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ABSTRACT 

The SIRB model for the dynamics of cholera epidemic introduced by Codeco is modified by 

incorporating some control strategies: vaccination is introduced to susceptible class, therapeutic 

treatment is applied to infected class, and water sanitation leads to the death of vibrios. The resulting 

system is solved numerically using the Runge-Kutta integration scheme with a modified version of 

Newton-Raphson shooting method with β, λ, σ, and υ as prescribed parameters. It is found out that with 

strong control measures, the concentration of toxigenic 𝑉.cholerae in water, 𝐵(𝑡), would be zero so 

that the disease-free equilibrium is globally asymptotically stable. With weak controls, instead, a unique 

and globally stable endemic equilibrium would still occur, though at a lower infection level.  
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INTRODUCTION 

According to Sack et al. (2004), Cholera is an 

infection of the small intestine caused by the 

bacterium Vibrio cholerae. Intestinal infection 

with Vibrio cholerae results in the loss of large 

volumes of watery stool, leading to severe and 

rapidly progressing dehydration and shock. 

Without adequate and appropriate rehydration 

therapy, severe cholera kills about half of 

affected individuals. It is estimated that about 

one hundred million bacteria must typically be 

ingested in order to cause cholera in a normal 

healthy adult. The susceptibility is also higher 

in children, with two to four-year-olds having 

the highest rates of infection. Blood type is 

another factor that affects an individual’s 

susceptibility to cholera, with those with type 

“O” blood being the most susceptible. Persons 

with lower immunity, such as persons with 

AIDS or children who are malnourished, are 

more likely to experience a severe case if they 

become infected. However, it should be noted 

that any individual, even a healthy adult in 

middle age, can experience a severe case, and 

each person's case should be measured by the 

loss of fluids, preferably in consultation with a 

doctor or some health worker. The severity of 

the diarrhea and vomiting can lead to rapid 

dehydration and electrolyte imbalance, and 

death in some cases.  

 

 About the earliest mathematical model of 

Cholera could be traced to Capasso and Paveri-

Fontana (1979), which proposed a simple 

deterministic mathematical model that 

describes the dynamics of the 1973 cholera 

epidemic that occurred in the European 

Mediterranean region. This simple model 

consists of a system of two ordinary differential 

equations, that describe the dynamics of the 

infected individuals in a town community and 

of the free-living bacteria population in the sea. 

The model of Codeco (2001) includes an 

additional equation for the susceptible 

individuals in the population which, explicitly 

incorporated the environmental component, 

i.e., the V. cholerae concentration in the water 

supply (denoted by B), into a regular SIR 

system to form a combined human-

environment (SIR-B) epidemiological model. 

Following this, Pascual et al. (2002) 

generalized the model of Codeco (2001) by 

including a fourth equation for the volume of 

water in which the formatives live. Thereafter, 

Hartley et al. (2006) introduced a more general 

five equations model which describe the 

dynamics of the susceptible, infectious, and 

removed human population and the dynamics 

of a hyper-infective state and the lower 

infective state of v. cholerae population. 
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Pascual et al. (2008) examined the prediction 

ability of a semi-mechanistic time series model 

that incorporates the El Nino Southern 

Oscillation (ENSO) and the non-linear 

dynamics of the disease itself, through changes 

in the population levels of immunity. 

This research is an attempt to investigate the 

effect of certain control strategies applied to the 

model of Codeco (2001), with a view to 

equipping public health practitioners with 

necessary and adequate information for the 

prevention and control of Cholera epidemic. 

METHODOLOGY 

Model Formulation 

A cholera epidemic model which was first 

proposed by Codeco (2001) is considered. In 

this model, the concentration of cholera in 

water supply, denoted by 𝐵(𝜏), is incorporated 

into a regular SIR model to form a combined 

human environment (SIR-B) epidemiological 

model. The model is represented by (1).  

 
𝑑𝑆

𝑑𝜏
= 𝑛𝐻 − 𝑛𝑆 −

𝑎𝐵𝑆

𝐾 + 𝐵
𝑑𝐼

𝑑𝜏
=

𝑎𝐵𝑆

𝐾 + 𝐵
− 𝑟𝐼            

𝑑𝐵

𝑑𝜏
= 𝑒𝐼 − 𝑚𝐵                 

𝑑𝑅

𝑑𝜏
= 𝑟𝐼 − 𝑛𝑅                 }

 
 
 
 

 
 
 
 

                     (1) 

where 𝑆 is the number of susceptibles, 𝐼 is the 

number of infected, 𝑅 is the number of 

recovered,  

𝐵 is the concentration of toxigenic 𝑉. 𝑐ℎ𝑜𝑙𝑒𝑟𝑎𝑒 

in water, 𝐻 is total human population, 𝑛 is 

natural birth rate, 𝑟  is the recovery rate, 𝑚 =
𝑚𝑏 − 𝑛𝑏 is the net death rate of  𝑉. 𝑐ℎ𝑜𝑙𝑒𝑟𝑎𝑒,  

𝑚𝑏 is the loss rate of 𝑉. 𝑐ℎ𝑜𝑙𝑒𝑟𝑎𝑒 in the aquatic 

environment, 𝑛𝑏 is the growth rate of 

 𝑉. 𝑐ℎ𝑜𝑙𝑒𝑟𝑎𝑒 in the aquatic environment, 𝑒  is 

the contribution of each infected person to the 

population  of  𝑉. 𝑐ℎ𝑜𝑙𝑒𝑟𝑎𝑒 in the aquatic 

environment, 
𝑎𝐵

𝐾+𝐵
 is the incidence, which 

determines the rate of new infection,  𝑎 is 

contact rate with contaminated water, 𝐾 is the 

half saturation rate. 

We modify the model represented by adding the 

following three controls: vaccination, 

therapeutic treatment and water sanitation. 

Also, four assumptions are made thus. 

i. Vaccination is introduced to 

susceptible at a rate of  𝑣 so that 𝑣𝑆 

individual per time are removed from 

the susceptible class and added to the 

recovered class  

ii. Therapeutic treatment is applied to 

infected at a rate 𝑢 so that 𝑢𝐼 individual 

per time are removed from the infected 

class and added to the recovered class. 

iii. Water sanitation leads to the death of 

𝑉. 𝑐ℎ𝑜𝑙𝑒𝑟𝑎𝑒 at a rate of 𝑤. 

iv. Another type of vaccination is applied 

to (some) newborns so that only a 

person  (0 <  𝑝 ≤ 1) for individuals 

entering the total populations are 

susceptible 

Consequently, the model represented by (2) is 

obtained. 

𝑑𝑆

𝑑𝜏
= 𝑝𝑛𝐻 − (𝑛 + 𝑣)𝑆 −

𝑎𝐵𝑆

𝐾 + 𝐵
𝑑𝐼

𝑑𝜏
=

𝑎𝐵𝑆

𝐾 + 𝐵
− (𝑟 + 𝑢)𝐼               

𝑑𝐵

𝑑𝜏
= 𝑒𝐼 − (𝑚 + 𝑤)𝐵                  

                      
𝑑𝑅

𝑑𝜏
= (1 − 𝑝)𝑛𝐻 + (𝑟 − 𝑛 + 𝑢)𝐼 − 𝑛𝑅 + 𝑣𝑆}

 
 
 
 

 
 
 
 

2) 

 

Non-Dimensionalization 

The model is non-dimensionalized using the 

parameter 𝑡 = (𝑛 + 𝑣)𝜏,  𝑆′ =
𝑛+𝑣

𝑝𝑛𝐻
𝑆,  𝐼′ =

𝑛+𝑣

𝑝𝑛𝐻
𝐼 , 𝐵′ =

𝑛+𝑣

𝑝𝑛𝐻
𝐵 and 𝑅′ =

𝑛+𝑣

𝑝𝑛𝐻
𝑅. This results 

in  

𝑑𝑆

𝑑𝑡
= 1 − 𝑆 −

𝛽𝐵𝑆

𝛼 + 𝐵
𝑑𝐼

𝑑𝑡
=

𝛽𝐵𝑆

𝛼 + 𝐵
− 𝛾𝐼       

𝑑𝐵

𝑑𝑡
= 𝜎𝐼 − 𝜐𝐵            

    
𝑑𝑅

𝑑𝑡
= 𝜆 + 𝜋𝐼 − 𝜂𝑅 + 𝛿𝑆}

 
 
 
 

 
 
 
 

                               (3) 

 

In order to further reduce the parameters, we let 

𝛾 = 𝜎 = 𝜋, to obtain the following equations 
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𝑑𝑆

𝑑𝑡
= 1 − 𝑆 −

𝛽𝐵𝑆

𝛼 + 𝐵
      

𝑑𝐼

𝑑𝑡
=
𝛽𝐵𝑆

𝛼 + 𝐵
− 𝜎𝐼             

𝑑𝐵

𝑑𝑡
= 𝜎𝐼 − 𝜐𝐵                 

𝑑𝑅

𝑑𝑡
= 𝜆 + 𝜎𝐼 − 𝜂𝑅 + 𝛿𝑆}

 
 
 
 

 
 
 
 

,                            (4) 

where, 𝛽 is the contact rate with contaminated 

water parameter. 

𝛼 is the water treatment parameter  

𝜎 is the infected rate parameter 

𝜐  is the vibrios death rate parameter 

𝜆 is the vaccine introduced to the new born 

parameter 

𝜂  is the natural birth rate parameter 

𝛿  is the vaccine introduced to susceptible 

parameter  

Equilibria 

Considering the first three equations of system 

(3)  

𝑑𝑆

𝑑𝑡
= 1 − 𝑆 −

𝛽𝐵𝑆

𝛼 + 𝐵
𝑑𝐼

𝑑𝑡
=

𝛽𝐵𝑆

𝛼 + 𝐵
− 𝜎𝐼     

𝑑𝐵

𝑑𝑡
= 𝜎𝐼 − 𝜐𝐵         }

 
 

 
 

                                     (5) 

We set  

𝑑𝑆

𝑑𝑡
=
𝑑𝐼

𝑑𝑡
=
𝑑𝐵

𝑑𝑡
= 0                                            (6) 

Then the steady state of the system (4) satisfy 

the following algebraic system 

1 − 𝑆 −
𝛽𝐵𝑆

𝛼 + 𝐵
= 0

𝛽𝐵𝑆

𝛼 + 𝐵
− 𝜎𝐼 = 0

𝜎𝐼 − 𝜐𝐵 = 0 }
 
 

 
 

                                          (7) 

There are two steady states for system (5): when 

𝑆(𝑡) = 1 and 𝐼(𝑡) = 𝐵(𝑡) = 0 for all 𝑡. The 

first corresponds to the situation with no 

infection present and the entire population is 

susceptible, that is, disease free equilibrium. 

Thus, 

1 − 𝑆 −
𝛽𝐵𝑆

𝛼 + 𝐵
= 0                                          (8) 

If 𝐼 = 0, 𝐵 = 0 it implies 𝑆 = 1. Therefore 

𝑃1(𝑆, 𝐼, 𝐵) = (1,0,0). The second corresponds 

to an endemic steady state (endemic 

equilibrium) with constant number in the 

population infected; this biologically 

reasonable only when 𝑆(𝑡) < 1, that is when 

𝑅0 > 1, where 𝑅0 is the basic reproduction rate 

of the infection: 

𝑃2(𝑆, 𝐼, 𝐵) =
1 + 𝜐𝛼

1 + 𝛽
,− 

𝛽 + 𝜐𝛼

(1 + 𝛽)𝜎
,−

𝛽 + 𝜐𝛼

(1 + 𝛽)𝜐
    

  (9) 

𝑃2(𝑆, 𝐼, 𝐵) = (𝐶1, 𝐶2, 𝐶3)                                        (10) 

Where 

 𝐶1 =
1+𝜐𝛼

1+𝛽
,  𝐶2 = − 

𝛽+𝜐𝛼

(1+𝛽)𝜎
, 𝐶3 = −

𝛽+𝜐𝛼

(1+𝛽)𝜐
 

Stability Analysis 

The jacobian matrices of (5) is 

𝐷𝑓(𝑆, 𝐼, 𝐵) =

(

 
 
−1 − 𝛽𝐵 0

−𝛽𝑆𝛼

(𝛼 + 𝛽)2

𝛽𝐵 −𝜎
𝛽𝑆𝛼

(𝛼 + 𝛽)2

0 𝜎 −𝜐 )

 
 
            (11) 

The linearization of (7) at 𝑃1is  

𝐷𝑓(100) = (
−1 0 −𝑘
0 −𝜎 𝑘
0 𝜎 −𝜐

)                             (12) 

where 𝐾 =
−𝛽

𝛼
, and the eigenvalue relation is 

computed to as 

𝜆1 = −1

𝜆2 = −(𝜎 + 𝜐) +
√(𝜎 + 𝜐)2 − 4(𝜎𝜐 + 𝜎𝑘)

2

𝜆3 = −(𝜎 + 𝜐) −
√(𝜎 + 𝜐)2 − 4(𝜎𝜐 + 𝜎𝑘)

2 }
 
 

 
 

    (13) 

1. If  (𝜎 + 𝜐)2 − 4(𝜎𝜐 + 𝜎𝑘) > 0 the 

eigenvalues are real, unequal and 

negative. Hence, the critical point 

(1,0,0) is an asymptotically stable 

improper node of the system. 

2. If (𝜎 + 𝜐)2 − 4(𝜎𝜐 + 𝜎𝑘) = 0 the 

eigenvalues are negative. Hence, the 

critical point (1,0,0) is asymptotically 

stable. 

3.  3 If (𝜎 + 𝜐)2 − 4𝜎(𝜐 + 𝑘) < 0 we 

have one negative root and two 

complex root whose real part are equal 

and negative. Hence, the critical point 

(1,0,0) is globally asymptotically 

stable. 

The linearization at 𝑃2  is  
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𝐷𝑓(𝐶1,𝐶2,𝐶3) =

(

 
 
−1 − 𝐶3𝛽, 0

−𝛽𝐶1𝛼
(𝛼 + 𝛽)2

𝐶3𝛽 −𝜎
𝛽𝐶1𝛼

(𝛼 + 𝛽)2

0 𝜎 −𝜐 )

 
 
=  (

𝑞1 𝑞2 −𝑞2
𝑞3 −𝜎 𝑞2
0 𝜎 −𝜐

)                                       (14) 

where 𝑞1= − 1 − 𝐶3𝛽, 𝑞2 =
𝛽𝐶1𝛼
(𝛼+𝛽)2

 and 𝑞3 = 𝐶3𝛽, with the following eigenvalue relations 

𝜆1 =
1

6
(𝐴 + 𝐵)

1
3 −

6𝑐

(𝐴 + 𝐵)
1
3

+
1

3
𝑎

𝜆2 = −
1

12
(𝐴 + 𝐵)

1
3 +

3𝑐

(𝐴 + 𝐵)
1
3

+
1

3
𝑎 +

1

2
𝑖√3(

1

6
(𝐴 + 𝐵)

1
3 +

6𝑐

(𝐴 + 𝐵)
1
3

)

𝜆3 = −
1

12
(𝐴 + 𝐵)

1
3 +

3𝑐

(𝐴 + 𝐵)
1
3

+
1

3
𝑎 −

1

2
𝑖√3(

1

6
(𝐴 + 𝐵)

1
3 +

6𝑐

(𝐴 + 𝐵)
1
3

)

}
 
 
 
 

 
 
 
 

           (15) 

 

RESULTS AND DISCUSSION 

We solve the differential system (4) numerically using the Runge-Kutta integration scheme with a 

modified version of Newton-Raphson shooting method. The results are presented in Figures 1 to 5. 
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(a)                                                                                       (b) 

 

 

(c) 

Figure 1 Phase portrait of system (6) when 𝛽 = 5, 𝛼 = 3, 𝜎 = 7, 𝜐 = 9 

 

 

 

FONSAC ABBUL
Typewriter
28



Ndanusa et al., 2019   

ISSN: 2616-0986                                                                                               LAJANS 4(1): 24 - 34 

 
(a)                                                                              (b) 

 
(c)                                                                           (d)                        

  
(e) 

Figure 2 Plots of 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), 𝐵(𝑡) against 𝑡 for different values of 𝛽 when 𝜐 = 0.4, 𝜆 = 2, 𝜎 =
0.04, 𝜂 = 1, 𝛼 = 2, 𝛿 = 1    
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(a)                                                                    (b) 

 
                                                (c)                                                                         (d) 

 

 
(e) 

Figure 3 Plots of 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), 𝐵(𝑡) against 𝑡 for different values of 𝜐 when 𝛽 = 0.2, 𝜆 = 2, 𝜎 =
0.04, 𝜂 = 1, 𝛼 = 2, 𝛿 = 1    
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(a)                                                                     (b) 

 
                                                (c)                                                                         (d) 

 
(e) 

Figure 4 Plots of 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), 𝐵(𝑡) against 𝑡 for different values of 𝛼 when 𝛽 = 0.2, 𝜆 = 2, 𝜎 =
0.04, 𝜂 = 1, 𝜐 = 2, 𝛿 = 1    
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(a)             (b)                                                   

 
                                             (c)                                                                              (d) 

 

 

(e) 

Figure 4 Plots of 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), 𝐵(𝑡) against 𝑡 for different values of 𝜎 when 𝛽 = 0.2, 𝜆 = 2, 𝛼 =
2, 𝜂 = 1, 𝜐 = 2, 𝛿 = 1    
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The phase portrait of the system (6) presented 

in Figure 1 (a – c) display the trajectory of the 

system, which give a very good understanding 

of the qualitative properties of the solutions 

even without solving. In Figure 2 (a) the 

number of susceptible human decreases as 

contact rate with contaminated water parameter 

𝛽 increases. Figure 2 (b) showed  that the 

number of infected human increases as contact 

rate with contaminated water parameter 

𝛽 increases. While Figure 2 (c) indicates the 

number of recovered human increases and later 

decreases as contact rate with contaminated 

water parameter 𝛽 increases, Figure 2 (d)  

showed that the concentration of toxigenic 

𝑉. 𝑐ℎ𝑜𝑙𝑒𝑟𝑎𝑒 in water increases as contact rate 

with contaminated water parameter 𝛽 increases. 

In Figure 2 (e), we see the interaction between 

the Susceptible, Infected and Recovered human 

and the concentration of toxigenic 𝑉. 𝑐ℎ𝑜𝑙𝑒𝑟𝑎𝑒 

in water against 𝑡. Figures 3 (a) – (e) is 

interpreted thus: the number of susceptible 

human does not change much as 𝑣𝑖𝑏𝑟𝑖𝑜𝑠 death 

rate parameter 𝜐 increases, the number of 

infected human decreases as 𝑉. 𝑐ℎ𝑜𝑙𝑒𝑟𝑎𝑒 death 

rate parameter increases, the number of 

recovered human increases as 𝑣𝑖𝑏𝑟𝑖𝑜𝑠 death 

rate parameter 𝜐 increases, the concentration of 

toxigenic 𝑉. 𝑐ℎ𝑜𝑙𝑒𝑟𝑎𝑒  in water decreases as 

vibrios death rate parameter 𝜐  increases, the 

interaction between the susceptible, infected 

and recovered human and the concentration of 

toxigenic 𝑉. 𝑐ℎ𝑜𝑙𝑒𝑟𝑎𝑒 in water against 𝑡, 
respectively. Similarly, the interpretation of 

Figures 4 (a) – (e) is made as follow: the 

number of susceptible human does not change 

much as the water treatment parameter 𝛼 

increases, the number of infected human 

decreases as the water treatment parameter 𝛼 

increases, the number of recovered human 

increases as the water treatment parameter 𝛼 

increases, the concentration of toxigenic 

𝑉. 𝑐ℎ𝑜𝑙𝑒𝑟𝑎𝑒  in water decreases as the water 

treatment parameter 𝛼 increases, the interaction 

between the Susceptible, Infected and 

Recovered human and the concentration of 

toxigenic 𝑉. 𝑐ℎ𝑜𝑙𝑒𝑟𝑎𝑒 in water against 𝑡, 
respectively. 

And lastly, Figures 5 (a) – (e) showed that: the 

number of susceptible human decreases as the 

infected rate parameter 𝜎 increases, the number 

of infected human increases as the infected rate 

parameter 𝜎 increases, the number of recovered 

human increases as the infected rate parameter 

𝜎 increases, the concentration of toxigenic 

𝑉. 𝑐ℎ𝑜𝑙𝑒𝑟𝑎𝑒 in water Increases as the infected 

rate parameter σ increases, the interaction 

between the susceptible, infected and recovered 

human and the concentration of toxigenic 

𝑉. 𝑐ℎ𝑜𝑙𝑒𝑟𝑎𝑒 in water against 𝑡, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 

CONCLUSION 

For the relationship between Susceptible, 𝑆(𝑡)), 
Infected, 𝐼(𝑡), recovered, 𝑅(𝑡) and the 

concentration of toxigenic 𝑉. 𝑐ℎ𝑜𝑙𝑒𝑟𝑎𝑒 in 

water, 𝐵(𝑡), a linear stability analysis was 

presented. The governing parameters of the 

problem are the contact rate with contaminated 

water parameter, 𝛽, the water treatment 

parameter, 𝛼, the infected rate parameter, 𝜎, the 

𝑣𝑖𝑏𝑟𝑖𝑜𝑠 death rate 𝜐. The computations were 

done numerically using the classical Runge 

Kutta scheme with a modified version of the 

Newton Raphson shooting method. The result 

obtained showed that the increment in contact 

rate with contaminated water parameter 𝛽 and 

increment in the infected rate parameter 𝜎 

increases the rate of infection and the 

concentration of toxigenic 𝑉. 𝑐ℎ𝑜𝑙𝑒𝑟𝑎𝑒 in 

water, while its increment decreases the 

susceptible and recovered rate. Similarly, as the 

water treatment parameter 𝛼 and the 𝑣𝑖𝑏𝑟𝑖𝑜𝑠 
death rate 𝜐 increases, it increases the recovered 

and does not have much effect on the 

susceptible human, while it decreases the 

infected human and the concentration of 

toxigenic 𝑉. 𝑐ℎ𝑜𝑙𝑒𝑟𝑎𝑒 in water. 
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