Title Page

DEVELOPING A BUSINESS MANAGEMENT APPLICATION
USING OBJECT ORIENTED PROGRAMMING TECHNIQUES

Cace Study: Homewaree Lighting Sycteme Lid.

By

NZEIH CHUKWUEMEKA
PGD/MCS/99/2000/934

A PROJECT SUBMITTED TO THE DEPARTMENT OF MATHEMATICS/COMPUTER SCIENCE
FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA.

IN PARTIAL FUFILMENT OF THE REQUIREMENT FOR THE AWARD OF THE POST
CRADUATE DIPLOMA IN COMPUTER SCIENCE

SEPTEMBER, 2001.

CERTIFICATION

This project has been read and approved as meeting the requirements of the
award of Post Graduate Diploma in Computer Science, Department of

Mathematics and Computer Science, Federal University of Technology, Minna.

Mr. L.N. Ezeakor Date
Supervisor
Dr. 5. A. Reju ' Date

Head of Department.

External Examiner Date

DEDICATION

This work is dedicated to God Almighty and all my friends for their well wishes.

v

ACKNOWLEDGEMENT

[wish to acknowledge the efforts of all my lecturers at the Federal University
of Technology, Minna for their sincere effort in seeing that | get the required

knowledge in Computer Science and Information technology at its highest level.

I am particularly grateful to my Supervisor Mr. L.N. Ezeakor for his guidance.

Finally, | wish to thank my friends and course mates for their company and

encouragements.

TABLE OF CONTENTS

Title Page
Certification
Dedication
Acknowledgement
Table of Content
Abstract

Chapter One

11

Introduction

12 Statement of Problem

1.3 Objective of Study

14 Scope

1.5 Method of Data Collection

1.6 Definition of Terms

Chapter Two

2.1 Basics of Programming Languages

2.2 OQP Principles

2.3 Visual Tools and Object Oriented Programming
2.4 Event Driven Models and Interactive Development.
2.5 using Visual Basic for Object Oriented Programming
2.6 File and Project Hierarchy in Yisual Basic

2.7 Designing Applications using Yisual Basic

Chapter Three: Systems Analysis and Design

3.1
32
3.3

3.4
3.5

3.6
3.7
3.8
3.9

Description of the existing System

Problems of Existing System

Feasibility Study

Strenght of New System

Design Strategies for Implementing a Business Mgt Software
Features of programming Language used

Systems Flowchart

Input Specification

Output Specification

310 Procedure Chart

DA~

O

16
17
16
19

21

21

22
25
26
27
29
29
33
34

S . o,

3.11

Input Design

3.12 Output Design

Chapter Four: Systems Implementation

41 Introduction

4.2 Systems requirement

4.3 Systems Testing

44 Systems Set-Up

45 Change Over and Data Migration
Chapter Five

51 Conclusion

5.2 Recommendation

53 Post implementation Appraisal
54 References

Appendixes

» Source Code

35

48
49
53
54
55

56
57
57
59

ABSTRACT

One of the major areas of Information Technology deployment is business
management. Proper application of Information Technology tools has helped so many

businesses in enhancing their management and operational activities.

Internal and External constrainte exist that acte as impediments to effective
operations of business organizations transcends both small and large businesses.
In resolving these constraints, .T. tool and techniques have been applied with positive
results. LT. solutions to Business Management needs the appropriate software.
Thus developing the required software is a major step in achieving the objective of
offering solutions to Business needs using Information technology. Microsoft Visual
Basic is one of the most flexible and powerful Rapid Application Development tool
available today. Its use for Software development usually results in Software with

the Windows feel and look.

Therefore, in developing a business management application for transaction
processing, Microsoft Visual Basic would help in developing a software that meet the

need for which it was designed.

it s i i

A W gl e

Chapter One

1.1 Introduction

Modern Business Management recognizes the presence of internal and external constrains
that needs to be properly attended to in order to achieve progress. These constraints comes
in the form of record management, transaction processing, customer relations management
and the coordination of other business activities. One way these constraints have been
tackled head-on is by office automation (Office System). Office Systems refers to
equipment used to create, store, process, or communicate information in a business
environment. In today’s world the fulcrum of an office system is the PC (microcomputer)
and its associated software. It is well known that hardwares do not function in isolation. In
a business environment the benefit of computing and its applications cannot be appreciated
except there are software’s specifically tailored to offer business solutions. The major tools
needed to develop modern business application are object oriented programming (OOP)
tools. OOP tools dictate the present trend in computer programming. This is because they

generate software’s that are interactive, user friendly and efficient.

Apart from the perceived gains of computer usage in business management, other intrinsic
benefits are derivable from using business software as a management tool; it enhances
productivity, promotes business process reengineering and supports and provides a viable

information system.

Page I of 57

$ o g o e A
i S R

Programming is part of an esoteric world where logic is sacred. Even if you understand
exactly why a program works, there is still a magical element involved. Things appear and
disappear. Objects materialize, and then dematerialize. They do so according to strictly
defined logical rules; but still, there is the fact that things appear and disappear right before
our eyes.

To be a good programmer, one has to be an insider to program development tool. A
programmer to study arcane material, sit up over it and ponder its meaning, seeking to
understand its mysteries. Many people never understand the subtleties of programming. They
don't ever penetrate to the inner mysteries of this challenging field.

Some products seem to be effective at capturing the essence of the beautiful, mysterious
logic that underlies the world of programming. Products such as C++, Visual Basic, Visual
J++ and other Rapid Application Development tool have effectively captured and simplified
the steps in development effective programs by providing a powerful sets of programming

tools.

1.2 Statement of Problem

As we traverse through the years it would be notice that computing needs of business
changes. So also the type of software and computing requirement that would be needed to
solve these needs. Most business requires effective computer software’s to acts as a
management tool. These software usually would be expected to incorporate a database that
would serve as repository of information into which large volume of data would be stored

and retrieved as required.

Page 2 of 57

O A ———

Therefore database management systems are being called on to provide a higher level of
database management. No longer will databases manage data; they must manage
information and be the knowledge centers of the enterprise. To accomplish this, the database
must be extended to;

¢ Provide a higher level of information integration.

% Stores and retrieve‘ all types of data.
Applications that require database support are quickly extending beyond traditional data
processing into sophisticated office automation software. These applications have complex
data structuring needs, significantly different data accessing patterns and special performance
requirements. Conventional programming methodologies are not necessarily appropriate for
these applications and conventional data management system may not be appropriate for

managing their data.

Business management Applications deals. with a hierarchical structure of information
organization. Database access for these applications is typically a directed graph structure
rather than an ad hoc query. In trying to manipulate such complex data, a programmer writes
code to handle these. The Object Oriented Programming tool is the therefore the best bet in

solving the complexities for handling such data management requirement.

1.3 Objectives of Study
< To highlight the benefits of object oriented programming tools in developing modern
applications.
% Illustrate the Software development process using a particular Object Oriented

Programming Tool.

Page 3 of 57

% To develop a business management software using Ms Visual Basic.

1.4 Scope of Work
Object Oriented Programming and its principles would be discussed in detail, the actual
software development process would be done using Microsoft Visual Basic. Hence, the
study would be restricted further to Visual Basic components and their applications in
software development. A business management software would be developed to handle the
information processing required of a organization; Homeware Lightening Systems Ltd.
1.5 Method of Data Collection
The data collection methods used in this study were by Interviews and Studying procedural
Manual. In designing the software for the system, the personnel that uses the manual system
were interviewed, the forms they used studies. This is to enable the design

1.5 Definition of Terms
ActiveX: Microsoft's brand name for the technologies that enable interoperability using the
Component Object Model (COM).
API: Application programming interface. The set of commands that an application uses to
request and carry out lower-level services performed by a computer's operating system.
AGP: Accelerated Graphic Port; a new kind of Video RAM standard.
Polymorphism: In an object-oriented programming language, the ability to redefine a
routine in a derived class (a class that inherited its data structures and routines from another
class). Polymorphism allows the programmer to define a base class that includes routines that
perform standard operations on groups of related objects, without regard to the exact type of
each object. The programmer can redefine the routines, taking into account the type of the

object, in the derived classes for each of the types.

Page 4 of 57

Index: In Visual Basic, a number that identifies an element in an array, control array, or
collection. In data access, a dynamic cross-reference of one or more table data fields
(columns) that permits faster retrieval of specific records (rows) from a table. As records are
added, changed, or deleted, the database management system automatically updates the index
to reflect the changes.

Method A procedure that acts on an object.

Module A set of declarations followed by procedures.

Object: A combination of code and data that can be treated as a unit, for example, a control,
form, or application component. Each object is defined by a class.

Object-Oriented Programming: In contrast with procedural programming, involves the use
of both object-oriented design and an object-oriented programming language. Instead of
consisting of sets of data loosely coupled to many different procedures, object-oriented
programs consist of software modules called objects that encapsulate both data and
processing while hiding their inner complexities from programmers and hence from other
objects.

ODBC (Open Database Connectivity): A standard protocol that permits applications to
connect to a variety of external database servers or files. ODBC drivers used by the ODBC
driver manager permit access to SQL Server and several other data sources, including text
files and Microsoft Excel spreadsheets. The ODBC application programming interface (API)
may also be used to access ODBC drivers and the databases they connect to without using

the Microsoft Jet database engine.

Page 5 of 57

o s e

Binding: The process of putting an object into the running state so that operations supplied
by the object's application (such as edit or play) can be invoked. The type of binding

determines the speed with which an object’s methods are accessed using the object variable.

Procedure: A named sequence of statements executed as a unit. For example, Function,
Property, and Sub are types of procedures. A procedure name is always defined at module
level. All executable code must be contained in a procedure. Procedures can't be nested

within other procedures.

Page 6 of 57

Chapter Two

2.1 The Basics of Programming Languages

Programming Language, in computer science is an artificial language used to write a
sequence of instructions (a computer program) that can be run by a computer. Similar to
natural languages, such as English, programming languages have a vocabulary, grammar,
and syntax. However, natural languages are not suited for programming computers because
they are ambiguous, meaning that their vocabulary and grammatical structure may be
interpreted in multiple ways. The languages used to program computers must have simple
logical structures, and the rules for their grammar,. spelling, and punctuation must be

precise.

Programming languages vary greatly in their sophistication and in their degree of
versatility. Some programming languages are written to address a particular kind of
computing problem or for use on a particular model of computer system. For instance,
programming languages such as FORTRAN and COBOL were written to solve certain
general types of programming problems—FORTRAN for scientific applications, and
COBOL for business applications. Although these languages were designed to address
specific categories of computer problems, they are highly portable, meaning that they may
be used to program many types of computers. Other languages, such as machine languages,
are designed to be used by one specific model of computer system, or even by one specific
computer in certain research applications. The most commonly used programming
languages are highly portable and can be used to effectively solve diverse types of

computing problems. Languages like C, PASCAL, and BASIC fall into this category.

Page 7 of 57

o S Yoo

High-level languages are commonly classified as

% procedure-oriented,

< functional,

% object-oriented, or logic languages.
The most common high-level languages today are procedure-oriented languages. In these
languages, one or more related blocks of statements that perform some complete function
are grouped together into a program module, or procedure, and given a name such as
"procedure A." If the same sequence of operations is needed elsewhere in the program, a
simple statement can be used to refer back to the procedure. In essence, a procedure is just
a mini-program. A large program can be constructed by grouping together procedures that
perform different tasks. Procedural languages allow programs to be shorter and easier for

the computer to read, but they require the programmer to design each procedure to be

general enough to be used in different situations.

Functional languages treat procedures like mathematical functions and allow them to be
processed like any other data in a program. This allows a much higher and more rigorous
level of program construction. Functional languages also allow variables—symbols for
data that can be specified and changed by the user as the program is running—to be given
values only once. This simplifies programming by reducing the need to be concerned with
the exact order of statement execution, since a variable does not have to be redeclared, or
restated, each time it is used in a program statement. Many of the ideas from functional

languages have become key parts of many modern procedural languages.

Page 8 of 57

Object-oriented languages are outgrowths of functional languages. In object-oriented
languages, the code used to write the program and the data processed by the program are
grouped together into units called objects. Objects are further grouped into classes, which
define the attributes objects must have. A simple example of a class is the class Book.
Objects within this class might be Novel and Short Story. Objects also have certain
functions associated with them, called methods. The computer accesses an object through
the use of one of the object’s methods. The method performs some action to the data in the
object and returns this value to the computer. Classes of objects can also be further grouped
into hierarchies, in which objects of one class can inherit methods from another class. The
structure provided in object-oriented languages makes them very useful for complicated

programming tasks.

Logic languages use logic as their mathematical base. A logic program consists of sets of
facts and if-then rules, which specify how one set of facts may be deduced from others, for
example:

If the statement X is true, then the statement Y is false.

In the execution of such a program, an input statement can be logically deduced from other
statements in the program. Many artificial intelligence programs are written in such

languages.

2.2 OOP Principles
OOP is a disciplined programming style that incorporates three characteristics;
encapsulation, inheritance and dynamic binding. These characteristics differentiate QOP

from traditional programming models in which data has a type and structure, distinct from

Page 9 of 57

5405 il

the program code and is processed sequentially. OOP builds on the concepts of reuse

through the development and maintenance of class libraries of objects available for use and

marinating applications.

K/
%

Encapsulation joins procedures and data to create an object, so that only the
procedures are visible to the user, data is hidden from view. The purpose of
encapsulation is to mask the complexity of the data and the internal working of the
object. Only the procedures (methods) are visible to the outside world.

Inheritance passes attributes to dependent objects, called descendants or receives
attributes from objects called ancestors on which the object depends.

Dyﬁamic binding is the process whereby linking occurs at program execution time.
All objects are program execution. For example in a stock management application,
the function called program trading can sell or buy, depending on a large range of
economic variables that define the current state. These variables are transparent to
the user who invokes the trade process.

Class library is mature, tested reusable codes that provides application enabling code
such as help management, error recovery, function key support, navigation logic and
cursor management. The class library concept is inherent to the OOP concept and in
combination with the standards and training fundamentals - is inherent to the

productivity and error reduction encountered in project in which OOP tools are used.

Object Oriented programming is most effective when reusable components can be cut and

pasted to create a skeleton application. Into this skeleton the custom business logic for this

function is embedded. It is essential that the standard components use dynamic binding so

Page 10 of 57

that changes can be made and applied to all applications in the environment. This provides
one of the major maintenance productivity advantages.

e Objects

e Encapsulation and message passing

e Classes

e Libraries

e Inheritance

e Access modifiers
Objects
The fundamental unit in object-oriented programming is the object. Languages that follow
object-oriented concepts describe the interaction among objects. All objects have a state and
a behavior. The state of an object pertains to data elements and their associated values.
Everything the object knows about these elements and values describes the state of the
object. Data elements associated with objects are called instance variables.
The behavior of an object depends on the actions the object can perform on the instance
variables defined within the object. In procedural programming, such a construct would be
called a function. In object-oriented terminology, this construct is called a method. A method
belongs to the class it is a member of, and you use a method when you need to perform a
specific action more than once.
Thus, the state of an object depends on the things the object knows, and the behavior of the
object depends on the actions the object can perform. If a software object that models a
television is created, the object would have variables describing the television's current state,

such as it is on, the current channel setting is 8, the current volume setting is 23, and there is

Page 11 of 57

no input coming from the remote control. The object would also have methods that describe
the permissible actions, such as turn the television on or off, change the channel, change the
volume, and accept input from the remote control.
Encapsulation and Message Passing
Objects encapsulate instance variables and related methods into a single, identifiable unit.
Therefore, objects are easy to reuse, update, and maintain. A programmer can quickly and
easily do the following:

+ Pinpoint the necessary input to the object and the output from the object

o Find variable dependencies

o Isolate the effects of changes

e Make updates as necessary

o Create subclasses based on the original object
Objects are as dynamic as you make them. An object can invoke one or more methods to
accomplish a task. A user initiates a method by passing a message to an object. A message
must contain the name of the object you are sending the message to, the names of the
methods to perform, and the values needed by those methods. The object receiving the
message uses this information to invoke the appropriate methods with the specified values.
The benefit of encapsulation of instance variables and methods is that the programmer can
send messages to any object without having to know how the object works. All he needs to
know is what values a method will accept. Therefore, the software object describing the
television could be extremely complex, but all that needs to be done is for the programmer
or the end user have to know to use the television is how to press the appropriate buttons on

the remote control. The press of a button on the remote contro! sends a message to the

Page 12 of 57

television's software object, telling it which method to perform and the new input values for
the method.

Classes

Classes encapsulate objects. A single class can be used to instantiate multiple objects. This
means that you can have many active objects or instances of a class. The object describing
the functions of your television is an instance of a class of objects called television. Keep in
mind that each object within a class retains its own states and behaviors. By encapsulating
objects within a class structure, a programmer can group sets of objects by type.

Libraries

In C++ and other programming languages, a collection of related classes or functions is
called a library. Java puts a twist on the concept of libraries by using the term package to
describe a collection of related classes. Just as classes encapsulate objects, packages
encapsulate classes in Java.

Inheritance

Inheritance is a powerful aspect of object-oriented programming that allows codes to be
reused. and extend the functionality of existing classes. If a class is created to draw a shaded
rectangle on the screen, you could extend the class to move the rectangle to specific locations
on the screen without having to rewrite the original class. A programmer could also extend
the class for the shaded rectangle to display a series of user-selectable rectangles. In either
case, the new class would inherit the methods that created the shaded rectangle and then
extend the methods to perform the appropriate action.

Using this aspect of object-oriented programming, a new class can be created that inherits

the functionality of an existing class. Then functions can be extended to form part of the old

Page 13 of 57

W

class in ways that suit your current needs. The television class could have subclasses for
black-and-white televisions, color televisions, and home-theater-style televisions. The new
television subclass is not limited by the instance variables or methods of the superclass and
can include instance variables and methods not defined in the superclass. The new subclass
can also override inherited methods.

Access Modifiers

In object-oriented programming, access to methods and variables is controlled through access
modifiers. The Java programming language defines four levels of access controls:

Private methods and variables

Protected methods and variables

Friendly methods and variables

Public methods and variables

Private Methods and Variables

Methods and variables that are controlled by an associated object and are not accessible to
objects of different classes are generally considered to be private. The advantage of this is
that only objects in a particular class can access the methods or variables without limitation.
Java's private methods and variables are likewise accessible only by objects within the same
class.

Protected Methods and Variables

Methods and variables that are controlled by an associated object and are accessible to
objects in the current class or a subclass of the current class are generally considered to be

protected. The advantage of this is that only objects in specific classes can access the

Page 14 of 57

variables without limitation. Java's protected methods and variables are likewise accessible
only by methods in the same class or subclass.

Friendly Methods and Variables

Methods and variables that are accessible to other objects in most circumstances are
considered to be friendly. By default, methods and variables you declare in Java are assumed
to be friendly and are accessible by any class and objects in the same package. The advantage
of this is that objects in a particular package (generally a set of related classes) can access
each other without limitation.

Public Methods and Variables

Methods and variables that are accessible to all objects, even those outsiae the current class
and package, are considered to be public. Java's public methods and variables are accessible
by any object or class. Therefore, public methods and variables can be accessed without

limitation.

2.3 Visual Tools and Object Programming

Modern Object Oriented Programming has been enhanced by the use of Visual Development
Tools. The use of these tool allows application to be created with reduced amount of
programming. That is, a good percentage of the job to be done is handled by using Visual

designs and graphics to which underlying codes are attached.

Visual Tools have made programming quite simple. Task that hitherto requires a great deal
of programming to be achieved can be created by first creating the graphical interface by

using the tools provided the compiler and then associating program codes to them.

Page 15 of 57

o B

i RS e

Visual tools allows the creation of application that has the Windowsfeel and look. That is,
applications created with Visual tools are fully compatible with the Microsoft Windows
Operating System and they also share common controls, interfaces and dialog boxes with the
Windows O/S. Thus the use of Visual Tools is also referred to as Windows Programming.
Popular examples of Visual Programming Tools are Microsoft Visual Studio that

incorporates Visual Basic, Visual C++ Visual FoxPro and Visual Interdev.

2.4 Event Driven Models and Interactive Development
In traditional or "procedural" applications, the application itself controls which portions of
code execute and in what sequence. Execution starts with the first line of code and follows a
predefined path through the application, calling procedures as needed.
In an event-driven application, the code doesn't follow a predetermined path — it executes
different code sections in response to events. Events can be triggered by the user's actions, by
messages from the system or other applications, or even from the application itself. The
sequence of these events determines the sequence in which the code executes, thus the path
through the application's code differs each time the program runs.
Because the sequence of events cannot be predicted,, the code must make certain
assumptions about the "state of the world" when it executes. When you make assumptions
(for example, that an entry field must contain a value before running a procedure to process
that value), you should structure your application in such a way as to make sure that the
assumption will always be valid (for example, disabling the command button that starts the
procedure until the entry field contains a value).
Your code can also trigger events during execution. For example, programmatically changing

the text in a text box cause the text box's Change event to occur. This would cause the code

Page 16 of 57

s A i e,

B R

e

(if any) contained in the Change event to execute. If it is assumed that this event would only
be triggered by user interaction, you might see unexpected results. It is for this reason that it
is important to understand the event-driven model and keep it in mind when designing your
application.

The traditional application development process can be broken into three distinct steps:
writing, compiling, and testing code. Unlike traditional languages, Visual Basic uses an
interactive approach to development, blurring the distinction between the three steps.

With most languages, if a mistake is made in writing your code, the error is caught by the
compiler when you start to compile your application. The programmer must then find and fix
the error and begin the compile cycle again, repeating the process for each error found.
Visual Basic interprets your code as you enter it, catching and highlighting most syntax or
spelling errors on the fly. It's almost like having an expert watching over the programmers

shoulder as he enters the code.

In addition to catching errors on the fly, Visual Basic also partially compiles the code as it is
entered. When you are ready to run and test your application, there is only a brief delay to
finish compiling. If the compiler finds an error, it is highlighted in the code. The error can be

fixed and continue compiling without having to start over.

25 Using Visual Basic for OOP
The Basic programming language began as a procedural language, based on variables,
function éaf.ls, and statements. It is evolving toward an object-oriented language, based on

objects, properties, methods, and collections.

Page 17 of 57

i e

R T

Visual Basic has always had support for objects, even though you couldn't always create
objects in VB. The ability to create objects from classes was added in VB 4.0, while the
ability to create an ActiveX object is new in VB 5.0. and VB 6.0

While purists would argue that Visual Basic isn't a fully object-oriented language (mainly
because it doesn't have all the object-oriented features of C++, , it has become more object

oriented over time.

2.5 File and Project Hierarchy in Visual Basic

Project Group File (.vpg)

ActiveX Projects (.vbp)

User Controls (.ctl)

Modules (.bas)

Class Modules (.bas)

Property Pages (.pag)

EXE Projects (.vbp)

Forms (.frm)

MIDI Form (.frm)

Modules (.bas)

2.6 Designing Applications using Visual Basic

There are three main steps in creating application in Visual basic.

1. Create the interface.
2. Set Properties
3. Write codes.

Page 18 of 57

2.6.1 Creating Interface.

Forms are the foundation for creating the interface of an application. Forms are used to add
windows and dialog box to an application. They are also used as containers for items that are
not a visible part of the application interface. For example, a form in an application can
serve as a container for graphics that is to be displayed on other forms.

The first steps in building an application are to create the forms that will be the basis for the
application’s interface. Then objects that make up the interface are added to the forms.
Essentially, the Integrated Development Environment (IDE) of Visual Basic is build around
forms. Most programming feature of Visual Basics are built into forms and the appropriate

code assigned to such controls.

2.6.2 Setting Properties

The next step is to set the properties for the object that is created. The properties Windows
are used to do this in Visual Basic. The property of a form or controls determines the way
the form , control or object appears, how it is displayed and the action it performs when a

particular condition is satisfied.

2.6.3 Writing Code

The Code Editor window is where the Visual basic Codes are written for an application.
Codes consist of language statements, constants and declarations. The code window can be
used to view and edit any of the code in an application.

Codes in Visual basic is divided into smaller blocks called procedures. An event procedure
such as those contains code that is executed when an event occurs (such as when a user

clicks a button). An event procedure for a control combines the control’s actual name

Page 19 of 57

i s

s ki

kg B i

(specified in the Name property), an underscore (_) and the event name. For example, if a
programmer wants a command button name Command] to invoke an event procedure when
it is clicked, use the procedure Command1_Click.

Private Sub enter Click()

Unload Form1
Form2.Show

End Sub
The event procedure is used to remove a form (Forml) from the screen and display another
Form (Form2). The event procedure is invoked by clicking of enter command on a menu.

The control name is enter while the event is a click event.

Page 20 of 57

o S e i

Chapter Three

Systems Analysis And Design

3.1 Description of Existing System.
The System that would be studied is the Business Management Procedure of Homewares
Lightening System Limited; an establishment involved in the indoor and outdoor lightening,
artistic painting and corporate gifts. Their major operations are;

% Stocking and Retailing of good to customers.

% Maintaining of a list of all customers.

% Transaction processing for all transactions carried out.
Maintaining manual logs, bin cards, inventory form, and invoices carries out these activities

and the entire operations is coordinated by a production Supervisor.

The main aim of setting up the existing system is on commencement of the business
operations of Homewares Lightening Limited, there arose the need for a record keeping
method to be devised to take care of the business record keeping activities of the business.
The existing system is strictly manual. That is all record keeping are done manual,

transcribed to forms and other documents manually.

3.2. Problems of Existing System.
» No definite order and pattern for processing transaction records (information).

» Administrative and Record Keeping problems resulting from the absence of Data

Processing Standards and Procedures.

Page 21 of 57

» The absence of an existing MIS structure. Hence there is no laid out pattern for
information sharing and communication among the different levels of managers.

» Records are difficult to trace, since the clerk has to flip through piles of cards and
patter in sequential order to get to the record to be located.

» There is no logical links between the different types of records

> No effective method of protecting data integrity and protection from accidental loss,

destruction or corruption.

The present problems occurred because of the following reasons;

» No existing information processing system and no set standard for data processing
within the system. Therefore the Staff relies on arbitrary methods for handling their
data.

» If there was an existing information processing system, information would be easily
communicated to management. Hence the business management process would be a
lot easier.

» The absence of trained and proficient staff that can handle and operate a Computer

based information system.

3.3 Feasibility Study

Designing and implementing a new system Homewares Lightening Systems Limited is
feasible. Each alternatives have been realistically viewed against the current market trends
and existing situations. Though each alternative would help see to the solution of the problem

at hand; they all have their peculiar merits. The available feasible alternatives are;

Page 22 of 57

B it i i

1. Office Automation Approach: This involves the establishment of an Office System.
An Office Systems is a set of equipment used to create, store, process, or
communicate information in a business environment. This information can be
manually, electrically, or electronically produced, duplicated, and transmitted. Most
modern office equipment—including typewriters, dictation equipment, facsimile
machines, photocopiers, calculators, word processors and telephone systems.

» An office automation system though would be effective in providing a
solution to the problems at hand it would serve for the short run only.

» Using an office system the only means of sending printed reports and other
recorded data to head office is by fax. This is more expensive and tedious as
many copies of reports would be continuously faxed on a routine basis.

» Using an Office System we would have no choice than sending reports and
other data through mail or courier service. In the long run with envisaged
expansion in business operations (growth), market trends and increasing
competition, there would be the need for a more sophisticated information
processing system; that would be flexible enough to cope with increasing
business needs and the changing market environment. Therefore the Office
System Approach would not offer a comprehensive solution to the problem at
hand.

2. Information System Approach: An information processing system refers to the entire

resources for handling the information requirement of an establishment. It incorporates
both the human resources requirement, computers and automated devices involved.

The major component of an information system is the data processing system within it.

Page 23 of 57

B T

B I T A

The information processing approach involves the setting up information and data
processing system. Data processing is the analysis and organization of data by the repeated
use of one or more computer programs. Data processing is used extensively in business,
engineering, and science and to an increasing extent in nearly all areas in which computers
are used. Businesses use data processing for such tasks as payroll preparation, accounting,
record keeping, inventory control, sales analysis, and the processing of bank and credit

card/value card account statements.

The Data Processing System for the Homewares would be designed to operate as a
complete integrated set of interrelated system. This approach would provide information
that satisfies the following attributes, viz; provide Information that is timely, accurate and

relevant.

The information system approach would also used a customized business management
software to manage the entire transaction/information processing function of the

organization.

The Information System Approach is the most feasible alternative to solving the problems of
Homewares Lightening Systems.
The Information System Approach was then viewed from three perspectives;
» Technical Feasibility.
» Operational Feasibility.

» Economic Feasibility.

Page 24 of 57

g

Technical feasibility is the extent to which it is possible for Computer Systems to be applied
as a replacement for business activities that were hitherto done manually. The was found to
be quite feasible. Since business management software would be designed, it would serve as
the new means of data entry and storage hence eliminating the need for data to be recorded

on paper. The PC (microcomputer) is a versatile tool whose application cuts across diverse

fields,.

Operational feasibility: the new system would be feasible operationally since new system
would be designed to simulate the manual system and also eliminate the shortcomings of the
manual system. Personnel would be trained on the inner workings and operations of the
system and adequate documentation provided. Hence it possible for the system to be
operated successfully.

Economic Feasibility: This is the cost consideration involved in implementing anew system.
In recent times, there has been a considerable decrease in the cost of Microcomputer
Systems. Hence Information processing system that are dependent on one or two PC are too
cost intensive to implement. The cost implications of developing a new system are made up

for by the benefits obtainable from the new system.

34 Strengths of New System
The alternative method would offer the following benefits;
i Ensure effective processing of transaction, administration and operational data.
ii. Proper record keeping and effective information documentation both in form of

printed reports and as digital files on secondary storage devices.

Page 25 of 57

gy £ e e R P s i

iii.

iv.

3.1

The new system would provide a management view of the entire organization,
since all business information can be accessed from a single location.
Information can be easily accessed and retrieved when need.
Multiple reports can be created for different transaction records.
Design Strategies For Implementing a Business Management System
Identification of current system requirements
Selection and Organization of the data that needs to be stored
Planning for system Efficiency and Reliability
Economic Cost comparison: Determination of the cost of implementing the proposed
system
Planning System Requirement
Determination of the information or data to be keep track off.
Organization strategy of the required information
Determination of the user of the proposed system and the capability of such user.
Projection of future database needs.
Potential Hurdles
Apathy of users to computerized systems, leading to the exhibition of system under-
utilization.
Over dependency leading to the assumptions that the computerized system is fail-
prove.
Unauthorized access to stored data and information.
Data lost due to user lack of maintenance culture

System malfunctioning.

Page 26 of 57

User adaptation to old system.

Solving Potential Problems

Adequate training of operators, users and all personnel concerned with the use of the
new system.

Periodic/Routine backup of stored information.

Access control and user verification methods should be built into the software.
Management Control: Management should always summarize information, observe

trends and performance of variances.

3.6 Features Of Used Programming Language (Visual Basic 6.0)

The proposed system would be developed with modern Object Oriented Programming Tools

(Visual Basic) and would very much help in enhancing any standard operations.

The Visual Basic has a number of features, which in turn are incorporated into the proposed

system, this feature includes:

FEATURES

Full Windows Compatibility: the software is designed to run in the Ms Windows
Operating and any compatible environment, which is the standard for any modern
software.
Mouse Support : apart from keyboard invocations of commands, the software we
develop supports the use of the mouse, hence, it is easier to navigate through the
software environment and tasks can be executed at the click of a button.
Menu and Event Driven: the software incorporate Pull Down menus, windows
compatible dialogue boxes, prompts and command buttons. This has the added
advantage of making the software more user-friendly and interactive.
Connectivity with other Windows based application: the software has the ability for
Dynamic Data Exchange (DDE) and Dynamic Link Library (DLL) for Shared files,

with other Ms Windows based software. As such data can be exported or imported to

Page 27 of 57

and from it (i.e. communication with other window based software is totally
effective).

Improved Multiple Database Structure: the database structure of any new software
developed by us uses the Microsoft Open Database Connectivity (ODBC) style that
supports the creation of multiple tables in a single database. This allows for better
handling of large volume of related data items while still compact.

Security: the software is designed such that only valid and authorized users can only
gain access; thereby protecting the integrity of your data and the source code of your
program being tampered with, which is one of the problems you faced with
uncompileable program. Also the databases in the software could encrypted such that
they can only be manipulated by the software alone.

Output Control: the software controls the output to Screen, Printer or directly to
a file in the format of any Ms Windows base standard software. (E.g. Access, Excel,
Ms Word)

Practical WYSIWYG (What-You-See-Is-What-You-Get) Report Display: the display
screen shows you exactly what your final report will look like when your print
Multiple Size Page Views: View as many report pages at Actual, Double or Half size.
Pictorial Data Representation: data charting in our software gives view
enhancement.

Multi-Media Effects: Visual and Audio multi-media are available optionally, also
they use all your current Operating System Settings like Sound, Screen Color, Date &
Time e.t.c.

Utility Features: pop-up on screen Calculator & Calendar.

Page 28 of 57

3.7 System Flowchart

Manual

Preparation

1
[

General
Account

Transaction Customer

Information

—

Data can be inputted
through Keyboard,

Data Input for '—~—‘——'< Scanners, Barcodes

P . etc, depending on the
VDU rocessing kind of information to

Display l e inputted

Data is processed by fast
! \ . processors on

j Pl’OCCSSlng Microcomputers (PCs)
"—————< and processed data stored

on fast access Disk
Storage Devices.

“—

Online Storage
of Data on
Hard Disk

General Trans Rep

General Accounts

Profit Analysis
Balance Sheet

Customers List
Print Invoice

Backup on
Zip Disk

3.8 Input Specification
The database used supports Open Database Connectivity (ODBC) techniques that allows the

creation of multiple tables in a single database. Hence the database is assigned an extension

Page 29 of 57

.mdb (multiple database). The tables contained in the Homewares.mdb database and their

structure are;

» Customer : for storing customers details

Fields Name DataType Field Size Field Meaning
Name Text 50 Customer Name
Cuscode Text 12 Customer Code
OfficeTel Text 15 Office Telephone
HomeTel Text 15 Home Telephone
Address Text 150 Customer Address
MobileTel Text 15 Mobile Phone
This table is indexed on the customer code field (cuscode).

» Category: for storing assigned categories

Fields Name DataType | Field Size Field Meaning |
Name Text 50 Item Category Name
Code Text 50 Category Code

> Balsheet:

this table generates a balance sheet from the available transaction.

Fields Name | DataType | Field Size Field Meaning
Desc Text 200 | Description
CRAmt Currency 8 Credit Amount
DRAmt Currency 8 Debit Amount

> Pass : storing registered password and user access levels.

Fields Name DataType Field Size Field Meaning
Username Text 60 Username
Password Text 30 Pass Word
AccessLevel Text 30 Access Level for user

Page 30 of 57

e Skt Yo G S i,

i e e R G g e R it

> PayDetails : Recording payment and invoicing details.

Fields Name DataType Field Size Field Meaning
Cuscode Text 18 Customer Code
OrderNo Text 15 Order Number
VAT Currency 8 VAT Charge
Paid Currency 8 Amount Paid
PayType Text 10 Payment Type (Cash or Cheque)
Bal Currency 8 Outstanding balance
BankName Text 50 Name of Bank
ChequeNo Text 20 Cheque Number
AccountNo Text 20 Account Number
Date Date/Time 8 Date of Transaction

This table is indexed on the CusCode and OrderNo

> Settings : This table is used to assigned settings for the Company that would be

making use of the software.

Fields Name DataType Field Size Field Meaning
CoyName Text 50 Company Name
Admin Text 50 Administrator’s Name
VAT Double 8 % charged on VAT
CoyAdd Memo Company Address

» Transaction : for registering new order and generating invoice.

Fields Name DataType Field Size Field Meaning
Icode Text 50 Item Code
Cashier Text 50 Cashier Name
OrderNo Double 15 Order Number
Quantity Text 8 Quantity of Item
CusCode Text 15 Customer Code
TranDate Date/Time 8 Date of Trans
TotalAmount Currency 8 Total Amount

This table is indexed on the CusCode, Icode OrderNo and TransDate.

Page 31 of 57

S i G i et ool

» Expenditure

: stores data for expenditure account

Fields Name DataType Field Size Field Meaning
TransType Text 50 Transaction Type
TransAmount Currency 8 Transaction Amount
TransDate Date/Time 8 Transaction Date
TransBy Text 50 Staff Authorizing Transaction
TransTo Text 50 Customer to which Transaction is made
Receipt no Text 20 Receipt Number
TransUnit Double 8 No of Items Transacted

> Income : stores data for income account

Fields Name DataType Field Size Field Meaning
TransType Text 50 Field Meaning
TransAmount Currency 8 Transaction Amount
TransDate Date/Time 8 Transaction Date
TransBy Text 50 Staff carrying out trans
TransTo Text 50 Organization involved in

transaction
Receipt no Text 20 Receipt Number
TransUnit Double 8 No of items transacted.
> ItemInvent : is used to update the available inventory after a transaction has been
__processes

Fields Name DataType Field Size Field Meaning
Desc Text 50 Description
UnitInStock Double 8 Unit in Stock
Category Text 50 Item Category
ReOrder Double 8 Reorder Level
UnitSellPrice Currency 8 Unit Selling Price
UnitCostPrice Currency 8 Unit Cost Price

This table is indexed on the Desc, Icode

> Homelnvent : is used to add a new item to available inventory at hand.

Fields Name DataType Field Size Field Meaning
Desc Text 50 Description
UnitInStock Double 8 Unit in Stock
ReOrder Double 8 Reorder Level

The tables illustrated above are the component units of the Homwares.mdb database. The

database structured in the Microsoft Access Database format.

Page 32 of 57

L TE TR NP

3.9 OUTPUT SPECIFICATION

For the output of processing to be view (on Paper or Screen) they have to be first written to a

file (Database Table) before they are sent to any output medium (Printer- for Hardcopy or

Screen — for Softcopy).

It should be noted that most (in fact all) of this Table are generic,

with the sole aim of ‘dumping’ Report data/information and are deleted afterwards. It is also

note-worthy that a generated table could be used for/by many Reports.

> TrashGAcct

Fields Name DataType Field Size Field Meaning
TransType Text 50 Transaction Type
TransAmount Currency 8 Amount
TransDate Date/Time 8 Transaction date
TransTo Text 50 Transaction total
Receipt-No Text 20 Receipt No. Issued
TransUnit Double 8

» PayDTrash

Fields Name Data Type | Field Size Field Meaning
Cuscode Text 15 Customer Code
OrderNo Text 15 Order Number
VAT Currency 8 Charge for VAT
Paid Currency 8 Amount paid
PayType Text 10 Payment Type (Cash or Cheque)
Bal Currency 8 Balance '
BankName Text 60 Bank Name
ChequeNo Text 20 Cheque Number
AccountNo Text 20 Account Number
Date Date/Time 8 Date of Payment

This table is indexed on the Cuscode and OrderNo fields.

Page 33 of 57

3
5
?
3
i
5
3
&
;
L 4
¥
¥
9

3.10 PROCEDURE CHART

Business Mgt Software
Exe file

v

Authorization/Password
Verification

v

Entry Form/Menu System

l

Exit

v

v

y

v

st i A

Transaction Stock Customer General Accounts
New Order Item Category / Customer Income Expenditure
Processin Inventory Items . Account Account
8 Y Information Processing Processing
3.11 INPUT DESIGN

The Design of Screens (FORMS as called in Visual Basic) is important in any system
development process, because it is through this Forms (interface) that the User actually
communicates with the program, thus, the efficiency or robustness of a program is firstly
determined by the User interface (Forms). It is the user friendliness of the Forms in a

program that determines whether is Software is good or not. With this taken into

consideration, the following input designs are used.

Page 34 of 57

e i,

i

g v

e e ST

s S

FormAccess (Access.frm)
Screen Purpose: This Form doubly serves as the Welcoming Screen as well as the

authorization check-point of the Homewares Management Softwares. Here it is expected
that the user should supply his/her Username and Password to gain access to the system

proper. An incorrect entry of either the Username or the Password makes the user an invalid

user.

¢ Authorisation Code

FrmMainMenu.Frm

Screen Purpose: This is the Main menu Form that contains the different activities the
system can do. Different operational options are available on the main menu form for users to

choose. The main menu form displays two types of menu items, the horizontal pull down

menu and the vertical pop-up menus;

Page 35 of 57

it et SR

ey L M S iy g

The functions performed by the horizontal menu items are;

REPORTS

General Transaction Reports: This option displays the general transaction reports on
a monthly, daily, weekly, quarterly or yearly basis based on the option selected. This
option also displays the expected profit Analysis, Credit List, Debtor List and can be
used to Print Invoices.

General Income: This is used to invoke the report that displays the income
breakdown from all preceeding transactions.

General Expenditure: This is used to invoke the report that displays all expenditure

(expense) carried out the organization.
Balance Sheet: This option is used to prepare a trial balance from all transactions. It
used a time frame to query the tables containing transaction information.

Inventory Analysis: This option is used to display a listing of, List of Stock Items,

Item Category Listing and Customer List.

TOOLS

Password Administration: This is used to set the list of Authorized User Name and

their password. The name and password are input when Frmaccess (Access.Frm) is

display when the software starts.

Software Settings: This is used to set company particulars (Name and Address) of the

organization that would be making used of the software.

The Vertical Pop-Up menu displays a set of command buttons on the right hand side of the

screen when they receive focus (when the mouse pointer rests on any of the menu item). The

Page 36 of 57

i i

vertical menu items are used mainly to enter data into an underlying table or process a
transaction. When any of the vertical menu item receives focus a set of command buttons
appears on the right and the user can select by clicking any of the options that corresponds
with the intended operation.

TRANSACTION

» Transaction: This displays the main transaction entry form, general invoice, find and
updates and edits an existing order and performs general transaction process.

= Stock Details.: This option is used to add or view Item category.

v Customer Details: This is displays the form that is used to send customer information
to the Customer table.

s House Ware Inventory: is used to add and view item inventory and make inventory
requisition.

* House General Accounts: This is used to view and update income and expenditure
account information.

* End: This option is used to exit the application. Wne it is clicked it displays a
message box that prompt the user to continue or exit the application environment.

The FrmMainMenu also display a status bar at the bottom of the screen that displays the

name of the current user, time and time.

Page 37 of 57

« Homewares

frmCategory.frm

Screen Purpose:

Page 38 of 57

o S g

i RO i

frmltemInvent.frm

Screen Purpose: This is used to input or edit data for item inventory.

' w Item Inventory

25" Palladiana Wall Brackets

Furnishing

frmCustDetails.frm

Screen Purpose: this from allows for inputting, editing and deleting of custonmers
information.

% Customer [nformation

Page 39 of 57

i drdios i ity

e R R R S W O e b

e

e A

i SR R G

frmInvent.frm

Screen Purpose: This form displays the Inventory list of available items in stock and number

of such asset in stock and its reorder level..

When the Add New Asset button is clicked, the form is modified to allow for new assets to

be registered.

W Inventory

Al New Asset ftem

Black Horse Plastic Cérﬁp Chalrs
CAMP CHAIRS

Itailian Flower Tiles
Marble E xtensible Ceiling Lights

View Ewisting Asset [tem

Aeider Lever

Page 40 of 57

g

i S i

-

The frmInvent.frm can also be modified to display requisition when an inventory

requisition is to be made.

PO AL T B B

{ Stack Type: - iston Blue XTiles | ReUOrder Level

frmGAccount.Frm

Screen Purpose: This screen is used to input parameters for general accounts. That is income

and expenditure accounts.

w General Accoun

Transaction Type:
 Unit Transacted;

 Amount Transacted:

Transaction Date:
Transacted By:

-]School Fees 1

o
Js000
]2/29/2000

~ ,{v,l Halimat

23223

erW’ole

Page 41 of 57

o S s

s R v

e kg,

w_ General Account

neame Besont

Transaction Twpe.
Hnit Transacted:

Amount Transacted: {300
{5/5/2000

ﬂfeoma
,lJ/ohn

frmPass.frm

Screen Purpose: for entering new and editing existing user password and access levels.

Record: 1

1 Uodate 1 ngré@h ! ﬁé@eté;' |

Page 42 of 57

i frmSetting.frm
i

password.

3

Screen Purpose: this form is used to enter company particulars and name of administrators

w Software Settings

Company
Namg: lﬁomewares Ltd

Company Plot 44 Limpopo Street, Maitama - Abuja
Address: Tel: 234-9-4138868 Fax: 4131042

Administrators
Name: iNzeih C'Emeka

Administrator
Password:]

Confirm
Password:

Screen Purpose: This form is use to place new orders, editing or delete and existing order,
3 generate invoices and for general transaction processing.

Page 43 of 57

1

e S b S

!
;
&
:
!
i

FrmGetFilter.frm

Screen Purpose. This is used to specify the period or time frame or a financial report would
be generated.

@ Report Filter Information

3.12 OUTPUT DESIGN

Output Design (REPORTS as called in Visual Basic) is also important in any system
development process. Reports can either be displayed on the screen or printed on paper. A
good report is a basic instrument for management decision making, thus for a report to be

alright it has to contain all bit of information required in it. The following output designs are
used.

BalSheet.rpt: displays or prints the balance sheet as at the month specified.

e

Homewares Ltd

Flot 44 Limpopo Street, Maitama - Abuja.
Tel: 234-9-4]133868 Fax: 4131042
E-Mail: kevwr@cyperspace net ng
[BALANCE SHEET AS AT Feb 22,2001

Print Date Feb/22/2001
SN DESCRIPTION

Total Cash Recieved From Sales

Excess Balances (Credit Customers)

Deficit Balances (Debit Customers)

General Income (From Other Sources)

General Expenditures

Balance C/F

106

A o D S S tere] 505 raas

Page 44 of 57

b e S

e e

! Customer.rpt: diplays the list of all registered customers and their other particulars.

Homewares Ltd

e 4a: L Srcer Masmam - Abug

el)')‘.o«.u)uu Fax_ 4t21047
g
_LI5T OF ALL CUSTOMERS

Qlagen Dluwsie by
Naew tasern Lagos Trear Area I Skum

Boye aee Slapap Femac. Lagon
3 Bechiar Deac Wuse Lous 2, sbum [N

0P0.<3276713.

i
4

Seguu Qpunaano

T, e
]
-
[
g
=
o
—
o~
s
=
]
P>
=
o

-
»
A
D
=
=
=
;-
Q
3
oy
=
<y
o
S
=
=
:-
&
=
)
-~
~
o
2
o
xQ
S

Homewares Ltd

. Plot 44 Limpopo Street, Maitama - Atuja

Tel: 234-9-4133868 Fax: 4131042
4 E-Mail: hrw@cyperspace nat.ng
: D LIST OF ALL ITEM WITH THEIR CATEGORY

Print Date Feb/22/2001 PAGE No. 1
SN ; L ECORY . . 0 ITEM DESCRIPTION

CAMP CHAIRS

OK Plastic Outdooz Sittings

Red dlexandria Tree

Chandebiers

Chandeliers

Groceries

Groceries

Paintings & Wall Decors
Tables

Tiles

Cairo Bhue Circles

OMD Detergent

LUX SOAP

Jacuzzi Flies

Flora Blue Office Table
Jasmine Marble Flooring

25" Palladiana Wall Brackets

1
2
3
4
5
&
?
8
2
1

1]

‘Wall Brackets

b ({:losej 106010 Totah. - 100x
;
H

S AL

Page 45 of 57

bl S

R

i T

ItemInvent.rpt:

price of each item.

displays Items in Inventory, the quantity in stock and the unit selling

Homewares Ltd

Plot 44 Limpopo Street, Maitama - Abuja
Tel: 234-9-4138868 Fax: 4131042
E-Mail: hnwi@cyperspace net.ng

L LIST OF CURRENT INVENTORY OF ITEMS]

PrintDate Feb220001 -
SN 1TEM CODE " ITEM DESCRIPTION

PAGE No. |

U REGRDER. STOUK QIY. UNITPRICE

N 200

OMO Detergent

LUX SOAP

CAMP CHAIRS

Jasmine Marble Flooring

25" Palladiana Wall Brackets
25" Palladiana Wall Brackets
OK Plastic Qutdoor Sittings
Flora Bhe Office Table

Red Alexandria Tree

Cairo Blue Circles

Jacuzzi Flies

N 200
N 300

N 50.00

N 56,000.00
N 56,000.00
N 930.00

N 17,580.00
N 49,000.00
N 67,000.00
N 42,000.00

Homewares Ltd

Plot 44 Limpopo Street, Maitama - Abuja

Tel: 234-9-4138868 Fax: 4131042
E-Mail: hmw@gypqrspaco.mi.ng

'l LIST OF ITEM CATEGORY N
Print Date 2/22/200. PAGE No. 1
CATEGORY e
1 Chairs C
2 Chandeliers CH
3 Foods FO
4 Famishing F
5 General [tems GT
6 Groceries G
? Kitchen Items K1
8 Outdoor Lightenings oL
9 Paintings & Wall Decors PWD
i\ 10 Tables TB
| 11 Tiles TL
i 12 Wall Brackets WB

(g 1o DD Bl Sml@coe] 2wz tese o

Page 46 of 57

Profitl.rpt: shows the profit the organization stands to make from selling outstanding items in stock.

Homewares Ltd

Pot 4 Lidipopo 2redt, Militan - kU
Tel. 2]4-D-41 12263 Farx. 4111042
E-madl . bara@Xyperapace setag

f PROPOSED PROFIT ON CURRENT §TOCK]

Priot Dare | 2773001 |PA1:: No- | |

Gl QMG Demergest °00 N IpD N 1300

N 1300 N DDD

[l

1 G Lux saar 1m0 N IDD N 400 N 400 N oDo

1 GT? CAMP CHAIRS 2200 N 20D NG00 M 28400 N 3300

- raz luateus Martie Floondg 00 N 400 N ee000 N 110000 N 11DDD

3 Fl ' Mlediada WaH Brackens WLO N 14,000 00 N 224,00000 N |,456,00000 N A73,00000
L] Fl 5 Palladrada Wall Brackers WO N 14,000 00 N 324,000 00 N 1,436,000 00 N A72,00000
? (= AK Aamc Ourdoor Smags 100 N 73000 N 1?,23000 N ?1,2%000 N 414000
3 TB Flova Blue Office Tawle 200 ™ 13,000 00 . N 113,00000 N 143,22000 N 23,3000
° CHI Red Alexaddna Tree Y-} N 430,00000 g N 1,730,000 00 N 743,000 DD (N,008,000 DD}
0 CHY Care Bue Crcles 14100 N 36,00D00D £ A 1,004,000 DO N 1,273,00000 N 324,00000
n rwol Jacuzzi Fies 2400 73,000 00 722,000 00 N 1,473,000 00

N E4RCCOL0

Lddd 1o p]e]lconcal(5] (Sl a][close] 1001 Tawn o0

Invoice.rpt: generates an invoice for a processed transaction/order.

Homewares Ltd

Plot 4A Limpopo Street, Maitama - Aluja
Tal: 234-9-4138868 Fax: 4131042
E-Mail: hmw@cyperspace net.ng

INVOICE ADDRES S [ACCOUNT No. | [rvE] DATE
Name: Olapoju Oluwole 1 21:26:57 Feb/2212001
Address: Abuja

[oRDER DATE | [oRDER No.| [PAGENe. |
Feb/25/2000 12 1
i CIPTION. . . UNITPRICE TOTAL VALUE
1 FH2 34.00 N 3,060.00
2 GH! .00 N 0.00

V.AT N 153.00

[dd 101 D Icoclisl@da)[oee] 202 Twaz w00

Page 47 of 57

CHAPTER FOUR

System Implementation

41 INTRODUCTION

Implementation is the process of applying the developed system for the purpose it is meant

for. System implementation involves the development of quality assurance procedures,

including data security, back-up, recovery and system control system implementation

objective is to complete the orderly and unobtrusive installation of the new system. During

the system implementation, the new system is installed and users have the opportunity to

operate the new system in “parallel” with the existing system.

The system implementation comprises the following task:

» Application system installation

* Documentation to provide user manuals
» Users Training on the new system

* Parallel system testing

= Data conversion/migration

= Acceptance of Testing

s System setup

42 REQUIREMENTS FOR IMPLEMENTING A BUSINESS MANAGEMENT

SOFTWARE.
Business Mgt. System
el
Hardware Software Procedures Human Resources

Page 48 of 57

4.2.1 Hardware Requirement
The Hardware requirement for implementing the Computer Based Business Management

System is Complete PC (Personal Computer) and its associated accessories.

Personal Computer (PC) are machine capable of repetitively and quickly performing
calculations and instructions. Designed to be used by a single person, a PC is smaller, less
expensive, and easier to use than other classes of computers, such as supercomputers,

mainframe computers, and workstations.

PCs have revolutionized entertainment, science, the media, art, medicine, education, and
business because they provide computational abilities at a low cost to people with no
extensive programming experience. PCs enable artists to envision and manipulate images.
Musicians use them for learning, creating, and recording music. Businesses track finances
and forecast company performance using PCs. Foreign correspondents can compose news
stories on portable PCs, called laptops, and electronically submit these stories from remote
locations. Many people work at home and communicate with fellow workers via their PCs
in a practice known as telecommuting. PCs are also able to interface with worldwide
communication networks, such as the Internet, and the graphics-based information database

known as the World Wide Web to find information on any subject.

PCs consist of electronic circuitry called a microprocessor, such as the central processing unit

(CPU), that directs logical and arithmetical functions and runs computer programs. A PC also

Page 49 of 57

has electronic memory to temporarily store programs and data and mass storage devices—
such as hard, floppy, and compact disc (CD-ROM) drives—to permanently store programs
and data. Information and commands are entered by the user via a keyboard or a pointing
device called a mouse. Information from the PC is displayed on a video monitor or on a

liquid crystal display (LCD) video screen, or it can be printed on laser, dot-matrix, or inkjet

printers

Monitor

-

Disk drive

Fleppy disk Memory

Laser printer Speaker

Modem

CD~ROM drive Keyboard

With the continuous manufacturing of Microprocessors of higher computing strength by
major processor manufacturers such as Intel Inc AMD (advance Micro Devices) and Cyrix
Technologies Corp., the power of PCs have grown sporadically in recent times. PCs have
gradually grown from stand alone and single user computers to system that can support a
network for multi user access. PC has gradually encroached into areas that hitherto used to

be the exclusive domain of Minis and mainframe computers. With the entry of newer

Page 50 of 57

processor models like the Intel Pentium III series, AMK K62-3D and others the market the
computing strength of PCs would continue to be on the increase.
Hardware Specification
» Intel Pentium III 700
64 MB Synchronous DRAM.
8 MB AGP Set.
10.2 Gb Hard Disk Drive.
52x CD-ROM.
15 Super VGA.
Minitower ATX Casing.
Microsoft PS/2 Mouse
1.4MB 3.5” FDD.
Windows PS/2 Keyboard.

IOMEGA 250MB Zip Disk.

v Vv Vv VY V¥V VY VY Vv VY V¥V V

Full Multimedia.
Other Accessories.
» HP Deskjet 1120 Printer.
» APC 650 Smart UPS.
4.2.2 Software Requirement
The software required by the system is a combination of both required operating (system
software) and the application software is a business management software.
Operating System is the basic software that controls a computer. The operating system has

three major functions: It coordinates and manipulates computer hardware, such as

Page 51 of 57

computer memory, printers, disks, keyboard, mouse, and monitor; it organizes files on a
variety of storage media, such as floppy disk, hard drive, compact disc, and tape; and it

manages hardware errors and the loss of data.

Operating systems control different computer processes, such as running a spreadsheet
program or accessing information from the computer's memory. One important process is
the interpretation of commands that allow the user to communicate with the computer.
| Some command interpreters are text oriented, requiring commands to be typed in. Other
command interpreters are graphically oriented and let the user communicate by pointing
and clicking on an jcon, an on-screen picture that represents a specific command.
Beginners generally find graphically oriented interpreters easier to use, but many
experienced computer users prefer text-oriented command interpreters because they are
more powerful.

Operating systems are either single-tasking or multitasking. The more primitive single-
tasking operating systems can run only one process at a time. For instance, when the
computer is printing a document, it cannot start another process or respond to new

commands until the printing is completed.

The operating that would be used for the system would be the Microsoft Windows Operating
System; any of the following versions of Windows would suffice; Microsoft Windows 98,

Windows Me (Millennium Edition) and Microsoft Windows 2000 Professional.

Page 52 of 57

423 Human Resources Requirement
The existing staff of the company would be trained on the mode of operation of the system.
This is necessary because it would be easier for the personnel that are already conversant
with the operations of the manual system to understand the new system. Therefore it is not
necessary for new persons to be recruited.
42.4 PROCEDURES
Procedures are step-by-step method(s) of using a system to be able to achieve result. A
procedure in the context of this project is a physical component because they are provided in
a physical form such as manual and instruction booklets. The major types of procedures that
are required are:

= User instructions

= Instruction for preparation of input

= QOperating instructions for the computer center personnel.
4.3 SYSTEM TESTING
After the installation of the new system, the system must undergo a test, once all the
programs have been written and the training of the personnel to use the system is completed.
The system testing is to ensure that all the sub-programs have been efficiently and correctly
written. The system testing entails the execution of the program with test data so as to enable
the system developer and the management to know the operational efficiency of the system.
The system testing will also enable the designer to correct errors and delete programs or
modules that are not efficient or relevant by a process called debugging, using test data input

into the programs so as to produce the desired output reports. Test data of all possibtle

Page 53 of 57

e i,

T

g

type/kind are used in other that all likely behaviors of the system to the input is ascertained
before actual system implementation.

During this task, the Programmers or the System designer(s) assists the project staff in
conducting the testing of the developed system so as to ensure that the system meets all the
users needs and requirements. System testing entails the testing and certification of the
system developed. This phase ensures that all required features, functions and capabilities are
present in the system developed, and that all other requirements are met. Any necessary
revisions are made during the system testing.

It is note-worthy that test data should be of ‘real-live’ nature.

44 SYSTEM SET-UP

After the successful System Testing, and the system output or requirements are mutually
accepted by the Users of the system, the System Analyst and System Programmer(s), the next
thing in the system implementation line is the setting up of the installed system, that is,
putting in place or entering the basic information necessary for the system smooth take off.
Setup information in this new system include:

* Authorization Setup: Here it is required to identify the users of the new system and
Password assigned to them. It is also note-worthy that not every user can have
unlimited access to the entire system, thus, access levels would also be determined for
each user of the system. Authorization need not be done every time the system is ran,
but only when new users are to be given access to the system or if modification is

necessary — changing password or access level. The assignment of access to users can

only be done be the System Administrator.

Page 54 of 57

= User Information: The new system is an ‘open-system’, and can be used by any
other organization or company that uses or want to use the same method in this
system for its pension administration. Thus it is pertinent that the user information is

supplied once, upon the first running of the system.

4.5 CHANGE-OVER & DATA MIGRATION

The change ovér from old to new system may take place when the system has been proved to
the satisfaction of the new System Analyst and the other implementation activities have been
completed.

The method and approach used for the change over is the parallel running system. The
parallel system testing means processing current data by both the old and new system
concurrently, to cross check the result and compares them. The main advantage is that the old
system is kept alive and operational until the new system has been proved for at least one
system circle. Using ‘real-live’ data in the real operational environment of the equipments,
people and data, the results of the new system will be compared with old system to ensure the
efficiency, capability and durability before acceptance by the user.

The change over task is designed to ensure that the software developed replicate the
functionality of the system to be replaced.

Once the change over ends, the user staff complete their training and the parallel system
testing are successful, the conversion of records of the old system to the file format of the

new system, which involve data entry/capture of several forms of data using the software

(Data Migration), is necessary.

Page 55 of 57

s

Chapter Five

5.1 Conclusion

For Computers to be effectively put to use; there must be software that would be used to
complement functions of the hardware. The Business Management Software have been
designed with the principles of effective Software development in mind. This is aimed at
making the Software user friendly, hence easy to use. Full Windows feels and look features
and controls have been properly used. Hence the software can be used with minimal

supervision.

5.2 Recommendation

This software is recommended for use by any organization involved in the nature of business
as specified by that carried out by Homeware Lightening Systems Ltd. The Software can be
adapted to suit the business by changing the Company Name, Address and Administrators
particulars. Also the source code for the software can be modified if need be to incorporate

other business function to suit the need of any organization.

Page 56 of 57

¢
/

References

Andersen R.G., Data Processing and Management Information Systems: Vol I & 11

M & E Handbooks, L.ondon 1998.
Amudsen Mike. Teach Yourself Visual Basic 5, 2" Ed. Sams Publising, Inc, USA.

Loren D. Edahl Platinum Edition, Using Visual Basic 5.0; Loren D. Eidahl;

Macmillan Computer Publishing, 1997.

Mcmanus P. Jeffrey How to Program in Visual Basic 5, Macmillian Publishing, CA,

USA, 1997.

Peter Norton and William Stanek Peter Norton’s Guide to Java Programming;

Sams Publishing, IN, USA, 1996

Microsoft Developers Network 6.0 (MSDN Library Visual Studio 6.0), Microsoft Inc,

Redmond WA, USA

Microsoft Encarta Encyclopaedia, Micosoft Inc., Redmond WA, USA 1999,

Page 57 of 57

¥

g Code for Module 1 (Hwares.bas)

i PPublic dbs As Database

iPublic TheOrderNo As String

#Public nltem As Listltem

4Public rstTemp As Recordset

iPublic State, UserName, RepTitle As String

Public Time, CoyName, CoyAdd As String

Public VAT, TransSum, New TransSum As Double

iPublic TheCurrentStock, SellingPrice As Double

”;Public mode, PnntMode, Accessl.evel, TheFinancialFlag As
“Integer

¥

k-ﬁfodes for FrmAccess.frm
i
?ublic mode As Integer

fiPrivate Sub Command1_Click()

2If Command1 .Caption = "&Start" Then
gFrmAccess.Height = 6540

Command!l .Caption = "&End"

! Exit Sub

{End If

If Command].Caption = "&End" Then End
#End Sub

A

§ Private Sub DBCombol_Click(Area As Integer)
i Textl SetFocus

. End Sub

Private Sub DBCombol_KeyPress(KeyAscii As Integer)
jCall Text] KeyPress(13)
1End Sub

1 Private Sub Form_Click()

RESP = MsgBox("Do you want to exit y/n?", vbYesNo +
4 vbCritical)

1 IfRESP = vbYes Then End

1 End Sub

4 Private Sub Form_Load()

On Error GoTo handler

3 mode =1

§ FrmSettings.Datal Refresh

4 If FrmSettings.Datal Recordset. EOF = False Then

i FrmSettings Datal Recordset. MoveFirst

CoyName = FrmSettings.Datal .Recordset!{ Coy Name]

i CoyAdd = FrmSettings. Datal Recordset!{CoyAdd]

7 VAT = FrmSettings Datal Recordset![VAT]

f Else

4 FrmSettings.Show 1

FrmSettings Datal Refresh

If FrmSettings.Datal Recordset. EOF = False Then
FrmSettings.Datal Recordset. MoveFirst
CoyName = FrmSettings.Datal .Recordset![CoyName]
CoyAdd = FrmSettngs.Datal Recordset!{CoyAdd]
VAT = FrmSettings.Datal Recordset!{ VAT]

Else
MsgBox "No Company Settings found in Database....Some
operations may be abnormal”
End If
End If
Labell.Caption = CoyAdd
Me.Caption = "Authorisation Code"
Datal Refresh
Exit Sub
handler:
MsgBox Err.Description
End Sub

Private Sub Textl KeyPress(KeyAscii As Integer)
If KeyAscii = 13 Then

Datal Refresh

With Datal Recordset

Do While EOF =False

If Trim(Textl . Text) = ![Password] And
Trim(DBCombol.Text) = ![UserName] Then
AccessLevel = ![AccessLevel]

UserName = DBCombol . Text
FrmMainMenu.Show

Unload FrmAccess

Exit Sub

End If

.MoveNext

Loop

MsgBox "Invalid user”

End With

End If

End Sub

Private Sub Timerl_Timer()

1 Labell 1eft <= FrmAccessl.eft - FrmAccess. Width + 900
Then

Labell .Left = FrmAccess. Width

End If

Labell Left = Labell Left - 10

End Sub

Private Sub Timer2_Timer()

If Framel Height >= 1695 Then
Command]l Enabled = True

GoTo ending

End If

Framet Height = Framel Height + 10
ending:

End Sub

Code for FrmCAtegory.frm

Private Sub cmdAdd_Click()

On Error GoTo handler
datPrimaryRS.Recordset. AddNew
Exit Sub

handler:

MsgBox Emr.Description

;‘lnd Sub

%’rivate Sub cmdDelete_Click()

On Error GoTo handler

+ With datPrimaryRS Recordset

1 RESP = MsgBox("The Current Record would be
Deleted...Continue (Y/N)", vbYesNo + vbInformation)
+ IfRESP = vbYes Then

i Delete

MoveNext

+ If .EOF Then .MoveLast

: EndIf

. End With

. Exit Sub

handler:

i MsgBox Err.Description

¥End Sub

fgrivate Sub cmdRefresh_Click()

#0n Error GoTo handler

¢ 'This is only needed for multi user apps
{ datPrimaryRS Refresh

Exit Sub

“handler:

3 MsgBox Err Description

End Sub

4 Private Sub emdUpdate_Click()

#0n Error GoTo handler

; datPrimaryRS. UpdateRecord
datPrimaryRS.Recordset. Bookmark =

1 datPnmaryRS Recordset. LastModified

! Exit Sub

‘handler:

i MsgBox Err.Description

g End Sub

1 Private Sub cmdClese_Click()

i Unload Me

i End Sub

i Private Sub datPrimaryRS_Error(DataErr As Integer,
Response As Integer)

"This is where you would put error handling code

'If you want to ignore errors, comment out the next line

'If you want to trap them, add code here to handle them

! MsgBox "Data error event hit err:" & Esror$(DataErr)

¢ Response =0 "Throw away the error

; End Sub

4 Private Sub datPrimaryRS_Reposition()
On Error Resume Next
{ "This will synch the grid with the Master recordset
datSecondaryRS.RecordSource = "select
[code],[Name],[Address] from [customer] where {codel=" &
datPrimaryRS Recordset![Code] & "™ & " Order by [code]”
datSecondaryRS.Refresh
"This will display the current record position for dynasets and
snapshots

1

datPrimaryRS.Caption = "Record: " &
(datPrimaryRS.Recordset. AbsolutePosition + 1)
End Sub

Private Sub datPrimaryRS_Validate(Action As Integer,
Save As Integer)
"This 1s where you put validation code
"This event gets called when the following actions occur
Select Case Action
Case vbDataActionMoveFirst
Case vbDataA ctionMovePrevious
Case vbDataActionMoveNext
Case vbDataActionMoveLast
Case vbDataActionAddNew
Case vbDataActionUpdate
Case vbDataActionDelete
Case vbDataActionFind
Case vbDataActionBookmark
Case vbDataActionClose
' Screen.MousePointer = vbDefault
End Select
'Screen.MousePointer = vbHourglass
End Sub

Private Sub Txtfields KeyPress(Index As Integer,
KeyAscii As Integer)

If KeyAscii = 13 Then If Index = 0 Then Txttields(1) =
Left(Txtfields(0), 1)

End Sub

Codes for frmCustDetails

Private Sub cmdAdd_Click()
On Error GoTo handler
datPrimaryRS . Refresh
If datPrimaryR S Recordset EOF = False Then
datPrimaryRS.Recordset. MoveL ast
datPrimaryR S Refresh
datPrimaryRS.Recordset. AddNew
txtFields(0). Text = datPrimaryRS Recordset. RecordCount +
1
txtkields(1).SetFocus
Exit Sub
handler:
MsgBox Err.Description
End Sub

Private Sub cmdDelete_Click()
On Error GoTo handler
With datPrimaryRS .Recordset
RESP = MsgBox(" The Current Record would be
Deleted...Continue (Y/N)", vbYesNo + vbInformation)
IfRESP = vbYes Then
Delete
.MoveNext
If EOF Then .MoveLast
End If
Iind With
Exat Sub

.

;
V%‘landler:

§ MsgBox Err.Descniption
ffi]nd Sub

]

Private Sub cmdRefresh_Click()

{On Error GoTo handler

4+ 'This 1s only needed for multi user apps
, datPrimaryRS Refresh

: Exit Sub

handler:

+ MsgBox Err.Description

{End Sub

%Private Sub cmdUpdate_Click()

10n Error GoTo handler
datPrimaryRS.UpdateRecord
datPrimaryRS.Recordset 3ookmark =
datPrimaryRS Recordset.LastModified
Exit Sub

thandler:

MsgBox Err.Description

3End Sub

Private Sub cmdClese_Click()
+ Unload Me
End Sub

{Private Sub datPrimaryRS_Error(DataErr As Integer,
NResponse As Integer)

"This 1s where you would put error handling code

'[f you want to ignore errors, comment out the next line

'If you want to trap them, add code here to handle them
MsgBox "Data error event hit err:" & Error$(DataErr)

1 Response =0 "Throw away the error

1End Sub

Private Sub datPrimaryRS_Reposition()
'Screen.MouscPointer = vbDefault
On Error Resume Next
"This will synch the grid with the Master recordset
'datSecondaryR S.RecordSource = "select
[codel,{Name],[Address] from [customer]| where [code]=" &
datPrimaryRS Recordset! [code] & "™ & " Order by [code}”
'datSecondaryR S Refresh
"This will display the current record position for dynasets and
; snapshots
1 datPrimaryRS.Caption = "Record: " &
4 (datPrimarvRS.Recordset. AbsolutePosition + 1)
{ End Sub

é Private Sub datPrimaryRS Validate(Action As Integer,
* Save As Integer)
{ 'This is where you put validation code
“This event gets called when the following actions occur
Select Case Action

Case vbDataActionMoveFirst

Case vbDataActionMovePrevious

Case vbDataA ctionMoveNext

Case vbDataActionMovel ast

Case vbDataActionAddNew

111

Case vbDataActionUpdate

Case vbDataActionDelete

Case vbDataActionFnd

Case vbDataActionBookmark

Case vbDataActionClose

'Screen. MousePointer = vbDefault
End Select
'Screen.MousePointer = vbHourglass
End Sub

Private Sub Form_Load()

'Create the grid's recordset
' datPrimaryR S Refresh
End Sub

Private Sub Form_Unload(Cancel As Integer)
'Screen. MousePomter = vbDefault

End Sub

Codes for frmGAccount.frm

Private Sub CmbMonth_Click()

H Format{CmbMonth, "mm") = "Jan" Or Format{CmbMonth,
"mm") = "Mar" Or Format{CmbMonth, "mm™") = "Mav" Or
Format(CmbMonth, "mm") = "Jul" Or Format(CmbMonth,
"mm") = "Aug" Or Format(CmbMonth, "mm") = "Oct" Or
Format(CmbMonth, "mm") = "Dec" Then

Day(28). Visible = True

Day(29). Visible = True

Day(30). Visible = True

End If

If Format(CmbMonth, "mm") = "Sep" Or Format(CmbMonth,
"mm") = "Apr" Or Format(CmbMonth, "mm") = "Jun" Or
Format(CmbMonth, "mm"}) = "Nov" Then

Day(28).Visible = True

Day(29). Visible = True

Day(30). Visible = False

End If

If Format(CmbMonth, "mm") = "Feb" Then

If Val(ecmbYear. Text) Mod 4 = 0 Or Val(cmb Year. Text) Mod
100 =0 Then

Day(28). Visible = True

Day(29).Visible = False

Day(30). Visible = False

Else

Day(28). Visible = False

Day(29). Visible = False

Day(30). Visible = False

End If

End If

End Sub

Private Sub cmbYear_Click()

If Format(CmbMonth, "mm")} = "Feb" Then

If Val(cmbYear. Text) Mod 4 = 0 Or Val(cmbYear. Text) Mod
100 =0 Then

Day(28). Visible = True

Day(29). Visible = I'alse

Day(30).Visible = False

slse

Ba_v(28). Visible = False
Day(29). Visible = False
Day(30). Visible = False
<nd If

“nd If

£nd Sub

Private Sub emdAdd_Click()
On Error GoTo handler

Datal Recordset. AddNew

Fxit Sub

nandler:

MsgBox (Error(Err. Number))
End Sub

Private Sub cmdClose_Click()
nload Me
End Sub

i’rivate Sub cmdDelete_Click()
f%On Error GoTo handler
With Datal Recordset
RESP = MsgBox("The Current Record would be Deleted
H(y/m)?..", vbYesNo + vbCritical)
¢ IfRESP=vbYes Then
Delete
i MoveNext
& If EOF Then MoveLast
End If
i End With
! Exit Sub
handler:
i MsgBox Err.Description
End Sub

i Private Sub cmdRefresh_Click()

On Error GoTo handler
"Thus 15 only needed for multi user apps
Datal Refresh

Exit Sub

handler:

£ MsgBox Err.Description

1 End Sub

Private Sub emdUpdate_Click()

1 On Error GoTo handler

Datal . UpdatcRecord

Datal .Recordset. Bookmark = Datal Recordset. L astModified
1 Exit Sub

* handler:

f MsgBox Err.Description

4

| End Sub

Private Sub Combo3_Click()

If Format(Combo4, "mm") = "Feb" Then

If Val(Combo3.Text) Mod 4 = 0 Or Val(Combo3.Text) Mod
100 =0 Then

Y

Day(28 + 31). Visible = True
Day(29 + 31). Visible = False
Day(30 + 31).Visible = False
Llsc

Day(28 + 31).Visible = False
Day(29 +31).Visible = False
Day(30 + 31). Visible = I'alse
End If

EndIf

End Sub

Private Sub Combo4_Click()

If Format(Combo4, "mm") = "Jan" Or Format(Combo4,
"mm") = "Mar" Or Format(Combo4, "mm") = "May" Or
Fomat(Combo4, "mm") = "Jul" Or Format(Combo4, "mm") =
"Aug" Or Format(Combo4, "mm") = "Oct" Or
Format(Combo4, "mm") = "Dec" Then

Day(28 + 31). Visible = True

Day(29 +31).Visible = True

Day(30 +31).Visible = True

End If

If Format(Combo4, "mm") = "Sep" Or Format(Combo4,
"mm") = "Apr" Or Format(Combod, "mm") = "Jun" Or
Format(Combo4, "mm") = "Nov" Then

Day(28 +31).Visible = True

Day(29 +31).Visible = True

Day(30 + 31). Visible = False

End If

If Format(Combo4, "mm") = "Feb" Then

If Val(Combo3. Text) Mod 4 = 0 Or Val(Combo3. Text) Mod
100 =0 Then

Day(28 + 31).Visible = True

Day(29 +31). Visible = False

Day(30 + 31).Visible = False

Else

Day(28 +31).Visible =False

Day(29 + 31).Visible = False

Day(30 + 31).Visible = False

End If

End If

End Sub

Private Sub Command1_Click()
Unload Me
End Sub

Private Sub Command2_Click()
On Error GoTo handler
Data5 UpdateRecord
Data5 Recordset. Bookmark = Data5 Recordset.LastModified
Exit Sub
handler:
MsgBox Err.Description
End Sub

Private Sub Command3_Click()
If FraCal.Visible = True Then
FraCal.Visible = False
Lixit Sub
End If

EraCal Visible = Truc
End Sub

Private Sub Commandd_Click()

?Dn Error GoTo handler

; 'This is only needed for multi user apps
1 Data5 Refresh

Fxit Sub

handler:

MsgBox Err.Description

End Sub

Private Sub Command5_Click()
On Error GoTo handler

With Data5.Recordset
' RESP = MsgBox("The Current Record would be Deleted
(y/m)?..", vbYesNo + vbCritical)
IfRESP = vbYes Then

Delete

MoveNext

If EOF Then MoveLast

End If

: End With

Exat Sub

handler:

MsgBox Err.Description
End Sub

}Private Sub Commandé6_Click()
On Error GoT o handler

Data5 Recordset. AddNew

Exit Sub

i handler:

3 MsgBox (Error(Err.Number))
i End Sub

; Private Sub Command7_Click()
i If Framel . Visible = True Then
Framel Visible = False

Exit Sub

i End If

1 Framel . Visible = True

7 End Sub

Private Sub Day_Click(Index As Integer)

+ IfIndex <31 Then

+ TheDate = CmbMonth & "/" & Day(Index).Caption & "/" &
¢ cmbYear

- Combol = TheDate

% FraCal. Visible = Falsc

{ End1If

¢ IfIndex>=31 Then

: TheDate = Combo4 & "/" & Day(index - 31).Caption & " &
3 Combo3

Combo2 = TheDate

Framel . Visible = False

End It

v

End Sub
Private Sub Form_Load()

' For The Calender

Fori1=1900 To 2100

cmbYear Addltem (i)

Combo3.Addltem (1)

Next i

CmbMaonth = Format(Now, "mmm")
Combo4 = Format(Now, "mmm")
cmbYear = Format(Now, "yyyy")
Combo3 = Format(Now, "yyyy")
Day(Format(Now, "dd") - 1).Value = True

If Format(CmbMonth, "mm") = "Jan" Or Format(CmbMonth,
"mm") = "Mar” Or Format(CmbMonth, "mm") = "May" Or
Format(CmbMonth, "mm") = "Jul" Or Format(CmbMonth,
"mm") ="Aug" Or Format{CmbMonth, "mm") = "Oct" Or
Format{CmbMonth, "mm") = "Dec¢" Then

Day(28). Visible = True

Day(29).Visible = True

Day(30).Visible = True

End If

If Format(CmbMonth, "mm") = "Sep" Or Format(CmbMonth,
"mm") = "Apr" Or Format(CmbMonth, "mm") ="Jun" Or
Format(CmbMonth, "mm") = "Nov" Then

Day(28). Visible = True

Day(29). Visible = True

Day(30). Visible = Falsc

End If

If Format(CmbMonth, "'mm") = "Feb" Then

If Val(Combo3. Text) Mod 4 = 0 Or Val(Combo3. Text) Mod
100 =0 Then

Day(28). Visible = True

Day(29). Visible = False

Day(30). Visible = False

Else

Day(28).Visible = False

Day(29). Visible = False

Day(30). Visible = False

End If

End If

if Format(Combo4, "mm") = "Jan" Or Format(Combo4,
"mm") = "Mar" Or Format(Combo4, "mm") = "May" Or
Format(Combo4, "mm") ="Jul" Or Format(Combo4, "mm") =
"Aug” Or Format{Combo4, "mm") ="Oct" Or
Format(Combo4, "mm") = "Dec" Then

Day(28 + 31). Visible = True

Day(29 + 31).Visible = True

Day(30 + 31).Visible = True

End If

H Format(Combo4, "mm") = "Sep" Or Format(Combo4,
"mm") ="Apr" Or Format(Combo4, "mm") = "Jun" Or
Format(Combo4, "mm") = "Nov" Then

Day(28 + 31).Visible = True

Day(29 + 31). Visible = True

Day(30 + 31).Visible = False

[

{f Val(Combo3.Text) Mod 4 = 0 Or Val(Combo3.Text) Mod

nd If
if Format(Combo4, "mm") = "I'eb" Then

100 =0 Then

%)ay(28 +31).Visible = True
Day(29 +31).Visible = False
(Dav(30 + 31). Visible = False
Else

Day(28 +31).Visible = False
Day(29 + 31).Visible = False
2Day(30 + 31). Visible = False
End If

End If

' End The Calender
}fEnd Sub

‘f’fCodes for FrmFinanceReport.frm

Private Sub Command1_Click()

71f TheFmnancialFlag = 1 Then DailyFmnance

11f TheFmnancialFlag = 2 Then WeeklyFinance

frmFinanceReport. WindowState = vbMinimized
Unload Me

1 frmView.Show

#End Sub

Private Sub Command2_Click()
Unload frmFmnanceReport
End Sub

Private Sub Command3_Click()
QuaterlyFinance
frmFinanceReport. WindowState = vbMinimized
Unload Me
frmView.Show
{ End Sub

s Private Sub Command4_Click()
4+ Unload {frml'inanceReport
: End Sub

. Private Sub Command5_Click()
¢ Unload frmFinanceReport
- End Sub

¢ Private Sub Command6_Click()

2 yearlyFinance

¢ _frmFinanceReport WindowState = vbMinimized
! Unload Me

i frmView.Show

+ End Sub

! Private Sub Command7_Click()
} Unload frmFinanceReport
End Sub

vi

Private Sub Command8 Click()
MonthlyFinance

frmFinanceReport. WindowState = vbMinimized
Unload Mc

frm View.Show

End Sub

Public Sub DailyFinance()

Set dbs = OpenDatabase("c:\Hwares\Homewares.mdb")

If Combol. Text < "" And Combo2.Text <> "" And
Combo3.Text <>"" Then

TheDate = Tnnim(Combo2.Text) & "/" & Trm(Combol . Text)
& "/" & Trim(Combo3 Text)

dbs Exccute ("DELETE * FROM TransTrash™)

dbs Execute ("INSERT INTO TransTrash SELECT * FROM
{Transaction] " & _

"WHERT TranDate = #” & CDale(TheDate) & "#7)
RepTitle="LIST OF TRANSACTION FOR " & TheDate
frmView.CR1 ReportFileName = "c:\Hwares\Trans.rpt"

Else

MsgBox "Invahd Date Specification”
Exit Sub

End If

End Sub

Public Sub yearlyFinance()

On Error GoTo handler

TheDate = Trim(Combo2. Text) & "/" & Tnm(Combol . Text)
& "I & Tnm(Combo3. Text)

If Combo7.Text < "" Then

Set dbs = OpenDatabase("c:\Hwares\Homewares.mdb")
myqueryl = "Select * From | Transaction} where
datepart('M',[Transaction]. TranDate)>1 AND
Datepart('vyyy',[Transaction]. TranDate)=" + Combo7.Text
dbsFExecute ("DELETE * FROM TransTrash")

dbs Execute ("INSERT INTO TransTrash " & myqueryl)
RepTitle ="LIST OF TRANSACTION FOR YEAR " &
Combo7

frm View.CR 1 ReportFileName = "¢:\Hwares\Trans mt"
Else

MsgBox "Invalid Date Specification”

Exat Sub

End If

Exit Sub

handler:

MsgBox Err.Description

End Sub

Public Sub WeeklyFinance()
On Error GoTo handler
TheDate = Trim(Combo2.Text) & "/" & Trim(Combol. Text)
& "/" & Trim(Combo3.Text)
If Combol Text < "" And Comba2 Text<>"" And
Combo3.Text <> "" Then

Sqlstr = "Select * From [Transaction] where
datepart('M',| Transaction]. TranDate)=" + """ + Combo2. Text
+ m

H

; Sqlstr = Sqlstr + " AND
‘Datepart('yyyy",[Transaction}]. TranDate)="
° Sqlstr = Sqlstr + " AND
Datcpart('d',] Transaction]. TranDate)>=" + Combol. Text
myqueryl = Sqlstr + " OR

Datepart('d',[Transaction]. TranDate)<=" +
str(Val(Combol . Text + 7))

+ Combo3.Text

Bet dbs = OpenDatabase("c:\Hwares\Homewares.mdb")
if Combol Text < "" And Combo2.Text < ™" And
Lombo3.Text < "" Then

heDate = Trim(Combo2.Text) & "/" & Tnm(Combol.Text)
& "I" & Trim(Combo3.Text)

ibs Exceute ("DELETE * FROM TransTrash™)
dbs.Execute ("INSERT INTO TransTrash " & myqueryl)
RepTitle="LIST OF TRANSACTION FOR WEEK
ENDING " & TheDate

frm View.CR1 ReportFileName = "c:\Hwares\Trans.rpt"
Else

MseBox "Invalid Date Specification”

Fxit Sub

FEnd It

End I

Exit Sub

handler:

MsgBox Err.Description
Exit Sub

#
It datkorTheReport. Recordset BOF = False Then

datForTheReport.Recordset MoveF irst

Do While datForTheReport Recordset EOF = False

datFForTheReport Recordset.Delete

1 datForTheReport Recordset MoveNext

Loop

TheDate = Trim(Combo2 Text) & “/" & Trim{Combol. Text)

: & "/" & Trim(Combo3.Text)

¢ If Combol.Text < "" And Combo2.Text <> "" And

1 Combo3.Text < "" Then

" Query for Other transactions

Sqlstr = "Select * From [OtherTrans] where
7 datepart('M',| Other Trans). TransDate)=" + """ + Combo2 "Text
+ Hin
y Sqlstr = Sqlstr + " AND
Datepart('vvyy',| Other I rans]. TransDate)="
Sqlstr = Sqlstr + " AND
Datepart('d',[Other Trans]. TransDate>=" + Combo1.Text
myqueryl = Sqlstr +" OR
Datepart('d',[Other Trans]. TransDate)<=" +

+ Combo3. Text

. Str(Val(Combol.Text + 7))

1

°’ ' Query for Expenditures

Sqlstr = "Select * From [Expenditure] where

+ "y
Sqlstr = Sqlstr + " AND
Datepart('vyyy',|Expenditure]. TransDate)=" + Combo3. Text

datepart(M',| Expenditure]. TransDate)=" + """ + Combo2.Text

Vit

Sglstr = Sqlstr + " AND
Datepart('d',[Expenditure]. TransDatey>=" + Combol . Text
myquery3 = Sqlstr+" AND
Datepart('d',JExpenditure]. TransDate)<=" +
Str(Val(Combol.Text + 7))

' Query for Banks

Sqlstr = "Select * From [Bank] where
datepart('M',[Bank]. TransactionDate)=" + "™ + Combo2.Text
+ mw
Sqlstr = Sqlstr + " AND

Datepart('yyyy',| Bank]. TransactionDate)=" + Combo3. Text
Sqlstr = Sqlstr + " AND

Datepart('d',[Bank]. TransactionDate}>=" + Combol.Text
myquery4d = Sqlstr +" AND

Datepart('d’,[Bank]. TransactionDate)<=" +

Str(Val(Combol.Text + 7))

'For Other Transactions

Set mydata = OpenDatabase(" ¢:\B1zMan2000\BizBank.mdb")
If temp <= "E" Then

Set mytab = mydata. OpenRecordset(myquery 1)

With mytab

Do While EOF = False

dattorTheReport Recordset. AddNew

If ![TransType] <= "" Then

datForTheReport Recordset![TransType] = { TransType]
If H{TranSpec| <> "" Then

datForTheReport.Recordset![TransDesc] = ![TranSpec]
If {[TransAmount] <> "" Then

datl’or'theReport Recordset!| TransAmount | =
 TransAmount]

If {TransTotal] < "" Then

datForTheReport Recordset!{ TransTotal) = | TransTetal}
If {{TransBy] < "" Then

datForTheReport. Recordset!| TransBy] = ! TransBy]

If {{TransTo] < "" Then

datForTheRepori Recordset! [TransTo] = [TransTo]

If t{Receipt_no} <> "" Then
datForTheReport.Recordset!{Receipt_no] = {[Receipt nol
datiorTheReport.Recordset!| TransDate] = TheDate
datForTheReport Recordset.Update

MoveNext

Loop

End With

End If

If temp ="E" Then

Set mytab = mydata OpenRecordset(myquery3)

With mvtab

Do While . EOF = Falsce
datForTheReport.Recordset. AddNew

If H{TransType] < "" Then

datlorTheReport Recordset!] TransType] = ! TransType|
'If /{TranSpec] < "" Then

datForTheReport Recordset![TransDesc] = ![TranSpec]
It {} T ransAmount| <> "" Then

datForTheReport. Recordset!{ TransTotal] = ![TransAmount]

§[[TransUmit] <> "" Then Combo2 Addltem "September”

HlatForTheReport Recordset!| TransAmount] = ![TransUnit] Combo2 AddItem "October"
i /[TransBy] <> "" Then Combo2.AddItem "November"
fatForTheReport Recordset! | TransBy) =] TransBy) Combo2.AddItem "December”
af /{TransTo] < "" Then Fori=0To 10
{atForTheReport Recordset![TransTo] = ![TransTo] Combo3.AddItem Format$(Now, "yyyv") - i
#f !{Receipt_no] < "" Then Next 1
satl‘orTheReport Recordset!| Receipt_no| = H{Receipt_noj End If
jatForTheReport Recordset![TransDate] = TheDate
HatForTheReport Recordset. Update Ifmode = 3 Or mode = 30 Then
MoveNext Framel .Visible = False
Loop Frame2.Visible = False
£nd With Frame3.Visible = False
£nd If Framed Visible = True
; Combo6.Additem "January"
Combo6.Addltem "February”
LndIf Combo6. Addltem "March”
¥nd Sub Combo6.AddItem "April"
3 Combo6.AddItem "May"
iublic Sub MonthlyFinance() Combo6.AddItem "June"
On Error GoTo handler Combo6.AddItem "July”
$Set dbs = OpenDatabase(" ¢\l lwares\ lomewares. mdb") Combo6.AddItem "August"
J1f Combo6. Text < "" And Combo8 Text < "" Then Combot. Additem "September”
dbs.Execute ("DELETE * FROM TransTrash") Combo6.AddItem "October”
$Sqlstr = "Select * From [Transaction] where Combo6.Additem "November"
fdatepart('M',[transaction]. TranDate)=" + Combo6.AddItemn "December”
Str{Combobd. Listindex + 1) + "AND Fori=0"71o 10
?Datepart('yyyy',| Transaction]. TranDate)=" + Combo8.Text Combo8 Addltem Format$(Now, "yyyy") - i
£ myqueryl = Sqlstr + " AND Next i
1 Datepart('yyyy',[ransaction]. 1 ranDate)=" + Combo8. Text End I
dbs.Execute ("INSERT INTO TransTrash " + myquery!) If mode = 4 Or mode = 40 Then
4 RepTitde ="LIST OF TRANSACTIONFOR " & Framel . Visible = False
7 UCase(Format$(Combob, "mm") & "." & Combo8 Frame3 . Visible = False
frmView.CR1 ReportFileName = "c:\Hwares\Trans.rpt" Frame4.Visible = False
Else Frame2.Visible = True
5 MsgBox "Invalid Date Specification” Combo5 Addltem "First”
: EndIf Combo5.Additem "Second”
Exit Sub Combo5.AddItem "Third"
1 handler: Combo5.Additem "Fourth"
MsgBox Emr.Descripiion For1i=0To iU
End Sub Combo4 Additem Format$(Now, "yyyy") - 1
Next 1
Private Sub Form_Leoad() End I
i Ifmode =1 Or mode =2 Or mode = 10 Or mode =20 Then If mode =5 Or mode = 50 Then
} Framel .Visible = True Framel.Visible = False
i Frame? Visihle = False Frame? Visihle = False
' Frame3.Visible = False Framed Visible = False
I'rame4. Visible = ['alse Frame3. Visible = True
i Fori=1To31 Fori=0To 10
Combol.Addltem i Combo7.AddItem Format$(Now, "yyyy") - i
1 Next1 Next 1
‘ FEnd it
{ Comboz.Addltem "January” End Sub
Combo2.Addltem "February”
Combo?2.Addltem "March" Public Sub QuaterlyFinance()
CombvoZ. Addlicu "Apat” G Liror GoTo handie
Combo2.Addliem “"May" Set dbs = OpenDaiabase(”¢c:\Hwares\Homewares. mdb")
Combo2.AddItem "June” If Combo5.Text < "" And Combo4. Text <= "" Then
Combo2 Addltem "luly” Select Case Combod. Text
Combo2.Addltem "August” Case "First"

Vi1

" Query for Other iransachions
Sqlsir = "Select * From [Transaction] where
ilatepart('M',[Transaction]. TranDate)<=3"
myqueryl = Sglstr + " AND
Datepart('yyyy',| I ransaction}. IranDate)=" + Combo4 Text
Case "Second”
' Query for Other transactions
Sqistr = "Sefect # i'rom | ransactionj where
idatepart(M’ [Transaction]. TranDate)>3 and
Hatepart('M' {Transacuon] TranDate)<=6"
‘ Luyyuery i Sglsic + " AND
?Datepam yyyv'.[Transaction. TranDate)=" + Combo4.Text
Case "Third"
' \m sy for Other trangachions
Sql'itr = "Select * From [Transaction} where
Hatepart('M',| Transaction]. TranDate)>6 and
Hatepart'M' [Transaction]. TranDate)<=9"
myqueryl = Sqlstr +" AND
Datepart('yyyy',[Transaction]. TranDate)=" + Combod. Text
; Case "Fourth”
' Query for Other transactions
Sqlstr = "Select * From | Transaction] where
ﬁdatepart(‘M‘ {Tramacumﬂ TramDate\>9"
myqueiyi = = 5qistr+ 7 ANID
{Datepart('yyyy',[Transaction]. TranDate)=" + Combo4.Text
v End Select

4,./"'\1!!7! *II)I\\A’ I 3 U ALY
Ay PS5 4iis i rasin b

‘ dba Execute ("INSERT INTU 1 ransT1 ash " + myquery1l)
jRepTitle="LIST OF TRANSACTIONFOR " &
J1UCase{ComboSY & " QUARTER " & """ & Combod

{ frm View.CR1 Reportl‘ileName = "¢: \Hwares\lrans pt"
Else

1 MsgBox "Invalid Date Specification”

1 End If

4 Exit Sub

3 handler:

1 MsgBox Err.Description

; End Sub

1 Codes for Genlnvoice.frm

Private Sub Command! Click()

1 Datal Recordsct FindFirst ("Ordcruo-" &" & Text4 &™)
4 If Datal Recordset. NoMatch = Truc Then

MsgBox "Transaction Details has not heen saved”
Command7 .SetFocus

Exit Sub

End if

Sct dbs = OpeniJatabasel "¢\l fwares\l iomewares.mdb ™)
dbs.Execute ("DELETE * FROM TransTrash™)

dbs Exccute ("IN QFR
?' PTAnSacuon Wil UrdoerfNo= & oioxid &7 ’,3
CR1 ReportFileName = "¢\ Iwares\Invoice rpt”

CR1 Formulai(()) ="Time=" & "" & FormatNow

1 n wmn Do a0

A& LOY Name OL
"CovAdd="& """ & CovAdd & ™

{CR1.Formulasiiy - "CovName~'

'CR1 Formulas(2) =

I'\I"‘O TransTrash SELECT * FROM

Fnd Suh

Private Sub Command2_Click()
FrmViewOrder. Show 1
End Sub

Private Sub Command3_Click()

On Error GoTo handler

Setdbs = OpenD atabase("C'\Hwarei\Homewares mdb")
dx)b x:\u.;mt‘ \ LJLLJL l L FK\)A\I‘ i dyUCLdH‘s vv 11EL\L
OrderNo =" & """ & Text4 &

Exit Sub

handler:

Msgl3ox Frr.Description

End Sub

Private Sub Commandd4_Click()

Datal Recordsct FindFirst ("OrderNo=" & "" & Textd & ")
If Datal Recordset NoMatch = True Then

MsgBox "Iransaction Details has not been saved”
Command7 Setkocus

Exit Sub

Fad if

Set dbs = OpenDatabase("c:\Hwares\Homewares.mdb")

JL r ..4‘/"l\l TI 1[*rn(\\4 | AR A MY
[S1A VY wsivi 1 Fdiis: Fdsn }

dbs. Exeuute ("INSDRT INTO TransTrash SELECT * FROM
Transaction WHERE OrderNo=" & "" & Textd & """}
CR1 ReportkileName = "e\Hwares\Invesee rpt”
CR1.Formulas(0) = "Time=" & """ & Format(Now,
"hhmm:ss™) & "™

CR1 Formulas(1) = "CoyName=" & """ & CoyName & "
'CR1.Formulas(2) = "CoyAdd=" & "™ & CoyAdd & """
CR1 Destination = crptToWindow

CR WindowState = crptMaximized

CR1i.PrmtReport

End Sub

Frivaie Sub Commandd_Ciick()
Me Width = 4875

Unload Me

End Sub

Private Sub Command7_Click()

On Frror GoTo handler

I Option3. Value = True Then

If Txt(0)="" And Txt(1)="" And Txt(2)="" Then
MsgBox “Enier Cheaue Information... Saving Aborted”
TXUU).Setlfocus

Fxit Sub

FEnd If

Datal Recordsct. AddNew

Data 1 Recordset! [OrderNM Te\t4

L)dtdl Recordseit r’ aid| — ixtields(10)
Datai Recordsetlj VAL] = txt'r'lelds(l 1)

o Sl

3
]

Al Recordset! [ChequeNo] = Txi(1)
Hal Recordset!{ AccountNo| = Txt(2)
Hal Recordset!{ Date] = Text!

Dpuont. Value = True Then ' .
tal Recordset![PavTyvpe] = "Cash”
C

fal Recordset!| Pay Type] = "Cheque”

i

#al Recordset. Update
gmmundl Setbfocus

4t Sub

hdler:

ig_]%o\ Err.Description
gd Sub

o -

gvate Sub Form_Load()

N = Format(Now, "mmm-dd-vyyy™)
2d Sub

ivate Sub mnul_Click()

Fubox "TFor a Credit Customer (i.¢ -ve Balance) linter -ve
Iset to Reduee Credit #%%%% For a Debit Customer (1.¢ +ve
alance) Enter Fve Offset to Reduce Debit”

nd Sub

n ate Sub Option1_Click()
farel Fnabled = IMalse
nd Sub

aﬁ'w i

b o

ivate Sub 0p!mn3 Click()
dmd Tabled = Thie
\l(()) Setirocus

ind Sub

W%w g

pr e R

yrivate Sub Text2_KeyPress(KeyAscii As Integer)
FKevAsen =13 Then Call Texiz _LostFocus
ad Sub

W.,me

fivate Sub Text2_LostFocus()

A Pror GoTo handler)
(a3 RecordsetFindFirst "ORDERNO=" & """ & Tex(2 &
)
Pata3 Recordset. NoMatch = False Then
a3 Recordset. Move (0)

a3 Recordset Fdit

Nid.Sctlocus

ic
al3ox "Such Order No. not existing”
R2="

A

it sub

dler:

4e3ox Dir.Description

w1 Sub

gvate Sub Text3_KeyPress(KeyAscii As Integer) -’
4 Lrror GoTo hundler
cevAscii =13 Then

W

i i

TheStart:
TheNewl3al = Val(Text3)
MsgBox TheNewl3al

If TheNeBal <> " 'Then

Data3 Relresh

I Data3 Recordset. OF < False Then

Data3 . Recordset.Movel st

I Data3 Recordset!{bal] < Val(Tex3) Then
TheNewlal = Val(Text3) - Data3. Recordset! [bal]
Data3 Recordset.lidit

Data3 Recordset! | Paid] = Data3 . Recordset!| Paid | +
Data3.Recordset![bal]

Data3 Recordset![bal| = 0 "Data3 . Recordset! | bal] -
Data3. Recordset.Update

DBGd] Refresh

ind If

MsgBox TheNewBal

Text3 = TheNewBal

I Val(Test3) <= 0 Then GoTo TheStat

Iind If

Fnd Iy

Val(Texth)

Exat Sub
handler:
MsgBox Frr.Description
Jixit Sub

Do While Data3 Recordset. 1OF = False

‘I Data3.Recordset! bat] < Val(Text(3) Then
"TheNewBal = Data3 Recordset! [bal} -
'Data3 Recordset.Iidit
"Data3 Recordsett{ Pad]
Val(Text3)

'‘Data3 Recordset! [bal] = Daia3 Recordset!| bal| -
"Data3. Recordset. Update

"Data3 Refresh

Vai{'Tenid)
= Data3 Recordset!| Pand} +

Val(Tents)

"I Data3 RecordsetFdithMode = 1 Then
" DPBGrd] Relresh
"Lnd If
Tnd If
End Sub .
Private Sub Textd_KeyPress(KevAscii As integer)
IF KeyAseti =13 Then Call Textd ostl ocus
End Sub

Private Sub Textd_LostFocus()
Data2. RecordSource = "SELECT * FROM Transaction
WIHERIE OrderNo=" & """ & Textd & "™

Data2 Refresh
If Data2 Recordset.1:Ol" = Truce Then

Msgl3ox "Such Order No. not existing”
Textd =""
Else

o

SN

s

e

P Data2.Recordset FindFirst ("ORDERNO=" & """ & Textd &
4 I Data2 Recordset NoMatel = FFalse Then

Data2 Recordset.Move (O)

1 xtFields(1) = Data2 Recordset!| C us(,‘o.dc,]
1 Data2 Refresh
3 TransSum =0
¢ Do While Data2 Recordset. 1EOF = False
4 1 Data2 Recordset![TotalAmount | <> "" Then
& TransSum = TransSum +
5 Val{Data2 Recordset!] TotalAmount])
tnd I
+ Data2.Recordset. MoveNext
¢ Loop '
3 oxtlaelds(ioy =""
L saelds(10).Setl ocus

ixtFields(1 D) = Str((TransSum * VAT)/ 100)
txtiields(9) = Str(TransSum + Val(txtiields(11)))
NewTransSum = Val(txtiields(9))

"I TransSum = O Then

Command! Jinabled = False

Commuand4.Enabled = False

Command7 onabled = False

Data3.RecordSource = “SELECT * FROM PayDectails
WIHIERE CusCodes="#¥¥sok s kg

Data3.Retresh

I'sat Sub

Flse

Command! .Enabled = Truc

Command4 inabled = True

Command7 Iinabled = True

End If

Iilse

IntFrctds(D). Text=""

MseBox "No Customer Entiy for the Order Number"
Pnd 1 ’
pand Ir

ind Sub

Private Sub TxtFields_Change(Index As Integer)

IMindex = 1 Then

Data3.RecordSouree = "SELECT * FROM PayDetails
WHERE CusCode=" & "™ & txtFields() & "™ & " AND bal
<> VAL(0) ORDIR BY OrderNo ASC:"

Data3 Refresh

¢+ DBGndl Relresh
¢ Fori=0ToDBGridl. ApproxCount - |

DBGRd] Row =1

¢ Total = Total + Val(DBGnA1 .Columns(2). Text)

Next 1

1 Label8.Caption = Total

§ 1'Data3.Recordset. EOF = FFalse Then well = Msgl3ox("The
+ Customer is a Debitor Credit Customer...Reconcile Account

(Y/N?", vbYesNo + vbInformation)

F Iwell = vbYes Then .

Mec. Width = 8370
Llsc

Me Width = 4875

hndIf

X1

Find If

[f Index = 10 Then

I 1Clds(9) = New TransSum - Val(istlaelds(10))
Hixtliaelds(V) <0 Then

RESP = MsglBox("Credit Customer Y/N?", vbYesNo +
vbhInformation)

[FRESP = vbNo Then txtFields(10)y =""

End If

Tad If

End Sub

Private Sub Txtfields_KeyPress(Index As Integer,
KeyAscit As Integer)

[KeyAscin = [3 And Index = 10 Then Command7 . Setfocus
End Sub

Private Sub txtFields_LostFocus{Index As Integer)
If Index = 7 Then Command10Q.Seti‘ocus

End Sub

Codes for Transaction.frim

Private Sub CmbMonth_Click()

If Format(CmbMonth, "mm") = "Jan" Or I'ormat{ CmbMonth,
"mm") = "Mar" Or Format(CmbMonth, "mm") = "May” Oy
Format(CmbMonth, "mm") = "Jul"” Or Format(CmbMonth,
"mm") = "Aug" Or Format(CmbMonth, "mm") ="O¢t" Or
Format{CmbMonth, "mm") = "Dec" Then

Day(28). Visible = True

Day(29). Visible = Truc

Dav(30). Visible = True

End If

[f Format(CmbMonth, "mm") = "Scp” Or Format(Cmbdlonth,
"mm") ="Apr" Or Format(CmbMonth, "mm™) = "Jun" Or
Format(CmbMonth, "mm") = "Nov" 'I'ien

Day(28). Visible = True

Day(29). Visible = True

Day(30). Visible = False

End If

I Format(CmbMonth, "mm") = "lI'cb" Then

I Val(embYcar. Text) Mod 4 = 0 Or Val(emb Year. Text) Mod
100 =0 Then

Day(28). Visible = True

Day(29). Visible = IFalse

Day(30). Visible = False

Lilse

Day(28). Visible = l'alse

Day(29). Visible = False

Day(30). Visible = Ialse

Ind Il

Imd If

End Sub

Private Sub embYear_Change()

I Format(CmbMonth, "mm") = "Feb" Then

I VallembYear. Text) Mod 4 =0 Or Val(emb Year. Text) Mod
100 =0 Then .

Day(28). Visible = Truc

?/E_pd Sub
&

Sk i

Day(29). Visiblc = False

+:Day(30).Visible = False
t Else

1 Day(28). Visible = Falsc
Day(29). Visible = Falsc

1 Day(30). Visible = Falsc
2 End If

Imd It

; Private Sub cmbYear_Click()

. % If Format(CmbMonth, "mm") = "Feb" Then
1 If Val(cmbYear. Text) Mod 4 = 0 Or Val(ecmb Year. Text) Mod

100 =10 Then

4 Day(28).Visible = True

Day(29). Visible = False

7 Day(30).Visible = False
5 Elsc

Day(28). Visible = False

1 Day(29).Visible = Falsc

Day(30). Visible = False
End If
End1f

{ End Sub

Private Sub Command1_Click()

On Emror GoTo handler

mode =111

wol = InputBox("Enter Order Number”, "Quick Find Order™)
Set dbs = OpenDatabase("c:\hwares\homewares. mdb")

Set rstTemp = dbs.OpenRecordset("SELECT * FROM
Transaction WHERE OrderNo =" & "™ & wol & ")
dbs.Recordsets. Refresh

If rstTemp . EOI = False Then

‘rstTemp.Movel.ast

datPrimaryRS RecordSource = "SELECT * FROM
Transaction WHERE OrderNo="& "" & wol & "™
datPrimaryRS Refresh

Lilse

i MsgBox "No Maich", vbInformation
¢ LindIf
¢ Exit Sub

i handler:

1 MsgBox Lirr Deseription
1 End Sub

¢ Private Sub Command2_Click()

FrmViewltem.Show |

1 Call ixtFiclds_Lostlocus(2)
1 End Sub

1 Private Sub Command3_Click()

FrmViewCust.Show |
1 End Sub

Private Sub Command4_Click()
If FraCal. Visible = True Then
FraCal.Visible = False
Fxit Sub

!

3

slnd If

X1l

FraCal. Visible = True
End Sub

Private Sub CommandS_Click()
FrmGenlnvoice. Textd = TxtlFields(0)
FrmGenlnvoice. Show |

End Sub

Private Sub datPrimaryRS_Error(DataErr As Integer,
Response As Integer)
"This is where you would put error handlng code
'If you want to ignore errors, comment out the next line
'If you want to trap them, add code here to handle them
MsgBox "Data error event hit err:" & Error$(Dataliir)
Responsc =0 "Throw away the crror
End Sub

Private Sub datPrimaryRS_Reposition()
'Screen.MousePointer = vbDefault
On Error Resume Next .
"This will synch the grid with the Master recordset

'datSecondaryRS.RecordSource = "select
{Icode],[UnitlnStock],[Quantity [,| TranDate] from
[Transaction] where [OrderNof=" &
datPrimaryRS Recordset! [OrderNoj & "' & " Order by
[Icode]”

'datSecondaryR S Refresh

"This will display the current record position for dynascets and
snapshots

datPrimaryRS.Caption = "Record: " &
(datPrimaryRS Recordset. AbsolutePosition + 1)
End Sub

Private Sub datPrimaryRS_Validate(Action As Integer,
Save As Integer)
"I'lus 1s where you put validation code
"Tis event gets called when the following actions oceu
Scleet Case Action
Case vbDataActionMoveFirst
Case vbDataActionMovePrevious
Case vbDataActionMoveNext
Casc vbDataActionMoveLast
Case vbDataActionAddNew
Case vbDataActionUpdate
Case vbDataActionDelete
Casc vbDataActionl'ind
Case vbDataActionBBookmark
Case vbDataActionClosc
' Screen.MouscPointer = vbDefault
End Sclect
'Screen. MousePointer = vbl [ourglass

End Sub

Private Sub Day_Click(Index As Integer)

TheDate = CmbMonth & "/ & Day(Index).Caption & "/" &
cmbYear

TxtlFields(6) = TheDate

FraCal. Visible = Ialse

e

i A

* End Sub

* Private Sub Form_Load()

mode =

Label2.Caption = CoyName
datPrimaryRS.RecordSource = "SELECT * FROM

[Transaction] WHERE Icode="#*¥**& & & #*kFxkk10
datPrimaryRS Refresh

' For The Calender

Fori=1900 To 2100

cmbYear. Addltem (1)

Next 1

CmbMonth = Format(Now, "mmm")
cmbYear = Format(Now, “vyyy")

Day(Format(Now, "dd") - 1).Value = True

If Format(CmbMonth, "mm") = "Jan" Or I'ormat(CmbMonth,
"mm") ="Mar" Or Format(CmbMonth, "mm") = "May" Or
Format(CmbMonth, "mm") = "Jul" Or Format(CmbMonth,
*mm") ="Aug" Or Format(CmbMonth, "mm") = "Oct" Or
Format(CmbMonth, "mm") = "Dec” Then

Day(28). Visible = True

Day(29).Visible = Truc

Day(30). Visible = True

Fnd If

I Formal(CmbMonth, "mm") = "Sep" Or Format{CmbMonth,
“mm") = "Apr" Or Format(CmbMonth, "mm") = "Jun" Or
Format{CmbMonth, "mm") = "Nov" Then

Day(28). Visible = True

Day(29).Visible = True

Day(30).Visible = False

End If

If Format(CmbMonth, "mm") = "Feb" Then

© I Val(embYecar. Text) Mod 4 = 0 Or Val(embY car. Text) Mod

100 =0 Then

Day(28). Visible = True
Day(29). Visible = False
Day(30). Visible = TFalsc
Else

Day(28). Visible = False
Day(29). Visible = False
Day(30).Visible = False
Iind I

End If

'End The Calender

End Sub

i Private Sub Form_MouscMove(Button As Integer, Shift
As Integer, X As Single, Y As Single)

mode =0

* End Sub

5 Private Sub grdDataGrid_DbIClick() '
7 On Lirror GoTo handler
: grdDataGnd.Col =0

mode=111

1 wol = grdDataGnd. Text

X

Sct dbs = OpenDatabase("e:\hwaresthomewares.mdb")
SctrstTemp = dbs.OpenRecordset("SELECT * FROM
Transaction WHERE OrderNo =" & """ & wol & ")
dbs.Recordsets.Refresh

If rstTemp. EOLF = False Then

'rstTemp.MoveLast

datPrimaryRS RecordSource = "SELECT * FROM
Transaction WHIERE OrderNeo =" & "™ & wol & "
datPrimaryRS Refresh

Else

MsgB3ox "No Match”, vbInformation

End It

Exit Sub

handler:

MsgBox Lrr.Desceription

End Sub

Private Sub TB1_ButtonClick(ByVal Button As
MSComctlLib.Button)

On Error GoTo handler

mode = 1

Scleet Case Button. Tag

Case"1"

Set dbs = OpenDatabase("c:\hwares\homewares.mdb™)
SetrstTemp = dbs.OpenRecordset(" SELECT DISTINCT
OrderNo FROM transaction ORDER BY OrderNo ASC.")
dbs.Recordsets. Refresh

If rstTemp. EOF = False Then rstTemp.MoveLast
TheOrderNo = rstTemp.RecordCount + |
datPrimaryRS.RecordSource = "SELECT * FROM

[Transaction] WHERE OrderNo=" & "" & TheOrderNo & "™
datPrimaryRS Refresh

Case "2"
TransNew
mode =1
Casc "3"
TransUpdate
mode =2
Casc "4" R
datPrimaryRS. Refresh
Casc"5"

RESP = MsgBox("The Current Transaction would be
Deleted ..contmue (Y/N)", vbYesNo + vbInformation)
HRESP =vbYes Then
Sct dbs = OpenDatabase("c:\hwares\homewares.mdb ™)
Set rstTemp = dbs.OpenRecordset("SELECT * FROM
[temInvent WHERE Icode =" & """ & TxtFiclds(2) & ")
dbs.Recordscts.Refresh
Do While rstTemp LOF = False
rstTemp Edit
rstTemp![unitinstock] = rstTemp![unitinstock] +
TxtFiclds(5) ‘
rstTemp.Update
rstTemp MoveNext
Loop

dbs. Recordsets Refresh
With datPrimaryRS Recordset
Delete

‘\ﬁq_—‘;—

TxtFiclds(5)=""
1

71 .IEOF Then Movelast

Unload Me

#nd Scleot

Jandler:
sgBox Lrr.Deseription

“nd Sub

Private Sub Timerl_Timer()

8 abel2 Left = [rm Transaction. Width

F.abel2 Lett = Label2 Left - 10
End Sub

Private Sub TxtFields_Change(Index As Integer)

MoveNext
Find With
nd 1f

ase "0

Exit Sub

{ Label2.Lell <= mTransaction. Left - frm Transaction. Width
F 900 Then ‘

nd I

fmode<> 111 Then

1 TxtFields(3) < "" Then
1 Val(Txtields(3)) <0 Then
sgBox "Cannot be Negative”

\it Sub

1

ot

1 MsgBox "Below Re-Order Level"

T
ITxtields(3) = TheCurrentStock

if Index =5 Then
1 Ixtlields(3) = Val(TheCurrentStock) - Val(TxtFields(5))

wnd If

il Index =5 Then
af Txtields(ndex) <= " Then

?;nd “
nd 1f

indIf

1.nd Sub

frivate Sub Txtﬁclds__KeyPlrcss(Index'As Integer,
LevAscii As Integer)

Fields_LostFocus(2)

FKeyAscii = 13 And Index = 5 Then

md If)
ad If R

I Val(IxtFields(3)) < Val(TxiFields(4)) Ihcn
xtlfields(5)=""
X1t Sub

ad If

"stFields(8) = ScllingPrice * Val(TxtF lk,]d\(b))

'KevAscii = 13 And Index =2 Then Call

' KeyAscn = 13 And Index = 1 Then Call
ktliclds LostlFocus(1)

[fmode=1 Then
mode = 2

X1V

TransUpdate
Exit Sub
End II
Ifmode =2 Then
mode =1
TransNew
Iind if
bnd i
End Sub

Private Sub txtFiclds_LostFocus(Index As Integer)
On Error GoTo handler
Set dbs = OpenDatabase("c:\wares\homewares.mdb™)

If Index = | And TxtFields(1) < "" Then

Set rstTemp = dbs.OpenRecordset("SELECT # FROM
Customer WHERE CusCode =" & """ & Txtliclds(Index) &
")

dbs.Recordsets.Refresh

rstTemp. FindFirst ("CusCode =" & "™ & Txtiiclds(Index) &
"l") *

If rstTemp.NoMateh = True Then

RESP = MsgBox("Such Customer Code Record do no
exist.. Register Now (Y/N)?", vbYesNo + vbInformation)

If RESP = vbYes Then finCustDetatls.Show |

Flse

Label3 Caption = rstTemp!{Namc|

Txtields(2). Setlfocus

FEnd If

End If

If Index = 2 And TxtFields(2) <= "" Then

Set rstTemp = dbs.OpenRecordsct("SELECT * FROM
ItemInvent WHERE Icode =" & "™ & Txtiields(Index)y & ")
dbs.Recordsets.Refresh

rsiTemp.FmdFirst ("lcode =" & " & TxtFields(index) & '
If rstTemp.NoMateh = False Then

rstTemp.Move (0)

Label4.Caption = rstTemp!| Desc)

ScllingPrice = rstTemp! [unitSellprice] ‘
TxtFields(3) = rstTemp! [unitinstock | ;
TheCurrentStock = rstTemp! [unitinstock | ‘
Txtields(4) = rstTemp! [reorder|

Txtlields(5).Setlocus
Else :
MsgBox ("No Item Details not Registered™)

End If

End If

Exit Sub

handler:

MsgBox Ermr.Description

'If Index = 5 Then Call txtlields_KevPress(5, 13)
End Sub

Public Sub TransUpdate()

On Error GoTo handler

Set dbs = OpenDatabase("c:\waresthomewares. mdb")
SetrstTemp = dbs.OpenRecordset("SELECT * FROM

ItemInvent WHERE Icode =" & "™ & TxtFields(2) & "™)
dbs.Recordscts. Refresh

%
§

§ r.\'l'l'cm]xFindl"i}‘st ("leode =" & """ & Txtliclds(2) & ")
=i rstTemp.NoMatch = Ialse Then

rstTemp.Move (0)

© rstTemp Idit

¢ rstTemp!{unitinstoek] = Txticlds(3)

rstTemp.Update

fEndIf

i datPrimary RS UpdateRecord

¢ datPrimaryRS. Recordset. Bookmark =

datrinary RS Recordset. LastModified

¢ Set rstTemp = dbs.OpenRecordset("SELECT * FROM
HemInvent WHERE [code =kttt xt gk xm)
4 dbs.Recordsets. Refresh

- datSecondaryR S RecordSource = "select * from

| Transaction] where [OrderNoj=" &

datPrimarvRS. Recordset!| OrderNo | & "™ & " Order by
flcode]”

3 datScecondarvRS.Refresh

Lxit Sub

thandler:

IMsgBox ErrDescription

1End Sub

i Public Sub TransNew()

2 0n Lrror GoTo handler

IF Txtifields(0y <= ™" Then TheOrderNo =, Txtlields(0)
I Tsdrelds(y <= " Then TheCust = Txtlfelds(1)
IFTxtliekds(6) <= "" Then TheDate = Txtlields(6)
Txtlields(0) =""

Txtlields(hy ="

Txtlields(ey =""

datPrimarvRS.Refresh

datPrimaryRS Recordset AddNew

IFTxtFields(6)y ="" Then

Ixthiclds(6) = Format(Date, "mmm/dd/fvyyy™)
1ilse

Txtlields(0) = TheDate

Lind IT

TxtFields(0) = TheOrderNo

Txtields(7) = UserName

TxtFields(1) = TheCust

Txtlelds(3) =""

Txtlields(hy=""

LItUheldsg)y=""

TxtFields(1).SetlFocus

lixit Sub

handler:

EM sgBox Lrr.Description

sEnd Sub

Codes for Frimlnvent.frmm

Private Sub emdAdd_Click()

Ju Frror GoTo handler

i datPrimaryRS. Recordset AddNew
Iixit Sub

handler:

Msgl3ox Err.Description

3

XV

End Sub

Private Sub cm(lDélcte_Click()
On Firor Go'To handler
With datPrimarvR S Recordset
RESP = MsgBox("The Current Record would be
Deleted...Continue (Y/N)", vbYesNo + vhlnformation)
ITRESP = vbYes Then
Delete
MoveNext
If LLOF Then Movel.ast
nd If
nd With
[ixit Sub
handler:
Msglox EmDescription
End Sub

Private Sub ecmdRefresh_Click()
On Error GoTo handler
“This s only needed for mutin user apps
datPrimaryRS.Refresh
Fxit Sub
handler:
MsgBox Err Description
End Sub

Private Sub ecmdUpdate_Click()

On Error Go'To handler

GenCode
datPrimaryRS. UpdateRecord
datPrimarvRS. Recordset Bookmark =

datPrimaryRS Recordset. LastModified
Fxit Sub

handler:
Msghox Err.Description

End Sub

Private Sub emdClose_Click()
Unload Mc
End Sub

Private Sub Command1_Click()
FrmViewltem Show |
End Sub

Private Sub Command2_Click()

On Error GoTo handler

wol = InputBox("Linter Quantity”, "Add to current existing
stock")

Ifwol <> "" Then

dalrimaryRS.Recordsct.lidit

(xtFiclds(3) = Val(Ixtliields(3)) + Val(wol)

Lnd If :

Exit Sub

handler:

Msgl3ox Lirr.Description
End Sub

Private Sub Command3_Click()

- On litor GoTo handler
wol = InputBox("Unter Htem Description”, "Quick I'ind Hem™)
datPrimarvRS Recordsel. FindFirst ("Dese=" & "" & wol &
"

If datPrimaryRS Recordset. NoMateh = False Then
1 datPrimaryRS Recordset. Move (0)

¥ Iilse

Msphox "No Mateh”, vhInformation
2 Ind If

Nl Sub

handler:

MasgBox Err.Description

¢ End Sub

Private Sub datPrimaryRS_Error(DataErr As Integer,
Resnonse As Integer)
"I'his 1s where you would put error handling code
Il vou want o ignore crrors, comment out the next line
"I you want to trap them, add code here to handle them
MspBox "Data error event hit err:" & Error$(Datakirr)
Response =0 "Throw away the ervor

End Sub

Private Sub datPrimaryRS. Reposition()
"Sercen.MousePomter = vbDefault
On Lator Resume Next
“T'his will svnch the grid with the Master recordset
daiSecondaryRS.RecordSource = "select
1 [eodel [Namel. | Address] from [customer] where [code]="" &
5 datPrimaryRS.Recordset! [Code] & " & " Order by lwdul"
daiSecondaryR S Refresh
"This will display the current record position for dynascts and
snapshols
datPramaryRS.Caption = "Record: " &
{datPrimaryRS Recordset. AbsolutePosition + 1)
End Sub

")

Privaie Sub datPrimaryRS_Validate(Action As Integer,
Save As Integer)
“I'hi~ 15 where vou put validation code
‘This event gets called when the following actions oceur
seleet Case Action
Cuse vbDataActionMoveF1rst
Caze vbDataActionMovePrevious
Case vbDataA ctionMoveNext
Case vbDataActionMovelast N
Casc vbDataActionAddNew
Case vbDataActionUpdate
Case vbDataActionDcelete
Case vbDataActionlind
Casc vbDataActionBookmark
Case vbDataActionClosc
'Sereen.MouscPomter = vbDefault
Tind Select
“Sereen.MouscPointer = vl {ourglass
End Sub

2 Private Sub DBCombol_LostFocus()
On Eror GoTo handler

XV1

Datal Recordset.I'indlirst ("Name=" & """ &
DBCombol Text & ™)

[f Datal Recordset. NoMatch = True Then

RSP = MsgBox("The Category ¥¥* " & DIB3Combol & " &
" Poes not Exist Do vou want 1t Registered (YN vbYesNo
+ vblntormation)

RSP = vbYes Then

Datal.Recordsct AddNew

Datal Recordset!| Name| = DBCombol

Datal Recordset.Update

Datal Refresh

Else

DBCombol =""

DBCombol Sctlfocus

fnd I

IInd If

ixit Sub

handler:

MsgBox Lt Description

End Sub

Private Sub TxtFields Change(Index As Integer)
[fIndex =5 Then

I tatiields(S) <= " Then

I Val(ixtFields(3) < 0 Then

MsgBBox "Negative Re-Order Level”

ixtlelds(s) =""

End If

EndAr

Fad It

End Sub

Public Sub GenCode()

Sct dbs = OpenDatabase("e\hwares\homewares mdb ™)
SctrstTemp = dbs.OpenRecordset("SELECT * FROM
ItemInvent WIHERLE Category =" & ™" & DBCombol
dbs.Recordsets.Réiresh

IfrstTemp LiOF = False Then rstTemp.Movelast
Datal Recordset FmdlFust ("Name =" & " & DBCombol &
")

‘MsgBox Datal Recordset. NoMatch

'Datal Recordsct. Move (0)

If Datal.Recordset. NoMatch = [False Then

Datal Recordset Move (0)

TheCategoryCode = Datal Recordset! [Code]

TheCode = TheCategory Code & rsti'emp. RecordCount + |

&y

txtlfields(0). Text = TheCode

Else

MsgBox "The Category not registered”
End 1T

End Sub

Codes for FrmMainMenu.frin

Private Sub Command1_Click()
FrmInvent. SSTabl. Tab = 1
FrmInvent.SSTabl. TabVisible(1) = Truc
FrmlInvent. SSTabl. TabVisible(0) = FFalse
FrmInvent Show |

Dn Fror GoTo handler

Avol = InputBBox("Enter ltem Description”, "Quick Find Item™)
Tﬁgizlil’1’imzn}'RS.Rccord.\'cl.l"irlnll"'ilz\‘l ("Dese=" & """ & wol &
y

41 daPrimarvR S Recordset. NoMateh = False Then
datPrimarvRS Recordset Move (0)

2 s

Msg3ox "No Mateh”, vbInformation

ndir

i’i i Sub

shendicr:

Mxgl3ox Err Deseription

4End Sub

JPrivate Sub datPrimaryRS_Error(DataErr As Integer,
esponse As Integer)

+ "This is where you would put error handling code

3 "1 vou want Lo ignore errors, comment out the next line

3 'If vou want to trap them, add code here to handle them
MxgBox "Data crror event hit emrr” & Error$(Datakinr)
Response =0 "Throw away the error

End Sub

iPrivate Sub datPrimaryRS_Reposition()
"sereen.MousePointer = vbDefault

On Lrror Resume Next

"Thiswill synch the grid with the Master recordset
datsceondarvRS. RecordSource = "select .

1 leode L Name | fAddress] from {eustomer] where [code[=" &
¢ daPrinay RS Recordset! [Code] & ™ & " Order by [code]”
ditSecondaryRS.Refresh

"i'his will display the current record position for dynasets and
strapshots '
datPrimaryRS.Caption = "Record: " &
F(datPrimanvRS. Recordset AbsolutePosition + 1)

Ead Sub

Private Sub datPrimaryRS_Validate(Action As Integer,
4 Suve As Integer)
"his s where vou put validation code
“This event gets called when the following actions occur
select Case Action

Case vhDataActionMovelfist

Case vhDataActionMovelPrevions

Case vbDataA ctionMoveNext

Case vhDataActionMovelast

Case vbDataActionAddNow

Cane vbDataActionUpdate .

Case vbbataActionDelete

(asc vbDataActionFind

Case vbDataActionl3ookmark

Caxe vbDataActionClose

"Sercen.MouscPomter = vbDefault

¢ Fand Sclect

‘Sereen.MousePouter = vhourglass
s.nd Sub

:E’rivate Sub DBCombol_Lo:stFocus()
n Yaror GoTo handler

e v

XVi

Datal RecordsetFmdEFirst ("Name="& """ &

DBCombol. Text & ")

I Datat Recordset NoMateh = Frue Then

RESP = MsgBox("The Category *¥¥ " & DB3Combol & ™" &
* Does not xist Do vou want it Regastered (Y/N)?" vbYesNo
+ vhInformation)

ITRESP = vbYes Then

Datal Recordset. AddNew

Datal Recordset! Nanie] = Di3Combol
Datal Recordset.Update

Datal Refresh

Lilse

DBCombol =""

DIB3Combol SctlFocus

Ind If

bnd If

Fxit Sub

handler:

MsglBox For.Description

End Sub

Private Sub I'xtliclds_ Changegindey As Inteper)
I index =3 Then

i elds(5)y < " Then

I Val(txtIelds(3)) < 0 Then

Msgl3ox "Negative Re-Order Level”
ixtliaelds(5)=""

Jind If

Fnd If

Iind I

End Sub

Public Sub GenCode()

Set dbs = OpenDatabase("¢:hwaresthomewares.mdb™)
SctrstTemp = dbs.OpenRecordset("SELECT * FROM
HemInvent WHERLE Category =" & "™ & DIB3Comboi & 77
dbs Recordsets Retresh

I rstTemp IO = False Then rstTemp.Move! ast

Datal Recordset F'indF st ("Name =" & "™ & DBCombol &
")

"MsgBox Datal Recordset NoMateh

"Datal.Recordset. Move (0)

I Datal .Recordset. NoMatch = Ialse Then

Datal Recordset. Move (0)

TheCateporyCode = Datal Recordsett] Code|

TheCode = TheCategoryCode & rstTemp. RecordCount + |
ixtFields(0). Text = TheCode

Fise

MsgbBox "The Category not registered”
Fnd I}

End Sub

Codes for FrmMainMenu. frin

Private Sub Command1_Click()
FrmInvent. SSTabi . Tab = |

FrmInvent. SSTabl . TabVisible(1) = Truc
Frminvent. SSTabl. TabVisible(0) = False
I'rmInvent. Show |

i

Znd Sub
¥

Private Sub Command 10_Click()
FramicS. Visible = True

mode =3

£nd Sub

Private Sub Command12_Click()
#rmPayrolllnfor.Show 1 .
fnd Sub

Private Sub Command13_Click()
Frame6. Visible = False
£nd Sub

Private Sub Command15_Click()
s rmGAccount.SSTabl . Tab = |
#rmGAccount. Show 1

End Sub

Private Sub Command16_Click()
rrmGAccount.SSTabl . Tab=0
FrmGAccount.Show 1

@nd Sub

s)rivatc Sub Command18_Click()
Index =06

4Call Label5_Click(6)

Find Sub

Private Sub Command2_Click()
iFrimlnvent. SSTabl.Tab=0

L Frmlnvent.SSTabl. TabVisible(0) = True
s FrmInvent. SSTabl. TabVisible(1) = False
Irmlnvent. Show |

: Eud Sub

i Private Sub Command21_Click()

mode = | '

F'rmModifylnvent. Datal .RecordSource = "SELECT * FROM
i InventJWHERE Stock Type = "Non-Fixed"
FrmModifyInvent. Datal Refresh

FrmModilylnvent. Show 1

{End Sub

Private Sub Command22_Click()
frmltemInvent. Show 1
Eaod Sub

Private Sub Command24_Click(
fimCategory. Show 1
£nd Sub

;"rivatc Sub Command25_Click()
FinCustDetails.Show 1
fad Sub

i

?rivatc Sub Command28_Click()
pdex=6

é:l“ Label5 Chick(6)

3

xXvil

End Sub

Private Sub Command3_Click()
Frame5 Visible = True

mode =2

End Sub

Private Sub Command4_Click()
FrmStaffRepDialog. Show |
End Sub

Private Sub CommandS_Click()
FrmStudRepDialog.Show]
End Sub

Private Sub Command6_Click()
FrameS. Visible = True

mode = 1|

End Sub

Private Sub Command7_Click()
frmTransaction. Show 1
End Sub

Private Sub Command8_Click()

RESP = lnputBox("Enter Form Number 7", "Form
Validation™)

wolc = RESP

fimStudForm.datPrimarvRS. Refresh
fmStudForm.datPrimaryRS Recordset FindFirst ("FormNo="
& " & RESP & ")

If frmStudForm. datPrimary RS Recordset. NoMatch = True
Then ‘

well = MsgBox("Form Number does not Exist”, vbOK Cancel
+ vbinformation)

Tixit Sub

Lilse

FrmRegister. datPrimaryR S RecordSource = "SELECT *
FROM [StudRec] WHERLE FormNo =" & ™" & RSP & "
FrmRegister.datPrimaryR S Refresh

FrmRegister datPrimaryR S.Recordset. AddNew
FrmRegister.txtForm. Text = RESP
FrmRegister.datPrimaryRSF Recordset AddNew

FrmRegister. datPrimaryRSM . Recordset. AddNew
FrmRegister.datPrimaryRSO.Recordset AddNew
FrmRegister.cmdAdd.Enabled = False

FrimRegister. Show |

End If

End Sub

Private Sub Command9_Click()
cboselectmonth. Clear
cboselectmonth. Text = Format(Now,
FrmPayrolllnfor.Show 1

Datad Refresh

With Datad.Recordset
chobanks.Clear

cbobanks Addltem ("All Stall™) /
Do While .EOF = False
cbobanks. Addltem ![statfnum] ‘

" dd-mmm-vyyy")

3

veNext
P
4 With

icleciMonth. Visible = True

a5 Relresh

while Datad Recordset. EOF = False
35.Recordset Delete

35 Recordset. MoveNext

D
aSub

1Sub .

i

ate Sub Form_Load()
dcessLevel <= 1 Then
3l.Visible = False
1To.Vigible = False

af
JtusBar. Panels(2). Text = UserName
saption = CoyName

$9.Cuption = CoyName

Sub

ate Sub LabelS_Click(Index As Integer)
dex =6 Then
P = MsgBox("Exiting " & CoyName & "...Continuc
, vbYesNo + vbInformation)
SP =+vbYes Then

Lt Sub
;
f

Bub

rte Sub LabelS_MouseMove(Index As Integer, Button
fieger, Shift As Integer, X As Single, Y As Single)
ex <=2 Then
Visible = True
17 .Visible = Falsc
1. Visible = False
H.Visible = False

N =3 Orlndex =4 Then

3 Visible = False
Visible =Falsc
.Vistble = False

2 Visible = True

Visible = False
4Visible = True
tVisible = False
Visible = False

&= 6 Then
Visible = Falsc
¥isible = Falsc
/1sible = True
1sthle = False

Xviil

End If

If Index =0 Then
Framel.Visible = True
Frame2. Visible = False
'Frame3.Visible = False
Framed . Visible = False
Frame7 . Visible = False
Frame8.Visible = False
Frame9.Visible = False
End If

If Index=1 Then
Frame4 . Visible = True
'Frame3. Visible = False
Frame2.Visible = False
Framel.Visible = False
Frame7 . Visible = False
Frame8.Visible = False
Frame9.Visible = Falsc
End If

If Index =2 Then
'Frame3. Visible = False
Frame2.Visible = False
Framed.Visible = False
Framel.Visible = False
Frame7 Visible = False
Frame8.Visible = True
Frame9.Visible = False
EndIf

If Index =3 Then
Frame2 . Visible = True
TFramel . Visible = False
'Frame3. Visible = False
Frame4.Visible = False
Frame7.Visible = False
Frame8.Visible = False
Frame9.Visible = Falsc
End If

If' Index =4 Then
'Frame3. Visible = False
Frame2.Visible = False
Framel . Visible = False
Frame4.Visible = False
Frame7.Visible = True
Frame8. Visible = False
Frame9.Visible = False
EndIf

If Index =5 Then
'Frame3 . Visible = False
Frame2 . Visible = False
Framel.Visible = False
Frame7 . Visible = False
Frame4 . Vistble = False
Frame8. Visible = True

3 Frame9. Visible = False
flind I

£ I Index =6 Then

1 Iramce3. Visible = [False
Frame2. Visible = IYalse
Tramed. Visible = FFalse
3 Framel . Visible = False
I'rame7. Visible = False
1 Frame8 Visible = [False
Frame9. Visible = True

End If

LabelS{Index).ForeColor = vh Yellow
lori=07To6

111 <> Index Then Label3(1) ForeColor = vbhRed
S Nexti

i End Sub

1 Private Sub mnu3_Click{)
flemp=""

mode = |

Thelmancialllag = |

3 frml“inanceReport. Show
1End Sub

Private Sub mnud_Click()
slemp=""
fmode=2
ThelFmanciallFlag =2
i frmFmanceReport. Show
: End Sub

1 Private Sub mnud_Click()
temp =""

s mode =3

* TheFinancialFlag = 3
HrmFmanceReport. Show

End Sub

?’rimtc Sub mnu6_Click()
jlemp =""

mode =4

‘helmancialllag = 4
fmFinanceReport. Show

:an Sub

Private Sub mnu7_Click()
smp=""

Jode=3
“hel'manciallflag = 5
?nl’inunc\:chon. Show
md Sub

%ivatc Sub mnuAB_Click()
mAbout.Show 1
ad Sub

]

X1X

Private Sub manuC_Click()

On Error GoTo handler A
Set dbs = OpenDatabase("e: M hwares\ lomewares.andb™)
myquervt ="Scleet * From PavDetails WHIERE bal < 0"
dbsbixeeute ("DELETE * FROM PavDTrash™)

dbs. xecute ("INSERT INTO PavDTrash " & myquervl)
Replitie = "LIST OF ALL CREDIT CUSTOMERS"
frimView CRT Formulas(4) = "Dese =" & "Total Credit™
fmView. CR1.ReportFileName = "¢\ wares\cusstatus.mpt”
frmView Show |

Eixit Sub

handler:

MsgBox Frr.Description

End Sub

Private Sub mnuCL,_Click()

fimView . CR 1 ReportiideName = "¢\ wares\customer.rp”
RepTitle ="LIST OI' ALL CUSTOMERS"
fmView . Show !

End Sub

Private Sub mnuD_Click()

On Fror Go'to handler

Set dbs = OpenDatabase("e:\Hwares\Homewares.mdb™)
mvquery! = "Seleet * From PavDetails WHERE bal> 0"
dbs.Iixeeute ("DELETE * FROM PavDTrash")
dbs.Exceute ("INSERT INTO PayDTrash " & myquery D)
RepTitle ="LIST OF ALL DEBIT CUSTOMIZRS"

frm View. CR 1. Formulas(d) = "Dese =" & "Total Debi™
frmView. CR1 ReportldeName = "¢ Iwares\cusstatus.apt”
frmView.Show |

Eixit Sub

handler:

MsgBox Err.Description

End Sub

Private Sub mnui2_Click()

fmView. CR I ReporthileNanie = "¢\ hwaresitemIistept”
RepTatle ="LIST OF ALL TTEM WITHETTHIEIR
CATEGORY"

[mView. Show |

End Sub

Private Sub mnul3_Click()

fim View.CR1.ReporthileName = "¢\ Twares\categonypt”
RepTitle ="LIST OF I'TEM CATEGORY”"
frmView.Show |

End Sub

Private Sub mnul4_Click()

fmView. CR1.ReportFileName = "c\Hwares\itemmvent.rpt”
RepTitle="LIST OF CURRENT INVENTORY OF I'71:MS”
frmVicw.Show |

End Sub

Private Sub mnuPAD_Click()
frmPass.Show |
End Sub

i

‘ivate Sub mnupf_Click() :
ey Tide = "PROPOSED PROVIT ON CURRENT STOCK”
nView. CRI ReportfileName = "¢\ wares\profitL.pt”

iV icw Show .

id Sub

tivate Sub mnuPl_Click(}
LuGenlnvoice. Show
wd Sub

vivate Sub mnuSS_{lick(:
mSettings. Show |
yd Sub

yivate Sub Fimer2_Timer()

JLabely Lelt <= FrnnMainMenu Lelt - FrmMainMenu, Width
000 Then

woct et = FrmMamMenu, Width

hd It

belw Lett = Labelo Left - 10

d Sub

XX

