
Title Page

D~V~LOPING A BU~IN[g~ MANAG~M~NT APPLICATION
U~ING OBJ~CT ORI~NT~D PROGRAMMING T~CHNIQU[g

Ca!:e ~tudy: Hornewate!: lighting ~y!:tern!: ltd.

By

tJz~rH CHUKWU~M~KA
PGD/MC~/99/2000/9gLt

A PROJrCT ~UBMITTrD TO THr DrPARTMUJT 01= MATHrMATI~/COMPUTrR ~CIUICr
I=rDrRAL UNIVrR~fTY 01= TrCHNOLOGY, MINNA.

IN PARTIALI=Ul=lLMrNT 01= THr RrQUfRrMrNT I=OR THr AWARD 01= THr PO~T
GRADUATr DIPLOMA IN COMPUTrR ~ClrNCr

~~PT~MB~R, 2001.

11

CERTIFICATION

This projec;t has been read and approved as meeting the req,uirements of the

award of Post Graduate Diploma in Computer Sc;ienc;e, Department of

Mathematic;s and Computer Sc;ienc;e, Federal University of Tec;hnology, Minna.

Mr. LN. Ezeakor
Supervisor

Dr. 6. A. Reju
Head of Department.

External Examiner

Date

Date

Date

111

DEDICATION

This work is dediaated to God Almighty and all my friends for their well wishes.

IV

ACKNOWLEDGEMENi

I wish to ac;knowled~e the efforts of all my lec;turers at the Federal University

of Tec;hnolo~y, Minna for their sinc;ere effort in seein~ that I get the required

knowledge in Computer Sc;ienc;e and Information tec;hnolo~y at its highest level.

I am partic;ularly grateful to my Supervisor Mr. L.N. Ezeakor for his ~uidanc;e.

Finally, I wish to thank my friends and c;ourse mates for their c;ompany an~1

enc;oura~ements.

v

TABLE OF CONTENTS

Title Page
Certification ii
Dedication iii
Acknowledgement iv
Table of Content v
Abstract vi

Chapter One
1.1 Introduction 1
1.2 Statement of Problem 2
1.3 Objective of Study 3

lA Scope 4
1.5 Method of Data Collection 4
1.6 Definition of Terms 4

Chapter Two

2.1 Basics of Programming Languages 7
2.2 OOP Principles 9
2.3 Visua:l Tools and Object Oriented Programming 15

2.4 Event Driven Models and Interactive Development. 16
2.5 using Visual Basic for Object Oriented Programming 17

2.6 File and Project Hierarchy in Visual Basic 18
2.7 Designing Applications using Visual Basic 19

Chapter Three: Systems Analysis and Design
3.1 Description of the existing System 21
3.2 Problems of Existing System 21

3.3 Feasibility Study 22
3.4 Strenght of New System 25
3.5 Design 5trategies for Implementing a Business Mgt 50ftware 26

3.6 Features of programming Language used 27
3.7 Systems Flowchart 29
3.8 Input Specification 29
3.9 Output Specification 33
3.10 Procedure Chart 34

3.11 Input Design
3.12 Output Design

VI

Chapter Four: Systems Implementation
4.1 Introduction
4.2 Systems requirement
4.3 Systems Testing

4.4 Systems Set-Up
4.5 Change Over and Data Migration

Chapter Five
5.1 Conclusion
5.2 Recommendation
5.3 Post implementation Appraisal
5.4 References

Appendixes
» Source Code

35
44

48
49
53
54
55

56
57
57
59

V11

ABSTRACT

One of the major areas of Information Technology deployment is business

management. Proper application of Information Technology tools has helped so many

businesses in enhancing their management and operational activities.

Internal and External constraints exist that acts as impediments to effective

operations of business organizations transcends both small and large businesses.

In resolving these constraints, I.T. tool and techniques have been applied with positive

results. I.T. solutions to l3usiness Management needs the appropriate software.

Thus developing the required software is a major step in achieving the objective of

offering solutions to l3usiness needs using Information technology. Microsoft Visual

l3asic is one of the most flexible and powerful Rapid Application Development tool

available today. Its use for Software development usually results in Software with

the Windows feel and look.

Therefore, in developing a business management application for transaction

processing, Microsoft Visual l3asic would help in developing a software that meet the

need for which it was designed.

Chapter One

1.1 Introduction

Modern Business Management recognizes the presence of internal and external constrains

that needs to be properly attended to in order to achieve progress. These constraints comes

in the form of record management, transaction processing, customer relations management

and the coordination of other business activities. One way these constraints have bel;:n

tackled head-on IS by office automation (Office System). Office Systems refers to

equipment used to create, store, process, or communicate information in a business

environment. In today's world the fulcrum of an office system is the PC (microcomputt:r)

and its associated software. It is well known that hardwares do not function in isolation. In

a business environment the benefit of computing and its applications cannot be appreciated

except there are software's specifically tailored to offer business solutions. The major tools

needed to develop modern business application are object oriented programming (OOP)

tools. OOP tools dictate the present trend in computer programming. This is because they

generate software's that are interactive, user friendly and efficient.

Apart from the perceived gains of computer usage in business management, other intrinsic

benefits are derivable from using business software as a management tool; it enhances

productivity, promotes business process reengineering and supports and provides a viable

information system.

Page 1 0/57

) •

•

Programming is part of an esoteric world where logic is sacred. Even if you understand

exactly why a program works, there is still a magical element involved. Things appear and

,. disappear. Objects materialize, and then dematerialize. They do so according to strictly

defined logical rules; but still, there is the fact that things appear and disappear right before

our eyes.

To be a good programmer, one has to be an insider to program development tool. A

I programmer to study arcane material, sit up over it and ponder its meaning, seeking to

understand its mysteries. Many people never understand the subtleties of programming. They

don't ever penetrate to the inner mysteries of this challenging field.

Some products seem to be effective at capturing the essence of the beautiful, mysterious

logic that underlies the world of programming. Products such as C++, Visual Basic, Visual:

1++ and other Rapid Application Development tool have effectively captured and simplified

the steps in dt~velopment effective programs by providing a powerful sets of programming

tools.

1.2 Statement of Problem

As we traverse through the years it would be notice that computing needs of business

changes. So also the type of software and computing requirement that would be needed to

solve these needs. Most business requires effective computer software's to acts as a

management tool. These software usually would be expected to incorporate a database that

would serve as repository of information into which large volume of data would be stored

and retrieved as required.

Page 2 0/57

Therefore database management systems are being called on to provide a higher level of

database management. No longer will databases manage data; they must manage
.~

information and be the knowledge centers of the enterprise. To accomplish this, the database

must be extended to;

.:. Provide a higher level of information integration .

• :. Stores and retrieve all types of data.

Applications that require database support are quickly extending beyond traditional data

processing into sophisticated office automation software. These applications have complex

data structuring needs, significantly different data accessing patterns and special performance

requirements. Conventional programming methodologies are not necessarily appropriate for

these applications and conventional data management system may not be appropriate for

managing their data.

Business management Applications deals with a hierarchical structure of information

organization. Database access for these applications is typically a directed graph structure

rather than an ad hoc query. In trying to manipulate such complex data, a programmer writes

code to handle these. The Object Oriented Programming tool is the therefore the best bet in

solving the complexities for handling such data management requirement.

1.3 Objectives of Study

.:. To highlight the benefits of object oriented programming tools in developing modem

applications .

• :. Illustrate the Software development process usmg a particular Object Oril~nted

Programming Tool.

Page 3 0/57

.:. To develop a business management software using Ms Visual Basic.

1.4 Scope of Work

Object Oriented Programming and its principles would be discussed in detail, the actual

software development process would be done using Microsoft Visual Basic. Hence, the

study would be restricted further to Visual Basic components and their applications in

software development. A business management software would be developed to handle the

information processing required of a organization; Homeware Lightening Systems Ltd.

1.5 Method of Data Collection

The data collection methods used in this study were by Interviews and Studying procedural

Manual. In designing the software for the system, the personnel that uses the manual system

were interviewed, the forms they used studies. This is to enable the design

1.5 Definition of Terms

ActiveX: Microsoft's brand name for the technologies that enable interoperability using the

Component Object Model (COM).

API: Application programming interface. The set of commands that an application uses to

request and carry out lower-level services performed by a computer's operating system.

AGP: Accelerated Graphic Port; a new kind of Video RAM standard.

Polymorphism: In an object-oriented programming language, the ability to redefine a

routine in a derived class (a class that inherited its data structures and routines from another

class). Polymorphism allows the programmer to define a base class that includes routines that

perform standard operations on groups of related objects, without regard to the exact type of

each object. The programmer can redefine the routines, taking into account the type of the

object, in the derived classes for each of the types.

Page 4 0/57

Index: In Visual Basic, a number that identifies an element in an array, control array, or

collection. In data access, a dynamic cross-reference of one or more table data fields

(columns) that permits faster retrieval of specific records (rows) from a table. As records are

added, changed, or deleted, the database management system automatically updates the index

to reflect the changes.

Method

Module

A procedure that acts on an object.

A set of declarations followed by procedures.

~ Object: A combination of code and data that can be treated as a unit, for example, a control,

form, or application component. Each object is defined by a class.

Object-Oriented Programming: In contrast with procedural programming, involves the use

of both object-oriented design and an object-oriented programming language. Instead of

consisting of sets of data loosely coupled to many different procedures, object-oriented

programs consist of software modules called objects that encapsulate both data and

processing while hiding their inner complexities from programmers and hence from other

objects.

ODBC (Open Database Connectivity): A standard protocol that permits applications to

connect to a variety of external database servers or files. OOBC drivers used by the ODBC

driver manager permit access to SQL Server and several other data sources, including text

files and Microsoft Excel spreadsheets. The OOBC application programming interface (API)

may also be used to access OOBC drivers and the databases they connect to without using

the Microsoft Jet database engine.

Page 5 0/57

Binding: The process of putting an object into the running state so that operations supplied

by the object's application (such as edit or play) can be invoked. The type of binding

determines the speed with which an object's methods are accessed using the object variable.

Procedure: A named sequence of statements executed as a unit. For example, Function,

Property, and Sub are types of procedures. A procedure name is always defined at module

level. All executable code must be contained in a procedure. Procedures can't be nested

within other procedures.

Page 60/57

Chapter Two

2.1 The Basics of Programming Languages

Programming Language, in computer science is an artificial language used to write a

sequence of instructions (a computer program) that can be run by a computer. Similar to

natural languages, such as English, programming languages have a vocabulary, grammar,

and syntax. However, natural languages are not suited for programming computers because

they are ambiguous, meaning that their vocabulary and grammatical structure may be

interpreted in multiple ways. The languages used to program computers must have simple

logical structures, and the rules for their grammar, spelling, and punctuation must be

precise.

Programming languages vary greatly in their sophistication and in their degree of

versatility. Some programming languages are written to address a particular kind of

computing problem or for use on a particular model of computer system. For instance,

programming languages such as FORTRAN and COBOL were written to solve certain

general types of programming problems-FORTRAN for scientific applications, and

COBOL for business applications. Although these languages were designed to addn:ss

specific categories of computer problems, they are highly portable, meaning that they may

be used to program many types of computers. Other languages, such as machine languages,

are designed to be used by one specific model of computer system, or even by one specific

computer in certain research applications. The most commonly used programming

languages are highly portable and can be used to effectively solve diverse types of

computing problems. Languages like C, PASCAL, and BASIC fall into this category.

Page 70/57

High-level languages are commonly classified as

.:. procedure-oriented,

.:. functional,

.:. object-oriented, or logic languages.

The most common high-level languages today are procedure-oriented languages. In these

languages, on{~ or more related blocks of statements that perform some complete function

are grouped together into a program module, or procedure, and given a name such as

"procedure A." If the same sequence of operations is needed elsewhere in the program, a

simple statement can be used to refer back to the procedure. In essence, a procedure is just

a mini-program. A large program can be constructed by grouping together procedures that

perform different tasks. Procedural languages allow programs to be shorter and easier for

the computer to read, but they require the programmer to design each procedure to be

general enough to be used in different situations.

Functional languages treat procedures like mathematical functions and allow them to be

processed like any other data in a program. This allows a much higher and more rigorous

level of program construction. Functional languages also allow variables-symbols for

data that can be specified and changed by the user as the program is running-to be given

values only once. This simplifies programming by reducing the need to be concerned with

the exact order of statement execution, since a variable does not have to be redeclared, or

restated, each time it is used in a program statement. Many of the ideas from functional

languages have become key parts of many modem procedural languages.

Page 8 0/57

Object-ori~:nted languages are outgrowths of functional languages. In object-oriented

languages, the code used to write the program and the data processed by the program are

grouped together into units called objects. Objects are further grouped into classes, which

define the attributes objects must have. A simple example of a class is the class Book.

Objects within this class might be Novel and Short Story. Objects also have certain

functions associated with them, called methods. The computer accesses an object through

the use of one of the object's methods. The method performs some action to the data in the

object and returns this value to the computer. Classes of objects can also be further grouped

; into hierarchies, in which objects of one class can inherit methods from another class. The

structure provided in object-oriented languages makes them very useful for complicated

programming tasks.

Logic languages use logic as their mathematical base. A logic program consists of sets of

facts and if-then rules, which specify how one set of facts may be deduced from others, for

example:

If the statement X is true, then the statement Y is false.

In the execution of such a program, an input statement can be logically deduced from other

statements in the program. Many artificial intelligence programs are written in such

languages.

2.2 OOP Principles

OOP is a disciplined programming style that incorporates three characteristics;

encapsulation, inheritance and dynamic binding. These characteristics differentiate OOP

from traditional programming models in which data has a type and structure, distinct from

Page 9 of 57

t

the program code and is processed sequentially. OOP builds on the concepts of reus~~

through the development and maintenance of class libraries of objects available for use and

marinating applications .

• :. Encapsulation joins procedures and data to create an object, so that only th~~

procedures are visible to the user, data is hidden from view. The purpose of

encapsulation is to mask the complexity of the data and the internal working of th~~

object. Only the procedures (methods) are visible to the outside world .

• :. Inheritance passes attributes to dependent objects, called descendants or receives

attributes from objects called ancestors on which the object depends .

• :. Dynamic binding is the process whereby linking occurs at program execution time.

All objects are program execution. For example in a stock management application,

the function called program trading can sell or buy, depending on a large range of

economic variables that define the current state. These variables are transparent to

the user who invokes the trade process .

• :. Class library is mature, tested reusable codes that provides application enabling codt:

such as help management, error recovery, function key support, navigation logic and

cursor management. The class library concept is inherent to the OOP concept and in

combination with the standards and training fundamentals - is inherent to tht:

productivity and error reduction encountered in project in which OOP tools are used.

Object Oriented programming is most effective when reusable components can be cut and

pasted to create a skeleton application. Into this skeleton the custom business logic for this

function is embedded. It is essential that the standard components use dynamic binding so

Page 100/57

that changes can be made and applied to all applications in the environment. This provides

one of the major maintenance productivity advantages.

• Objects

• Encapsulation and message passing

• Classes

• Libraries

• Inheritance

• Access modifiers

Objects

The fundamental unit in object-oriented programming is the object. Languages that follow

object-oriented concepts describe the interaction among objects. All objects have a state and

a behavior. The state of an object pertains to data elements and their associated vallues.

Everything the object knows about these elements and values describes the state of the

object. Data elements associated with objects are called instance variables.

The behavior of an object depends on the actions the object can perform on the instance

variables defined within the object. In procedural programming, such a construct would be

called a/unction. In object-oriented terminology, this construct is called a method. A method

belongs to the class it is a member of, and you use a method when you need to perform a

specific action more than once.

Thus, the state of an object depends on the things the object knows, and the behavior of the

object depends on the actions the object can perform. If a software object that modds a

television is created, ~he object would have variables describing the television's current state,

such as it is on, the current channel setting is 8, the current volume setting is 23, and there is

Page II 0/57

no input coming from the remote control. The object would also have methods that describt:

the permissible actions, such as turn the television on or off, change the channel, change tht:

volume, and accept input from the remote control.

Encapsulation and Message Passing

Objects encapsulate instance variables and related methods into a single, identifiable unit.

Therefore, objects are easy to reuse, update, and maintain. A programmer can quickly and

easily do the following:

• Pinpoint the necessary input to the object and the output from the object

• Find variable dependencies

• Isolate the effects of changes

• Make updates as necessary

• Create subclasses based on the original object

Objects are as dynamic as you make them. An object can invoke one or more methods to

accomplish a task. A user initiates a method by passing a message to an object. A message

must contain the name of the object you are sending the message to, the names of the

methods to perform, and the values needed by those methods. The object receiving the

message uses this information to invoke the appropriate methods with the specified values.

The benefit of encapsulation of instance variables and methods is that the programmer can

send messages to any object without having to know how the object works. All he needs to

know is what values a method will accept. Therefore, the software object describing the

television could be extremely complex, but all that needs to be done is for the programmer

or the end user have to know to use the television is how to press the appropriate buttons on

the remote control. The press of a button on the remote control sends a message to the

Page 12 of 57

f

television's software object, telling it which method to perform and the new input values for

the method.

Classes

Classes encapsulate objects. A single class can be used to instantiate multiple objects. This

means that you can have many active objects or instances of a class. The object describing

the functions of your television is an instance of a class of objects called television. Keep in

mind that each object within a class retains its own states and behaviors. By encapsulating

objects within a class structure, a programmer can group sets of objects by type.

Libraries

In C++ and other programming languages, a collection of related classes or functions is

called a library. Java puts a twist on the concept of libraries by using the term package to

describe a collection of related classes. Just as classes encapsulate objects, packages

encapsulate classes in Java.

Inheritance

Inheritance is a powerful aspect of object-oriented programming that allows codes to be

reused. and extend the functionality of existing classes. If a class is created to draw a shaded

rectangle on the screen, you could extend the class to move the rectangle to specific locations

on the screen without having to rewrite the original class. A programmer could also extend

the class fi)f the shaded rectangle to display a series of user-selectable rectangles. In either

case, the new class would inherit the methods that created the shaded rectangle and then

extend the methods to perform the appropriate action.

Using this aspect of object-oriented programming, a new class can be created that inherits

the functionality of an existing class. Then functions can be extended to form part of the old

Page 130/57

class in ways that suit your current needs. The television class could have subclasses for

black-and-white televisions, color televisions, and home-theater-style televisions. The new

television subclass is not limited by the instance variables or methods of the superclass and

can include instance variables and methods not defined in the superclass. The new subclass

can also override inherited methods.

Access Modifiers

In object-oriented programming, access to methods and variables is controlled through access

modifiers. The Java programming language defines four levels of access controls:

• Private methods and variables

I • Protected methods and variables

• Friendly methods and variables

• Public methods and variables

Private Methods and Variables

Methods and variables that are controlled by an associated object and are not accessible to

objects of different classes are generally considered to be private. The advantage of this is

that only objects in a particular class can access the methods or variables without limitation.

Java's private methods and variables are likewise accessible only by objects within the samt:

class.

Protected Methods and Variables

Methods and variables that are controlled by an associated object and are accessible to

objects in the current class or a subclass of the current class are generally considered to be

protected. The advantage of this is that only objects in specific classes can access the

Page 140/57

variables without limitation. Java's protected methods and variables are likewise accessible

only by methods in the same class or subclass.

Friendly Methods and Variables

Methods and variables that are accessible to other objects in most circumstances are

considered to be friendly. By default, methods and variables you declare in Java are assumed

to be friendly and are accessible by any class and objects in the same package. The advantage

of this is that objects in a particular package (generally a set of related classes) can access

each other without limitation.

Public Methods and Variables

Methods and variables that are accessible to all objects, even those outside the current class

and package, are considered to be public. Java's public methods and variables are accessible

by any o~ject or class. Therefore, public methods and variables can be accessed without

limitation.

2.3 Visual Tools and Object Programming

Modern Object Oriented Programming has been enhanced by the use of Visual Development

Tools. The use of these tool allows application to be created with reduced amount of

programming. That is, a good percentage of the job to be done is handled by using Visual

designs and graphics to which underlying codes are attached.

Visual Tools have made programming quite simple. Task that hitherto requires a great deal

of programming to be achieved can be created by first creating the graphical interface by

using the tools provided the compiler and then associating program codes to them.

Page 150/57

Visual tools allows the creation of application that has the Windows feel and look. That is,

applications created with Visual tools are fully compatible with the Microsoft Windows

~ Operating System and they also share common controls, interfaces and dialog boxes with the

Windows O/S. Thus the use of Visual Tools is also referred to as Windows Programming.

Popular examples of Visual Programming Tools are Microsoft Visual Studio that

incorporates Visual Basic, Visual C++ Visual FoxPro and Visual Interdev.

2.4 Event Driven Models and Interactive Development

In traditional or "procedural" applications, the application itself controls which portions of

code execute and in what sequence. Execution starts with the first line of code and follows a

predefined path through the application, calling procedures as needed.

In an event-driven application, the code doesn't follow a predetermined path - it executes

different code sections in response to events. Events can be triggered by the user's actions, by

messages from the system or other applications, or even from the application itself. The

sequence of these events determines the sequence in which the code executes, thus the path

through the application's code differs each time the program runs.

Because the sequence of events cannot be predicted" the code must make certain

assumptions about the "state of the world" when it executes. When you make assumptions

(for example, that an entry field must contain a value before running a procedure to process

that value), you should structure your application in such a way as to make sure that the

assumption will always be valid (for example, disabling the command button that starts the

(procedure until the entry field contains a value).
i

Your code can also trigger events during execution. For example, programmatically changing

the text in a text box cause the text box's Change event to occur. This would cause the code

Page 160/57

(if any) contained in the Change event to execute. If it is assumed that this event would only

be triggered by user interaction, you might see unexpected results. It is for this reason that it

is important to understand the event-driven model and keep it in mind when designing your

application.

The traditional application development process can be broken into three distinct steps:

writing, compiling, and testing code. Unlike traditional languages, Visual Basic uses an

interactive approach to development, blurring the distinction between the three steps.

With most languages, if a mistake is made in writing your code, t~e error is caught by the

compiler when you start to compile your application. The programmer must then find and fix

, the error and begin the compile cycle again, repeating the process for each error found.

Visual Basic interprets your code as you enter it, catching and highlighting most syntax or

spelling errors on the fly. It's almost like having an expert watching over the programmers

shoulder as he enters the code.

In addition to catching errors on the fly, Visual Basic also partially compiles the code as it is

entered. When you are ready to run and test your application, there is only a brief delay to

finish compiling. If the compiler finds an error, it is highlighted in the code. The error can be

fixed and continue compiling without having to start over.

2.5 Using Visual Basic for OOP

The Basic programming language began as a procedural language, based on variables,

function calls, and statements. It is evolving toward an object-oriented language, based on

objects, properties, methods, and collections.

Page 170/57

Visual Basic has always had support for objects, even though you couldn't always create

objects in VB. The ability to create objects from classes was added in VB 4.0, while the

ability to create an ActiveX object is new in VB 5.0. and VB 6.0

While purists would argue that Visual Basic isn't a fully object-oriented language (mainly

because it doesn't have all the object-oriented features of C++, , it has become more object

oriented over time.

Project Group File (.vpg)

ActiveX Pro.iects (.vbp)

User Controls (.ctl)

Modules (.bas)

Class Modules (.bas)

Property Pages (.pag)

EXE Pro.iects (.vbp)

Forms (.frm)

MIDI Form (.frm)

Modules (.bas)

2.6 Designing Applications using Visual Basic

There are three main steps in creating application in Visual basic.

1. Create the interface.

2. Set Properties

3. Write codes.

Page 18 of 57

2.6.1 Creating Interface.

Forms are the foundation for creating the interface of an application. Forms are used to add

windows and dialog box to an application. They are also used as containers for items that are

not a visible part of the application interface. For example, a form in an application can

serve as a container for graphics that is to be displayed on other forms.

The first steps in building an application are to create the forms that will be the basis for the

application's interface. Then objects that make up the interface are added to the forms.

Essentially, the Integrated Development Environment (IDE) of Visual Basic is build around

forms. Most programming feature of Visual Basics are built into forms and the appropriate

code assigm:d to such controls.

2.6.2 Setting Properties

The next step is to set the properties for the object that is created. The properties Windows

are used to do this in Visual Basic. The property of a form or controls determines the way

the form , control or object appears, how it is displayed and the action it performs when a

particular condition is satisfied.

2.6.3 Writing Code

The Code Editor window is where the Visual basic Codes are written for an application.

Codes consist of language statements, constants and declarations. The code window can be

used to view and edit any of the code in an application.

Codes in Visual basic is divided into smaller blocks called procedures. An event procedure

such as those contains code that is executed when an event occurs (such as when a user

clicks a button). An event procedure for a control combines the control's actual name

Page 190/57

(specified in the Name property), an underscore C) and the event name. For example, if a

~ programmer wants a command button name Command I to invoke an event procedure when
t

it is clicked, use the procedure Command 1_ Click.

Private Sub enter ClickO

Unload Form 1

Form2.Show

End Sub

The event proct:dure is used to remove a form (Form 1) from the screen and display another

Form (Form2). The event procedure is invoked by clicking of enter command on a menu.

The control name is enter while the event is a click event.

Page 200/57

Chapter Three

Systems Analysis And Design

3.1 Description of Existing System.

The System that would be studied is the Business Management Procedure of Homewares

Lightening System Limited; an establishment involved in the indoor and outdoor lightening,

artistic painting and corporate gifts. Their major operations are;

.:. Stocking and Retailing of good to customers .

• :. Maintaining of a list of all customers .

• :. Transaction processing for all transactions carried out.

Maintaining manual logs, bin cards, inventory form, and invoices carries out these activities

and the entire operations is coordinated by a production Supervisor.

The maIn ,'LIm of setting up the existing system is on commencement of the busim~ss

operations of Homewares Lightening Limited; there arose the need for a record keeping

method to be devised to take care of the business record keeping activities of the business.

The existing system is strictly manual. That is all record keeping are done manual,

transcribed to forms and other documents manually.

3.2. Problems of Existing System.

~ No definite order and pattern for processing transaction records (information).

~ Administrative and Record Keeping problems resulting from the absence of Data

Processing Standards and Procedures.

Page 210157

I

~ The absence of an existing MIS structure. Hence there is no laid out pattern for

information sharing and communication among the different levels of managers.

~ Records are difficult to trace, since the clerk has to flip through piles of cards and

patter in sequential order to get to the record to be located.

~ There is no logical links between the different types of records

~ No effective method of protecting data integrity and protection from accidental loss,

destruction or corruption.

The present problems occurred because of the following reasons;

~ No existing information processing system and no set standard for data processing

within the system. Therefore the Staff relies on arbitrary methods for handling their

data.

~ If there was an existing information processing system, information would be easily

communicated to management. Hence the business management process would be a

lot easier.

~ The absence of trained and proficient staff that can handle and operate a Computer

based information system.

3.3 Feasibility Study

Designing and implementing a new system Homewares Lightening Systems Limited is

feasible. Each alternatives have been realistically viewed against the current market trends

and existing situations. Though each alternative would help see to the solution of the problem

at hand; they all have their peculiar merits. The available feasible alternatives are;

Page 22 0/57

I

1. Office Automation Approach: This involves the establishment of an Office System.

An Office Systems is a set of equipment used to create, store, process, or

communicate information in a business environment. This information can be

manually, electrically, or electronically produced, duplicated, and transmitted. Most

modern office equipment-including typewriters, dictation equipment, facsimile

machines, photocopiers, calculators, word processors and telephone systems.

~ An office automation system though would be effective in providing a

solution to the problems at hand it would serve for the short run only.

~ Using an office system the only means of sending printed reports and other

recorded data to head office is by fax. This is more expensive and tedious as

many copies of reports would be continuously faxed on a routine basis.

~ Using an Office System we would have no choice than sending reports and

other data through mail or courier service. In the long run with envisaged

expansion In business operations (growth), market trends and increasing

competition, there would be the need for a more sophisticated information

processing system; that would be flexible enough to cope with increasing

business needs and the changing market environment. Therefore the Office

System Approach would not offer a comprehensive solution to the problem at

hand.

2. Information System Approach: An information processing system refers to the entire

resources for handling the information requirement of an establishment. It incorporates

both the human resources requirement, computers and automated devices involved.

The major component of an information system is the data processing system within it.

Page 23 0/57

The information processmg approach involves the setting up information and data

processing system. Data processing is the analysis and organization of data by the repeated

use of one or more computer programs. Data processing is used extensively in business,

engineering, and science and to an increasing extent in nearly all areas in which computers

are used. Businesses use data processing for such tasks as payroll preparation, accounting,

record keeping, inventory control, sales analysis, and the processing of bank and credit

card/value card account statements.

The Data Processing System for the Homewares would be designed to operate as a

complete integrated set of interrelated system. This approach would provide information

that satisfies the following attributes, viz; provide Information that is timely, accurate and

relevant.

The information system approach would also used a customized business management

software to manage the entire transaction/information processing function of the

organization.

The Information System Approach is the most feasible alternative to solving the problems of

Homewares Lightening Systems.

The Information System Approach was then viewed from three perspectives;

? Technical Feasibility.

? Operational Feasibility.

? Economic Feasibility.

Page 24 0/57

Technical feasibility is the extent to which it is possible for Computer Systems to be applied

as a replacement for business activities that were hitherto done manually. The was found to

be quite feasible. Since business management software would be designed, it would serv~: as

the new means of data entry and storage hence eliminating the need for data to be recorded

on paper. The PC (microcomputer) is a versatile tool whose application cuts across diverse

fields,.

Operational feasibility: the new system would be feasible operationally since new system

would be designed to simulate the manual system and also eliminate the shortcomings of the

manual system. Personnel would be trained on the inner workings and operations of the

system and adequate documentation provided. Hence it possible for the system to be

operated successfully.

Economic Feasibility: This is the cost consideration involved in implementing anew system.

In recent times, there has been a considerable decrease in the cost of Microcomputer

Systems. Hence Information processing system that are dependent on one or two PC are too

cost intensive to implement. The cost implications of developing a new system are made up

for by the benefits obtainable from the new system.

3.4 Strengths of New System

The alternative method would offer the following benefits;

1. Ensure effective processing of transaction, administration and operational data.

11. Proper record keeping and effective information documentation both in form of

printed reports and as digital files on secondary storage devices.

Page 25 0/57

Ill. The new system would provide a management view of the entire organization,

since all business information can be accessed from a single location.

IV. Information can be easily accessed and retrieved when need.

v. Multiple reports can be created for different transaction records.

3.1 Design Strategies For Implementing a Business Management System

• Identification of current system requirements

• Selection and Organization of the data that needs to be stored

• Planning for system Efficiency and Reliability

• Economic Cost comparison: Determination of the cost of implementing the proposed

system

3.5.1 Planning System Requirement

• Determination of the information or data to be keep track off.

• Organization strategy of the required information

•

•

3.5.2

•

•

•

•

•

Determination of the user of the proposed system and the capability of such user.

Projection of future database needs.

Potential Hurdles

Apathy of users to computerized systems, leading to the exhibition of system under­

utilization.

Over dependency leading to the assumptions that the computerized system is fail­

prove.

Unauthorized access to stored data and information.

Data lost due to user lack of maintenance culture

System malfunctioning.

Page 260/57

• User adaptation to old system.

3.5.3 Solving Potential Problems

• Adequate training of operators, users and all personnel concerned with the use of the

new system.

• Periodic/Routine backup of stored information.

• Access control and user verification methods should be built into the software.

• Management Control: Management should always summarize information, observe

trends and performance of variances.

3.6 Features Of Used Programming Language (Visual Basic 6.0)

The proposed system would be developed with modern Object Oriented Programming Tools

(Visual Basic) and would very much help in enhancing any standard operations.

The Visual Basic has a number of features, which in turn are incorporated into the proposed

system, this feature includes:

•

FEATURES

Full Windows Compatibility: the software is designed to run in the Ms Windows

Operating and any compatible environment, which is the standard for any modern

software.

• Mouse Support : apart from keyboard invocations of commands, the software we

•

•

develop supports the use of the mouse, hence, it is easier to navigate through the

software environment and tasks can be executed at the click of a button.

Menu and Event Driven: the software incorporate Pull Down menus, windows

compatible dialogue boxes, prompts and command buttons. This has the added

advantage of making the software more user-friendly and interactive.

Connectivity with other Windows based application: the software has the ability for

Dynamic Data Exchange (DOE) and Dynamic Link Library (DLL) for Shared files,

with other Ms Windows based software. As such data can be exported or imported to

Page 270/57

•

•

and from it (i.e. communication with other window based software IS totally

effecti V(!).

• Improved Multiple ,Database Structure: the database structure of any new software

developed by us uses the Microsoft Open Database Connectivity (ODBC) style that

supports the creation of multiple tables in a single database. This allows for better

handling of large volume of related data items while still compact.

Security: the software is designed such that only valid and authorized users can only

gain access; thereby protecting the integrity of your data and the source code of your

program being tampered with, which is one of the problems you faced with

uncompileable program. Also the databases in the software could encrypted such that

they can only be manipulated by the software alone.

• Output Control: the software controls the output to Screen, Printer or directly to

a file in the format of any Ms Windows base standard software. (E.g. Access, Excel,

Ms Word)

Practical WYSIWYG (What-You-See-Is-What-You-Get) Report Display: the display

screen shows you exactly what your final report will look like when your print

Multiple Size Page Views: View as many report pages at Actual, Double or Half size.

Pictorial Data Representation: data charting in our software gives view

enhancement.

Multi-kledia Effects: Visual and Audio multi-media are available optionally, also

they use all your current Operating System Settings like Sound, Screen Color, Date &

Time e.t.c.

Utility Features: pop-up on screen Calculator & Calendar.

Page 28 of 57

3.7 System Flowchart

[an sac tio_n __

VDU~
DiSPI~

Online Storage
oIData on
Hard Disk

Qackupon
Zip Disk

----""-

3.8 Input Specification

Manual

Customer
Information

Data Input for
Processing

Processing

Customers List

General
Account

Data can be inputted
through Keyboard,
Scanners, Barcodes
etc, depending on the
kind of information to
be inputted

Data is processed by fast
processors on
Microcomputers (pes)
and processed data stored
onfast access Disk
Storage Devices.

General Accounts

Print Invoice

The database used supports Open Database Connectivity (ODBC) techniques that allows the

creation of multiple tables in a single database. Hence the database is assigned an extension

Page 290/57

.mdb (multiple database). The tables contained in the Homewares.mdb database and their

structure are;

~ Customer: for storing customers details

Fields Name DataType Field Size Field Meaning
Name Text 50 Customer Name
Cuscode Text 12 Customer Code
OfficeTel Text 15 Office Telephone
HomeTel Text 15 Home TeleI'hone
Address Text 150 Customer Address
MobileTel Text 15 Mobile Phone
This table is indexed on the customer code field (cuscode).

~ Category: for storing assigned categories

Fields Name DataType Field Size Field Meaning
Name Text 50 Item Category Name
Code Text 50 Category Code

~ Balsheet: this table generates a balance sheet from the available transaction.

Fields Name DataType Field Size Field Meaning
Desc Text 200 Description
CRAmt Currency 8 Credit Amount
DRAmt Currency 8 Debit Amount

~ Pass: storing registered password and user access levels.

Fields Name DataType Field Size Field Meaning
Username Text 60 Username
Password Text 30 Pass Word
AccessLevel Text 30 Access Level for user

Page 300/57

~ Pay Details : Recording payment and invoicing details.

Fields Name DataTy~e Field Size Field Meaning
Cuscode Text 18 Customer Code
OrderNo Text 15 Order Number
VAT Currency 8 VAT Cha.-ge
Paid Curren9' 8 Amount Paid
PayType Text 10 P~ment T~e (Cash or Cheque)
Bal Currency 8 Outstanding balance
BankName: Text 50 Name of Bank
ChequeNo Text 20 Cheque Number
AccountNo Text 20 Account Number
Date Date/Time 8 Date of Transaction
This table is indexed on the CusCode and OrderNo

~ Settings: This table is used to assigned settings for the Company that would be

making use of the software.

Fields Name DataType Field Size Field Meanin~
CoyName Text 50 Company Name
Admin Text 50 Administrator's Name
VAT Double 8 % charged on VAT
CoyAdd Memo Com~any Address

~ Transaction : for registering new order and generating invoice.

Fields Name DataType Field Size Field Meanin~
Icode Text 50 Item Code
Cashier Text 50 Cashier Name
OrderNo Double 15 Order Number
Quantity Text 8 Quantity of Item
CusCode Text 15 Customer Code
TranDate Date/Time 8 Date of Trans
TotalAmount Currency 8 Total Amount
ThIs table IS mdexed on the CusCode, Icode OrderNo and TransDate.

Page 310[57

~ Expenditure : stores data for expenditure account

Fields Name DataType Field Size Field Meaning
TransType Text 50 Transaction Type

TransAmount Currency 8 Transaction Amount

TransDate Date/Time 8 Transaction Date

TransBy Text 50 Staff Authorizing Transaction

TransTo Text 50 Customer to which Transaction is made

Receipt no Text 20 ReceiQt Number
TransUnit Double 8 No of Items Transacted

~ Income : stores data for income account

Fields Name DataType Field Size Field Meaning
TransType Text 50 Field Meaning
TransAmount Currency 8 Transaction Amount
TransDate Date/Time 8 Transaction Date
TransBy Text 50 Staff carrying out trans
TransTo Text 50 Organization involved in

transaction
Receipt no Text 20 Receipt Number
TransUnit Double 8 No of items transacted.

~ ItemInvent : is used to update the available inventory after a transaction has been
processes
Fields Name DataType Field Size Field Meaning

Desc Text 50 Description
UnitInStock Double 8 Unit in Stock
Category Text 50 Item Cate];ory
ReOrder Double 8 Reorder Level
UnitSellPrice Currency 8 Unit Sellif!R Price
UnitCostPrice Currency 8 Unit Cost Price
ThIs table IS mdexed on the Desc, Icode

~ HomeInvent: is used to add a new item to available inventory at hand.

Fields Name DataType Field Size Field Meanin~
Desc Text 50 Description
UnitInStock Double 8 Unit in Stock
ReOrder Double 8 Reorder Level
The tables Illustrated above are the component units of the Homwares.mdb database. The

database structured in the Microsoft Access Database format.

Page 32 0/57

3.9 OUTPUT SPECIFICATION

For the output of processing to be view (on Paper or Screen) they have to be first written to a

file (Database Table) before they are sent to any output medium (Printer- for Hardcopy or

Screen - for Softcopy). It should be noted that most (in fact all) of this Table are generic,

with the sole aim of 'dumping' Report data/information and are deleted afterwards. It is also

note-worthy that a generated table could be used for/by many Reports.

y TrashGAcct

Fields Name DataType Field Size Field Meanin2
TransType Text 50 Transaction Type
TransAmount Currency 8 Amount
TransDate Date/Time 8 Transaction date
TransTo Text 50 Transaction total
Receipt-No Text 20 Receipt No. Issued
TransUnit Double 8

~ y PayDTrash

Fields Name Data Type Field Size Field Meanim~
Cuscode Text 15 Customer Code
OrderNo Text 15 Order Number
VAT Currency 8 Charge for VAT
Paid Currency 8 Amount paid
PayType Text 10 Payment Type (Cash or Cheque)
Bal Currency 8 Balance
BankName Text 60 Bank Name
ChequeNo Text 20 Cheque Number
AccountNo Text 20 Account Number
Date Date/Time 8 Date of Payment
ThIs table IS mdexed on the Cuscode and OrderNo fields.

Page 33 0157

if 3.10 PROCEDURE CHART ,

•
..
"'1

•

Business Mgt Software
Exe file

• AuthorizationlPassword
Verification

• Entry Form/Menu System

~Ir

•

~I Exit I J '-1

•
I Transact~ Stock I Customer I General Accoun~

• "Y -"

N'WOnl'O Item Category / Customer Income Expenditure
Processing Inventory Items Information Account Ac:count

Processing Processing

I I
~Ir ~Ir

3.11 INPUT DESIGN

The Design of Screens (FORMS as called in Visual Basic) is important in any system

development process, because it is through this Forms (interface) that the User actually

communicates with the program, thus, the efficiency or robustness of a program is firstly

determined by the User interface (Forms). It is the user friendliness of the Forms in a

program that determines whether is Software is good or not. With this taken into

consideration, the following input designs are used.

Page 34 0/57

FormAccess (Access.frm)
Screen PUipose: This Form doubly serves as the Welcoming Screen as well as the

authorization check-point of the Homewares Management Softwares. Here it is expected

that the user should supply his/her Username and Password to gain access to the system

proper. An incorrect entry of either the Username or the Password makes the user an invalid

user.

'I

Nzeih C'Emeka

NZ81h C'Erneka
Wole

FrmMainMen u.Frm

Screen Purpose: This is the Main menu Form that contains the different activities the

system can do. Different operational options are available on the main menu form for users to

choose. The main menu form displays two types of menu items, the horizontal pull down

menu and th{: vertical pop-up menus;

Page 35 0/57

, The functions performed by the horizontal menu items are;

REPORTS

• General Transaction Reports: This option displays the general transaction reports on

a monthly, daily, weekly, quarterly or yearly basis based on the option selected. This

option also displays the expected profit Analysis, Credit List, Debtor List and can be

used to Print Invoices.

• General Income: This is used to invoke the report that displays the Income

breakdown from all preceeding transactions.

• General Expenditure: This is used to invoke the report that displays all expenditure

(expense) carried out the organization.

• Balance Sheet: This option is used to prepare a trial balance from all transactions. It

used a time frame to query the tables containing transaction information.

• Inventory Analysis: This option is used to display a listing of, List of Stock Items,

Item Category Listing and Customer List.

TOOLS

• Password Administration: This is used to set the list of Authorized User Name and

their password. The name and password are input when Frmaccess (Access.Frm) is

display when the software starts.

• Software Settings: This is used to set company particulars (Name and Address) of the

organization that would be making used of the software.

The Vertical Pop-Up menu displays a set of command buttons on the right hand side of the

screen when they receive focus (when the mouse pointer rests on any of the menu item). The

Page 360/57

vertical menu items are used mainly to enter data into an underlying table or process a

transaction. When any of the vertical menu item receives focus a set of command buttons

appears on the right and the user can select by clicking any of the options that corresponds

with the intended operation.

TRANSACTION

• Transaction: This displays the main transaction entry form, general invoice, find .and

updates and edits an existing order and performs general transaction process.

• Stock Details: This option is used to add or view Item category.

• Customer Details: This is displays the form that is used to send customer information

to the Customer table.

• House Ware Inventory: is used to add and view item inventory and make inventory

requisition.

• House General Accounts: This is used to view and update income and expenditure

account information.

• End: This option is used to exit the application. Wne it is clicked it displays a

message box that prompt the user to continue or exit the application environment.

The FrmMainMenu also display a status bar at the bottom of the screen that displays the

name of the current user, time and time.

Page 370/57

frmCategory.frm

Screen Purpose: This is the input design that is used to add or delete item categories.

Page 38 0/57

frmItemInvent.frm

Screen Purpose: This is used to input or edit data for item inventory.

frm CustDetails.frm

Screen Purpose: this from allows for inputting, editing and deleting of custonmers
information.

ll.ffideJet

Page 390/57

frmInvent.frm

Screen Purpose: This form displays the Inventory list of available items in stock and number
of such asset in stock and its reorder level..

r' .. ':)' ·" .. ,' .. ' '--.. ·"':··!··· .. ; "· .. · .. ····~"':'·
'I Add New Asset It ern ..
1

When the Add New Asset button is clicked, the form is modified to allow for new assets to
be registered;

... Inventory , "1d",' ill\,

'--"---~-~:

i

.'

Ii
~ VieW El<istiflg Asset Item

II

Page 40 0/57

The frmInvent.frm can also be modified to display requisition when an inventory
requisition is to be made.

(tern Decriptlon:

Stock Type:

Balanoe:

····NQt.·

frmGAccount.Frm

Screen Purpose: This screen is used to input parameters for general accounts. That is income
and expenditure accounts.

Transaction J ,llPe:

Unit Tr<lln$acted:

, Ami Tral')s<IIcted:

.:. TranMclionDate:

. ... Tr<lln~cted Ely:

...... t:'~~~lep To;
'; ~/,.,'. ",.",',,~ .;"

.. ", ~eceiPt NlBIlber.

16000

2/29/2000

MrWole

Page 410/57

frmPass.frm

. Tt.,~etiQn T .\Il)e:

Unit Tramaeled:

Amount Transacted:

T t~s<l!.\tiQn D.ale: ,

·irat:l~tedJ3jr. .
.. 'r"ian$actedTo;

:~~9j~J~kmf>8r:

.GE]

I Transportation

boo
15/5/2000 3D
Ilfeoma .zl:
.1i""'Jo-hn--------Z) ... , >

11

...... . .8dd:, 1 .. 1!Pdate.1 Befr$$h I .. ~~el!it
,;i0;'~'~.?~;:;'::_V,/',.,·~)M. ,~'"1~zt{'.}('t,~, u~ u;, .,<', ~/;" "::>" '" un, ""'"

j)'<,'"':" '

Screen Purpose: for entering new and editing existing user password and access levels.

Page 420/57

4

frmSettin g.frm

Screen Purpose: this form is used to enter company particulars and name of administrators
password.

frmTransaction.frm

Company
Name:

Company
Address:

IHomewares Ltd

Plot 4A Limpopo Street. Maitama . Abuja
Tel: 234·9-4138868 Fax: 4131 042

Administrators .---------------
Name: INzeih C'Emeka

Administrator
Password:

Confirm
Password:

Screen Purpose: This form is use to place new orders, editing or delete and existing order,
generate invoices and for general transaction processing.

Page 43 0157

I
j

-I.

Frm GetFilter .frm

Screen Purpose: This is used to specify the period or time frame or a financial report would
be generated.

3.12 OUTPUT DESIGN

Output Design (REPORTS as called in Visual Basic) is also important in any system
development process. Reports can either be displayed on the screen or printed on paper. A
good report is a basic instrument for management decision making, thus for a report to be
alright it has to contain all bit of information required in it. The following output designs are
used.

BaISheet.rpt: displays or prints the balance sheet as at the month specified.

Homewares Ltd
Plot 4A Limpopo Street, Maituna. - A.huja

Tel 234-9-4138868 Fax. 4131042
E-Mall: hmYI@c;ry~rspacll! net.1\§,

BALANCE SHEET AS AT Feb 22,2001

Cash Recieved From Sales

Excess Balances (Credit Customers)

Deficit Balances (Debit Customers)

General Income (From Other Sources)

General Expenditures

Balance CfF

Page 44 0/57

Customer.rpt: diplays the list of all registered customers and their other particulars.

OI~ O'u"""' ..
('.I2"._I_n.

Hotnewares Ltd
"01';:; ~'=,= ~"':":';'-C:lb<l'"

r· ,.~~n>"."..... ' ... :I.
LIST OF ALL CUSTOMERS

AW,o

~_:srr...~A...e.] """"
~" __ . u.V"O

] "'~"o&r-_ .. ~ ". z.:",4 1,"'''''

Itemlist.rpt: displays the list of all item in stcok with their category.

Homewares Ltd
Plot 4A Limpopo Street, Mail:ama. - Abuja

T.t 234-9-4138868 Fax, 4131042
E-Mail-hrnw@cyp np~E!.:rurt:.:ng

l:,==================~L=I=S=T=O=F~AL==L==I~====VV=I=TH~THE===I=R=C=A=TE==G=O=R=Y~==================~
Print D.... r.b12212001 PAGE No. 1

GT2 Chain CAMP CHAIRS
C2 Chain OK Plastic Outdoor Sittinp
CHI Ch.>ndebe" Red Alexandria. Tree
CH2 Ch.>ndebe" Cairo Blue Circles

5 Gl Grocems OMODete:rgent
6 G2 Groceries LUX SOAP
7 PWDI Painting:; & Wall Decon Jacuzzi Flies

TBI Table, Flora Shu! Office Table
F03 Tiles Jasmine Mmle Floo~

10 Fl Wall Brackeb 25" P alladiana. Wall Brackets

Page 45 0/57

I

ItemInvent.rpt:
price of each item.

displays Items in Inventory, the quantity in stock and the unit selling

Homewares Ltd
Plot 4.A. Limpopo Stnet, Mut.um - Abuj.J.

Tel 234·9·4138868 Fax, 4131042
E-M.ut: hmw@<:yp~n:pi.C1i .net.fIg

[:=================L~I~S~T~O~F~C~~~~=I~~~~O~R~Y=O~F=I~~~S~================d
Print Do" Feb12212001 PAGEN •• I

GI OMO Deterpnt 1.00 9.00 N 2.00
G2 LUX SOAP 1.00 2.00 N 2.00
GT2 CAMPCHAIR.l 1.00 88.00 N 3.00

1"03 JumW Muble Flooring 1.00 22.00 N 50.00
rI 25" Palladiana. Wall Brackets 2.00 26.00 N 56,000.00
FI 25" Palladiam Wall Brackets 2.00 26.00 N 56,000.00
C2 OK Plastic Outdoor Sittirlc 4.00 23.00 N 930.00
TBI Thra. Blue OffIce Table 1.00 9.00 N 17,580.00

9 CHI Red Alexandria Tree 2.00 5.00 N 49,000.00
10 CH2 Cairo B~ Circ~, 3.00 34.00 N 67,000.00
II PWDI Jcruzzi P'lie~ 200 3400 N 42,000.00

Category.rpt: displays item categories and the appropriate codes assigned to them.

Homewares Ltd
Plot 4A Limpopo Street, M,ait.&l'M - AbuJa

Tel. 234·9-4138868 Fa,,, 4131042
E-Mail: hmw@cyperspi.Ce.net.ng

r::,==================~L~IS~T~O~F~I~~~~CA~IT~G~OR~Y~==================~

CIWn C
ClwIdoher> CH
Foods 1"0
FImllihing F
General Itenu GT
Grocenes G
Kitchen Items: KI
Outdoor Lighte~ OL
Paintiz1gs & Wall Decon PWD

10 Tables TB
II Tile, TL
12 Wall Brackets WE

Page 460/57

Profit1.rpt:_ shows the profit the organization stands to make/rom selling outstanding items in stock.

Homewares Ltd
noX4A LI~lb'Ur. ,... .. _- ,o.1:lU)L

T'II1.1J4-9-4IJIIQ. FAX'. 413104.1

I!-M .. l.II-@r:WC~C4lCt.ll'

PROPOSED PROm ON CURRENT STOCK

N ''''
NH"

N '''' N ''''

N ''''
...... , • .ro

N"'" ,..,. lPDD N «0'" ,.'" l4,ta:lOO f'4 l6,COODD 1'1 ~ttOoo

'.00]4,000.00, l&"DOClOO !lA"ocom
N9JDm N 11,1:'000

9'" Il,COOOO ('II ",llOm 13:',[£000

..... 4lO,CC:O.oo «',00000 1.1lD,DDOOO

'.00 N l6,CCO.oo "',DOOm N I,OD4,DDOm ,.00 N 1J,OCO.oo N 41,CCO.oo N 71-1,000.00

..... 1"'00

..... 1,10000

..... 1,4.:I6,CCCI.DD

..... 1,416,txtI£I)

..... ll.Jo;IOOO

..... 1:'8,,11000

..... 14Jo.IXIOOO

N 1,ln.DCOm
N 1,41B,,[U)OO

Invoice.rpt: generates an invoice for a processed transaction/order.

INVOICE ADDRESS

N , Olapoju Oluwole
Ad4re ... Abuja

I !~ H I 1011 CEIEl

Homewares Ltd
Plot 4A Limpopo Street, Maita.ma - Abuja

T.t 234.9.4138868 F"" 4131042
E·Mail·

2012

Page 470/57

34.00
00

TotaI:Z

N 3,060.00
N 0.00

IV.A.T I N 153.00

f'4 l'1,ctOOO

N.171,CCClOO

N 4,1.am

..... 13,l1DOO
(Nl.~.OCOOO)

N "4,ClDm
N~tD)m

CHAPTER FOUR

System Implementation

4.1 INTRODUCTION

Implementation is the process of applying the developed system for the purpose it is meant

for. System implementation involves the development of quality assurance procedures,

including data security, back-up, recovery and system control system implementation

objective is to c:omplete the orderly and unobtrusive installation of the new system. During

the system implementation, the new system is installed and users have the opportunity to

operate the new system in "parallel" with the existing system.

The system implementation comprises the following task:

• Application system installation

• Documentation to provide user manuals

• Users Training on the new system

• Parallel system testing

• Data conversion/migration

• Acceptance of Testing

• System setup

4.2 REQUIREMENTS FOR IMPLEMENTING A BUSINESS MANAGEMENT

SOFTWARE.

Business Mgt. System

Hardware~ Procedures Human Resources]

Page 480/57

4.2.1 Hardware Requirement

The Hardware requirement for implementing the Computer Based Business Managem~nt

System is Complete PC (Personal Computer) and its associated accessories.

Personal Computer (PC) are machine capable of repetitively and quickly performing

calculations and instructions. Designed to be used by a single person, a PC is smaller, less

expensive, and easier to use than other classes of computers, such as supercomputers,

mainframe computers, and workstations.

PCs have revolutionized entertainment, science, the media, art, medicine, education, and

business because they provide computational abilities at a low cost to people with no

extensive programming experience. PCs enable artists to envision and manipulate images.

Musicians use them for learning, creating, and recording music. Businesses track finances

and forecast company performance using PCs. Foreign correspondents can compose news

stories on portable PCs, called laptops, and electronically submit these stories from remote

locations. Many people work at home and communicate with fellow workers via their PCs

in a practic~~ known as telecommuting. PCs are also able to interface with worldwide

communication networks, such as the Internet, and the graphics-based information database:

known as the World Wide Web to find information on any subject.

PCs consist of electronic circuitry called a microprocessor, such as the central processing unit

(CPU), that directs logical and arithmetical functions and runs computer programs. A PC also

Page 49 0/57

has electronic memory to temporarily store programs and data and mass storage devices­

such as hard, floppy, and compact disc (CD-ROM) drives-to permanently store programs

and data. Information and commands are entered by the user via a keyboard or a pointing

device called a mouse. Information from the PC is displayed on a video monitor or on a

liquid crystal display (LCD) video screen, or it can be printed on laser, dot-matrix, or inkjet

printers

Monitor

Disk drive

Memory

Laser printer ~

Modem

CD-ROM drive Mouse
ELI •

With the continuous manufacturing of Microprocessors of higher computing strength by

major processor manufacturers such as Intel Inc AMD (advance Micro Devices) and Cyrix

Technologies Corp., the power of PCs have grown sporadically in recent times. PCs have

gradually grown from stand alone and single user computers to system that can support a

network for multi user access. PC has gradually encroached into areas that hitherto used to

be the exclusive domain of Minis and mainframe computers. With the entry of newer

Page 500/57

-I

processor models like the Intel Pentium III series, AMK K62-3D and others the market the

computing strength of PCs would continue to be on the increase.

Hardware Specification

» Intel Pentium III 700

» 64 MB Synchronous DRAM.

» 8 MB AGP Set.

» 1 0.2 Gb Hard Disk Drive.

» 52x CD-ROM.

» 15" Super VGA.

» Minitower A TX Casing.

» Microsoft PS/2 Mouse

» 1.4MB 3.5" FDD.

» Windows PS/2 Keyboard.

» IOMEGA 250MB Zip Disk.

» Full Multimedia.

Other Accessories.

» HP Deskjet 1120 Printer.

» APC 650 Smart UPS.

4.2.2 Software Requirement

The software required by the system is a combination of both required operating (system

software) and the application software is a business management software.

Operating System is the basic software that controls a computer. The operating system has

three major functions: It coordinates and manipulates computer hardware, such as

Page 51 0/57

computer memory, printers, disks, keyboard, mouse, and monitor; it organizes files on a

variety of storage media, such as floppy disk, hard drive, compact disc, and tape; and it

manages hardware errors and the loss of data.

Operating systems control different computer processes, such as running a spreadsheet

program or accessing information from the computer's memory. One important process is

the interpretation of commands that allow the user to communicate with the computer.

Some command interpreters are text oriented, requiring commands to be typed in. Other

command interpreters are graphically oriented and let the user communicate by pointing

and clicking on an icon, an on-screen picture that represents a specific command.

Beginners gem:rally find graphically oriented interpreters easier to use, but many

experienced computer users prefer text-oriented command interpreters because they are

more powerful.

Operating systems are either single-tasking or multitasking. The more primitive single­

tasking operating systems can run only one process at a time. For instance, when the

computer is printing a document, it cannot start another process or respond to new

commands until the printing is completed.

The operating that would be used for the system would be the Microsoft Windows Operating

System; any of the following versions of Windows would suffice; Microsoft Windows 98,

Windows Me (Millennium Edition) and Microsoft Windows 2000 Professional.

Page 52 0/57

4.2.3 Human Resources Requirement
I

The existing staff of the company would be trained on the mode of operation of the systt!m.

This is necessary because it would be easier for the personnel that are already conversant

with the operations of the manual system to understand the new system. Therefore it is not

necessary for new persons to be recruited.

4.2.4 PROCEDURES

Procedures are step-by-step methodes) of using a system to be able to achieve result. A

procedure in the context of this project is a physical component because they are provided in

a physical form such as manual and instruction booklets. The major types of procedures that

are required are:

• User instructions

• Instruction for preparation of input

• Operating instructions for the computer center personnel.

4.3 SYSTEM TESTING

After the installation of the new system, the system must undergo a test, once all the

programs have been written and the training of the personnel to use the system is completed.

The system testing is to ensure that all the sub-programs have been efficiently and correcltly

written. The system testing entails the execution of the program with test data so as to enable

the system developer and the management to know the operational efficiency of the system.

The system testing will also enable the designer to correct errors and delete programs or

modules that are not efficient or relevant by a process called debugging, using test data input

into the programs so as to produce the desired output reports. Test data of all possible

Page 53 0/57

type/kind are used in other that all likely behaviors of the system to the input is ascertained

before actual system implementation.

During this task, the Programmers or the System designer(s) assists the project staff in

conducting the testing of the developed system so as to ensure that the system meets all the

users needs and requirements. System testing entails the testing and certification of the

system developed. This phase ensures that all required features, functions and capabilities are

present in the system developed, and that a1l other requirements are met. Any necessary

revisions are made during the system testing.

It is note-worthy that test data should be of 'real-live' nature.

4.4 SYSTEM SET-UP

After the successful System Testing, and the system output or requirements are mutua1ly

accepted by the Users of the system, the System Analyst and System Programmer(s), the next

thing in the system implementation line is the setting up of the installed system, that is,

putting in place or entering the basic information necessary for the system smooth take off.

Setup information in this new system include:

• Authorization Setup: Here it is required to identify the users of the new system and

Password assigned to them. It is also note-worthy that not every user can have

unlimited access to the entire system, thus, access levels would also be determined for

each user of the system. Authorization need not be done every time the system is ran,

but only when new users are to be given access to the system or if modification is

necessary - changing password or access level. The assignment of access to users can

only be done be the System Administrator.

Page 54 0/57

• User Information: The new system is an 'open-system', and can be used by any

other organization or company that uses or want to use the same method in this

system for its pension administration. Thus it is pertinent that the user information is

supplied once, upon the first running of the system.

4.5 CHANGE-OVER & DATA MIGRATION

The change over from old to new system may take place when the system has been proved to

the satisfaction of the new System Analyst and the other implementation activities have be:en

completed.

The method and approach used for the change over is the parallel running system. The

parallel system testing means processmg current data by both the old and new system

concurrently" to cross check the result and compares them. The main advantage is that the old

system is kept alive and operational until the new system has been proved for at least one

system circlE~. Using 'real-live' data in the real operational environment of the equipments,

people and data, the results of the new system will be compared with old system to ensure the

efficiency, capability and durability before acceptance by the user.

The change over task is designed to ensure that the software developed replicate the

functionality of the system to be replaced.

Once the change over ends, the user staff complete their training and the parallel system

testing are successful, the conversion of records of the old system to the file format of the

new system, which involve data entry/capture of several forms of data using the software

(Data Migration), is necessary.

Page 55 0/57

Chapter Five

5.1 Conclusion

For Computers to be effectively put to use; there must be software that would be used to

complement functions of the hardware. The Business Management Software have been

designed with the principles of effective Software development in mind. This is aimed at

making the Software user friendly, hence easy to use. Full Windows feels and look features

and controls have been properly used. Hence the software can be used with minimal

supervision.

5.2 Recommendation

This software is recommended for use by any organization involved in the nature of business

as specified by that carried out by Homeware Lightening Systems Ltd. The Software can be

adapted to suit the business by changing the Company Name, Address and Administrators

particulars. Also the source code for the software can be modified if need be to incorporate

other business function to suit the need of any organization.

Page 560/57

I

I
l

References

Andersen RG., Data Processing and Management Information Systems: Vol 1& 11

M & E Handbooks, London 1998.

Amudsen Mike. Teach Yourself Visual Basic 5, 2nd Ed. Sams Publising, Inc, USA.

Loren D. Edahl Platinum Edition, Using Visual Basic 5.0; Loren D. Eidahl;

Macmillan Computer Publishing, 1997.

Mcmanus P. Jeffrey How to Program in Visual Basic 5, Macmillian Publishing, CA,

USA, 1997.

Peter Norton and William Stanek Peter Norton's Guide to Java Programming;

Sams Publishing, IN, USA, 1996

Microsoft Developers Network 6.0 (MSDN Library Visual Studio 6.0), Microsoft Inc,

Redmond WA, USA

Microsoft Encarta Encyclopaedia, Micosoft Inc., Redmond WA, USA 1999.

Page 570/57

~Ode for Module 1 (Hwares.basl

trublic dbs As Database
!public TheOrderNo As String
~blic nltem As ListItem
~ublic rstTemp As Recordset
tpublic State, UserName, RepTitle As String
tpublic Time, CoyName, CoyAdd As String
~ublic V AT, TransSum, NewTransSmn As Double
iPublic TheCurrentStock, SellingPrice As Double
¥.:ublic mode, PrintMode, AccessLevei, TheFinancialFlag As
,Integer
'I,

,
t;odes for FrmAccess.frm
j

rublic mode As Integer

h,rivate Sub Command 1 ClickO
:;fCommand1.Caption = "&Start" Then
'FrmAccess.Heig~t = 6540
• Command I.Capuon = "&End"
f Exit Sub
.fEnd If
HfCommand1.Caption = "&End" Then End
~

tEnd Sub

jI>.

, Private Sub DB Combo 1_ Click(Area As Integer)
~ Text 1. SetF ocus
t End Sub
1
IPrivatll Sub DBCombol_KeyPress(KeyAscii As Integer)
I Call Textl KeyPress(l3)
iEnd Sub -
,I ,

l
' Private Sub Form_ClickO
" RESP = MsgBox("Do you want to exit yin?", vb Y esNo +
, vb Critical)

I
',l IfRESP = vb Yes Then End

End Sub
j

J, Private Sub Form_LoadO
, On Error Go To handler
,I mode = 1
, FrmSettingsDatal.Refresh
" IfFrmSettingsDatal.Recordset.EOF = False Then
, FrmSettingsDatal.Recordsel.MoveFirst
i CoyName = FrmSettingsData 1.Record.,et! [Coy Name]
J Coy Add = FrmSettingsDatal.Recordset! [Coy Add]
1 VAT = FrmSettingsData 1.Recordset! [VAT]
(Else
~ FrmSettings.Show 1 I FrmSettingsDatal.Refresh
j IfFrmSettingsDatal.Recordset.EOF = False Then
i FrmSettings.Datal.Recordset.MoveFirst
f CoyName = FrmSettingsDatal.Recordset! [CoyName]
I Coy Add = F rmSettingsData I.Recordset! [Coy Add]
i VAT = FrmSettingsData I.Recordset! [VAT]

Else
MsgBox "No Company Settings found in Database . .some

operations may be abnormal"
Endlf
End If
Labell.Caption = CoyAdd
Me.Caption = "Authorisation Code"
Datal.Refresh
Exit Sub
handler:
MsgBox ErrDescription
End Sub

Private Sub Textl_KeyPress(KeyAscii As Integer)
If Key Ascii = 13 Then
Data I.Refresh
With Datal.Recordset
Do While .EOF = False
IfTrim(Textl.Text) = ![Password] And
Trim(DBCombo 1. Text) = ![UserName] Then
AccessLevel = ! [AccessLevei]
UserName = DBCombo I.Text
FrmMainMenu.Show
Unload FrmAccess
Exit Sub
End If
.MoveNext
Loop
MsgBox "Invalid user"
End With
End If
End Sub

Private Sub Timerl_TimerO
If 1 ,ahel l.l ,eft <= FrmAccess.1 ,eft - FrmAccess.Width + 900
Then
Labell.Left = FrmAccessWidth
End If
Labell.Left = I ,abell.Left - 10
End Sub
Private Sub Timer2_TimerO
If Frame l.Height >= 1695 Then
Commandl.Enabled = True
GoToending
End If
Framel.Height = Framel.Height + 10
ending:
End Sub

Code for FrmCAtegory.(rm

Private Sub cmdAdd_ClickO
On Error GoTo handler
datPrimaryRS.Recordset.AddNew
Exit Sub

handler:
MsgBox Err. Description

~ndSub
1
frivate Sub cmdDelete_ ClickO
Pn Error GoT 0 handler 1 With datPrimaryRS.Recordset
LRESP = MsgBox("The Current Record would be
peleted ... Contmue (YIN)", vbYesNo + vbInformatlon)
,\ IfRESP = vbYes Then
. .Delete

.MoveNext
If .EOF Then .MoveLast

f End If
End With

Exit Sub
~andler:
f MsgBox Err.Description
:lEnd Sub
l .,

{Private Sub cmdRefresh _ ClickO
ton Error GoT 0 handler
t 'This is only needed for multi user apps
l datPrimary RS. Refresh
J Exit Sub
4handler:
, MsgBox Err.Description
iEnd Sub
1
!Private Sub cmdUpdate ClickO
Wn Error GoT 0 handler -
i datPrimary RS. UpdateRecordi

datPrimaryRS.Recordset.Bookmark =
datPrimaryRS .Recordset.LastModified
Exit Sub

handler:
MsgBox Err.Description

End Sub

Private Sub cmdClose_ ClickO
Unload Me

End Sub

Private Sub datPrimaryRS_Error(DataErr As Integer.
Response As Integer)
'This is where you would put error handling code
'If you want to ignore errors, comment out the next line
'If you want to trap them, add code here to handle them
MsgBox "Data error event hit err:" & Error$(DataErr)
Response = 0 'Throwaway the error

End Sub

Private Sub datPrimaryRS_RepositionO
On Error Resume Next
'This will synch the grid with the Master record set
datSecondaryRS.RecordSource = "select

(codel,(Name],(Address] from (customer] where (code]="' &
datPrimaryRS.Recordset![Code] & "'" &" Order by [code]"
datSecondaryRS.Refresh
'This will display the current record position for dynasets and

snapshots

11

dalPrimaryRS.Caption = "Record: " &
(datPrimaryRS.Recordset.AbsolutePosition + I)
End Sub

Private Sub datPrimaryRS _V alidate(Action As Int(~ger,
Save As Integer)
'This is where you put validation code
'This event gets called when the following actions occur
Select Case Action
Case vbDataActionMoveFirst
Case vbDataActionMovePrevious
Case vbDataActionMoveNext
Case vbDataActionMoveLast
Case vbDataActionAddNew
Case vbDataActionUpdate
Case vbDataActionDelete
Case vbDataActionFind
Case vbDataActionBookmark
Case vbDataActionClose
, Screen.MousePointer = vbDefault

End Select
'Screen.MousePointer = vbHourglass

End Sub

Pri,,'ate Sub Txtfields_KeyPress(lndex As Integer,
Key Ascii As Integer)
If Key Ascii = 13 Then IfIndex = 0 Then Txtfields(l) =,

Left(Txtfields(O), I)
End Sub

Codes (Or frmCustDetails

Private Sub cmdAdd _ ClickO
On Error GoTo handler
datPrimaryRS.Refresh
If datPrimaryRS.Recordset.EOF = False Then

datPrimaryRS.Recordset.MoveLast
datPrimary RS. Refresh
datPrimary RS.Recordset.AddNew
txtFields(O).Text = datPrimaryRS.Recordset.RecordCount +

I
txtFields(1).SetFocus
Exit Sub

handler:
MsgBox En-.DesCliption

End Sub

Private Sub cmdDelete_ ClickO
On Error GoT 0 handler
With datPrimaryRS.Recordset
RESP = MsgBox(" The Current Record would be

Deleted ... Continue (YIN)", vb YesNo + vbInfonnation)
IfRESP = vbYes Then

.Delete

. MoveNext
If .EOF Then .MoveLa!>1
End If
End With

Exit Sub

handler:
1 MsgBox Err. Description
£nd Sub
:i
Frivate Sub cmdRefresh _ ClickO
~n Error GoT 0 handler
~ 'This is only needed for multi user apps
~ datPrimaryRS.Refresh
l Exit Sub
~andler.
~ MsgBox Err. Description
fEnd Sub

IPrivate Sub cmdU pdate _ ClickO
K>n Error GoT 0 handler
OJ
~ datPrimaryRS.UpdateRecord
~ datP.rimaryRS.Recordset.Bookm~k =
fIatPnmary RS .Recordset.LastModIfied
~ Exit Sub
~handlcr:
~ MsgBox ErrDescription
lEnd Sub
1
'Private Sub cmdClose_ClickO
.~ UnloadMe
fEnd Sub
~~

~j Private Sub datprimaryRS __ Error(DataErr As Integer,
esponse As Integer)

. 'This is where you would put error handling code
, 'If you want to ignore errors, comment out the next line
J 'If you want to trap them, add code here to handle them
t MsgBox "Data error event hit err:" & Error$(DataErr)
:1
~ Response = 0 'Throwaway the error
• End Sub

Private Sub datPrimaryRS._RepositionO
'Sereen.MousePointer = vbDefault
On Error Resume Next
'This will synch the grid with the Master record set
'datSecondaryRS.RecordSource = "select

[code],(NameJ,(Address1 from [customer1 where [codel='" &
datPrimaryRS.Recordset! [code] & "'" & " Order by [code]"

'datSecondaryRS.Reiresh
'This will display the current record position for dynasets and

snapshots
datPrimaryRS.Caption = "Record: " &

(datPrimaryRS.Recordset.AbsolutePosition + 1)
End Sub

Private Sub datprimaryRS _V a1idate(Action As Integer,
Save As Integer)
'This is where you put validation code
'This event gets called when the following actions occur
Select Ca.~e Action

Case vbDataActionMoveF irst
Case vbDataActionMovePrevious
Case vbDataActionMoveNext
Case vbDataActionMoveLast
Case vbDataActionAddNew

111

Case vbDataActionUpdate
Case vbDataActionDelete
Case vbDataActionFind
Case vbDataActionBookmark
Case vbDataActionClose

'Screen.MousePointer = vbDefault
End Select
'Sereen.MousePointer = vbHourglass

End Sub

Private Sub Form_LoadO
'Create the grid's recordset

, datPrimaryRS.Refresh
End Sub

Private Sub Form _ Unload(Cancel As Integer)
'Screen.MousePointer = vbDefault

End Sub

Codes (oT frmGAccountfrm

Private Sub CmbMonth_ClickO
IfFonnat(CmhMonth, "mm")= "Jan" Or Fonnat(CmhMonth,
"mm") = "Mar" Or Forrnat(CmbMonth, "mm") = "May" Or
Forrnat(CmbMonth, "mm") = "Jul" Or Forrnat(CmbMonth,
"mm") = "Aug" Or Forrnat(CmbMonth, "mm") = "Oct" Or
Fonnat(CmbMonth, "mm") = "Dec" Then
Day(28). Visible = True
Day(29). Visible = True
Day(30). Visible = True
End If
IfForrnat(CmbMonth, "mm") = "Sep" Or Forrnat(CmlbMonth,
"mm") = "Apr" Or Forrnat(CmbMonth, "mm") = "JUll" Or
Forrnat(CmbMonth, "mm") = "Nov" Then
Day(28).Visible = True
Day(29).Vi"ih1e = True
Day(30).Visible = False
End If
IfForrnat(CmbMonth, "mm") = "Feb" Then
IfVal(cmbYear.Text) Mod 4 = 0 Or Val(cmbYear.Text) Mod
100 =0 Then
Day(28).Visible = True
Day(29). Vi"ible = False
Day(30).Visible = False
Else
Day(28). Visible = False
Day(29). Visible = False
Day(30). Visible = False
End 1f
End If
End Sub

Private Sub cmb Year _ ClickO
IfFonnat(CmbMonth, "mm")= "Feb" Then
IfVal(cmbYear.Text) Mod 4 = 0 Or Val(cmbYear.Text) Mod
100 =0 Then
Day(28).Visible = True
Day(29). Visible = False
Day(30).Visible = False

,)

'~lse

Pav(28). Visible == False
pav(29). Visible == False
pa):(30).Visib1e == False
pndIf
13nd If
~nd Sub
.i
Private Sub cmdAdd ClickO pn Error GoT 0 handle;
~ Datal.Recordset.AddNew
txit Sub
,handler:
I MsgBox (Error(Err.Number)
FndSub

,t.·.· rivate Sub cmdClose_ClickO
nloadMe

. nd Sub

~rivate Sub cmdDelete ClickO
pn Error GoT 0 handler -
, With Data \ .Recordset
1 RESP == MsgBox("The Current Record would be Deleted
fey/n)? .. ", vb Y esNo + vb Critical)
1 IfRESP == vbYes Then
I Delete ~1

. MoveNext
If .EOF Then MoveLast
End If

End With
, Exit Sub
jhandler:
j MsgBox ErrDeseription
fEnd Sub
'}

Private Sub cmdRefresb _ ClickO
On Error GoTo handler
'This is only needed for multi user apps
Datal.Refresh

Exit Sub
handler:
MsgBox Err. Description
End Sub

Private Sub cmdUpdate_ ClickO
On Error GoTo handler
Data 1.UpdateRccord
Data1.Recordset.Bookmark == Data 1.Recordset.LastModified

Exit Sub
handler:
MsgBox Err. Description

End Sub

Private Sub Combo3 _ ClickO
IfFormat(Comb04, "rom") =, "Feb" Then
If Val(Comb03.Text) Mod 4 == 0 Or Val(Comb03.Text) Mod
100 == 0 Then

IV

Day(28 + 31). Visible == T me
Day(29 + 31). Visible == False
Day(30 + 31). Visible == False
Else
Day(28 + 31). Visible == False
Day(29 + 31).Visible == False
Day(30 + 31). Visible == False
End If
End If
End Sub

Private Sub Combo4_ ClickO
IfFormat(Comb04, "mm") == "Jan" Or Format(Comb04,
"mm") == "Mar" Or Format(Comb04, "mm") == "May" Or
Format(Combo4, "rom") == "Jul" Or Format(Comb04, "mm") ==
"Aug" Or Forrnat(Combo4, "rom") == "Oct" Or
Forrnat(Combo4, "rom") = "Dec" Then
Day(28 + 31). Visible == Tme
Day(29 + 3 1). Visible == True
Day(30 + 31).Visib1e = True
End If
IfForrnat(Comb04, "mm") = "Sep" Or Forrnat(Combo4,
"mm") = "Apr" Or Format(Combo4, "mm") = "Jun" OT
Forrnat(Comb04, "rom") == "Nov" Then
Day(28 + 3 1). Visible == True
Day(29 + 31).Visib1e == True
Day(30 + 3 1). Visible = False
End If
IfFormat(Comb04, "mm") == "Feb" Then
If Val(Combo3.Tcxt) Mod 4 == 0 Or Val(Comb03.Texl.) Mod
100 == 0 Then
Day(28 + 31). Visible == Tme
Day(29 + 31). Visible = False
Day(30 + 31). Visible == False
Else
Day(28 + 1 \). Visihle == False
Day(29 + 31).Visible == False
Day(30 + 31). Visible == False
End If
End If
End Sub

Private Sub Commandl_ ClickO
Unload Me
End Sub

Private Sub Com man d2_ ClickO
On Error GoTo handler
DataS,tJpdatcRccord
DataS.Recordset.Bookmark == DataS.Recordset.LastModificd

Exit Sub
handler:
MsgBox Err.Description
End Sub

Private Sub Command3 _ ClickO
IfFraCal. Visible == Tme Then

FraCal.Visible == False
Exit Sub

End If

.~ raCal. Visible == T me
;~ndSub
)

~rivate Sub Command4_ ClkkO
fn Error GoT 0 handler
~ 'This is only needed for multi user apps
1 Data5.Refresh
t~xit Sub
handler:
MsgBox ErrDescription
j:.nd Sub
{]

"rivate Sub CommandS _ ClickO
pn Error GoTo handk'f
J With Data5.Recordset
! RESP == MsgBox(" The Current Record would be Deleted
~y/n)?.", vb YesNo + vbCritieal)
I IfRESP == vbYes Then

Delete
.MoveNext
If .EOF Then .MoveLa~1
End If

1 End With
~ Exit Sub
~handler:

J MsgBox Err. Description
'End Sub

t Private Sub Command6 ClickO
I -I On Error GoT 0 handler
1 DataS.Recordset.AddNew
! Exit Sub
~ handler:
i MsgBox (Error(Err.Number))
i End Sub

! I Private Sub Command7 _ ClickO
~ IfFramel.Yisible == True Then
1 Framel.Visible==False
. Exit Sub
! End If
1 Framel. Visible == True
1 End Sub

! Private Sub Day-Click(Index As Integer)

l IfIndex < 3 1 Then
l TheDate == CmhMonth & "r & Day(1ndex).Caption &" r &
I cmbYear
1 Combo 1 == TheDate
.~ FraCalVisih1c == False

(
End If

. If Index >== 31 Then
" TheDate == Comho4 & "f' & Day(Index - 31).Calltion & "f' &

Combo 3
Combo2 == TheDate
Framel.Visible == False
End If

v

End Sub

Private Sub Form_LoadO

'For The Calender
For i == 1900 To 2 100
cmb YearAddItem (i)
Combo3.AddItem (i)
Nexti
CmbMonth == Format(Now, "mmm")
Combo4 == Format(Now, "mmm")
cmb Year == Format(Now, "yyyy")
Combo3 == Format(Now, "yyyy")
Day(Format(Now, "dd") - 1).Value == True

IfFormat(CmbMonth, "mm") == "Jan" Or Format(CmbMonth,
"mm") == "Mar" Or Format(CmbMonth, "mm") == "May" Or
Format(CmbMonth, "mm") == "Jul" Or Format(CmbMonth,
"mm") == "Aug" Or Format(CmbMonth, "mm") == "Oct" Or
Format(CmbMonth, "mm") == "Dec" Then
Day(28). Visible == True
Day(29).Visible == True
Day(30).Vl~lh\e = Tme
End If
IfFormat(CmbMonth, "mm") == "Sep" Or Format(CmhMonth,
"mm") == "Apr" Or Format(CmbMonth, "mm") == ".Tun" Or
Format(CmbMonth, "mm") == "Nov" Then
Day(28). Visible == True
Day(29). Visible == True
Day(30).Visible == False
End If
IfFormat(CmbMonth, "mm") == "Feb" Then
IfVal(Combo3.Text) Mod 4 = 0 Or Val(Combo3.Text) Mod
100= 0 Then
Day(28).Visible == True
Day(29).Vi"ihle == False
Day(30).Visible == False
Else
Day(28).Visible == Falsc
Day(29). Visible == False
Day(30).Visible == False
End If
End If

IfFOImat(Comb04, "mm") == "Jan" Or FOImat(Combo4,
"mm") == "Mar" Or Format(Comb04, "mm") == "May" Or
Format(Combo4, "mm") == "Jul" Or Format(Combo4, "mm") ==
"Aug" Or Format(Comho4, "mm") == "Oct" Or
Format(Comb04, "mm") == "Dec" Then
Day(28 + 31). Visible == True
Day(29 + 31). Visihle == True
Day(30 + 31). Vi:,ible == True
End If
IfFOlmat(Combo4, "mm") == "Sep" Or Format(Comh04,
"mm") == "Apr" Or Format(Combo4, "mm") == "Jun" Or
Format(Comb04, "mm") == "Nov" Then
Day(28 + 31).Visible == Tme
Day(29 + 3 I). Visible == Tme
Day(30 + 31). Visible == False

~
.. ndlf

fFonnat(Comb04, "mm") = "Feb" Then
. fVal(Combo3.Text) Mod 4 = 0 Or Val(Combo3.Text) Mod

~
: 1 00 = 0 Then

ay(28 + 31). Visible = True
e.. ay. (29 + 31). Visible = False
IDav(30 + 31) Visible = False
iEI~e .
IDay(28 + 31). Visible = False
paY(29 + 31).V~sible = False
PJay(30 + 31). VIsIble = False
jEnd If
iiEnd If
,;

i' End The Calender
tEnd Sub
,;

ICodes (or FrmFinanceReportfrm

j Private Sub Command 1 C'~kO
hfTheFinaneialFlag = 1 Then DailyFinance
f If TheFinaneialFlag = 2 Then WeeklyFinance
~ funFinanceReportWindowState = vhMinimized
;f Unload Me
i fnn View. Show
fEnd Sub

i Private Sub Command2 _ ClickO
f Unload fnnFinanceReport
~ End Sub

Private Sub Command3 _ ClickO
QuaterlyF inanee
fnnF inanceReport. WindowState = vbMinimized
Unload Me
fun View. Show
End Sub

Private Sub Command4_ClickO
Unload frmFinanceReport
End Sub

Private Sub Command5 ClickO
Unload fnnFinanceReport-
End Sub

Private Sub Command6 _ ClickO
yearlyFinance
fnnFinanccReportWindowState = vhMinimizcd

(' Unload Me 1 fnnView.Show
i End Sub

Private Sub Command7 _ GickO
Unload fnnF inanceReport
End Sub

VI

Private Sub Command8 _ ClickO
MonthlyFinance
fnnFinanceReport.WindowState = vhMinimized
Unload Me
fnnView.Show
End Sub

Public Sub DailyFinanceQ
Set dbs = OpenDatabase("c:\Hwares\Homewares.mdb")
IfCombol.Texi<> "" AndCombo2.Text<> "" And
Combo3.Text <>"" Then
TheDate=Trim(Combo2.Text)& "I" & Trim(Combol.Text)
& "I" & Trim(Combo3.Text)
dbs.Execute ("DELETE * FROM TransTrash")
dbs.Execute ("INSERT INTO TransTrash SELECT * FROM
[Transaction] " &

"WHERE TranDate = #" & CDate(TheDatc) & "ii")
RepTitle = "LIST OF TRANSACTION FOR" & TheDate
fnnView.CRI.ReportFileName = "c:\Hwares\Trans.rpt"
Else
MsgBox "Invalid Date Specification"
Exit Sub
Endlf

End Sub

Public Sub yearlyFinanceO
On Error GoT 0 handler
TheDate = Trim(Combo2.Text) & "/" & Trim(Combol.Text)
& "I" & Trim(Combo3.Tcxtl
If Combo 7. Text <> "" Then
Set dbs = OpenDatabase("c:\Hwares\Homewares.mdb")
l1lyqueryl = "Select * From [TransactionJ where
datep artCM', [Transaction]. TranDate» 1 AND
DatepartCyyyy',[Transaction].TranDate)=" + Combo7 .Text
dbs.Execute ("DELETE * FROM TransTrash")
dbs.Execute ("INSERT INTO TransTra"h" & myqueryl)
RepTitle = "LIST OF TRANSACTION FOR YEAR "&
Combo7
frm View.CRI.Rcl'0rtFilcName = "e:\Hwares\Trans.rpl"
Else
MsgBox "Invalid Date Specification"
Exit Sub
End If
Exit Sub
handler:
MsgBox Err.Description

End Sub

Public Sub WeeklyFinanceO
On Error GoTo handler
TheDatt: = Trim(Combo2.Texl) & "/" & Trim(Combol.Texl)
& "/" & Trim(Combo3.Text)
IfCombol.Text<> "" AndCombo2.Text<> "" And
Combo3.Text <> "" Then

Sqlstr = "Select * From [Transaction] where
datepartCM',[Transaction].TranDate)=" + "'" + Combo2.Texi
+"'"

, Sq !sIr = Sq lstr + " AND
DatepartCyyyy',[Transaction].TranDate)=" + Comb03.Text
1 Sqlstr = Sqlstr + " AND
patcpartCd',fTransactionlTranDale»=" + Combo 1 .Text
i myquery I = Sqlstr + " OR
batepartCd',[Transaction].TranDate)<=" +
~tr(Val(Combol .Text + 7))

Set dbs = OpenDatabase("c:\Hwares\Homewares.mdb")
tfCombol.Text<> "" AndCombo2.Text<> "" And
tombo3.Text <> ,." Then
theDate = Trim(Combo2.Text) & "I" & Trim(Combol.Text)
~ "I" & Trim(Combo3.Text)
Ubs.Exccute ("DELETE * FROM TransTrash")
iibs.Execute ("INSERT INTO TransTrash " & my query I)
kepTitle = "LIST OF TRANSACTION FOR WEEK
bNDlNG "& ThcDale
trm View.CRI.ReportFileName = "c:\Hwares\Trans.rpt"
f;lse

.W
s~OX "Invalid Date Specification"

. Xlt Sub
'nd If

lEnd 1f
:l

/Exit Sub
!handler:
.~ Msgl30x Err.Descrip lion
'Exit Sub

r

If datForTheRcport.RecordscLBOF = False Then
datF orTheReportRecordset.MoveF irst
Do While datForTheReport.Recordset.EOF = False
dati: orTheRq:lOrL RecordscLDclcte
datForTheReportRecordsetMoveNext
Loop
TheDate= Trim(Combo2.Text) & Iff" & Trim(Combo1.Text)
& "/" & Trim(Combo3.Text)
If Combo 1. Text <> "" And Comb02.Text <> "" And
Combo3.Text <> '''' Then
, Query for Other transactions

Sqlstr = "Select * From (OtherTransl where
datepart('M',lOtherTransJ.TnmsDate)=" + "'" + Combo2.Text
+"'"

Sqlstr = Sqlstr + " AND
Datepart('yyyy',1 OtherTrans] TransDate)=" + Comhol.Text

Sqlstr = Sqlstr + " A1\ID
DatepartCd',[OtherTrans].TransDate»=" + Combo l.Text

myqucryl = Sqlstr +" OR
Datepart('d',[OtherTrans].TnmsDate)<=" +
Str(Val(ComboLTex1 + 7))

, Query for Expenditures

Sqlstr = "Select * From [ExpenditureJ where
datepm1('M' ,[Expenditure]. T ransDate)=" + '"'' + Combo2. Text
+"'"

Sqlstr = Sqlstr + " AND
DatepartCyyyy' ,[Expenditure]. T ransDate)=" + Combo3. Text

Vll

Sqlstr = Sqlstr + " AND
Datepart('d' ,[Expenditure]. T ransDate »=" + Combo I. T (:xt

myquery3 = Sqlstr+" AND
Datcpart(,d' ,fExpenditure lTransDatc)<=" +
Str(Val(Combol.Tex1 + 7))

, Query for Banks

Sqlstr = "Select * From [Bank1 where
datepart('M',[Bank].TransactionDate)=" + "". + Combo:~.Text
+'"''

Sqlstr = Sqlstr + " AND
DatcpartCyyyy',[Bankj.TransactionDatc)=" + Combo3.lcxt

Sqlstr = Sqlstr + " AND
Datepart(,d',[BanklTransactionDate»=" + Combol.Text

myqucry4 = Sqlstr + " AND
Datepart('d' ,[Bank 1-TransactionDate)<=" +
Str(Val(Combo 1. Text + 7))

'For Other Transactions
Set mydata = OpenDatabase("c:\BizMan2000\BizBank.mdb")
lftemp <> "E" Then
Set my tab = mydata.OpenRecordset(myquery I)
With my tab
Do While .EOF = False
datI:or'l'heReporLRccordset.AddNcw
If![TransType] <> "" Then
datForTheReport.Recordset! [T ransType 1 = ! [1' ransType]
If! lTranSpccj <> n,' Then
datF orTheReport.Recordset! [T ransDesc] = ! [TranSpec 1
If![TransAmOUflt] <> "" Then
datI:orThcRcporLRccordsct l [TransAmount] =

![TransAmount]
If![TransTotal] <> "" Then
datF orTheReport.Recordsetl 1T fansT ota\) = I 1T ransT otan
1f![TransBy] <> '''' Then
datF orTheReport.Recordset! [T ransBy] = ! l TransBy]
If![TransTo] <> "" Then
datForTheRc'P0rt.Rccordset! [TransTo] = ! [TransTo]
If!lReceipt_no] <> "" Then
datF orTheReport.Recordset! (Receipt _no] = ! (Receipt _no 1
datForThcReport.Recordset![TransDatej = ThcDatc
datForTheReportRecordset. Update
.MoveNext
j,oop

End With
End If

If temp = "E" Then
Set my tab = mydataOpenRecordset(myquery3)
With mvtah
Do While .EOF = False
datF orTheReport.Recordset.AddNew
If I [TransTYlle1 <> "" Then
datI,'orTheReportRecordset! [TransTypc J = 'lTransType]
'If ![TranSpec] <> "" Then
datForTheReport.Recordset! [TransDesc] = ! [TranSpec]
If! [TransAmount I <> 'II' Then
datF orTheReport. Recordset! [T ransT otal] = I [T ransA-mount]

ir! [T ransUnit] <> ,p, Then

.
patF orTheReport.Recordset! [TransAmount] = ! [TransUnit]
*f ! [T ransBy] <> "" Then
patF orThcReport.Recordsct! [TransI3yl = l [TransI3Yl
;.1f!rTransTol <> "" Then
tatForTheReport.Recordset![TransTo] = ![TransTo]
ff ! rReceipt no 1 <> "" Then
tiatForTheReportRecordset! l l<eceipt_ no J = ! l Receipt_no J
~atF orTheReport.Recordset! [TransDate] = TheDate
~atF orTheReport.Recordset.Update
,jMowNext
:~oop
pnd With
End If

~nd If
'Fnd Suh
.1

~uhlic Suh MonthlyFinanceO
pn Error GoT 0 handler
~et dbs = OpenDatabase("c:\I Iwares\I Iomewares.mdb")
IIfComh06.Text <> "" And ComhoS.Text <> '''' Then
fdbs.Exccute ("DELETE * FROM TransTrash")
fSqlstr = "Select * From [Transaction] where . .
Jdatepart('M',[transactlOn].TranDate)=" +
~Str(Combo6Listlndcx + 1)+ "AND
fDatepartCyyyy',[Transaction 1. TranDate)=" + Combo8. Text
; myqueryl = Sqlstr +" AND
j Datcpart('yyyy',ltransaction j. IranDate)=" + Combo8. Text

I dbs.Execute ("INSERT INTO TransTrash " + myquery 1)
• RepTitle = "LIST OF TRANSACTION FOR" &
i UCase(Fomlat$(Combo6, "mm"») & "," & ComboS
J frm View.CRI.ReportFileNanle = "c:\Hwares\Trans.rpt"
1 Else
f MsgBox "1nvalid Date Specification"
i End If
l Exit Sub
f handler: I MsgBox Err.Description
~ End Sub
j

I D~; •. ~.~ '1 •• 1,. 17,,~ Lu~d'\
~ ,. '" uuu •. "' •••• _ .. v
I If mode = 1 Or mode = 2 Or mode = 10 Or modc = 20 Then
I Framel.Visible = True
I F!"lime! Visihle = Flilse
I Frame3.Visible = False
f Frame4.Visible = False
j For i = 1 To 3 1

.t.'r~ Combo 1. AddItem i
. Nexti

r ComboLAddllem "January"
f Combo2.AddItem "February"

Combo2.AddHem "March"
r.... 1 '"'\ A 1 IT. " " ""
LOllJUUL,..i\.UUJlt;111 1\.1-'111

Combo2.AddHem "May"
Combo2.AddIten1 "June"
(":ombo2.",8--.ddltem "July"
Comho2.AddItem "August"

Vll1

Comho2AddTtcm "Sl.,lltemher"
Comb02.AddItem "October"
Combo2.AddItem "November"
Combo2.Addltem "December"
Fori=OTo 10
Comb03.AddItem Fonnat$(Now, "yyyy") - i
Next i
End If

If mode = 3 Or mode = 30 Then
Framel.Visible = Falsc
Frame2.Visible = False
Frame3.Visible = False
Frame4.Visiblc = True
Combo6.AddItem "January"
Combo6.AddItem "February"
Combo6.Addltem "March"
Comb06.AddItem "April"
Comb06.AddItem "May"
Comh06.AddItem ".lune"
Comb06.AddItem "July"
Comb06.AddItem "August"
Comho6.AddHem "Septemher"
Combo6.AddItem "October"
Combo6.AddItem "November"
Combo6.AddItem "Decem her"
fori = 0 To 10
Combo8.AddItem FOImat$(Now, "yyyy") - i
Nexti
End If
If mode = 4 Or mode = 40 Then
Framd .Visible = Falsc
Frame3.Visiblc = False
Frame4.Visible = False
Frame2.Visible = True
ComhoSAddHem "Fir>.'t"
Comb05.AddItem "Second"
Combo5.AddItem "Third"
Comho5.AddItem "F01ll1h"
Fori = 0 To 10
Comb04Addltcm Forrnat$(Now, "yyyy") - i
Nexti
EnJ!!'
If mode = 5 Or mode = 50 Then
Framel.Visible = False
Frlime7. Visihle = Flilse
Frame4Visibie = False
Frame3. Visible = True
Fori =0 To 10
Combo7.AddItem Forrnat$(NO\v, "yyyy") - i
Next i
End!f
I£nd Sub

Public Sub QuaterlyFinance.()
...-, l' r'" rp.. 11
VlJ 1.:,/1 VI \.JV 1 U lJi:tllUI(;1

Set dbs = OpenDalabase("c:\Hwares\Homewares.mdh")
IfComb05.Text <> "" And Comb04.Text <> '''' Then

Se!ect Cf!se l<C)!TIb!}5.Te:'~t
Case "First"

. ' Olle!,; fm' Other tnmsadjons

.
1. Sqlstr'~ "Select * From [Transaction] where
patepart('M',[Transaction].TranDate)<=3"
I mvqucry 1 = Sq1::,1r +" AND
patepart('yyyy', I Transaction I. TranDate)=" + Combo4. Text
i Case "Second"
- , Query for Other transactions

Sqisu' ~ "Sdect " From lTransactlonj where
~atepart('M' ,[Transaction]. TranDate» 3 and
~atepart('M'JTransactlOnl.TranDate)<=6"
A lilY4uta} 1 S4I:su -+- II Al'4u
patepartCyyyy',[Transaciion.TranDate)=" + Combo4.Tex1
i Case "Third"

1 {)Ot',,.,.T f('\r C)th{""r tr~n'lC'<"l('t~f'\nl.-~ "-<" ~~ ,. ... -' ""-& 'L" •••

Sqlstr = "Select * From [Transaction] where
tiatepart('M',[Transaction l TranDate »6 and
.~akPart(,M'_fTransaction].TranDak)<=9"
l my query I = Sqlstr + " AND
batepart('yyyy',[TransactionlTranDatc)=" + Comb04.Tcxt
l Case "Fourth"
. ' Query ior Other transactIOns
j Sqlstr = "Select * From l Transaction] where
fdatepart('M' J Transaction l T TanDate »9"
~ myqucry i = Sqisu' -t ;; AND
fDatepart(,yyyy',[Transaction].TranDatc)=" + Comb04.Tcxt
I End Select
I
JJh:i.1 \:~~Lih.: (" I)I ~LETE * rI~.{)~v1 TransTrdsh")
!dbs.Execute ("INSERT INTO TrailsTrash" + my query 1)

1 ~~~)~~~l~,:~~,~,~ ~ ~~ (~~~;~~~~~I f~ '~~~':!~b'-'4
I frm View.CRI.ReportFileName = "c:\l:-!wares\Trans.rpt"

/

' Else
; Msg130x "Invalid Date Specification"

Endlf

! Exit Sub
j handler:
! MsgBox EIT.Description
t End Sub
f

i Codes for Genlnvoice.trm

Pri;'atc Sub CGmmand 1_ Clic~O
, Datal.RccordsctFindFirst ("OrdcrNo=" & "'" & Tcxt4 & "III)
t If Data I.RccordsetNoMateh = True Then

I M."1:'Box "Tnmsilctiol1 Ddllib hilS no! hoxll "ilv~d"
Command7,SetFocus
Exit Sub

,.,.I.! ; Enulf

I
l

~)ct dhs = tJpenlJataDaset ;;c:\f l\\'arc,\I Ion1c\v8rc.".indh;;)
dbs.Execute (" DELETE * FROM TransTrash")

~ dhs.Exccute ("Il'JSFRT TNT() Tran~Trash SET .FeT * FROtv!

CR I.ReportFilcName = "c:\I Iwares\Invoicc.rpt"
CR I Fmmnlas(O) = "Time=" & "'" & Fnnnat(Nnw

CRLFormuiasill- "CovName-" & '"'' & Coy Name & "",
'CRLFonnulas(2) = "CovAdd=" & "'" & CoVAdd & "",

. i-'.' .,

!X

Private Sub Command2_ ClickO
Frm VicwOrdc'L Sho\\' 1
End Sub

Private Sub Command3 _ ClickO
On Error GoT 0 handler
Set dbs = OpenDatabase("c·.\Hwares\Homewares.mdb")

,1 T-" ,/nr-..~T ,.....~r-' .Lo ~T'o .. -.., C ~ r-..,', "T"1 TTTT'T'oY~

uos.C~,I:''';Utt: \ UCLC 1 C·'· r KUNi l'aYUl::lall:, 'i.llCl'J:.

OrderNo =" & "'" & Text4 & ''''')
Exit Sub
h~~ndk.,,::

Msgl30x Err. Description
End Sub

Private Suh Com man d4_ ClickO
Data l.RccordsctFindFirst ("OrdcrNo=" & '"'' & Text4 & ""')
If Datal Record set NoMatch = Tme Then
MsgBox "Transaction Details has not been saved"
Command7. SetFocus
EXlt Suh
EnJif

Set dhs = OpenDatahase("c:\Hwares\Homewares.mdh")
dhs.I~~~ccutL ("I)]]J~rrr * Fr(()~v1 Trill:~Trash")
dbs.Execute ("I1.JSERT INTO TransTrash SELECT * FROM
Transaction WHERE OrderNo=" & "'" & Text4 & ""')
CR 1.RqxI!"tFikNmlH.' = ., ,-·:\J-h\!,,-,":~\blV'_'i':':.rpr

CRLFormulas(O):= "lime=" & "'" & Format(Nmv,
"hh:mm:ss") & '"''
CRLFol11mlas(l) = "CllvName=" & '"'' & CoyName & "'"
'CR 1.Formulas(2) = "CoyAdd=" & "'" & Coy Add & "'"
CR 1 Destination = crptT 0 Window
CR 1.WindowState = crptMaximized
CR 1.PrintRcpol1
End Sub

Private Suh CommandS _ CiickO
Me.Width = 4g75
Unload Me
End Suh

Private Sub Command7 _ ClickO
On En-or (~oTo handl~r

If Option 3 ,Value = Tme Then
IfTxt(O) = "" And Tx1(l) = "Ii And Txt(2) = "" Then
Msg.Box "Enler Cheque 1 nfol1natioll __ . Saving. Aborted"
Txt(O).SctFocus
Exit Suh
End If

Data I.RccordsctAddNc\'\'
Oata I Rt'.A'mdset t ~ OrderNn l = T ext4

uaial.RtXXlnlS\::[l jPmu i - L"U;ldus(l 0)
Data .Recordset i VAT I = txthelds(11)

i. ._i. _"- .L . -; j _ ... __ ,,- ••• _ •.• "."

"-'~::~:_;:",,--~ o~~~'-_-_

~a I.Rccordset! 1 ChequeNo] = T:\t(I)
la 1 Rc'..;ordset ! r i\ccoullt,~ol = T:\t(2)
Ita I. R,,:cordsct! 1 Dale I = I c:\t I
fjplionl. Valuc = Truc Then '
tt:l} .R,:cordsct!fPad'ype] = "Cash"

.~.:
,b I.R~~Glrdsct!i l'ayTypcl = "Chequc"
~J I r
ttal.R.:cordsd.lJpdatc
rmlh\\\d I.SL'lFocus
fit Sub
~dler:
~gl3o:-.. CIT. Description
III Suh

l,atc Suh Form LoadO
f\t Icc hJrll1at(N\~\', tlmllllll-dd-\'yyvtl)
id Suh

J
ti\atc Sub mnu 1_ C1ickO
h130\ 'Tor a Credit CustOlller (i.c -vc 13alance) I ~lltcr -\'c
II"Sd to Reduce Credit ***** For a Debit Customcr (i.e +Ve
flam;;;) Lnter +ve Offset tl) Redu\X Dehit"
~d Suh
.~
riYate Sub Option 1_ ClickO
tame i Yilabkd = hdsc
tHISuh
~
l
finlie Suh Option3_C1ickO
t"nnei.LIl<lhlcd == TllIc
.\t(O).SelFoL'u:;
fnd Suh
~
lriyate Sub Tcxt2_KeyPress(E:cyAscii As Integer)
t KcY i\,<;ii = 13 Then Call T c:\t2 L(lstF (lClIS , . -
lHISuh
',i

lh'ate Sub Tcxt2 _. LostFocusO
,I']':'1'01" (iuTo handler
~la3.RccorJset.Fi.IlJFirst ("ORDERNO=" & "'" & Tc:\t2 &
'~)
pata3Rceordsd.NoMatch = Falsc Thcn
lta3.RecorJscUvlo\"e (0)
)ta3.Reconlsd.Edit
~i3.Sl'lFocus
~c
jgl3o~; "Such Ordcr No. not c:\isting"
fJ:? = 11',\

P. If
It Sub
j,.ller:
1,} Bux ~ :n·.Dj~scriptioll
11 Sub
~

I
j ... atc Sub Text3 _ KcyPress(Kcy Ascii As Inte~cr)
'I 1.~m'r ~1()Tl: l:~:nd!cr
~CVASCll = I.> I he;[
~

~

x

TheStmi:
TheNewBal ~~ Val(Text3)
Msgl3o:\ TheNc\v1 jaI

IfTheNd3aI <> '''' Then
I)ata3.Reli·csh
'If Dalal.RccordscU ~()I; <> False TheIl
l)ata3.Rccordsd.M()\"cFirst
IrData3.RcC\mlsd!\hall < Val(I\;:-J3) Thcn
ThcNewl3al = VaIUe:\(3) - Dnta3. Recordsct I I hall
I)ata3 . Recordset.!:dit
Data3.RcC\)rdsd! I Paid] = Data3.Recllnlset'IPaid I +
Data3 .Rccordset! 1 ball
Dat~13.I<ec()rdsdlrhall = 0 'Data3R.:cordsct!lldl- Vai(TexLl)
I)ala3. Record:;d, lJ Illiate
D13(irid I.Rd'resh
End II"
MsgBox TheNewl3al
Text3 = ThcNcwl3al
I I" Valek\(3) <> () ThL'n (ioTo TIl,'S!:n i
I ~nd If
End I\,

E,it Suh
handler:
Msg13o:\ EIT.Dcscription
Exit Sub

'Do While Data3.ReeordseLEOF 0= hils\.:
'IfData3.ReC\lJ"lIs\.'t!lbal] < Val(Te:\t3) 1"11,:11
'ThcNcw13al = Data3.Recordsd! [ball - Val! T\.:~,,3)
'Data3 .Rccordsct. Edit
'Data3 .Recordset! [Paid I = Data3 .Rec(\rdsd '! Pad: -I­

Vai(Text3)
'Data3.Rccordsd! Ihal] = Dala3.lkc()alsd'l 11:111 - V~dl lex!.,)
'l)ata3.Rcconlsct,t lpdal\.:

'Data3. Rdi'esh

, If Data3.Recordsd.EdltMode --, I Tb:!1

DBC3rid I.Rdidl
, End If

'I~nd If
End Sub

Private Sub Tcxt"'_Kc~'Prc,~s(Kc~Asdi As :ntegrr)
If Kcyi\scii = 13 Then Can Text4J~()stF()clls
End Suh

Prh'atc Sub Tcxt.t_LostFocusO
Data2.RccordSounx = "SELECT * FROM Transactlllll
WHERE OrderNo=" &. '"'' & Tc:\t4 & "'"
D ata2. RclI-csh
IfData2.I<cconlscLEOI; = Truc TheIl
MsgBo\ "Such Order No. not existing"
Tc:\t4 = ""
Else

])ata2.Record~cLFindFirst CORDERNO""" 8: '"'' 8: Te,t4 8:
'"'')

rrData2.ReeordseLNoMateh = FaIsL~ Then
Data2.Reeordset.Move (0) •
t\:tFidds(I) "" Dat~12.Reeordset! I CllsCodeJ
Data2.Rdi"esh
TransSum "" 0
Do While Data2.ReeordseLEOF "" False
rfData2.RecorJsd~rTotaIAmounq <> "" Then
Tr~msSum "" TransSum +
Val(Data2. Recordset! I TotalAmollnt 1)
Lndlf
Data2.Recordset.MoveNe\:t
I,oop
t:-;thdds(10) "" ""
t\:(r:idds(IO).SctFocus
t:-;tFidds(II) "" Str«TransSum * VAT)! 1(0)
t:-;tFidds(9) "" Str(TnmsSul1l + Val(t\:tFiclds(II)))
NewTransSllm"" Val(t\:tFiclds(9))

, If TransSum "" 0 Then
Command 1.1 ~nabled "" False
Command4.Enabled"" False
Cnmm,mu7 ,EnahkJ = Fals\~

Data3,RecordSource"" "SELECT * FROM PayDdails
WI IERE ClIsCode='**********'"
])ata1. Rdresh
r:,it SlIb
l:rse
Command I.Enabled "" True
Comm~U1d4.Enabled "" True
Command7.l ~nabbl "" True
Endlf
Use
t:-;tFidds(I).Tc:-;t "" " "
Msgi3o:-; "No ClIstomer Entry for the Order Number"
imllf . •
1 ::,,111'
End Suh

Prh'atc Sub TxtFiclds_ Cbangl~(lndcx As Intcgcr)
[;'ll1d..:::-; "" I Thcn
!)ata3.RecordSollrcc"" "SELECT * FROM PayDetails
WlIERE CllsCode""" 8: '"'' & t\:tFidds(i) & "'" & " AND bal
<> V AL({l) ORDER BY OrderNo ASC;"
Data1.Rdi"esh
1)1 3Glid I.Refresh
r:or i "" 0 To DB Grid I .Appro:-;Collnt - I
Dl3(jrid l.Ro\V "" i
Total = Total + Val(DBGrid 1.Colllmns(2').Te\:t)
Ne:-;t i
Labcl~.Captilln = Total

rrData1.RecordseLLOF = Fals..:: Th..::n \\'cll = Msgl3o\:("The
Customer is a Debit or Cr..::dit Custolller. .. R.econcile Aecollnt
(Y rN'?", vb Y esNo + \'b Tnf\.)mlUlion)
I r weIl = vb Yes Then

Me.Width "" X170
Elsc

Me Width "" 4~75
I:nd If

XI

End[f

If Inde:-; = 10 Then
t:>;t Fie1ds«J) = NewTnmSSlIl11 - V til (1:-; tFidds(I () 1)
Ift:-;thdds(9) < 0 Then
RESP "" MsgI3o:-;("Creclit Custom"r YIN'?", \'h YesNI.l -:­
vblnfonnalion)
[I' RESP = vbNo Then t:>;tFidlts(10) = ""

End[!'
l~nd If
End Suh

Prh'ate Sub Txtiiclds_KcyPrcss(lndcx As Intcger,
KcyAscii As Intcgcr)
If Key Ascii = 13 And Im!..:::-; = 10 Th-"11 C0111111:md7.Setl:ocllS
End Sub

Prh"atc Sub txtFiclds_LostFocus(lndcx As Intcg('I')
II' Indc\: = 7 Then Command 1 O,SctFocus
End Sub

Codes (or Tral1sactioll.(rm

Pri\'l\tc Sub CmhMonth_ Clid,O
IfFOlmat(CmhMonth, "mm") = "Jan", Or h11l1wt(CIllbMonth,
"mill ") = "Mar" ()r hmnat(CmbMonth, "Ill III ") ,= "I\-by" (lr
FOlmat(CmbMonth, "mm") = ".luI" Or FOlllwl(CmbMonth,
"nun") = "Aug" Or FOI11wt(CmbMonth, "nun") = "(lc[" Or
FOImat(C111bMonth, "111m") = "Dec" Then
Day(2R) Visible = Tru..::
Day(2Y), Visible = True
Day(30). Visible = Truc
End I!'
IlT0I111al(C111bMllnth, "111111") = "Sep" Or hmllill(CI11:):\1Lmth,
"mm") = "Apr" Or F oI111at(CmhMonth, "nlm") "" ".1ll:1" Or
FOI11Hlt(CmbMonth, "111m") = "Nm" Tkn
Day(2X), Visible = True
Day(29).Visible = True
])ay(30). Visible = Fabe
End If
If Fonnat(CmbMonth, "111111") = "Feb" Then
If Val(cmb YeaLTe:>;!) Mod ,j = () Or Val(emb Y L'ar.'!'e:-;[) f\,lod
100 "" (l Then
])ay(28). Visible = True
Day(2(»). Visible = False
])ay(30) Visible = False
Else
Day(28lVisihk"" hllse
Day(29). Visiblc "" False
Da)'(30). Visible = False
Endlf
I ':nd If
End Sub

Pri\'atc Sub cmbYcar_ChangcO
IfFonnat(CmhMnnth, "mm") = "Feb" Th"::11
If VaI(emb Year.'l'e:-;t) Mod 4 = 0 Or Val(emb Year. 'I 'e:-;t) Mod
100 =0 Then
Day(2~). Visible = True

1)ay(29). Visible = Fab~
,1)ay(30) Visible = Fals~
Else
Day(2X). Visible = F als~
Day(29). Visible = Fals~
Day(30). Visible = Fals~
End If

'I. !':nd If
..;~,.d Sub
ri . ,

, Private ~ub cmbYear_ClkkO
" t IfFOlmat(CmbMonth, "mm") = "Feb" Then

, IfVal(cmbYt.w.Text) Mod 4 = 0 Or Val(cmbYear.Text) Mod
I 100 = 0 Then
f Day(28). Visible = TIlle
i Day(29). Visible = Fals~
: Day(30). Visible = Fals~
1 Els~
4 Day(28).Visible = False
~ Day(29). Visible = False
~ Oay(30). Visible = False
~ Endlf
; End If

End Sub

Private Sub Command 1_ ClickO
On En-or GoT 0 handler
mode = I II
\\'01 = InputBox("Enter Order Number", "Quick Find Order")
Set dbs = OpcnDatabase(lfc:1hwarcs\homewarcs.mdb lf)
Set rstTemp = dhs.OpenRecordset("SELECT * FROM
Transaction WHERE OrderNo =" & '"'' & wol & ''''')
dbs.R~cordsets.Reti"esh

IrrstT~mp.EOF = Fals~ Then
'rstT~mp.Mo\'cI,ast

datPrimaryRS.RccordSourcc = .. SELECT * FROM
Transaction WHERE Order:i'.lo =" & If'" & \\'01 & '''If
datPrimaryRS.Rdi"esh
Else
Msgl30x If No Match", vblniiJm1ation
J~nd If
Exit Sub
handler:
MsgBox EI1'.Descliption
End Sub

Private Sub Commalll12 _ QickO
Fnn View!tel11.Show I
Call txtFidds_l,ostFocus(2)
End Sub

Private Sub Command3_ ClickO
Fm1 VicwCusl.Show I
End Sub

PriYate Sub Command-l_ Clici<O
IfFraCal.Visible = TIlle Th,:11

FraCal. Visible = False
Exit Suh

End If

XIl

FraCal. Visible = Tnle
End Sub

Privatc Sub Command5_ ClickO
Fn11Genln"oicc.Text4 = TxtFieIds(O)
Fm1Genlnvoiee.SllOw I
End Sub

Privatc Sub datPrimaryRS_Error(DataErr As Integer,
Response As Integer)

'This is where you would put el1'or handling code
'Iryou want to ignore errors, comment out the next line
'If you wm1t to trap them, add eode here to handle thm1
MsgBox "Data C11'or event hit err:" & Error$(DataEa)
Response = 0 'Throwaway the el1'or

End Sub

Private Sub datPrimaryRS_RcpositionO
'Scrcen.MousePointer = vbDet'ault
On Error Resume Next
'This will syneh the grid with the M;l"t~r recordsct

'datSccondaryRS.RecordSource = "select
[Icode],[UnitlnStock l,[Quantity],l Tran])aklli'Oll1
[Transactionl where [OrderNol='" &
datPrimaryRS.Rccordsct! r Ord~rNo J & '"'' & " Order by
[leode!"
'datSecondm-y RS. Re1i"esh

'This will display the current record position J()r dynasels and
snapshots
datPrimaryRS.Caption = "R("'cord: " &

(datPrimary RS.RecordseLAbsolutd)osition + 1)
End Sub

Private Sub datPrimaryRS _ Validate(Action As lntcgcr,
Sa\'e As Intcgcr)
'This is where you put validation eode
'This evcnt gets called when the following actiulls uccu:
Select Case Action

Case vbDataActionMoveFirst
Case vbDataActionMovcPrevious
Case vbDataAetionMoveNe:\t
Case vbDataActionMoveLasl
Case vbDataActionAddNew
Case vbDataActionUpdate
Case vbDataActionDelcte
Case vbDataActionFind
Casc vhDataAction13ookmark
Case yhDataActionClose
• Screen.MouscPointer = "hDefault

End Select
'Scrccn.MousePoiIlt~r = vbllourglass

End Sub

Pri\'ate Sub Day_ Click(lndex As Integer)
TheDate = CmbMonth & "I" & Day(lndcx).CaptioIl & "j" 8:
embYcm'
TxtFiclds(6) = TheDate
FraCal. Visible = Fals~

! End Suh

Private Suh Form_wadO
mode = I
Label2.Caption = Coy Name
datPlimaryRS.RccordSource = "SELECT * FROM
I Tnmsaetionj WI-JERE Icode='*****&&&*******'"
datPrimaryRS.Rcll·esh

, For The Calender
For i = 1900 To 2100
cmb Year. Add Item (i)
Next i
CmbMonth = Fonnat(Now" "mmm")
emb Year = FOI111Ut(Now, "yyyy")
Day(Fomlat(Now, "dd") - I). Value = True
If FOll11at(CmbMonth, "mm ") = "Jan" Or Fonnat(CmbMonth,
"nml") = "Mar" Or Fonnat(CmbMonth, "mm") = "May" Or
FOllnat(CmbMonth, "mm") = "Jul" Or"Fonnat(CmbMonth,
"n1l11") = "Aug" Or FOll11al(CmbMonth, "mm") = "Oct" Or
FOl1nat(CmbMonth, "mm") = "Dec" Then
Day(2~).Visibk = True
Day(29). Visihle = True

i Day(30).Visihle = True
End!f
!fFOImat(CmhMonth, "mm") = "Scp" Or Fonnat(CmbMonth,
"mm") = "Apr" Or Fonnat(CmhMonth, "mm") = ".fun" Or
Fonnat(CmbMonth, "mm") ~ "Nov" Then
Day(28). Visible = True
Day(29).Visible = True
Day(30). Visible = False
End If
IfFOImat(CmbMonth, "mm") = "Feb" Then
rfVal(cmbYear.Text) Mod 4- = 0 Or Val(cmb Year.Text) Mod
\00 =0 Then
Day(28). Visible = True
Day(29). Visible = False
Day(30).Visible = False
Else
Day(28).Visible = False
Day(29).Visible = False
Day(30). Visible = False
I~nd If
End!f

, End The Cak'nder

End Sub

Private SUh Form_Mous~:Mo"e(Button As Integer, Shift
As Integer, X As Single, Y As Single)
mode = 0
End Sub

PriYate Suh grdDataGrid_DhlClickO
On Elmr GoTo handler
grdDataGrid.Col = 0
mode = III
wol = grdDataGlidText

Xlll

Set dbs = OpenDatabase("c:\hwares\homewiU·es.md\l")
Set rstTemp = dbs.OpenReeordset(" SELECT * FROM
Transaction WHERE OrdcrNo =" & "'" & wol & "''') .
dhs.Reconlsets.Rcfresh
If rstTemp.EOF = False Then
'rstTemp.MoveLast
datPlimaryRS.RecordSource = "SELECT * FROM
Transaction WHERE OrderNo =" & "'" & wol & "'"
datPrimaryRS.Refresh
Else
MsgBox "No Match", vblnfOimalion
End If
Exit Sub
handler:
MsgBox J~IT.Description

End Sub

Private Sub TB 1_ ButtonClick(B~'Val Button As
MSComctILib.Button)
On Em)r GoTo handler
mode = I
Select Casc Bulhm.Tag
Case "1"
Set dbs = OpenDatabase("c:\hwm'es\homcware:'>,ll1dh")
Set rstTCI11p = dhs.OpenRecordset(" SELECT DISTINCT
OrdcrNo FROM transaction ORDER BY OrderNo /\SC:")
dbs.Rccordscts.Refresh
IfrstTemp.EOF = False Then rstTemp.MoveLasl
TheOrderNo = rstTemp.RccordCount + I
datPrimaryRS.RccordSource = "SELECT * FROM
[Transaction] WHERE OrderNo=" & "'" & ThcOrderNo & "'"
datPrimaryRS.Refrcsh
Casc "2"

TnmsNew
modc= I

Case "3"
TnmsUpdate
mode = 2

Case "4"
datPrimaryRS.Rcfresh

Case "5"
RESP = MsgUox("The Cum:nt Transactioll would bc

Deleted .. continue (YIN)", "h Y esNo + vhlnli.11111111inn)
IfRESP = vb Y cs Then
Sct dbs = OpenDalahase("c:\hwares\holllewaresllldh")
Set rstTcmp = dbs.OpcnRccordset(" SELECT * FROM

Itemlnvent WHERE Icode =" & "'" & TxtFic\ds(2) &. ""')
dbs.Reconlsets.Rcfresh
Do While rstTemp.EOF = Falsc

rstTcmp.Edit
rstT cmp! [unitinstock] = rstT emp! [unitinstock 1 +

TxtFic\ds(5)
rS1Temp.Upuate

rstTemp .MovcNcxt
Loop

dbs.Rccordsets.Rdi·csh
With datPrimaryRS.Rccordset

. Delete

I .MoveNext .
f If .EOF Then .Mo\'eLast
Jr;m! With
tnd If

r
ase "(i"

-Unload Me
\:l1d Sded
~xil Sub
f"ndkr:
jl1sgBox ErLDcscription

I
t,nd Sub
J
Private Sub Timerl Timer()
it: I.abel2.Lell <= fnnrransaction.Lell - filnTransaction. Width t 90() Then .
<.abel2.Len = lrmTransaction.Width
f~nd If
label2.Left = Label2.Left - 10
~nd Sub
~

~rh'ate Sub TxtFields_ Change(lndex As Intcgcr)
i
'fmode <> III Then
,lfTxtFiclds(5) <> '''' Then
)f VaI(TxtFiclds(5)) < 0 Then
~sg~()X "~annot he Negative"
trxthelds()) = ""

ll~:xit Sub
11 ~nd If
lEnd If
j

i I f Index = 5 Then
t'!'xtl;ieids(3) = Val(TheCum;ntStoek) - Val(TxtFields(5»

,
.!,t[fVal(TxtFicldS(3» < Val(TxIFie\ds(4») Then
,I MsgBox "Below Re-Order Level"
rrxtFie\ds(5) = ""
hxtFields(3) = TheCurrentStock

l
~xit Suh
~i1d If

r:m1 If
i

!fJndex = 5 Then

,

OJf TxtFields(lndex) <> "" Then ,

;,>tFi:ldS(8) = SellingPrice * Val(TxtFields(5»
,Ild II
'nd If

Ind If

.,' nd Sub
4

trivate Sub Txtficlds_KeYPlress(Index' As Integer,

fey Ascii As Integcr)
'Key Aseii = 13 And Index = 2 Then Call

ttFiclds_ LostFocus(2)
f Key Ascii = 13 And Index = 1 Thc'n Call
ltFidds_ LostFocus(1)
tKcyAscii = n And Index = 5 Then
I If mode = I Then
1 mode = 2

XIV

TransUpdate
E:-.:it Sub

End If
If mode = 2 Then

mode = I
Tr~U1SNe\\

I ~l1d I r
I ~lld ; I'
End Sub

Private Sub txtFicIds_LostFocus(lndcx As Integer)
On Enol' OoTo handler
Set db's = OpenDatabasc("c:\l1\\'ares\llomewm'es.mdb")

IfIndc:-.: = I And TxtFiclds(I) <> '"' Then
Set rst'i'emp = dbs.OpenReclll'dset("SELECT * "'ROM
Customer WHERE CusCode =" & "'" 8:. TxtFiclds(lnd:x) &

"'")
dbs, Reconlsets. Rdi-esll
r::;tTemp.FindFirst (".ClIsCode =" & "". & TxtFidds(Index) ,\:.
11111)

If rstTemp. NnMateh = True Then
RESP = MsgB')X("Such ('U'.;lm1Jer ('\)Lie Rccmll do no\
exist...Register Now (YIN),)", vh YesNo + "bInlixlllalion)
IfRESP = "bYes Then ti1nCustDetails.Show I
Tnse
Label3.Caption = rstTemp!lNameJ
TxtFiclds(2).SctFoclis
End If
End I!'

lfIndcx = 2 And T:-.:tFiclds(2) <> "" Then
SclrstTemp = dbs.OpenRecordsct("SELECT * FROM
ItemInvent WI IERE !code =" 8:. "'" 8:. TxtFields(lnde'.) 8:. "''')
dbs.Rccordsds.I{c1resh
r:;tTemp.FindFirst ("lcode =" & .,," & TxtFields(lnde:-.:~ 8:. ''''')
IfrstTemp.NoMatch = False Then
rstTemp,Mo\'c (0)
Labc\4.Caption = rstTemp! IDescJ
ScllingPricc = rstTcmp! [unitSel\price I
TxtFiclds(3) = rstTemp! [unitinstockl
TheCulTentStoek = rstTcmp! [unitinstock I
TxU;'ields(4) = rstTemp!lreorderl
TxU;ields(5).Sct\<'(lcus
Else
MsgBox ("No Item Details not Registered")
End If
End If
E:-.:it Sub
handk.'r:
MsgBox En-Description
'If Index = 5 Then Call LxU;iclds_KeyPress(5, 11)
End Sub

Public Sub TransUpd'lte()
On Error GoTo handler
Set dbs = OpenDatahase("e:\l1\\'m-es\l10mewm-es.mdb")
Set rstTemp = dbs.OpcnRL'Cordset("SELECT * FROM

Item Invent WHERE Icode =" & '"'' & TxtFiclds(2) & ''''')
dbs. R(.'Cordsets. Rdresh

rstTcmp.FindFirst ("lcode =" & " ... & T:-;tFields(2) & ''''')
it'rstTc11lp.NoMatch = Falsc Thcn
rstTcmp.Movc (0)
rstTcmp. Edit
rstTemp! I unitinstllck 1 = T:-;tFields(})
rstTcl11p.LJpdatc

I:nd If
datPrimaI)'RS.UpdatcRecord
datPrimaI), RS. ReconlsctBookl11ark =

~btl'rilllary RS .R0,;or~b<.:L l ~asll~vh Kii (led
f Set rslTel11p = dbsOpcnRecordset("SELECT * FROM
lIlemln\,ent WI JERE !code ='****~********$$$***''')
'1 dbs.RL'Cordseb.Rdi·esh
! dalSecondarvRS.RccordSource = "select * from
il Transaction (whcre rOrderN<.lI="· 8:.
jdatl'rimaIyRSReeordsd'IOrderNol & "'" &., Orderhy
§I Jcodel"
, datSccondan-RS.Rdrcsh
tbit Sub
·j'handJcr:
,Mst:1 ~()\ I :rr. Description
'End Sub

.~
4 Public Sub TransNcwO
f On En·or GoTo handler
! IfT:-;tFidds(O) <> "" Then TheOrdcrNo =,T:-;tFidds(O)
j InxtVidds(I) <> "" Then TheClIst = hlFidds(I)
f lI"'hll,'idds(6) <> "" Thcn TheDale = TxtFidds(6)

TxtFidds(O) = ""
Txlhdds(I) = .. "

~.: 'hlFidds(6) = ",.
datPrimlliyRS.Rcli·csh

l dat!'nmarv." RS.ReeordseLAddNew
i It"1\.IFidds(6) = "" Then

"I'\tl,'idds(6) = h.lI11Jat(Dale, "ll1l1lt11/dd/yyyy")
Lise
'hlFidds(6) = ThcDate
Eml If
"I'\tFidds(O) = TheOrderNll
TXIFidds(7) = I JserName

I l 'hIFidds(I) = TheCust
TXIFiddsO) = ""
'htFidds(4) = ""

"J

~ 'hlhcJds(X) = ""

I hlFicJds(l).SclFoelis
1Exil Sub
:!tumdlcr:
jMsgBO:-; EITDeseription
~End Sub
~
!~:odes (or Frm/lll'cllt.(rm

privatc Sub cmdAdd_Clid,O
On FITor GoTo hand!..::r
I dall'rim:llyRS.H,ecordseLAddNe\Y
11' . S I . ~ ::-;It" 1I)

pandkr:
I M,;gI3o:-; EIT.Dcscriplion
1

xv

End Sub

On EITor GnTo handler
Wilh dat!'rimarv](S.Rccord,;cl
RES]> = ivlsgBox("The CLIITcnt Rccord \\ould he

Dcktcd .. .continlle (YIN)", vb j'esNo + \bI111~Jl"IIWli(ln)
If RES!' = \'b Y es Then
.Dckte
.MovcNc:-~l

If .H.lF Then .!vlo\"d .asl
End I I'
End With
Exit Sub

handler:
Msgl3o:-; I :11·. D~'scripli()11

End Sub

Prinlte Sub cmdRcfrcsh_ ClicJ.:O
On EITor GoTo handler
'Thi,; is onlv I\ecllcd for millti IIscr npps
dal!'rimarv RS. Reli·csh

\ ":xit Suh
handler:
Msgl30x I !IT.J)~~,;cripli()n

End Sub

Prhatc Suh cmdlipdatc_ ClicJ.~O
On ElTor Culo handler
(lenCode
datPrimm), RS. UpdatcRccord
datl'rimarvRS.ReeordseLBod.mm·k ==

datPrimaryRS.RceordseLLaslMudilicd
l~:-;it Sub

handler:
Msgl30x I ~rLJ)eseripti()n

End Suh

Pri\"atc Sub cmdClosc ClickO
Unload Me

End Sub

Prh .. atc Sub Command I Clirl.O
Fnll Vie\\!tcIlLSi!mv I
End Suh

Private Sub Command2 _ CIiC/{O
On EITllr GoTo handler
\Yol = InputBo:-;("J ~nter Quantily", "Add to cllITenl exi:;ling
stock")
11''''01 <> "" TheIl
datPrimaryRS.RecordscLI ":dil
t:-;tFidds(3) = VaJ(lxlhdds(3») + Val(\Vol)
EndIf
I~xit Sub
handler:
Msgl3o:-; I ~IT.I)cscrip lidl I
End Sub

Private Sub Command3 _ ClickO

On En'or (inTo handler
\101 = Inputl3o.'\("Entcr Item DI:seription", "Quid: hnLl ll":llJ")
d:ltI'riIlHllyRSRecordsd.FinJFirst ("Dese=" & "'" & wol 8:
"n')

If d~ltl'riI11aryRSRewrds":LNoMatch == Fals..: Then
datl'rimaryRS.RL'Conlsd,Mon: (0)
Flse
ivls)21 ;'):-.: "No Match", vbJ!lI~.)lmalioll
LlldlC
l·::-.:il S\,b
handLT
IvlsgJl,,:-.: EIT.Description
End Suh

Private Sub datPrimaryRS_Err()r(IlataErr As Intcgl'r,
Hl'spllnsc As Integer)
'This is whcre you would put elTor handling code
'f r you wimi to ignore elTors, comment out Ihe ne~\lline
'lfyOLl wiml 10 Imp them, add code here to handle Ihem
Msgl3o:-; "Dala L1Tor event hit L1T:" & ElTor$(DataEn-)
Response == 0 'Throw awav the en'or

End Suh

Private Sub datPrimaryRS,-RepositionO
'Scre-:n.MollS\:Pointer = ybDcfalllt
On I :1Tor Resume Ne:-.:t
'This will synch thc grid with the Mask1' rewrdsd
daiSL~condaryRS.RewrdSollrce == "sekd

I ct'd..::·i·1 N mne 1.1 Address lii'om I ellstomerl where [code I ='" 8:
, dalPrilllaryRS,Rceordsd![CodeJ & "'" & "Ordcrby leodel"

daiS,~condm'\RS.RcJi·csh

'This will display thc CWTcnt record position for dynasds and
snapshots
datllrimaryRS,Caption == "l<.ecord: " &

(d:l11'rimaryRS,Records..::LAbsolulcPosition + I)
f:nt! Suh

Pr:nltc Sub datPrimaryRS_ Validatc(Action As Integer,
San ... ,\s Intcgcr)
'Th;~ is whcre you put validation coue
'['hi:, c\'ent gcts called whcn the following actions oeeur
:)dLcl Case Action

C!N: vbDataActionMoveFirst
Ca:',c vbDataAdionMm'cl)revious
Case vbDataActionMo\'cNc:-;t
Ca.,·,; vhDataAetionMoveLast
Casc vbj)ataAclionAddN\~1V
<-'aei":: vbDataAetionUpdalc
C~I:;C vbl)alaAclionl)dcte
Case \'bDataActionFind
Casc vbDalaAclion13ookmark
Cn.~c vhDataAclionClose
'Scrcen,MOllsePoinlcr = vbDd~lUlt

l::nd Select
'Scr,~cn,MouscPointcr = \'bHourghiss

End Sub

PriYate Sub DBCombol_LQstFocusO
Unl:mlr GoTo handler

XVI

Data I,RL~etlrdsel.hndl:irst ("Name==" & '"'' 8:.
DI3Cllmbo I.Text & "''')
[I' Data I ,Rccordsd, NoMatch == True ThLn
RESP == MsgBo:-;("Thc Category ***" 8: DHCOlllhol :.(,,,., &
"])oes 11\ ltl ::-.:ist Do you \YClIlI it Rq~islcr..:,1 (Y INY)", \'b Y csNn
+ vblnltlllllation)
IfRESP = ,'bYcs Theil
Dal~ll. Reeordset.!\ddNc\\
Data I ,I\cconlsd! I Namcl = 1)13(\'lIIbo I
Data 1.RccordS\:t.Updatc
Data I ,Reli'csh
Else
DBComhol = ""

Dl3Combol.Sdhlcus
1':nJ If
End [I'
I ::-;it Sub
hanJkr:
MsgBo:-.: FIT.Dcscription
l:nd Sub
Pri,'ate Suh T:-.:tFidds_ Changc(lndc'. As InlcgLT)
lI'lnue:-; = 5 Theil
Ift\.tFidds(S) <> "" Then
If Val(t:-;tFields(5)) < () Theil
MsgBo:-; "Negative RL-Order LL\'d"
t:-;tFiclds(5) = 'II'
Endlf
l:nd -If
Endlf
End Suh

Public Sub GenCodcO
Set dhs == OpenDatahase("e:\h\\'aJ'(!s\homewares.ll1cll, ")
Set rstTcmp == dbs.OpenRecordsd("SLUTl * I·R()i\.i
ltemInvenl WIIL~RE Category =" & '"'' & DJ3C\)Jl1hloi S: .,,")
ubs.Recoruscls,Rcfrcsh
If rstTemp.l :OF = False Then rstT..:mpf\1o\'l" ,:1-';[

Data I. Recordsd.Findhrst ("Name ==" & '"'' & D13l\ Il\l[)ol 8:.
H·t!)

'Msgl30x Data I ,Reeordsd.NoMatch
'Data I. Reeordset. MO\'e (0)

If Data I ,Recordsel.NoMatch == False Thcn
Data I.HecnrdseUvlove (())
ThcCategoI}Code == Dat:J 1.ReconIsd! I Cmkl
TheCodc == ThcCatcgmyCodc & rstTcmp,RLcOrdCULl!1t + I
t:-;tFiclds(O).Tcxt == ThcCode
Else
MsgJ30x "The Category not rcgistered"
l~nd H
End Sub

Codes (or Frmllflliflllfenu.{rm

Private Sub Commandl_ClickO
FmllnvcnLSSTabl.Tab = I
FnnInvcnt.SSTabl.TahVisiblc(l) = True
FllnlnvcnLSSTah I.Tab Visiblc(O) = False
FnnlnvcnLShow I

l)n I: ;Tdr GoTo h,mo ler
~'()l 0= inpull3o'("Enkr Item Description", "Quick l-'ind Item")
lla(J'rimaryRS.Recordsd.FindFirst ("Desc=" 8.: '"'' 8.: IIlll 8.:
""')
frtbiPrimarvRSReeordsd.NnMatch = False Thl'n
~latl)nmaryIZS.Rl.'\;ordseLMO\e'(0)
;:b·.;
fl."c': lu, "No Match", vhlnformatiun
tne! i1'
~ ~'.il Sub
.11':lhli.:r:
!/M";2Ilo, I ~IT. De,;cription
tE:n~! Suh
1

* · •.. iPrivate Suh tlatPrimaryRS __ Error(DataErr As Integl'r,
tRrspome As Integer)
! ";'!lis is where you would put CITor handling code .
] '11 IOU want to 1I2,nOrC CITor,;, COn1l11cnt Oll(the ne,t Imc
i 'If)OU want to t;ap them, add code here to handle the111
t MC'!.!lhl' "Data l.'ITOr event hit CIT:" & EITor$(DataEIT)
g I<csponsc = () 'Throw :J\vay Ihe CIT!)r
~ End Sub

'Prh':ttc Sub datPrimar~'RS,_ R('positionO
i 'Serccn.Mou,;ePointer = ybDefalllt

Un Enol' Rcsumc Ncxt
'Thi~: '.viII syncl; the gritl lIilh :hc Master rcwnlsd

I d<ltSccr,ndarvRSRccortlSnllrce = "selcct
j Ic()(\c!,IN,ul1c/,!l\ddrcsslli'orn Icustomcrlll'herc lcodcl='" &
~ i.L!~!'rjll:ar}RSRccortlsdIIC(),jcl 8.: "'" &" Onlerby lcodcl"
\ d:ll:-:,.:condaI\R~Rcli'esh

j 'T!l;,; will di~play the CUITcnt rccord positi(~11 for dynascts and
4 Sl!~ii'~;l1()ts l .

d:I!:'rimaryRS.C'lptiol1 = "Record: " 8.:
I d:,:l)i'imat\'RS.Rccordscl.Al)~,uILltePosilion + I)
Eat! Suh

PriYak Suh tlatPrimaryRS,_Validatc(Action As Intc~er,
S;)n~ As Intcgcr)

'Tllis is where you put validatj()J1 codc
'['!Iis C\'cnt gds called I\'h":!l the l()llowing ;ldillllS occur
'idc'C, Case Action

(';)s<.: l'h])ata!\dioIlMm'cl'lJ's(
Ca';c: vhl)at;t!\ctionM(,Id)re\' iOlls
Ca:;c vbDataActionMovcN,::\t
Cas..: I'h])ata!\ctionMovd .ast
Ca"": I'bDataActionAddNc\\,
l':i~e I'hData!\ctionUpdak
l'asc vbl)ata!\ctionDddc
C:1SC \'h])ataActionFinu
\."ISC \'bData!\ctioIl130okmnrk

~ C~L"';C \·hl)ataJ\clioll(~losc r , '~I.Tecll.MouseP()intcr = l'bDefalllt
.1
~ Lm! Select
j 'Scl.·.,;cn.Molls.,;Poinlcr = vbllourg.lass
f~n;! Sub

*
J'rh'ate Suh DBCmnbol_Lo'~tFocus()
~)11 1 ':I1'or (ToTo handler
,¥ ,

XVI

Datal Rccordsd.FindFirst ("Namc=" &. "'" &.
D13Comilol.Tc'-.t &. ''''')
If DaUll. RCCllrdsd. NoMalch = Truc Thcn
1<ESP = MsgHo'-.("Thc Category *** " & DHCoJllho I &. " .. , 8.:
" J)()es IH)ll ':,isll)o YOU \I ant It I\cglsterl'd (YIN)"". Ih YesNo
+ \'hlnl(ml1atioII)
IfRESP = vbY..:s Thcll
Dat,; I.ReeordscL!\ddNclI
Data I. Rccordscl !I Namej = Dl3Comboi
Data I.Rccoruscl.l fpualc
Data l.Rcli·..:sh
I :Isc
DBCombul = ""

1)1 K'olllbo I.Sdhlclls
End If
I~nd If
I~xit Sub
handler:
MsgBo, EIT.Dcscriptillll
End Sub
Privatc Sllh T,tFiclos_ (.'I1<lllgq Illdc, As lntct',cr)
I r lillIe, c-= 5 llt..:n
Il't'i.lFidlls\.S) <> "" Thn
If Val(t,tFiclds(5)) < () Th<.:11
1'vlsgi3(1x "Ncg:ltin: Re-Ordcr I.cyc\"
txtFiclds(5) ,= ""

I ~nd If
I:nd If

I ~nd If
End Sub

Public Sub GenCotlcO
Set dbs = OpenDatabase("c:'JlI\,ares\hol11cllares.mdh")
Sd rstTcmp == dhs.Op<.:nRecordsctC SJ:! .ECl * FROi'vl
!tcmlnYCllt WIILRE Catq;ory =" 8.: '"'' &. D!3l'uJ1lillll c(
ell lS. Rccorelsds. R<.:t'rcsb
I I' rst'i'l'mp. LOF == hlisc Thcn rstlellll'.M(IYci ,:lst
Datal.RecnrdseLFindFirst ("Namc =" &. "'" &. D13Lillihl! 8:.
.".,)

'MsgBo, Data I.Rccordsd. No]v1:.tkh
'Data I.Rccordsd.Mol'c (0)
If Data 1.l(CCllrdseLNoMat..:il == ""lisc Thcll
Data I ,Rceonlsd.Mol'c (())
llll'Cakg(\I'\(,(\d..: = J);lta 1.lkconisctllt'odl'l
lheCodc == ThcCatcgoryCode &. rstTcmp.R..:c()rdl'ulIllt +
txtFiclds(O).Tc'-.t = TltcCodc
Else
Msgl30x "Thc CakgorY not rcgistered"
l~nd If
End Sub

Codes (or FrmMlIinMellllJrm

Prhatc Sub Command 1_ Clkk()
FrmlnycnLSSTabl.Tab = I
FmlIn\'l~nLSSTab I .Tab Visihle(I) = Truc
FnnlnvcnLSSTab I.Tah Visiblc(O) = Falsc
FnnfllycnLSlw\\, I

~nd Sub
I

hivatc Sub CommandlO_ClickO
~'ramcS.Visibk = True
alOoc = 3
knd Sub ,
i

PrivlItc Sub Command 12 ClickO
.t'rmPavrollInJor.Show I - .
fndS~b

j>rivatc Sub Command 13_ ClickO
hame6.Visible = False
tnd Sub ,
trivatc Sub Command 15_ ClickO
i"rm(JAccounLSSTab I.Tab = 1
lI111GAccounLShow I
~nd Sub

.1
J)rivatc Sub Command 16_ Clicl{O
hlllGAccoLlnLSSTab I.Tab = 0
h·mGAccount.Show 1
jnd Sub

~rivlltc Sub Command 18_ ClickO
pnoc:-; = 6
jCall LabelS _ Click(6)
e~nd Suh
l

\1.

1 Private Sub Command2 _ ClickO
IFnnlnvcnt.SSTabl.Tab = 0 I FnnlnwnLSSTab I.Tab Visibk(O) = True
i FIl11TnvcnLSSTabI.TabVisibk(l) = False
\ FnnIllVl:JlLShow I
! EuuSub
i
,
j Private Sub Command21 ClickO

I
· mooe == I - ,

· ..• FI1. 11.ModilYlnvent.Datal.RecordSource= "SELECT * FROM
i In\'cmJ WH ERE StockType = 'Non-Fi:-;ed'"
~;nl1MoJif)' Invcnt.Data I . Rc1i'csh
~.~ ~nnModilYll1vcnt.Show I
tEnd Sub
r

.. [

' rivatc Sub Command22_ ClickO
imItemlnvenLShow I

• 'ild Sub

•
p.. rivate Sub Command24_ Clicl,O
hmCategory.Show I
f:nd Sub
j

1
.)

friv:tte Sub Command25_ ClickO
.'inCustDdails.Show 1
fnd Sub
1
trivatc Sub Command28 _ ClickO
'loex = 6
tan LabelS Click(G)

XVII

End Sub

Private Sub Command3 _ ClickO
FrameS.Visible = True
mode=· 2
End Sub

Private Sub Command4_ ClickO
FrmStalmcpDialog.Show I
End Sub

Pril'ate Sub ComnHlDd5 ClickO
FI111StudRepDialog.ShO\vl
End Sub

Private Sub Command6 _ Clicl{O
FrameS.Visibk = Truc
mode = I
End Sub

Private Sub Command7 _ ClickO
iil11Transaction.SllOw I
End Sub

Private Sub Command8 _ ClickO
RESP = InputBo:-;("Enter F0Il11 Number'?", "FOl1l1

Validation")
wole =RESP
fll11StudF onn.datPlimaryRS. Refresh
fnnStudFoIl11.datPlimaryRS.RccorliseLFindFirst ("ForlnNt)="
& ",,, & RESP & ""')
If lil11StudFoI111.liatPrimaryRS.Recordsct.NoMatch = True
Then .
well = MsgBox(" F0I111 Number docs not Exist", vbOKCancd
+ vblnC0Il11Ulion)
Exit Sub
Else
FnnRegistcLdaU>rimaryRS.Rl-'CorJSoLlrce = "S1 ~Ll TT *
FROM [StudRcc] WHERE FOl1nNo = " & "'" & REST' & ",,,
F 1l11Register.datPrimary RS. Refresh
FnnRegister.datPrimaryRS.RccordseLAddNe\v
FIl11Register.txtFol1n.Ie:-;t = RESP
FIl11Register.datPrimaryRSF.Reconlsct.AddNe\\'
FnnRegister.datj>limaryRSM.Rceordsct.AddNe\v
FIl11Register.datPrimaryRSO.RecordseLAddNew
FnnRcgister.cmliAdd.Enablcd = False
FnnRegisteL Show I
End If
End Sub

Private Sub Command9 Clicl<O
eboselectmonth.Clear -
cboselectmonth.Text = F0I111at(Now, " dd-mnun-yyyy")
FnnPayrollInfor.Show I
Data4.Refresh
With Data4.Rccordsct
cbobanks.Clear
cbohmlks.Addltem (n All Stan")
Do While .EOF = False
cbob,mks.!\dd Item! [stalTnuml

i
!
j
I
I
1
lv~Next '

[With . . ,
ic1ectMonlh.Vlslble = 1 rue

~
.- .Rcli·esh

, :lc DataS.Recordset.EOF = False
5.RccDrdset.Delctc
~5.Rc.;ordset.MoveNext

f
iSuh

tSUiJ

!
hte Su/) Form LoadO
JccssLcvcl <> I Then
k Visibk = False

!
I~O. Visible = False

... tus13r.r.Pallds(2).Text = UserName
aption = Coy Name .

. 9.Caplion = CoyName '
. ub

t. te Sub LabelS _ C1ick(lndcx As Intcgcr)
'ex == 6 Then
* = MsgBox("Exifing II & CoyName & II ... Continue
t,' vb YcsNo + vbInfonnation)
lsI' co vb Yes Then
Ii
1
jt Sub

t~
J,uh
\
tt~ Sub LabelS MouseMow(lndex As Intcger, Button
\regcr, Shift As i;;teger, X As Sirlgle, Y As Single)
'x <== 2 Then

. Visible = True
7. Visible == False
. Visibh.: = False

-. Visible = False

I
l\ = 3 Or Index == 4 Then *' Visible = False
,. Visible = False
i. Visible = Fals.: I Visible = True

i = 5 Then

IViSiblt: = False
. Visible = True
Vi::.ible = False
fhsible = False
)

~-= 6 Then
l-Ijsible = False
Visible = False
Visible = True
tii'iblc = False
.~

XV III

End If

Iflndex = 0 Theil
Frame!. Visible = True
Framc2. Visible = False
'Frame3.Visible = False
Frame4.Visible = False
Frame7. Visible = False
Framc8.Visiblc = False
Framc9. Visible = False
End If

If Index = I Then
Frame4.Visible = True
'Frame3. Visible = False
Frame2.Visible = False
Framel.Visible = False
Frame7.Visible = False
Frame8. Visible = False
Framc9.Visiblc = Fal::;e
End If

IfIndex = 2 Then
'Frame3. Visible = False
Frame2. Visible = False
Framc4.Visible= False
Frame 1. Visible = False
Frame7.VisibIc = False
Frame8.Visible = True
Frame9. Visible = Fals.:
End If

If Index = 3 Then
Frame2.Visible = True
Framel.Visible = False
'Frame3. Visible = False
Frame4.Visible = False
Frame7.Visible = False
Frame8.Visible = False
Frame9.Visible = False
End!f

If Index = 4 Theil
'Frame3. Visible = False
Framc2.Visible = Fal::;e
Frame1. Visible = False
Frame4.Visiblc = False
Frame7.Visib1e = True
Frame8. Visible = False
Frame9.Visible = Falsc
End If

If Index = 5 TheIl
'Frame3.Visible = False
Framc2.Visible = False
Framel. Visible = False
Frame7.Visible = Falsc
Frame4.Visible = False
Frame8.Visible = Tme

Framc9.Visible= Falsc
l:mIIr

lf Inuc:\ = () ThcIl
'Frmne:>. Visible = hilsc
Framc2. Visible = hilsc
'l-"rame4. Visihk = False
l:ralllc I. Visibk = Falsc
h·ame7. Visibk = Falsc
l:ramd~.Vjsibk = blSt:
Frame\). Visibk = True
I~nu If

I .abel5(Indc:\).FnreColor = \·b YelIuw
hlr i = 0 To ()
Ifi <> Indc:\ Tllcll I.abd5(i).h)rcColor = vbRed
Nc:\ti
End Suh

Private Sub mnu3 _ C1irkO

=\
fI1llFinanccRcport.Shll\Y
End Sub

Prhatc Suh IIlnu-t_C1icl.:O
lL'lllj1 = ""

mml<: = 2
Tlh:FinanciaiFiag = 2
JimF il1iU1CCRcporL ShO\\
End Sub

Prinltc Sub mnuS_ ClicI(O
temp = ""
modc = :'\

I ThcFillancialFlag = :1
i fllllFinanccRcpnI1.SI1ll\\
I

I
lEnd Sub
!

fri,·atc Suh mnu6 _ ClickO
1 tcmp = ""
Inouc = 4
Lh.+inaTIciaIFbg = 4
fllllFinancd{cpoI1. Sh()\\'
1
tnd Sub ,
i
trivate Sub mnu7 ClickO
tmI1 = "" -
j
fodc = 5
FlchnancwlFlag = :)
rllF inanecRcp0l1. Show
tnt! Suh

tinttc Sub mnuAB _ ClickO
~lAboULSho\V I
'Pd Suh

XIX

PriYak Sub lllnuC_Clid,O
On EIHlr (ioTo handler
Set db;; = OpcnDatabasc("c:\1 !I\an:s\[[Oi11C\\;llcs.l11db")
rnyq,len I = "Select * From l'm])c(;lils \\'[JERI': hal < (I"
dbs.E:\eclltc ("DITETE * FRUM Pm])Trasll")
db:>.E:\\..'Cutc (" INSJ :J<.T J NTU Pay DTrash ., & 111\ quel\" I)
RcpTitk = "LIST OF I\LL CREDIT ClJSTOMU<.S"
frIn Vie\\ .CR I J"oIlllulas(4) = "Dcsc =" & "'Total Credit'"
lim Vic\\.CR I ReporU:ileNarne = "e:\1 h\ares\cllsslatll~;.q)t"
fnn View.Show I
E:-.:it Suh
handler:
Msg13o:-.: J :1T.Dcseriptilll1
End Sub

Prinltc Sub 1l1lluCL Clicl,O
lim VicI\ .CR I.ReportFileNarne = "e:\J hI arcs\cllstoll1e:·.rl~l"
RepTitle = "LIST OJ,' Al.L C'l ISTOtv!EES"
lim View.SIIO\\ I
End Sub

Private Sub mnuD_ClickO
On Ennr GDl\) handler
SC! dhs = Opcn[)atabasc(" c:\J 1 \\,lres\1 lome\\ arc~.mdb")
myqucry I = "Sdect * FWI11 Pa\Dctails WI IERI·: h,t!> () "
dbs.h\..'Cutc ("DELETE * FROl\,l PmDTrash"!
dbs.E:\eelitc (" INSERT INTO PayDTrash ., & l11\ljlk'IY I)

RepTitlc = "LlST OF I\U. DU31T l'l JSTOMI:RS"
fml Vicw.CR I .l-'ollJ1l1las(4) = "I)cse =" & '''Tolal Dc:hi;'"
lim Vicw.CR I.RcportFileNamc = "e:\J Jmlres\cllsstatll:-:.!1'["
lim Vic\\.SllO\\ I
J ~:\it Sub
hamIlcr:
MsgJ 30:\ JilT. 1)cscriptioll
End Sub

Private Sub mllui2 _ ClickO
lim View.CR I.J~cporU:ikN;1I11e = "c:\1 !\\;Ires\ituill i.SIl"j'l"

l{cpTitlc = "LIST m 1\L1. ITI':M WillI TIII'1l\
CI\TEGORY"
fnn Vit.:\\'.ShO\\
End Sub

1'n11 Vicw.CR I Reportl:ileNmnl.: = "c:\1 [\\arcskatcg(lJTlpl"
RepTitle = "LIST OF ITEM CI\TECjOR Y"
lim Vicw.ShOl\ I
End Suh

Private Sub nlllu l-t_ Clid.:O
11m View.CR l.RcpnrtFileNwnc = "e:\1 [wares\itemJl1\'cnLrpt"
Rt.:pTitk= "LIST OF ClJRRI:NT INVI:NTORY OF 1':1::MS"
li111 Vicw.Show I
En(~ Suh

Prh·atc Sub mnuPAD_Clicl,O
fnnPass.Show I
End Suh

j
j

t .
i'it'atc Suh mnupf_ Clicl,O .
j'l'Tille '" "l'ROPOSLD PROF[T ON CURRENT STUCK"
Fl~jew.~R l.ReportFikNamt: = ".c:\lI\\ares\pml'ill.IV t"
~'Il\fiC\\':-;ll\)W \ '

lulSuh
~
t'i\'atc Suh IlJlluPl Clicl,O
!nl(;cnll1voicc. Sl]()~ ,
h!l Suh
~

1
ti,atc Sub 1I111USS _ Cliclit;
aIllSdtillg.SSbO\\ I
~lll Suh
i ,
i'ivaic Sub Timcr2_ TimcrO
JI ,;lkI9.Len <= VnnMainMel1u,Len - hllJMainMcllu. Width
ll()() TIlL'll
;.bcl9.1,('\'1 = F rmMainMenu. Wi,Jth
!ld 11'
}bd9.Lcft '" Labd0.Ldl- !()

iHISuh
J

xx

