d¹ Effective depth of compression reinforcement

Ley Effective height along Y-axis

Lex Effective height along X-axis

Msx Design moment about short span

Msy Design moment about long span

V Design shear stress at any cross section

Asmin Minimum area of reinforcement provided

Asmax Maximum area of reinforcement provided

ULS Ultimate limit state

SLS Serviceability limit state

DESIGN INFORMATION

Floor Slabs, Stair Case and Roof Gutter

Characteristics Strength of Steel (fy) $= 410 \text{N/mm}^2$

Concrete Cover (c) = 20 mm

Fire Resistant = 1 hr

Characteristics strength of concrete (fcu) = 25N/mm^2

Floor Beams

Characteristics strength of concrete (fcu) = $25N/mm^2$

Characteristics strength of steel (fy) $= 410 \text{N/mm}^2$

Concrete cover (c) = 20 mm

Characteristics strength of steel for stirrup (fyv) = 250N/mm^2

Retaining Walls

Characteristics strength of steel (fy) $= 410 \text{N/mm}^2$

Concrete cover (c) = 20 mm

Bearing pressure = 120 KN/m^2

Characteristics strength of concrete $= 25 \text{N/mm}^2$

Columns

Characteristics strength of concrete (fcu) = 25N/mm^2

Characteristics strength of steel (fy) $= 410 \text{N/mm}^2$

Concrete cover (c) = 40 mm

Foundations

Characteristics strength of concrete (fcu) = $25N/mm^2$

Characteristics strength of steel (fy) $= 410 \text{N/mm}^2$

Concrete cover (c) = 50 mm

TABLE OF CONTENTS

Title p	page	i
Certifi	ication	ii
Declar	ration	iii
Ackno	owledgement	iv
Abstra	act	v
Notati	ions	vi
Desig	n information	vii
Table	of Contents	ix
CHA	PTER ONE	
1.1	Introduction	1
1.1.1	Aims and objectives	2
1.2	Scope of work	3
CHA	PTER TWO	
2.1	Literature	4
2.1.1	Advantages of reinforced concrete	5
2.2	Reinforced cement concrete design philosophy and concepts	6
2.2.1	Strength design method	6
2.2.2	Working stress design	6
2.3	Fundamental assumptions for reinforced concrete behaviour	7
2.3.1	Loads	8
2.3.2	Dead load	8
2.3.3	Live loads	8
2.3.4	Environmental load	8
2.4	Design codes and standards	9
2.5	Structural analysis	10

2.5.	Concrete	10
2.5.2	Cement	11
2.5.3	Aggregates	11
2.5.4	Reinforcement	12
2.6	Methodology and design	13
СНАІ	PTER THREE	
3.1	Ground floor design	14
3.1.1	Typical floor slab	
3.2	Stair case design	52
3.3	Roof gutter	55
3.4	Analysis and design of retaining wall	58
CHAI	PTER FOUR	
4.1	Analysis and design of roof beam	65
4.1.1	Analysis and design of floor beams	71
CHAI	PTER FIVE	
5.1	Analysis and design of column	166
5.1.1	Analysis and design of foundation	180
5.2	Analysis and design of combined footing	186
5.3	Analysis and design of lift wall	191
СНАН	PTER SIX	
6.1	Conclusion	193
6.2	Recommendation	193
REFE	RENCES	194

CHAPTER ONE

INTRODUCTION

1.1

The purpose of this project is to provide clear analysis of design and detailing of an office complex six storey reinforced concrete building using limit State method in designing.

For this purpose of this project a manual structure design was used for this office complex with retaining walls and elevator.

In order to make the designing easy, the first step is to know the individual properties of materials to be used which consist mainly concrete and steel. Combination of these two component result in a firm durable, long lasting reinforced concrete structure. The use of concrete and steel has grown tremendously over the past decades and it still growing. Concrete has considerable crushing strength, is durable, has good fire resistance but offers little or no strength tension but fair in shear. On the other hand, steel has good tensile proportion, poor resistance to fire and very good in both shear and in compression.

With advancement in the global world, this call for the construction of multi-complex building for variety of purposes such as offices and residential.

1.1.1 AIMS AND OBJECTIVES.

The purpose of design is to achieve acceptable probability that a structure will not reach limit point that will not become unfit for its intended use so that it can have a high degree of safety, sustaining all loads and deformation of normal construction and having adequate durability and good resistance to the effect of misuse and fire.

A reinforces concrete design must satisfy the following objectives:

- The structure must be economical, that is the factor of satisfy should not be too large to the extent that the cost of structure becomes unbearable.
- 2) The structure must be safe under the worst system loading.
- 3) Another vital objective is that the structural elements are to be designed such that economy, safety serviceability, durability and fire resistance will be achieved.

1.2 SCOPE OF WORKS

The scope of this project comprises of designing and detailing of the structural elements which includes roof beam, stab, floor beams, columns, staircases, retaining walls and foundation.

Many materials can be used in calculating moments such as Stiffness flexibility method, Slope Deflection Moments (SDM), Moment Distribution Method (MDM). The method that is appropriate for vertical load analysis is the moment distribution method, because it can be applied to both plastic and semi plastic materials. It can be also be used to analysis complex structures and is relatively cheap.

CHAPTER ONE

INTRODUCTION

1.1

The purpose of this project is to provide clear analysis of design and detailing of an office complex six storey reinforced concrete building using limit State method in designing.

For this purpose of this project a manual structure design was used for this office complex with retaining walls and elevator.

In order to make the designing easy, the first step is to know the individual properties of materials to be used which consist mainly concrete and steel. Combination of these two component result in a firm durable, long lasting reinforced concrete structure. The use of concrete and steel has grown tremendously over the past decades and it still growing. Concrete has considerable crushing strength, is durable, has good fire resistance but offers little or no strength tension but fair in shear. On the other hand, steel has good tensile proportion, poor resistance to fire and very good in both shear and in compression.

With advancement in the global world, this call for the construction of multi-complex building for variety of purposes such as offices and residential.

The first step is designing floor slabs. Slabs are designed mainly for bending.

After which the designing of floor beams follow.

All loads from the entire structure from the roof are carried by columns transferred to the foundation. The designs of columns are mainly for axial forces but in few cases for moments.

Lastly, the foundation in designed. Foundations relieve all loads from the columns and spread these loads to the soil. its primary design is for bending and shear.

CHAPTER TWO

2.1 LITERATURE REVIEW

In designing reinforced concrete structure building it is very important for one to understand and identify irrespective of the structural material, the component members that make up a story building, the stress condition these members could be subjected to and how they could be tackled. Also the knowledge of the method of analysis employed, the type of load, how they would occur and how they combined is essential to design efficiently and also making sure that the concrete building behavior is satisfactory under service by the use of BS8110.

Also in designing building itself weight must be known: a building must be able to support itself. The combine weight of all members must be transferred through the columns to the foundation. This will not be problem with building having few floors, this loads will be small compared with the maximum load on each column. As building increases in height the load that must be carrier at the base increases. The advent of steel construction with its highter framework allowed much taller buildings and the skyscraper was born. Whatever the building is to be used for, the structure will have to withstand the loads inherently imposed by its function. For example, taking an office block load caused by furnishing such as Desks, Photocopiers, Cabinets, and so on will have to be considered.

An office building usually designs to accommodate people. The structure must be designed to perform in function and not to interfere with building purpose.

Whatever the size and shape of structure, it will definitely experience loading effects from wind. The large the size of structure the large the effects will be. Large structures would build up in structural members perhaps causing stress fractures or even

collapse depending on the strength of the wind on the period of time the building is exposed to it.

The understanding of the individual properties of concrete and steel has lead to the further improvement and use.

2.1.1 ADVANTAGE OF REINFORCED CONCRETE.

- 1. It has relatively high compressive strength.
- 2. It has better resistance to fire than steel.
- 3. It has long service life with low maintenance cost.
- In some type of structures, such as dams, piers and footings, it is most economical structural material.
- It can be cast to take the shape required, making it widely used in pre-cast structural components.
- By using steel, cross sectional dimensions of structural members can be reduced e.g. in lower floor columns.

Factors affecting the joint performance of Steel and Concrete:

2.2 Reinforced Cement Concrete Design Philosophy and Concepts.

The design of a structure may be regarded as the process of selecting proper materials and proportioned elements of the structure, according to the art, engineering science and technology. In order to fulfill its purpose, the structure must meet its conditions of safety, serviceability, economy and functionality.

2.2.1 Strength Design Method

It is based on the ultimate strength of the structural members assuming a failure condition, whether due to the crushing of concrete or due to the yield of reinforced steel bars. Although there is additional strength in the bar after yielding (due to Strain Hardening), this additional strength in the bar is not considered in the analysis or design of the reinforced concrete members. In the strength design method, actual loads or working loads are multiplied by load factor to obtain the ultimate design loads. The load factor represents a high percentage of factors for safety required in the design. The Bs8110 code emphasizes this method of design.

2.2.2 Working Stress Design

This design concept is based on elastic theory, assuming a straight line stress distribution along the depth of the concrete. The actual load or working loads acting on the structure are estimated and members are proportioned on the basis of certain allowable stresses in concrete and steel. The allowable stresses are fractions of the crushing strength of concrete (fc') and the yield strength (fy). Because of the differences in realism and reliability over the past several decades, the strength design method has displaced the older stress design method.

2.2.3 Limit State Design

It is a further step in the strength design method. It indicate the state of the member in which it ceases to meet the service requirements, such as, loosing its ability to withstand external loads or damage. According to limit design, reinforced concrete members have to be analyzed with regard to three limit states:

1. Load carrying capacity (involves safety, stability and durability).

- 2. Deformation (deflection, vibrations, and impact).
- 3. The formation of cracks.

The aim of this analysis is to ensure that no limiting sate will appear in the structural member during its service life.

2.3 Fundamental Assumptions for Reinforced Concrete's Behavior

Reinforced concrete's sections are heterogeneous, because they are made up of two different materials - steel and concrete. Therefore, proportioning structural members by ultimate stress design is based on the following assumption:

- Strain in concrete is the same as in reinforcing bars at the same level, provided that the bond between the concrete and steel is adequate.
- 2. Strain in concrete is linearly proportional to the distance from the neutral axis.
- 3. Modulus of elasticity for all grades of steel is taken as $Es = 29 \times 10^{6}$ fpsi. The stress in the elastic range is equal to the strain multiplied by Es.
- 4. Plane cross sections continue to be plane after bending.
- 5. Tensile strength of concrete is neglected because:
 - Concrete's tensile strength is about 1/10 of its compressive strength.
- Cracked concrete is assumed to be not effective before cracking; the entire cross section is effective in resisting the external moments.
- 7. The method of elastic analysis, assuming an ideal behavior at all levels of stress is not valid. At high stresses, non-elastic behavior is assumed, which is in close agreement with the actual behavior of concrete and steel.

2.3.1 **Loads**

Structural members must be designed to support specific loads. Loads are those forces for which a structure should be proportioned; loads that act on structure can be divided into three categories.

- 1. Dead loads
- 2. Live loads
- 3. Environmental loads.

2.3.2 Dead loads:

Dead loads are those that rare constant in magnitude and fixed in location throughout the lifetime of the structure. It includes the weight of the structure and any permanent material placed on the structure, such as roofing, tiles, walls etc. they can be determine with a high degree of accuracy from the dimensions of the elements and the unit weight of the material.

2.3.3 Live loads:

Live loads are those that may vary in magnitude and may also change in location.

Live loads consists chiefly occupancy loads in buildings and traffic loads in bridges. Live loads at any given time are uncertain, both in magnitude and distribution.

2.3.4 Environmental Loads:

Consists mainly of snow loads, wind pressure and suction, earthquake loads (i.e. inertial forces) caused by earthquake motion. Soil pressure on subsurface portion of structures. Loads from possible pounding of rainwater bon flat surface and

forces caused by temperature differences. Like environmental loads at any given time are uncertain both in magnitude and distribution.

2.4 DESIGN CODES AND STANDARDS.

Basic codes are taken from BS8110 -part 1 and part 2 1985. Also the use of example of the design of reinforced concrete building to BS 8110 fouth edition by charles Reynolds and James C Steadman, Reinforced concrete design by W. H. M and J. H. Bungey and simplified Reinforced concrete design by Engineer Victor O. Oyenuga.

2.5 STRUCTUREAL ANALYSIS.

Structural analysis can be described as a physical laws and mathematical calculation required for prediction of any structures behavior. It is an important part of structural engineering which mainly integrates the judgment of survival loads to be applied on structure. It is used to satisfy the main goals of any structure like internal forces, loads and stresses.

Determination of forces in each member can be determined by the following methods.

- a) Apply moment and shear co-efficient.
- b) Manual calculatoion.
- c) Computer methods.

2.5.1 CONCRETE:

Concrete is the most rudely used man-made construction materials in the world, and is second only to water as the most utilized substance on the planet. It is obtained by mixing cementation materials, water and aggregates (and sometimes admixtures) in required proportions. Aggregates are of two categories namely fine (Sand) and coarse (Gravel or Crushed stones) aggregates. There are two types of concrete.

- a) Dense concrete: average density is 2400kglm^b.
- b) Light concrete: average density is 160kglm³.

The four main properties of concrete are:

- 1) Workability.
- 2) Cohesiveness.
- 3) Strength
- 4) Durability.

2.5.2 **CEMENT:**

The commonly used cement is Portland cement. Other type of cement are rapid-hardening Portland cement, blast furnace Portland cement, high alumina cement low heat Portland cement etc. cement binds the rest of the materials comprises sulphur, aluminum and other elements. It is used in the formation of concrete and plays important roles in making cements mortar mixed with sand for partitioning and other functions.

2.5.3 AGGREGATES:

These are inert filler in the concrete mixture which consist of 70-75% by volume of the mixture. Aggregates are divided into fine aggregate and these include sand and quarry dust and coarse aggregate which are gravel and crushed stones. Aggregates to be used in concrete mix must free impurities, such as Clay, Hard, Tough and Strong

2.5.4 WATER:

The Water used for the mixing and curing of concrete should be free from impurities. Water is most important and least expensive ingredient of concrete. In general, portable water is suitable for concreting.

2.5.5 REINFORCEMENT

They are iron bars or steel of different strength. It could be mild steel or high tensile steel of different sizes. These are embedded in the concrete to increase its strength, making the structure to attain service of construction. Mild steel usually have a smooth surface so that the bond with the concrete is by adhesion only. High yield steel bars have ribbed surface in the form of a twisted square. Therefore, because of their significant stress advantage, high yield bars are the more economical.

2.6 METHODOLOGY AND DESIGN.

The method used in this project research is **LIMIT STATE METHOD**. This method overcomes the disadvantages of other method of designs. It usually involve application of partial factors of safety, both to the load and to the material strength and the magnitude of the factors may be varied so that they may be used either with the plastic conditions in the ultimate State or with more elastic stress range at working load.

With the method, the purpose of design is to achieve acceptable probabilities that a structure will not become unfit for its intended use that is in will not reach limit State. When designing in accordance with limit state principles as described in CP110 and similar document such as BS8110 part 1 and 2. (1997) each reinforced concrete section is designed first to meet the most critical limit State and then checked to ensure that the remaining limit State are not reached. In using this method, the design of each individual member or section of a member must satisfy the following criteria.

- 1) The limit State which ensure that the probability of failure in acceptably low.
- 2) The limit State of serviceability which ensures Safe factor behaviors under service working load. Principal criteria relating to serviceability are prevention of excessive cracking, limit State fatigue, vibration, durability, fire resistance and earth quake resistance must be taken into account into some special cases.

In assessing a particular limit State for a structure it is necessary to consider all the possible variable parameters such as loads, material strengths and constructional tolerances.

In order to calculate the bending moment and shear forces which member subjected the characteristic loads are multiplied by a partial factor of safety \bigwedge_{M} Hence, if

characteristic loads are multiplied by the value of \bigwedge_{M} corresponding to the ultimate limit State, the moments and shear force subsequently determine will represent those occurring at failure and the section must be designed accordingly.

Other methods being previously used in structural designing are the modular ratio method also called elastic theory loads and load factor method.

Reference	Calc	culation	Out put
	<u>CHAPTI</u>	ER THREE	
	GROUND FLOOR SLAB	S (CAR PARK)	
	Design information		
	Design stresses		
	$Fy = 410N/mm^2$		
	Durability and fire resistance	ce exposure conditions,	
	moderate fire resistance = 1	hr	
	Concrete cover = 25mm		
	LOADING		
	Self weight of slab $= 0.1$	$5 \times 24 = 3.6 \text{KN/m}^2$	
	Finishing (say)	$= 1.0 \text{KN/m}^2$	
	Asphalt	$= 0.5KN/m^2$	
	Total dead load	$= 5.1 \text{KN/m}^2$	$gk = 5.1KN/m^2$
3S110 Table 2.	Imposed load car park	$= 2.5KN/m^2$	$qk = 2.5KN/m^2$
	Design load (n) = $1.4gk + 1$.6qk	
	$= 1.4 \times 5.1$ n = 11.14KN		$n = 11.14KN/m^2$
	Panel 1 4000	4230	
*	Ly = 4230		
	Lx = 4000		

Reference	Calculation	Out put
	$ly/lx = \frac{4230}{4000} = 1.06 = 1.1$	
	Depth along short span (dx) = $150 - 25 - \frac{12}{2} = 119$ mm	
	Depth along long span (dy) = $150 - 250 - 12 - \frac{12}{2}$	
	= 107mm	
	Ultimate bending moment	7-2-7-9
	$M_{sx} = B_{sx}nl^2x$	
	$M_{\rm sy} = B_{\rm sy} n l^2 x$	
BS8110	$B_{sx} = -0.056 + 0.042$	
Part 1:	$M_{\rm sy} = -0.045 + 0.034$	
1985	$M_{sx} = -0.056 \times 11.14 \times 42 = 9.98 \text{Knm}$	
Table 3	$M_{sx} = +0.042 \times 11.14 \times 42 = 7.46 \text{Knm}$	
	$M_{sy} = -0.045 \times 11.14 \times 42 = 8.02 \text{Knm}$	
	$M_{sy} = +0.034x 11.14 x 42 = 6.06Knm$	
	Short span	
	At edge	W - 0.000
	$K = \frac{M}{Fcu \ bd^2} = \frac{9.98 \times 10^6}{25 \times 1000 \times 119^2} = 0.028$	K = 0.028
	$Z = d(0.5 + \sqrt{0.25 - \frac{K}{0.9}})$	Z = 115.1mm
:	= 119 (0.5 + $\sqrt{0.25 - \frac{0.028}{0.9}}$ = 115.1mm	
	$A_{SX} = \frac{9.98 \times 10^6}{0.87 \times 410 \times 115.1} = 243.08 \text{mm}^2$	
	Provide Y10 @ 200°/c	A _{sx} 243.08mm ²

Reference	Calculation	Out put
	As provide = $393 \text{mm}^2/\text{m}$	
		$A_s prov =$
	At Spam	393 mm ² /m
	$A_{sx} = \frac{7.46 \times 10^6}{0.87 \times 410 \times 115.1} = 243.08 mm^2$ Provide Y 10 @ 200°/ _c	$A_{sx} = 182$ mm^2/m $As =$
	As provide = $393 \mathrm{mm}^2/\mathrm{m}$	
	Long span At edge	393mm ² /m
	$K = \frac{8.02 \times 10^6}{25 \times 1000 \times 107^2} = 0.028$	
	$Z = 107(0.5 + \sqrt{0.25 - \frac{0.028}{0.9}} = 103.5$	
	$A_{sy} = \frac{8.02 \times 10^6}{0.87 \times 410 \times 103.5} = 217 \text{mm}^2$	
	Provide Y10 @ 200 ² / _c	
	As provide = $393 \text{mm}^2/\text{m}$	
	As span	
	$A_{sy} = \frac{8.02 \times 10^6}{0.87 \times 410 \times 103.5} = 164.94 \text{mm}^2$	
	Provide Y10 @ 200°/c	
	As prove = $393 \text{mm}^2/\text{m}$	
	As prove = $393 \text{mm}^2/\text{m}$	
	Check deflection	
3S8110 3.4.6.7 Part 1	fs = $5/8$ fy x $\frac{Area\ required}{Area\ prove} \times \frac{1}{\beta}$	

Reference	Calculation	Out put
	$= 5/8 \times 410 \times \frac{243.08}{393} \times \frac{1}{1} = 158.50 \text{N/mm}$	
	$Mf = 0.55 + \frac{477 - fs}{120 (0.9 + M/bd^2)}$	
	$= 0.55 + \frac{477 - 158.50}{120 \left(0.9 + \frac{9.98 \times 10^6}{1000 \times 119^2}\right)} = 2.2$	MF = 2.2
	Limiting $\frac{span}{depth}$ = 2.2 x 26 = 57.30	
	Actual $\frac{span}{depth} = \frac{4000}{119} = 33.61$	
	Deflection 2	
	Panel 2	
	Ly/lx = 8000 = 2.0	
	$B_{sx} = -0.093$; $B_{sRx} = +0.070$	
	$B_{sy} = -0.045$; $B_{sy} = 0.034$	
	$M_{\rm sBx} = -0.093 \text{ x } 11.14 \text{ x } 4^2 = 16.57 \text{KN/m}^2$	
	$M_{\rm sBx} = -0.070 \text{ x } 11.14 \text{ x } 4^2 = 12.48 \text{KN/m}^2$	=
	$M_{sy} = -0.045 \times 11.14 \times 4^2 = 8.02 \text{KN/m}^2$	
	$M_{sy} = -0.034 \times 11.14 \times 4^2 = 6.06 \text{KN/m}^2$	
	At short span At edge	
	$K = \frac{16.57 \times 10^6}{1000 \times 119^2 \times 25} = 0.047$	K = 0.047
	$Z = 119(0.5 + \sqrt{0.25 - \frac{0.047}{0.9}} = 112.5$ mm	Z = 112.5mm

Reference	Calculation	Out put
	$A_{\rm sx} = \frac{16.57 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 112.5} = 413 mm^2$	$A_{sx} = 413 \text{mm}^2$
	Provide Y10 @ 175°/c	
	As prove = $449 \text{mm}^2/\text{m}$	A_s prove =
	At span	449mm ² /m
	$A_{\rm sx} = \frac{12.48 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 112.5} = 310.9 mm^2$	
	Provide Y 10 @ 200°/c	
	As prove = $393 \text{ mm}^2/\text{m}$	
	long span at edge	
	Provide reinforcement as in panel 1	
	(long span)	
	At span	
П	Provide reinforcement as in panel 1	
	Check deflection	
	fs = $5/8 \times 410 \times \frac{413}{449} \times \frac{1}{1} = 235.7 \text{N/mm}^2$	Fs = 235.7N/mm ²
	mf = 0.55 + $\frac{477 - 235.7}{120\left(0.9 + \frac{16.5 \times 10^6}{1000 \times 119^2}\right)} = 1.52$	Mf = 1.52
	$\frac{Limiting\ span}{depth} = \frac{4000}{119} = 33.61$	
	Deflection ok	

Reference	Calculation	Out put
	Panel 3	
	4000	
	8000	
	$\frac{ly}{lx} = \frac{8000}{400} = 2.0$	
	$B_{sx} = -0.063$; $B_{sx} = 0.048$	
	$B_{\rm sy} = -0.032$; $B_{\rm sy} = 0.024$	
	$M_{\rm sx} = -0.063 \times 11.14 \times 4^2 = 11.23 \text{KN/m}$	
	$M_{sx} = -0.048 \times 11.14 \times 4^2 = 6.56 \text{KN/m}$	
	$M_{\rm sy} = -0.032 \times 11.14 \times 4^2 = 5.70 \text{KN/m}$	
	$M_{\rm sy} = -0.024 \times 11.14 \times 4^2 = 4.28 \text{KN/m}$	
	short span at edge	
	$K = \frac{11.23 \times 10^6}{1000 \times 119^2 \times 25} = 0.032$	
	$Z = 119(0.5 + \sqrt{0.25 - \frac{0.032}{0.9}} = 114.68$	$A_{\rm SX}=274.53 mm^2$
	$A_{sx} = \frac{11.23 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 114.68} = 274.53 mm^2$	
	Provide Y10 @ 200°/c	As prove = $393 \text{mm}^2/\text{m}$
	As prove = $393 \text{mm}^2/\text{m}$	
	At span	$A_{sx} = 209.25 \text{mm}^2$
	$A_{sx} = \frac{8.56 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 114.68} = 209.25$	207.2011111
-	Provide Y 10 @ 200°/c	
	As prove = $393 \text{ mm}^2/\text{m}$	

Reference	Calculation	Out put
	$K = \frac{5.70 \times 10^6}{1000 \times 107^2 \times 25} = 0.020$	
	$Z = 107(0.5 + \sqrt{0.25 - \frac{0.02}{0.9}} = 104.59$	Z = 104.59
6	$A_{\text{sy}} = \frac{5.7 \times 10^6}{0.87 \times 410 \times 104.59} = 153 \text{mm}^2$	As prove $= 393 \text{mm}^2/\text{m}$
	Provide Y10 @ 200°/c	373111117111
	As prove = $393 \text{mm}^2/\text{m}$	
	At span	
	$A_{\text{sy}} = \frac{4.28 \times 10^6}{0.87 \times 410 \times 104.59} = 114$	
	Provide Y10 @ 200°/c	
	As prove = $393 \text{mm}^2/\text{m}$	
	Check deflection	
	$F_S = 5/8 \times 410 \times \frac{274.5}{393} = 178.98$	
	mf = 0.55 + $\frac{477 - 178.98}{120\left(0.9 + \frac{11.23 \times 10^6}{1000 \times 119^2}\right)} = 2.02$	
	$\frac{Limiting\ span}{depth} = 2.02\ x\ 26 = 52.43$	
	$\frac{Limiting\ span}{depth} = \frac{4000}{119} = 33.61$	
	Deflection ok	

Reference	Calculation	Out put
	Panel 4 4000 8000	
	$\frac{ly}{lx} = \frac{8000}{400} = 2.0$	
	$B_{\rm sx} = -0.067; B_{\rm sx} = 0.050$	
	$B_{\rm sy} = -0.037; B_{\rm sy} = 0.028$	
	$M_{\rm sx} = -0.067 \times 11.14 \times 4^2 = 11.94 \text{KN/m}$	
	$M_{\rm sx} = -0.050 \times 11.14 \times 4^2 = 8.91 \text{KN/m}$	
	$M_{\rm sy} = -0.037 \times 11.14 \times 4^2 = 5.59 \text{KN/m}$	
	$M_{\rm sy} = -0.028 \times 11.14 \times 4^2 = 4.99 \text{KN/m}$	
	short span at edge	
	$K = \frac{11.94 \times 10^6}{1000 \times 119^2 \times 25} = 0.034$	K = 0.034
	$Z = 119(0.5 + \sqrt{0.25 - \frac{0.034}{0.9}} = 114.29$	
	$A_{\rm sx} = \frac{11.94 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 114.29} = 293 mm^2$	
	Provide Y10 @ 200°/c	
	As prove = $393 \text{mm}^2/\text{m}$	
	At span	
	$A_{\rm sx} = \frac{8.9 \times 10^6}{0.87 \times 410 \times 114.29} = 218.55$	
	Provide Y10 @ 200°/c	
	As prove = $393 \text{mm}^2/\text{m}$	

Reference	Calculation	Out put
	long span at edge	
	$K = \frac{6.59 \times 10^6}{1000 \times 107^2 \times 25} = 0.023$	
	Z = 104.48	
	$A_{\text{sy}} = \frac{6.59 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 104.48} = 176.82 \text{mm}^2$	
	Provide Y10 @ 200°/c	
	As prove = $393 \text{mm}^2/\text{m}$	
	At span	
	$A_{\text{sy}} = \frac{4.99 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 104.49} = 116.49 \text{mm}^2$	
	Provide Y10 @ 200°/c	
	Check deflection	Fs =
	Fs = 518 x 410 x $\frac{293}{393}$ $x \frac{1}{1}$ = 191.05N/mm ²	191.05N/nm
	mf = 0.55 + $\frac{477 - 191.05}{120\left(0.9 + \frac{11.94 \times 10^6}{1000 \times 119^2}\right)}$ = 1.92	
-	$\frac{Limiting\ span}{depth} = 1.92\ x\ 26 = 49.84$	
	$\frac{Limiting\ span}{depth} = \frac{4000}{119} = 33.61$	-
	Deflection ok	

Reference	Calculation	Out put
	Panel 5 4000	
	$\frac{ly}{lx} = \frac{8000}{4000} = 2.0$	
	$B_{\rm sx} = -0.089 \; ; \; B_{\rm sx} = 0.067$	
	$B_{\rm sy} = -0.037$; $B_{\rm sy} = 0.028$	
	$M_{sx} = -0.089 \times 11.14 \times 4^2 = 15.86 \text{KN/m}$	
	$M_{\rm sx} = -0.067 \times 11.14 \times 4^2 = 11.94 \text{KN/m}$	
	$M_{sy} = -0.037 \times 11.14 \times 4^2 = 6.59 \text{KN/m}$	
	$M_{sy} = -0.028 \times 11.14 \times 4^2 = 4.99 \text{KN/m}$	
	Short span	
	At edge	
	$K = \frac{15.86 \times 10^6}{1000 \times 119^2 \times 25} = 0.048$	K = 0.048
	Z = 113.38mm	
	$A_{sx} = \frac{15.86 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 113.38} = 392.16 mm^2$	
	Provide Y10 @ 200°/c	
	As prove = $393 \text{mm}^2/\text{m}$	
	At span	
	$A_{sx} = \frac{11.94 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 113.3} = 295.23 mm^2$	
	Provide Y 10 @ 200°/c	
	As prove = $393 \text{ mm}^2/\text{m}$	
	Long span	
		1

Reference		Calculation	Out pu
	Provide reinforcement	as panel 4 (long span)	
	Check deflection		
	$Fs = 5/8 \times 410 \times \frac{295.23}{393}$	$\frac{23}{1} = 192.50 \text{N/mm}^2$	
	$Mf = 0.55 + \frac{47}{120(0.9)}$	$\frac{7 - 192.50}{+ \frac{11.94 \times 10^6}{1000 \times 119^2}} = 1.91$	
	$\frac{Limiting\ span}{depth} = 1.915$	c 26 = 49.66	
	$\frac{Actual\ span}{depth} = \frac{4000}{119} =$	= 33.61	
	Deflection ok		
	Panel 6		
	6000		
	$\frac{ly}{lx} = \frac{6000}{4230} = 1.41 = 1$.4	
	$B_{sx} = -0.055$; $B_{sx} = 0.04$	41	
	$B_{sy} = -0.037$; $B_{sy} = 0.02$	28	
	$M_{\rm sx} = -0.041 \text{ x } 11.14 \text{ x}$	$4230^2 = 10.96 \text{KNm}$	
	$M_{sx} = 0.041 \times 11.14 \times 4$	$4230^2 = 8.17$ KNm	
	$M_{sy} = 0.037 \times 11.14 \times 2000$	$4230^2 = 7.37$ KNm	
	$M_{\rm sy} = 0.028 \times 11.14 \times 4$	$230^2 = 5.58$ KNm	
	Short span		
	At edge		
	$K = \frac{10.86 \times 10^6}{1000 \times 119^2 \times 2}$	$\frac{1}{25} = 0.031$	

Reference	Calculation	Out put
	$Z = 119(0.5 + \sqrt{0.25 - \frac{0.031}{0.9}} 114.81 \text{mm}$	K = 0.031
٠	$A_{\rm sx} = \frac{10.96 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 114.81} = 267.63 mm^2$	
	Provide Y10 @ 200°/c	
	As prove = $393 \text{mm}^2/\text{m}$	
	$A_{sx} = \frac{8.17 \times 10^6}{0.87 \times 410 \times 114.81} = 200 mm^2$	As prove = 393mm/m ²
	0.87 x 410 x 114.81	
	Provide Y 10 @ 200°/ _c	
	As prove = $393 \text{ mm}^2/\text{m}$	
	Long span	
	At edge	
	$K = \frac{7.37 \times 10^6}{1000 \times 107^2 \times 25} = 0.026$	
	$Z = 107(0.5 + \sqrt{0.25 - \frac{0.026}{0.9}} 103.8 \text{mm}$	
	$A_{sy} = \frac{7.37 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 103.81} = 199.05 mm^2$	
	Provide Y10 @ 200°/c	
	As prove = $393 \text{mm}^2/\text{m}$	
	At span	
	$A_{\rm sy} = \frac{5.58 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 103.8} = 151 \text{mm}^2$	
	Provide Y 10 @ 200°/c	
	As prove = $393 \text{ mm}^2/\text{m}$	
	Check deflection	1 2

Reference	Calculation	Out put
	Fs = 5/8 x 410 x $\frac{200}{393}$ $\frac{1}{1}$ = 130.41	
	Mf = 0.55 + $\frac{477 - 130.41}{120\left(0.9 + \frac{10.96 \times 10^6}{1000 \times 119^2}\right)} = 2.27$	
	$\frac{Limiting\ span}{depth} = 2.27\ x\ 26 = 59.16$	
	$\frac{Actual\ span}{depth} = \frac{4230}{119} = 35.55$	
	Deflection ok	
	Panel 7	
	6000 ////// 3765	
	$\frac{ly}{lx} = \frac{6000}{3765} = 1.59 \text{ by interpretation}$	
	$= 1.855 = 1.9 \underline{\text{w}} 2.0$	
	$B_{sx} = -0.067$; $B_{sx} = 0.050$	
	$B_{sy} = -0.037$; $B_{sy} = 0.028$	
	$M_{sx} = -0.067 \times 11.14 \times 3765^2 = 10.56 \text{KNm}$	
	$M_{sx} = 0.050 \text{ x } 11.14 \text{ x } 3765^2 = 7.90 \text{KN/m}$	
	$M_{sy} = 0.028 \times 11.14 \times 3765^2 = 5.84 \text{KN/m}$	
	$M_{sy} = 0.028 \times 11.14 \times 3765^2 = 4.42 \text{KN/m}$	
	Short span	
	At edge	
	$K = \frac{10.58 \times 10^6}{1000 \times 119^2 \times 25} = 0.0299$	

Reference	Calculation	Out put
	$Z = 119(0.5 + \sqrt{0.25 - \frac{0.0299}{0.9}} 114.93 \text{mm}$	
	$A_{\rm sx} = \frac{10.58 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 114.93} = 192.7 mm^2$	
	Provide Y10 @ 200°/c	
	As prove = $393 \text{mm}^2/\text{m}$	
	At span	
	$A_{\rm sx} = \frac{7.90 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 114.93} = 192.7 mm^2$	
	Provide Y 10 @ 200°/ _c	
	As prove = $393 \text{ mm}^2/\text{m}$	
	Long span	
	At edge	
	$K = \frac{5.84 \times 10^6}{1000 \times 107^2 \times 25} = 0.020$	
	Z = 104.48mm	
	$A_{\text{sy}} = \frac{5.84 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 104.48} = 156.7 \text{mm}^2$	
	Provide Y10 @ 200°/c	
	As prove = $393 \text{mm}^2/\text{m}$	
	At span	
	$A_{sy} = \frac{11.94 \times 10^6}{0.87 \times 410 \times 113.3} = 295.23 \text{mm}^2$	
	Provide Y 10 @ 200°/c	
	As prove = $393 \text{ mm}^2/\text{m}$	
	Check deflection	

Reference	Calculation
	$F_S = 5/8 \times 410 \times \frac{19.72}{393} \frac{1}{1} = 125.65 \text{N/mm}^2$
	Mf = 0.55 + $\frac{477 - 125.65}{120\left(0.9 + \frac{10.58 \times 10^6}{1000 \times 119^2}\right)}$ = 2.23
	$\frac{Limiting\ span}{depth} = 2.33\ x\ 26 = 60.58$
	$\frac{Actual\ span}{depth} = \frac{3765}{119} = 31.64$
	Deflection ok
	Panel 8
	6000
	5300
	$\frac{ly}{lx} = \frac{6000}{5300} = 1.13 = 1.1$
	$B_{\rm sx} = -0.056$; $B_{\rm sx} = 0.042$
	$B_{sy} = -0.045$; $B_{sy} = 0.034$
	$M_{sx} = -0.056 \times 11.14 \times 5.3^2 = 17.53 \text{KNm}$
	$M_{sx} = 0.042 \times 11.14 \times 5.3^2 = 13.14 \text{KNm}$
	$M_{sy} = 0.045 \times 11.14 \times 5.3^2 = 14.08 \text{KNm}$
	$M_{sy} = 0.034 \text{ x } 11.14 \text{ x } 5.3^2 = 10.64 \text{KNm}$
	short span at edge
	$K = \frac{17.53 \times 10^6}{1000 \times 119^2 \times 25} = 0.050$
	, and the state of

Reference	Calculation	Out pu
	$Z = 119(0.5 + \sqrt{0.25 - \frac{0.05}{0.9}} 112.05 \text{mm}^2$	
	$A_{\rm sx} = \frac{17.53 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 112.05} = 438.60 mm^2$	
	Provide Y10 @ 200°/c	
	As prove = $566 \text{mm}^2/\text{m}$	
	At span	
	$A_{\rm sx} = \frac{13.14 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 112.05} = 328.76 mm^2$	
	Provide Y 10 @ 200°/c	
	As prove = $566 \text{mm}^2/\text{m}$	
	long span at edge	
	$K = \frac{14.08 \times 10^6}{1000 \times 119^2 \times 25} = 0.040$	
	$Z = 107(0.5 + \sqrt{0.25 - \frac{0.04}{0.9}} = 102.06$	
	$A_{\text{sy}} = \frac{14.08 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 102.06} = 386.76 \text{mm}^2$	
	Provide Y10 @ 200°/ _c	
	As prove = $393 \text{mm}^2/\text{m}$	
	At span	
	$A_{sy} = \frac{10.64 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 102.6} = 292.27 mm^2$	
	Provide Y 10 @ 200°/ _c	
	As prove = $393 \text{ mm}^2/\text{m}$	
	Check deflection	

Reference	Calculation		
	$Fs = 5/8 \times 410 \times \frac{328.76}{566} \frac{1}{1} = 148.54$		
	Mf = 2.05		
	$\frac{Limiting\ span}{depth} = 26.x\ 2.05 = 53.20$		
	$\frac{Actual\ span}{depth} = \frac{5300}{119} = 44.54$		
	Deflection ok		
	$Z = 107(0.5 + \sqrt{0.25 - \frac{0.04}{0.9}} = 102.06$		
	$A_{\text{sy}} = \frac{14.08 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 102.06} = 386.76 \text{mm}^2$		
	Provide Y10 @ 200°/ _c		
	As prove = $393 \text{mm}^2/\text{m}$		
	At span		
	$A_{sy} = \frac{10.64 \times 10^6}{0.87 \times 410 \times 102.6} = 292.27 mm^2$		
	Provide Y 10 @ 200°/c		
	As prove = $393 \text{ mm}^2/\text{m}$		
. = -	Check deflection		
	$Fs = 5/8 \times 410 \times \frac{328.76}{566} \frac{1}{1} = 148.54$		
	Mf = 2.05		
	$\frac{Limiting\ span}{depth} = 26\ x\ 2.05 = 53.20$		
	$\frac{Actual\ span}{depth} = \frac{5300}{119} = 44.54$		
	Deflection ok		
1		1	

Reference	Calculation	Out pu
	Panel 9	
	5300	
	$\frac{ly}{lx} = \frac{5300}{4000} = 1.32 \underline{w} 1.3$	
	$B_{sx} = -0.052$; $B_{sx} = 0.039$	
	$B_{sy} = -0.037$; $B_{sy} = 0.028$	
	$M_{\rm sx} = -0.052 \text{ x } 11.14 \text{ x } 4^2 = 9.26 \text{KNm}$	
	$M_{sx} = 0.039 \times 11.14 \times 4^2 = 6.95 \text{KNm}$	
	$M_{sy} = 0.037 \times 11.14 \times 4^2 = 6.59 \text{KNm}$	
	$M_{sy} = 0.028 \times 11.14 \times 4^2 = 4.99 \text{KNm}$	
	short span at edge	
	$K = \frac{9.26 \times 10^6}{1000 \times 119^2 \times 25} = 0.026$	
	Z = 115.44	
	$A_{\rm sx} = \frac{9.26 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 115.44} = 224.88 mm^2$	
	Provide Y10 @ 200°/c	
	As prove = $393 \text{mm}^2/\text{m}$	
	At span	
	$A_{sx} = \frac{6.95 \times 10^6}{0.87 \times 410 \times 115.44} = 168.84 mm^2$	
ñ	Provide Y 10 @ 200°/c	

Calculation	Out put
As prove = $566 \text{mm}^2/\text{m}$	
long span at edge	
$K = \frac{14.08 \times 10^6}{1000 \times 119^2 \times 25} = 0.040$	
Z = 104.70mm	
$A_{sy} = \frac{6.59 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 104.70} = 176.46 mm$	
Provide Y10 @ 200°/c	
As prove = $393 \text{mm}^2/\text{m}$	
At span	
$A_{sy} = \frac{4.99 \times 10^6}{0.87 \times 410 \times 104.70} = 133.6 mm^2$	
Provide Y 10 @ 200°/c	
As prove = $393 \text{ mm}^2/\text{m}$	
Check deflection	
Fs = 5/8 x 410 x $\frac{168.84}{393}$ $\frac{1}{1}$ = 110.09	
Mf = 0.55 + $\frac{477 - 110.09}{120\left(0.9 + \frac{6.95 \times 10^6}{1000 \times 119^2}\right)}$ = 2.75	
$\frac{Limiting\ span}{depth} = 2.75\ x\ 26 = 71.46$	
$\frac{Actual\ span}{depth} = \frac{4000}{119} = 33.61$	
Deflection ok	
	$\frac{long span}{at edge}$ $K = \frac{14.08 x 10^6}{1000 x 119^2 x 25} = 0.040$ $Z = 104.70 mm$ $A_{sy} = \frac{6.59 x 10^6}{0.87 x 410 x 104.70} = 176.46 mm$ $Provide Y10 @ 200^c/_c$ $As prove = 393 mm^2/m$ $A_{t} span$ $A_{sy} = \frac{4.99 x 10^6}{0.87 x 410 x 104.70} = 133.6 mm^2$ $Provide Y 10 @ 200^c/_c$ $As prove = 393 mm^2/m$ $Check deflection$ $Fs = 5/8 x 410 x \frac{168.84}{393} \frac{1}{1} = 110.09$ $Mf = 0.55 + \frac{477 - 110.09}{120\left(0.9 + \frac{6.95 x 10^6}{1000 x 119^2}\right)} = 2.75$ $\frac{Limiting span}{depth} = 2.75 x 26 = 71.46$ $\frac{Actual span}{depth} = \frac{4000}{119} = 33.61$

Reference Calculation

Out put

Panel 10

$$\frac{ly}{lx} = \frac{5000}{4000} = 1.25 = 1.3$$

$$B_{sx} = -0.052$$
; 0.039

$$B_{sy} = -0.037$$
; 0.028

$$M_{sx} = -0.052 \times 11.14 \times 4^2 = 9.26 \text{KNm}$$

$$M_{sx} = 0.039 \text{ x } 11.14 \text{ x } 4^2 = 6.95 \text{KNm}$$

$$M_{sy} = -0.037 \times 11.14 \times 4^2 = 6.59 \text{KNm}$$

$$M_{sy} = 0.028 \times 11.14 \times 4^2 = 4.99 \text{KNm}$$

Short span

Provide reinforcement as in panel 9 i.e Y10 at 200°/c for

both edge and span

Long span

Provide reinforcement as in panel 9 i.e Y10 @ 200%

both edge and span.

Panel 11

$$\frac{ly}{lx}$$
 = 4000 = 1.05 \underline{w} 1.1

Reference	Calculation	Out put
	$B_{\rm sx} = -0.049$; 0.036	
	$B_{\rm sy} = -0.037$; 0.028	
	$M_{\rm sx} = 0.049 \text{ x } 11.14 \text{ x } 3.8^2 = 7.88 \text{KNm}$	
	$M_{\rm sx} = 0.036 \text{ x } 11.14 \text{ x } 3.8^2 = 5.79 \text{KNm}$	
	$M_{\rm sy} = 0.037 \times 11.14 \times 3.8^2 = 5.59 \text{KNm}$	
	$M_{sy} = 0.028 \times 11.14 \times 3.8^2 = 4.5 \text{KNm}$	
	short span at edge	
DG 0110	$K = \frac{7.88 \times 10^6}{1000 \times 119^2 \times 25} = 0.0223$	
BS 8110 3.4.4.4	$Z = 119(0.5 + \sqrt{0.25 - \frac{0.0223}{0.9}} = 115.95$	
	$A_{\rm sx} = \frac{7.88 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 115.95} = 190.5 mm^2$	
	Provide Y10 @ 200°/c	
	As prove = $393 \text{mm}^2/\text{m}$	
	At span	
	$A_{sx} = \frac{5.79 \times 10^6}{0.87 \times 410 \times 115.95} = 140 \text{mm}^2$	
	Provide Y 10 @ 200°/ _c	
	As prove = $393 \text{ mm}^2/\text{m}$	
	At span	
	$A_{\rm sx} = \frac{5.79 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 115.95} = 140 mm^2$	
	Provide Y 10 @ 200°/c	
	As prove = $393 \text{mm}^2/\text{m}$	

Reference	Calculation	Out put
	long span at edge	
	$K = \frac{5.95 \times 10^6}{1000 \times 107^2 \times 25} = 0.0208$	
	Z = 104.48mm	
	$A_{sy} = \frac{5.59 \times 10^6}{0.87 \times 410 \times 104.48} = 59.65 mm$	
	Provide Y10 @ 200°/c	
	As prove = $393 \text{mm}^2/\text{m}$	
	Check deflection	
Bs 8110 3.4.6.7	$Fs = 5/8 \times 410 \times \frac{140}{393} \cdot \frac{1}{1} = 91.28$	
	Mf = 0.55 + $\frac{477 - 91.25}{120\left(0.9 + \frac{7.88 \times 10^6}{1000 \times 119^2}\right)} = 2.76$	
	$\frac{Limiting\ span}{depth} = 2.76\ x\ 26 = 71.68$	
	$\frac{Actual\ span}{depth} = \frac{3800}{119} = 31.93$	
	Deflection ok	
	Panel 12	
	3000	
	$Ly/lx = \frac{4000}{3000} = 1.33 = 1.3$	

Reference	Calculation	Out put
Bs 8110 part 1	$B_{\rm sx} = -0.069 \; ; = 0.051$	
1985 Table 3	$B_{sy} = -0.045$; = 0.034	
Table 3	$M_{sx} = -0.069 \text{ x } 11.14 \text{ x } 3^2 = 6.92 \text{KN/m}$	
	$M_{sx} = -0.051 \times 11.14 \times 3^2 = 5.11 \text{KN/m}$	
	$M_{sy} = -0.045 \times 11.14 \times 3^2 = 4.51 \text{KN/m}$	
	$M_{sy} = -0.034 \times 11.14 \times 3^2 = 3.40 \text{KN/m}^2$	
	short span At edge	
	$K = \frac{6.92 \times 10^6}{0.00 \times 119^2 \times 25} = 0.0195$	
	Z = 116.32	
	$A_{\rm sx} = \frac{6.92 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 116.3.2} = 166.78 mm^2$	
	Provide Y10 @ 175°/c	
	As prove = $393 \text{mm}^2/\text{m}$	
	At span	
	$A_{\rm sx} = \frac{5.11 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 11.32} = 123.16 mm^2$	
	Provide Y 10 @ 200°/c	
	As prove = $393 \text{ mm}^2/\text{m}$	
	z ang snan	
	$K = \frac{4.51 \times 10^6}{1000 \times 107^2 \times 25} = 0.016$	
	Z = 105.04 At edge	
	At edge	

Reference	Calcu	ılation	Out put
	Terrazzo tiles $= 0.02$	$25 \times 22 = 0.55 \text{KN/m}^2$	
	Cement mortar = 0.01	$25 \times 20 = 0.25 \text{KN/m}^2$	
	Partition wall (say)	$=2.5KN/m^2$	
	Total loading gk =	$=7.5KN/m^2$	
	Imposed load qk = 2.5KN/m	² for general office	
	Design load (n) = $1.4gk + 1.6$	6qk	
	$= 1.4 \times 7.5 +$	- 1.6 x 2.5	
	n = 14.5 KN/n	n^2	
	short span depth $dx = 175 - 2$	$25 - \frac{12}{2} = 144mm$	
	Long span depth dy = 175 –	25 - 12 - 6 = 138mm	
	<u>Panel 4</u> 4520		
	4996		
	$\frac{ly}{lx}$ = 4996 = 1.10		
	$B_{sx} = 0.037; = 0.028$		
	$B_{sy} = -0.032; = 0.024$		
	$M_{\rm sx} = -0.037 \text{ x } 14.5 \text{ x } 4520^2 =$	= 10.97KNm	
	$M_{sx} = 0.028 \times 14.5 \times 4520^2$	= 8.29KNm	
	$M_{sy} = -0.032 \times 14.5 \times 4520^2$	= 9.48KNm	
	$M_{sy} = 0.024 \times 14.5 \times 4520^2$	= 7.11KNm	
	short span at edge		

Reference	Calculation	Out put
	$\frac{ly}{lx} = \frac{4996}{4056} = 1.23 = 1.2$	
	$B_{\rm sx} = -0.056; B_{\rm sx} = 0.042$	
	$B_{sy} = -0.037$; $B_{sy} = 0.028$	
	$M_{\rm sx} = -0.056 \text{ x } 14.5 \text{ x } 4.056^2 = 13.36 \text{KNm}$	
	$M_{\rm sx} = -0.042 \text{ x } 14.5 \text{ x } 4.056^2 = 10.02 \text{KNm}$	
	$M_{\rm sy} = 0.037 \times 14.5 \times 4.056^2 = 8.83 \text{KNm}$	
	$M_{\rm sy} = 0.028 \times 14.5 \times 4.056^2 = 6.68 \text{KNm}$	
	short span at edge	
	$K = \frac{13.36 \times 10^6}{1000 \times 114^2 \times 25} = 0.028$	
	$Z = 144(0.5 + \sqrt{0.25 - \frac{0.026}{0.9}} = 139.70$	
	$A_{\rm sx} = \frac{13.36 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 139.70} = 268.11 \text{mm}^2$	
	Provide Y10 @ 200°/c	
	As prove = $393 \text{mm}^2/\text{m}$	
	At span	
	$\mathbf{A}_{\text{sx}} = \frac{10.02 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 139.7} = 261.28 \text{mm}^2$	
	Provide Y 10 @ 200°/c	
	As prove = $393 \text{ mm}^2/\text{m}$	
	longspan at edge	
	$K = \frac{8.83 \times 10^6}{0.87 \times 410 \times 139.7} = 261.28 mm^2$	

Reference	Calculation	Out put
	Z = 135.04	
	$A_{sy} = \frac{8.83 \times 10^6}{0.87 \times 410 \times 135.04} = 183.31 \text{mm}^2$	
	Provide Y10 @ 200°/c	
	As prove = $393 \text{mm}^2/\text{m}$	
	At span	
	$A_{sy} = \frac{6.68 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 135.04} = 183.31 mm^2$	
	Provide Y10 @ 200°/c	
	As prove = $393 \text{mm}^2/\text{m}$	
	Check deflection	
	Fs = 5/8 x 410 x $\frac{261.28}{393}$ $x \frac{1}{1}$ = 170.36	
	mf = $0.55 + \frac{477 - 170.36}{120\left(0.9 + \frac{m}{bd^2}\right)} = 2.98$	
	$\frac{Limiting\ span}{depth} = 2.4\ x\ 26 = 62.33$	
	$\frac{Actual\ span}{depth} = \frac{4056}{144} = 28.17$	
	Deflection ok	
	TYPICAL FLOOR SLAB	
	Assume slab thickness = 175mm	
	Concrete cover = 25mm	
	LOADINGS	
	Self weight of slab = $0.175 \times 24 = 4.25 \text{KN/m}^2$	

Reference	Calculation	Out put
	$K = \frac{10.96 \times 10^6}{1000 \times 114^2 \times 25} = 0.0211$	
	Z = 140.91 mm	
	$A_{\rm sx} = \frac{10.96 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 140.99} = 218.07 mm^2$	
	Provide Y10 @ 200°/c	
	As prove = $393 \text{mm}^2/\text{m}$	
	At span	
	$A_{\rm sx} = \frac{8.29 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 140.91} = 164.93 \text{mm}^2$	
	Provide Y 10 @ 200°/c	
	As prove = $393 \text{ mm}^2/\text{m}$	
	long span at edge	
	$K = \frac{10.44 \times 10^6}{1000 \times 138^2 \times 25} =$	
	Z = 134.89	
	At edge	
	$A_{sy} = \frac{10.4 \times 10^6}{0.87 \times 410 \times 134.89} = 216.98 mm^2$	
	Provide Y10 @ 200°/c	
	As prove = $393 \text{mm}^2/\text{m}$	
	As span	
	$A_{\text{sy}} = \frac{7.89 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 134.89} = 142.66 \text{mm}^2$	
	Provide Y10 @ 200°/c	
	As prove = $393 \text{mm}^2/\text{m}$	

Reference	Calculation
	Check deflection
	Fs = 5/8 x 410 x $\frac{332.23}{393}$ x $\frac{1}{1}$ = 150.87
	mf = 0.55 + $\frac{477 - 150.87}{120\left(0.9 + \frac{m}{bd^2}\right)}$ = 2.16
	$\frac{Limiting\ span}{depth} = 2.16\ x\ 26 = 56.27$
	$\frac{Actual\ span}{depth} = \frac{4000}{144} = 27.78$
	Deflection ok
	Panel 5
	4056
	4230
	$\frac{ly}{lx} = \frac{4230}{4056} = 1.04 = 1.0$
	$B_{\rm sx} = 0.039 \; ; = 0.030$
	$B_{sy} = -0.037$; = 0.028
	$M_{\rm sx} = -0.039 \text{ x } 14.5 \text{ x } 4.056^2 = 9.30 \text{KNm}$
	$M_{\rm sx} = 0.028 \times 14.5 \times 4.056^2 = 7.17 \text{KNm}$
	$M_{\rm sy} = -0.032 \times 14.5 \times 4.056^2 = 8.83 \text{KNm}$
	$M_{\rm sy} = 0.024 \text{ x } 14.5 \text{ x } 4.056^2 = 6.68 \text{KNm}$
	short span at edge
	$K = \frac{9.30 \times 10^6}{1000 \times 114^2 \times 25} = 0.018$

Reference	Calculation	Out put
	Z = 141.06	
	$A_{sx} = \frac{9.30 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 141.06} = 184.83 mm^2$	
	Provide Y10 @ 200°/c	
	As prove = $393 \text{mm}^2/\text{m}$	
	At span	
	$A_{\rm sx} = \frac{7.16 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 141.06} = 184.30 mm^2$	
	Reinforcement as in edge span	
	LONG SPAN	
	Reinforcement as in short span	
	Panel 8	
	8000	
	$\frac{ly}{lx} = \frac{8000}{4000} = 0.2$	
	$B_{sx} = 0.093 ; = 0.070$	
	$B_{\rm sy} = -0.045 \; ; = 0.034$	
	$M_{sx} = -0.093 \times 14.5 \times 4^2 = 21.5 \text{KNm}$	
	$M_{sx} = 0.070 \times 14.5 \times 4^2 = 16.24 \text{KNm}$	
	$M_{\rm sy} = -0.045 \text{ x } 14.5 \text{ x } 4^2 = 10.44 \text{KNm}$	
	$M_{sy} = 0.034 \times 14.5 \times 4^2 = 7.89 \text{KNm}$	
		1

 $\frac{\textit{short span}}{\textit{at edge}}$

Reference	Calculation	Out put
	mf = 0.55 + $\frac{477 - 146.09}{120\left(0.9 + \frac{m}{bd^2}\right)}$ = 2.49	
	$\frac{Limiting\ span}{depth} = 2.47\ x\ 26 = 64.19$	
	$\frac{Actual\ span}{depth} = \frac{4000}{144} = 27.78$	
	Deflection ok	
	Panel 8 8000 4000	
	$\frac{ly}{lx} = \frac{8000}{4000} = 2.0$	
	$B_{\rm sx} = 0.063 \; ; = 0.048$	
	$B_{sy} = -0.032$; = 0.024	
	$M_{sx} = -0.063 \times 14.5 \times 4^2 = 14.62 \text{KNm}$	
	$M_{sx} = 0.048 \times 14.5 \times 4^2 = 11.14 \text{KN/m}$	
	$M_{sy} = -0.032 \times 14.5 \times 4^2 = 7.42 \text{KN/m}$	
	$M_{sy} = 0.024 \text{ x } 14.5 \text{ x } 4^2 = 6.50 \text{KN/m}$	
	short span at edge	
	$K = \frac{114.62 \times 10^6}{1000 \times 114^2 \times 25} = 0.028$	
	Z = 139.39 mm	
	$A_{sx} = \frac{14.62 \ x \ 10^6}{0.87 \ x \ 410^2 \ x \ 139.39} = 294.04 mm^2$	
	Provide Y10 @ 200°/c	

Reference	Calculation	Out put
	As prove = $393 \text{mm}^2/\text{m}$	
	At span	
	$A_{\rm sx} = \frac{11.14 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 139.39} = 224.05 mm^2$	
	Provide Y 10 @ 200°/ _c	
	As prove = $393 \text{ mm}^2/\text{m}$	
	long span at edge	
	$K = \frac{7.42 \times 10^6}{1000 \times 138^2 \times 25} = 0.016$	
	Z = 135.61	
	$A_{\rm sy} = \frac{7.42 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 135.61} = 153.39 mm^2$	
	Provide Y10 @ 200°/c	
	As prove = $393 \text{mm}^2/\text{m}$	
	As span	
	$A_{sy} = \frac{6.50 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 135.61} = 134.38 mm^2$	
	Provide Y10 @ 200°/c	
	As prove = $393 \text{mm}^2/\text{m}$	
	Check deflection	
	Fs = 5/8 x 410 x $\frac{224.05}{393}$ x $\frac{1}{1}$ = 146.09	
	mf = 0.55 + $\frac{477 - 146.09}{120\left(0.9 + \frac{11.14 \times 10^6}{bd^2}\right)} = 2.47$	
	$\frac{Limiting\ span}{depth} = 2.47\ x\ 26 = 64.18$	

Reference	Calculation	
	Panel 11 4085	
	$\frac{ly}{lx} = \frac{5966}{4088} = 1.46 = 1.5$	
Bs 8110 3.5.3.3	$B_{sx} = -0.078$; 0.059 $B_{sy} = -0.045$; 0.034	
	$M_{\rm sx} = -0.078 \text{ x } 14.5 \text{ x } 4.085^2 = 18.87 \text{KN/m}$	
	$M_{sx} = 0.059 \text{ x } 14.5 \text{ x } 4.085^2 = 14.28 \text{KN/m}$ $M_{sy} = -0.045 \text{ x } 14.5 \text{ x } 4.085^2 = 10.89 \text{KN/m}$	
	$M_{\text{sy}} = 0.034 \text{ x } 14.5 \text{ x } 4.085^2 = 8.23 \text{KN/m}$	
	short span at edge	
	$K = \frac{18.87 \times 10^6}{1000 \times 144^2 \times 25} = 0.06$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Bs 8110 3.4.4.4	$Z = 144(0.5 + \sqrt{0.25 - \frac{0.036}{0.9}} 137.83$ mm	
	$A_{sx} = \frac{18.87 \times 10^6}{0.87 \times 410 \times 137.83} = 383.8 mm^2$	
	Provide Y10 @ 200°/c	
	As prove = $393 \text{mm}^2/\text{m}$	
	$A_{sx} = \frac{14.28 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 137.83} = 290.46 mm^2$	1 548
	Provide Y10 @ 200°/c	2 2 11 22
	As prove = $393 \text{mm}^2/\text{m}$	
13591	Z = 134.46 mm	1

Reference	Calculation	
	$A_{\rm sx} = \frac{10.89 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 134.46} = 227.06 mm^2$	
	Provide Y10 @ 200°/ _c	
	As prove = $393 \text{mm}^2/\text{m}$	
	Check deflection	
	Fs = 5/8 x fy x $\frac{Area \operatorname{Re} quired}{Area \operatorname{Pr} ovided} \times \frac{1}{\beta}$	
Bs 8110 3.4.6.7	Fs = 5/8 x 410 x $\frac{290.46}{393}$ x $\frac{1}{1}$ = 189.39	, V
Bs 8110 3.4.6.7	Mf = 0.55 + $\frac{477 - 189.39}{120\left(0.9 + \frac{18.83 \times 10^6}{1000 \times 144^2}\right)}$ = 1.87	
	Limiting span = $1.87 \times 26 = 48.71$	1
	Actual span = $\frac{4085}{144}$ = 28.37	
	Deflection ok	
	Panel 12	
	4200	8
	$ly/lx = \frac{4920}{4200} = 1.17 = 1.2$	
	$B_{sx} = -0.063$; 0.047	

Reference	Calculation	Out pu
	$B_{sy} = -0.045$; 0.034	
	$M_{sx} = -0.063 \text{ x } 14.5 \text{ x } 4.2^2 = 16.11 \text{KNm}$	
	$M_{sx} = 0.047 \times 14.5 \times 4.2^2 = 12.02 \text{KNm}$	
	$M_{sy} = -0.045 \times 14.5 \times 4.2^2 = 11.51 \text{KNm}$	j
	$M_{sy} = 0.034 \times 14.5 \times 4.2^2 = 8.70 \text{KNm}$	
	short span at edge	
	$K = \frac{16.11 \times 10^6}{1000 \times 144^2 \times 25} = 0.031$	
	$Z = 144(0.5 + \sqrt{0.25 - \frac{0.031}{0.9}} = 138.77$ mm	
	$A_{SX} = \frac{16.11 \times 10^6}{0.87 \times 410 \times 138.77} = 325.46 mm^2$	
	Provide Y10 @ 200°/c	
	As provide = $393 \text{mm}^2/\text{m}$	
	At Spam	
	$A_{\rm sx} = \frac{12.02 \times 10^6}{0.87 \times 410 \times 138.77} = 242.83 mm^2$	
	Provide Y 10 @ 200°/c	

Reference	Calculation	Out put
	STAIR CASE DESIGN	
	Rise = $1.57.5$ (R)	
	Tread = 300mm (T)	
	Waist = 200mm	
	Slope factor = $\frac{\sqrt{R^2 T^2}}{T} + \frac{\sqrt{157.5^2 + 300^2}}{300} = 1.29$	
	$d = h - c - \frac{1}{2} \Phi = 150 - 20 - 6 = 124$ mm	
	1748 1500 1612.5	
	1800 1612.5	
Flights	Loading	
	Self weight = 0.15×24 = 3.6KN/m^2 Finishing (say) $\frac{1.6 \text{KN/m}^2}{4.6 \text{KN/m}^2}$	
Bs6399:	Steps = $0.5 \times 0.1575 \times 24 = 1.89 \text{KN/m}^2$	
Part 1 1984	Live load $= 3.0 \text{KN/m}^2$	
Table 5	F (4.8 x 129 + 1.89) 1.4 + 1.6 x 3.0	
	$= (5.42 + 1.89) \times 1.4 + 4.8$	
	F = 15.03KN/m/m run	
	As prove = $393 \text{ mm}^2/\text{m}$	
	long span at edge	
	Z = 134.17	

Reference	Calculation	Out put
	$A_{sy} = \frac{11.51 \ x \ 10^6}{0.87 \ x \ 410 \ x \ 134.17} = 240.50 mm^2$	
	Provide Y10 @ 200°/ _c	
	As prove = $393 \text{mm}^2/\text{m}$	
	As span	
	$A_{\text{sy}} = \frac{8.7 \times 10^6}{0.87 \times 410 \times 134.17} = 181.79 \text{mm}^2$	
	Provide Y10 @ 200°/c	
	As prove = $393 \text{mm}^2/\text{m}$	
	Check deflection	
	Fs = 5/8 x 410 x $\frac{224.83}{393}$ x $\frac{1}{1}$ = 158.33	
	mf = 0.55 + $\frac{477 - 158.33}{120\left(0.9 + \frac{12.02 \times 10^6}{1000 \times 144^2}\right)}$ = 2.34	
	Limiting span = $2.34 \times 26 = 60.84$	
	$Actual span = \frac{4200}{144} = 29.17$	
	Deflection ok	
	1 st FLIGHT	
	Span = $6 \times 300 + 1800/2 = 2.43 \text{m}$	
	$M = \frac{fl^2}{8} = 0.125 \times 15.03 \times 2.43^2 = 11.09 \text{KNm}$	
	Design	
	$K = \frac{11.09 \times 10^6}{1000 \times 144^2 \times 25} = 0.0147$	
	Z = 121.98mm	

Reference	Calculation	Out put
	$A_{SX} = \frac{11.09 \times 10^6}{0.87 \times 410 \times 121.98} = 254.88 mm^2$	
	Provide Y10 @ 200°/c	
	As provide = $566 \text{mm}^2/\text{m}$	
	Check deflection	
	$Fs = 5/8 \times 410 \times \frac{254.88}{542} \times = 144.50$	
	mf = 0.55 + $\frac{477 - 144.50}{120\left(0.9 + \frac{11.09 \times 10^6}{1000 \times 124^2}\right)}$ = 2.25	
	Simply supported = 20	
BS8110	Limiting span = $20 \times 2.25 = 45.18$	
Table3.10	Actual span = $\frac{2.430}{124} = 19.97$	
	Deflection ok	
	Transverse distribution bars =	
Mosley and Bungey	$\frac{0.2bh}{100} = \frac{0.24 \times 1000 \times 2000}{100} = 480$	
page 230 2 nd edition	Provide Y12@200	
	As provide = $566 \text{mm}^2/\text{m}$	
	FLIGHT 2	
	Span = $5 \times 300 + (1612.5) = 3226.5$ mm	
	$M = 0.125 \times 12.63 \times 3.2265^2$	
	= 16.44KNm	
	Reinforcement	
	$K = \frac{16.44 \times 10^6}{1000 \times 124^2 \times 25} = 0.043$	
	I .	

Reference	Calculation	Out put
	Z = 117.73	
	$A_{SX} = \frac{16.44 \times 10^6}{0.87 \times 410 \times 117.73} = 391.48 \text{mm}^2$	
	Provide Y12 @ 200°/c	
	As provide = $566 \text{mm}^2/\text{m}$	
	Distribution bar	
	$\frac{0.24bh}{100} = \frac{0.24 \times 1000 \times 200}{100}$	
	FLIGHT 3	
	Reinforcement as in flight i.e	
	Provide Y12 @ 200°/c bottom and Y @200°/c	
	As distribution	
	Calculation	
	PROOF – GUTTER	
	LOADING	
	Self weight of slab = $0.15 \times 1.15 \times 24 = 4.14$ KN/m	
	Load from wlls = $1.6 \times 0.15 \times 24 = 5.76$ KN/m	
	$0.6 \times 0.15 \times 24 = 2.16$ KN/m	
	Finishes say $= 2.16$ KN/m	
	gk = 12.28KN/m	
	= 1.4 gk + 1.6 qk	
	$= 1.4 \times 12.28 + 1.6 \times 0.25$	
	= 17.19 + 0.4	
	= 17.5KN/m	
	Convert wall load to point load	
	5.76KN/m	
	I .	1

Reference	Calculation	Out put
	$D = h - c - \frac{1}{2} \times \theta$	
	$= 150 - 20 - \frac{1}{2} \times 10 = 124 \text{mm}$	
	$K = \frac{15.44 \times 10^6}{25 \times 1000 \times 124^2} = 0.0402$	
	$Z = d(0.5 + \sqrt{0.25 - \frac{K}{0.9}})$	
	$= 124(0.5 + \sqrt{0.25 - \frac{0.0402}{0.9}} = 118.18$ mm	
	$A_{S} = \frac{15.44 \times 10^{6}}{0.87 \times 410 \times 118.18} = 366.27 \text{mm}^{2}$	
	Provide Y12 @ 250°/c	
	As provide = $452 \text{mm}^2/\text{m}$	
	Check deflection	
	$F_S = 5/8 \text{ fy } \frac{A_s reqd}{A_s prov}$	
	$= 5/8 \times 410 \times \frac{366.27}{452} \times \frac{1}{1} = 207.65 \text{N/mm}$	
	mf = 0.55 + $\frac{477 - Fs}{120\left(0.9 + \frac{m}{bd^2}\right)}$ = 2.25	
	$= 0.55 + \frac{477 - 207.65}{120 \left(0.9 + \frac{15.44 \times 10^6}{1000 \times 124^2}\right)} = 1.73$	
	$\frac{Limiting\ span}{Depth} = 1.73 \times 7$	

Reference	Calculation	Out put
BS 8110 Table3.10	$\frac{Actual\ span}{Depth} = 12.1$	
	Deflection ok	
	Distribution bar	
	$\frac{0.13bh}{100} = \frac{0.13 \times 1000 \times 150}{100} = 195mm^2$	
	Provide Y10 @ 300°/ _c	
	As provide = $262 \text{mm}^2/\text{m}$	
	Reinforcement for concrete walls:	
	Provide reinforcement as in the	
	Slab i.e Y 12 @ 250mm and Y 10 @	
	300mm as distribution bars.	
	Retailing wall	
	S T E M	
	Base (B)	
	Toe heel 5	
f	CALCULATION	
	(i) Projection of toe from base (L) = 0.2B to 0.4B	
Basic and applied soil mech.	(ii) Base width (B) = 0.4H to 0.7H	
By copal Rajan	(iii) Thickness of base slab (b) = $\frac{H}{12}$ to $\frac{H}{8}$	

Reference	Calculation	Out put
	ANALYSIS AND DESIGN	13416
	H = 3.450 m	
	(i) Base width (B) = $0.7 \times 3.45 = 2.415 \text{m}$	
	(ii) Projection of toe $(L) = 0.4B$	
	$= 0.4 \times 2.415 = 0.966 \text{m}$	
	Say 0.9m	
	\therefore Heel projection = 2.415 - 0.3 - 0.9 = 1.215	
	Say (1.500m)	
	(iii) Thickness of base slab = $\frac{H}{12}$	
	$\frac{3.450}{12} = 288mm \ say \ 300mm$	
	300mm	
	900mm 1500mm	
	300	
	2415mm	
1		1

Reference Calculation Out put

For a granular materials

Saturated density = $18KN/m^3$ (∞)

Allowable bearing pressure = 120KN/m²

Value of coefficient of earth pressure Ko = 0.40

STABILITY

Horizontal force; The earth pressure P

$$P = Ko \infty H$$

$$= 0.4 \times 18 \times 3.450$$

$$= 24.84 \text{KN/m}^2$$

Therefore horizontal force on 1m length of wall is

$$Hk = 0.5pH$$

$$= 0.5 \times 24.84 \times 3.45 = 42.85 \text{KN}$$

Vertical loads

Wall =
$$\frac{1}{2}$$
 (0.3 + 0.3) x 3.45 x 24 = 24.84KN

Base =
$$0.3 \times 2.7 \times 24 = 19.44$$

Earth =
$$1.5 \times 3.45 \times 18 = 93.15$$

$$Total = 137.43KN$$

Reference	Calculation	Out put
	For stability calculation a partial factor of safety of 1.6 is	
	applied while 1.4 is applied for strength	
	Calculations.	
	(i) <u>SLIDING</u>	
	$\infty (1.0 \text{Gk} + 1.0 \text{Vk})$	
	∞ is taken as 0.45	
	Frictional resisting force = 0.45 x 1.0 x 137.43	
	= 61.84KN	
	Sliding force = $1.6H_K$	
	$= 1.6 \times 42.85 = 68.56$ KN	
	Since sliding force is greater than frictional resisting	
	force therefore there will be need to provide passive earth	
	pressure to act against heel beam is given by	
	$H_p = \infty_f \times 0.5 \times K_p \infty h^2$	
	H = depth of heel beam	
	$\infty f = 1.0$ for granular	
	$K_p = \tan^2 (45 - \theta/2)$	
	K_p = is taken as 3.0 for granular materials	
	H = 500mm	
	$Hp = 1.0 \times 0.5 \times 3.0 \times 18 \times 0.5^2$	
	= 6.75 KN	
	Therefore total resisting force = frictional resisting force	
	+ passive pressure	
	= 61.84 + 6.75 = 68.58KN	
	Greater than sliding force	

Reference	Calculation	Out pu
	Overturning: Taking moment above B at edge of toe	
	Overturning moment = $\infty \delta v H_k^H/_3$	
	$\delta v_1 = factor of safety = 1.6$	
	$= 1.6 \times 42.85 \times 3.45/3$	
	= 78.84KNm	
	Restraining moment = 1.0 (wall load x $1.0 + base$)	
	Load x $\frac{2.7}{2}$ + earth load $\left(0.9 + 0.3 + \frac{1.5}{2}\right)$	
	$= 1.0 (24.84 \times 1.0 + 19.44 \times 1.35 + 93.15 \times 1.95)$	
	Restraining M = 232.72KNm	
	BEARING PRESSURE	
	Bearing pressure = $p \frac{N}{B} \pm \frac{6m}{B^2}$	
	Moment about base centre line	
	$=$ H _k x / ₃ wall load (B / ₂ - 1.0) + earth $\left(\frac{B}{2}$ - 0.9 + 3 + $\frac{1.5}{2}$)	
	$= 42.84 \times \frac{3.45}{2} + 24.84 \frac{(27 - 1.0)}{2} + 93.15 \left(\frac{2.7 - 1.95}{2}\right)$	
	= 2.07KNm	
	P1 $\frac{N}{B} + \frac{6m}{B^2} = \frac{137.43}{2.7} + \frac{6 \times 2.07}{2.7^2} = 52.70 \text{KN/m}^2$	
	Wall:	
	Horizontal force = $\delta v_1 \ 0.5 \ ka \propto H^2$	
	$= 1.4 \times 0.5 \times 0.45 \times 18 \times 3.45^{2}$	
	= 67.49KN	
	Maximum Moment = $67.49 \left(\frac{1}{2} \times 0.3 + \frac{3.45}{3} \right)$	

Reference	Calculation
	= 87.74KNm
	Reinforcement (wall)
	$D = h - c \frac{1\theta}{2}$
	$=300-20-\frac{16}{2}=272\text{mm}$
	$K = \frac{87.74 \times 10^6}{1000 \times 272^2 \times 25} = 0.047$
	$Z = 272(0.5 + \sqrt{0.25 - \frac{0.047}{0.9}} = 256.73$ mm
	$A_{S} = \frac{87.74 \times 10^{6}}{0.87 \times 410 \times 256.73} = 958.11 \text{mm}^{2}$
	Provide Y16 @ 200°/c
	$A_s \text{ prov} = 1010 \text{mm}$
	BASE REINFORCEMENT
	Factors of safety:
	$\delta v_1 = 1.4$; $\delta v_2 - \delta v_3 = 0$
	Moment M = $\delta v_1 H_k y + \delta v_2 \times G_k (^B/_2 - X) - \delta v_3 V_k$
	$(^{\mathrm{B}}/_{2}-\mathrm{q})$
	$q_0 = \frac{B}{2} - \frac{heel\ lenght}{2} + toe + width\ of\ all$
	$M = 1.4 \times 49.28 + 1.0 \times 8.69 - 1.0$
	= 68.99 + 8.69 - 55.89
	=21.79KNm
	$N = \delta v_2$ (wall load + base load) + $\delta v_3 \times V_k$
	$= 1.0 (24.84 + 19.44) + 1.0 \times 93.15$

Reference	Calculation	Out put
	= 137.4KN	
	Pressure $P_1 = \frac{137.4}{3.4} + \frac{6 \times 21.79}{3.4^2}$	
	$= 40.41 + 11.31 = 51.72 \text{KN/m}^2$	
	$P_2 = 40.41 - 11.31 = 29.1 \text{KN/m}^2$	
	$P_3 = 29.1 + (51.72 - 29.1) 1.5 = 28.73 \text{KN/m}^2$	
	Heeel and Toe Reinforcement	
	Moment = $1.0 \times 19.44 (1.05) + 1.0 \times 93.15 (1.05)$	
	- 29.1 x 1.5 x 1.05 - (28.73 - 29.1) x $\frac{1.5}{2}$ x 0.45	
	M = 20.41 + 97.81 - 45.83 + 0.12	
	Reinforcement	
	$A_{S} = \frac{72.27 \times 10^{6}}{0.87 \times 410 \times 256.73} = 849.35 \text{mm}^{2}$	
	Provide Y16 @ 200°/c	
	$A_s \text{ prov} = 1010 \text{mm}^2/_{\text{m}}$	
	Toe reinforcement:	
	Provide reinforcement as in heel	
	i.e. Y16 @ 150°/ _c	
	Distribution bar	
	$\frac{0.13 \times 1000 \times 300}{100} = 390 \text{mm}^2/_{\text{m}}$	
	Provide Y12 @ 200°/c	
	A_s provide = 566 mm ² / _m	

Reference	Calculation
	CHAPTER FOUR
	ROOF BEAM
	Spacing of truss = 1.5m
	Corrugated alluminium roofing shhet + norma; laps
	$=2.44 \text{kg/m}^2$
	Timber is mahogany; density = 627kgm ²
	Timber is mahogany; density = 627kg/m ³
	Purlin: 50mm x 75mm @ 900mm spacing
	Weight of aluminium roofing sheet =
	$\frac{2.44 \times 9.81}{1000} = 0.024 \text{KN/m}$
	Weight of purlin $\frac{672 \times 9.81}{1000} \times 0.05 \times 0.075$
	= 0.025 KN/m
	Total dead load = 0.049
	Imposed load
	Roof without access except for maintenance =
	0.75KN/m ²
	Total imposed load = $0.75 \times 0.9 = 0.675 \text{KN/m}$
	Design load = $1.4gk + 1.6qk$
	$= 1.4 \times 0.049 + 1.6 \times 0.675$
	$= 0.0686 + 1.08 = 1.148$ KN/m $\underline{\mathbf{w}} 1.15$ KN/m
	1.15KN/M R _A 1500mm

Reference		Calculation	Out put
	$R_{A} = R_{B} = \frac{WL}{2} = \frac{1}{2}$	$\frac{15 \times 1.5}{2} = 0.8625 \text{KN/m}$	
	For external node, R	$t_{\rm A} = p/2 = 0.8625$	
	i.e $p/2 = 0.8625$		
	for internal nodes p	$= 2 \times 0.8625$	
	= 1.725KN		
	Reaction from roof t	$russ = 6\frac{1}{2} p$	
	= 6.5 x 1.725 = 11.2	13KN	
	No of truss on the ro	oof beam 2 – 2	
	Lenght of the beam	28.48	
	Spacing = 1.5m		
	No of truss = 18.97		
	Uniform load on the	beam =	
	$\frac{18.97 \times 11.213}{28.48} = 7.4$	7KN/m	
	Beam size = 0.25 x (0.600	
	Self wt of beam	$= 0.225 \times 0.6 \times 24$	
		=3.22KN/m	
	From roof	=7.47KN/m	
	Finishes (say)	= 0.28KN/m	
*	Total dead load gk	= 10.99KN/m	
	Imposed load	= 1.5KN/m	
	Max design load	= 1.4gk + 1.6gk	
	n	$= 1.4 \times 10.99 + 1.6 \times 1.5$	
	n	= 17.79KN/m	
	roof beam 1 – 1		
			1

Reference	Calculation		
	At support B		
	$M_{\rm B} = 125.24 \rm KNm$	11.2	
	$K = \frac{m}{F \text{cubd}^2} \le 0.156$		
	$= \frac{125.24 \times 10^6}{225 \times 557^2 \times 25} = 0.072$		
	Compressed bar not required		
	$Z = 557(0.5 + \sqrt{0.25 - \frac{0.072}{0.9}} 508.16$ mm		
	$A_{S} = \frac{125.24 \times 10^{6}}{0.87 \times 410 \times 508.16} = 690.94 \text{mm}^{2}$		
	Provide 4Y16 bottom		
	$A_s \text{ prov} = 804 \text{mm}^2/\text{m}$		
	At span		
	M = 102.47		
	$\frac{M}{bd^2 fcu} = \frac{102.47 \times 10^6}{225 \times 55^2 25} = 0.059$		
	Z = 518.07mm		
	$A_{S} = \frac{102.47 \times 10^{6}}{0.87 \times 4 \times 10518.07} = 554.50 \text{mm}^{2}$	÷	
	Provide 4Y16 bottom		
	$A_s \text{ prov} = 804 \text{mm}^2/\text{m}$		
	Provide 2Y16 Top (As prov = 402mm^2)		
	SHARE FORCES		
	$V_{A1} = 0.45f = 0.45 \times 23 .48 = 10.57KN$		
	V_A to $V_D = 0.6f = 0.6 \times 142.32 = 85.39KN$		
	$V_{D1} = 0.6f = 0.6 \text{ x } 33.53 = 20.12 \text{KN}$		

Reference	Calculation	Out put
	$V_{D2} = 0.45f \text{ if} = 17.79 \text{ x } 1.275 = 22.68KN$	
	$V_{D2} = 0.45 \times 22 .68 = 10.20 \text{KN}$	
	Check deflection	
	$Fs = 5/8 fy \frac{Area required}{Area prov} \times \frac{1}{1}$	
	$= 5/8 \times 410 \times \frac{554}{804} \times \frac{1}{1} = 176.57$	
	$Mf = 0.55 + \frac{477 - fs}{120 \left(0.9 x \frac{M}{Bd^2}\right)}$	
	$\frac{M}{bd^2} = \frac{102.47 \times 10^6}{1000 \times 557^2} = 3.03$	
	$Mf = 0.55 x \frac{477 - 176.57}{121.23}$	
	$\frac{Limiting\ span}{Depth} = 26 \times 3.03 = 78.73$	
	$\frac{Actual\ span}{Depth} = \frac{8000}{557} = 14.36$	
	Deflection ok	
	Check max shear stress	
	$Vs = 0.6f - wu \times \frac{\text{support width}}{2}$	
	$= 0.6 \times 85.39 - 17.79 \times \frac{0.225}{2}$	
	$V_S = 49.23KN$	
	$V = V_S = \frac{49.23 \times 10^3}{255.559} = 0.39 N / mm^2$	
	$0.39 \text{Nmm}^2 < 0.8 \sqrt{fcu} = 4 \text{N/mm}^2$	
	End supports	

Reference	Calculation	Out put
	Shear at distance d from support face	
	$V_d = 0.45f - wu (d \times \frac{support \ width}{2})$	
	= $0.45 \times 85.39 - 17.79 (0.557 \times \frac{0.225}{2})$	
	= 38.43 - 11.91	
	= 26.62KN.	
	$V = \frac{26.52 \times 10^3}{255.557} = 0.211 N / mm^2$	
	Normal a links	
	$\frac{Asv}{Sv} = \frac{0.4b}{0.87 fyv} = \frac{0.4 x 225}{0.87 x 200} = 0.41$	
	Provide Y10 Links @ 300°/c	
	Check shear	
	V = 85.39KN	
	$V = \frac{v}{bd} = \frac{85.39 \times 10^3}{225 \times 557} = 0.68$	
Table 3.9 BS8110	$\frac{100As}{bd} = \frac{100 \times 804}{225 \times 557} = 0.64$	
	$Vc = \frac{0.79 \left(\frac{100As}{bd}\right)^{\frac{1}{3}} \left(\frac{400}{d}\right)^{\frac{1}{4}}}{\partial m} =$	
	$= \frac{0.79 \left(\frac{100 \times 804}{225 \times 557}\right)^{\frac{1}{3}} \left(\frac{400}{557}\right)^{\frac{1}{4}}}{1.25}$ Where $\partial m = 125$	
	$V_c = 0.15 \text{N/mm}^2$	
	$\frac{ASV}{Sv} = \frac{b(V - V_c)}{0.87 fyv} = \frac{225(0.64 - 0.15)}{0.87 \times 250} = 0.51s$	

Reference	Calc	ulation	Out put
	Provide Y10 @ 300°/c		
	GROUND FLOOR BEAMS	}	
	BEAM ON GRID LINE 2 -	2	
	Loading		
	Beam size	300 x 750mm	
	Self weight of the beam =	5.4KN/m	
	Wall =	7.6KN/m	
	Finishes =	0.25KN/m	
	Total =	13.30KN/m	
	Load on spans		
	Span AB = BC = CD		
	Triangular loading from sla	b	
	$= \frac{1}{2n} \ln \left[1 - \frac{1}{3 \times k^2}\right]; k = \frac{1}{2}$	lx	
	$= \frac{1}{2} \times 11.14 \times 4 \left[1 - \frac{1}{3 \times 2^2} \right]$		
	= 20.42 x 2 sides		
	= 40.84KN/m		
	Load on span DD1		
	Trapezoidal loading =	1/3nlx	
	=	1/3 x 11.14 x 3.8	
	=	14.09KN/m	
	=	14.09 x 2 sides = 28.19KN/m	
	Design load on spans		
	Span AB, BC and CD		
	Imposed load = 4.4KN/m		

Reference Calculation Out put

Total dead load don span AB, BC and CD

$$=40.84 + 13.3 = 54.14$$
KN/m

Design load = $14 \times 54.14 + 4.4 = 80.20$ KN/m

Span DD1

Dead load =
$$28.19 + 13.3 = 41.49$$
KN/m

Design load = $1.4 \times 41.49 + 4.4 = 62.49 \text{KN/m}$

Analysis

$$FEMAB = FEMBC = FEMCD = \frac{WL^2}{12}$$

$$= \frac{80.026 \times 8^2}{12} = 428.05 KN / m$$

$$FEMDD1 = \frac{62.49 \times 3.8^2}{12} = 75.19 KN / m$$

Stiffness factor

$$KBC = \frac{3EI}{L} = \frac{3EI}{8} = 0.38EI$$

$$KCB = \frac{4EI}{L} = \frac{4EI}{8} = 0.5EI$$

$$KCD = \frac{4EI}{L} = \frac{4EI}{8} = 0.5EI$$

$$KDC = \frac{4EI}{L} = \frac{4EI}{8} = 0.5EI$$

$$KDD1 = \frac{3EI}{L} = \frac{3EI}{3.8} = 0.79EI$$

Reference	Calculation	Out put
	<u>Distribution factor</u>	
	DFAB = $\frac{KAB}{KAB + KBC} = \frac{0.38EI}{(0.38 + 0.5)EI} = 0.43$	
	DFBC = $1 - 0.43 = 0.57$	
	DFCB= $\frac{KCB}{KCB + KCD} = \frac{0.5EI}{(0.5 + 0.5)EI} = 0.5$	
	DFBC = $1 - 0.5 = 0.5$	
	DFDC= $\frac{KDC}{KDC + KDD1} = \frac{0.5EI}{(0.5 + 0.79)EI} = 0.39$	
	DFBC = 1 - 0.39 = 0.61	

						1	
A	В		C		D		D
	0.43	0.57	0.5	0.5	0.39	0.61	
+428.05	-428.05	+428.05	-428.05	+428.05	-428.05	+75.19	-75.19
	-214.03	0	0	214.03	0	37.60	0
	-642.08	428.05	-428.05	642.08	-428.05	112.79	-75.19
	92.03	121.997	-107.02	-107.02	-122.95	192.31	
		-53.51	60.995		-53.51		
	23.01	30.50	-30.50	-30.50	20.87	20.87	
		-15.25	15.25		-15.25		
						=	
	6.56	8.69	-7.63	-7.63	5.95	9.30	
		-3.82	3.82		-3.82		
	1.64	2.18	-1.64	-1.64	1.50	2.33	
		-0.82	1.09		-0.82		
	0.35	0.47	0.55	0.55	0.32	0.50	
	-518.72	518.48	-494.78	494.78	-349.86	349.1	

Reference	Calculation	Out put
	Support moments	
	Support B = 518.72KNm	
	Support C = 494.78KNm	
	Support D = 349.86KNm	
	Span Moment	
	Span AB = $0.125WL^2 - \frac{1}{2} = (MB MC)$	
	= 0.125 x 80.26 x 8 ² Φ - $\frac{1}{2}$ = (518.72 + 494.78)	
	= 315.92KNm	
	Span BC	
	$= 0.125 \times 80.26 \times 8^2 - \frac{1}{2} = (494.78)$	
	= 575.28KNm	
	Support CD	
	= 0.125 x 80.26 x 8 ² - $\frac{1}{2}$ = (494.78 + 349.56)	
	= 400.35KNm	
	Support DD1	
	$= 0.125 \times 62.49 \times 8^2 - \frac{1}{2} = (349.86)$	
	= 62.14KNm	
	Reinforcement	
	Support B	
	$K = \frac{518.72 \times 10^6}{25 \times 300 \times 710^2} 0.0137$	
	Z = 577.00mm	
	I .	1

Reference	Calculation	Out put
	$A_{s} = \frac{518.72 \times 10^{6}}{087 \times 410 \times 577} = 252031.83 \text{mm}^{2}$	
	Provide 3 + 3 Y25 (As prov = 2950 top)	
	Support C	
	$K = \frac{494.78 \times 10^6}{25 \times 300 \times 710^2} 0.131$	
	Z = 584.52mm	
	$A_{s} = \frac{494.78 \times 10^{6}}{087 \times 410 \times 584.52} = 2393.06 \text{mm}^{2}$	
	Provide $3 + 2 \text{ Y25}$ (as provide = $2450 \text{mm}^2/\text{m}$ top)	
	Support D	
	$K = \frac{394.86 \times 10^6}{25 \times 300 \times 710^2} 0.0925$	
	Z = 627.31mm	
	$A_{s} = \frac{349.86 \times 10^{6}}{087 \times 410 \times 627.31} = 1,563.54 \text{mm}^{2}$	
	Provide 3 + 3 Y20 (as provide = 1870mm ² /m top)	
	Span reinforcement	
	Span AB	
	$bf = bw + \frac{0.7L}{10} = 300 + \frac{0.7 \times 800}{10} 860mm$	
	$K = \frac{315.92 \times 10^6}{25 \times 860 \times 710^2} = 0.02914$	
	Z = 686.20mm	
	$A_{s} = \frac{315.92 \times 10^{6}}{087 \times 410 \times 686.20} = 1290.07 \text{mm}^{2}$	

Reference	Calculation	Out put
	Proved 3Y25 (As prov = $1470 \text{mm}^2/\text{m}$ bottom)	
	Provide 3Y16 top	
	Span BC	
	$K = \frac{575.28 \times 10^6}{25 \times 860 \times 710^2} = 0.0530$	
	Z = 665.29mm	
	$A_{s} = \frac{575.28 \times 10^{6}}{087 \times 410 \times 665.29} = 2424.18 mm^{2}$	
	Proved $3 + 3Y25$ (As prov = $2950 \text{mm}^2/\text{m}$ bottom)	
	Provide 3Y16 top	
	Span CD	
	$K = \frac{400.38 \times 10^6}{25 \times 860 \times 710^2} 0.03694$	
	Z = 679.51mm	
	$A_{s} = \frac{400.38 \times 10^{6}}{087 \times 410 \times 679.51} = 1651.86 mm^{2}$	
	Proved $2 + 2Y25$ (As prov = $1960 \text{mm}^2/\text{m}$ bottom)	
	Provide 3Y16 top	
	Span DD1	
	$bf = 300 + \frac{0.7 \times 3800}{10} 566mm$	
	$K = \frac{62.14 \times 10^6}{25 \times 566 \times 710^2} 0.0087116$	
	Z = 703.04mm	
	$A_{s} = \frac{62.14 \times 10^{6}}{087 \times 410 \times 703.04} = 247.79 mm^{2}$	

	T
Reference	Calculation
	Proved 3Y16 (As prov = $603 \text{mm}^2/\text{m}$ bottom)
	Provide 3Y16 top
	Check deflection
	$= 5/8 \times 410 \times \frac{2424.18}{2950} \times \frac{1}{1} = 209.86 \text{N/mm}$
	Mf = 0.55 + $\frac{477 - 209.86}{120\left(0.9 + \frac{575 \times 10^6}{860 \times 710^2}\right)}$ = 1.55
	$\frac{Limiting\ span}{depth} = 1.55\ x\ 26 = 40.29$
	$\frac{Actual\ span}{depth} = \frac{8000}{710} = 11.27$
	Shear VAB = $\frac{WL}{2} + \frac{0 - MB3}{L}$
	$= \frac{80.20 \times 8}{2} + \frac{0 - 518.72}{8} = 255.96 \text{KN}$
	$VBA = \frac{80.2 \times 8}{2} + \frac{518.72}{8} = 385.64KN$
	$VBC \frac{80.2 \times 8}{2} + \frac{518.72 - 494.78}{8} = 323.79KN$
	$VCB = \frac{80 \times 8}{2} + \frac{494.78 - 518.72}{8} = 317.81KN$
	$VCD = \frac{80.2 \times 8}{2} + \frac{494.78 - 349.86}{8} = 338.92KN$ $VCD = \frac{80.2 \times 8}{2} + \frac{494.78 - 349.86}{8} = 338.92KN$
	$VDC = \frac{80.2 \times 8}{2} + \frac{349.86 - 494.86}{8} = 302.692KN$
	$VDD1 = \frac{62.49 \times 3.8}{2} + \frac{349.86 - 0}{8} = 210.80KN$
	$VD1D = \frac{62.49 \times 3.8}{2} + \frac{0-349.86}{3.8} = 26.66KN$
	Check shearer

Reference	Calculation	
	V = 338.92KN	
	$V = \frac{338.92 \times 10^3}{300 \times 710} = 1.591$	
	$\frac{100As}{bd} = \frac{100 \times 2950}{300 \times 710} = 1.385$	
	$Vc = \frac{0.79 (1.385)^{\frac{1}{3}} \left(\frac{400}{710}\right)^{\frac{1}{4}}}{1.25} = 0.610$	
	$\frac{b(v-vc)}{0.87 fyv} \frac{300(1.591-0610)}{0.87 x 250} = 1.453$	
	Provide Y12 @ 150	
	Check masx shear	
	$Vs = 0.6f - \frac{wu}{2} \times support \text{ width}$	
	$= 0.6 \times 338.92 - 80.2 \times \frac{0.3}{2} = 191.32 \text{KN}$	
	$V = \frac{vs}{bd} = \frac{191.32 \times 10^3}{300 \times 710} = 0.898$	
	Shear at distance from support face	
	$Vd = 0.45F - wu \left[d + \frac{0.3}{2} \right]$	
	$= 0.45 \times 338.92 - 80.2 (0.710 + 0.15)$	
	= 83.54KN	
	$V = \frac{83.5 \times 10^3}{300 \times 710} = 0.392$	
	Normal links	
	$\frac{ASV}{Sv} = \frac{0.4b}{0.87 fyv} = \frac{0.4 x 300}{0.87 x 250} = 0.552$	
7	Provide Y10 @ 250°/c	

Reference	Calculation	
	BEAM ON GRID LINE 3 – 3	
	Beam size 300 x 750	
	Self weight = 5.4KN/m	
	Wall = 7.65KN/m	
	Finishes = 0.25 KN/m	
	$Total = \underline{13.30KN/m}$	
	Load on spans	
the desired	Span C ₁ A	
	= $\frac{1}{2}$ n lx $\left[1 - \frac{1}{3 \times 2k^2}\right]$; K = Ly/Lx	
	$= \frac{1}{2} x 11.14 x 4 x \left[1 - \frac{1}{3 x 1.06^2} \right];$	
	= 15.57KN/m x 2 sides = 31.33KN/m	
	$= \frac{1}{2} x 11.14 x 4 x \left[1 - \frac{1}{3 x 2^{2}} \right];$	
	= 20.42KN/m x 2 sides = 40.84KN/m	
	Load on span DD1	
	$= \frac{1}{2} x 11.14 x 4 x \left[1 - \frac{1}{3 x 1.25^2} \right];$	
	= 17.53KN/m x 2 sides = 35.06 KN/m	
	Design of spans	
	Total dead load on span C ₁ A	
	gk = 13.3 x 31.33 = 44.63KN/m	
	Design load = 1.4 x 44.63 x 4.4 = 66.88KN/m	
	Design load on span AB, BC and CD	
	gk = 13.3 x 40.84 = 54.14KN/m	

Reference Calculation Out put

design load = $1.4 \times 54.14 \times 4.4 = 80.20 \text{KN/m}$

SPAN DD1

Design Load = $13.3 \times 35.06 \times 1.4 \times 4 = 72.10 \text{KN/m}$

Analysis

FEMC1A =
$$\frac{WL^2}{12} = \frac{66.88 \times 4.23^2}{12} = 99.72 \text{KNm}$$

$$FEMAB = FEMBC = FEMCD =$$

$$\frac{80.20 \times 8^2}{12} = 428.05 KNm$$

$$FEMDD1 = \frac{72.10 \times 5^2}{12} = 150.21 KNm$$

Stiffness factors

$$KCIA = \frac{3EI}{L} = \frac{3EI}{4.23} = 0.71EI$$

$$KAB = \frac{4EI}{L} = \frac{4EI}{8} = 0.5EI$$

$$KBA = \frac{4EI}{L} = \frac{4EI}{8} = 0.5EI$$

$$KBC = \frac{4EI}{L} = \frac{4EI}{8} = 0.5EI$$

$$KCB = \frac{4EI}{L} = \frac{4EI}{8} = 0.5EI$$

$$KCD = \frac{4EI}{L} = \frac{4EI}{8} = 0.5EI$$

Reference	Calculation	Out put
	$KDC = \frac{4EI}{L} = \frac{4EI}{8} = 0.5EI$	
	$KDD1 = \frac{3EI}{L} = \frac{3EI}{5} = 0.6EI$	
	Distribution factors	
	DFC1A = $\frac{KC1A}{KC1A + KAB} = \frac{0.71EI}{(0.71 + 0.5)EI} = 0.59$	
	DFAB = 1 - 0.59 = 0.41	
	DFBA = $\frac{KBA}{KBA + KBC} = \frac{0.5EI}{(0.5 + 0.5)EI} = 0.5$	
	DFBC = $1 - 0.5 = -0.5$	
	DFBA = $\frac{KCB}{KCB + KCD} = \frac{0.5}{0.5 + 0.5} = 0.5$	
	DFCD = 1 - 0.5 = 0.5	
	DFDC = $\frac{KDC}{KDC + KDD1} = \frac{0.5EI}{(0.5 + 0.6)EI} = 0.46$	
	DFCD = 1 - 0.46 = 0.54	

0 0.59 0.41 0.5 0.5 0.5 0.5 0.46 0.54	0
100 00 100 00 100 00 100 00 100 00 100 00	V
+99.72	.21
-49.86 0 0 214.03 0 214.03 0 72.11	
-149.58 428.05 -428.05 642.08 -428.05 642.08 -428.05 222.32	
-164.30 -114.17 -107.02 -107.02 -107.02 -107.02 +94.64 111.10	
-53.51 -57.09 -53.51 53.51	
31.57 21.94 28.55 28.5 26.76 26.76 24.62 28.90	
14.28 10.97 14.28 13.38	
-8.43 -5.86 -5.49 -5.49 -7.14 -7.14 -6.16 -7.23	
-2.75	
1.62 1.13 1.47 1.47 1.38 1.38 1.64 1.93	
0.74 0.57 0.74 0.69	
0.44 0.30 0.29 0.29 0.37 1.38 0.32 0.37	
-288.68 289.15 -558.73 559 -554.94 556.43 -356.00 356.40	

Reference	Calculation	Out put
	MOMENT	
	Support moment	
	Support A = 288.68KNm	
	Support B = 559.88KNm	
	Support C = 556.43KNm	
	Support D = 356.40KNm	
	Span momments	
	Span C1A = $0.125WL^2 - \frac{1}{2}(MA + MB)$	
	$0.125 \times 66.88 \times 4.23^{2} - \frac{1}{2} (288.68 + 559.58)$	
	= 274.69KNm	
	Span AB = 0.125 x 80.20 x $8^2 - \frac{1}{2}$ (559.88)	
	= 361.66KNm	
	Span BC = $0.125 \times 80.2 \times 8^2 - \frac{1}{2} (559.88 + 556.43)$	
	= 83.44KNm	
	Span CD = $0.125 \times 80.2 \times 8^2 - \frac{1}{2} (556.43)$	
	= 363.38KNm	
	Span DD1 = $0.125 \times 72.10 \times 5^2 - \frac{1}{2} (556.43 + 356.40)$	
	= 231.11KNm	
	Reinforcemnt	
	Supports A	
	$K = \frac{288.68 \times 10^6}{25 \times 300 \times 710^2} = 0.0764$	

Reference	Calculation	Out put
	Z = 643.50mm	
	$As = \frac{288.68 \times 10^6}{0.87 \times 410 \times 643.5} = 1257.67 mm^2$	
	Provide 3Y25 (As Prov = 1470mm ² /m Top)	
	SUPPORT B	
	$K = \frac{559.88 \times 10^6}{25 \times 300 \times 710^2} = 0.149$	
	Z = 561.32mm	
	$As = \frac{559.88 \times 10^6}{0.87 \times 410 \times 561.32} = 2796.28 mm^2$	
	Provide 3Y25 (As Prov = 2950mm ² /m Top)	
	SUPPORT C	
	$K = \frac{556.43 \times 10^6}{25 \times 300 \times 710^2} = 1.1472$	
	Z = 563.78mm	
	$As = \frac{556.43 \times 10^6}{0.87 \times 410 \times 563.78} = 2766.92 mm^2$	
	Provide 6 Y25 (As Prov = $290 \text{mm}^2/\text{m}$ Top)	
	SUPPORT D	
	$K = \frac{356.40 \times 10^6}{25 \times 300 \times 710^2} = 0.0943$	
	Z = 625.64mm	
	$As = \frac{356.40 \times 10^6}{0.87 \times 410 \times 625.64} = 1597.02 mm^2$	
	Provide 6Y20 (As Prov = 1890mm ² /m Top)	

Reference	Calculation	Out pur
	SPAN REINFORCEMENT	
	SPAN C1A	
	$bf = 300 + \frac{0.7 \times 4230}{10} 596.10 \text{mm}$	
	$K = \frac{274.69 \times 10^6}{25 \times 596.1 \times 710^2} 0.03656$	
	Z = 679.89mm	
	$A_{s} = \frac{274.69 \times 69 \times 10^{6}}{087 \times 410 \times 679.89} = 1132.66 \text{mm}^{2}$	
	Provide 3 Y 20 (As Prov = 943mm ² /m Bottom)	
	2Y16 Top	(
	SPAN AB	
	$bf = 300 + \frac{0.7 \times 8000}{10} 860mm$	
	$K = \frac{361.66 \times 10^6}{25 \times 860 \times 710^2} 0.0333$	
	Z = 682.60mm	
	$A_{s} = \frac{361.66 \times 10^{6}}{087 \times 410 \times 682.60} = 1485.30 \text{mm}^{2}$	
	Provide 4 Y 25 (As Prov = 1960mm ² /m Bottom)	
	Provide 3 Y16 Top	
	SPAN BC	
	$K = \frac{83.44 \times 10^6}{25 \times 860 \times 710^2} 0.0076987$	
	Z = 703.84mm	

		200
Reference	Calculation	Out pu
	$A_{s} = \frac{83.44 \times 10^{6}}{087 \times 410 \times 703.84} = 332.35 \text{mm}^{2}$	
	Provide 2 Y 20 (As Prov = 628mm ² /m Bottom)	
	PROV 3 Y 16 Top	
	SPAN CD	
	$K = \frac{363.38 \times 10^6}{25 \times 860 \times 710^2} 0.0335$	
	Z = 682.45mm	
	Provide 4 Y 25 (As Prov = 1492.75mm ² /m Bottom)	
	PROV 3 Y 16 Top	
	SPAN DD1	
	$bf = 300 + \frac{0.7 \times 5000}{10} 650mm$	
	$K = \frac{231.11 \times 10^6}{25 \times 650 \times 710^2} 0.02821$	
	Z = 686.96mm	
	$A_{s} = \frac{231.11 \times 10^{6}}{087 \times 410 \times 686.98} = 939.06 \text{mm}^{2}$	
	Provide 3 Y 20 (As Prov = 943mm ² /m)	
	PROV 3Y16 Top	
	Check deflection	
	Fs= 5/8 x 410 x $\frac{1492.75}{1960}$ x $\frac{1}{1}$ = 195.16Nlmm	
	Mf = 0.55 + $\frac{477 - 195.16}{120 \left(0.9 + \frac{363.38 \times 10^6}{682.45 \times 710^2}\right)}$	
	$\frac{Limiting\ span}{depth} = 1.75\ x\ 26 = 45.51$	

Reference	Calculation	
	$\frac{Actual\ span}{depth} = \frac{8000}{720} = 11.27$	
	SHEAR	
	$VC1A = \frac{WL}{2} = \frac{0 - M_A}{L}$	
	$= \frac{66.88 \times 4.23}{2} + \frac{0 - 288.68}{4.23} = 73.20 \text{KN}$	
	$VAC1 = \frac{66.88 \times 4.23}{2} + \frac{288.68 - 0}{4.23} = 209.7KN$	
	$VAB = \frac{80.20 \times 8}{2} + \frac{288.68 - 559.88}{8} = 286.9KN$	
	$VBA = \frac{80.20 \times 8}{2} + \frac{559.88 - 288.68}{8} = 354.7KN$	
	$VBC = \frac{80.20 \times 8}{2} + \frac{556.88 - 556.43}{8} = 320.37KN$	
	$VCB = \frac{80.20 \times 8}{2} + \frac{556.43 - 559.88}{8} = 321.23KN$	
	$VCD = \frac{80.20 \times 8}{2} + \frac{556.43 - 356.40}{8} = 345.8KN$	
	$VDC = \frac{80.20 \times 8}{2} + \frac{356.40 - 556.40}{8} = 295.8KN$	
	$VDD1 = \frac{72.10 \times 5}{2} + \frac{356.40 - 40}{5} = 142.56KN$	
	$VD1D = \frac{72.10 \times 5}{2} + \frac{0-356.40}{5} = 108.97KN$	
	CHECH SHEAR:	
	V = 345.8KN	
	$V = \frac{345.8 \times 10^3}{300 \times 710} = 1.623$	
	$\frac{100AS}{bd} = \frac{100 \times 2950}{3000 \times 710} = 1.384$	

Reference	Calculation	Out put
	$\mathbf{Vc} = \frac{0.79 (1.384)^{\frac{1}{3}} \left(\frac{400}{710}\right)^{\frac{1}{4}}}{1.25} = 0.610$	
	$\frac{ASV}{Sv} = \frac{0.4b}{0.87 \text{fyv}} = \frac{0.4 \text{x} 300}{0.87 \text{x} 250} 0.552$	
	Provide Y10 @ 250°/c	
	Check Max Shear	
	$Vs = 0.6f - wu \times \frac{support}{2}$	
	$= 0.6 \times 345.8 - 80.20 \times \frac{0.3}{2}$	
	$V_S = 195.45KN$	A
	$V = \frac{Vs}{bd} = \frac{195.45 \times 10^3}{300 \times 710} = 0.918$	
	End support	Space .
	Shear at distance d from support face	
	$Vd = 0.45f - wu \left(d x \frac{300}{2} \right)$	
	$= 0.45 \times 345.8 - 80.20 (0.710 \times 0.15)$	
	= 86.64KN	
	$V = \frac{86.64 \times 10^3}{300 \times 710} = 0.407$	
	Normal Links	
	$\frac{ASV}{Sv} = \frac{0.4b}{0.87 fyv} = \frac{0.4 x 300}{0.87 x 250} 0.552$	
	Provide Y10 @ 250°/c	50,00

Reference		Out put
	FEMCD = $\frac{WL^2}{12} + \frac{Pab^2}{L^2} = \frac{80.2 \times 8^2}{12} + \frac{224.30 \times 4 \times 4^2}{12}$	
	= 652.03KNm	
	FEMDD1 = $\frac{WL^2}{12} = \frac{58.29 \times 5.3^2}{12} = 136.4 \text{KNm}$	
	Stiffness factor	
	$KAB = \frac{3EI}{L} = \frac{3EI}{8} = 0.38EI$	
	$KBC1 = \frac{4EI}{3.770} = 1.38EI$	
	KCIB = 1.06EI	
	$KC1C = \frac{4EI}{L} = \frac{4EI}{4.23} = 0.95EI$	
	$KCC1 = \frac{4EI}{L} = \frac{4EI}{8} = 0.95EI$	
	$KCD = \frac{4EI}{L} = \frac{4EI}{8} = 0.5EI$	
	$KDC = \frac{4EI}{L} = \frac{4EI}{8} = 0.5EI$	
	$KDD1 = \frac{3EI}{L} = \frac{3EI}{8} = 0.57EI$	
	Distribution factors	
	DFAB = $\frac{KAB}{KAB + KBC1} = \frac{0.38}{(0.38 + 1.06)} = 0.26$	
	DFBC1 = $1 - 0.26 = 0.74$	
	DFC1B = $\frac{KC1B}{KC1B + KC1C} = \frac{1.06}{1.06 + 0.95} = 0.53$	
	DFC1C 1 – 0.53 0.47	

Out pu

1	F	3	C	1	C		D		D
e de la companya della companya della companya de la companya della companya dell	0.26	0.74	0.53	0.47	0.66	0.34	0.47	0.53	
+4666.86	-466.86	+94.99	-94.99	119.58	-199.58	652.03	-652.03	136.45	-136.45
-466.86	-233.83	0	0	59.79	0	326.02	0	68.23	+136.45
0	-7000.29	94.99	-94.99	179.37	-199.58	978.05	-652.03	204.68	
	157.38	447.92	-44.72	-39.66	-566.59	-291.88	210.25	237.10	
		-22.36	223.96		-19.83		-14594		
	5.81	16.55	-118.70	-105.26	13.88	6.74	68.59	77.35	
		-59.35	8.22		-52.63		3.37		
	15.43	43.92	-4.36	-3.86	34.74	17.89	-1.58	-1.79	
		-2.18	21.96		-1.93		8.95		
	0.57	1.61	-11.64	-10.32	1.27	0.66	-4.21	-4.74	
		-5.82	0.81		-5.15		0.33		
	1.51	4.31	-0.43	-0.38	1.27	1.75	0.16	0.14	
		-0.22	2.16		-0.19		0.86		
	0.06	0.16	-1.14	-1.02	0.13	0.06	-0.40	-0.46	
		-0.57	0.08		-0.51		0.03		
	0.15	0.42	-0.04	0.04	0.34	0.17	-0.01	-0.02	
	-519.38	519.38	-18.83	18.91	-712.65	712.44	-51163	511.29	

Reference	Calculation	Out put
	BEAM ON GRID LINE 4 – 4	
	Beam size 300 x 750	
	Self weight = $0.3 \times 0.75 \times 24$ KN/m = 5.4 KN/m	
	Wall = 7.65KN/m	
	Finishes = $0.25KN/m$	
	Total = $\underline{13.3KN/m}$	
	Load on spans	
	Span AB1	
	$= \frac{1}{2} x 11.14 x 14 x \left[1 - \frac{1}{3 x 2^2} \right] = 20.42 KNm$	
	Span BC1	
	$= \frac{1}{2} x 11.14 x 14 x \left[1 - \frac{1}{3 x 2^{2}} \right] = 20.42 x 2 Span$	
	= 40.84KN/m	
	Span C1C	
	$= \frac{1}{2} x 11.14 x 14 x \left[1 - \frac{1}{3 x 2^{2}} \right] = 20.42 x 2$	
	= 40.84KN/m	
	Span CD	
	= as in span C1C = 40.84KN/m	
	SPAN DD1	
	$= \frac{1}{2} x 11.14 x 4 x \left[1 - \frac{1}{3 x 33^{3}} \right] = 12.60 x 2 Swen$	
	= 25.19KN/m	
	Design load on spans	
	Span AB, GC, and Span CD	

Reference	Calculation	Out put
	Supports momments.	
	MB = 519.38KNm	
	MC1 = 18.81	
	MC = 712.65KNm	
	MD = 511.63KNm	
	SPANS MOMMENTS	
	Span AB = $0.125 \text{ WL}^2 + \frac{PL}{2} - \frac{1}{2} \text{ (MB x MC1)}$	
	$= 0.125 \times 80.2 \times \frac{8^2 + 115.26}{2} \times \frac{1}{2} [(5190.381) - (-18.81)]$	
	= 852.64KNm	
	Span BC1	
	$= 0.125 \times 80.2 \times 3.770^{2} - \frac{1}{2} (-18.81 + 712.65).$	
	= 204.44KNm	
	Span C1C	
	$= 0.125 \times 80.28^{2} - \frac{1}{2} (712.65)$	
	= 176.95KNm	
	Span CD	
	$= 0.125 \times 80.28^{2} - \frac{1}{2} (712.65 + 511.63) + \frac{224.3 \times 8}{2}$	
	= 926.66KNm	
	Span DD1	
	$= 0.125 \times 58.29 \times 5.3^{2} - \frac{1}{2} (511.63)$	
	= 51.15KNm.	
	Reinforcement	
	Supports	

Reference	Calculation	
	Support B.	
	$K = \frac{519.38 \times 10^6}{25 \times 300 \times 710^2} = 0.1374$	
	Z = 576.54mm	
	$A_{S} = \frac{519.38 \times 10^{6}}{0.87 \times 410 \times 576.54} = 2525.53 mm^{2}$	
	Provide $3 + 3 \text{ Y25 (As Provide} = 2950 \text{mm}^2/\text{m})$	
	Support C1	
	$K = \frac{18.81 \times 10^6}{25 \times 300 \times 710^2} = 0.004975$	
	Z = 706.00mm	
	$\mathbf{As} = \frac{18.81 \times 10^6}{0.87 \times 410 \times 7106} = 74.69 mm^2$	
	Provide 2Y16 (As Provide = 402mm ² /m Top)	
	Support C	
	$K = \frac{712.65 \times 10^6}{25 \times 300 \times 710^2} = 0.1885 > 0.156$	
	Compression reinforcement required	
	Z = 551.50mm	
	Steel compressed	
	$MU = 0.156 FCubd^2$	
	$= 0.156 \times 25 \times 300 \times 710^2 = 589.80 \times 10^6 \text{ KNm}$	
	$As = \frac{(712.65 - 589.80) \times 10^6}{0.95 \times 410 \times (d - d^1)}$	
	$= \frac{122.85 \times 10^6}{0.95 \times 410 \times 710 - 20} = 463.83 mm^2$	

Reference	Calculation	
	Provide 2 Y20 (As Prov = 628mm ² /m bottom)	
	Tension steel	
	$As = \frac{589.80 \times 10^6}{0.87 \times 410 \times 551.50} = 2998.17 mm^2$	
	Provide $3 + 4 \text{ Y25 (As Prov} = 3440 \text{mm}^2/\text{m})$	
	Support D	
	$K = \frac{51.63 \times 10^6}{25 \times 300 \times 710^2} = 0.1353$	
	Z = 579.11mm	
	$As = \frac{511.63 \times 10^6}{0.87 \times 410 \times 579.11} = 2476.81 \text{mm}^2$	
	Provide 5 Y25 (As Prov = 2450mm ² /m Top)	
	span reinforcement Span AB	
	$bf = bw \times \frac{0.7L}{10}$	
	$= 300 \ x \frac{0.7 \ x \ 8000}{10} = 860 mm$	
	$K = \frac{852.64 \times 10^6}{300 \times 860 \times 710^2} = 0.006555$	
	Z = 704.78mm	
	$As = \frac{852.64 \times 10^6}{0.87 \times 410 \times 704.28} = 3391.63 \text{mm}^2$	
	Provide $3 + 4 \text{ Y}25 \text{ (As Prov} = 3440 \text{mm}^2/\text{m bottom)}$	
	Provide 3 Y top.	

Reference	Calculation	
	Span BC1	
	$bf= 300 \times \frac{0.7 \times 3770}{10} = 563.9 mm$	
	$K = \frac{204.44 \times 10^6}{25 \times 300 \times 710^2} = 0.05407$	
	Z = 664.45mm	
	$As = \frac{204.44 \times 10^6}{0.87 \times 410 \times 664.4} = 862.65 mm^2$	
	Provide 3 Y20 (As Prov = $943 \text{mm}^2/\text{m}$)	
	Provide 2 Y 16 Top.	
	Span C ₁ C	
	$bf = 300 \ x \frac{0.7 \ x \ 4230}{10} = 596.10 mm$	
	$K = \frac{176.95 \times 10^6}{25 \times 596.1 \times 710^2} = 0.04680$	
	Z = 670.85mm	
	$As = \frac{176.95 \times 10^6}{0.87 \times 410 \times 670.85} = 739.47 mm^2$	
	Provide 3 Y20 (As Prov = 943mm ² /m bottom)	
	Provide 2 Y 16 Top	
	Span CD	
	$K = \frac{926.66 \times 10^6}{25 \times 410 \times 710^2} = 0.085499$	
	Z = 573.84mm	
	$As = \frac{926.66 \times 10^6}{0.75 \times 410 \times 573.84} = 452717 mm^2$	

Reference	Calculation	
	Provide 5 + 5 Y25 (As Provide = 4910mm ² /m bottom)	
)	Provide 3 Y 16 Top	
	Span DD1	
	$bf = 300 \ x \frac{0.7 \ x \ 5300}{10} = 611 mm$	
	$K = \frac{51.15 \times 10^6}{25 \times 671 \times 710^2} = 0.00604488$	
	Z = 705.21mm	
	$As = \frac{51.15 \times 10^6}{0.87 \times 410 \times 705.21} = 203.34 \text{mm}^2$	
	Provide 3 Y16 (As Prov = 603mm ² /m bottom)	
	Check deflection	-
	$F_S = 5/8 \times 410 \times \frac{4527.17}{4910} \times \frac{1}{1} = 236.67 \text{N/mm}$	
	Mf = 0.55 + $\frac{477 - 236.27}{120\left(0.9 + \frac{926.66 \times 10^6}{860 \times 710^2}\right)}$ = 1.21	
	$\frac{Limiting\ span}{depth} = 1.21\ x\ 26 = 31.47$	
	$\frac{Actual\ span}{depth} = \frac{8000}{710} = 11.27$	
	Shear	
	$VAB = \frac{WL}{2} + \frac{PL}{L} = \left(\frac{0 - MB3}{L}\right)$	
	$= \frac{80.28 \times 8}{2} + \frac{115.26 \times 8}{8} + \left(\frac{0 - 519.38}{8}\right) = 371.14 \text{KN}$	
	$VBA = \frac{80.2 \times 8}{2} + \frac{115.26 \times 8}{8} + \left(\frac{519.38 - 0}{8}\right) = 500.98KN$	

Reference	Calculation	Out put
	$Vc = \frac{0.79 (1.615)^{\frac{1}{3}} (\frac{400}{710})^{\frac{1}{4}}}{1.25} = 0.642$	
	$\frac{ASV}{Sv} = \frac{0.4b}{0.87 \text{fyv}} = \frac{0.4 x 300}{0.87 x 250} 0.551$	
	Provide Y10 @ 250°/c	
	Check Max Shear	
	$V_S = 0.6f - wu \times \frac{0.3}{2}$	
	$= 0.6 \times 570.23 - 80.2 \times 0.15 = 330.11$ KN	
	Check Max Shearer	
	$V = \frac{300.11 \times 10^3}{300 \times 710} = 1.549$	
	End support	
	Shear at distance d from support face	
	$Vd = 0.45 \times 570.23 - 80.2 (0.710 \times 0.15) = 187.63KN$	
	$V = \frac{187.63 \times 10^3}{300 \times 710} = 0.888$	
	$\frac{ASV}{Sv} = \frac{0.4b}{0.87 \text{fyv}} = \frac{0.4 \text{x} 300}{0.87 \text{x} 250} 0.552$	
	Provide Y10 @ 250mm	
	Fs = 5/8 x 410 x $\frac{825.13}{943}$ x $\frac{1}{1}$ = 224.22N/mm ²	
	Mf = 0.55 + $\frac{477 - 224.22}{120\left(0.9 + \frac{204.4 \times 10^6}{840.79 \times 710^2}\right)}$ = 2.07	
	$\frac{Limiting\ span}{depth} = 2.07\ x\ 20 = 41.47$	

Reference	Calculation	Out put
	$\frac{Actual\ span}{depth} = \frac{8797}{710} = 12.39$	
	Shear	
	$F = wu \times spam$	
	$= 21.13 \times 8797 = 18588KN$	
	At face of support	
	Shear $Vs = \frac{f}{2} - \frac{wu \times supportw \text{ with }}{2}$	
	$= \frac{185.88}{2} - 21.13 x \frac{0.225}{2} = 90.56 \text{KN}$	
	Shear stress	
	$V = \frac{Vs}{bd} = \frac{90.56 \times 10^3}{225 \times 710} = 0.567$	
	Shear from distance d from the face of the support	
	Vd = Vs - wud	
	$= 90.56 - 21.13 \times 0.710$	
	= 75.56KN	
	$V = \frac{75.56 \times 10^3}{225 \times 710} = 0.473$	
	$\frac{100AS}{bd} = \frac{100 \times 943}{225 \times 710} = 0.590$	
	$Vc = \frac{0.79 (1.590)^{\frac{1}{3}} \left(\frac{400}{710}\right)^{\frac{1}{4}}}{1.25} = 0.459$	
	$\frac{ASV}{Sv} = \frac{0.4b}{0.87 \text{fyv}} = \frac{0.4 \text{x} 225}{0.87 \text{x} 250} 0.414$	
	Provide Y10 @ 250°/c	

Reference	Calculation	Out 1	put
T COTOT OTTOO			0000

BEAM GRID LINE 2A₁ – 2A₁

LOADINGS

Beam size 225 x 600

Self weight = $0.225 \times 0.225 \times 0.6 \times 24 = 3.24$ KN/m

Wall =

7.65KN/m

Finishes =

0.25KN/m

Total =

11.4KN/m

Load on spans

Span BICI

Load from stair (flight) = 15.03KN/m

$$= \frac{1}{2} \times 15.03 \times 3.595 (1 - \frac{1}{3} \times 1.39^{2})$$

= 22.34KN/m

Total dead load = $11.14 \times 22.34 = 33.48 \text{KN/m}$

Design load = $33.48 \times 1.4 \times 4.4 = 51.27 \text{KN/m}$

Span C1A

=
$$\frac{1}{2} \times 11.14 \times 4 \left(1 - \frac{1}{3 \times 1.06^2} \right) = 15.64 \text{KN/m}$$

Total dead load = $11.14 \times 15.64 = 26.78 \text{KN/m}$

Design load = $26.76 \times 1.4 + 4.4 = 41.89 \text{KN/m}$

Design load span A1B1

 $1.4 \times 11.14 + 4.4 = 20.0$ KN/m

Reference	Calculation	Out pu
	Analysis	
	FEMA1B1 = $\frac{WL^2}{12} = \frac{20 \times 5.966^2}{12} = 59.32 KN / m$	
	FEMB1C1 = $\frac{WL^2}{12} = \frac{51.27 \times 4.966^2}{12} = 105.36 KN / m$	
	FEMC1A = $\frac{WL^2}{12}$ = $\frac{41.89 \times 4.23^2}{12}$ = 62.46 <i>KN</i> / <i>m</i>	
	Stiffness factors	
	$KAB1 = \frac{3EI}{L} = \frac{3EI}{5.966} = 0.50EI$	
	$KB1C1 = \frac{4EI}{L} = \frac{4EI}{4.996} = 0.80EI$	
	$KC1A = \frac{3EI}{L} = \frac{3EI}{4.23} = 0.71EI$	
	DISTRIBUTION FACTOR	
	DFAB1 = $\frac{KAB1}{KAB1 + KB1C1} = \frac{0.5}{0.5 + 0.8} = 0.39$	
	DFB1C1 = $1 - 0.39 = 0.61$	
	DFC1B1 = $\frac{KC1B1}{KC1B1 + K1A} = \frac{0.8}{0.8 + 0.71} = 0.66$	
	DFB1C1 = $1 - 0.66 = 0.34$	

		Calcu	ılation			Out put
	A	B1		C1	A	
	+59.32 0.39		0.66	0.34		
	-59.3		-105.36		-62.46	
	-29.60	5 0	0	31.23		
, "	- 88.98	105.36	-105.36	93.69	0	
	-6.39		7.70	3.97		
		3.85	-4.995			
	- 1.50	-2.35	2.30	1.70		
	-1.50	1.15	-1.18	1.70		
	-0.43		0.78	0.40		
		0.39	-0.23			
	-0.1:	-0.24	0.23	0.12		
	- 97.4	97.47	-100.88	100.00		
	Support Momen	its				
		45T(2) D. f.				
	Support $B1 = 97$	47KNM				
	C	OOLVINA				
	Support $C1 = 100$	IVIVIA166.U				
	Span Moment					

Span AB =
$$0.125WL^2 - \frac{1}{2} (MB1 + MC1)$$

= $0.125 \times 20 \times 5.966 - \frac{1}{2} (97.47 + 100.88)$
= $84.26KN/m$
MB1C1 = $0.125 \times 41.89 \times 4.23 - \frac{1}{2} (100.88)$
= $18.44KN/m$

$$MC1A = 0.125 \times 41.89 \times 4.23 - \frac{1}{2} (100.88 + 97.47)$$

= 77.03 KN/m

Reinforcement

Supports

Support B

$$K = \frac{97.47 \times 10^6}{25 \times 255 \times 130^2} = 0.0553$$

Z = 523.20mm

Reference	Calculation	Out put
	$As = \frac{97.47 \times 10^6}{0.87 \times 410 \times 523.20} = 522.28 mm^2$	
	Provide 3 Y20 (As Provide = 943mm ² /m Top)	
	Provide 2 Y 16	
	Support C1	
	$K = \frac{100.88 \times 10^6}{25 \times 255 \times 560^2} = 0.0572$	
	Z = 521.77mm	
	$As = \frac{100.88 \times 10^6}{0.87 \times 410 \times 521.77} = 542.03 mm^2$	
	Provide 3 Y 20 (As Provide = 943 mm ² /m Top)	
	Span reinforcement	
	Span A1B1	
	$bf = bw + \frac{0.7L}{10} = 225 + \frac{0.7 \times 5966}{10} = 642.6^2 mm$	
	$K = \frac{84.26 \times 10^6}{25 \times 642.62 \times 560^2} = 0.01672$	
	Z = 549.38mm	
	$As = \frac{84.26 \times 10^6}{0.87 \times 410 \times 549.38} = 429.98 \text{mm}^2$	
	Provide 2 Y20 (As Provide = 628mm ² /m bottom)	
	Provide 2 Y 16 Top	
	Span B1C1	
	$bf = 225 + \frac{0.7 \times 4996}{10} = 574.72 mm$	
	1	1

Reference	Calculation	Out put
	$K = \frac{18.44 \times 10^6}{25 \times 574.72 \times 560^2} = 0.004092$	
	Z = 557.41mm	
	$As = \frac{18.44 \times 10^6}{0.87 \times 410 \times 557.41} = 414.41 \text{mm}^2$	
	Provide 2 Y20 (As Provide = 626mm ² /m bottom)	
	Provide 2 Y 12 Top	
	Span C1A	
	$bf = 225 + \frac{0.7 \times 4.230}{10} = 521.1 mm$	
	$K = \frac{77.03 \times 10^6}{0.87 \times 410 \times 521.1} = 414.32 mm^2$	
	Provide 2 Y20 (As Prove = 628mm ² /m)	
	Provide 1 Y 16 Top	
	Check deflection	
	Fs = 5/8 x 410 x $\frac{429.28}{628}$ x $\frac{1}{1}$ = 175.45mm	
	Mf = 0.55 + $\frac{477 - 175.45}{120\left(0.9 + \frac{84.26 \times 10^6}{642.6 \times 560^2}\right)}$ = 2.46	
	$\frac{Limiting\ span}{depth} = 2.46\ x\ 26 = 63.87$	
	$\frac{Actual\ span}{depth} = \frac{5966}{560} = 10.65$	
	Shear	
	$VA1B1 = \frac{WL}{2} = \frac{0 - MB1}{L}$	
	$= \frac{20 \times 5.966}{2} + \frac{0 - 97.47}{5.966} = 43.32 KN$	

Reference	Calculation	Out put
	$VB1A1 = \frac{20 \times 5.966}{2} + \frac{97.47 - 0}{5.966} = 76KN$	
	VB1C1 = $\frac{51.27 \times 4.996}{2} + \frac{97.47 - 100.88}{4.996} = 127.39 KN$	
	$VC1B1 = \frac{51.27 \times 4.996}{2} + \frac{100.88 - 97.47}{4.996} = 128.75KN$	
	$VC1A = \frac{41.89 \times 4.23}{2} + \frac{100.88 - 0}{4.230} = 112.45KN$	
	$VAC1 = \frac{41.89 \times 4.23}{2} + \frac{0 - 100.88}{4.230} = 64.75KN$	
	Check Shear	
	V = 128.75KN	
	$V = \frac{128.75 \times 10^3}{22.5 \times 560} = 1.02$	
	$\frac{100AS}{bd} = \frac{100 \times 943}{225 \times 560} = 1.02$	
	$Vc = \frac{0.79 (0.784)^{\frac{1}{3}} (\frac{400}{560})^{\frac{1}{4}}}{1.25} = 0.536$	
	$\frac{ASV}{Sv} = \frac{b(v - vc)}{0.87 fyv} = \frac{255(1.02 - 0.536)}{0.87 x 250} = 0.501$	
	$\frac{ASV}{Sv} = \frac{0.4b}{0.87 fyv} = \frac{0.4 x 225}{0.87 x 250} 0.414$	
	Provide Y10 @ 250°/ _c	
	Check Max Shear	
	$V_s = 0.6f - wu = \frac{\text{support width}}{2}$	
	$= 0.6 \times 197.1 - 55.47 \times \frac{0.225}{2} = 112.02KN$	
	1	

Reference	Calculation	Out put
	$V = \frac{112.02 \times 10^3}{225 \times 560} = 0.889$	
	End support	
	Shear at distance d from support face	
	$Vd = 0.45f - wu \frac{(d + 0.225)}{2}$	
	$= 0.45 \times 197.1 - 55.47 (0.7 + 0.115)$	
	= 43.49KN	
	$V = \frac{43.49 \times 10^3}{22.5 \times 560} = 0.345$	
	$\frac{ASV}{Sv} = \frac{0.4b}{0.87 \text{fyv}} = \frac{0.4 \text{x} 225}{0.87 \text{x} 250} 0.414$	
	Provide Y 10 @ 250mm	

Reference Calculation Out put BEAM ON GRID LINE B - B Loading Beam size 600 x 750 Self weight of the beam = $0.6 \times 0.75 \times 24$ 10.8KN/m Wall = 7.65KN/m Finishes = 0.25KN/m Total = 18.7KN/m Load on span 1 - 2 = 2 - 3 and 3 - 4 $= \frac{1}{2} \times 11.14 \times 8 (1 - \frac{1}{3} \times 1^{2})$ $= 29.72 \times 2 \text{ sides} = 59.44 \text{KN/m}$ Load from BM on grid line 1A - 1A, 2A - 2A and 3A - 3A $\frac{WL}{2} = \frac{80.20 \times 8}{2} = 320.8 KN / m$ 320.8KN/M 320.8KN/M 320.8KN/M

Analysis

FEM 12 = FEM 23 = FEM4

$$= \frac{WL^2}{12} + \frac{pab^2}{L^2} = \frac{80.20 \times 8^2}{12} + \frac{320.8 \times 4 \times 4^2}{8^2}$$

= 748.53KN/m

Stiffness factors

Reference	Calculation	Out put
	$K_{12} = \frac{3EI}{L} = \frac{3EI}{8} = 0.38EI$	
	$K_{23} = \frac{4EI}{L} = \frac{4EI}{8} = 0.5EI$	
	$K_{32} = \frac{4EI}{L} = \frac{4EI}{8} = 0.5EI$	
	$K_{34} = \frac{4EI}{L} = \frac{4EI}{8} = 0.5EI$	
	$K_{43} = \frac{3EI}{L} = \frac{3EI}{8} = 0.38EI$	
	Distribution factors	
	$DF_{12} = \frac{K12}{K_{12} + K_{23}} = \frac{0.38}{(0.38 \times 0.5)EI} = 0.43$	
	$DF_{12} = 1 - 0.43 = 0.57$	
	DF ₃₂ $\frac{K_{23}}{K_{23} + K_{32}} = \frac{0.5EI}{(0.5 \times 0.5)EI} = 0.5$	
	$DF_{34} = 1 - 0.5 = 0.5$	
	$= 0.125 \times 59.44 \times 8^2 \times \frac{320.8 \times 8}{2} - \frac{1}{2} (906.30)$	2
	= 1305.57KN/m	
	Span 23	
	= 0.125 x 59.44 x 8 ² x $\frac{320.8 \times 8}{2} - \frac{1}{2}$ (906.30 x 863.98)	
	= 813.58KN/m	
	Span 34	
	$= 0.125 \times 59.44 \times 8^2 \times \frac{320.8 \times 8}{2} - \frac{1}{2} (863.98)$	
	= 1326.73KN/m	
		1

Reference			Calcu	ulation			Out
	Reinford	ement				0	11.00
	Supports						
	Support	2					
	$K = \frac{9}{2}$	$\frac{006.30 \times 10}{\times 600 \times 71}$	$\frac{0^6}{10^2} = 0.11$	198		1 1 1 1 1 1 1	
	25	× 600 × 7	102				
	7 507						
	Z = 597.0	65mm					
	As = -	906.3×	106	= 4251.3 <i>m</i>	m^2		
	0	$.87 \times 410$	< 597.65	1201.0711			
	Provide :	5 + 5 Y25	(As Prov	ided 491m	nm²/m To	p)	
	Support	3					
	$K = \frac{8}{25}$	$\frac{363.98 \times 10}{\times 600 \times 7}$	$\frac{0^6}{10^2} = 0.11$	1426			
	25	× 600 × 7	10-				
	Provide 4	4 + 5 Y25	(As Prov	ided 4420	mm²/m T	op)	
	1		2	9	3	4	
	743 53	0.43	0.57	0.5 -784.53	0.54	749 52	
	743.33	- 374.26	0	0	374.26	+748.53	
	-/48.53		1		l .	1 1	
	-748.53	- 1122.79	748.53	748.53	1122.79	0	
			748.53 213.33 -93.56		1122.79 -187.13	0	
		- 1122.79	213.33	748.53 187.13		0	
		- 1122.79 160.93	213.33 -93.56	748.53 187.13 106.66	-187.13	0	
		- 1122.79 160.93	213.33 -93.56 53.33 -26.66 15.19	748.53 187.13 106.66 -53.33 26.66 -13.33	-187.13	0	
		- 1122.79 160.93 40.23	213.33 -93.56 53.33 -26.66 15.19 -26.66	748.53 187.13 106.66 -53.33 26.66 -13.33 26.66	-187.13 -53.33 -53.33	0	
		- 1122.79 160.93 40.23	213.33 -93.56 53.33 -26.66 15.19	748.53 187.13 106.66 -53.33 26.66 -13.33	-187.13 -53.33	0	
		- 1122.79 160.93 40.23	213.33 -93.56 53.33 -26.66 15.19 -26.66 3.79 -1.89	748.53 187.13 106.66 -53.33 26.66 -13.33 26.66 -3.79 1.89	-187.13 -53.33 -53.33	0	
		- 1122.79 160.93 40.23 11.46 2.86 0.81	213.33 -93.56 53.33 -26.66 15.19 -26.66 3.79 -1.89	748.53 187.13 106.66 -53.33 26.66 -13.33 26.66 -3.79 1.89	-187.13 -53.33 -53.33	0	
		- 1122.79 160.93 40.23 11.46 2.86	213.33 -93.56 53.33 -26.66 15.19 -26.66 3.79 -1.89	748.53 187.13 106.66 -53.33 26.66 -13.33 26.66 -3.79 1.89	-187.13 -53.33 -53.33	0	

Reference	Calculation	Out pu
	Support Moments	
	$M_2 = 906.30 \text{KNM}$	
	$M_3 = 863.98KNM$	
	Span Moment	
	Span 1 – 2	
	$= 0.125 \times WL^{2} \times \frac{PL}{2} - \frac{1}{2} (M_{2})$	
	Span Reinforcement	
	Span 1 – 2	
	$bf = bw + \frac{0.7L}{10} = 600 \times \frac{0.7 \times 8000}{10} = 1160 \text{mm}$	
	$K = \frac{1305.57 \times 10^6}{25 \times 1160 \times 710^2} 0.08930$	
	Z = 630.07mm	
	$A_{s} = \frac{1305.57 \times 10^{6}}{087 \times 410 \times 630.07} = 5809.09 mm^{2}$	
	Provide 6 + 6Y 125 (As Prov = 5900mm ² /m Bottom)	
	Prov 3Y126 Top	
	Span 2 – 3	
	$K = \frac{873.58 \times 10^6}{25 \times 1160 \times 710^2} 0.05975$	
	Z = 659.22mm	
	$A_{s} = \frac{873.58 \times 10^{6}}{087 \times 410 \times 659.22} = 3715.09 mm^{2}$	
	Provide 4 + 4 Y25 (As Prov = 3930mm ² /m)	
	Prov 3Y16 Top	

Reference	Calculation	
	Span 3 – 4	
	$K = \frac{1326.73 \times 10^6}{25 \times 1160 \times 710^2} 0.09075$	
	Z = 629.25mm	
	$A_{s} = \frac{1326.73 \times 16^{6}}{25 \times 1160 \times 710^{2}} = 5910.94 mm^{2}$	
	Z = 629.25mm	
	$A_{s} = \frac{1326.73 \times 10^{6}}{087 \times 410 \times 629.25} = 5910.94 \text{mm}^{2}$	
	Provide $6 + 6 \text{ Y25}$ (As Prov = $5900 \text{mm}^2/\text{m}$ Bottom)	
	Prov 3Y16 Top	
	Check deflection	
	$F_S = 5/8 \times 410 \times \frac{5910.94}{5900} \times \frac{1}{1} = 256.72 \text{N/MM}$	
	Mf = 0.55 + $\frac{477 - 256.72}{120\left(0.9 + \frac{1326.73 \times 10^6}{11.60 \times 710^2}\right)}$ = 1.13	
	$\frac{Limiting\ span}{depth} = 1.13\ x\ 26 = 29.36$	
	$\frac{Actual\ span}{depth} = \frac{8000}{710} = 11.27$	
	Shear	
	$V_{12} = \frac{WL}{2} + \frac{PL}{L} + \frac{0 - M_2}{L}$	
	$= \frac{59.44 \times 8}{2} + \frac{320.8 \times 8}{8} + \frac{0 - 906.3}{8} = 444.47 \text{KN}$	
	$V_{21} = \frac{59.44 \times 8}{2} + \frac{320.8 \times 8}{8} + \frac{906.3 - 0}{8} = 671.8KN$	
	T. Control of the Con	

Out put

Reference	Calculation	Out put
	$V_{23} = \frac{59.44 \times 8}{2} + \frac{320.8 \times 8}{8} + \frac{906.3 - 863.98}{8} = 563.05KN$	
	$V_{32} = \frac{59.44 \times 8}{2} + \frac{320.8 \times 8}{8} + \frac{863.98 - 906.3}{8} = 553.27KN$	
	$V_{34} = \frac{59.44 \times 8}{2} + \frac{320.8 \times 8}{8} + \frac{863.93 - 0}{8} = 666.55KN$	
	$V_{43} = \frac{59.44 \times 8}{2} + \frac{320.8 \times 8}{8} + \frac{0 - 863.93}{8} = 450.57 \text{KN}$	
	Check Shear	
	V = 666.55KN	
	$V = \frac{666.55 \times 10^3}{300 \times 710} = 3.13$	
	$\frac{100As}{bd} = \frac{100 \times 4910}{300 \times 710} = 2.31$	
	$Vc = \frac{0.79 (2.231)^{\frac{1}{3}} \left(\frac{400}{710}\right)^{\frac{1}{4}}}{1.25} = 0.723$	
	$\frac{ASV}{Sv} = \frac{0.4b}{0.87 fyv} = \frac{0.3 x 300}{0.87 250} 0.552$	
	Provide Y10 @ 250°/c	
	CHECK MAX SHEAR:	
	$V_s = 0.6F - wu \times \frac{0.3}{2}$	
	$= 0.6 \times 666.55 - 59.44 \times 0.15$	
	= 391.01KN	
	$V = \frac{391.01 \times 10^2}{300 \times 710} = 1.836$	
	End support	
	Shear at Distance d from support face	

eference	Calculation	Out put
	$Vd = 0.45 \times 666.55 - 59.44 (0.710 + 0.15)$	
	= 248.83KN	
	$V = \frac{248.83 \times 10^2}{300 \times 710} = 1.168$	
	300 x 710	
	$\frac{ASV}{Sv} = \frac{0.4b}{0.87 fyv} = \frac{0.4 x 300}{0.87 x 250} = 0.552$	
	Sv = 0.87 fyv = 0.87 x 250	
	Provide Y10 @ 250mm ^c / _c	
		27.56

Reference	Calculation	Out put

BEAM ON GRID LINE B1 B1

Loadings

Beam size 225 x 600

Self weight = $0.225 \times 0.6 \times 24 = 3.24$ KN

$$Wall = 7.65KN/m$$

Finishes =
$$0.25$$
KN/m

Total =
$$\underline{11.KN/m}$$

$$D = 600 - 30 \frac{1}{2} \times 20 = 560 \text{mm}$$

Load from star (flight)

$$= \frac{1}{2} \times 15.03 \times 1.885 (1 - \frac{1}{3} \times 3.12^2)$$

= 13.68KN/m

Total dead load = $1.14 \times 13.68 = 24.82 \text{KN/m}$

Design Load = $25.9 \times 1.4 \times 4.4 = 39.15 \text{KN/m}$

$$M = 0.125 \text{wl}^2$$

$$= 0.125 \times 39.15 \times 5.888^{2}$$

= 169.65 KN/m

Reinforcement

$$Bf = 225 \times \frac{0.7 \times 5888}{10} = 637.16 \text{mm}$$

Reference	Calculation	Out put
	$K = \frac{169.65 \times 10^6}{25 \times 637.16 \times 560} 0.0339$	
	Z = 538.03mm	
	$A_{s} = \frac{169.65 \times 10^{6}}{087 \times 410 \times 538.03} = 88.398 mm^{2}$	
	Provide 3 Y 120 (As Prov = 943mm ² /m Bottom)	
	Prov 2Y16 Top	
	Check deflection	
	$F_S = 5/8 \times 410 \times \frac{883.98}{943} \times \frac{1}{1} = 240.21 \text{N/mm}$	
	Mf = 0.55 + $\frac{477 - 240.21}{120\left(0.9 + \frac{169.65 \times 10^6}{637.16 \times 710^2}\right)}$	
	$\frac{Limiting\ span}{depth} = 1.68\ x\ 20 = 3356$	
	$\frac{Actual\ span}{depth} = \frac{5888}{560} = 10.51$	
	Deflection Ok	
	Shear	
	$F = wu \times span$	
	= 39.15 x 5888	
	= 230.52KN	
	At face of support	
	Shear $Vs = f/s - wu \times \frac{\text{support width}}{2}$	
	= 110.86KN	
	Shear stress V = $\frac{Vs}{bd} = \frac{100.86 \times 10^3}{250 \times 560} = 0.879$	

Reference	Calculation	Out pu	
	Shear from distance		
	Vd = Vs - wud		
	$= 110.86 - 39.15 \times 0.56 = 88.94 \text{KN}$		
	$V = \frac{88.94 \times 10^3}{225 \times 260} = 0.706$		
	$\frac{100As}{bd} = \frac{100 \times 943}{250 \times 560} = 0.784$		
	$Vc = \frac{0.79 (0.784)^{\frac{1}{3}} \left(\frac{400}{560}\right)^{\frac{1}{4}}}{1.25} = 0.528$		
	$\frac{ASV}{Sv} = \frac{0.4b}{0.87 fyv} = \frac{0.4 x 225}{0.87 250} 0.414$		
	Provide Y10 @ 275°/c		

Reference Calculation Out put

BEAM ON GRID LINE C1 - C1

Loading size = 300×750

Self weight = $0.3 \times 0.75 \times 24$

$$=$$
 5.4KN/m

Wall =
$$7.65KN/m$$

Finishes =
$$0.25KN/m$$

Total =
$$13.3$$
KN/m

Load from panel 1

=
$$\frac{1}{2} \frac{1}{3k^2}$$
; $k = \frac{ly}{lx}$

=
$$\frac{1}{2} \times 11.14 \times 4.23 \left[1 - \frac{1}{3 \times 2.8^2} \right]$$
; 19.78 KN/m

Total dead load = 13.3 + 19.78 = 33.18

Design load = $1.4 \times 33.08 * 4.4 = 50.71 \text{KN/m}$

Load from beam span CA convert to point load

$$=\frac{WL}{2}=\frac{66.88 \times 4.23}{2}=141.45KN$$

Take moment above 3A

$$M = 50.71 \times 8.576 \times 8.576 + 141.45 \times 4056$$

= 2438.52KNm

Reinforcemnt

Reference	Calculation	Out put
	bf = bw x $\frac{0.7L}{10}$ = 300 + $\frac{0.7 \times 8576}{10}$ = 900.32	
	$K = \frac{2438.52 \times 10^6}{25 \times 900 \times 710^2} = 0.21499 > 0.156$	
	$Z = d(0.5 + \sqrt{0.25 - \frac{0.156}{0.9}})$	
	$Z = 710(0.5 + \sqrt{0.25 - \frac{0.156}{0.9}} 551.59 \text{mm}$	
	Compressor bar	
	$Mu = 0.156 \times 25 \times 900 \times 32 \times 710^2 = 1700.02$	
	$As^{1} = \left(\frac{2438.52 - 1770.02}{0.95 \times 410 \times 680}\right) \times 10^{6} = 2523.97 \text{mm}^{2}$	
r. e.,	Prove $3 + 3 \text{ Y } 25 \text{ (As prov top} = 2950 \text{mm}^2/\text{m}$	
	Tension bar	
	As $\frac{1770.02 \times 10^6}{0.87 \times 410 \times 551.59} + 252397 = 11520.16 \text{mm}^2$	
	Provide 7 + 7 Y 32 + 2 Y 16	
	(As prove = $11662 \text{mm}^2/\text{m bottom}$)	
	Check deflection	
	= 5/8 x 410 x $\frac{11520}{11662}$ x $\frac{1}{1}$ = 253.13	
	Mf = 0.55 + $\frac{477 - 253.13}{120\left(0.9 + \frac{2438.52 \times 10^6}{785 \times 710^2}\right)} = 0.847$	
	$\frac{Limiting\ span}{depth} = 0.847\ x\ 20 = 16.95$	
	$\frac{Actual\ span}{depth} = \frac{8576}{710} = 12.08$	

Reference	Calculation	Out put
	Shear	
	$F = wu \times spam$	
	= 50.71 x 8576 = 434.89KN	
	At face of support	
	Shear $V_5 = f/2 - wu \times \frac{\text{support with}}{2}$	
	$= \frac{434.89}{2} - 50.71 x \frac{0.3}{2} = 209.84 KN$	
	Shear stress	
	$V = \frac{Vs}{bd} = \frac{209.84 \times 10^3}{300 \times 710} = 0.985$	
	Shear from distance d from the face of the support	
	$Vd = Vs - wud = 2309.84 - 50.71 \times 0.71 = 173.84KN$	
	$V = \frac{173.84 \times 10^3}{300 \times 710} = 0.816$	
	$\frac{100As}{bd} = \frac{100 \times 11520}{300 \times 710} = 5.408$	
	$Vc = \frac{0.79 (5.408)^{\frac{1}{3}} \left(\frac{400}{710}\right)^{\frac{1}{4}}}{1.25} = 0.961$	
	$\frac{ASV}{Sv} = \frac{0.4b}{0.87 \text{fyv}} = \frac{0.4 \text{x} 300}{0.87 \text{x} 250} = 0.552$	
	Provide Y10 @ 250mm	
1		

Reference		Calc	ulation	Out put
	TYPICAL FLOOR B			
	$Dh-c-\frac{1}{2}\Phi$			
	h = 750mm			
	b = 225mm			
	c = 30mm			
	$d = 750 - 30 - \frac{1}{2} \times 0$			
	d = 710mm			
	BEAM ON GRID LIN	E 1 –	-1	
	Loading:			
	Self weight of the bean	n =	0.225 x 7.65KN/m	
		=	4.05KN/m	
	Wall	=	$2.55 \times 3.0 = 7.65$ KN/m	
	Finishes	=	$0.0125 \times 20 = 0.25$ KN/m	
	Total	=	11.95KN/m	
	TRIANGULAR LOAI) FR	OM PANELS (SLAB) ON	
	AB, BC AND CD:			
	$\frac{1}{2} \operatorname{nl} \mathbf{x} \left(1 - \frac{1}{3k^2} \right)$			
	K = ly/lx			
	$ly/lx = \frac{8}{4} = 2.0$			
	$= \frac{1}{2} \times 14.5 \times 4000 \left(1 - \frac{1}{2}\right)$	$\frac{1}{3 \times 2}$	$\overline{2^2}$	
	= 26.58KN/m			
	Total Dead Load gk =	26.58	3 + 11.95 = 38.53KN/m	
	Design Load = 1.4gk	- 1.69)k	
	1			

Reference	Calculation
	$qk = \frac{1}{2} \times 1.5 \times \left(1 - \frac{1}{3 \times 2^2}\right)$
	= 2.75KN/m
	Design load = $1.4 \times 38.53 + 1.6 \times 2.75$
	= 58.34KN/m
	LOAD ON SPAN DD1:
	Self weight = 4.05KN/m
	Wall = 7.65KN/m
	Finishes = 0.25KN/m
	Total = 11.9KN/m
	Load from slab (panel 16)
	14.5KN/m
	Total dead load = $11.95 = 14.5 + 26.45$ KN/m
	Design load = $1.4 \times 26.45 + 1.6 \times 2.75$
	= 41.43KN/m
	84.52KN/m 84.52KN/m 84.52KN/m 41.43KN/m 41.43KN/m A B C D D1
	ANALYSIS:
	$FEMAB = BC = CD = \frac{WL^2}{12} + \frac{pab^2}{L^2}$
	$= \frac{58.52 \times 8^2}{12} + \frac{54.52 \times 4 \times 4^2}{8^2}$
	$FEMDD1 = \frac{WL^2}{12} + \frac{41.43 \times 2^2}{12}$

Out put

Reference	Calculation	Out pu
	Stiffness Factor	
	$KAB = \frac{3E1}{L} = \frac{3E1}{8} = 0.38EI$	
	$KBC = \frac{4E1}{L} = \frac{4E1}{8} = 0.5EI$	
	$KCB = \frac{4E1}{8} = 0.5EI$	
	$KCD = \frac{4E1}{L} = \frac{4E1}{8} = 0.5EI$	
	$KDC = \frac{4E1}{8} = 0.5EI$	
	$KDD1 = \frac{3E1}{L} = \frac{34E1}{2} = 0.5EI$	
	DISTRIBUTION FACTOR	
	DFAB = $\frac{KAB}{KAB + KBC} = \frac{0.38EI}{0.38 + 0.5(EI)} = 0.43$	
	DFBC = $1 - 0.43 = 0.57$	
la de la companya de	DFCB = $\frac{KBC}{KCB + KCD} = \frac{0.5EI}{0.5 + 0.5(EI)} = 0.5$	
	DFBC = 1 - 0.5EI = 0.5	
	DFCD = $\frac{KDC}{KDC + KDD1} = \frac{0.5EI}{0.5 + 0.5(EI)} = 0.5$	
	DFDD1 = 1 - 0.5 = 0.5	

Reference			Calculatio	n		Ou	it put
22.59	0.43 -227.51 -113.80	0.57 227.59 0	0.5 -227.59 0	0.5 227.59 113.80	0.5 -227.59 0	0.5 13.81 6.91	-13.81
	-113.80	0	O	113.80	U	0.91	
	-341.39 48.93	227.59 64.87 -28.45	-227.59 -56.9 32.44	341.39 -56.9	-227.59 103.44 -28.45	20.72 103.44	
	12.33	16.22 -8.11	16.22 8.11	16.22	14.23 -8.11	14.23	
	3.49	16.22 -2.03	4.06 2.31	4.06	4.06 -2.03	4.06	
	0.87	1.16 -0.58	-1.16 0.58	4.06	4.06 -0.58	4.06	
	0.25	0.33	-0.29	-0.29 0.29		0.29	
	-275.62	275.62	-262.78	+262.78	-143.72	143.76	

MOMENTS:

Support Moments

Support B = 275.62KNm

Support C = 262.78KNm

Support D = 143.72KNm

SPAN MOMENT:

Span AB =
$$0.125WL^2 + \frac{PL}{2} - \frac{1}{2} (MB + MC)$$

=
$$0.125 \times 58.34 \times 8^2 + 84.52 \times 8 - \frac{1}{2} (275.62 + 262.78)$$

= 536.6KNm

Reference	Calculation	Out put
	SPAN BC:	
	$= 0.125 \times 58.34 \times 8^2 - \frac{1}{2} (262.78)$	
	$= 335.33 \text{KNm} + \frac{84.52 \times 8}{2} = 673.41 \text{KNm}$	
	SPAN CD:	
	$= 0.125 \times 58.34 \times 8^{2} + \frac{84.52 \times 8}{2} - \frac{1}{2} (262.78 + 143.72)$	
	= 601.55KNm	
	SPAN DD1:	
	$= 0.125 \times 58.34 \times 8^2 - \frac{1}{2} (143.72)$	
	= 394.86KNm	
	REINFORCEMENT	
	Support:	
	Support B	
	$K = \frac{275.62 \times 10^6}{25 \times 225 \times 710^2} = 0.097$	
	$Z = d(0.5 + \sqrt{0.25 - \frac{k}{0.9}})$	
	Z = 622.55mm	
	As $\frac{275.62 \times 10^6}{0.87 \times 410 \times 622.55} = 1241.18 \text{mm}^2$	
	Provide 4 Y 20 (As Prov = 1260mm ² /m Top)	
	Support D	
	$K = \frac{143.72 \times 10^6}{25 \times 225 \times 710^2} = 0.051$	
	Z = 667.4 mm	
	I and the second	I

Reference	Calculation	Out put
	As $\frac{143.72 \times 10^6}{0.87 \times 410 \times 667.4} = 603.71 \text{mm}^2$	
	Provide 4 Y 16 (As Prov = 804mm ² /m Top)	
	SPAN REINFORCEMENT	
	Span AB	
	$Bf = 225 + \frac{0.7L}{10}$	
	$225 + \frac{0.7 \times 8000}{10} = 785 \text{mm}$	
	$K = \frac{535.6 \times 10^6}{25 \times 785 \times 710^2} 0.0541$	
	Z = 664.32mm	
	$A_{s} = \frac{535.6 \times 10^{6}}{087 \times 410 \times 664.32} = 22602.27 \text{mm}^{2}$	
	Provide 5 Y 25 (As Prov = 2450mm ² /m Bottom)	
	Span BC	
	$K = \frac{673.41 \times 10^6}{25 \times 785 \times 710^2} 0.0681$	
	Z = 651.42mm	
	$A_{s} = \frac{673.41 \times 10^{6}}{087 \times 410 \times 651.42} = 2898.11 \text{mm}^{2}$	
	Provide 6 Y 25 (As Prov = 2950mm ² /m Bottom)	
	Span CD	
	$K = \frac{601.55 \times 10^6}{25 \times 785 \times 710^2} 0.061$	
	Z = 701.93mm	

Reference	Calculation	Out put
f	$A_{s} = \frac{601.55 \times 10^{6}}{087 \times 410 \times 701.93} = 2402.56 \text{mm}^{2}$	
	Provide 5 Y 25 (As Prov = 2450mm ² /m Bottom)	
	Span DD1	
	$K = \frac{394.86 \times 10^6}{25 \times 785 \times 710^2} 0.0399$	
	Z = 676.90mm	
	$A_{s} = \frac{394.86 \times 10^{6}}{087 \times 410 \times 6769} = 1635.37 \text{mm}^{2}$	
	Provide 6 Y 20 (As Prov = 1890mm ² /m Bottom)	
	Check Deflection	
	Fs = 5/8 x 410 x $\frac{2898}{2950}$ x $\frac{1}{1}$ = 251.73mm ² /m	
	Mf = 0.55 + $\frac{477 - 251.73}{120\left(0.9 + \frac{673.41 \times 10^6}{785 \times 710^2}\right)} = 1.27$	
	$\frac{Limiting\ span}{depth} = 1.27\ x\ 26 = 33.06$	
	$\frac{Actual\ span}{depth} = \frac{8000}{710} = 11.27$	
	Deflection Ok	
	Shear	
	$V_{AB} = \frac{WL}{2} + \frac{PL}{L} + \frac{0 - MB}{L}$	
	$= \frac{58.34 \times 8}{2} + \frac{84.52 \times 8}{8} + \frac{0 - 75.62}{8} = 283.43 KN$	
	$V_{BA} = \frac{58.34 \times 8}{2} + \frac{84.52 \times 8}{8} + \frac{275.62 - 0}{8} = 352.33KN$	
	$= \frac{58.34 \times 8}{2} + \frac{84.52 \times 8}{8} + \frac{0 - 75.62}{8} = 283.43KN$	

Reference	Calculation	Out put
	$V_{BC} = \frac{58.34 \times 8}{2} + \frac{84.52 \times 8}{8} + \frac{275.62 - 262.78}{8} = 319.49KN$	
	$V_{CB} = \frac{58.34 \times 8}{2} + \frac{84.52 \times 8}{8} + \frac{262.78 - 275.62}{8} = 316.28KN$	
	$V_{CD} = \frac{58.34 \times 8}{2} + \frac{84.52 \times 8}{8} + \frac{143.72 - 262.78}{8} = 302.99KN$	
	$V_{DC} = \frac{58.34 \times 8}{2} + \frac{84.52 \times 8}{8} + \frac{262.78 - 143.72}{8} = 332.76KN$	
	$V_{DD1} = \frac{41.42 \times 2}{2} + \frac{143.72 - 0}{2} = 113.28KN$	
	$V_{\text{D1D}} = \frac{41.42 \times 2}{2} + \frac{0 - 143.72}{2} = 30.44KN$	
	CHECK SHEAR	
	V = 352.33KN	
	$V = \frac{352.33 \times 10^3}{225 \times 710} = 2.21$	
	$\frac{100As}{bd} = \frac{100 \times 1260}{255 \times 710} = 0.789$	
	$V_{c} = \frac{0.79 (0.789)^{\frac{1}{3}} \left(\frac{400}{710}\right)^{\frac{1}{4}}}{1.25} = 0.506$	
	$Vc < 0.5 + \sqrt{25} OK$	
	$\frac{ASV}{Sv} = \frac{0.4b}{0.87 \text{fyv}} = \frac{0.4 \text{x} 250}{0.87 \text{x} 250} = 0.41$	
	Provide Y10 @ 250°/c	

Reference	Calculation	Out put
	BEAM ON GRID LINE B – B	CONTRACTOR OF THE PARTY OF THE
	Beam size = 450×750	
	Wall = 7.65 KN/m	
	Finishes = 0.25KN/m	
	Total = 16.0KN/m	
	Load on spans:	
	Spans $12 = \frac{1}{2} \times 14.5 \times 4 \left(1 - \frac{1}{3 \times 2^2}\right)$; $K = \frac{8}{2} = 2$	
	= 26.58 x 2 = 53.17KN/m	
	Span 23.1 x $\frac{14.5}{2}$ x $8\left(1 - \frac{1}{3 \times 1^2}\right)$ K = $\frac{8}{8}$ = 1.0	
	= 38.67KN/m	
	Span 34 = 38.67KN/m	
	Load from beams 26, 24 and 28, convert to point	
	Load beams 24 and 26	
	$=\frac{WL}{2}$; w = 53.17KN/m	
	$=\frac{53.17}{2} \times 8 = 212.68KN$	
	Beam 28	
	W = 15.91 KN/m	
	$\frac{15.91 \times 6.2}{2} = 49.32KN$	
	Design Loads	
	Span 12	
	Dead Loads = 16 + 38.67 = 54.67KN/m	
	Design Load = $1.4 \times 54.67 + 4.4 = 80.94$ KN/m	

Reference Calculation Out put Span 34

Dead Loads = 80.94KN/m

Fixed Moment

$$\text{FEM}_{12} = \pm \frac{WL^2}{12} = \frac{101.24 \times 8^2}{12} = 539.95 \text{KNm}$$

$$\text{FEM}_{23} = \frac{WL^2}{12} + \frac{pab^2}{L^2} = \frac{80.94 \times 8^2}{12} + \frac{212.68 \times 4^0 \times 4^2}{8^2}$$

= 1282.4KN/m

Structural Analysis By E. Nebo

$$FEM_{34} = \frac{WL^2}{12} + \frac{(P_1 + P_2)L}{9} = \frac{80.94 \times 8^2}{12} + \frac{(212.68 + 49.32)^2}{8^2}$$

= 688.20 KN/m

STIFFNESS FACTOR:

$$K_{12} = \frac{3EI}{L} = \frac{3EI}{8} = 0.38EI$$

$$K_{21} = \frac{4EI}{L} = \frac{4EI}{8} = 0.5EI$$

$$K_{23} = \frac{4EI}{L} = \frac{4EI}{8} = 0.5EI$$

$$K_{32} = \frac{4EI}{L} = \frac{4EI}{8} = 0.5EI$$

$$K_{12} = \frac{3EI}{L} = \frac{3EI}{8} = 0.38EI$$

Reference	Calculation						
	DISTRIBUTION FACTORS:						
	$DF_{12} = \frac{K_{12}}{K_{12} + K_{12}} = \frac{0.38}{(0.38 + 0.5)EI} = 0.43$						
	$DF_{23} = 1 - 0.43 = 0.57$						
	$DF_{32} = \frac{1}{K}$	$\frac{K_{23}}{K_{23} + K_{32}}$	$=\frac{0.5E}{(0.5+0.5)}$	$\frac{EI}{.5)EI} = 0$.5		
	$DF_{34} = 1$	-0.5=0.	5				
	1		2		3	4	
		0.43	0.57		0.54		
		-539.95	1282.4				
Mark Company	-339.93	- 269.98	0	0	344.1	+688.20	
	0	-809.93	1282.4	-1282.4	1032.3	0	
		-203.16	-269.31		-125.05		
			62.53	-134.66			
		-26.89	-35.64	-67.33	67.33		
		-20.69	-33.67		07.55		
			33.07	17.02			
		-14.48	19.19	-8.91	-8.91		
			-4.46	9.60			
	7	1.92	2.54	-4.8	-4.8		
		1.92	-2.4	1.27	-4.0		
1				1.27			
		1.03	1.37	-0.64	0.64		
			-0.32	0.67			
het.		0.14	0.18	-0.34	-0.34		
		0.14	0.16	-0.34	-0.54		
		-1051.37	1051.373	1210.01	1209.99		
	SUPPOR	T MOME	ENTS				
	Support 2 = 1051.37KNm						
	Support 3 = 1210.01KNm						
	Span Moments						
	$M_{12} = 0.1$	$2wl^2 - \frac{1}{2}$	(m2)				
	= $0.125 \times 101.24 \times 8^2 - \frac{1}{2} (1051.37) = 284.69 \text{KN/m}$						

Out put

 $M_{23} = 0.125 \text{wl}^2 - \frac{Pl}{2} - \frac{1}{2} (M2 + M3)$

Reference	Calculation	Out put
	$= 0.125 \times 80.94 \times 8^2 - 212.68 \times 8 - \frac{1}{2}$	
Process and the	(1051.37 + 1210.01) = 1333.89KN/m	
	$M_{34} = 0.125 \text{wl}^2 - \frac{Pl}{2} - \frac{Pl}{2} - \frac{1}{2} \text{(M3)}$	
	$= 0.125 \times 80.94 \times 8^{2} - \frac{212.68 \times 8}{2} - \frac{49.32 \times 8}{2} - \frac{1}{2}$	
	(1210.01) = 1005.49KN/m	
	REINFORCEMENT	
	Support 2:	
	$K = \frac{1051.37 \times 10^6}{25 \times 450 \times 710^2} = 0.1853$	
	Compressed Bars Required	
	$As^{1} = \frac{M - MU}{0.87 fy (d - d^{1})}$	
	d = 710mm	
	$d^1 = 30$ mm	
	$As^{1} = \frac{1051.37 - 0.156 fcu bd^{2}}{0.87 \times 410 (710 - 30)}$	
	$= \frac{(1051.37 - 0.156 \times 25 \times 450710^{2}) \times 10^{6}}{0.87 \times 410 (680)}$	
	$= \frac{(1051.37 - 884.7070) \times 10^6}{242556} = 687.14 \text{mm}^2$	
	Provide 3 Y 20 (As Prov = 943mm ² /m Bootm)	
	Tension Bar (Top):	
	$As = \frac{0.156 \ x \ fcubd^2}{0.87 \ fyz} + AS^1$	
	Z = 0.775d	

Reference	Calculation	Out put
	= 0.775 x 710 = 550.25mm	
	$As = \frac{0.156 \times 25 \times 450 \times 710^2}{0.87 \times 410 \times 550.25} = 687.14 mm^2$	
	$= 5194.47 \text{mm}^2$	
	Provide 8 + 3 Y 25 (As Prov = 5400mm ² /m Top)	
	Support 3:	
	$K = \frac{1210.01 \times 10^6}{25 \times 450 \times 710^2} = 0.22134$	
	$As = \frac{0.156 \times 25 \times 450 \times 710^{2}}{0.87 \times 410 \times 550.25} + 1341.17 = 5848.61 \text{mm}^{2}$	
	Provide 8 + 4 Y 25 (As Prov = 5890mm ² /m Top)	
	SPAN REINFORCEMENT:	
	Span 12	
	M = 284.69KN/m	
	$bf = bw + \frac{0.7L}{10} = 450 + \frac{0.7 \times 8000}{10} = 1010mm$	
	$K = \frac{284.69 \times 10^6}{25 \times 1010 \times 710^2} 0.02237$	
	Z = 691.86mm	
	$A_{s} = \frac{284.69 \times 10^{6}}{087 \times 410 \times 691.86} = 1153.59 \text{mm}^{2}$	
	Provide $3 + 2 \text{ Y } 20 \text{ (As Prov} = 1570 \text{mm}^2/\text{m Bottom)}$	
	Provide 3 Y 16 Top	
	Span 23	
	M = 1333.89KNm	
	$K = \frac{1333.89 \times 10^6}{25 \times 1010 \times 710^2} 0.10479$	

Reference	Calculation	Out put
	Z = 614.48mm	219 4919
	$A_{s} = \frac{1.333.89 \times 10^{6}}{087 \times 410 \times 614.48} = 6085.68 \text{mm}^{2}$	
	Provide 8 + 5 Y 25 (As Prov = 6380mm ² /m Bottom)	
	Provide 3 Y 16 Top	
	Span 34	
	M = 1005.49 KNm	
	$K = \frac{1005.49 \times 10^6}{25 \times 1010 \times 710^2} 0.07899$	
	Z = 640.96mm	
	$A_{s} = \frac{1005.49 \times 10^{6}}{087 \times 410 \times 640.96} = 4397.88 \text{mm}^{2}$	
	Provide 5 + 4 Y 25 (As Prov = 4420mm ² /m Bottom)	
	Provide 3 Y 16 Top	
	Check Deflection:	
	$F_S = 5/8 \times 410 \times \frac{6085.68}{6380} \times \frac{1}{1} = 244.43 \text{mm}^2$	
	$Mf = 0.55 + \frac{477 - fs}{120\left(0.9 + \frac{M}{bd^2}\right)}$	
	$0.55 + \frac{477 - 244.43}{120\left(0.9 + \frac{1333.89 \times 10^6}{1010 \times 710^2}\right)} = 1.101$	
	$\frac{Limiting\ span}{depth} = 1.101 \times 26 = 28.63$	
	$\frac{Actual\ span}{depth} = \frac{8000}{710} = 11.27$	
	Deflection Ok	
	· ·	

Reference	Calculation	Out put
	Shear:	
	$V_{12} = \frac{WL^2}{2} + \frac{0 - M2}{L}$	
	$= \frac{101.24 \times 8}{2} + \frac{0 - 1051.37}{8} = 273.54 KN$	
	$V_{21} = \frac{101.24 \times 8}{2} + \frac{1051.37 - 0}{8} = 536.38KN$	
	$V_{23} = \frac{80.94 \times 8}{2} + \frac{212.68 \times 8}{8} + \frac{1}{2} (1051.37 - 1210.01)$	
	= 456.62KN	
	$V_{32} = \frac{80.94 \times 8}{2} + \frac{212.68 \times 8}{8} + \frac{1}{2} (1210.01 - 1051.37)$	
	= 616.26KN	
	$V_{34} = \frac{80.94 \times 8}{2} + \frac{(212.68 + 49.32) \times 8}{8} + \frac{1}{2} (1210.01)$	
	= 1141.454KN	
	$V_{43} = \frac{80.94 \times 8}{2} + \frac{(212.68 + 49.32) \times 8}{8} + \frac{1}{2} (0 - 1210.01)$	
	= 68.57KN	
	Check Shear	
	V = 1141.454KN	
	$V = \frac{1141.454 \times 10^3}{225 \times 710} = 7.15$	
	$\frac{100As}{bd} = \frac{100As}{255 \times 710} \times \frac{1000 \times 6380}{255 \times 710} = 3.99$	
	$Vc = \frac{0.79 (3.99)^{\frac{1}{3}} \left(\frac{400}{710}\right)^{\frac{1}{4}}}{1.25} = 1.08$	
	$Vc < 0.8 + \sqrt{fcu}$	

Reference	Calculation	Out put
	$=0.8+\sqrt{25}=4.0$	
	$V_{c} < = 4.0$	
	Shear Ok	
12 71	$\frac{ASV}{Sv} = \frac{0.4b}{0.87 \text{fyv}} = \frac{0.4 \text{x} 225}{0.87 \text{x} 250} = 0.414$	
Wat to	Provide Y10 @ 250°/c	
	Check Max Shear	
	$V = 0.6f - wu \times \frac{\text{support with}}{2}$	
	$= 0.6 \times 1141.45 - 101.24 \times \frac{0.225}{2}$	
	= 673.48KN	
	$V_S = \frac{673.48 \times 10^2}{225 \times 710} = 4.22$	
	End Support	
	Shear at Distance d from support face	
	$Vd = 0.45 - wu \frac{(d + 0.225)}{2}$	
	$= 0.45 \times 1141.45 - 101.24 (0.710 + 0.115)$	
	= 430.13KN	
	$V = \frac{430.13 \times 10^3}{225 \times 710} = 4.69$	
	$\frac{Asv}{Sv} = \frac{0.46}{0.87 fyv} = \frac{0.4 x 255}{0.87 x 250} = 0.414$	
	Provide Y10@ 250°/c	

Reference Calculation Out put

Load from p5 = $\frac{1}{2}$ x 14.5 x 4.056 $\left[\frac{1-1}{3 \times 1.04^2}\right]$

= 20.39 KN/m

Dead load = 11.14 + 20.39 = 31.53KN/m

Design load = $31.53 \times 1.4 + 4.4 = 48.34 \text{KN/m}$

Analysis

FEMA2B3 =
$$\frac{wL^2}{12} = \frac{55.47 \times 5.966^2}{12} = \pm 164.53 \text{KN/m}$$

FEMB3C2 =
$$\frac{wL^2}{12} = \frac{52.1 \times 4.966^2}{12} = \pm 108.37 KN/m$$

FEMC2A =
$$\frac{wL^2}{12} = \frac{48.54 \times 4.23^2}{12} = \pm 72.38 KN / m$$

Stiffness factor

$$KA2B3 = \frac{3EI}{L} = \frac{3EI}{5.966} = 0.5EI$$

$$KC2B3 = \frac{4EI}{L} = \frac{4EI}{4.996} = 0.8EI$$

$$KC2A = \frac{4EI}{L} = \frac{4EI}{4.23} = 0.95EI$$

$$KAC2 = \frac{3EI}{L} = \frac{3EI}{4.23} = 0.71EI$$

Distribution factor

DFA2B3 =
$$\frac{KA2B3}{KA2B3 + KB3C3} = \frac{0.5EI}{(0.5 + 0.8)EI} = 0.39$$

$$DFB3C2 = 1 - 0.39 = 0.61$$

rence			Out put					
	DFC2B3	K	C2B3	0.	$\frac{8EI}{0.95)EI} =$	0.46		
	DFC2B3	0.46						
	DFB3C2	= 1 - 0.46	6 = 0.54					
		VC	2.4	0.05	r.i			
	DFC2A =	VC2 A	$\frac{2A}{VAC2}$ =	$=\frac{0.95}{(0.95+0)}$	$\frac{EI}{71)EI} = ($	0.57		
		KC ZA +	- KAC 2	(0.95 + 0)	. / 1)E1			
	DFB3C2	= 1 - 0.5	7 = 0.43					
	A2		B3		C4	A		
	+164.53	0.39 -164.53	0.61 108.37	0.46 -1089.370	0.54 72.38	-72.38		
	- 164.53	- 82.27	0	0	36.19	+72.38		
		246.0	100.27	100.27	100.57			
	0	- 246.8 - 53.99	108.37 84.44	-108.37 -0.092	108.57 0.11	0		
			-0.05	42.22				
		0.02	0.03	-19.42	-0.01			
		0.02	-9.71	0.02	0.01			
		3.79	5.92	- 0.0092	-0.01			
		3.77	-0.0046	2.96	0.01			
		0.0018	0.0028	- 1.36	-1.50			
		0.0016	-0.68	0.0014	-1.50			
		0.27	0.41	0.000644	0.000756			
		- 188.73	188.73	- 84.05	84.03			
	C							
	Support N	noments						
	Support E	3 = 188.7	73KNM					
	Support C							
	Span Mor							
	Span Will	nent						
	Span A2B2 = $0.125WL^2 - \frac{1}{2}(188.72) = 68.19KNM$							
	2 (33.12)							
	Span B3C							
	0.125 x 52	$0.125 \times 52.10 \times 4.996^2 \frac{1}{2} (188.73 + 84.05) = 110.4 \text{KNM}$						
			2					
	Span C2 A	= 0.125	v 19 51 -	$\times 4.23^2 - \frac{1}{2}$	(84.05) -			
	Span CZA	-0.123	A 40.34)	4.23	(04.03)=			

Reference	Calculation	Out put
	66.54KNM	
	Support C2	
	$K = \frac{84.05 \times 10^6}{25 \times 225 \times 560^2} = 0.02964$	
	Z = 685.52mm	
	$A_{\rm S} = \frac{84.05 \times 10^6}{0.87 \times 410 \times 685.82} = 343.58 \text{mm}^2$	
	Provide 2 Y 16 (As prov = 403 mm ² /m Top)	
	Span reinforcement	
	Span A2 B2	
	Bf = bw x $\frac{0.76}{10}$ - 25 x $\frac{0.77 \times 5966}{10}$ = 642.62mm	
	$K = \frac{68.19 \times 10^6}{25 \times 642.62 \times 560^2} = 0.005419$	
	Z = 703.26mm	
	$As = \frac{68.19 \times 10^6}{0.87 \times 410 \times 703.26} = 271.83 mm^2$	
	Provide 2 Y 16 (As prov = 403 mm ² /m bottom)	
	$Bf = 225 \times \frac{0.7 \times 4996}{10} = 574.72 \text{mm}$	
	$K = \frac{110.4 \times 10^6}{25 \times 574 \times 560^2} = 0.01524$	
	Z = 697.79mm	
	$As = \frac{110.4 \times 10^6}{0.87 \times 410 \times 697.79} = 443.55 mm^2$	
	Provide 3 Y 16 (603 mm ² /m bottom)	
	Provide 2 Y 16 Top	

Reference	Calculation	Out put
	Span C2A	
	Bf = $225 \times \frac{0.7 \times 4230}{10} = 521.1 \text{mm}$	
	$K = \frac{66.54 \times 10^6}{25 \times 52101 \times 560^2} = 0.0101$	
	Z = 701.94mm	
	$As = \frac{66.54 \times 10^6}{0.87 \times 410 \times 701.94} = 265.75 mm^2$	7
	Provide 3 Y 16 (As prov = 403 mm ² /m bottom)	
	Provide 2 Y 16 Top	
	CHECK DEFLECTION	
	$F_S = 5/8 \times 410 \times \frac{443.55}{603} \times \frac{1}{1} = 188.49 \text{N/MM}$	
	Mf = 0.55 + $\frac{477 - 188.49}{120 \left(0.9 \times \frac{110.4 \times 10^6}{574.72 \times 710^2}\right)}$	
	$\frac{Limiting\ span}{depth} = 2.43\ x\ 26 = 63.18$	
	$\frac{Actual\ span}{depth} = \frac{5966}{710} = 8.45$	
	Shear	
	$VA2B3 = \frac{WL}{2} + \frac{0 - MB3}{L}$	
	$= \frac{55.47 \times 5.966}{2} + \frac{0 - 188.73}{5.966} = 133.89 \text{KN}$	
	VB3A2= $\frac{55.47 \times 5.966}{2} + \frac{188.73 - 0}{5.966} = 197.10$ KN	
	$VC2B3 = \frac{52.10 \times 4.996}{2} + \frac{84.05 - 188.05}{4.996} = 109.2KN$	

Reference	Calculation	Out put
	$VC2A = \frac{48.54 \times 4.23}{2} + \frac{0-84.05}{4.23} = 82.79KN$	
	$VAC2 = \frac{48.5 \times 4.23}{2} + \frac{84.05 - 0}{4.23} = 122.53KN$ CHECH SHEAR:	
	V = 197.10KN	
	$V = \frac{197.1 \times 10^3}{225 \times 560} = 1.564$	
	$\frac{100As}{bd} = \frac{100 \times 1010}{225 \times 560} = 0.802$	
	$Vc = \frac{0.79 (0.802)^{\frac{1}{3}} \left(\frac{400}{560}\right)^{\frac{1}{4}}}{1.25} = 0.534$	
	Provide Y10 @ 250	
	CHECK MAX SHEAR:	
	$V_S = 0.6F - WU \times \frac{Support Width}{2}$	
	$= 0.6 \times 128.75 - 51.27 \times 0.225$	
	$V_{S} = 71.48KN$	
	$V = \frac{Vs}{bd} = \frac{71.48 \times 10^3}{225 \times 560} = 0.567$	
	End support	
	Shear at Distance d from support face	
	$Vd = 0.45f - wu \left(d + \frac{0.225}{2} \right)$	
	= $0.45 \times 128.75 - 51.27 (0.560 + 0.115)$	
	Vd = 23.46KN	
	$V = \frac{23.46 \times 10^3}{255 \times 560} = 0.019$	
	I .	1

Reference	Calculation	Out put
	Norminal link	
	$0.4b 0.4 \times 250$	
	$Asv = \frac{0.4b}{0.87 fyv} = \frac{0.4 x 250}{0.87 x 250} = 0.414$	
	Provide Y10 @ 250mm ^c / _c	
	*	

Reference	Calculation	Out put
	BEAM ON GRID LINE B2 – B2	
	Loading: b = 450 mm h = 750 mm $d = h - c - \frac{1}{2}\theta$ d = 750 - 30 - 10 = 710 mm	
	self weight of the beam = 0.45×75.24	
	= 8.1 KN/m	
	Wall $= 7.65$ KN/m	
	Finishes = $0.25/KN/m$	
	Total = 16.0 KN/m	
	Slab Load = $\frac{1}{2}$ nl x $(1 - \frac{1}{3}K^2)$ Panel 4	
	$= \frac{1}{2} \times 14.5 \times 4996 \left(1 - \frac{1}{3 \times 1.7^2} \right)$ $= 32.09 \text{ KN/m}$	
	Panel = $\frac{1}{2}$ x 14.5 x 5996 $\left(1 - \frac{1}{3 \times 1.7^2}\right)$ = 36.29 KN/m	
	Total load = $16.0 + 32.09 + 1.6 \times 36.29$	
	= 84.38KN/m	
	Design load = 1.4 x 84.38 + 4.4 = 122.53KN/m	
	$M = 0.125WL^{2} = 0.125 \times 21.13 \times 8^{2}$	
	= 1126.49KNm	

Reference	Calculation	Out put
	Share stress = $\frac{49784 \times 10^6}{450 \times 710^2} = 1.56$	
	Shear from distance	
	Vd = Vs - Wud	
	$= 497.84 - 122.53 \times 0.710 = 410.84 \text{KN}$	
	$Vd = \frac{410.84 \times 10^3}{450 \times 710} = 1.29$	
	$\frac{100As}{bd} = \frac{100 \times 5400}{450 \times 710} = 1.69$	
	$Vc = \frac{0.79 (1.6)^{\frac{1}{3}} \left(\frac{400}{710}\right)^{\frac{1}{4}}}{1.25} = 0.652$	
	$V_{\rm C} < 0.8 \sqrt{\rm fcu}$	
	Shear OK.	
	$\frac{ASV}{Sv} = \frac{04b}{0.87 \times 250} = \frac{0.4 \times 450}{0.87 \times 250} = 0.827$	
	Provide Y10@ 175250 °/c Links	

Reference	Calculation	Out put
	BEAM ON GRID LINE C – C	
	Beam size = 450mm x 750mm	
	= 70mm	
	Self weight of the beam = $0.450 \times 0.75 \times 24$	
	= 8.1KN/m	
	Wall = 7.65KN/m	
	Finishes $= 0.25$ KN/m	
	Total = 16.0 KN/m	
	Load from span 1 – 2	
	$= \frac{1}{2} \times nLx \left(1 - \frac{1}{3k^2}\right)$	
	$\frac{1}{2} \times 14.5 \times 8 \left(1 - \frac{1}{31^2} \right)$	
	= 38.63KN/m x 2 sides $= 77.26$ KN/m	
	Load from span $2-3$ and $3-4$	
	$=\frac{1}{2}\times14.5\times8\left(1-\frac{1}{3\times1^2}\right)$	
	= 13.593 x 38.63 = 52.22KN/m	
	Load from span 4 – 5	
	$= \frac{1}{2} \times 14.5 \times 4.235 \left(1 - \frac{1}{3 \times 1.42^2} \right)$	
	$= 25.59 \times 2 \text{ sides} = 51.17 \text{Kn/m}$	
	SPAN 1 – 2	
	Total Dead Load $gk = 16.0 + 77.26 = 93.26$	
	Design Load = 93.2 x 1.4 x 4.4 = 134.96KN/m	
	SPAN 2 – 3 AND 3 – 4	

Reference	Calculation	Out put
	$K3 - 2 = \frac{4EI}{L} = \frac{4EI}{8} = 0.5EI$	
	$K3 - 2 = \frac{4EI}{L} = \frac{4EI}{8} = 0.5EI$	
	$K4 - 3 = \frac{4EI}{L} = \frac{4EI}{8} = 0.5EI$	
	$K4 - 5 = \frac{4EI}{L} = \frac{4EI}{6} = 0.5EI$	
	DISTRIBUTION FACTOR	
	DFI = $\frac{K12}{K12 + K23} = \frac{0.38EI}{0.38EI + 0.5} = 0.43$	
	DF23 = 1 - 0.443 = 0.57	
	DF32 = $\frac{K32}{K32 + K34} = \frac{0.38EI}{(0.5 + 0.5)EI} = 0.5$	
	DF34 = 1 - 0.5 = 0.5	
	DF43 = $\frac{K43}{K43 + K45} = \frac{0.5EI}{(0.5 + 0.5)EI} = 0.5$	
	DF3-4 = 1 - 0.5 = 0.5	
	DF45 = $\frac{K45}{K45 + K43} = \frac{0.5EI}{(0.5 + 0.5)EI} = 0.5$	
	DF5-4 = 1 - 0.5 = 0.5	

Reference			Calculatio	n		Our	t put
	0.43	0.57	0.5	0.5	0.5	0.5	
+719.79	-719.79	629.25	-629.25	629.25	-629.25	295.32	-295.32
-719.79	-359.90	0	0	147.63	0	147.66	-295.32
0	-079.69	629.25	-629.25	945.88	-629.25	442.98	
	193.69	265.75	-157.32	-157.32	93.14	93.14	
		-78.66	128.38		-78.66		
	33.82	44.84	-64.19	-64.19	39.33	39.33	
		-32.19	22.42		-32.10		
	13.80	18.30	-11.21	-11.21	16.05	16.05	
		-5.61	9.15		-5.61		
	2.41	3.20	-4.58	-4.58	2.81	2.81	
		-2.29	1.6		-2.29		
	098	1.31	-0.8	-0.8	1.15	1.15	
	0,0	-0.4	0.66		-0.5		
	0.17	0.23	-0.33	,	0.2	0.2	
	-834.82	834.31	-705.47	705.47	-595.63	595.66	7

Support 2 = 834.82KNm

Support 3 = 705.47KNm

Support 4 = 595.66KNm

SPAN MOMENT

Span 12 =
$$0.125$$
m² $0 - \frac{1}{2} (m_2 - m_3)$

= 0.125 x 134.96 x
$$8^2 - \frac{1}{2} (834.82 + 705.47)$$

M = 309.53 KNm

SPAN 23

$$M = 0.125 \times 9g.91 \times 8^2 - \frac{1}{2} (705.47) + \frac{pl}{2}$$

Reference	Calculation
	= 0.125 x 96) 91 x 8 ² $-\frac{1}{2}$ (705.47) + $\frac{96.4 \times 4}{2}$
	= 832.14KNm
	SPAN 34
	$M = 0.125 \times 96$). $91 \times 8^2 - \frac{1}{2} (705.47) 595.66 + \frac{96.4 \times 8}{2}$
	= 534.31KNm
	SPAN 45
	$M = 0.125 \times 98.44 \times 62 - \frac{1}{2} (594.66)$
	= 145.15KNm
	Reinforcement
	SUPPORTS
	SUPPORTS 2
	$K = \frac{834.82 \times 10^6}{25 \times 450 \times 710^2} = 0.1472 < 0.156$
1	Z = 563.75MM
	$As = \frac{834.82 \times 10^6}{0.87 \times 410 \times 563.75} = 4151.48 \text{mm}^2$
	Provide 9 Y 25(As prov = 4420mm ² /m)
	SUPPORT 3
	$K = \frac{705.47 \times 10^6}{25 \times 450 \times 710^2} = 0.12439$
	Z = 59238mm
	$As = \frac{705.47 \times 10^6}{0.87 \times 410 \times 592.38} = 3338.68 \text{mm}^2$
	Provide 9 Y 25(As prov = 3930mm ² /m Top)

Out put

Reference	Calculation	Out put
	SUPPORT 4	
	$K = \frac{7595.66 \times 10^6}{25 \times 450 \times 710^2} = 0.10533$	
	Z = 614.22 MM	
	$As = \frac{595.66 \times 10^6}{0.87 \times 410 \times 614.22} = 2718.76 mm^2$	
	Provide 9 Y 25(As prov = 2930mm ² /m Top)	
	SPAN REINFORCEMENT	
	SPAN 12	
	$bf = bw + \frac{0.7L}{10} = 450 + \frac{0.7 \times 8000}{10} = 1010mm$	
	$K = \frac{309.53 \times 10^6}{25 \times 1010 \times 710^2} = 0.024317$	
	Z = 690.21MM	
	$A_{S} = \frac{309.53 \times 10^{6}}{0.87 \times 410 \times 690.21} = 1257.24 mm^{2}$	
	Provide 5 Y 20(As prov = 1570mm ² /m bottom)	
	Provide 3 Y 16 Top.	
	SPAN 23	
	$K = \frac{832.14 \times 10^6}{25 \times 1010 \times 710^2} = 0.065376$	
	Z = 654.04MM	
	$As = \frac{832.14 \times 10^6}{0.87 \times 410 \times 650.04} = 1257.24 mm^2$	
	Provide 8 Y 25(As prov = 1570mm ² /m)	
	SUPPORT 34	

Reference	Calculation	Out put
	$K = \frac{534.31 \times 10^6}{25 \times 1010 \times 710^2} = 0.041977$	
	Z = 675.21MM	
	$As = \frac{534.31 \times 10^6}{0.87 \times 410 \times 655.21} = 2218.46 mm^2$	
	Provide 8 Y 20(As prov = 2510mm ² /m)	
	Provide 3 Y 16 Top.	
	SPAN 45	Jack
	$bf = bw + \frac{0.7L}{10} = 450 + \frac{0.7 \times 6000}{10} = 870mm$	
	$K = \frac{145.15 \times 10^6}{25 \times 870 \times 710^2} = 0.01323$	
	Z = 699.40MM	
	$As = \frac{145.15 \times 10^6}{0.87 \times 410 \times 699.4} = 581.82 mm^2$	
	Provide 3 Y 20(As prov = 9430mm ² /m bottom)	
	Provide 3 Y 16 Top.	
	CHECK DEFLECTION	
	$F_S = 5/8 \times 410 \times \frac{3566.88}{3930} \times \frac{1}{1} = 232.57 \text{N/mm}$	
	Mf = 0.55 + $\frac{477 - 232.57}{120 \left(0.9 \times \frac{832.14 \times 10^6}{1010 \times 710^2}\right)}$ = 1.35	
	$\frac{Limiting\ span}{depth} = 1.35\ x\ 26 = 35.20$	
	$\frac{Actual\ span}{depth} = \frac{800}{710} = 11.27$	
	SHEAR	

Reference	Calculation	Out put
	$V_{12} = \frac{WL}{2} + \frac{0 - M2}{L}$	
	$= \frac{134.96 \times 8}{2} + \frac{0 - 834.82}{8} = 434.49 KN$	
	$V_{21} = \frac{134.96 \times 8}{2} + \frac{834.82 - 0}{8} = 643.19KN$	
	$V_{23} = \frac{99.19 \times 8}{2} + \frac{834.82 - 705.47}{8} + \frac{96.4 \times 8}{8} = 512.41 \text{KN}$	
	$V_{32} = \frac{99.19 \times 8}{2} + \frac{705.47 - 834.82}{8} + \frac{96.4 \times 8}{8} = 480.07 KN$	
	$V_{34} = \frac{99.91 \times 8}{2} + \frac{96.4 \times 8}{8} + \frac{705.47 - 595.66}{8} = 509.97 KN$	
	$V_{43} = \frac{99.91 \times 8}{2} + \frac{96.4 \times 8}{8} + \frac{595.66 - 705.47}{8} = 482.51 \text{KN}$	
	$V_{45} = \frac{99.44 \times 8}{2} + \frac{0 - 595.66}{8} = 319.3KN$	
	$V_{54} = \frac{99.44 \times 8}{2} + \frac{595.66 - 0}{8} = 468.22KN$	
	CHECK SHEAR	
	V = 643.19KN	
	$V = \frac{643.19 \times 10^3}{450 \times 710} = 2.013$	
	$\frac{100AS}{bd} = \frac{100 \times 4420}{450 \times 710} = 1.384$	
	$Vc = \frac{0.79 (1.384)^{\frac{1}{3}} (\frac{400}{710})^{\frac{1}{4}}}{1.25} = 0.609$	
	$\frac{ASV}{Sv} = \frac{0.4b}{0.8 \text{fyv}} = \frac{0.4 x 450}{0.87 x 250} 0.828$	
	Provide Y10 @ 200°/c	

Reference	Calculation	Out put
	CHECK MAX SHEAR:	
	$Vs = 0.6f - wu \times \frac{Support \ width}{2}$	
	$= 0.6 \times 643.19 - 134.96 \times \frac{0.45}{2} = 355.5KN$	
	$V = \frac{35.54 \times 10^3}{450 \times 710} = 1.112$	
	End Support	
	Shear at distance from support face	
	$Vd = 0.45f - wu \left(d \ x \frac{0.450}{2} \right)$	
	0.45 x 643.19 – 134.96 (0.710.0225)	
	Vd = 1163.25KN	
	$V = \frac{163.25 \times 10^3}{450 \times 710} = 0.511$	
	$\frac{Asv}{Sv} = \frac{0.4b}{0.87 fyv} = \frac{0.4 x 450}{0.87 x 250} = 0.828$	
	Provide Y10 @ 200mm	
		21.13KN/r

Reference	Calculation	Out put
	BEAM ON GRID LINE A1 A1, B1 B1 AND C1 C1	
	Loading:	169.04KN/m
	Self weight of the beam = $0.225 \times 0.75 \times 24$	
	= 4.05KN/m	
	Wall = 7.65 KN/m	
	Finishes $= 0.25 \text{KN/m}$ Total $= 11.95 \text{KN/m}$	
	Design load = $1.4 \times 11.95 + 4.4 = 21.13$ KN/m	
	8000m A	
	$M = 0.125WL^2$	
	$= 0.125 \times 21.13 \times 8^2$	
	= 169.04KN/m	
	REINFORCEMENT	
	$bf = 225 + \frac{0.7x8000}{10} = 785mm$	
	$K = \frac{169.04 \times 10^6}{25 \times 785 \times 710^2} = 0.0171$	
	Z = 696.24mm	
	$As = \frac{169.04 \times 10^6}{0.87 \times 410 \times 696.24} = 680.66 mm^2$	
	Provide 4 Y 16(As prov = 804mm ² /m bottom)	
	Provide 3 Y 16 Top.	
	Check deflection	
		1

Reference	Calculation	Out put
	$F_s = 5/8 \times 410 \times \frac{680.66}{804} \times \frac{1}{1} = 216.93 \text{ N/mm}$	
	$Mf = 0.55 + \frac{477 - 216.93}{120 \left(0.9 \times \frac{169.04 \times 10^6}{785 \times 710^2}\right)} = 2.18$	
	$\frac{Limiting\ span}{depth} = 2.18\ x\ 20 = 43.66$	
	$\frac{Actual\ span}{depth} = \frac{800}{710} = 11.27$	
	Deflection OK Shear	
	F = wu x span	
	$= 21.13 \times 8 = 169.04 \text{KN}$	
	At face of support	
	Shear $Vs = F/2 - wu \times \frac{Support Width}{2}$	
	Shear from distance d	
	Vd = Vs - Wud	
	$= 86.14 - 21.13 \times 0.710$	
	Vd = 71.14KN	
	$Vd = \frac{71.14 \times 10^3}{225 \times 710} = 0.445$	
	$\frac{100As}{bd} = \frac{100 \times 804}{785 \times 710} = 0.144$	
	VC = 0.287	
	Shear ok $V_c < 0.8 \sqrt{fcu}$	
	$\frac{ASV}{SV} = \frac{0.4b}{0.87 fyv} = \frac{0.4 x 255}{0.87 x 250} 0.41$	

Reference Calculation Out put Provide Y10 @ 250

BEAM ON GRID LINE E - E

Loading:

Self weight of the beam = 4.05KN/m

Wall = 7.65KN/m

Finishes = 0.25KN/m

Total = 11.95KN/m

Load from stair (Flight) = 15.03KN/m

$$\frac{1}{2} \times 15.03 \times 3.59 \left(1 - \frac{1}{3 \times 1.7^2} \right) = 22.34 KN / m$$

Total dead load = 11.95 + 22.34 = 34.29KN/m

Design Load = $34.29 \times 1.4 + 4.4 = 53.41 \text{KN/m}$

$$M = 0.125 \times 52.41 \times 4.996^2 = 163.51 \text{KN/m}$$

REINFORCEMENT:

$$bf = 225 + \frac{0.7x \cdot 4.996}{10} = 574mm$$

$$K = \frac{163.51 \times 10^6}{25 \times 574 \times 710^2} = 0.0225$$

Z = 691.71mm

$$As = \frac{163.51 \times 10^6}{0.87 \times 410 \times 696.24} = 662.7 \text{mm}^2$$

Provide 4 Y 16(As prov = 804mm²/m bottom)

Reference	Calculation	Out put
	Provide 3 Y 16 Top.	
	Check deflection	
	$F_S = 5/8 \times 410 \times \frac{662.7}{804} \times \frac{1}{1} = 221.22 \text{N/mm}$	
	Mf = 0.55 + $\frac{477 - 221.22}{120\left(0.9 \times \frac{662.7 \times 10^6}{785 \times 710^2}\right)}$ = 1.38	
	$\frac{Limiting\ span}{depth} = 1.38\ x\ 20 = 27.56$	
	$\frac{Actual\ span}{depth} = \frac{4.996}{710} = 7.04$	
	Deflection OK	
	Shear	
	$F = wu \times span$	
	= 52.41 x 4.996 = 261.84KN	
	At face of support	
	Shear $Vs = F/2 - wu \times \frac{0.225}{2}$	
	$\frac{261.84}{2} - 52.41 \times 0.1125 = 125.02 \text{KN}$	
	Shear stress V = Vs = $\frac{125.02 \times 10^3}{225 \times 710} = 0.782$	
,	Shear from distance d	
	$V_d = V_s - Wud$	
	$= 125.02 - 52.41 \times 0.710$	
	= 87.81KN	
	$Vd = \frac{87.81 \times 10^3}{225 \times 710} = 0.215$	

Reference	Calculation	Out put
	$\frac{100As}{bd} = \frac{100 \times 804}{785 \times 710} = 0.197$	
	$bd = 785 \times 710$	
	V 4 - AV	
	$Vc = \frac{0.79 (0.197)^{\frac{1}{3}} \left(\frac{400}{710}\right)^{\frac{1}{4}}}{1.25} = 0.320$	
	1.25	
	$ASV = 0.4b = 0.4 \times 255$	
	$\frac{ASV}{SV} = \frac{0.4b}{0.87 \text{fyv}} = \frac{0.4 \text{x} 255}{0.87 \text{x} 250} 0.41$	
	Provide Y10 @ 250°/c	

Reference	Calculation	Out put
	BEAM ON GRID LINE 2B – 2B, 3 – 3 AND 3A1 – 3A1	
	Loading:	
	Beam size 225 x 750	
	Self weight of the beam = $0.225 \times 0.75 \times 24$	
	= 4.05KN/m	
	Wall $= 7.65 \text{ KN/m}$	
	Finishes $= 0.25 \text{KN/m}$ Total $= 11.95 \text{KN/m}$	
	Load on spans:	
	Spans B2C from panel 12	
	Trapezoidal load = $\frac{1}{3} nlx$	
	$=\frac{1}{3} \times 14.5 \times 2 \text{ sides} = 19.34 \text{KN/m}$	
	Load on span CD	
	Triangular Load $\frac{1}{2}nlx\left(1-\frac{1}{3k^2}\right)$; $K = ly/lx$	
	$K = \frac{8}{4} = 2$	
	$= \frac{1}{2} x 14.5 x 4 \left(1 - \frac{1}{3 x 2^2} \right)$	
	= 26.58 x 2 sides = 53.16KN/m	
	Load on span DDI	
	As in span B2C = 19.34 KN/m	
	Dead Load = 11.95 + 19.34 = 31.29KN/m	
	Design load = $1.4 \times 31.29 + 44 = 48.21 \text{KN/m}$	
	Span CD	

Reference Calculation Out put

Dead load = 11.95 + 53.17 = 65.12KN/m

Design Load = $1.4 \times 65.12 + 4.4 = 95.57$ KN/m

FEMB2C = FEMDDI =
$$\pm \frac{wl^2}{12} = \frac{48.21 \times 2^2}{12} = 16.07 \text{KN/m}$$

FEMCD =
$$\pm \frac{wl^2}{12} = \frac{95.57 \times 8^2}{12} = 509.71 KN/m$$

STIFNESS FACTOR:

$$KB2C = \frac{3EI}{L} = \frac{3EI}{2} = 1.5EI$$

$$KCD = \frac{4EI}{L} = \frac{4EI}{8} = 0.5EI$$

$$KDC = \frac{4EL}{L} = \frac{4EI}{8} = 0.5EI$$

$$KCD = \frac{3EI}{L} = \frac{3EI}{2} = 1.5EI$$

DISTRIBUTION FACTORS

DFB2C =
$$\frac{B2C}{KB2C + KCD} = \frac{1.5EI}{1.5 + 0.5EI} = 0.75$$

DF CB2 =
$$1 - 0.75 = 0.25$$

DFCD =
$$\frac{KCD}{KCD + KDC} = \frac{0.5EI}{0.5 + 0.5EI} = 0.5$$

DF CB2 =
$$1 - 0.5 = 0.5$$

Reference	Calculation	
	Span CD: M = 512.317KN/m	
	$bf = 225 + \frac{0.7 \times 8000}{10} = 785 mm$	
	$K = \frac{512.31 \times 10^6}{25 \times 785 \times 710^2} = 0.05178$	
	Z = 666.51mm	
	$As = \frac{512.31 \times 10^6}{0.87 \times 410 \times 666.5} = 2154.92 mm^2$	
	Provide 5 Y 25 (As prov = 2450mm ² /m bottom)	
	Provide 3 Y16 Top	
	Check deflection	
	Fs = 5/8 x 410 x $\frac{215.92}{2450}$ x $\frac{1}{1}$ = 225.39N/mm ²	
	$Mf = 0.55 + \frac{477 - 225.39}{120 \left(0.9 \times \frac{512.31 \times 10^6}{666.15 \times 710^2}\right)} = 1.41$	
	$\frac{Limiting\ span}{depth} = 1.41\ x\ 26 = 36.77$	-
	$\frac{Actual\ span}{depth} = \frac{8000}{710} = 11.27$	-
	Deflection OK	
	Shear	
	$V_{B2C} = \frac{WL}{2} + \frac{0 - M2}{L}$	
	$= \frac{48.21 \times 2}{2} + \frac{0 - 126.74}{2} = -15.16KN$	
	$V_{CB2} = \frac{48.21 \times 2}{2} + \frac{126.74 - 0}{8} = 111.58 KN$	

Out put

Reference	Calculation	Out put
	$V_{CD} = \frac{95.57x8}{2} + \frac{126.74 - 377.76}{8} = 350.9KN$	
	$V_{DC} = \frac{95.57 \times 8}{2} + \frac{377.76 - 126.74}{8} = 413.66KN$	
	$V_{DD1} = \frac{48.21 \times 2}{2} + \frac{0 - 377.76}{2} = 140.67 KN$	
	$V_{\text{D1D1}} = \frac{48.21 \times 2}{2} + \frac{377.76}{2} = 237.89 \text{KN}$	
	CHECK SHEAR	
	V = 416.66KN	
	$V = \frac{413.66 \times 10^3}{225 \times 710} = 2.59N / mm$	
	$\frac{100AS}{bd} = \frac{100 \times 2950}{225 \times 710} = 1.847$	
	$Vc = \frac{0.79 (1.847)^{\frac{1}{3}} (\frac{400}{710})^{\frac{1}{4}}}{1.25} = 0.672$	
	$\frac{ASV}{Sv} = \frac{0.4b}{0.8 \text{fyv}} = \frac{0.4 \text{x} 225}{0.87 \text{x} 250} = 0.414$	
	Provide Y10 @ 250°/c	
	CHECK MAXIMUM SHEAR:	
	$V = 0.6f - wu \times \frac{Support \ width}{2}$	
	= $0.6 \times 413.66 - 95.57 \times \frac{0.225}{2} = 237.45 KN$	
	$V_S = \frac{237.45 \times 10^3}{225 \times 710} = 1.49$	
	End Support	
	Shear at distance from support face	

eference	Calculation	Out put
7 15	$Vd = 0.45 - wu \left(d + \frac{Support}{2} \right)$	
	= 0.45 x 413.66 - 95.57 (0.710 +0.115)	
	= 107.31KN	
	$V = \frac{107.31 \times 10^3}{225 \times 710} = 0.672$	
	$\frac{Asv}{Sv} = \frac{0.4b}{0.87 fyv} = \frac{0.4 x 255}{0.87 x 250} = 0.414$	
	Provide Y10 @ 250°/ _c	

Reference	Calculation	Out pu
	CHAPTER FIVE	
	COLUMN DESIGN	
	Fcu = 25N/mm	
	Fy = 410N/mm	
	Cover to steel = 40mm	
	Fire resistance 1hr	
Roof	Roof beam	
Beam	Roof load = $1.5 \times 1.5 = 2.25 \text{KN/m}$	
	Slab = $0.175 \times 24 = 4.2 \text{ KN/m}$	
	Finishes = 1.0	
	Partition = 1.0	
	gk = 6.2KN/m	
	qk = 2.5KN/m	
	F = 1.4gk + 1.6qk	
	$= 1.4 \times 6.2 + 1.6 \times 2.5 = 12.68$ KN/m	
	Say 13KN/m	

Reference	Calculation	Out put
Column C1	COLUMN C1	
	Beam load	
	Own load = $0.225 \times 0.75 \times 24 = 4.05$	
	Finishes = 1.0	
	Wall = 3.5 (3.6) = 12.6	
	17.65KN/m	
	Factored wall = $1.4 \times 17.65 = 24.71 \text{KN}$	
	Say 25KN	
	6 th floor – roof level	
	Floor area = $8/2 \times 8/2 = 16\text{m}^2$	
	Roof load = $16 \times 1.5 \times 1.5 = 36KN$	4
	Roof beam = $(5.05) \times 1.4 \times (4 + 4) = 48.27 \text{KN}$	
	Column load = 0.225 x 0.4 x 24 x 1.4 x 3.6	
	= 12.25KN	A 2 1
	= 96.52KN	
	5 th floor – 6 th floor	
	From above = 96.52	
	Slab load = $13 (16) = 208$	
	Column load = 12.25KN	
	Wall beam = $25 (4 + 4) = 200 \text{KN}$	
	= 516.77KN	
	4 th floor – 5 th floor	
	From above = 516.77KN	
	Slab = 208	
	Column load = 12.25KN	

Reference	Calculation	Out pu
	Wall/beam = 200KN	
	Total = 937.02KN	
	3 rd floor – 4 th floor	
	From above = 1357.27 KN	
	Slab = 208KN	
	Column load = 12.25KN	
	Wall beam = 200KN	
	Total 1357.27KN	
	2 nd floor – 3 rd floor	
	From above = 1357.27KN	
	Slab = 208KN	
	Column load = 12.25KN	
	Wall/beam = 200KN	
	Total = 1777.52KN	
	1 st floor – 2 nd floor	
	From above = 1777.52	
	Slab 208KN	
	Column load = 12.25K	
	Wall beam = 200KN	
	Total 2197.77KN	

Reference	Calculation	Out put
	GOUND FLOOR – 1 ST FLOOR	
	From above = 2197.77KN	
	Slab = 208KN	
	Column = 0.225 x 0.45 x 1.4 x 24 x 3.15	
	= 10.72KN	
	Total = 2616.49KN	
	Basement floor – ground floor	
	From above = 2616.49KN	
	Slab = 208KN	
	Column = 10.72KN	
	Wall beam = 200KN	
	Total = 3305.21KN	
Table 9.2 Mostley	REINFORCEMENT	
and Bengey Page 241	$\frac{Ley}{b} = \frac{0.75 \times 3600}{225} = 13.6 < 15$	
1450 211	$\frac{Lex}{h} = \frac{0.85 \times 3600}{450} = 6 < 15$	
	And conditions 1 Top and 2 bottom	

Refer	rence		Ca	lculation			Ou	t put
FROM CHART 9.7	Floor	N (KN)	M 0.05Nh Knm	$\frac{N}{bh}$	$\frac{M}{bh^2}$	$\frac{100As}{bh}$	Asc mm ²	
MOSTLEY AND BUNGEY	6th Roof level	96.52	2.17	0.95	2.12	0.4	405	Provide 4Y16 as prove = 810mm ²
	5th floor – 6th floor	516.77	11.63	5.10	0.26	0.4	405	4 Y 16
	4th floor – 5th floor	937.02	21.08	9.25	0.46	0.4	405	4 Y 16
	3rd floor - 4th floor	1357.27	30.54	13.41	0.067	0.4	405	4 Y 16
	2nd floor - 3rd floor 1st floor - 2nd floor	1777.52	39.99	17.56	0.88	1.0	10125	6 Y 16 as prove = 1210 8 Y 20 (As proove = 2510mm ²)
	Ground floor – 1st floor	2616.49	58.87	25.84	1.29	4.0	4050	10 Y 25 (as prove = 4910
	Basement floor – ground floor	3305.21	74.36	32.64	1.63	5.0	5062.5	10Y25 + 1Y16 As prove = 5111mm ²

Reference	Calculation	Out put
	COLUMN C2	
	6 th floor – roof level	
	Floor EW = $8/2 \times 8/2 = 4 \times 4 = 16$ m ²	
	Roof load = $16 \times 1.5 \times 1.5 = 36KN$	
	Roof beam = $(4.31) \times 1.4 \times (4 \times 4) = 48.27 \text{KN}$	
	= 24.50KN	
	108.77KN	
	5 th floor – 6 th floor	
	From above = 108.77KN	
	Slab load = $13(4 \times 4) = 208KN$	
	Colum load = 24.50KN	
	Wall beam = $24 (4+4) = 192KN$	
	Total = 533.27KN	
	4 th Floor – 5 th Floor	
	From above = 533.27KN	
	Slab = 208KN	
	Column load 24.50KN	
	Wall beam 192	
	Total 957.77KN	
	3 rd floor – 4 th floor	
	From above = 957.77KN	
	Slab = 208KN	
	Column = 24.50KN	
	Wall beam = 192KN	
	Total = 1382.27KN	

Reference	Calculation	Out put
	2 nd floor – 3 rd floor	
	From above = 1382.27KN	
	Slab = 208KN	
	Column = 24.50KN	
	Wall beam = 192KN	
	Total = 1806.77KN	
	1 st floor – 2 nd floor	
	From above = 1806.77KN	
	Slab = 208KN	
	Column = 24.5KN	
	Wall beam = 192KN	
	Total = 2231.27KN	
	Ground floor – 1 st floor	
	From above = 2231.27KN	
	Slab = 208KN	
	Column $0.45^2 \times 24 \times 1.4 \times 3.15 = 21.43 \text{KN}$	
	Wall/beam = 192KN	
	Total 2652.7KN	
	Basement floor – ground floor	
	From above = 2652.7KN	
	Slab = 208KN	
	Column = 21.43KN	
	Wall/beam = 192KN	
	Total = 3074.13KN reinforcement	
	$Asc = \frac{N - 0.4 fcubh}{0.75 fy - 0.4 fcu}$	

Reference	Calculation	Out put
	$= \frac{108 \times 77 \times 10^{3} - 0.4 \times 25 \times 450 \times 450}{0.75 \times 110^{3} + 0.4 \times 25 \times 450 \times 450} = -6441.11 \text{mm}^{2}$	
	$0.75 \times 410 - 0.4 \times 25$	
	As $min = 0.4\%bh$	
	As $max = 8\%bh$	
Section 3.12.5 of	As $min = 0.4\%bh = 0.4 \times 300 \times 3000 = 360 \text{mm}^2$	
the reinforced	Asc < As min	
concrete design by	As $min = 360 mm^2$	
Victor Oyenuga	Provide 4 Y 16 (as prove = 804mm ²)	
2 nd edition page 206	5 th floor – 6 th floor	
	N = 429.27KN	
	$\frac{533.27 \times 10^3 - 2025000}{297.5} = -5014.22 mm^2$	
	As $min = 0.4\%bh = 0.4 \times 450 \times 450 = 810mm^2$	
	Provide 6 Y 16 (As prove = 1210mm ²)	
	4 th floor – 5 th floor	
	N = 957.77KN	
	$0.4bh = 0.4\% \times 450 \times 450 = 810 \text{mm}^2$	
	Provide 6 Y 16 (As prove = 1210mm ²)	
	3 rd floor – 4 th floor	
	N = 1382.27KN	
	$Asc = -2160.44 \text{mm}^2$	
	$A_S = 1\%bh = 1\% \times 450 \times 450 = 2025 \text{mm}^2$	
	Provide 6 Y 25 (As provide = 2950mm ²)	
	2 nd floor – 3 rd floor	
	N = 747.62KN	
	Asc = 1277.38mm ² (provide 6 Y 16)	

Reference	Calculation	Out put
	1 st floor – 2 nd floor	
	N 920.12KN	
	$Asc = -1104.88 \text{mm}^2$	
	Provide 6 Y 16	
	Ground floor – 1 st floor	
	N = 1089.55KN	
	$Asc = 1\%bh = 1\% \times 450 \times 450 = 2025 \text{mm}^2$	
	Provide 8 Y 20 (As Provide = 2510mm ²)	
	Basement floor – ground floor	
	N = 1258KN	
	$Asc = 1\%bh = 1\% \times 450 \times 450 = 2025mm^2$	
	Provide 8 Y 20 (As Provide = 2510mm ²)	
	LINKS	
	$\frac{1}{4}$ of diameter = $\frac{1}{4}$ x 16 = 4mm	
	Provide Y10 @ 200°/c	

Reference	Calculation	Out put
Column	COLUMN C5	
C5	Beam load	
	Own load = $0.225 \times 0.6 \times 24 = 3.31$	
	Finishes say = 1.0	
	Wall = $3.5 (4.2 - 0.6) = 12.6$	
	Total = 16.91	
	Factored wall/beam load = 1.4 x 16.91 = 23.67KN/m	
	Say 24KN/m	
	6^{th} floor – roof level = $\frac{4.235}{2} \times \frac{3765}{2} = 3.99 \text{mm}^2$	
	Roof load = $3.99 \times 1.5 \times 1.5 = 8.98 \text{KN}$	
	Rood beam = $(3.31 + 1.0) \times 1.4 \times (2.12 + 1.88)$	
	= 24.14KN	
	Column own load and finishes = $0.45 \times 0.45 \times 24 \times 1.4$	
	(4.2 - 0.6) = 24.50KN Total $57.62KN$	
	5 th floor – 6 th floor	
	From above = 57.62KN	
	Slab load = $13 (2.12 \times 1.88) = 52KN$	
	Column load = 24.50	
	Wall/beam = $4(2.12 + 1.88) = 96KN$	
	Total = 230.12KN	
	4 th floor – 5 th floor	
	From above = 230.12KN	
	Slab = 52KN	
	Column = 24.50KN	

Reference		Calculation	Out put
	Wall beam =	96KN	
	Total =	575.12KN	
	3 rd floor – 4 th floor		
	From above =	402KN	
	Slab =	52KN	
	Column =	24.50KN	
	Wall/beam =	93 .	
	Total =	5,75.12KN	
	2^{nd} floor = 3^{rd} floor		
	From above =	575.12KN	
	Slab =	52KN	
	Column =	24.50KN	
	Wall/beam =	96	
	Total =	747.62KN	
	1 st floor – 2 nd floor		
	From above =	747.62KN	
	Slab =	52KN	
	Column =	24.50KN	
	Wall/beam =	96KN	
	Total =	920.12KN	
	Ground floor – 1st fl	oor	
	From above =	920.12KN	
	Slab load =	52KN	
	Column = 0.45×0.45	45 x 3.15 x 24 x 1.4 = 21.43KN	
	Wall/beam =	96KN	

Reference	Calculation	Out put
	Total = 1,089.55KN	
	Basement floor – ground floor	
	From above = 1,089.55KN	
	Slab load = 52KN	
	Column load = 21.43KN	
	Wall/beam = 96KN	
	Total = 1258.98KN	
	DESIGN OF UNI-AXIAL COLUMN	
	6 th floor – roof floor	
	N = 101.16KN	
	Column height = 4200	
	Assume le = lo	
	Slenderness ratio lex/h = $4200/750 = 5.6 < 15$	
Reinforce nent	Column design short column	
concrete lesign by	N = 04 fcubh + Asc (0.75 fy - 0.4 fcu)	
Engr V. Oyenuga 2 nd edition	$Asc = \frac{N - 0.4 fcubh}{0.75 fy - 0.4 fcu}$	
page 206	$= \frac{57.62 \times 10^3 - 0.4 \times 25 \times 450 \times 450}{0.75 \times 410 - 0.4 \times 25} = 6613.04 \text{mm}^2$	
	Since this is negative use minimum	
	Reinforcement.	
	Area of reinforcement given by	
	Asmin = 0.4%bh	
	$= 0.4 \times 300 \times 300 = 360 \text{mm}^2$	
	Provide 4Y16 (as prove = 804mm ²)	
	5 th floor – 6 th floor	

Reference	Calculation	Out put
	N = 230.12KN	
	$Asc = \frac{230.12 \times 103 - 2025000}{297.5} = 1794.89 mm^2$	
	Asmin = 0.4% bh = $0.4 \times 450 \times 450 = 810$ mm ²	
	Provide 6 Y 16 (As prove = 1210mm ²)	
	4 th floor – 5 th floor	
	N = 402.62KN	
	$Asc = \frac{40.62 \times 103 - 2025000}{297.5} = 1622.38 mm^2$	
	Provide 6 Y 16 (As prove = 1210mm ²)	
	3 rd floor – 4 th floor	
	N = 575.12KN	
	$Asc = \frac{575.12 \times 103 - 2025000}{297.5} = 1449.88 mm^2$	
	Provide 6 Y 16	
	2 nd floor 3 rd floor	
	N = 747.62KN	
	$Asc = 1277.38 \text{mm}^2 \text{ (provide 6 Y 16)}$	
	1 st floor – 2 nd floor	
	N = 920.12KN	
	$Asc = -1104.88 \text{mm}^2$	
	Prove 6 Y 16	
	Ground floor – 1 st floor	
	N = 1089.55KN	
	$Asc = 1\%bh = 1\% \times 450 \times 450 = 2025mm^2$	
	Provide 8Y20 (As prov = 2510mm^2)	

Reference	Calculation	Out put
	Basement floor – ground floor	
	N = 1258.98KN	
	$Asc = 1\%bh = 1\% x 450 x 450 = 2025mm^2$	
	Provide $8Y20$ (As prov = 2510mm^2)	
	LINKS	
	$\frac{1}{4}$ of $\Phi = \frac{1}{4} \times 16 = 4$ mm	
	Provide Y10 @ 200°/c	
Van		

Reference	Calculation	Out put
	ANALYSIS AND DESIGN OF FOUNDATION	
	Design stresses	
	$Fcu = 25N/mm^2$	
	$Fy = 410N/mm^2$	
	Concrete cover = 50mm	
	Thickness (h) = 600mm	
	Soil bearing capacity = 200KN/m ² (p)	
	Column Base Types B1	
	Axial load from C1 = 3305.21KN	
	Design load = $1.0GK + 1.0QK$	
	$= \frac{3305.21}{1.47} + 10\% \times 3305.21$	
	= 2578.96KN	
	Required area = $\frac{2578.96}{200}$ = 12.89	
	Provide base area 3.6m square	
	Base area = 12.96 m ²	
	Column axial load = 2578.96KN	
	Earth pressure = $\frac{2578.98KN}{3.6 \times 3.6} = 198.99KN/m^2$	
	Column size = 225 x 450	
	Assume thickness of 750mm	
	d = 750 - 50 - 10 = 690 mm	
	stress on footing	
	at column face	
	shear stress, Vc = N/column perimeter xd	

Reference	Calculation	Out pu
	$\frac{2578.96 \times 103}{(225 \times 2 + 450 \times 2) \times 690} = 2.77$	
	$2.77 < 0.8 \sqrt{fcu}$ shear ok	
	Punching shear	
	Critical perimeter = column perimeter + 8 x 1.5d = 1350	
	$+ 8 \times 1.5 \times 690 = 1350 + 8280 = 9630$ mm	
	Area within perimeter = $(450 = 3d)^2$	
	$= (450 + 3 \times 690)^2 = 6.3 \times 10^6$	
	Pinching share force v	
	$= 198.99 (3.6^2 - 6.3) = 1325.27 \text{KN}$	
	Pinshing shear $V = \frac{V}{Critial \ perimeter \ xd}$	
BS 81110 Part 1	$= \frac{1325.27 \times 10^3}{9630 \times 690} = 0.19$	
1997 table 3.8	Vc = 0.37, hence punching shear ok	
	Bending reinforcement	
	At column face which is critical section	
	M = (198.99 x 3.6 x 1.575) $\frac{1575}{2}$ = 888.51KNm	

Reference	Calculation	Out put
	1.575 0.45 1.575	
	3.6	
	$K = \frac{888.51 \times 10^6}{25 \times 3600 \times 690^2} = 0.02074$	
	Z = 673.74mm	
	$As = \frac{M}{0.87 fyz} = \frac{888.51 \times 10^6}{0.87 \times 410 \times 673.74} = 3697.15 mm^2$	
	Provide Y 25 @ 125°/ _c	
	$(As prove = 3930 mm^2)$	
	Final punching shear check	
	$\frac{100As}{bd} = \frac{100 \times 3930}{3600 \times 690} = 0.16N / mm^2$	
	Ultimate $Vc = 0.37 \text{N/mm}^2$	
	Punching shear stress = 0.37	
	Hence 750mm thick pad ok	
	At critical section for shear 1.0d	
	From the column face	

Reference	Calculation	Out put
	1.353 0.54	
	V = 198.99 x 3.6 x 1.035 = 741.44KN	
	$V = V = \frac{74.44 \times 10^3}{3600 \times 690} = 0.30$	
	0.30 < 0.39	
	The section ok	Area = 12.31m^2
Reinforce ment concrete design by	Base type B2 Self weight of the base will be taken as 10% of the load	h = 600mm d = 540mm
Engr V. Oyenuga	acting on it.	
2 nd edition page 249	1.47 will be used as factor to convert loads from	
	ultiamate limit state to servicieability limit state	
	Axial load from column C2 = 3074.13KN	
	Total design axial load = $1.0GK + 1.0QK$	
	$= \frac{3074.13}{1.47} + 10\% \times 3074.13 = 2'-\&:KN$	
	Required base area = $\frac{2461.66}{200}$ = 12.31 m ²	
	Provide base area of 3.6m.sq	
	Base area = 12.96 m ²	
	Column axial load = 2461.66KN/m ²	
		ižii

Reference	Calculation	Out put
	Earth pressure = $2461.66 = 189.94 \text{KN/m}^2$	17
	Assume base thickness of 600mm	
	Depth $d = h - c \frac{1}{2} \Phi$	
	$= 600 - 50 - \frac{1}{2} \times 20 = 540$	
	Stress on footing	
	At column face	
	Shear stress, Vc = N/column perimeter	
	$= \frac{2461.66 \times 103}{4(450) \times 540} = 2.53 \text{N/mm}$	
	$2.53 \text{N/mm} < 0.8 \sqrt{fcu} = 4.0$	
	i.e. 2.53 < 4.0	
	hence share ok	4
	punching shear	
	critical perimeter = column perimeter + 8 x 1.5d	
	$= 4 \times (4500) + 8 \times 1.5 \times 540$	
	= 8280mm	
	Area within perimeter = $(450 + 3d)^2$	M =
	$= 4.28 \times 10^2 \text{ mm}^2$	848.11KNm
	Punching shear force V =	
	Earth pressure (Area provided – Area within perimeter)	
	$= 189.94 (3.6^2 - 4.28)$	
	= 1648.68KN	
BS 8110 Part 1 1997 table	Punching shear $v = \frac{V}{Critical\ perimeter}$	
3.8	$= \frac{1648.68 \times 103}{8280 \times 540} = 0.37$	

Reference	Calculation	Out put
	Vc = 0.39 from table hence, punching shear ok	
	Bending reinforcement	
		K = 0.0323
	At column face which is the critical section	K < 0.156
	M = (Earth pressure x 3.6 x 1.575) x $\frac{1.575}{2}$	
	$= 189.94 \times 3.6 \cdot 1.575 \times 0.788$	
	= 848.11KNm	Z = 519.56mm
	1.575 0.45 1.575	
	3.6m	
	$K = \frac{M}{Fcu\ bd^2} = \frac{848.11 \times 10^6}{25 \times 3600 \times 540^2} = 0.0323$	
	$Z = d \left(0.5 + \sqrt{0.25 - \frac{K}{0.9}} \right)$	
	$= 710 \left(0.5 + \sqrt{0.25 - \frac{0.0323}{0.9}} \right) = 519.86 \text{mm}$	
	$As = \frac{M}{0.87 fyz} = \frac{848.11 \times 10^6}{0.87 \times 410 \times 519.86} = 4573.65 mm^2$	
	Provide = Y25 @ 100°/ _c	
Mosley	As prove = 4910mm^2	
and Bungey	Asmin = 0.13%bh	
page 279 Table 3.8 BS8110:	$\frac{0.13 \times 3600 \times 600}{100} = 2808$	

Reference	Calculation	Out put
oart 4 1997	Final punching shear check $\frac{100As}{bd} = \frac{100 \times 4910}{3600 \times 540} 0.25$	
	Ultimate $Vc = 0.37 \text{N/mm}^2$ from table	
	Punching shear was 0.39	
	Hence 600mm thick pad ok	
	At critical section for shear, 1.0d from the face	
	1.035 0.54	
	1.575 N 0.45 N 1.575 N	
	$V = 189.94 \times 3.6 \times 1.035 = 707.72 \text{KN}$	
	$V = \frac{V}{bd} = \frac{707.72 \times 10^3}{3600 \times 540} = 0.36 N / mm^2$	
	0.36 < 0.4	
	The section ok	
Reinforce ment	ANALYSIS AND DESIGN OF COMBINED FOOTING	
concrete design by	Take factor of 1.47 for ultimate limit state	
Engr V. Oyenuga	Assume a traverse width of 2.350m	
2 nd edition page 255	Load N on each column = 1258.98KN	
	Total load = $(1258.98 + 1258.98) = 2517.96$ KN at SLS	
	At ULS = 2517.96 x 1.4 = 352514KN	

Reference	Calculation	Out put
	Taking moment	
	From column 1, we have	
	Centroid = $\overline{X} = \frac{1258.98 \times 2.765}{2517.96} = 1.883m$	
	Centroid from column = 1.883m	
	And centroid from column $2 = 3.765 - 1.883 = 1.882$	* 7
R.C by Engr V. Oyenuga	$Area = \frac{1.1w}{Pb}$	
page 249	W = total loadd at serviceability state	
	Pb = soil bearing pressure	
	Area = $\frac{1.1 \times 2517.96}{200}$ = 13.848 m^2	
	Taken width as 2400m, the required lenght = 6.165m	
	1258.98KN 1258.98KN	
	1200 3765 1200 ×	
	6155mm	
	2400	
	6155mm	
	Assuming thickness h = 750mm (base)	
	Friet $\frac{3525.14 \times 1.1}{6.165 \times 2.4} = 262.07 KN / m^2$	
	This pressure is over the entire base left over = right	
	overhang	As min = 2340mm ²

Reference		culation	Out pu
	$= 1.2^2 \times 0.5 \times 262.07 = 188$.69KNm	
	h = 750mm		
	d = 750 - 50 - 10 = 690 mm	i	
	$K = \frac{M}{Fcu \ bd^2} = \frac{188.69 \times 25 \times 2400 \times 25}{25 \times 2400 \times 25}$	$\frac{10^6}{\times 690^2} = 0.006605$	
	Z = 684.86mm		
	$As = \frac{188.69 \times 10^6}{0.87 \times 410 \times 684.86}$	$= 768.89 mm^2$	
	Minimum reinforcement	= 0.13%bh	
		= 0.13% x 2400 x 750	
		$=\frac{0.13 \times 2400 \times 750}{100}$	
		$= 2340 \text{mm}^2$	
	Provide Y $25 = 200^{\circ}/_{c}$		
	(As prove = 2450mm^2 Botto	om)	
	Span moment		
	Free moment (span) $= 0.1$	25 x 3.765 ² x 262.07	
	= 464	1.36KNm	
	Approximate span moment	=	
	464.36 – 0.5 (188.69 + 188.	69) = 275.67KNm	
	$K = \frac{275.65 \times 10^6}{25 \times 2400 \times 690^2} = 0$.009650	
	Z = 682.54mm		
	$A_S = \frac{275.67 \times 10^6}{0.87 \times 410 \times 682.54} =$	$= 768.89 mm^2$	
	Provide Y 16175°/c top		

Reference	Calculation	Out pu
	$(As prove = 1150mm^2)$	
	Transverse reinforcement	
	Moment M = $0.5 \times \frac{(2.4)2}{2} \times 262.07 = 188.69 \text{KNm}$	
	$K = \frac{188.69 \times 10^6}{25 \times 2400 \times 690^2} = 0.00661$	
	Z = 684.93mm	
	$As = \frac{188.69 \times 10^6}{0.87 \times 410 \times 684.93} = 772.32 mm^2$	
	Provide Y 16 @ 250°/c as distribution bars	
	$(As prove = 804mm^2)$	
	Shear	
	W = fnet x b = 262.07 x 2.4	
	= 628.97KN/m	
	For span, $V_L =$	
	$628.97 \times 0.5 \times 3.765 + \frac{(118.69 - 118.69)}{3765} = 1184.03KN$	
	Vr =	
	$628.97 \times 0.5 \times 3.765 + \frac{118.69 - 118.69}{3.765} = 1184.03 KN$	
	Left overhang = Right overhang =	
	628.97 x 1.2 = 754.76KN	

Reference	Calculation	Out put
	1258.98KN 1258.98	BKN
	1200 3765 1200 NIK	<u>00</u> м
	754KN 754KN 1184.03KN 1184.03	7
	464.36 BM-KNM 188.69KN	

Reference	Calculation	Out put
	SHEAR WALL DESIGN	
	2150	
	2400	
	<u>+</u>	
	Assumptions	
	Wall thickness = 200mm	
	Height = 4200mm	
	Fcu = 25N/mm	
	Fy = 410mm	
	No. of floors = 7	
	Concrete cover = 40mm	
	Loadings	
BS 6399	Dead slab load = $24 \times 0.15 \times 3.825 = 13.77 \text{KN/m}$	
part 1: 1997	Total slab load = 13.77 x 7 = 48.20KN	
	Self weight of wall = $0.20 \times 24 (7 \times 4.2)$	
	= 141.12KN/m	
	Total characteristics dead load d	
	$= 141.12 + 48.2 + \frac{13.77}{2} = 196.21 KN / m$	
	Imposed load perm = 4.5KN/m	
BS 6399:	Imposed load from slab = $3.0 \times 7 = 21 \text{KN/m}$	
Part 1: 1984	Total imposed load = $21 + 4.5 = 25.5$ KN/m	
	Ultimate design load nw = 1.4gk + 1.6qk	

Reference	Calculation	Out put
	$= 1.4 \times 196.21 + 1.6 \times 25.5$	
	= 315.49KN/m	
	nw = 0.35 x fcu x Ac + 0.7 Ascfy	
	Ac = area of concrete wall taken as wall thickness x 1m	
	$run = 200 \times 1000 = 2000,000 \text{mm}^2$	
	$nw = 0.35 \times 40 \times 200,000 + 0.7 (410) Asc$	
	$315.49 \times 10^3 = 280,000 + 287 \text{Asc}$	
	$Asc = \frac{315.49 \times 103 - 280,000}{287} - 8656.83 \text{mm}^2$	
	Asmin = 0.4% bh = 0.4% x 200 x $1000 = 800$ mm ²	
	Provide Y 12 @ 125°/ _c (As prove = 905mm ²)	

CHAPTER SIX

CONCLUSIONS AND RECOMMENDATION

6.1 CONCLUSIONS

The duties of structural engineer is to ensure that the structure design meet its functional requirement. He should also strike balance between safety and economy.

Slabs were designed as one – way slab, two ways spanning slab and other structural member including beams, columns and foundation design.

Though the analysis and design was done to reduce cracks, deflations shear to minimum, ensuring serviceability of structure.

6.2 RECOMMENDATION

It is important to provide adequate cover of concrete over reinforcement for the proper protection to develop the necessary bond between steel and concrete to ensure durability. Also all specifications should be adhered to and supervised reinforcement arrangement as well as concrete mixture placement.

REFERENCES

- Gopal Ranjan and A.S.R. Road basic and applied soil mechanics, revised edition 2007, New Age International Publisher New Delhi 392 394, (418 419)
- Charles E. Reynolds and James C. Steedman 2002, Reinforced Concrete Designer's Handbook tenth edition, published by Spoon Press, Taylor and Francis Group 11 New fetter Lane London.
- Victor O. Oyenuga, 2008, simplified Reinforced Concrete Design, Revised Edition, published by ASROS limited Lagos, Nigeria.
- W.H. Mosely and J.H Bungey Reinforced Concrete Design, 1995 Fourth Edition, published by Macmillan Press Limited, Hampshire U.K
- British Standard Institution, Structural use of Concrete Part 1. Code of Practice for Design and construction BS6399: part 1 1984, BS8110: part 1 1985 and part 1 1997.