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l.1 INTRODUCTION 

CHAPTER ONE 

PRINC'fPI.ES OF DYNAMICS 

Everything that really exists \0 the world is called matter. As a branch of natural 

science, physics deals with the properties and interactions of matter and radiation. 

The key progress in the understanding of nature is to base conclusion on the result of 

experimental observations (scienti fie methods). 

Invariably, this natural science uses concepts (unexplained fundamental abstractions e.g. 

time, charge), theories (which connects these concepts and judge by predictive power, 

comprehensiveness and simplicity), 11 udels (constructions to renect the experimentally 

determined facts) and laws which are dl :JCtions from the model. The laws tells us how things 

behave in terms of the theory. 

Mechanics, a branch of physics i ,vestigates one of the natural phenomenon known as 

mechanical motion in relation with their causes (or Dynamics) which form the basis of this 

work. This work will look at bodies as illhey are single particle, group of particles and as rigid 

body. 

l.2 PHYS,~, AL QUANTITIES 

Physical quantities which are :,ynl yms to concepts are used to express laws. There are 

so many of these quantities such as Jen; " mass, time, charge, force, temperature e t.c, that 

some has to be selected and called tllcn'isic quantities from which others can be derived. 

There are standards for each these phy:.ical quantities based on international 

agreement. 

These standards are used to comfl e a given object which implies that the standard must 



be accessible. Accessibility is achieved by creating more readily available secondary, tertiary 

e.t.c standards which are invariable. These standards are known as units of measurement (i.e. 

scale and units). 

The following are selected basic quantities and their respective units known as system 

International Unit (S. I. units). 

S.1. BASE UNIT 

Quantity Symbol Unit name Unit symbol 

1. Length L meters M 

2. Mass M Kilogrammes Ko 
Co 

3. Time T S, conds S ._--
4. Electric current I A 111pere A 

5. Thermodynamic T Kelvin K 
Temperature 

6. Amount of substance mole mol 

7. Luminous intensity candela cal 
~ 

Table 1.2.1: Showing S.1. unit of SOIl1e basic quantities. 

1.3. VECTORS 

1.3.1 VECTORS & SCALARS 

A change of position of a p:lnicle is called displacement. If a partick move from one 

position A to B, the path need not l1c:cessarily be straight between A and B but line A to B 

represent the net effect of the moti,)rt (not the actual motion). This net effect can be represented 

by a line standing for magnitude and a!l arrow showing the direction. Any quantity that behave 

like displacement is known as vectors. 

A vector can then be said to L ,iiaracterised by a magnitude and directions. Other 
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examples of vectors are force, velocity, <lcceleration, momentum electric and magnetic field 

e.t.c. [3 

Fig. 1.3.1 LJisplacement Vector. 

Scalar (;lIantities are quantities tkll has magnitudes but no direction. That is they can be 

represented \\ LJlly by only magnitude. 

Example of scalar quantities are time, mass speed e. t.c. 

1.3.1 VEC108. ALGEBRA 

(1) ADDITJOt'~ OF VECTORS 

~ 

Fig 1. 3. 2 vector Addition 

Two t·r Illore vector can be adckcl together to give a resultant rector [total effect]. from 

fig. 3 1 above vector fLand 12 added to give vector ~. 

f! +b =~ ---------- l. 3. 1. 

for instance if vectors f! and 12 wert: cunsider in 3 - dimension as 

,l -'= axl + <lyl + <izk ............. 1.3.2 

l.3.4 

= (a.. :- bx)i + (<ly + b)i -1 (~Ll + bJk ........... 1.3.4a 
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Similarly, vectors can be subtracted ,.,; 

a - b = a + ( -b) ................... 1. :> . 5 

Addition of vectors obeyed cUll1ul~dive and associative laws 

a + b = b + a ...... 1.3.6 (COlillllU(ative) 

a + (b+c) = (a+b)+c ..... l.j:l(distributive) 

ii MULTIPLICATION OF VECTORS 

Vectors can be multiplied in 1\V0 ways. 

(a) The scalar multiple :- Also lulcwn as Dot product. If two vectors undergo this 

multiplication the result is always a scalar quantity. 

It can generally be shown fur (\Vo vectors!! and 12 in (he same plane separated by 

angle 0 as in figure 1.3.1(a) belJ\'! that 

!! . 12 = /a/*/b/* cos 0 ..... 1.3.8 

(b) The vector product or cross product :- The rt.:sult of cross product of two vectors!! and 

12 is always a vector quantity and always pcrpendi :ular to the plane containing!! and b.. 

It can also be shown for two vector:> Q and 12 11 the same plane sc:parated by angle 0 as in 

figure 1.3.3 (b) below. / 
(J 

fig. 1.3.3 (a) Scalar product. (il) Cross ~ 
(iii) Vector Components 

In some cases (e.g analytical method ), we may need a g;\cn vector in a preferred 
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direction. We then find the projection of the vector in this preferred direction. The 

projected vector in this axis is known as the components of the vector. There are infinite 

number of components of a components of a particular vector.To tind a particular 

component (i.e in the preferred direction) construct a unit vector U at the root of the 

vector along the preferred direction. 

Then the component of the vector &ly A in this direction is 

Au = (A Cos0)u--------------- 1.3.9 

Where 0 is the angle between the vector /, and U
A st:e figure 1.3.4 below; 

, 

! 

...... ; ...................................... r::; u AD 
Fig. 1.3.4 component of vector A in U direction. 

1. 4 ~IATIC VARIABLES 

1.4.1 POSITION V EC [OR 

If we consider;, particle moving in space relative to an origin. Let the particles move 

along a curved part a show in figure 1.4.1 

I 

JY 

kz/ 
~ .. 

.... ~ 
--:-.--It>­

IX 
Figure 1.4.1 Particle moving in space. 

Its position or dispb, .ii,ent from the origin, is measu[,d by the vector £ known as its position 

vector. Explicitly £ l .lii be written as: r = r~ + r)i .. rLk. ----.----.----- 1.4.1. 

1.4.2 AVERAGE \j~LOCITY. 

5 



The velocity of a particles is the rate at which its position changes with time. 

Let ra represent the position wct0r of a panicles in a given frame of reference aI,d rb be its - -

position vector at a later time t in the same fraIne of reference. 

The displacement vector describing the change i~ position is given by 

r = ra - rb ................. 1.4.2 

Hence Average Velocity V is given by 

1.4.3 

Therefore velocity is a vector quantity since it involves both direction and Magnitude 

(Value). It is worthy to note here that velocity is the rate of ChaIlges of displacement which can 

be represented as 

v = In 
Instantaneous velocity 

This is in one dimension. 

In three dimension. 

/11' !II' 
----
/1/ dl 1.4.4 

V = dr 
dt 

= i drx + i Q!1 
dt de 

+ drz .......... 1.4.5 
dt 

V = iVx + iVy + kVz ................... 1.4.6 

The S.i. UNIT OF VELOCITY IS m/s. 

1.4.2 ACCELERATION. 

When a body moves aIld its velocity changes eitha in magnitude, direction or be th we 

say the body accelerate. This quantity, acceleration of a panicle CeJ1 then be defined as the rate 

of change of its velocity with time. 

Suppose that at the instant time t a panicle is with a position v.:ctor ra moving in a plane 

with an instantaneous velocity va. And at a later time t2 its position vector is rb moving with a 

velocity vb. The average acceleration a of the particle is defined to be the change cl velocity 

divided by the corresponding ch':Ulge in till.;':. 
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a = Vb - Va = V ............. 1.4.7 
t2 - tl t 

Instateneous acceleration = a = In V = dv .......... 1.4.8 
t ->0 dt 

Note that if Va = Vb thtn the body is not accelerating i.e. the accdcration = o. Also 

we have a constant (or unifonn) acceleration if the rate of change of velocity with time is equal 

throughout a motion. But if the rate of change of velocity is not same throughout tht In we can 

say the acceleration varies. 

1.5 GRAPHS OF l\lOTION 

1.5.1 DISPLACEJ-.IENT - TIME GRAPH 

When the displacement r of a body under motion is plotted against time 't' as shown 

below, the slope gives the unifonn velocity of the body at all time. 

diopacemfflt 
y 

time, t Fig. 1.5.1 Displacement -Time graph 

Slope = r = V ........ 1.5. I 
t 

1.5.2 VELOCITY- TIME GRAPH 

Plotting the graph of velocity of a body against time gives a straiglll line graph. The 

slope of which gives the accekratiuns of the body at ,my instant. The grapll as shows in fig. 

1.5.2. 
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.... eocity 

.... 

lit 

tme, t 
FIG. 1.5.2 velocity - ti I1c japh 

Slope = = a -------- 1. 5.2 

Notice that the area under this graph gives the displacl Ill:r\l u( the body undi~r 

considerations. 

1.6 MOTIONS 

In the studies of motion one is aimed at looking at rhe various properties of J moving 

particle (or body). Here I will treat all bodies as if they are s ngk p~rticle for convcni,.:nt 

purpose. Motion of particle can be one -, two· or three din .'nsiollal. 

1.6.1. LINEAR MOTION 

The concept of positions, displaceLlcm, vdocilY aild lccderation as concern particles in 

motion have been treated earlier. However, with much pan,uL1r to the linea motion it is 

necessary to bring to fore some simple relationships bc[WecL them <1"i related by Nc\\ton knO\\'s 

as equations of motion. 

(i) FIRST EQUATION OF MOTION 

If U and Yare the initial and final velocities respecl ,ely of a particle in mmion within 

a time t. And recall equation 1.4.7 j lS acceleratioil 

a = V-U ------- l.6.1 
t 

This can be rewritten as 

v = U + at -------------- 1.6.2 
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(i) FIRST EQUATION OF MOTION 

If U and V are the initial and final veicciries respectiely of a particle in motion within 

a time t. And recall equation 1.4.7 its acceleration 

a = V-U ------- 1.6.1 
t 

This can be rewritren as 

Y = 1 J + at -------------- 1.6.2 

(ii) 2ND EQUATION OF MOTION 

Average velocity of the panicle is given by 

Y = Y + U --------- 1.6.3 
2 

Using equ. 1.6.2. 

Y = lh[at + U + UJ ---.----- 1.6.3a. 

But displacement S is 

S = Yt 1.6.4 
Therefore S = Ih[ar + 2UJr ................. 1.6.4a. 

Hence S = Ut + liz at2 ••••••••••••••••••• 1.6.5 

(iii) THIRD EQUATION OF ~IOTION 

From 1.6.2. 
t = (V - U)/a .................. 1.6.6 

using 1.6.6 in 1.6.5 

S = U (V - U) + 1/2a«~»2 ............ 1.6.7 
( a ) 

S = UV - U2 + U2 + y2 - 2t IV 
2a. 

................ a. 
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1.6.2 PROJECTILES 

This described the two dimensional motion of a body th own into the air. That is the 

motion is along a vertical plane. The body undergoing this typ s of motion has a conSklI1t 

acceleration 'g' (acceleration due to gravity) which is directed l lwnwards. To analyse this 

motion we consider its motion in y (vertical) and x (horizontal) dirtctions separately. 

y 
Vo 

I'--'------Vx------~ X 

tig. 1.6.1 path of project describing projectile flll.)tion. 

If the initial velocity of the body under consideration is Vo al I projl?cted through angle Q to 

the horizontal: 

Its vertical component = Vy = Vosin0, .......... 1.6.3 

Its horizontal component = y, = VuCos8 ......... 1.6. f. 

Vx is constant throu;il out and hence the horizontal accelcratil 1 IS LI..'I\). 

ax =:: 0 ............ 1.6.5 

If mOlion alLllg po:,ilivc y direction is [;tl~CI\ as pusi!i\, iIlL:ll 

a) = -g ............ 1.6.6 

10 



At any instant 

Vx = VoCos e ................. 1.6.7 

Vy = VoSin e - gt ............ 1.6.8 

Vmag = -VV/ + V/ ....... 1.6.9 

Tan8 = V/Vx ••••••••••••••••• 1.6.10 

horizontal . istance moved at any time t is 

x = (V oCos8)t ................... 1.6.11 

vertical distance covered is 

y =(VoSine) t- 1/zgt2 
••••••••••••••• 1.6.1 

But from 1.6.11 

t = x/V oCos8 ............... . 1.6.13 

Using 1.6.13 in 1.6.12 we have 

y = (tan 8)x - (gjx2 ................. 1.6.14 
(2V2oCos28) 

1.6.14 is a parabolic equation in x. 

If y = 0 

x = VOl Sin 20 ......................... 1.6.15 
g 

equation 1.6.15 is the maximum horizontal distance 1\:1 own as RANGE. 

1.6.3 CIRCULAR h.l0TION 

Circular motic)!1 could be vertical or horizonLI ill this section I shall treat only the 

horizontal circular motion of an object which travels L jual distance in equal time. In this case 

II 



the magnitude of the velocity is constant but not the direction. Therefore we can say that the 

speed of the object is constant since speed is a scalar quantity. The direction of the velocity at 

any instant is along the tangent to the circle at that point. 

p 

/. 

e 

vq 

1.6.2Showing an object describing a Circular motion 

Angular velocity denoted by w (omega) is defined as angle swept out in unit time by the 

line joining the body and the center of the circle (radius). And it is given as 

w = elt ............. 1.6.16 

And linear speed = V = r0 = rw ................. 1.6.17 
t 

The acceleration, a, of the body describing circular motion is 

a = V"/r ........................ 1.6.18 

or a = v,)r ......................... 1.6.19 

And is always directed towards the centre of the circle. 

One may want to ask what keeps a body in circul; r motion? 

Detinition (centripetal force) 

This is the force that is responsible for keeping a body in a circular motion. 

Since F = ma ............... 1.6.20 
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• 

or F = my2/r ............. 1.6.21 

or F = mw2r .............. 1.6.22 

1.7 LINEAR MOMENTUM 

Linear momentum of a body in motion can be interpreted mathematically as the product 

of its mass and velocity. That is if M is the mass and Y is the velocity of the body under 

discuss we have 

p = 1\.\' .............. 1.7.1 

Since P is a product of scalar (mass) and vector (velocity) then momentum is a vector 

quantity. 

Definition (lnpulse) 

Let a force F be exerted on a body during a collision. We assume that the force has a 

constant direction. And that the collision last for a time t we can write the change in momentum 

as 

dp = Fdt ............... l.7.2 

The left side is P2 - PI which is change in momentum of the body. 

The right side, which measures the strength and duration of the collision force is called 

the impulse and denoted J. 

1 = fFdt ....................... 1.7.4 

1.8 CONSERVATION OF LL'iEAR MOMEl\;TUl\l 

MOt;1cntum possesses an interesting and important property inherent i quite a few physical 

quantities. This is the property of being conserved. It consists in that the geometrical sum of 
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momenta of bodies which interact only with each other remain unchange. 

The principle of conservation of linear momentum can then be stated as "when the 

resultant external forces acting on a system is zero, the total linear momentum of the system 

remain the same . 

.. F = df = 0 ............. 1.8.1 
df 

For instance if Wl ";(lilSider collision between two partic]c;s, such as masses M\ and M2 

as shown below: 

----7-------~ r~ 

Fig. 1.8.1 collision between two bodies Ml and M2. 

~ 

During the brief collision these panicles exert large forces on eadl other. At any instant 

Fl is the force exerted on particle 1 by panicle 2 and ""2 is lhe IUfce exerted a. particle 2 by 

panicle 1. By experiment it is found that Fl and F2 are both eql:al but in reVL' se direction. 

Considering particle 1 

Considering particle 2 

LJP~ = fF2dt = F2 LJ{ .............. 1.8.3 

But F\ = - F2 ............................... 1.8.-+ 

OP = LJp\ + OP2 = 0 ..................... 1.8.5 

14 



1.9 LAWS OF MOTION 

Here some of the laws that summarizc; the gl'llcral behaviour of bodies in mOl ion shall 

be discussed. 

Definition (FORCES) 

Force could mean pull or push. In a more general term force can be said to be quamity 

that alter the state of object (either stops or causes motion). Alternatively we can define force in 

term of "acceleration a given standard mass (body) will experience when placed in a suitable 

environment. 

Example of forces are, gases or liquid exert r )rces on container, tension in {he rope, 

ruberbands and springs exerts forces on the object au.ached to their end, t\\'o bodie::; mbbed 

together exens frictional forces on each other C.LC. All these are contact forces. Gravitational, 

electrostatic and magnetic forces are some of the forces that does not involves cOl1lact. 

In measuring forces e. g. using elastic material, it is found that the force aened on the 

.material (comprehension or stress) is proportional to the change in length of the elastic material. 

~---------------------~ 

L-__________________________ I:::::j 
~~~----.-----------~ 

10 AI 
fig. 1.9.1. Elastic material being acted upon by a force. 

F a (l - 10) = J .................. 1. 9. 1 

F = K I ............................ 1.9.2 

Where k is the force constant for the material under consideration. 

(i) NEWTON'S FIRST LAW OF MOTION ----- ----

It says t1 it 'everybody will continue in the state of rest, or unifonn motion in a straight 
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line unless an impressed force act L:)(lil it". 

Mathematically it can be iterpret~d ~J 

If F = 0 

C:JV = 0 ...................... 1.9.3 

To best understand this law we can consider these two examples. 

(a) The passangers in a stationary vehicle jack beackwards whLn the car suddenly moves. 

and 

(b) The passangers in a moving vehicle jack forwards when the driver smiLknly applied 

break. 

These (\1.0 examples tells us that every ol,ject don't willingly change their state and this 

can be generateJ with the Newton's first law. 

(ii) NEWTON'5 SECOND LA W OF MOTION 

The fim i:.tN did not tell us anything about the nature of the force. It is only a statement 

about the behaviour of objects ill the absence of any force. But the second law of motion 

helped us to answer a fund~melltal question that "\\ hat effect will the same force produce 

on different bodies with different properties (mass)?" 

The answer in the overview is thus, differeIH «(,xLkration will be produced. 

Therefore the statement or the l.nv says "the r,II L of change of momentull1 of a body is 

proportional to the force applied" and it take:. pi-lee in the directiolls of tl1.; force. 

mathematically, 

F ex Mv - ~,lll .................... 1.1).4 
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F = KM (V-lJ) .................... 1.9.5 
t 

out V-U = a ......................... 1.(J.6 

F = Kma 

If a force of 1 Newton is appl ied LO a mass of 1 kg it produces an accelaration of 1 m/s. 

Hence k = 1 ~nd 
F=ma .................... l.9.7. 

(iii) NEWTON'S THIRD LAW OF MOTION 

When two bodies acted on each other, the t\':o exert forces mutually on 

one another. These forces are equall but in contrary directions. Simply 

put Newlon said "To every action (force) there is always an equal but 

opposite reaction (force)". 

Math:.::matically, if FAU = action of body A on body Band Fu.\ = reaction 
01 

of body B on body A 

F AU := .. F UA. ••••••••••••••••••••• 1.9. 8 

(iv) KEPU:R'S LAWS OF PL\NFTARY MOTION 

The following three statem~nt credited to Kepler summarises the planetary 

moti,.ms. 

(a) Each planet moves in an elliptical path with the sun at one focus. 

(b) The radius (distanc~ between centre of sLln to cellter of planet) or the moving 

planet sweeps out (qual area in equal time. 

(c) The square of the period of revolutions of the planet cn aboLlt the sun IS 
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proportional to the cube of the mean distance from the sun i.e. 

planet 

mean distance ( 

sun 

Path of revolution 

Fig. 1.9.2. showing planetary motion named the sun. 

(v) LAW OF UNIVERSAL GRA VIT ATION 

Every panicle of matter in the universe attracts every other panicle with a for\~e which 

is directly proportional to the product of their masses and inversely proponi, Hlal to the 

square of their distance apart. That is if MI and tvL are twO masses s,-'j):1rated by 

distance r in the universe they attract each Gthl:r with a force F given by 

Fa MI M2 ......................... .,l.9.10 -....,--
r 

or F = G tvll M2 ......................... 1. 9. 11 -.,,-
r' 

When~ G is a constant of proportionality known as universal gravitation. 

1.10 \VORK ~D ENERGY 

DEFINITION (WORK) 

Work as a concept and by its definition is more restricted. That is not all Il1LiSCuiar 

effons cab be regarded as work. Example of this is a basketball player holding a be:] I in his 

unstreched h~Uld. Because the ball is stationary the player does no wurk on the ball, 

nevertheless ile feels tired. 
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he feels tired. 

Therefore we can say work is being done when a force: acts on a body and cause it to 

undergo a displacement. 

The unit of work is Joules U). 

(i) WORK DONE BY A CONSTANT fORe!:. 

Since 

From the above definition of work, i; a constant force acts on a body, the infinitesimal 

mechanical work (OW) done by the constant force FOil the body can be expres~cd as Dw 

= FC:lSCos 8 ............................ 1.10.1 

where C:lS is the infinitesimal displacement and e IS the angle between the vectors 

displacement and force. 

Equivalently, the work equation above can be express as dot product of two vectors force 

and displacement as 

C:lW = F. DS ............................ 1.10.2 

F.DS = FDSCosQ ......................... 1.10.3 

(ii) WORK DONE BY SET OF FORCI-::S 

Single force was been considered so far. t--.lore than lme force (set of forces) can act 

upon a particle and the total work done on thl~ panicle is the sum of the individual 

workdone by each force when they act separately Uil [lie particle 

Therefore, 

C:lW total = OWl + C:lW 2 + C:lW, + ....... + C:lW" ....... 1.10.4 

OWtotal= OW; ................................... 1.10.5 

C:lW total = Fl' OS + F2 • OS + F3 • C:lS .+ .............. Fn. OS ... 1.10.6 

19 



oW total = (F\ + F2 + F3 + ..... + Fn). OS ....... 1.10.7 

OW total = F. OS ................................. 1.10.8 

where F is lbe resultant effect of all the forces. 

(iii) WORKDONE BY VARIABLE FORCES 

Here we examine cases in which a particular force F acting on a panicle depends on the 

position of the particle. If we consider particle moving in a straight line say x-direction 

and if the force F act only in the: x-direction but varies with x we have 

OW = F(x).Ox ........................ 1.10.9 

The total work done by F(x) during the displacement of the panicle from the point 

A (x =xA) to point B(x =xb) when the interval between A ::nd B is divided into tvl equal intervals 

is given by 

W = EN
n_1 F(xJ. OXn ••••••••.••....• 1.10. to 

OW = F(xn).Oxn................. 1.10.10 

Alternatively we can write 

ow = lin EN
n_1 F(xn) OXll 

And this can be shown graphically as below. 

~) 

fig 1. 10. I. graphical rcp. 
of total wmk done by variable 

o I =>forcc. 
~L> X. 

The area under the above graph between X,\ and Xu gives the total work done by the 

variable force on the particle. 
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1.11 WORK - ENERG Y PRINCIPLE: 

Considering a particle with mass 01 that is acted upon by a constant net force F. Thus 

leads to a constant acceleration for the parti.:le. 

a=F/m .................. 1.I1.I 

If we consider x-direction only and that thL particle is at point A with a velocity VA' 

After a time t, the particle is at point B with velocity VB therefore 

since 

a = Va-.:..-Ya ..................... 1.11.2 
t 

S = (Vrd-YA) t .................... 1.11.3 
2 

F = ma ............................. 1. 11.4 

W = FS .............................. 1. 11.5 

W = mas ............................. 1. 11. 6 

W = 112m (VH_=-.~\) (VIl + V,J t ....... 1.11.7 
t 

The quantities 1/2mV\1 and 1/2MYc,\ afe thL particle's kincric enc:rgies (energy due to 

motion) at points B and A respectively. If we denote thv,e energies as KIl and KA then the work 

equation becomes 

Hence 

W = LJ K = Ku - K,\ ..................... 1. 11. 10 

This is the work -Energy principle and it holo;:, true for both constant and variable forces. 
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DEFINITION (POWER) 

Consider a force F(x) that is one of the forces acting on a particle. The work done by 

til is force during a general displacement that requires a time Dt is 

ow = Fx Ox ................. : ........... 1.11.11 

To obtain the rate ~t which work is done, we divide equation 1. 11.11 by Dt and when 

t;lking the limit Ot - > 0 it gives 

gw =lim L'lw = lim I,LJX ........ 1.11.12 
d tOt - :> 0 0 t 0 t- > 0 0 t 

dw = Fx dx .............. 1.11.13 
dt dt 

dw = Fx VA (ill one dimension) 1.11.14 
dt 

By generalization 

dw = fx Vx + f) Vy + Fz Vl ......... 1.11.15 
... Jt 

Therefore dw = F.V ........................... 1.11.16 
dt 

The rate at which work is done, d\\', i:) called the power denoted as P 

dt 

Thus P = dw = F.V ....................... 1.11.16 
dt 

DEFINITION (POTENTIAL ENfRG.Yl 

There is a kind of energy associatt:cl with position of particks known as potential energy. 

Suppose a weight lifter raises a wei:.'.llt very slowly fiUll1 the floor to a shelf at height h. 

I orce applied on the weight f is just equ;.l to that of the gr~;\itallonal force 

Fg =mg ............. 1.11.17 
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work done = F.h = mgh ............ 1.11.18 

If the weight is allowed to fall and its kinetic energy is measured just before it touches 

the ground (tloor) it is always equal to the potential energy gained during raising the weight. 

1.12 CONSERVATION OF ENERGY. 

The work-energy principle discussed earlier only touched on the kinetic energy and work 

done concepts. If now we add the concept of potential energy we can now get a more revealing 

formulation of energy consef\'~1lion. 

If U A and Uu are the potential energies of a particle at position A and B respectively then 

we can say 

UB + 1/2My2B = UA + ~'2My2u + Fdx = E ........ 1.12.1 

The content of the abo\'.: equations can be stated as follows: 

When a particle moves from a point' A' to another point' B', the mechanical energy at 

point 'B' is equal to the mecll;lflical energy at point' A' less the disciparive work done against 

frictional force. 

From this if we consider a close system and without friction then \\ e can s,ay that the total 

energy of ;1 particle 'E' is constant at all point (or timt:), 

1.13 COi\SERVATIVE & NON-CONSERVATIVE FOI{CES 

Sillce the potential energy depends on position of the panicle in a force field, then the 

work dOl .. l1I1 the particle by the force field is given by 

W(A - > B) = 

II ,Lis work done is indepenuent or path t'ollmvcc! Ly th.: panicle then the [urce is a 

conserV:.llI\,: force. If a particle move round from A to B :.110 back to A following arbitrary 
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~ifferent path to achieve this, the potenti"l .::nergy of the particle :It the end of the trip is the 

same as it has at the beginning. Gravitatiullal force is an example of conservative force. 

Any force field that does not behave in this way is said to be non-conservative. 

1.14 SYSTEM OF PARTICLES 

Up to this point we have been looking at body as if they are single particle. Let us now 

see what will happen if more than one particle are involved. 

(i) CENTER OF MASS 

o. 

When dealing with system of particl-.:s the interest is to enquire about the motion of the 

system as a whole. To do this it is llelpful to use the c.:nttr of mass concept. The point 

that corresponds to the center of lllass the "effective mass center" of the system of 

particles. That is to say if all the mass of the object \vere to be concentrated at this 

point, the resulting point - like li:ass would have the same transnational kinematic 

behaviour as the extended mass sy:;lLll1 as a whole. 

Precisely, the center of mass vcel-Ir, denored as R, of n particles is 

R = mlII + m2r, + I11:L __ 1 .... + Il\J" ...... 1.1 ... 1-.1 
ml + m2 + m3 + ........ + mn 

R = _1_ En'=l M,rj 

tvl 

........ 1. 1:.J.. la 

......... 1.1·L 1 b 

.......... 1.1--1.2 

Considering a system of 4 particl:: ... ,hown ill fig. 1.1'+. I \\ilh reference to an origin 
JVI, Cil "".2 



• 

Fig. 1.14.1 system of 4 particles. 

The center of mass R for this system is given by 

R = M1JI-± M0> + M3..lJ + M, r, 
Ml + Ml + M3 + M.j 

Generally in three dimensions 

(ii) MOTION OF CENTER OF MASS 

If rem is the position vector identifying the center of m:I';S at a particular point and if M 

is its total mass, then 

By first derivative 

Mdrm = Ml dr 1 + M2 dr2 + ~13 dr} + .... + Mn elr" ...... 1.14.6 
dt dt dl dt dl 

Where VCIl1 is tht: vdocity of the anter of m; ss and Vn is the veloi . df the J:l/1 panicle. 

'file second derivative. 

MelYem = M1elY I + M2 dV 2 + M3 dY3 + ..... + ~1 .. dYn ....... 1. I-US 
dl elt dt elt dr 

where acm is the a...:celeration of the center of mass. 

If 

Macn = Fl + F2 + F} + ...... + Fn ...... 1.14.11 
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From Newton's third law of motion it is clear that each pair of particles exert equal but 

opposite forces on one another. Hence the internal forces of a system of particle add up to zero. 

Therefore 

Macn = Fext. 1.14.12 

(iii) WORK AND ENERGY 

Work done = f Fext dX.:m ••••••••••••••••• 1.14.13 

W = f Macm dX'1ll ................. 1.14.13a 

= f MdVclI1 dXcm 

dl 

= fMVcm dVclll 

1.14.13b 

1.14.13c 

Hence W = f Fext dxclTI = 1/2 MVcm2 
•••••••• 1.14.14 

Change in kinetic energy L::lK is given by 

W = L::lK = KCITI2 = Kem l = L::lKem ........... 1.14.15 

This is the work - Encrgy therein. 

(iv) LINEA MOMENTlJM 

Each particle h<1s a momentum given by 

Pn = l\inVn ............. 1.14.16 

Therefore for rile general system momentum is given by 

Pem = 1\ + P2 + p} + ...... + PH ....... 1.14.18. 

And that the cOilscrvation princ:iple of linea momcntum still holds for system of particks 

L::lPcm = 0 ............... 1.14.19. 

+ PH = Po = constant .. 1.14.20 

26 



1.15 ANGULAR MOMENTUM 

In rotational motions, the analog of linear momentum is the angular momentlll1. If we 

consider a particle of mass ' m' and linear momentum ' P' at a position described b:' position 

vector r relative to an origin. We can define the angular momentum I of the pal [icie with 

respect to the origin to be 

l=rxP ............ 1.15.1 

It magnitude is given by 

I = rPSin8 ....... 1.15.2 

Where 8 is the angk between rand P and the direclionA the angular momemum IS 

normal to the plane formed by rand P. 

Angular momentum is often called the moment of (lillcar) il10mentum. 

1.16 HARIVIONIC OSCILLATORS 

Any object that moves to and fro such that its accekraLiu.: ,,'aries with its displacement 
~ 

from a fixed point and that the acceleration is always directed towalJ::; the fixed poim is said to 

be an harmonic oscillator. 

If there is no frictional and external forces actllig the motion IS known as simple 

harmonic oscillation. 

If a frictional force is present then the motion is Damped harmonic oscillation while it 

is a forced harmonic oscillation when there is an external force driving the object. 

Example of S.H.M is a simple pendulum while object ,tltached to a sprJ:lg balance 

inserted in tluid experiences damped harmonic oscillation. 
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(i) SIMPLE HARMONIC MOnON 

The general equation for obji:cts describing S.H. M is 

d~ + k x = 0 ....... 1.16.1 
ar n1 

eq. 1.16.1 has a general solution given by 

x = A Sin wt + BCoswt ...... 1.16.2 

dx = WACoswt - WBSinwt ..... 1.16.3 
dt 

cbx = -W2(A Sinwt + BCoswr) ...... 1.16.4 

Ifwe use equations 1.16.2 and 1.16.4 in 1.16.1 \ve ha\'e 

w2 = kIm ................... 1.16.5 

====> W = .yk/m ................... 1.16.5a 

This is the angular frequency uf the panicle, 

At every 2rr/w interval of tinl~ [lie motion repear itsel r. TIJal'!, Ife, 

2rr/m is the paiod of the motion T. 

T = 2rr/w .............. 1.16.6 

T = 2rr.ym/k ............ 1.16.7 
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This is the period of all :notions govern by 1.16.1. 

The frequency of S.H.?"! is given by 

F = Iff ............ 1.1G.8 

F = 1I2n(,jk/n,) ....... 1.16.9 

If we plot the displacemem x against the time [ for S.HolvI described by equation 1.16.1 

we have 

c 
Q) A: 

~ 
;1 0 

0 T 
li / 
~ -"/ 

'0 

Recall x = A sinwt + BCosw[ ............... 1.16 

The velocity of an objell cl..::scribing S.H.M is 

v = dx = WACoswt - WBSinwt ..... 1.16.11 
d[ 

And the acceleration is 

a = d"x = - \\,2 (ASil \, I + BCoswt) ........... 1.1G.12 
d?" 

Hence a = - W2x ............ ........ '" 1.16.13 

All these can be represeu,:l: graphically as 
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t1f'r1t-; 

Fig. 1.10.4 Relationsl.ip between x, v, and a in simple I 1. t, I. 

(2) ENERGY CONSIDERATION OF S.H.~I 

For all harmonic motiO!I$ including S.H.M in which no d,-·.~c:riptive force (lcts, the total 

mechanical energy E L 3iven by 

E=K+V ........... 1.16.14 

And that it is conserved. 

L d· 1 \ vI" l-et ISP acement x = [.Smwt ................ . 10 . .) 

The potential energy lJ = 1/2 kx" ........... 1.16.16 

= /2 KA2 Sin\vr .... 1.16.17 

This has a maximum v~due 1/2 KA" and a minimum valul' O. 

The velocity is given by 

v = cLx = A WCoswt ............. 1.16.18 
at 

Hence The kinetic Energy is given by 

Ke = 1/2MV2 .............. l.16.18 

Ke = 1/2MW2 ,\~ Cos~r ....... 1.16.20 
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It also has a min. value 0 and a maximum value Ij2KA~ clU'I,g the motion. 

Recall E = U + K 

E = IhKA"Cos:Wt + 1/2 KA2 Sin\\'t ............ 1.16.22 

= 1/2 KA 2 (Cos:Wt + Sin:Wt) 

But Cos20 + Sin20 = 1 

E = 1/2 KA1 ............... 1.16.~3 

From this relationship 

v = dx = + -V(klm(A2 
- x")) .............. 1.16.25 

dt 

E(=U + K) E = U+K =1/2KA2 

~ at=u + l:) 

tXXX:XX:X 
"\ ; u 

\" 
.. \ 

(112)t T 

(3) DAtvlPED HARMONIC OSCilLATION 

Let us now treat oscillations experiencing frictional fOlLI.~ j which is proportion [0 the 

magnitude of the velocity of [he oscillator. 

The general equation governing D.H.O is given by 

md1x + bdx + kx = 0 ......... 1.16.26 
df'dt -

And the general solution sati~fyil1g equation 1.16.26 is 
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Subject to restriction to restricti"n of conservation of energy in the process 

...... 2.3.9 

(1) PARTITION FUNCTION 

In the above discussiun if we treat M" i\lb Mi' 'N, as function of energies Ej , 2. 3. 8 and 

2.3.9 requires that 

Nj = ctExp{13E;} ...... 1.3.10 

for indices i, j, k,l where ct all(~ f3 are constants independent of which of (he four sta(a 

we look at 

Therefore 

nj = ctExp{13E;} ...... 2.3.11 

For isolated system the additional restrictions are 

(1) total molecule N = ,I: ct Exp;nr.J .... 2.3.12 

(2) and total energy E = I:, ct EjE',[)(13EJ ..... 2.3.13 

from equation 2.3.12 

ct = --!-N,",-_ 
jI:Exp{f3EJ ................. 2.3.14 

Therefore equa(ion ................... 2.3.11 becomes 

ni = N Exrff3E;} = NExp{lH;} .......... 2.3.15 
I:Exp{f3EJ ~ 

Where ~ = ~Exp{I\EJ ................... 2.3.16 

is an enormously important quantity the single components partition functioll 

(2) QUANTUM STATISTICS 

We are still considering a gas \ ,f non-interacting (or weakly interacting) idel~tical particles 
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SBE - SBE '" SBE(i) 

IF MSBE > SBE(i) 

h.1SBE - MSBE 

ELSE 

MSBE- SBG(i) 

ENDIF 

ENDFOR 

AVEN- A/TBE 

FOR i- 1 to n 

OUTPUT i, SBE(i), Ni(i), gi(i) 

ENDFOR. 

OUTPUT "Average panicle in states, A VEN 

OllTPl,lT "Total number of microstates" TilE 

OUTPUT "Most probable state", MSBE 

CASE F 

SFD = 1 

OUTPUT Particles are identical, inistinguishabk ~,I1(! l!laximum of one panicle 
in a level. 

FOR i - 1 to n 

OUTPUT Supply the value of degeneracy 

INPUT gi (i) 

INPUT "No. of panicles" Ni(i) 
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END FOR 

FOR i - 1 to n 

LET V - giU) 

TRANSFER CONTROL TO SUBROUTINE FOR FACTORIAL 

Restate the answer into ANSI 

LET V - gi(i) - Ni(i) 

TRANSFER CONTROL TO SUBROUTONE FOR FACTORIAL 

Restate the answer into Ans2 

LET V - Ni 

TRANSFER CONTROL TO SUBROUTINE FOR FACTORIAL 

Restate the answer into Am3 

SFD(i) - ANSI 
ANS2 * ANS 

SFD - SFD * SFD(i) 

OUTPUT i, gi(i), Ni(i), SFD(i) 

ENDFOR 

OUTPUT "Total microstate is", SFD. 

CASE ~ 

5MB - 1 

OUTPUT No restriction, identical but distinguishable p~trticks. 

INPUT "total particle in the system" N 

FOR i - 1 to n 

INPUT "particle in the level" Ni(i) 

64 



INPUT "degeneracy" gi(i) 

LET V - N 

TRANSFER CONTROL TO SUBROUTINE FOR r~ACTORIAL 

Restate the answer into ANS.:t 

LET V - Ni(i) 

TRANSFER CONTROL TO SUBROUTINE FOR FACTORIAL 

Restate: the answer into ANS5 

ANS6 _ giNi 

5MB(i) - ANS.:t * ANS6 
ANS5 

St-.1B = 5MB * 5MB(i) 

OUTPUT i, Ni(i), gi(i), St-.,1B(i) 

ENFOR 

OUTPUT "Tulal state is" 5MB 

ENDSELECT 

OUTPUT t-.!ORE COMPUTATIONS? YIN 

INPUT CH 

ENDO 

SUBROllTINI~ (FACTORIAL) 

FACT <i- 1 

FOR i <i- 1 to V 

FACT - FACT >.< i 

~ Ii~ FeR.. 
g"e-:ru rt.H 
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CIIAPTER FOUR 

EXPERllVIENTAL EXAMPLES 

4.1 INTRODUCTION 

In the previous chapter, syst~ms were designed to solv~ ::.Oll1e specific 

physical problems. Here the system:.; are implemented with real ,lata and the output 

presented. The following wen.! the inputcd data. 

4.2 HARMONIC OSCILLATOR 

In this section, kt us consider a harmonic experiment ut' a mass lOkg 

attached to a spring of spring COil stant of 1000 and an <lmplilLlck: of 1. Using the::.e 

data, values in the harmonic oscillator system designed, tile [(.l[v,'/ing properties or 
'. 

the ham10nic oscillator (body) \ven~ conspicuous as seen ill lh~ I.hllpUt. 

The output ranges from lhe table of values to gr:lplls ur nrious para1ll2tcrs 

as they vary in relation to one another. 
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MENU KEYS 

(1) Calculation Properties 

(2) Table of values 

(3) Graphs 

(4) displacement time graph 

(5) velocity _ time graph 

(6) acceleration time graph 

(7) kenergy time graph 

(8) penergy _time graph 

(9) kenergy _distance graph 

(10) penergy distance graph 

(11) Exit: 

options ? I 
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The value of Mass .............. ? 10 

The value of Spring Constant ... ? 1000 

The value of Amplitude .......... ? 1U 



diplacement velocity aCe eln penel:gy kenergy tenergy time 
0.000 10.000 0.000 0.000 500.000 500.000 0.000 
0.100 9.950 -9.983 4.983 cl ~ 5.01 c, 500.000 0.010 
0.199 9.801 -19.86'/ 19.735 480.26' 500.000 0.020 
0.296 9.553 -29.55:' 43.666 <1 ",6 . 3 3 '1 500.000 0.cJ30 
0.389 9.211 -38.94: 7':).823 424.177 500.000 0.0·,10 
0.479 8.776 -47.94 114.924 385.076 500.000 0.050 
0.565 8.253 -56.ti6! 159.411 340.5139 500.000 0.060 
0.644 7.648 -64.4;;2 207.508 292.492 500.000 0.070 
0.717 6.967 -71. 7 .6 257.300 242.700 500.000 0.030 
0.783 6.216 -78.333 306.801 193.199 500.000 0.090 
0.841 5.403 -84.J47 354.037 145.963 500.000 0.100 
0.891 4.536 -89 ... 21 397.125 102.875 500.000 0.110 
0.932 3.624 -93.204. 434.348 65.652 500.000 0.120 
0.964 2.675 -96 :'.56 464.222 35.778 500.000 0.130 
0.985 1.700 -98. '~,45 485.556 14.444 500.000 0.140 
0.997 0.707 -9'1.749 497.498 2.502 500.000 0.150 
1. 000 -0.292 -99.957 499.574 0.426 500.000 0.160 
0.992 -1.288 -')9.166 491.700 8.300 500.000 0.170 
0.974 -2.272 -97.385 474.190 25.810 500.000 0.180 
0.946 -3.233 94.630 447.742 52.258 500.000 0.100 
0.909 -4.161 -90.930 413.411 86.589 500.000 0.200 
0.863 -5.048 -86.321 372.565 127.435 500.000 0.210 
0.808 -5.88:::, -80.850 326.833 173.167 500.000 0.220 
0.746 -6.66: -74.570 278.038 221.962 500.000 0.2~)O 
0.675 -7.371 -67.546 228.125 271.875 500.000 0.2"",0 
0.598 -8.0J 1 - 5 9.84 'I 179.084 320.916 500.000 0.250 
0.516 -8.5 )9 -51.550 132.871 367.129 500.000 0.260 
0.427 -9.(41 - 4 2 . '/38 91.327 408.673 500.000 0.270 
0.335 - 9., ,22 -33.499 56.108 443.892 500.000 0.280 
0.239 - 9. 710 - 23.9.::3 28.620 471.380 500.000 0.290 
0.141 -9.~00 -14.112 9.957 490.043 500.000 0.300 
0.042 _C' .991 -4.1S/J 0.864 499.136 500.000 0.310 

-0.058 ,- ,.983 5.837 1.704 498.296 500.000 0.320 
-0.158 - _ .875 15. TiS ,.12.442 487.558 500.000 0.330 
-0.256 9.668 25. S~A 32.651 <'167.349 500.000 0.340 
-0.351 -9.365 35.0'/8 61.524 438.476 500.GOO 0.350 
-0.443 -8.968 44.252 97.912 '102. 088 500.000 0.360 
-0.S30 -8.481 52.9.S'1 140.363 359.637 500.000 0.3'/0 
-0.612 -7.910 61.186 1en.185 312.815 500.000 0.380 
-0.688 -7.259 68.777 236.511 263.489 SOC) • 0 a 0 0.390 
-0.75' -6.536 75.6dO 286.375 213.625 500.000 0.400 
-0.813 -5.748 81. 8~.:8 33<1.788 165.212 500.000 0.410 
-0.8 c ). -4.903 87.158 379.822 120.178 500.000 0.420 
- 0 .9 L6 -4.008 91.617 119.680 80.320 500.000 0.430 
- 0 . ( 52 -3.073 95.16'.1 452.773 47.2-:'.7 500.000 o . 4 ~1 0 
-0. )'/8 -2.108 97.7S3 '177.782 22.218 500.000 0.450 
-0. CJ94 -1.122 99. 3'~ 9 '193 .711 6.~~89 500.000 0.460 
-J .000 -0.124 99.9S<>' 499.92: o. UTI 500.000 0.,170 
-\ .996 0.875 99.616 <i96.172 3.828 500.000 O.'iSe. 
- J.982 1.865 98.2,lS 482.607 17.393 500.000 0.4S0 
, 0.959 2.837 95.8'.;2 459.768 40.232 500.000 0.500 
-0.926 3.780 92.51:2 ·128.567 71_4~3 500.000 0.510 
-0.883 4.685 88.31G 390.247 109.753 500.000 0.52\,) 
-0.832 5.544 83.2;"'; 346.336 153.664 500.000 O. ':',;30 
-0.773 6.347 77.2'/7 :298.584 201.416 500.000 0.540 
-0.706 7.087 70 . 5'.:~i 248.895 251.105 500.000 0.'j~j0 

-0.631 7.756 63. L 'J 199.250 300.7S0 SOO.OOO 0.S6C! 
-0.551 8.347 55.0t. CJ 151.G2El >1£) . 3 'I=~ fJOO.OOO U . ~J 7 C 

-0.465 8.8S5 46.4'~~J J.07.~j2~ )')2.0'/1 SOO.OOO 0.:"0(; 

-0.374 9.275 37.3 r'" 'j 69.893 ·13 0 . 107 500.000 O. '..90 
-0.279 9.602 27.9· .) 39 _ 03 '! 460.963 500.000 O.bOO 
-0.182 9.833 18.21? 16.592 483.408 500.000 0.610 
-0.083 9.965 8.30 :; 3.452 49G.'.AC SOO.OOO 0.620 
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0.117 9.932 -11.65', 6.791 493.208 500.000 0.640 
0.215 9.766 -21.51:. 23.138 476.862 500.000 0.650 
0.312 9.502 -31.15,1 48.528 451.472 500.000 0.660 
0.405 9.144 -40.48~) 81.950 418.050 500.000 0.670 
0.494 8.694 -49.411 122.072 377.927 500.000 0.680 
0.578 8.157 - 57 . 8 Lj:1 167.295 332.705 500.000 0.690 
0.657 7.539 -65.69 215.814 284.186 500.000 0.700 
0.729 6.845 -72.8(/'/ 265.696 234.304 500.000 0.710 
0.794 6.084 -79.3(, ' 314.952 185.048 500.000 0.720 
0.850 5.261 -85.0·; 361.619 138.381 500.000 0.730 
0.899 4.386 - 8 9.8 ':] 403.837 96.163 500.000 0.740 
0.938 3.466 -93.8GC 439.921 60.079 500.000 0.750 
0.968 2.513 - 96 . 7').2 468.433 31.567 500.000 0.760 
0.988 1.534 -98.81'/ 488.238 11.7'2 SOO.OOO 0.770 
0.999 0.540 -99.85. 498.544 1.456 500.000 0.780 
0.999 -0.460 -99.8:';'1 498.942 1.058 500.000 0.790 
0.989 -l.455 -98.93C 489.416 10.584 500.000 0.800 
0.970 -2.435 - 96.9 f! 9 470.344 29.656 500.000 0.810 
0.941 -3.392 -94.0'",') 442.489 57.511 500.000 0.8::20 
0.902 -4.314 -90.21.7 406.959 93.041 500.000 0.830 
0.855 -5.193 -85.46C 365.17:=:; 134.828 500.000 0.8'10 
0.798 -6.020 - 79 . 8 ,1 ~j 318.793 181.207 500.000 0.850 
0.734 -6.787 -73.410 :::69.672 230.328 500.000 0.860 
0.663 -7.486 -66.'2.97 219.767 280.233 500.000 0.870 
0.585 -8.111 -58.4~)2 171.067 328.933 500.000 0.880 
0.501 -8.654 -50.103 125.513 374.487 500.000 0.890 
0.412 -9.111 -41.21::' 8'1.923 415.077 500.000 0.900 
0.319 -9.477 -31.S1C 50.914 449.086 500.000 0.910 
0.223 -9.748 -22.:dO 24.841 475.159 500.000 0.920 
0.124 -9.922 -12 . 4~ G 7.745 492.255 500.000 0.930 
0.025 -9.997 -2.4'/8 0.307 499.693 500.000 0.940 

-0.075 -9.972 7.S11) 2.823 497.177 500.000 0.950 
-0.174 -9.847 17.432 15.194 484.806 500.000 0.960 
-0.272 -9.624 27.1~/5 36.925 463.075 :-;00. 000 0.970 
-0.366 -9.304 36. Ci7 67.151 'i 3 2 .849 500.000 0.980 
- 0 .458 -8.892 45. ~63 104.667 395.333 500.000 0.990 
-0.544 -8.391 54.·j )2 147.976 352.023 500.000 1.000 
-0.625 -7.806 62.S07 195.354 304.646 500.000 1.010 
-0.700 -7.143 69.S:)/ 244.909 255.091 500.000 1.020 
-0.768 -6.408 76.7G8 29'1.668 205.33::' 500.000 1.u30 
-0.828 -5.610 82.7:3';:. 342.645 157.355 SOO.OOO 1. Of.t 0 
-0.880 -4.755 87.~J9 386.930 113.070 500.000 1.050 
-0.923 -3.853 92.277 425.755 74.245 500.000 1.060 
-0.957 -2.913 95.603 457.573 42.427 500.000 1.070 
-0.981 -1.943 98.093 481.117 18.883 500.000 1.080 
-0.995 -0.954 99.5,14 495.446 4. 5~A SOO.OOO 1.0:.10 
-1.000 0.044 99.9':)9 499.990 0.010 500.000 1.100 
-0.995 1.042 99.455 494.568 5.432 500.000 1.110 
-0.979 2.030 97.918 479.396 20.604 500.000 1.120 
-0.954 2.997 95.402 455.078 44.922 500.000 1.130 
-0.919 3.935 91.9]3 422.585 77 . '115 500.000 1.1'10 
-0.875 4.833 87.5·[6 383.211 116.789 SOC).OOO 1.150 
-0.823 5.683 82.2iB 338.527 1 G 1. ,1 T~ SOu.OOO 1 . 1 C '-! 
-0.7E.2 6.476 76. 1 ~19 290.313 209.LB7 ::00.000 1 . 1 'I 0 
-0.694 7.204 69.3~-)3 240.492 259.508 SOG.OOO 1.100 
-0.618 7.861 61.814 191.051 308.949 500.000 1.190 
0.537 8.438 53.6:)8 143.959 -) lj u . 0.11 500.000 1.200 

,150 8.932 44.9C;:) 101.095 _) 98.905 500.000 1.210 
158 9.336 35.8:-:4 64.167 '1 j S . U j j 500.000 1.220 

. .:63 9.647 26.3~4 34.648 ·1 G:; . 3 S 2 500.000 1.230 
;_66 9.862 16.5t.l 13.714 ,"S6.286 500.000 1.2'10 
166 9.978 6. c-n 2.200 .~ 97.800 500.000 1.250 
134 9.994 -3.3,;1 0.565 '~9 9.435 500.000 1.260 

9.911 -13. 3~2 8.874 ,; 01. 17h 'J! 0.000 1.270 

--10 



0.232 9.728 -23.150 26.796 473.204 500.000 1.280 
0.327 9.449 -32.747 53.617 446.383 500.000 1.290 
0.420 9.075 -42.016 88.267 411.733 500.000 1.300 
0.509 8.610 -50.865 129.364 370.636 500.000 1. 310 
0.592 8.059 -59.207 175.271 324.729 500.000 1.320 
0.670 7.428 -66.956 224.157 275.843 500.000 1.330 
0.740 6.722 -74.037 274.074 225.926 500.000 1.340 
0.804 5.949 -80.378 323.030 176.970 500.000 1.350 
0.859 5.117 -85.916 369.075 130.925 500.000 1.360 
0.906 4.234 -90.595 410.373 89.627 500.000 1.370 
0.944 3.308 -94.369 445.278 54.722 500.000 1.380 
0.972 2.350 -97.201 472.397 27.603 500.000 1.390 
0.991 1.367 -99.061 490.650 9.350 500.000 1.400 
0.999 0.372 -99.931 499.309 0.691 500.000 1.410 
0.998 -0.628 -99.803 498.029 1.971 500.000 1.420 
0.987 -~.621 -98.677 486.861 13.139 500.000 1.430 
0.966 -2.598 -96.566 466.250 33.750 500.000 1.4"10 
0.935 -3.549 -93.490 437.018 62.982 500.000 1.450 
0.895 -4.465 -89.480 400.330 99.670 500.000 1.460 
0.846 -5.336 -84.575 357.649 142.351 500.000 1. 470 
0.788 -6.153 -78.826 310.676 189.324 500.000 1.480 
0.723 -6.910 -72.289 26l.284 238.716 500.000 l. 490 
0.650 -7.597 -65.030 21l.442 288.558 500.000 1.500 
0.571 -8.208 -57.121 163.138 336.862 500.000 1.510 
0.480 -8.737 -48.641 118.296 381.704 500.000 1.520 
0.397 -9.179 -39.675 78.706 421.294 500.000 1.530 
0.303 -9.529 -30.313 45.944 454.056 500.000 1.540 
0.206 -9.785 -20.648 2l.317 478.683 500.000 1.550 
0.108 -9.942 -10.776 5.807 494.193 500.000 1.560 
0.008 -10.000 -0.797 0.032 499.968 500.000 1.570 

-0.092 -9.958 9.190 4.222 495.778 500.000 1.580 
-0.191 -9.816 19.085 18.211 481.789 500.000 1.590 
-0.288 -9.577 28.789 41.441 458.559 500.000 1.600 
-0.382 -9.241 38.206 72.9d5 '127.015 500.000 1.610 
-0.472 -8.814 47.241 111.586 388.414 500.0UO 1.620 
-0.558 -8.298 55.804 155.706 344.294 500.000 1.630 
-0.638 -7.700 63.810 203.581 296.416 500.000 1.640 
-0.712 -7.024 7l.178 253.313 246.687 500.000 1.650 
-0.778 -6.278 77.834 302.910 197.090 500.000 1.660 
-0.837 -5.470 83.714 3S0.398 149.602 500.000 1.670 
-0.888 -4.607 88.756 393.883 106.117 500.000 1.680 
-0.929 -3.698 92.912 431.631 68.369 500.000 1.690 
-0.961 -2.752 96.139 462.139 37.861 500.000 1.700 
-0.984 -l.778 98.406 484.190 15.810 500.000 1.710 
-0.997 -0.787 99.690 496.904 3.096 500.000 1.720 
-1.000 0.212 99.977 499.775 0.225 500.000 1.730 
-0.993 l. 209 99.266 492.688 7.312 500.000 1.740 
-0.976 2.194 97.563 475.926 24.074 500.000 1.750 
-0.949 3.157 9'1.885 450.157 49.843 500.000 1.760 
-0.913 4.089 91.259 416.408' 83.:')92 500.000 1.770 
-0.867 4.979 13G.721 376.026 123.974 500.000 1.780 
-0.813 5.820 81.316 330.619 169.381 500.000 1.790 
-0.751 6.603 75.100 281.998 218.002 500.000 1.800 
-0.681 7.320 G13.132 232.101 2(,7.899 500.000 1.810 
-0.605 7.963 t;0.484 182.918 317.082 500.000 1.820 
-0.522 8.527 .')2.232 136.409 363.591 500.000 1.830 
-0.435 9.006 ·13.458 94.429 405.571 500.000 1.8,10 
-0.342 9.395 3·1.249 58.651 441.349 500.000 1.850 
-0.247 9.690 :2"1 . 699 30.501 4G9.499 500.000 1.860 
-0.149 9.888 1:1 . 901 11.102 488.898 500.000 1.870 
-0.050 9.988 4.955 1.228 498.T/2 500.000 1.(;80 

0.050 9.987 - ') . 041 1.270 498.729 500.000 1.8')0 
0.150 9.887 -14.986 1l.229 488. "171 500.000 1. S; 00 
0.248 9.688 -:H .782 30.707 469.7.')3 SOO.OOO 1.910 

7/ 



0.343 9.392 -34.330 58.928 4'11.0/:. 500.000 1.920 
0.435 9.003 -43.535 94.766 405.23·1 500.000 1.930 
0.523 8.523 -52.305 136.792 363.208 500.000 1.940 
0.606 7.958 -60.553 183.332 316.G68 500.000 1.950 
0.682 7.314 -68.195 232.530 267.470 500.000 1.960 
0.752 6.597 -7j.156 282.424 217.5/6 500.000 1.970 
0.814 5.813 -81.366 331.025 168.~!'i'5 500.000 1.980 
0.868 4.972 -8i.:;.764 376.396 123.604 500.000 1.990 

,n. 
I ' 
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4.3 THERMODYNAMIC PROBABILITkS 

The thermodynamic probabilities system so desir:;d implemented by 

using the following set of data values. 

H = No of micro states = 3 

J = Degeneracy of each micro state = 2 

MACl = gl = 1 , 

MAC2 = gl = 1, 

MAC3 = gl = 1, 
" 

Using Bose Einstein statistic We find 

(1) Most probable state 

(2) Total number of microstates 

(3) Average occupation number. 



CIIAP1ER FIVE 

5.1 CONCLUSION 

I have been able to examined in this work ,1Il illlroduct:u;: il1lo some basic 

concepts that serve as found,llion for the elltin: wOlk in its carl,! 1'L.!1S. Tile 

principles of dynamics as it :-elates to matters. Some 1l1~lthe1l1:ti ;,:; , dnd stalisti,:al 

concepts were defined in terms of what they are all <ibout. l'r-':,:ls, ,j in clwptcr one, 

the concept of scalars, vectors, force, work, energy 1l10mCI1lU!1I : ::.J motions e.LC, 

\\'~re well eSLlblished to the minimum requircmt:nr of this ju". '1'1..; concepts were 

initially considered for bodies as if thl:Y are single panick WI, 1:llt'r extended ~or 

generalized) as it applied to system of panicles. 

In chapter two, systems of independent panicles wcrv ;'u:, >' treated in tams 

of their specific charaClcris::c that distinguish are syslt:1l1 (rOll! Li,',' other. A simple 

analogical example in the llintiol1 of cross-st:ction in classical i·L;\ .,ics W,l::> drawn tn 

depict how statistics comes ;,Ito play in mechanical physics. '11.. 'x. main i'aniclt: 

were considered in relation to the probabdities distribution law::.. '(!lese panicks are 

Bosons, fenniolls, and Boltions. For each group of panicles, \.~qlj .. '{iOIlS tor 

distribution of a number of particle among energy levels (stall I \, l;W derived. Also, 

the mean distribution and mean square deviation from a cent,;. :.Jsition X wcre 

derived from the prob.lbility, Pi of finding a particular panic: ! l, out of N p~lniclcs 

in an energy stat~ i. A bit O{' intaacting system was also loo;:.! : lltO. Th~ 

/)0 



interaction system were also grouped into three; microcallonic:Li approach, 

carmonical approach and Grandcannonical approacil. 

The equation governing their distributions among cncr~:y ~,tates was 

established. And hence the probability Pi of finding a system j,\ U.;; ith energy state 

were derivcd for each approach. The thermodynamic propeni.:s such as entropy, S, 

pressure P wcre thCll expressed in l~rms of probabilities Pi. And lLc ener~'y state Ei. 

To conclude the cilapter, parlition function for each approach \\'Cl\~ derived and 

properties Slated. Also the fluctuations were established. 

The basic principles of chapters one and tWl) were appli,:d to physical 

problems such as hannonic oscillator (simple one) and thermo,l) iiamic probabilities. 

The probkm specification was drawn in full details. Algoritlull written ill 

pseudocode and flowchart drawn. Computcr program to solve :-..ucil problcm (and 

related ones) was written in BASIC language. 

In (hapter four, programs written was implemented Oli a particular question 

or set data :lI1d the output presented. 

5.2 REMARKS 

Wililthe eSlablishment of the basic prillciples or dYllJl:,ic::i, statistics, 

mechanics matters, system of independent and intcracting pan:l:/.;:; based on 

established (or laid down) rules one could say the work is COI1l1ik.,;. But the 

reservoir ot' knowledge can not dry up. Thefl.~ are still a lot to I,,; ' .. '~plore in this area 



of study. Especially in the area of interacting system. I thaeJore recommend that a 

special project should be dedicated to [11..: area which will be an iIl1provell1~1lt on this 

'. 
job. 
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FLOWCHART (SHIV!) 

"---START-j "-- t_==~ __ ~~~~ L INPUT SPRING CONSTANT K 

___ -I-t~:=~~==__=_---L INPUT MASS OF THE BODY M -== -=~ _ ~_~~l ~-=~~ L INPUT THE AMPLITUDE A 

--~- ~ - ~ -~~=] 

W = (kim) 112 

T p = 271(rn/k) 112 

F=llTp 

L = 100, t = 0, i = a 

DO WHILE i < 100 

X(i) = Asin(wtl 

~~~~~~~ ;-

V(i) = Awcos(wt) 

ali) = -Awsln(wt) 

,-
__ .X-_ 

PE(i) = (1/2)kNsin2(wt) 

- ~-~~~~~ ~~ -

KE(i) = (1/2)mA'wcos2(v'lt) 

Print i. t(il. X(i). V(I). a(i). 
PE(I). KE(i). E(i) 

--- -

I 
~ 

/ 

/ 



C) 
. ____ ~l ~ _________ _ 

i'" i +1 

t"'t+O.1 

yes 

-.--(~ .,,--.... 
~ /'" //' 

~-......../ 
_~~~ _.JJ:o ... ---. -.-. ----------- ---------------, 

CH = Y 

. -_ .... 
DO WHILE CH <:.- N 

r~-- ~--

.-_--.-J. 

L
· OUTPUT AVAILABLE OPTIONS IN 

GRAPHICS '- ----- -=~ ~=_J 

INPUT G 

DO CASE 

CASE G '" TABLE 

/' 
CASE G '" 

. MOTION 

~ 

//J/.~. 
'. YES 

CASE G = VEL. 

r 
/' ." 

4 

PRING THE:: TABLE OF 
VALUES 

['-(:<AW -I ,IE GRAPH OF 
r'~,OTION 

or--:j\W -I, I,c: GRAPH OF 
Vl .OCITY 

3 



/---~ 

( 4 \ 

~/J 

~C YES .. DRAw GRAPffOF -
.-.::CASEG=ACC------~.. ACCELERATION ,! -----~ 
N:~/:..c/ -AGAINST_TIME.... • 

_ ~ _____ . YES --
. -CASE G::::PET _---.~ DRAW GRAPH OF PE . ______ ~ 

__ . _ _ _~- AGAI~JST TIME .... 

NOT 
--- ~, 

,-'--

YES. DRAW GRAPH OF KE 
AGAINST TIME ______ .,...1 

YES 
<¢ASE G::::PEAX':;--~. DRAW GRAPH OF PE 

_. /_~ AGAINST X ------~ 

NO I 
C,t,SE G :::: 

~~EAT 

YES 
___ ~ DRAW f\ GRAPH l)F 

KE AGAINS, 

NO l 
OUTPUT YOU WISH TO 

DISPLAY MORE 
;' GRAHPS YIN 

I 
'f 

INPUT CH 

+ 
. 

IF CH::::Y 
. 

NO I 
'f 

STOP 

YES 
------------~ 



FLOWCHART (MICROSTATES) 
(--~TAR~ ---

~-~-c= 
/ 

/ 

OUTPUT AVAILABLE 
STATISTICS ARE BE,FD 

ANDMD 

CH =y 

DO VVHILE CH <> N 

- --- --I -­
_______ _ i _ 

SELECT CASE 

CASE BE 

INPUT "TO 
CONTINUE YIN" 

CH 

J 

. ----.-.~ 

YES 
/ ----_ .. - .. 

YE~ 

DO be ()I\JS 

DO FEf<.t",1C"lS 

00 iJOLT-.:CNS 

/~ ~~. YES 
- IF CH = Y ;;:---------
-~ ./ 

----~ ~ 
NO -r 

'f'. 
/ 



CASE BE 

(~~~~~~-- , 

~~--r-
/ 

/ 

T 
OUTPUT 

THESE ARE 
BOSOi~S 

t.ol~~~~ _____ ~ __ ~ , 
co WHILE I <~ N 

iNPUT N(I) 

J __ 
i = i + 1 

I 
T 

If 1<= n 

t---~--~~ ------~-

I 
T 

I 
T 

iXJ SUEiROUTli:= 

I , 
S~Gr·-' the 3ns,'n~r In R 

I 
T 

V = rlJ(i) 

I , 
CO SUC;FiOUTli;" 

I , 
STCF';.: 71 '2;',"0 Ii j !.1 

I , 



\, 
~ 2 ) 

1/ 
• 

V = gj(i) + Nj(i) - 1 ------1 , 
DO SUBROUTINE 

1 
V 

STORE ANS IN P 

- --, 
T 

SBE(I) = P / (R'M) 

1 
y 

ToE = TBE + SBE(I) 

I 
'f 

A = A + Nj(I)' SBE(i) 

1 
T 

no yes 

I 
T 

If MSBE > S8E(I) , ------~- ---I 
MSBE = ;:;8E(i) 

l 
T 

1v1SBE = /,1SBE 

IF I <~ N 

[,0 I , 
AVEN "o/.JTBE 

~-----
y 

DO VI/HILE I .;:-, n 

I 
'f 

0L,tPUt I, SBE(I}, Njil), ~jJ,j 

I 
T 

no 
3 .... ----' If i <= n 

! 
/ 



/ 

I 
PRINT AVEN 

/ 

•. · .. 1 
/ 

PRINT TBE 

I ., 
PRINT MSBE 

1 . 
STOP 

/ 



CASE FD 
---------~--- --

(
START 

_____ ..•.. -1 . 
PRINT FERMIONS 

-1~" --
DO WHILE I < N 

Input gj(i), NJ(I) 

yes 

No 
4 

DO WHILE i <= n 

v = gj(l) 

J 
DO SUBROUTINE 

STORE THE Af'JS IN ANSI 

5 



v == gi(i) - Nj(i) 

00 SUBROUTINE 

Store the ans in ANS2 

VoNj(i) ] 



CASE MB 

NO 

i--- - - ---~\ 

( START ) 

''---------- r-- ----/ 
~ --

5MB == 1, i == 1 

t 
Output particl~s are Goltzons 

I --
.- - -j 

Input N, n I 
- ! 

- ----1+1 .. ------'-------. 
----- ~ 

DO WHILE Nj(i), gj(i) 

I 
'( 

Input NI(i), gj(i) 

I 
y 

V==N 

DO SUBROUTINE 

I 
V 

Store the ans in ANS4 

I 
V 

V =- Nj(i) 

I 
DO SU5ROUTINE 

I 
y 

StOI e the answer In ANS5 

I 
'( 

ANS6 == gJ(I) ,':,(,) 

~ 
5MB(i) == (ANS4 • ANS6) / ANS5 

I 
V 

5MB 0- S"IG' SfJ1B(i) 

l 
uutput i, NJ(i), gj(i), 5MB(i) 

I 
'/ 

YES 

6 44~----------- If I _co N 



OUTPUT 5MB 

STOP 

SUBROUTII'JE FACTORIAL 

START 

FACT = 1 

i = 1 

FACTo FACT·; I 

YES 

if i<= n 

NO 

STOP 



APPENDIX III 

5 cls 
screen 2 
locate l,17:print"MENU KEYS:! 
LINE (2, 17) - (2, 26) 
locate 3,8:print" (1) Calculation Propelties ll 

locate 5,8:print" (2) TableJf values ll 

locate 7,8:print" (3) Graphs II 
locate 9,8 :print" (4) displacement _ ti".e graph" 
locate 11,8:print (5) velocity time cL'dph" 
locate 13,8:print (6) acceleratIon time grapLIl 
locate 15,8:print (7) kenergy time grclph" 
locate 17,8: print (8) penergy time grilph II 
locate 19,8:print (9) kenergy -distance graph" 
locate 21,8:print (10) pt.:!nergy- distanct:.: graph" 
locate 23,8:print (11) Exit" 
9 locate 25,8:input il options IIi q 
if q= 1 then goto 10 
if q = 2 then goto 100 
if q = 3 then goto 200 
if q = 4 then goto 300 
if q = 5 then goto 400 
if q 6 then goto 500 
if q 7 then goto 600 
if q 8 then goto 700 
if q = 9 then goto 800 
if q = 10 then goto 900 
if q = 11 then goto 1000 
cls:locate 10,10:print 
delay 5:goto 5 
10:cls 

lIyou enter wrli. i lJumber .. retype .. II 

dim x ( 2 0 0) , t (2 0 0) , v ( 2 0 0) , a c c (2 0 0) I P e (~,. I l-: c (2 0 0) I e ( 2 0 0) I xx ( 2 0 0 ) 
cls 
locate 5,10:input liThe value of 
locate 7,10:input liThe value of 
locate 9,10:input liThe value of 
locate 15,10:print "Calculating 
w =( k / m)"0.5 
f = w/(2 * 3.142) 
pr = 1 / f 
t(l)=O 
for i '" 1 to 200 
x(i) = a*sin(w * t(i)) 
V(i) =a*w*cos(w*t(i)) 
acc(i) = -1*a*(w"2)*sin(w*t(i;) 
pe(i)= k*((a*sin(w*t(i)) )"2/2) 
ke(i)= m*(a*w*cos(w*t(i)) )"2/2 
e(i)= pe(i)+ke(i) 
t(i+1)=t(i) + 0.01 

Mass .. 
SLJring , 
Amplituu 
Aspect .. 

. •••••••.. II i In 

(;.",tant ... "it 
.••••••••• II i a 

II 

print using"####.#tf#"ix(i) iv(i) iacc(i) iP' ;i) ike(i) ie(i) iT(i) 
next i 
delay 5 
cls 
goto 5 
100 cls 



Jrint II diplacement velocity Clcceln penelJY kenergy tenergy 
:ime ll 
:or k := 1 to 200 
t'rint using 1I####.###lI j X(k) jv(k) jacc(k) ipe(k) ike(k) ie(k) it(k) 

next k 
delay 5 
cls 
goto 5 
200 cls 
300 cls 
locate 2,10 :print IITHIS IS THE GRAPH OF DISPLACEMENT A~JAINST 
TIMEII 
SCREEN 2 
LOCATE 0,0: PRINT 11+111 
LOCATE 25, 1: PRINTII-1 11 
locate 13 ,60: printllTIME" 
LOCATE 1,2 : PRINTIIDISP" 
LINE (0,100) -( 400,100) 
LINE{ 1,0) - ( 1,300 ) 
FOR 1= 1 TO 200 
pset (t(i)*200 ,100*(1 ,x(i))) :next .~ 
delay 15: cls:goto 5 
400:cls 
locate 2,10 : print IIthis is the grapL of ve:"ocity clgai.:.st time" 
SCREEN 2 
LINE ( 0 ,10 0 ) - (4 0 0 ,1 0 0 ) 
LINE (1,0)- (1,300) 
for k = 1 to 200 
pset (t(k)*200,lO*(10 + v(k))) 
next k 
delay 15:cls: 
goto 5 
500 cls 
locate 2,10 : Pi.- int" this is the S:! rc:.ph of acceleration ,,:]aiEs L­

time" 
SCREEN 2 
LINE (0 ,100)-(<i00 ,100) 
LINE (1,0 ) - ( 1, 300) 
for k = 1 to 200 
pset (t (k) *200, (100 +acc (k) ) 
next k 
delay 15:cls 
goto 5 
600 cls 
locate 2,10 :printllthis lS the.:: 0r3.ph O~ j:<..:L'.Xgy c.lgainst time" 
SCREEN 2 
LINE (0 ,168) - (400 ,168) 
LINE (1, 0 ) - ( I, 300 ) 
for k =1 to 30 
pset (t(k)*2000,ke(k)/3) 
next k 
delay 15 : cls 
gGto 5 
700 cls 



locate 2,10 : print II this is the graph (,~ lJ.:::nergy aga ~nst time II 
SCREEN 2 
LINE (1, 0) -(1,300) 
LINE (0,168) -(400,168) 
for i == 1 to 50 
pset (t (i) *2000,pe (i) 13) 
next i 
delay 15 : cls 
goto 5 
800 cls 
locate 2,10 :printllthis is the graph of k~nergy against 
displacement II 
SCREEN 2 
LINE (1 ,0) - (1 ,300) 
LINE (0,168) -(400,168) 
for i == 1 to 50 
pset ((1+ x(i))*200,ke(i)/3) 
next i 
delay 15; cls 
goto 5 
900 cls 
locate 2,10: printllthis is the graph of }Jcjn~rgy a9i.linst 
displacement II 
SCREEN 2 
LINE ( 1 , 0) - (1 , 300) 
LINE (1 ,168)-(400,168) 
for i = 1 to 50 
pset ((1+ xii) )*200,pe(i)/3) 
next i 
delay 15 :cls 
goto 5 
1000 els 
eh == y 
print II you wish to quit yin) II 

input ch$ 
IF eh$ =: II nil THEN GOTO 5 
PRINT"YOU TRY , BYE II 
END 



APPbtJD1X 1V 

1 CLS 
REM DECLARE FUNCTION IFACT! () '. 
REM Compute lhe number of microstate thut make up a Illicru.;wle 
LOCATE 1, 20: PRINT "M AI N MEN U" 
REM LINE (2, 20)-(12, 28) 
LOCATE 4, 12: PRlNF "(1) Bozolls" 
LOCATE 6, 12: PRINf "(2) fertlliolls " 
LOCATE 8, 12: PIUNf "(3) BoilZOIl" 
LOCATE 10, 12: PRINT "(4) Ex-it 1/ 
LOCATE 14, 12: iNPUT "Oplion "; Q 

IF Q = 1 Tf IttJ COrD 100 
IF Q = 2 Tf IttJ corD 2{)() 
IF Q = 3 Tlitfl Goro 300 
IF Q = .f n lEV Goro 400 
CLS : LoCtlrE 16, 12: PIUNT I/you cnter wrollg IlWII/),'r= = > He-type": 

GOr01 
REM---------------------------·-----------------------------
100 CLS 
a :::; 0: tbe = 0: sbe = 1 
LOCATE 10, iO: iNPUr IIEmer IIwu:Jcnj 1/ valul' 1/; fl 

LOCATE 12, 10: iNPUT "Dlier Ilwllber vFt" va III I! "; x 
FORh = 1 rOil 
FOR} == 1 TOx 
CLS 
LOCATE 5, 5: iNPUr IIEmer value of gj "; gj(/z, j) 
LOCATE 7, 5: INPUT "Ellter vallie vf II} 1/; II} (/z, }) 
v == nj(h, j) 
GOSUB 2000 
Iljac == iJact 
z = gj(h, j) + lij(h, j) - 1 
v==z 
GOSUB 2000 
gnfac =ifact 
y = gj(h, j) - 1 
v=y 
GOSUB 2000 
gfac == ifact 
sbe(/z, j) == gilfac / (dac * nfac) 
tbe == tbe + sbe(h, j) 
a :::; a + nj(/z, }) '" sbe(IJ, j) 
sbe = sbe * sb('(h, )) 
IF msbe > sbe(h, j) TlfLN 



msbe == msbe 
ELSE 
msbe = sbe(Jz, J) 
END IF 

aven = a / tbe 
NEXTj 
NEXTh 
rem PRINT "NUMBER OF MICRO STATE IN A MACNO :a:D't' " 
PlUNT 
PRINT 
PRINT 

FOR h = 1 TO /: 
FORj = 1 Tax 

PlUNJ h, j, flj(h, j), gj(h, i), sbe(/z, i): NEXT j: NEXt II 

rem FOR I == 1 TO H 
rem FORK = 1 TOJ 
rem PRINf Gj(l, K), MJ(I, K) 
rem NEXI K: NEXT I 

rem FOR I = 1 [0 H 
rem for k = 1 to j 

rem PRINf "Fa,? MAC"; I 
rem print sbe(i,k) 
rem NEXT K: NLXT I 

PRINT 
PRINT "AV1:,/?AGE PARTICLE IN THE STATl:.: = "; AVEN 
PRINF 
PlUNT "TOTAL NUMBER OF M1CnO STATE "; TBE 
PRINT 
PJUNT "MOST PROBABLE S1:1TE is ARE WiTH"; MSL.I~' 
deiIJy 15: cora 1 

200 CLS 
SFD == 1 
INPUT "IlOW MANY MICROSTATE PRESLNT"; II 
INPUT "n1E DECl:..7VEMCY OF EACIl !vlACROSJ:.l. C',' j 

FOR 1= i TO 11 
FORK = 1 iOJ 
PRINT "C!"; i: INPUT GI(I, K) 
PRINT "Ni"; i: iNPUT NI(i, K) 
NEAT K: NEXT I 
FOR 1= lTOH 
FORK = ITOJ 
V = G(i, K) 



COSUB 2000 
Q == IFACt 
V == Cj (I, K) - A) (I, K) 
COSUB 20(X) 
S = IFACr 
V = Nj(I, K): COSUB 2000: L = lFAcr 
SFDj(J, K) = Q I (S * L) 
SFD = SFD * Sl'Dj(J, K): NEXT K: NEXTl 
FOR J = I TOH 
PRINT "FOR MAC"; I 
FORK = ITON 
PRINT "C}"; K; "="; Gj(I, K) 
PRINT "Nj"; K; "="; Nj(J, K) 
PRINT SFDj(I, K) 
NEXT K: NhXT I 
PRINT SFD 

delay 10: CuTO 1 
300CLS 

5MB = I 
INPUT "TOTAL NUMBER 01, PARTICLES N", N 
INPUT "HOW lYlANY MACROSTATE PRESENt', fl 
INPUT "TElE DEGENERACY OF EAUI MAC/N;Si>!} L'''; J 
FOR J = I TO II 
FORK = 1 TOJ 
PRlNT "GF; K: INPUT Cj(I, K) 
PRINT "Nj"; K: INPUTNj(I, K) 
NEXT K: A'LAT f 
FOR I = J TO I!: FOR K = J TO J 
V = Nj(I, K) 
CaSUB 2000 
X = IFACf 
Y = CHI, K) A Nj(J, K) 
5MBj(I, K) = X I Y: 5MBi = SAiBi ;,; 5MB)(!, .): NE)lIK 
V = N: caSUB 2000 
Z = IFAC[ 
5MB = Z * 5MBi: PRINT SlVIB: NLXT I: dde ' ! 0: G(, I () ! 

400 END 

2000 CLS 
IFACT = 1 
FORI = J iV V 
IFACT = IFACf * I 
NEXT I 

RETURN 



with discrete single - particle states 1, 2, ........ , r. ... with energies Ei ~ E2 ~.... for a gas 

of N particles. 

Let the state of the gas be specified as a whole by the occupation numbers 11 1, 112 , "', I1r ••• 

There are two approaches to what number cal1 the occupation number 11, assume. 

(i) BOSE EINSTEIN STATISTICS 

(ii) 

Here there is 110 restric~ ;,)11 011 the occupation numbers l\, they can and do assume all 

integer values 

Factors nj = 0, 1, 2, ...... for all i. 

This type of statistics is known as Bose - E - Einstein Slatistics. It was used to derive 

plank radiation Law. 

All particles that obey (his statistics ar..: kno\vn as BOS lNS and examples are Photons 

and mesons. 

FERMI - DIRAC STATISTICS 

In this type of Statistics the occupation numbers 11, are restricted: at most are particle 

can be in any state. Ti.at is the occLpation number C~,:l 0111y be 

n, = 0, 1 for all i. 

Ail panicles obeying tLis statistics arl.' known as FERt\);ONS. Examples are elections, 

protons, Neutrons, po .. ~rons etc. 

This is the Paul eX<...ldsivc pril1cipL for 110n-inlcracti\..; panicles: Nt) twO identical 

fermons can be in the ~:lmc state. 

2. 4 EQUIPARTITION OF I-JERGY 

Though in a system Wl.i. evenly spaced component cnel :~y levels, the me~1l1 component 
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energy IS 

Sumesntion fact Ei = KT ....... 2.4.1 and in an ideal gas thl: lile~n component energy is 

E = 312KT ..... 2.4.1 

We may want to calculate the mean energy for an idl"j ga~ by a different route: 

E = (""EP2dpExp-{E/KT} 
f ""P2dpExp-{E/KT} 

where 

P = momentum of the particle 

E = p212m ...... 2.4.4 

In three dimensions 

E = Ih m {Pl + p2 + p2 } 
" y Z 

........ 2.4.3. 

..... 2.4.5 

and P2dp is proportional to dp", dpy, dpz 

we can then write mean energy as 

E = 112m (<»O{P2" + P\ + P2
z} exp - {(P2, + P\ + P':;2,KTlilrrJjP~L27 .... 2 ... L6 

f """ exp - {(P2x + P/ + p2,)l2mKT}dl\dP,dP)dPz 

Ar.>l since tht.! exponential factors into a ProdUl~t of terms dt'I)Cnding only on P,. P, or P7 then 

2.3.6 is equvalent to 

From here it is clear that the mean Cl1Lrgy associatl..1 \'. ith motiol! in each of [he three 

arthogional directions is equal to 

Ex= E) = Ez = lhKT ................. '2.4.8 

Therefore one can say that 
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E = 1/2KT ............................ 2.4.9 

is the mean energy associated with each of the three dcgrc,_ d- l"rccdol11 of each particle {frec 

to move in the x, y and r directions indepedently. 

2. 5 S01\1E THERMODYNAMIC FUNCTIONS 

Let us try to investigate (evaluate) the pressure of a t~a~ from the idea of virtual work. 

The change of energy in the system for an infinitesimal expai,siul1 is the work done. So we can 

identify 

p = - (bE) ................ 2.5.1 
(ov)ni 

If the volume increase is done slowly, in fact very very ~,,\"'wly, so that the !evel sag but the 

population remain the same (i.e. ni = constant). 

Now 

E = ~Eini .............. 2.5.2 

So OE = ~niOEi + ~EiOni ....... 2.5.3 

The first term represent work done on the ~ystem and the s;llmd term represcllt 

the heat change. 

dE = 6W + eQ .......... " ...... 2.5.4 

Equation 2.4.4 is the first law of thermudynamics which says that any change ill energy is 

accounted for by work done and quality of heat. 

Note that tlw and tlQ are infinitesimal change not differcl1ll,t! 

using 2.5.2 

P = -Eni oEi .......... 2. 5. 5. 
ov 
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There are many ways of workiilg this expre~sion. We ha\ e 

ni = NExp - {Ei/kT} 
EExp-{Ei/kT} 

= NExll-{Ei/kT} --------2.5.6 
7.; 

Note that 
Q {InZh = l(£h 
bY Z bY 

= - EbEi 1 Exp'{Ei/kT} 
bY KT 

So that 

........ 2.5.7 

... 2.5.~ 

P = NKT Q{InZ}T ................ 2.5.9. 
bY 

For our gas 
Let Z = f Exp - {E/kt} 47fP.!dUv ........ 2.5.10 

(27fhh 

and if we compare 2. 4. 9 with equation of state 

PY NKT 

We have 

Q {InZh = 1 
bY Y 

If P = -{oFh 
oV 

......... 2.5.11 

....... 2.5.12 

........ 2.5.13 

It is convenient to define an CII';,c.y fU:lCtion 

F = NKTLn lo ....... 2.5.14 

Taking exponential of this we ilave 

':/;N = Exp - fF/kTJ ....... 2.5.15 
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The internal energy can also be expressed in li:rms of the partition flll1ctil.n, ~ as 

and 

E = NI:Ei Exp -{::i/~'Il = NkT2 fL {Ln'l.} ...... 2.5.16 
7, 01' 

Now if we consider the environment of the system and see what we can control, we have 

-(bFh = NkT{oln~h = P 
bY bY 

and work done on the !lystem is 

dw = -Pdv = (oF)dv 
bv 

.......... 1.4.17 

.... 2.5.18 

The equation of state links P, Y, and T so we may write 

So that 

or)" 
~'I 

dF = (QEhdv (oF)vdT ................ 2.5.19 
bY 151' 

··Pd\ = dF -(QDvdT .......... 2.5.20 
01' 

= -NKlnZ - NKT Oh 
7, 151' 

.......... 2.5.21 

The qLJ~lI1[i(y F is the Helmholtl free energy and is such that the diftercnti,:\ \\ ith rt.:speet 

to volume, at constant temperature gives the pressure. 

Note that the differential of internal en.:rgy with respect to Y at constam temperature does 

not give pressure. 

2.6 CANOi\llCAL AND GRt\ND CANOMICAL APPROACHES 

The stdistical mechanics which has been developed so Li[ is aIJplicabk unly to isolated 

systems of il1lkpenclent and non-il1leracting panicles. Then \V\.: are able to exprLss energy of the 
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system as the sum of the energies of the constituent particle::;, i.c. 

The weaknesses of such a development of statistical mechanics are: 

(1) The energy of the system is specified 

(2) The system contain speciefied number of particles 

(3) There is no interaction among the constituent particles. 

We may want to consider a situal ion where none (or SOlliC) of these restrictions holels. 

DEFINITION (MICROCANOMIrAL APPROACH) 

Any system of particles that is treated with weak interaction among t\:t.; constituem 

particles i~ known as microcanomical El1sembles. That is systems with sp~~cificd number of 

particles and weak interaction among the components, such l!e:Jtl11ent enables us to calculal': 

thermodynamic properties of materials in ideal gas state from lllukcubr dat~l. 

DEFINITION (CANOMICAL APPROACH) 

In an assemblage of systems in which each system is ~,ssLiI1ed to be clo~,cd and \vith 

constant volume but separated from its neighbours by diathermic \\alls. SD that all systems ar,: 

in a therm .. l equilibrium. That is the sy-;tcm is characterized by constant tell1p-..:r'ILUre, volume 

and number of particle N. This is a closed Isothermal syst,;:l1I and is calbl till Canomical 

ensembles. The particle can exchange energy with each other. It can be shown schematically 

. to, ')61 as 111 Ig. _ •.. 
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NTV NTV NTV NT' 

NTV NTV NTV NTV 

/' 
./ 

NTV NTV NTV NTV 

~:9 I'J J-,' &.. fl... e/" ~ '- ~ 
{. CA"~:J 1 e...:G- c.h.~.7~ yC'~a:)LcJ' 

NTV NTV NTV NTV 

fig. 2.6.1 canonical ensemble of n systems with const. N, V, 1: 

DEFINITION (GRAND CANONICAl, APIJROACH) 

In this case, each system is considl:r to be of volume but open and separated from its 

neighbours by diathermic permeable membrane. So that energy an,! materials can be exchanged. 

This is an open Isothermal system ci1aL.Llcrized by const;tlH volume V. temperature T 

and chemical potential U of the components. 

This is called Grand Canonical Ensembles. 

VT~ VT~ VT~ VT~ 
I 

VT~ VT~ VT~ VT~ 

VTJ.( VTJ.( VT~ VT~ 

fig. 2.6.2 Grand Canonical EnseL1bles. 

Let us consider a system with energy state Ei in COl1(~ll. with a heat rescrvoir which is 

mad~ up of a large number of our SystClll and with a total CLergy E. 

Ei is the energy of the system and not of the compunent. Each of these systems is 

identical and localized and suppose we know their system energy levels. 
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is 

(i) 

(ii) 

If there are Mi system with energy Ei, tilen the number of microstates making up this 

W = N!.7r g~ 
N·' 1. 

................... 2.6.2 

If we consider these constraints 

ENi = N ............... 2.6.3 

EEiNi = E ............. 2.6.4 

Maximizing InW we have 

Ni = Ngi Exp - {Ei/KT} ........ 2.6.5 
EExp - {Ei/KT} 

The probability that our system is to be fuund in a single state of energy Ei is given by 

Pi = Exp - {Ei/KTl ............... 2.6.6 
EExp - {Ei/KT} 

Then the function 
l: = EExp - {Ei/KT} ................ 2.6.7 

Summed over all system energy lev~ls and is thc system partition function. 

The mean energy of the systcm is 

E = EPiEi ................ 2.6.8 

and therefore 

dE = EPidEi + EEidPi ........... 2.6.9 

gIves the change in energy. The first term rei l'esem work done on the system by the 

environment while the second term is heat. 

Now the system energy levels Ei changes in response to some external constraints X 

(such as volume, magnetic field e.t.c). 
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Differentiating the system partition function Z with respect to constraint parameter, X 

at constant temperature. 

(olnZh = liZ (OZh ........... 2.6.10 
bY ox 

=:.l EoEi Exp-{Ei/KT} ........... 2.6.11 
KT ox Z 

=-IEP·oE 
- I-I 

...................... 2.6.12 
KT ox 

The work term can b.: written as 

dw = (ofh 
ox 

dx ................ 2.6.13 

Where F is the Helmholt free energy for our system defined as 

F = - KTlnZ. ............ 2.6.14. 

We may want to guess at what will happen if the number of components in our system 

is variabl~ (i.e. viewing from grand canonical approach). h is assumed that the energy (and 

energy levels) of the system will change if the number of cumponent change. So we expect that 

the probability of finding the system in a staw with 1: componellls and cllergy Ei(I\) will be given 

by 

P ~ Exp {(j-tn--Ei)/KT} 2.6.15 

and the system's partition function is defined as 

Z = EExp {I'O-Ei(O»/KT} .............. 2.6.16 

where J.I. is some kind of work function known as che ill!cal potential. 

Z is the grand partition function. 

47 



2.7 MEAN VALUES AND FLUCTUATIONS 

We art: now in a position to ,ckle the problem of fiuctlial;ons in an approximate way. 

let our Syst~lli have energy E and consist of N COlllpOllclllS. The probability of the system 

having energy E, keeping N constant, is given by the Boltzmann t~lctor 

P a e -E/KT ........... 2.7.1 

The number of states between E and (E + bE) is roughly proportional to 

<J.;;)N-l bE ........... 2.7.2 
Nu u 

The probability of finding the system between E and (E + bE) is then given by the 

number of states in u, each multiplied by the probability of occup'-"tion, SL) it is 

P(E) bE "'" t~)N-l bE Exp - {E/KT} ............. 2.7.3 
Nu u 

The term (EID)N grows hugely with E if N is a large number, while the exponential term 

falls, P(E) has a maximum which can be defiIlLd. 

If P(E) "'" Exp {NinE - ElK'!'} ........ 2.7.4 

the maximum occur (if we take InP(E) and different late) at 

Q {Nln!: - E/KT} = 0 
bE 

i.e. E = NKT .......... _ ............ 2.7.6 

......... 2.7.5 

Let us now study the variation of P(E) with sIilall cxcursiull~ of the energy 

NinE - E/KT = Nln (Emax + uE) - (Eman + CJt:)iKT ...... 2.2.7 

I f we expand to second order 

NlnEmax - Eman/KT + Nln (I + uE) - uE/KT ......... 2.7.8 
Emax 
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Since Emax = NKT the first1fd r term vanish.:s an,i 

P(Eman + 6E) = P(Eman) Exp - 1/2
N (t)I:/ ............... 2.7.9 

Emax 

So the width of this approximately gaussian distribution is - Emax /\./i·~ and this is the 

size of the fluctuations in energy which (l:CUr. 

Fluctuations in the number of cOI .. ;)onents may be stlldied through th~ :-,.me 

approximation 

If P(N) ::::; Exp {I'N/KT + (N-l)I .. L/NA} ........... 2.7.10 

The maximum occurs at 

Q {uN + (N-l) [lnE·lnN - In 6 ~ f = 0 
oN KT 

If Nmax satisfy this equation 

If we set 

........... :!.7.11 

N = Nmax + 6N ................ 2.·~. L~ 'l 

And it we expand up LO s~cond oru:r ill DN, terms il1 D;'~ vanishes because of Llll' 

maximum and we find that 

P(N) = P(Nmax) EXp_l/2 C{'lN)C .............. ='.7.13 
Nmax 

So that the fractional variation of N is L'Xpected to be n .. :gl:;'ibk for a macroscopic objcct. 

This is an elementary consideration \vhich can not taL,; cre of circumstances in which 

macroscupic system exhibit large tluctuzllio:lS. 

Therefore, we can develop a mcthod for estimating fll .. :luariolls for real macroscoj ic 

systems by proceeding more formally. 

Supp)se som(: quantity q (eg partick number, energy c.t.c) has an approximately 
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gaussian distri, u. ,n 

p(, I = Exp - {~r} ............ 2.7.14 
2£::)2 

The a\~r. (: value of q is 

q : gP(q)dq ............... 2.7.15 
P(q)dq 

qExp - {<q-qo)l}dq = qo ............ 2.7.16 
Exp - {(2£::)2}dq 

Setting 1/2 £::) 2 : . 

the average V:i: .. : of q2 is 

[ql P(q)dq = fq2Exp - {a(q-qof}dq ........... 2.7.l7 
f P(q)dq f Exp - {a(q-qY}dq 

let q - qo = A 

But 

and 

q2 = !. ~:-=-uill':.J:xp -(n~x2)dx ................. 2.7.lx 
f I ,Hax")dx 

= J- Exp :\ax1)dx +qol 
fE\i' -(exx1)dx 

............ 2.7. III 

............... 2.7.20 

f Ex;> ((Xx '}dx = V'Trla .................. 2.7.21 

The ratio eqL,!, 

so that 

/'0.1 _. . q~ - q2 q2 ') 7 ')j LJ -. II - 0 - - ............... _ •• --
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This is the mean square fluctuation of any quantity q by calculating 

the quantity. 

Hence 

0" = q2 _ q:! ..•............. 2.7.23. 

If we want the fluctuation on particle number. 

N = EENExp {tLN/KT - Ei/KT} = KT frh ........... 2.7.24 
~ ~ OfJ. 

N" = l~BN: Exp {/tN/KT- Ei/KTl = K2T" fi~ ....... 2.7.25 
~ Z b~~ 

N" - N" = KT bN 
O~L 

.............. 2.7.26 

Similarly for energy and for convenient let us set g = l/KT 

E = ErEiExp {{UN - Ei)B} = 1I~ b;L. ............... 2.7.27 
Z 06 

e = E2:Ei2Exp {(gN - Ei)f)} ::::: liZ 62'l; ............... 2.7.28 
Z of)2 

Since (T = -l/KB) 

Hence E" - [1 = KTl bE ........................ 2.7.29 
oT 

But oE = Cv (in therl1lodynall1l.':s) 
bT 

Then E2 - E" ::= Kl "Cv 

The fluctuation in number onl)'! c I 'to oN' I lc omes arge 1 L IS ,trgc, i ('. N is seJJsitive to snal 
op 

change in fJ.. And tluctuation in energy ollly gtls Iarage if E is SCilS'IL'l '. . 'C' 't' C . 
c. \ct~) Ofl vlslarg( 
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CHAP1:'ER THREE 

STATISTIC:\L l\f} ... LHANIC PROBLEMS ALGORITHM.',; 

3.1 INTRODUCTION 

What we have estaLI ished so far can be applied to physical probkl:.s such as the 

harmonic oscillators, thern.xiynamic probabilities, steller, interstelkr ga~" I .:Iaxation time 

problems e.t.c. to mention blH few. 

In this chapter, we ~hall consider S()Il1~ of these problems n::unely; 11 . .(1. ,)l1ic oscillator 

and the thermodynamic prob.lbilities probl( 1115, and then write algorithm for (L ,/1. 

Prior to each proble,J: algorithm \\e shall establish (state) some of (!ie procedure and 

relationships that are releval,l to the problem. If possible see through same dc, ,vations. 

3.2 THE PROBLE\IS Sl~rCIFICATIO!\S 

In the harmonic osClilation, \-Vt.: shall be rcstrictcu to the simple oneJ \,. :re there is no 

frictions and no external forc\~ intluencc. With [Ilis we sll::i11 study the displal.i'ol ,Ib, velocities, 

accelerations and variuus e:h.:rgies as varies with lime and positions of the hI ,d:, ~J appropriate. 

Also, we shall try [0 prese.:; some graphical rebtionships between these qua.::; ,.:.'5. 

In the case of thern1CJdynamic probabilitie·. problem, we want 1O 1->.110"" ,ow probable a 

microstate is and the number of microstates that make up a microstate. '11.,_.: will be done 

viewing particks from thr.:e statistics, namely: Bose-Einstein, Fermi-Dirac and Maxwell-

Boltzman stati::.llcS 

3.3 ALGORITHMS 

An algOlithm is a f11ite set of instructions for carrying out a specific procedural task. 

Examples of alt:orithms art.: program (which are specifically expre5scd in third generation high 



level languages capable of execution by a COILj,uter), pseudocodes flow charts, NSSF-diagram 

formulae decision tree and Englisl ll1gua6c. 

In this work, pseudocodes is used to express (write) the algorithms of the problems 

considered. 

Pseudocode is a logical representation of an algorithm USIng such third generation 

languages style like DO, WHILE, IF ... THEN, ELSE, FOR, NEXT, ENDIF c.l.e. 

3.4 SIMPLE HARMONIC MOTION 

Any harmonic oscillator which moves without frictions and external furce influence is 

known as simple harmonic motion and its motion is known as simple harmonic motion. 

The equation describing the motion is: 

m d2x + kx = 0 .... 3.4.1 

If the solution to the above probkm is 
of 

X = A sinwt ............................... 3.4.2 

Taking its second derivation and substitute in (3.4.1) above it givcs 

w = v'k/m ......................... 3.4.3 

which is the angular frequency. 

Where k and m are spring constant and mass respectively. 

The velocity of the oscillator is giwn by 

v = dx = AwCoswt ............ 3.4.4 
dt 

and its acceleration is 

a = d2x = -Aw2Sinwt ............... 3.4.5 
dt2 
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The period of the motion is 

T = 2 d(m/k) ............ 3.4.6 

and its frequency is 

F = 1 v(k/m) ................... 3.4.7 
27l' 

The potential energy of the body is given by 

and its kinetic energy is 

ALGORITHM (S.IL\l) 

{computation of the properties of a body ullckrgoing simple h~; :nonic oscillation}. 

DECLARE 

K, V, W, M, A, T, t, F, PE, KE, a, x; L'a!' 

CONST; 7l', K 

CHAR;G,CH 

EXECUTE 

ARRAY; V, Pl, KE, a, x, E. 

OUTPUT You are about to compute simple IlJ.rmonic oscillati 011 pr~'bkm. 

OUTPUT What is the spring COlblant 01 ),)llr sprillg in usc. 

INPUT K 

INPUT "Amplitud..:", A 
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OUTPUT what is di"; mass of the body attached to lL.,,; spring. 

INPUT m 

OUTPJJI Compute the angular frequency, period and frequency of the motion. 

W - (k/m)'h 

TP - 2 7I"(m/k)"~ 

F - (k/m)'hI271" 

OUTPUT In;';alis~ start time 

t - 0 

For i-I to L 

X(i) - ASINWt 

V(i) - AWCOSWt 

a,i) - A W2 Sin wt 

PEO) - 1/2 KA~SIN\vt 

KE(i) - Ih MA2w2COS\vt 

i:(i) - PE(i) + KE(i) 

OtJTPlLI i, t, xCi), V(i), a(i), PE(i), KE(i) E(i) t:::: 1+ 0.1 

LNDFOR 

{I n plor! ing various graphs of th is motion \ve see ct lot of beauti ful and interesting 

figures. } 

OlJTPi IT Tile following options are (lvailalJk ill gl ~lp!ii--:s. Choose your, ppropriate 

desire by pressing the corresponding code. 

OUTP\~T 1. TABL.E: for table ut values 
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OUTPUT 

OUTPUT 

OUTPUT 

OUTPUT 

OUTPUT 

OUTPUT 

OUTPUT 

INPUT 

2. MOTION: for graph 

3. VEl: for graph 

4. ACC: for graph 

5. PET: for graph 

6. KET: for graph 

7. PEAX: for graph 

8. KEAX: for graph 

"what is your desire", G 

CH- Y 

WHILE CH < >N 

SELECT CASE G 

CASE liT ABLE" 

FOR i-I to L 

OUTPUT i, t(i), x(i), v(i), a(i" PEO), E(i) 

ENDFOR 

OUTPUT Table of values 

CASE II MOTI0.'-J " 

CLEAR 

or" X ag. :nst t 

of V ag~linst t 

of a against 

of PE against 

of KE against 

of PE against x 

of KE against x 

TRANSFER CONTROL TO SUBROU nNE FOR SETTiNG SCREEN AND COLOUR AND 

DRAW AXIS. 

LABEL the vertical axis as di'placcmtnt. 

Label the horizontal axis as til ilC 
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MARK The scale 011 vertical (x) axis 

Mark tlJ~ scale on time axis 

Draw the graph. 

OUTPUT Graph of displacement agail1"t time. 

CASE "VEL" 

CLEAR 

TRANSFER CONTROL TO SUBROUTINE FOR SETTING. 

Label vt:rtical axis as velocity 

Label horizontal axis as time. 

Mark the scale on velocity axis. 

Mark the scale on time aXIs. 

Plot the graph 

OUTPUT Graph of velocity against time. 

CASE ACC" 

CLEAR 

TRANSFER CONTROL TO SUBROUTINE FOR SETTING 

Label vertical axis as acceleration 

Label the horizontal axis as time 

Mark the scale 011 acceleration axis 

t\lark the scale on time axis 

Plot the points 

OUTPUT Graph of acceleration against time. 



CASE "PET" 

CLEAR 

TRANSFER CONTROL TO SUBROUTINE FOR SETTING 

Label vertical axis as potential energy 

Label the horizontal axis as time 

Mark the scale of PE axis 

Mark the scale on taxis 

Plot the points 

OUTPUT Graph of potential energy against time 

CASE "KET" 

CLEAR 

TRANSFER CONTROL TO SUBROUTINE FOR SETTH'-lG 

Label the vertical axis as kinetic energy 

Label the horizontal axis as time 

Mark the scale on KE axis 

Mark the scale on taxis 

Plot the points 

OUTPUT Graph of kinteic energy against time. 

CASE "PEAX" 

CLEAR 

TRANSFER CONTROL TO SUBROUTINE FOR SETTING 

Label the vertical axis as potential energy 
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Label the horizontal axis as Displacement 

Mark the scale un PE axis 

Mark the scale on x axis 

Plot the points 

OUTPUT Graph of potential energy against displacement. 

CASE "KEAX" 

CLEAR 

TRANSFER CONTROL TO SUBROUTINE FOR SETTING 

Label the vertical axis as kinetic energy 

Label the horizontal axis as Displacement 

Mark the scale of KE axis 

Mark the scale of x axis 

Plot the points 

OlJTPUT Graph of kinetic enLTgy a~ajll' [ JisplaceJl1CrH. 

ENDSELECT 

OUTPUT Do you want to display more graphs (1'\::,; No). 

INPUT "decision" CH 

ENDWHILE 

END S II M 

3.5 THERl\lODYNAMIC PROBABILITY 

To estimate the number of mi,.rostarcs that make t:., :; microstate in a given system, one 
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will need to consider three:: statistics available for particles to obey, namely: Bose-Einstein, 

Fermi- Dirac and Maxwell-fj'jllzn n statistics. 

(A) Bose-Einstein statistic (ll-E .;tatistic) 

When considering B-E :::tatistics we speak of identical indistinguishabk particles and there 

is no restriction to tlie llumber of particle that can occupy a microstate. 

If gi the degeneracy of a particular energy level and Ni is the number of particles in i 

microstate, the microsl:lte contains 

SBE = 7r(gi + Ni - l)! 3.5.1 
(gi-l)! Ni! 

And the total number ()f microstates in the systcl1l is given by 

T = Ek SI.: .................. 3.5.2 

The most probable microst<lle is given by Max SBE. 

And the average occLlp:ition number Ni for a given degeneracy is given by 
~ 

Nig = 1 }: ~i" Sk ................. 3.5.3. 
T k 

(B) FERM - DIRAC (F-rU st,Jislics. 

The particles here are ;1Iso ideIHical and indistinguishable but maximum of only one (not 

more than one) panicle can occupy an energy stalL'. 

Using the same particl~ parameters above the microstate comain 

Slot) = 7r gil ------3. S. 4 
i(gi -Ni)!Ni! 
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(C) Maxwell-Holtzman (M-H) s[atistics 

Like the B-E statistic, the 11: .tber of particles that u(:cupy a state are not restricted but 

the particles are distinguishalJ.~ and identical 

Hence 

5MB =N! 1r giNI .................. 3.5.5 
Ni! 

ALGORITH~1 (MICROSTAT£] 

{Compute the number of microstate that make up a microstate in a system}. 

DECLARE 

S, T, AVEN : real 

gi, Ni,V, n : Integer 

CONST: 

CHAR: F,B,~, CH. 

ARRA Y: gi, Ni 

EXECUTE 

OUTPUT what type of stJtistics is to be consiJa 

{F, fur F-D, B for ll-E alld Z for 1\1-13J 

CH~ Y 

DO WHILE CH < > N 

SEI reT CASE 

CASE B 

OUTPUT particles are idemi-:al, indistinguishable and no restriction to number of 
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particles. 

OUTPUT what is the valuclf degeneracy 

For i-I to n 

INPUT gi(i) 

INPUT "No of particle in the level", Ni(i) 

END FOR 

INITIALISE 

TBE = 0, A = 0, SBG = 1 MSBG=O 

OUTPUT set temporary locations 

FOR i-I to n 

Let V - gi(i) - 1 

Transfer control to subroutine for factorial 

Restate the answer, inw R 

Let V - (gi(i) + Ni(i)-l 

Transfer control to surolilinc for factorial 

Restate the answer into P 

Let V - N,(i) 

Transfer control to subroutine for factorial 

Restate the answer, into tv! 

SSG (i) - --.e 
RM 

T13E - TBE + SBE(i) 

A - A + Ni(i)* SUE(i) 
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