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CHAPTER ONE

PRINCIPI ES OF DYNAMICS

1.1  INTRODUCTION

Everything that really exists in the world. ts called matter. As a branch of natural
science, physics deals with the properties and interactions of matter and radiation.

The key progress in the understanding of nature is to base conclusion on the result of
experimental observations (scientific methods).

Invariably, this natural science uses concepts (unexplained fundamental abstractions e.g.
time, charge), theories (which connects these concepts and judge by predictive power,
comprehensiveness and simplicity), n:.dels (constructions to retlect the experimentally
determined facts) and laws which are dc ructions from the model. The laws tells us how things
behave in terms of the theory.

Mechanics, a branch of physics i..vestigates one of the natural phenomenon known as
mechanical motion in relation with their causes (or Dynamics) which form the basis of this
work. This work will look at bodies as it they are single particle, group of particles and as rigid
body.

1.2 PHYS.. AL QUANTITIES

Physical quantities which are syn.. yms to concepts are used to express laws. There are
so many of these quantities such as len; .., mass, time, charge, force, temperature e t.c, that
some has to be selected and called ther - .sic quantities from which others can be derived.

There are standards for cach these physical quantities based on international

agreement.

These standards are used to comn - ¢ a given object which implies that the standard must



be accessible. Accessibility is achieved by creating more readily available secondary, tertiary
e.t.c standards which are invariable. These standards are known as units of measurement (i.e.

scale and units).

The following are selected basic quantities and their respective units known as system

International Unit (S.I. units).

S.I. BASE UNIT

Quantity Symbol Unit name Unit symbol

1. | Length L meters M

2. | Mass M Kilogrammes Kg

3. | Time T Scconds S

4. | Electric current | A mpere A

5. | Thermodynamic T Kelvin K
Temperature

6. | Amount of substance mole mol

7. | Luminous intensity candela cal ”

Table 1.2.1: Showing S.I. unit of some basic quantities.
1.3.  VECTORS

1.3.1 VECTORS & SCALARS

A change of position of a particle is called displacement. If a particle move from one
position A to B, the path need not necessarily be straight between A and B but line A to B
represent the net effect of the motion (not the actual motion). This net effect can be represented
by a line standing for magnitude and anh arrow showing the direction. Any quantity that behave
like displacement is known as vectors.

A vector can then be said to L. naracterised by a magnitude and directions.  Other

3]



examples of vectors are force, velocity, acceleration, momentum electric and magnetic field

e.t.c. (3

Fig. 1.3.1 Lisplacement Vector.

Scalar cuantities are quantities that has magnitudes but no direction. That is they can be
represented w!.olly by only magnitude.

Example of scalar quantities are time, mass speed e.t.c.

1.3.2 VECTOR ALGEBRA

(1) ADDITION OF VECTORS
o

a
Fig 1. 3. 2 vector Addition

Two «r more vector can be added together to give a resultant rector [total effect]. from
fig. 1 3 1 above vector a and b addcd to give vector c.
a +b =¢ e 1. 3. L.

for instance if vectors a and b were consider in 3 - dimension as

pe=ad tal+tak o 1.3.2
b=bi+bi+bk............. 1.3.3
atb=c+ i+ Cyi+Ck ... ... 1.3.4
=, ~b)i+ (@ +b)i + (4 +b)k........... 1.3.4a



Similarly, vectors can be subtracted s

a-b=a+(b) oo 135

Addition of vectors obeyed cumuliiive and associative laws
a+b=>b+a....1.3.6 (conunutative)
a+ (b+c) = (a+b)+c ..... 1.3.7(distributive)

it MULTIPLICATION OF VECTORS

Vectors can be multiplied in two ways.

(@) The scalar _multiple :- Also kancwn as Dot product. If two vectors undergo this

multiplication the result is always a scalar quantity.
It can generally be shown for two vectors a and b in the same plane separated by
angle O as in tigure 1.3.3{a) below that
a.b=/a/*b/*cos O...1.3.8

(b) The vector product or cross product :- The result of cross product of two vectors a and

b is always a vector quantity and always perpendi :ular to the plane containing a and b.

It can also be shown for two vectors a and b n the same plane scparated by angle O as in

figure 1.3.3 (b) below . /

&
&
fig. 1.3.3 (a) Scalar product. (1) Crossprodk

(i)  Vector _ Components

In some cases (e.g analytical method ), we may need a given vector in a preferred



direction. We then find the projection of the vector in this preferred direction. The
projected vector in this axis is known as the components of the vector. There are infinite
number of components of a components of a particular vector.To find a particular
component (i.e in the preferred direction) construct a unit vector U at the root of the
vector along the preferred direction.

Then the component of the vector say A in this direction is

Al = (A CosQ)l--------------- 1.3.9

Where © is the angle between the vector /v and U™ see figure 1.3.4 below;

Fig. 1.3.4 component of vector A in U direction.
1.4 KINEMATIC VARIABLES

1.4.1 POSITION VECTOR

If we consider ;. particle moving In space relative to an origin. Let the particles move

along a curved part a. show in figure 1.4.1

kz_—+ = x
A/

Its position or displic .ii.ent from the origin, is measur.-d by the vector r known as its position

Figure 1.4.1 Particle moving in space.

vector. Explicitly rcuibewrittenas: r = rd + 1l - ek, ---memmmermee- 1.4.1.

1.4.2 AVERAGE \ ELOCITY.




The velocity of a particles is the rate at which its position changes with time.
Let ra represent the position vector of a particles in a given frame of reference and b be its
position vector at a later time t in the same frame of reference.

The displacement vector describing the change in position is given by

Hence Average Velocity V is given by

Ar r —vr
V=—=22 4.
Ar 4 1.4.3

Therefore velocity is a vector quantity since it involves both direction and Magnitude
(Value). It is worthy to note here that velocity is the rate of changes of displacement which can

be represented as

v Iy Ar dr
= I -_— =
Instantaneous velocity Ar dr 1.4.4
At —> 0
This is in one dimension.
L 4

In three dimension.

V=d =idx +idy +dr ... 1.4.5

dt dt de dt
V = iVx + lVy +kVe e 146

The S.i. UNIT OF VELOCITY IS m/s.

1.42 ACCELERATION.

When a body moves and its velocity changes either in magnitude, direction or beth we
say the body accelerate. This quantity, acceleration of a particle can then be defined as the rate
of change of its velocity with time.

Suppose that at the instant time t a particle is with a position vector ra moving in a plane
with an instantaneous velocity va. And at a later time (2 its position vector is rb moving with a
velocity vb. The average acceleration a of the particle is defined to be the change of velocity

divided by the corresponding change in tin.c.



Instateneous acceleration = a = In V =dv .......... 1.4.8

t ->0 t t
Note that if Va = Vb then the body is not accelerating i.e. the acceleration = o. Also
we have a constant (or uniform) acceleration if the rate of change of velocity with time is equal
throughout a motion. But if the rate of change of velocity is not same throughout thcin we can
say the acceleration varies.
1.5 GRAPHS OF MOTION

1.5.1 DISPLACEMENT - TIME GRAPH

When the displacement r of a body under motion is plotted against time 't' as shown

below, the slope gives the uniform velocity of the body at all time.

displacemment

Y

At

time.t Fig. 1.5.1 Displacement -Time graph

Slope = r=V..... 1.5.1
t

1.5.2 VELOCITY- TIME GRAFH

Plotting the graph of velocity of a body against time gives a straight line graph. The
slope of which gives the accelerations of the body at any instant. The grapl as shows m fig.

1.5.2.



veloaly
v

Ay

At

FIG. 1.5.2 velocity - tine _raph

Slope = = @ -oemme- 1.5.2

Notice that the area under this graph gives the displace nenc ot the body under
considerations.

1.6 MOTIONS
In the studies of motion one is aimed at looking at the various properties of a moving
particle (or body). Here I will treat all bodies as if they are s ngle purticle for convenient

purpose. Motion of particle can be one -, two - or three din :nsional.

1.6.1. LINEAR MOTION

The concept of positions, displaceraent, velocity and iceeleration as concern particles in
motion have been treated earlier. However, with much part. -ular 1o the linea motion it is
necessary to bring to fore some simple relationships betweer: them as related by Newton knows
as equations of motion.

() FIRST EQUATION OF MOTION

If U and V are the initial and final velocities respect . cly of a particle in motion within

atime t. And recall equation 1.4.7 its acceleration



M FIRST EQUATION OF MOTION

If U and V are the initial and final velccities respecti ely of a particle in motion within

a time t. And recall equation 1.4.7 its acceleration

(i)  2ND EQUATION OF MOTION

Average velocity of the particle is given by

Using equ. 1.6.2.
V = 2at + U + U] - 1.6.3a.

But displacement S is

S=Vt 1.6.4
Therefore S = Yalat + 2UJt ...l 1.6.44.
Hence S = Ut + Y at, ................... 1.6.5

(i)  THIRD EQUATION OF MOTION

From 1.6.2.
t=(NV-U)a ............ 1.6.6

using 1.6.6 in 1.6.5

S=UN-U)+ Yal(V-U) ........... 1.6.7
( a )
S=UV-U+U 4+ V' -2UV ... a.
2a.



1.6.2 PROJECTILES

This described the two dimensional motion of a body th own into the air. That is the

motion is along a vertical plane. The body undergoing this typ s of motion has a constant
acceleration 'g' (acceleration due to gravity) which is directed « »wnwards. To analyse this
motion we consider its motion in y (vertical) and x (horizontal) directions separately.

A

Y VO

b X
W AN
fig. 1.6.1 path of project describing projectile motion.  *

If the initial velocity of the body under consideration is Vo ai 1 projected through angle Q 1o

the horizontal:
Its vertical component = Vy = Vosin®, .......... 1.6.3
Its horizontal component = Vi = VoCos® .........1.6. }.

Vx is constant throu iy out and hence the horizontal acceleratic 1 is zero.

10



At any instant

V.= V,C08 0 oo 1.6.7
Vy =VSinO-gt............ 1.6.8
Vmag = V'V2+ V2 . 1.6.9
Tan® = V,/V, .o 1.6.10

horizontal -istance moved at any time t is
x = (V,CosO)t ..o, 1.6.11

vertical distance covered is
y =(V,Sin@®) t - gt ............... 1.6.1

But from 1.6.11

t=x/V,Cos0 ................ 1.6.13
Using 1.6.13 in 1.6.12 we have
<
y = (tan 6)x - (@I)x* ...l 1.6.14
(2V?*,Cos’0)

1.6.14 is a parabolic equation in x.

equation 1.6.15 is the maximum horizontal distance ki own as RANGE.

1.6.3 CIRCULAR MOTION

Circular motion could be vertical or horizont. | in this section I shall treat only the

horizontal circular motion of an object which travels ¢ jual distance in equal time. In this case

L



the magnitude of the velocity is constant but not the direction. Therefore we can say that the
speed of the object is constant since speed is a scalar quantity. The direction of the velocity at

any instant is along the tangent to the circle at that point.

1.6.2Showing an object describing a Circular motion
Angular velocity denoted by w (omega) 1s defined as angle swept out in unit time by the

line joining the body and the center of the circle (radius). And it is given as

or A=W oo, 1.6.19
And is always directed towards the centre of the circle.
One may want to ask what keeps a body in circulc r motion?
Definition (centripetal force)
This is the force that is responsible for keeping a body in a circular motion.

Since F=ma.....ooece.n. 1.6.20



or F=mV¥ .cccovenn. 1.6.21
or F=mwir.oo..oevens 1.6.22

1.7 LINEAR MOMENTUM

Linear momentum of a body in motion can be interpreted mathematically as the product
of its mass and velocity. That is if M is the mass and V is the velocity of the body under

discuss we have

Since P is a product of scalar (mass) and vector (velocity) then momentum is a vector
quantity.

Definition (Inpulse)

Let a force F be exerted on a body during a collision. We assume that the force has a
constant direction. And that the collision last for a time t we can write the change in momentum

as

The left side is p, - p, which is change in momentum of the body.
The right side, which measures the strength and duration of the collision force is called

the impulse and denoted J.

1.§ CONSERVATION OF LINEAR MOMENTUM
Momentum possesses an interesting and important property inherent i quite a tew physical

quantities. This is the property of being conserved. It consists in that the geometrical sum of



momenta of bodies which interact only with each other remain unchange.
The principle of conservation of linear momentum can then be stated as "when the
resultant external forces acting on a system is zero, the total linear momentum of the system

remain the same.

FEF=dt =0 1.8.1

df
For instance if we consider collision between two particles, such as masses M, and M,

as shown below: M M

o~

o

Fig. 1.8.1 collision between two bodies M, and M.,
. . . . ‘ .
During the brief collision these particles exert large forces on cach other. At any instant
F, is the force excried on particle 1 by particle 2 and Fyis the force exerted w. particle 2 by
particle 1. By experiment it is found that I, and F, are both cqual but in reve se direction.

Considering particle 1

Considering particle 2

AP, = [Fdt = F,O

14



1.9 LAWS OF MOTION
Here some of the laws that summarizes the general behaviour of bodics in moiion shall

be discussed.

Definition (FORCES)

Force could mean pull or push. In a more general term force can be said to be quantity
that alter the state of object (either stops or causes motion). Alternatively we can define force in
terin of "acceleration a given standard mass (body) will experience when placed in a suitable
environment.

Example of forces are, gases or liquid exert forces on container, tension in the rope,
ruberbands and springs exerts forces on the object aitached to their end, two bodies rubbed
together exerts frictional forces on each other c.t.c. All these are contact forces. Gravitational,
electrostatic and magnetic forces are some of the forces that does not involves contuct.

In measuring forces e.g. using elastic material, it is found that the force exerted on the

material (comprehension or stress) 1s proportional 1o the change in length of the elastic material.

< O ‘ ‘
Al

Where k is the force constant for the material under consideration.

) NEWTON'S FIRST LAW OF MOT10ON

It says ¢ it 'everybody will continue in the state of rest, or uniform motion in a straight



(@)

(b)

can be

(i)

line unless an impressed force act upon it".
Mathematically it can be iterpreted o

IfF =0

To best understand this law we can consider these two examples.

The passangers in a stationary vehicle jack beackwards when the car suddenly moves.
and

The passangers in a moving vehicle jack forwards when the driver suddenly applied
break.

These two examples tells us that every ot:ject don’t willingly change their state and this
generated with the Newton's first law.

NEWTON'S SECOND LAW OF MOTION

The first luw did not tell us anything about the nature of the force. It is only a statement
about the behaviour of objects in the absence of any force. But the second law of motion
helped us to answer a fundamenital question that "what effect will the same force produce
on difterent bodies with ditterent properties (iniass)?"

The answer in the overview is thus, different aeccleration will be produced.

Theretfore the statement of the law says "the raie of change of momentum of a body is
proportional to the torce applicd” and it takes piice in the directions of the force.

mathematically,

16



t
but V-U = a o 1.9.6
t
F = Kma

If a force of 1 Newton is applied 10 a mass of 1kg it produces an accelaration of 1 m/s.

Hence k = 1 and

(i) NEWTON’S THIRD LAW OF MOTION

When two bodies acted on each other, the two exert forces mutually on
one another. These forces are equall but in contrary directions. Simply
put Newton said "To every action (force) there is always an equal but
oppositc reaction (force)".

Mathzinatically, if F,; = action of body A on body B and FB%: reaction
of body B on body A

Foy = - Fyne coveeeneeeeneennn, 1.9.8

(iv)  KEPLER’S LAWS OF PLANETARY MOTION
The following three statement credited to Kepler summarises the planetary
motions.
(a) Each planet moves in an elliptical path with the sun at one tocus.
(b) The radius (distance between centre of sun to center of planet) of the moving
planet sweeps out ¢qual area in equal time.

(©) The square of the period of revolutions of the planet (T) about the sun is



proportional to the cube of the mean distance from the sun i.e.

planet

mean distance r

Path of revolution

Fig. 1.9.2. showing planetary motion naned the sun.

) LAW OF UNIVERSAL GRAVITATION

Every particle of matter in the universe attracts every other particle with a force which
is directly proportional to the product of their masses and inversely proportional to the
square of their distance apart. That is if Mi and M. are two masses scparated by

distance r in the universe they attract each other with a force F given by

F ot MiMs oo, 1.9.10
IZ."_
or F=GM M:.ooooioieiieeennn. 1.9.11
=

Where G is a constant of proportionality known as universal gravitation.
1.10 WORK AND ENERGY

DEFINITION (WORK)

Work as a concept and by its definition is more restricted. That is not all muuscular
efforts cab be regarded as work. Example of this is a basketball player holding a bail in his
unstreched hand. Because the ball is stationary the player does no work on the ball,

nevertheless he feels tired.

18



he feels tired.

Therefore we can say work is being done when a force acts on a body and cause it to

undergo a displacement.

)

Since

(i)

The unit of work is Joules (j).

WORK DONE BY A CONSTANT FORCL:.

From the above definition of work, ii a constant force acts on a body, the infinitesimal
mechanical work (DW) done by the constant force F on the body can be expressed as Dw
= FAOSCOS O .ovvviiiiiii 1.10.1

where QS is the infinitesimal displacement and © is the angle between the vectors
displacement and force.

Equivalently, the work equation above can be express as dot product of two vectors force

and displacement as

F.DS = FDSCosQ .............oiiii. 1.10.3

WORK DONE BY SET OF FORCES

Single force was been considered so tar. More than one force (set of torces) can act
upon a particle and the total work done on the particle is the sum of the individual

workdone by each force when they act separately ¢a the particle.

Therefore,

AW total = OW, + OW, + OW; + ....... + QOW, ... [.10.4

AW total= AW, oo 1.10.5

OWotal = F,. AS + F,,AS + F,.OS 4 ... Fn.&S ... 1.10.6

19



QW total = (F, + F, + F; + ..... + Fn). OS ....... 1.10.7

1

T
D
w
—
—
(o]
o0

AW total
where F is the resultant effect of all the forces.

(i) WORKDONE BY VARIABLE FORCES

Here we examine cases in which u particular force F acting on a particle depends on the
position of the particle. If we consider particle moving in a straight line say x-direction
and if the force F act only in the x-direction but varies with x we have
AW = F(X).OX oot 1.10.9
The total work done by F(x) during the displacement of the particle from the point
A (x=xA) to point B(x=x,) when the interval between A 2nd B is divided into M equal intervals
is given by
W =X | F(x). OX, vevereeinnnnn. 1.10.10
AOW = F(xn).Qxn .................. 1.10.10
Alternatively we can write
AW = lin IV, F(xn) Oxn = [*, F(x) dx

And this can be shown graphically as below.

o T //E"r\\

fig 1.10. 1. graphical rep.
of total work done by variable

]
|
i
]
i
|
|
|
: ‘ >force.
X

|
!
)
|
|
|
1

© Xy Ax Xg

The area under the above graph between X, and X gives the total work done by the

variable force on the particle.



1.11 WORK - ENERGY PRINCIPLE:

Considering a particle with mass m that is acted upon by a constant net force F. Thus

leads to a constant acceleration for the particle.

If we consider x-direction only and that the particle is at point A with a velocity V,.

After a time t, the particle is at point B with velocity VB therefore

a=V,-V, 1.11.2

t
S =N+t V)t 1.11.3

2

since F=ma.....o.o..coiiiiiiiiiii, 1.11.4
W =FS 1.11.5
W =mas .cooveeriiniei i, [.11.6
W=1vm((V,-V) NV, +Voi.... 1.11.7
t 4

W = Yam (V3 - Vo) o 1.11.8

The quantities Y2mV?; and 2MV~, are the pariicle’s kinetic energies (energy due to
motion) at points B and A respectively. If we denote these energies as K, and K, then the work
equation becomes

W = 1AMV, - 1AMV, 1.11.9

Hence

W=0OK=K;-K, oooirerrrrerii, L1110

This is the work -Energy principle and it holds wrue tor both constant and variable forces.



DEFINITION (POWER)

Consider a force IF(x) that is one of the forces acting on a particle. The work done by

this force during a general displacement that requires a time Dt is

To obtain the rate at which work is done, we divide equation 1.11.11 by Dt and when

tuking the limit Ot -> 0 it gives

dw =1lim QOw =lim ' Ox ....... 111,12

dt Ot->001 Ot->0 Ot
dw = F,dx .............. 1.11.13
dt dt
dw = F,_V, {(in one dimension) 1.11.14
dt

By generalization
dw =F, V. + F V. + F V, ... LLILES
s
Therefore dw =F.V .. 1.11.16

dt

The rate at which work is done, dw, is called the power denoted as P
dt

Thus P =dw =F.V ... L1116

dt

DEFINITION (POTENTIAL ENERGY)

There is a kind of cnergy associated with position of particics known as potential energy.
Suppose a weight lifter raises a weiglit very slowly tiom thc tloor to a shelt at height h.

orce applied on the weight I is just equal to that of the gravitational force



work done = F.h = mgh ............ 1.11.18

If the weight is allowed to fall and its kinetic energy is measured just before it touches
the ground (floor) it is always equal to the potential energy gained during raising the weight.
1.12  CONSERVATION Gl' ENERGY.

The work-energy principle discussed earlier only touched on the kinetic energy and work
done concepis. 1f now we add the concept of potential energy we can now get a more revealing
formulation of energy conservation.

If U, and Uy are the poiential energies of a particle at position A and B respectively then
we can say

U + UMV = U, + MV + Fdx = E ........ 1.12.1

The content of the above equations can be stated as follows:

When a particle moves from a point ‘A’ to another point ‘B’, the mechanical energy at
point ‘B’ is equal to the mechunical energy at point ‘A’ less the discipative work done against
frictional force.

From this it we consider a close system and without friction then we can say that the total
energy of u particle ‘E’ is constant at all point (or time).

1.13  CONSERVATIVE & NON-CONSERVATIVE FOKCES

Since the potential energy depends on position of the particle in a force field, then the

work doi..- on the particle by the force field i1s given by
WA ->B) = ["Fuds........... 1.13.1
Ii s work done is independent of path followed Ly the particle then the force is a

conservative force. If a particle move round from A to B :nd back to A following arbitrary



different path to achieve this, the potential cnergy of the particle at the end of the trip is the
same as it has at the beginning. Gravitational force is an example of conservative force.

Any force field that does not behave in this way is said to be non-conservative.
1.14 SYSTEM OF PARTICLES

Up to this point we have been looking at body as if they are single particle. Let us now
see what will happen if more than one particle are involved.

(1) CENTER OF MASS

When dealing with system of particles the interest is to enquire about the motion of the
system as a whole. To do this it is helpful to use the center of mass concept. The point
that corresponds to the center of mass the "eftective mass center” of the system of
particles. That is to say if all the mass of the object were to be concentrated at this
point, the resulting point - like 1:ass would have the same transnational Kinematic
behaviour as the extended mass system as a whole. «

Precisely, the center of mass vectur, denoted as R, of n particles is

R=mr_+ mr, + m.r._1 + mr, ...... 10401
m + m,+ m;+ ... + m,

R= Xx_ M, . 114 1a

R= 1 ¥ _ Mr, ... L1+ 1b
M

M=2X_NM 1.14.2

Considering a system of 4 parti{g‘

1
M‘ a

shown in fig. L 141 with reference w an origin
G T2




(i)

Fig. 1.14.1 system of 4 particles.

The center of mass R for this system is given by

R=Mr+Mrn+Mr+Mr,
M+ M, + M, + M,

Generally in three dimensions
ri=ri+ri+rk 1.14.4

MOTION OF CENTER OF MASS

If rem is the position vector identifying the center of muss at a particular point and if M

is its total mass, then

Macm

If

Mrecm = M, + Myr, + Myr; + o0 + Mr oo LIS
By first derivative

Mdrm = M, dr, + M, dr, + M;dr; + ... + M_dr, ...... 1.14.6
dt dt dt dt dt

Where Vem is the velocity of the anter of miss and Vn is the velo: .. of the r:th particle.

The second derivative,

MdVem = MdV, + M, dV, + M; dV, + ... + N dV, ... 1.14.8
dt dt dt dt de
= M, + M,a, + Mja; + ...... + Ma, .......... 1.14.9
where acm is the acceleration of the center of mass.
F,o= Ma, ... 1.14.10
Macn =F, + F, + F; + ...... + F, ... 1141



From Newton’s tliird law of motion it is clear that each pair of particles exert equal but
opposite forces on one another. Hence the internal forces of a system of particle add up to zero.
Therefore
Macn = Fext. ............. 1.14.12

(i) WORK AND ENERGY

Work done = [Fext dX. covvenvvennennne. 1.14.13
W = [Macm dXg, «ooovvvveninnnnes 1.14.13a
= [ MdVem dx,, 1.14.13b
dt
= [MVcm dV,, 1.14.13c
Hence W = [Fext dxcin = 2 MVem® ........ 1.14.14

Change in kinetic energy QK is given by

W = OK = Kem, = Kem; = OKem ........... 1.14.15
This is the work - Energy therein. !
(iv)  LINEA MOMENTUM
Each particle hus a momentum given by
Pn = MnVn ............. 1.14.16
Therefore for the general systeim momentum is given by
MVem = MV, + MV, + MV, + ... + MnVn ..... 1.14.12

Pcm = P, + P, + P; + ...... + P
And that the conservation principle of linea momentum still holds for system of particles

QPecm =0 ... 1.14.19.

Thatis P, + I, + P2 + ... + P, = P, = constant .. 1.14.20
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1.15 ANGULAR MOMENTUM

In rotational motions, the analog of linear momentum is the angular momentum. If we
consider a particle of mass 'm’ and linear momentum ’P’ at a position described b'' position
vector r relative to an origin. We can define the angular immomentum 1 of the paiticle with

respect to the origin to be

It magnitude is given by
| = rPSin@© ....... 1.15.2

Where O is the angle between r and P and the direciion of the angular momentum is
normal to the plane formed by r and P.

Angular momentum is often called the moment of (linear) inomentum.
1.16 HARMONIC OSCILLATORS

Any object that moves to'and fro such that its accelcrativi: vuries with its displacement
from a fixed point and that the acceleration 1s always directed towards the fixed point is said to
be an harmonic oscillator.

If there is no ftrictional and external forces acting the motion is known as simple
harmonic oscillation.

If a frictional force is present then the motion is Damped harmonic oscillation while it
is a forced harmonic oscillation when there is an external force driving the object.

Example of S.H.M is a simple pendulum while object wtiached 1o a spriag balance

inserted in fluid experiences damped harmonic oscillation.



(1) SIMPLE HARMONIC MOTION

The general equation for obj:cts describing S.H.M is

dx +kx=0....... 1.16.1
dd m

eq. 1.16.1 has a general solution given by
x = A Sin wt + BCoswt ...... 1.16.2

dx = WACoswt - WBSinwt ..... 1.16.3
dt

dx = -W3(A Sinwt + BCoswi) ...... 1.16.4

If we use equations 1.16.2 and 1.16.4 in 1.16.1 we have

This is the angular frequency vl the particle.
At every 2n/w interval of tirnie the motion repeat itsell. Therctore,

27n/m is the period of the motion T.
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This is the period of all :notions govern by 1.16.1.

The frequency of S.H.M is given by

F = 12x(k/m) ....... 1.16.9

If we plot the displacement x against the tiine t for S.H.M described by equation 1.16.1

we have

%

>

displacement

Recall x = A sinwt + BCoswt

The velocity of an objeci describing S.H.M is

V= dx = WACoswt - WBSinwt ..... 1.16.11
dt
And the acceleration is
a= dx =-W(ASi.i + BCoswt) ........... 1.16.12

dar
Hence a = - W

All these can be represciiica graphically as
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Fig. 1.16.4 Relationsl:ip between x, v, and a in simple 11.M.

(2) ENERGY CONSIDERATION OF S.H.M

For all harmonic motious including S.H.M in which no dec.criptive force cts, the total

mechanical energy E i, oiven by

And that it is conservead.

Let displacement x = ASINWL ................ 116,15

The potential energy U = 2 kx* ........... 1.16.16
= A KA? Sin*wt ... 1.16.17

This has a maximum vaulue Y2 KA” and a minimum value O.

The velocity is given by

V= dx = AWCosWL ............. 1.16.18
dr

Hence The kinetic Energy is given by

Ke = 1aMV* ... 1.16.18

l
S
=<
=
<
=
O
Q
2

Ke =

30



Ke = 12KA* Cos*wt ......... 1.16.21

It also has a min. value 0 and a maximum value ¥2KA* du:i.ig the motion.
RecallE = U + K
E = KA Coswt + Y2 KA Sinwt ............ 1.16.22
= 15 KA’ (Cos*wt + Sin*wt)
But Cos’® + Sin’® = 1
E=%KA . ......... 1.16.23
E = AMV? + 12Kx* = ViKA ... 1.16.24

From this relationship

V=dx =+ Yk/mA-x))............. 1.16.25
de
E(=U + K) E = U+K =12KA?
—u F=(172kA2
ef=u+§ i r—ffl_“ —
I k ) A diphacemernt
{‘/237 — Tb ) . 7me A {IfA O (VDA A

(3) DAMPED HARMONIC OSCI.LLATION

Let us now treat oscillations experiencing frictional force i which is proportion to the
magnitude of the velocity of ihe oscillator.
The general equation governing D.H.O is given by

mdx + bdx +kx =0......... 1.16.26
dr dt

And the general solution satis/ying equation 1.16.26 is
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Subject to restriction to restrictivn of conservation of energy in the process
E+E=E+E ... 2.3.9

1) PARTITION FUNCTION

In the above discussion if we treat M, 8, M, "N, as function of energies E;, 2. 3. 8 and
2.3.9 requires that
N, = aExp{BE}  ...... 2.3.10
for indices 1, j, k,1 where « an B are constants independent of which of the four stata
we look at
Therefore
n, = «Exp{BE}  ...... 2.3.11
For isolated system the additional resirictions are
(1) total molecule N = T « Exp{hi:} 23002
(2) and total energy E = ¥, o EExp!BE} ..... 2.3.13

from equation 2.3.12

a =_N

ZExp{BE} . 2.3.14
Therefore equation  ................... 2.3.11 becomes
ni = N Exp{BE} = NExp{Bl"} .......... 2.3.15

LExp{BE,} Z

Where £ = SExpiBE} L 2.3.16

is an enormously important quantity the single components partition function

(2) QUANTUM STATISTICS

We are still considering a gas «f non-interacting (or weakly interacting) identical particles
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SBE < SBE * SBE(i)

IF MSBE > SBE(i)

MSBE <« MSBE

ELSE

MSBE < SBG(i)

ENDIF

ENDFOR

AVEN « A/TBE

FORi<« lton
OUTPUT i, SBE(i), Ni(i), gi(i)

ENDFOR.
OUTPUT  "Average particle in states, AVEN
OUTPYT "Total number of microstates” TuE
OUTPUT "Most probable state”, MSBE

CASE F

SFb = 1

QUTPUT Particles are identical, inistinguishable «nd inaximum of one particle
I a level.

FOR i< liwon
QUTPUT Supply the value of degeneracy
INPUT gi (i)

INPUT "No. of particles" Ni(1)
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ENDFOR
FORi< 1ton
LET V < gi()
TRANSFER CONTROL TO SUBROUTINE FOR FACTORIAL
Restate the answer into ANSI
LET V « gi(i) - Ni(i)
TRANSIFFER CONTROL TO SUBROUTONE FOR FACTORIAL
Restate the answer into Ans2
. LET V «< Ni
TRANSFER CONTROL TO SUBROUTINE FOR FACTORIAL
Restate the answer into Ans3

SED(1) < ANSI
ANS2 * ANS

SFD < SFD * SFD(1)
OQUTPUT i, gi(i), Ni(i), SED(i)
ENDFOR
OUTPUT "Total microstate is", SFD.
CASE £
SMB « 1
QUTPUT No restriction, identical but distinguishable particles.
INPUT "toral particle in the system” N
FOR i < 1ton

INPUT "particle in the level” Ni(i)
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INPUT "degeneracy” gi(i)
LETV «N

TRANSFER CONTROL TO SUBROUTINE FOR FACTORIAL
Restate the answer into ANS4
LET V <« Ni(i)

TRANSFER CONTROL TO SUBROUTINE FOR FACTORIAL
Restate the answer into ANSS
ANS6 < gi™

SMB(1) < ANS4 * ANS6
ANSS

SMB = SMB * SMB(i)
OUTPUT i, Ni(i), gi(i), SMB(i)
ENFOR
OUTPUT "Total state 1s" SMB
ENDSELECT
OUTPUT  MORE COMPUTATIONS ? Y/N

INPUT CH

ENDO

SUBROUTINE (FACTORIAL)

FACT « 1
FORi< ltoV

FACT < FACT *i
e Fop,
RETURN



CHAPTER FOUR
EXPERIMENTAL EXAMPLES

4.1 INTRODUCTION

In the previous chapter, systems were designed to solve some specitic
physical problems. Here the systcms are impiemented with real data and the output

presented. The following were tie inputed data.

42  HARMONIC OSCILLATOR

In this section, let us censider a harmonic experiment of o mass 10kg
attached to a spring of spring counstant of 1000 and an amplitude of 1. Using thesc
data, values in the harmonic oscillator sysiem designed, the [cllowing propertics off
the harmonic oscillator (body) were conspicuous as scen in thie oatput.

The output ranges from the table of values to gruplis vt various parameters

as they vary in relation to one another.
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MENU KEYS

(1) Calculation Properties

(2) Table of values
- (3) Graphs

(4) displacement _ time graph
(5) velocity _ time graph

(6) acceleration _ time graph
(7) kenergy _ time graph

(8) penergy _time graph

(9) kenergy _distance graph
(10) penergy _distance graph .

(11) Exic

options ? J§

&l



The value of Mass .............. ? 10
The value of Spring Constant ...? 1000

The value of Amplitude.......... ? 14
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diplacement velocity acceln penergy kenergy tenerqgy time

0.000 10.000 0.000 0.000 500.000 500.000 0.000
0.100 9.950 -9.983 4.983 495.017 500.000 0.010
0.199 9.801 -19.867 19.735 480.26' 500.000 0.020
0.296 9.553 -29.550 43.666 4%6.334 500.000 0.030
0.389 9.211 -38.94: 5.823 424.177 500.000 0.040
0.479 8.776 -47.94° 114.924 385.076 500.000 0.050
0.565 8.253 -56.461 159.411 340.539 500.000 0.0¢60
0.644 7.648 -64.422 207.508 292.492 500.000 0.070
6.717 6.967 -71.7.6 257.300 242.700 500.000 0.080
0.783 6.216 -78.333 306.801 193.199 500.000 0.090
0.841 5.403 -84.1747 354.037 145.963 500.000 0.100
0.891 4.536 -89. .21 397.125 102.875 500.000 0.110
0.932 3.624 -93.204 434.348 65.652 500.000 0.120
0.964 2.675 -96 1156 464.222 35.778 500.000 0.130
0.985 1.700 -98.4%45 485.556 14.444 500.000 0.140
0.997 0.707 ~9%.749 497.498 2.502 500.000 0.150
1.000 -0.292 -°29.957 499.574 0.426 500.000 0.1¢0
0.992 -1.288 -9.166 491.700 8.300 500.000 0.170
0.974 -2.272 -97.285 474.190 25.810 500.000 0.160
0.946 -3.233 94.630 447.742 52.258 500.000 0.150
0.909 -4.161 -90.930 413.411 86.589 500.000 0.200
0.863 -5.048 -86.321 372.565 127.435 500.000 0.210
0.808 -5.88% -80.850 326.833 173.167 500.000 0.220
0.746 -6.66. -74.570 278.038 221.962 500.000 0.230
0.675 -7.374 -67.546 228.125 271.875 500.000 0.240
0.598 -8.011 -59.847 179.084 320.916 500.000 0.250
0.516 -8.539 -51.550 132.871 367.129 500.000 0.2¢0
0.427 -9.(41 -42.738 91.327 408.673 500.000 0.270
0.335 -9...22 -33.499 56.108 443.892 500.000 0.280
0.239 -9.710 -23.925 28.620 471.380 500.000 0.290
0.141 -9 900 -14.112 9.957 490.043 500.000 0.300
0.042 -°.991 -4.154 0.864 499.136 500.000 0.310
-0.058 ~-..983 5.837 1.704 498.296 560.000 0.320
-0.158 - _.875 15.775 ,12.442 487.558 500.000 0.330
-0.256 - 9.668 25.554 32.651 467.349 500.000 0.340
-3.351 -9.365 35.078 61.524 438.476 500.G00 0.350
-0.443 -8.968 44.252 97.912 402.088 500.000 0.360
~-0.530 -8.481 52.984 140.363 359.637 500.000 0.370
-0.612 -7.910 61.186 187.185 312.815 500.000 0.380
-0.688 -7.259 68.777 236.511 263.489 500.000 0.390
-0.75" -6.536 75.640 286.375 213.625 500.000 0.400
~-0.813 -5.748 81.828 334.788 165.212 500.000 0.410
-0.8"2 -4.503 87.158 379.822 120.178 500.000 0.420
-0.9.6 -4.008 91.€17 119.680 80.320 500.000 0.430C
-0.95%52 -3.073 95.160 452.773 47.227 500.000 0.440
-0.)78 -2.108 97.753 477.782 22.218 500.000 0.450
~0.994 -1.122 99.3%9 453.711 6.289 500.000 0.460
-1.000 -0.124 99.992 499.922 0.077 500.000 0.470
- .996 0.875 99.6l1¢ a49%96.172 3.828 500.000 0.46C
-).982 1.865 98.2145 482.607 17.393 500.000 0.490
- 0.959 2.837 95.8v2 459.768 40.232 500.000 0.500
-0.926 3.780 92.542 428.567 71.453 500.000 0.510
-0.883 4.685 88.31¢ 390.247 109.753 500.000 0.52¢
-0.832 5.544 83.2.7 346.336 153.664 500.000 0.530
-0.773 6.347 77.277 298.584 201.416 500.000 0.54¢0
~-0.706 7.087 70.5%4 248.895 251.105 5GJ.000 0.55¢C
-0.631 7.756 63.1.7 199.250 300.750 500.000 0.560
-0.551 8.347 55.0¢9 151.628 348.372 500.000 0.57¢
-0.465 8.855 46.440 107.929% 392.071 500.000 0.560
-0.374 9.275 37.3#% 69.893 430.107 500.000 0.L9C
-0.279 9.602 27.9:3% 39.037 460.963 506.000 0.600
-0.182 9.833 18.217 16.592 483.408 500.000 0.610
-0.083 9.965 8.30 3.452 496.548 500.000 0.620
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.232
.327
.420
.509
.592
.670
. 740
.804
.859
.906
. 944
.972
.991
.999
.998
.987
.966
.935
.895
.846
.788
.723
.650
.571
.480
.397
.303
.206
.108
.008
.092
.191
.288
.382
.472
.558
.638
.712
.778
.837
.888
.929
.961
.984
. 997
.000
.993
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.949
.913
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-32

-74
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-78
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-65
-57

-30

-10

-0.
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47.
55.
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.986
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595
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.201
-99.
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-98.
.566
.490
-89.
.575
.826
.289
.030
.121
-48.
-39.
.313
-20.
.776

061
931
803
677

480

641
675

648

797

241
804

834

26
53
88
129
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274
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445
472
490
499

486
466

261
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78
45
21
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72
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431
484

499
492
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376.
.619
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281.
232.
182.
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.429
58.
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.707

136
94
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175.
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030
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357.
310.
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.584
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473
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370.
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130.

89
54

13
33

62.
99.
.351
189.
.716
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381.
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238
288

421

454,
.683
.193

478
494

499.
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481
458
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344
296

246.
197.
149.
106.
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37.
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49.

83
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843
926
970
925
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.722
27.
.350
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056
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.778
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015

.294
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000
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.280
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.420
.430
.440
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.460
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.680
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.710
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.850
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.343
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.814
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.392
.003
.523
.958
.314
.597
.813
.972

-34.330
-43.535
-52.305
-60.553
-68.195
-75.156
-81.366
-8i5.764

58.

94
136
183
232

928

.766
.792
.332
.530
282.
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376.

424
025
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441.
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363
316.
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217
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.208

668
470

.576
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.000
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000
000
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43 THERMODYNAMIC PROBABILITL'S

The thermodynamic probabilities system so desigiicd . implemented by
using the following set of data values.
H = No of micro states = 3

J = Degeneracy of each micro state = 2

MACl =g =1, Ni =3, go=3, b=
MAC2 =g =1, Ni=4 g2=21.:=
MAC3 =g =1, Ni=1,g=31T=.

Using Bose Einstein statistic We {ind
(h Most probable state
(2) Total number of microstates

3 Average occupation number.

3



CHAPTER FIVE

5.1 CONCLUSION

I have been able to examined in this work an introductics: into some basic
concepts that serve as foundation for the entire work in its carl;, jrts. The
principles of dynamics as it relates to matters. Some mathemaiic:' and statistical
concepts were defined in terms of what they are all cbout. Precis oy in chapter one,
the concept of scalars, vectors, force, work, energy mornentum (. motions ¢.t.c,
were well established to the minimum requirement of this jo.:. Ti.: concepts were
initially considered for bodies as if they are single particle wic kaer extended (or
gencralized) as it applied to system of particles.

In chapter two, systems of independent particles were ity treated in terms
of their specific characierisi.c that distinguish are systein {rou: i other. A siinple
analogical example in the wotion of cross-section in classical s .ics wis drawn 10
depict how statistics coines wito play in niechanical physics. "Uhce main particle
were considered in relution 10 the probabulities distribution laws. ‘These particles are
Bosons, fermions, and Boltzons. For each group of particles, c¢utions for
distribution of a number of particle among energy levels (staij voere derived. Also,
the mean distribution and mean square deviation from a cente. [.usition X were
derived from the probubility, Pi of finding a particular partic: - 1 1, out of N purticles
in an energy state i. A bit of interucting system was also loci =0 o, The

80



interaction system were also grouped into three; microcanonicil approach,
cannonical approach and Grandcannonical approach.

The cquation governing their distributions among ener.y slates was
established. And hence the probability Pi of finding a system ia (2 ith energy state |
were derived for each approach. The thermodynamic propertics such as entropy, S,
pressure P were then expressed in tcrms of probabilities Pi. And ihic enerpy state Ei.
To conclude the cliupter, partition function for each approach were derived and
properties stated. Also the fluctuations were established.

The basic principles of chapters one and two were applicd o physical
problems such as harmonic oscillator (simple one) and thermodyiiamic probabilities.
The problem specitication was drawn in full details. Algorithi written in
pseudocode and flowchart drawn. Computer program to solve such problem (and
related oncs) was written in BASIC language.

In chapter tour, programs written was implemented orn a particular question
or set data and the output presented.

52  REMARKS

With the establishment of the basic principles of dynaiiics, statistics,
mechanics matters, system of independent and interacting pari.cics based on
established (or laid down) rules one could say the work is con:ple.z. But the
reservoir oi knowledge can not dry up. There are still a lot (o . «xplore in this area

81
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of study. Especially in the arca of interucting system. I therefore recomunend that a
special project should be dedicated o the arca which will be an improvemcent on this

v

job.
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FLOWCHART (SHM)
( sTaRT )

/ INPUT SPRING CONSTANT K

i INPUT MASS OF THE BODY M

INPUT THE AMPLITUDE A

¥

W = (Wm)'?
TP = 2n(m/k) n”
‘ F=1/Tp

L=100,t=0,i=0

e = e

)

DO WHILE i < 1})(;)“
DT 2
X(i) = Asin{wt)
! .
V(i) = Awcos(wt)

ali) = -Awrsin(wt)

PE(i) = (1/2)kA2sin?(wt)

e

KE(i) = (1/2)mAwWcosi{wt)
E() = PE() + KE()

b

Print i, t(1), X{@), V(). a(i),
PE(i), KE(i), E@)



[

i=i+1

t=t+ 0.1

e

~
// ™~ yes

—
/ S

\/ ifi < 100 . #/\1)
~ L AN

DO WHILE CH <=~ N

R

OUTRPUT AVAILABLE OPTIONS IN
GRAPHICS

S

INPUT G

B

DO CASE

PRING THE TABLE OF

VALUES
/”l\x
7 T
CASE G = ~ LRAW T HE GRAPH OF
MOTION -~ > nOTION
~.
Y
i \\ YES RAPH OF
- _ T DRAW T. 1= G
\CASE G=VEL Vi ey
\\\\ i . T
4




(/ 4\/
N

YES ~— DRAW GRAPH OF

/
. “CASE G=ACE>———» ACCELERATION -
~  AGAINSTTIME
NO
o YES L RAW GRAPH OF PE

+ CASEG=PET -———> = AGAINST TIME

~ -
~—

NO

e

B DRAW GRAPH OF KE
CASE G= KET —i’ AGAINST TIME

~—

NO

T YES
iy DRAW GRAPH OF PE
< CASE G=PEAX b = G AINST X

e

NO {

Y q )
CLSEG= YES* DRAW A GRAPH OF
KEAT - KE AGAINS .

NO

QUTPUT YOU WISHTO

DISPLAY MORE
GRAHPS YN

\
INPUT CH

VL : YES

h\ 4

Y

IF CH=Y

NO

STOP



/ OUTPUT AVAILABLE
/ STATISTICS ARE BE,FD
AND MD

le e

—

¥

DO WHILE CH <> N

SELECT CASE

o

T~

Tl YES
.~ CASEBE
S~

YES

———

e ~.

v// ’
< CRSEFD

~ -

NO
INPUT "TO
CONTINUE Y/N"
CH

YES

DO BC . ONS

DO FERMCNSGS

DO BOLTACNS

—_—— ]

RIS, A



CASE BE

/ START

N M', L

. A4

/ CUTRUT
THESE ARE
BosChS

- . A

DOWHILE [ <= N

/INPUT g

I

INPUT N(i)

fir<=n T

no

. SEZ MSBE

#

0O white 1<=n

Initialise THE

50 suaRoUTIE
(

- Y
sicr= the answer in R
|
\ 4
V= MNi(i)
|
\j
0O SUERCUTINE
[
A4
STCRE ToZ Al il 1t
l
Y

~



L VEsieNe-r

]

e ¥
DO SUBROUTINE

STOREANSINP

o

4
SBE(i) = P/ (R*M)

|

\
TBE = TBE + SBE(i)
}

A=A+ Njfij " SBE()

|

A\ ¢
no ' yas
[ if MSBE > SBE() - - - — «wl
_ MSBE=sBEG ; MSBE = MSBE
| R
Y
IFi<= N — —
1o :
Y
AVEN = ATBE
VL S
DOWHILE 1<=n
14
Qutputi, EBE(), Niij, 6jo.j
Y
LT, ho - o yoS
3 ifi<=n e e
//



[ 3
/
e
/ PRINT AVEN
;
; PRINT TBE
\ 4

PRINT MSBE

STOP



CASE FD

e i e s e

N
START

PRINT FERMIONS

|

DO WHILE | « N

Input gj(i), Nj(i)

yes

DO WHILE i <=n

v =gjli)

DO SUBROUTINE

A4

STORE THE ANS IN ANS

v

5




V = gi() - Nj)

v

DO SUBROUTINE

v

Store the ans in ANS2

v

V = Nj(i)

v

DO SUBROUTINE

v

Store the answer in
ANS3

v

SFD(i) = ANS! / (ANS2 * ANS3)

v

SFD = SFD * SFD() ]

y

Output i, gj(1),
Nj(i), SFD({)

[~

OUTRUT SFD

N

Y

STOP >




CASE MB

4

( START )
S~ A,_,r#, _ ##//
[ v U
‘ sSMB=1,1=1 ;
7 “output particles are Boltzons /
T o
Input N, n /
R e R
|
v

DO WHILE Nj@), gi()
!
v oo
Input NiQ), gj(i)
|
v
V=N
" DO SUBROUTINE

A 4 . .
Store the ans in ANS4

|

‘ v
V = Nj()

'
DO SUBROUTINE
|
A\
Store the answer in ANSS
l
Y

ANSB = gj(i) s

<—

SMBY() = (ANS4 * ANSS) / ANS5S

Y
SMB = S..18 * SIAB()

v
Qutput i, Nj(1), gj(i), SMB()
{

'
‘ YES

NO ' Tl




/ OUTPUT SMB /

y

C sor )

SUBROUTINE FACTORIAL

C sTART >

A

y

‘ DO WHILE i <=V J

l FACT = FACT *i J

YES




APPENDIX TIII

5 cls

screen 2

locate 1,17:print"MENU KEYS"
LINE(2,17) - (2,26)

locate 3,8:print" ( Calculation Prope:ties"
locate 5,8:print" ( Table »f values"

locate 7,8:print" ( Graphsz"

locate 9,8:print" ( displacement _ tiue graph"
locate 11,8:print" velocity _ time < raph"

acceleration _ time graph"
kenergy _ time graph"

)
locate 13,8:print" )
)
) penergy _time graph"
)
0

locate 15,8:print"
locate 17,8:print"
locate 19,8:print" kenergy distance graph"
locate 21,8:print" ) penergy _distance graph"
locate 23,8:print" (11) Exit"

9 locate 25,8:input" options "; ¢

if g= 1 then goto 10

if g = 2 then goto 100

if g = 3 then goto 200

if ¢ = 4 then goto 300

if g = 5 then goto 400

if g = 6 then goto 500

if g = 7 then goto 600

if g = 8 then goto 700

if g = 9 then goto 800

if g = 10 then goto 900

if g = 11 then goto 1000

cls:locate 10,10:print "You enter wrorn ; uumber..retype.."
delay 5:goto 5

10:cls

dim x(200),t(200),v(200),acc(200),pe(ZC. ,ke(200),e(200),xx(200)
cls

locate 5,10:input "The value of Mass .. .......... "em
locate 7,10:input "The value of Spring . unstant ...";k
locate 9,10:input "The value of Awplituu .......... "a

locate 15,10:print "Calculating Aspect.. .......... .
w=(k/m~"0.5
f = w/(2 * 3.142)

pr =1/ £

t(1)=0

for i = 1 to 200

x(1) = a*sin(w * t(i))

V(i) =a*w*cos(w*t (1))

acc(i) = -1lxa* (w™2)*sin(w*t (i)
pe(i)= k*((a*sin(w*t(1)))"2/2)
ke (i) = m* (a*w*cos (w*t (1))) "2/2

e(i)= pe(i)+ke(i)

t(i+1)=t(i) + 0.01

print using"####.###";x (1) ;v (1) ;acc(1) ;p. i) ;ke(i);e(1);T(1)
next i

delay 5

cls

goto 5

100 cls



orint " diplacement velocity acceln penerjy kenergy tenergy
time"

ior k = 1 to 200

orint using "#### . ###" ;x (k) ;v (k) jacc (k) jpe (k) ke (k) ;elk);t (k)
next k

delay 5

cls

goto 5

200 cls

300 cls

locate 2,10:print "THIS IS THE GRAPH OF DISPLACEMENT AGAINST
TIME"

SCREEN 2

LOCATE 0,0: PRINT "+1"

LOCATE 25, 1: PRINT"-1"

locate 13 ,60: print"TIME"

LOCATE 1,2 : PRINT"DISP"

LINE (0,100) -( 400,100)

LINE( 1,0) - ( 1,300 )

FCR I= 1 TO 200

pset (t(i)*200 ,100*(1 -x(i))):next 1

delay 15: cls:goto 5

400:cls

locate 2,10 :print "this is the graph of ve.ocity agai.st time"
SCREEN 2

LINE (0 ,100) -(400 ,100)

LINE (1,0)- (1,300)

for k = 1 to 200

pset (t(k)*200,10*(10 + v{k)))

next k

delay 15:cls:

goto 5

500 cls

locate 2,10 : print"this is the graph of acceleration wgainsc
time"

SCREEN 2

LINE (0 ,100)-(400 ,100)

LINE (1,0 )-(1,200)

for k = 1 to 200

pset (t(k)*200, (100 +acc (k)

next k

delay 15:cls

goto 5

600 cls ,

locate 2,10 :print'"this is the graph o:r kenergy against time
SCREEN 2

LINE (0,168) -(400 ,168)

LINE (1,0 )- (1,300)

for k =1 to 30

pset (t(k)*2000,ke(k)/3)

next kK

delay 15 : cls

goto 5

700 cls



locate 2,10 : print"this is the graph ¢: penergy against time"
SCREEN 2

LINE (1, 0)-(1,300)

LINE (0,168) -(400,168)

for i = 1 to 50

pset (t(i)*2000,pe(i)/3)

next i

delay 15 : c¢ls

goto 5

800 cls

locate 2,10 :print"this is the graph of k:nergy against
displacement™®

SCREEN 2

LINE (1 ,0)-(1 ,300)

LINE (0 ,168) -({(400,168)

for i = 1 to 50

pset ((1+ x{(i))*200,ke(i)/3)
next i v
delay 15: cls

goto 5

900 cls

locate 2,10: print"this is the graph of penergy against
displacement"

SCREEN 2

LINE (1,0) -{(1 ,300)

LINE (1 ,168)-(400,168)

for i = 1 to 50

pset ({(1+ x(i))*200,pe(i)/3)
next 1

delay 15 :cls

goto 5

1000 cls

ch =y

print"you wish to quit ( y/n)"
input ch$

IF ch$ = "n" THEN GOTO 5
PRINT"YOU TRY , BYE"

END



APPENDIX IV

1 CLS
REM DECLARE FUNCTION IfACT! ()~
REM Compute the number of microstate thut muke up a microstate
LOCATE 1, 20: PRINT "M AIN MENU"
REM LINE (2, 20)-(12, 28)
LOCATE 4, 12: PRINT "(1) Bozons"
LOCATE 6, 12: PRINT "(2) fermions
LOCATE 8, 12: PRINT "(3) Bolizon™”
LOCATE 10, 12: PRINT "(4) Exit "
LOCATE 14, 12: INPUT "Option "; Q
IF Q0 = | THEN GOTO 100
IF Q = 2 THEN GOTO 200
IF Q = 3 THEN GOTO 300
IF Q = 4 THEN GOTO 400
CLS : LOCATE 16, 12: PRINT "You enter wrong numbor== > Re-type":
G010 1
REM - -
100 CLS
a=0:the = (: sbe =
LOCATE 10, 10: INPUT "Enter nunwer of nvalue "; n
LOCATE 12, 10: INPUT "Enter number of © value"; x

FORh = 1TOn
FORj = 1TO x
CLS

LOCATE 5, 5: INPUT "Enter value of gj "; gj(h, j)
LOCATE 7, 5: INPUT "Enter value of nj "; nj(h, j)
v =njh, j)

GOSUB 2000

nfac = ifact

z=gith, j) +njih, j) -1

V=2

GOSUB 2000

gnfac =ifact

y=ghj -1

v=y

GOSUB 20600

gfac = ifact

sbe(h, j) = gufac / (gfac * nfuc)

the = the + sbe(h, j)

a =a + njh, j) <sbeh, j)

sbe = sbe * sbe(h, j)

IF msbe > sbe(h, j) THIN



msbe = msbe
ELSE
msbe = sbe(h, j)
END IF
aven = a/ the
NEXT j
NEXT h
rem PRINT "NUMBER OF MICRO STATE IN A MACRO STATE"
PRINT

PRINT

PRINT
FORh=1TOn
FORj=1T0x

PRINT h, j, nj(h, j), gith, j), sbe(h, j): NEXT j: NEXT h

!

rem FORI=1TOH
rem FORK =1T10J
rem PRINT (j(I, K), MJ(I, K)
rem NEXT K: NEXT1
rem FORI =110H
rem fork=110]
rem PRINT "FOR MAC"; I
rem print sbe(i,k)
rem NEXTK: NLXTI
PRINT
PRINT "AVERAGE PARTICLE IN THE STATE ="; AVEN
PRINT
PRINT "TOTAL NUMBER OF MICRO STATE "; TBE
PRINT
PRINT "MOST PROBABLE STATE IS ARE WITH"; MSI .
delay 15: GOT0 1
200 CLS
SFD = 1
INPUT "HHIOW MANY MICROSTATE PRESENT": H
INPUT "THE DEGENERACY OF EACH MACROSTA. 5"
FORI=1TOH
FORK =170/
PRINT "GI"; J: INPUT GI(1, K)
PRINT "NJ"; J: INPUT NI(I, K)
NEXT K: NEXT [
FORI=1TOH
FORK =1T0J
V=G K)




GOSUB 2000

Q = IFACT

V= Gj(l, K) - Nj{I, K)

GOSUB 200

8§ = IFACT

V = Nj(l, K): GOSUB 2000: L. = IFACT

SEDj(, K) = Q /(S *L)

SED = SFD * SFDj(I, K): NEXT K: NEXT |
FORI=1TOH

PRINT "FOR MAC"; I

FORK =I1TON

PRINT "Gj"; K; "="; Gj(I, K)

PRINT "Nj"; K; "="; Nj(I, K)

PRINT SFDj (1, K)

NEXT K: NEXT I

 PRINT SFD
delay 10: GOTO 1
300 CLS

SMB = [

INPUT "TOTAL NUMBER Ol PARTICLES N", N
INPUT "HOW MANY MACROSTATE PRESENT ', H
INPUT "THE DEGENERACY OF EACII MACROSTATE"; ]
FORI=1T01

FORK =110/

PRINT "Gj"; K: INPUT Gj(l, K)

PRINT "Nj"; K: INPUT Nj(I, K)

NEXT K: NEXT {

FORI=1TOH:FORK =110J

V= Nj(l, K)

GOSUB 2000

X = IFACT

Y = Gj(l, K) " Nj(l, K)

SMBj(l, K) = X/ Y: SMBi = SMBi = SMBj(t. ..): NEXI'K
V = N: GOSUB 2000

Z = IFACT

SMB = Z * SMBi: PRINT SMB: NEXT I: del.. - 10: GC1 O !

400 END

2000 CLS
IFACT = 1
FORI=110V
IFACT = IFACT * [
NEXT I
RETURN



with discrete single - particle states 1, 2, ........ ,

r.... with encrgies Ei < E, <.... fora gas

of N particles.

()

(ii)

Let the state of the gas be specified as a whole by the occupation numbers n;, ny, ..., f...

There are two approaches to what number can the occupation number n, assume.

BOSE EINSTEIN STATISTICS

Here there is no restric:ion on the occupation numbers n;, they can and do assume all
integer values

Factorsn, = 0, 1, 2, ...... for all 1.

This type of statistics is known as Bose - E - Einstein Siatistics. It was used to derive
plank radiation Law.

All particles that obey this statistics are known as BOS 3JNS and examples are Photons

and mesons.

FERMI - DIRAC STATISTICS

‘
In this type of Statistics the occupation numbers n, are restricted: at most are particle
can be in any state. That is the occupation number can only be

n, =0, 1 forall 1.

Ail particles obeying ti:is statistics arc known as FERN[ONS. Examples are elections,
protons, Neutrons, po. ..rons efc.

This is the Paul exclasive principle tor non-interactive particles: No two identical

fermons can be in the s:me state.

2.4 EQUIPARTITION OF { YERGY

Though in a system wi.i. evenly spaced component eneiray levels, the mean component



energy is

Sumesntion fact E; = KT ....... 2.4.1 and in an ideal gas the wewn component energy is

= 3/2KT ..... 2.4.1

We may want to calculate the mean energy for an ide.l gas by a different route:

E = {“EPYdpExp{E/KT} ... 2.4.3.
[ *P*dpExp-{E/KT}

where
P = momentum of the particle
E=p»™ . 2.4.4
In three dimensions
E = “hm{P’, + P, + P*,;} c...2.4.5
and P*dp is proportional to dp,, dp,, dp,

we can then write mean energy as

4
E = tm (=P’ + P} + PLlexp - {(P° + P+ /2 KT} dp.dPydp, ...

[om €xp - {(P%, + P2 + P1)2mKT}dP dP dP,dP,

246

Ar.t since the exponential factors into a product of terms depending only on P, P, or P, then

2.3.6 is equvalent to

E — ‘/?-m[iwp_lxe'mmmmdp., + IP:ye-i’yzxzmk'rdpy + Lnggﬁf :.I.Kvt.(uyl 047
[ l‘oooeb’xl,:'m}\’Td Px "e-PylllmKTd P) ['e-Pfxlm};'l‘d Pz ]

From here it is clear that the mean encrgy associate.! with motion in cach of the three

arthogional directions is equal to
E,=E =E, =%»KT ................ 2.4.8

Therefore one can say that
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is the mean cnergy associated with each of the three degre: of treedom of cach particle (free

to move in the x, y and # directions indepedently.

SOME THERMODYNAMIC FUNCTIONS

2.5
Let us try to investigate (evaluate) the pressure of a gas from the idea of virtual work.

The change of energy in the system for an infinitesimal expausion is the work done. So we can

identify

If the volume increase is done slowly, in fact very very w.owly, so that the fevel sag but the

population remain the same (i.e. ni = constant).

Now

E=ZEmi..............

So OE = EnidEl + LEidQni ....... 2.5.3

The first term represent work done on the system and the sceond term represent

the heat change.
dE =dw +dQ ................. 2.5.4

Equation 2.4.4 is the first law of thermodynamics which says that any change in energy is

accounted for by work done and quality of heat.

Note that dw and dQ are infinitesimal change not ditterential

ustng 2.5.2
2.5.5.
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There are many ways of workiiy this expression. We have

ni = NExp - {Ei/kT} = NExp-{Ei/kT} -------- 2.5.6
LExp-{Ei/kT} %
Note that
b {InZ}; =168y  ........ 2.5.7
'Y Y
= - LOEi 1 Exp {Ei/kT} 2.5.8
8V KT
So that
P =NKT§{InZ}; ccccvvvvnnnnnnn. 2.5.6.
Y
For our gas
Let Z = [Exp - {E/kt} 4xldpy ... 2.5.10
(27h),

and 1f we compare 2. 4. 9 with equation of state

Py NKT 2.5.11
we have
6 {n&}y=1v . 2.5.12
oV \Y
Ite =-{s¢}, .. 2.5.13
Y

It is convenient to defire an ey function

F=NKTLnZ ... 25.14

Taking exponential of this we nave

N = Exp - [F/KT} L. 2.5.15



The internal energy can also be expressed in terms of the partition functivn, £ as

E = NEEi Exp -{ZiI/FT} = NkT? §_ {LnZ} ...... 2.5.16
£ 5T

Now if we consider the environment of the system and see what we can control, we have

{(5F); = NKT{8In#}y = P ... 2.4.17
5V A%

and work done on the system is

dw = -Pdv = (6F)dv 25018
ov

The equation of state links P, V, and T so we may write

dF = (gk)dv  (0B)dT ..ol 2.5.19
1% oT

So that

~Pdv = dF - dT ... ... 2.5.20

T P
and

{5, = -NKInZ -NKT§&  .......... 2.5.21
Sl £ b

The quantity F is the Helmbholtz free energy and is such that the difterenticl with respect
to volume, at constant temperature gives the pressure.

Note that the ditterential of internal encrgy with respect to V at constant temperature does
not give pressure.
2.6 CANOMICAL AND GRAND CANOMICAL APPROACHLES

The stetistical mechanics which has been developed so far is applicabic only 1o isolated

systems of independent and non-interacting particles. Then we are able to express energy of the
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system as the sum of the energies of the constituent particles, 1.e.
E=nE +nE, + ... nE, + ...... 2.6.1
The weaknesses of such a development of statistical mechanics are:
(1)  The energy of the system is specified
2 The system contain speciefied number of particles
(3) .  There is no interaction among the constituent particles.
We may want to consider a situation where none (or sonie) of these resirictions holds.

DEFINITION (MICROCANOMICAL APPROACH)

Any system of particles that is treated with weak interaction among the constituent
particles is known as microcanomical Ensembles. That is systems with sprciticd number of
particles and weak interaction among the components, such ucatinent enables us to calculaic
thermodynaniic properties of materials in ideal gas state from molecular dat

DEFINITION (CANOMICAL APPROACH)

In an assemblage of systems in which each system is assuined to be closed and with
constant volume but separated from its neighbours by diathermic walls, so that all systems arc
in a thermal cquilibrium. That is the system is characterized by constant temperature, volume
and number of particle N. This is a closed Isothermal system and is called the Canomical

ensembles. The particle can exchange energy with each other. 1t can be shown schematically

as in fig. 2.6.1.
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- RAﬁ‘.A' MC\ babic. wadll

NTV NTV NTV NT?

NTV NTV NTV NTV /g,-gfg, diather—nadl walls

“ (energy ex chargs Po.ssfbu:) .

NTV NTV NTV NTV

NTV NTV NTV NTV

fig. 2.6.1 canonical ensemble of n systems with const. N, V,T,

DEFINITION (GRAND CANONICA}. AP?’ROACH)

In this case, each system is consider to be of volume but open and separated from its
neighbours by diathermic permeable membrane. So that energy and materials can be exchanged.
This i1s an open Isothermal system char.cierized by constant volume V, temperature T
<

and chemical potential U of the components.

This 1s called Grand Canonical Ensembles.

- Risis Gdiabal© wall
VTu VTu VTu VTu i
Vip | VIu VTu VTu ? diabalic. permiasle woll
VTu VTu VTu VTu B

tig. 2.6.2 Grand Canonical Ensernbles.

Let us consider a system with encrgy state Ei in contae. with a heat reservoir which is
madc up of a large number of our systein and with a total cuergy E.

Ei is the energy of the system and not of the component. Each of these systems is

identical and localized and suppose we know their system encrgy levels.
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If there are Mi system with energy Ei, tien the number of microstates making up this

; W=N.zgM 2.6.2
Ni!
If we consider these constraints
(i) INi=N 2.6.3
(i) ZEINi=E .l 2.64

Maximizing InW we have

Ni = Ngi Exp - {EVKT} ........ 2.6.5
LExp - {Ei/KT}

The probability that our system is to be found in a single state of energy Ei is given by

Pi = Exp - {Ei/KT} ...oooeenni. 2.6.6
LExp - {EVKT}

Then the function
4 = EExp- {EV/KT} ... 2.6.7
Summed over all system energy levels and is the system partition function.
The mean energy of the system is
E= ZPiEi................ 2.6.8
and therefore
dE = XPidLi + XEidPi........... 2.6.9
gives the change in energy. The first term rejcesent work done on the system by the
environment while the second term is heat.
Now the system energy levels Ei changes in response to some external constraints X

(such as volume, magnetic field e.t.c).
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Differentiating the system partition function Z with respect to constraint parameter, X

at constant temperature.

(OInZ&); = /2 (@B ovivvvnnnn 2.6.10
8V 5x
= -1 L6Ei Exp-{EV/KT}  ........... 2.6.11
KT éx %
=-1ZP,8E, 2.6.12
KT ox

The work term can be written as

dw = (8F), dX covriii 2.6.13
Ox

Where F is the Helmholt free energy for our system defined as
F=-KThnZ ... 2.6.14.

We may want to guess at what will happen if the number of components in our system -
is variable (i.e. viewing from grand canonical approach). It is assumed that the energy (and
energy levels) of the system will change if the number of component change. So we expect that
the probability of finding the system in a state with r: components and energy Ei(n) will be given
by

P o Exp {(un-Ei)/KT} e 2600
and the system’s partition function is defined as
Z = LExp {*F"™/KT} 2.6.16
where p is some Kind of work function known as cheinical potential.

# is the grand partition function.

47



2.7 MEAN VALUES AND FLUCTUATIONS
We are now in a position to .ckle the problem of fluctuations in an approximate way.
let our system: have energy E and consist of N componcuts.  The probability of the system
having energy E, keeping N constant, is given by the Boltzmarin fuctor
Poe®t 2.7.1
The number of states between E and (E + 8E) is roughly proportional to

(EYM SE 2.7.2
NO O

The probability of finding the systemm between E and (I + 8E) is then given by the
number of states in O, each multiplied by the probability of occupution, so it is

P(E) 6E = (B)™"
NO

8F Exp - {E/KT} vovveennene. 2.7.3
O

The term (E/D)™ grows hugely with E if N is a large numbcr, while the exponential term
falls, P(E) has a maxinmum which can be detindd.
If P(E) = Exp {NInE - E/KT} ... 2.7.4
the maximum occur (if we take InP(E) and ditterent late) at

§{NImE-EXT}=0 ... 2.7.5
oE

e, E=NKT ... 2.7.6
Let us now study the variation ot P(E) with small excursions of the energy
NinE - E/KT = NIn (Emax + QL) - (Eman + OGE/KT ... 2.2.7
If we expand to second order

== NInEmax - Eman/KT + Nln (1 + QF) - OE/KT ... 2.7.8
Emax
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Since Emax = NKT the first ord.-r term vanishes an:i

P(Eman + QOE) = P(Eman) Exp - AN (L)* .ooooeoeni, 2.7.9
Emax

So the width of this approximately gaussian distribution is ~ Emax AN and this is the
size of the fluctuations in energy which cocur.
Fluctuations in the number of cor:ponents may be studied through the s.me
approximation
I P(N) = Exp {*™KT + (N-1)i. "/NA} ........... 2.7.10
The maximuin occurs at

6 {uN + (N-I) [InE-IaN-Ind'y = O ... 2711
5N KT

If Nmax satisfy this equation
If we set
N = Nmax + ON ... 2010 «
And if we expand up to second ord:r in DN, terms i [3:3 vanishes because of the
maximum and we find that

P(N) = P(Nmax) Exp-'~ (AN} ..., 2713
Nimax

So that the fractional variation of N is expected to be nuglizible for a macroscopic object.

This is an elementary consideration which can not tal:c ¢ e of circumstances in wlich
macroscopic system exhibit large fluctuations.

Therefore, we can develop a method for estimating fit.ctuations for real macroscoy ic
systems by proceeding more formally.

Suppose some quantity q (eg particle number, energy c.t.c) has an approximately
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gaussian distri: ui .n

Pty = Exp-{q-qo)y} .coeeennnn. 2.7.14
20°
The aver. ¢ value of q is
g - gP(@dg ..ol 2.7.15
P(q)dq
gExp - {(g-a’}dq = qy ...ennnnn.. 2.7.16

Exp - {(20)*}dq
Setting 20 < ¢
the average vai.: of ¢* is

L2 P(Qdg =

(@*Exp - {a(g-qo)*}dq

[ P(q)dg [ Exp

C=q0): Exp -{ax’)dx
[t >-(ax)dx

Exp -{axdx +q,?

= |
[Ex. -(ax?)ix
But
[xe ' lx = YoV 7l
and
(Exp ax))dx = Virla ..

The ratio equ..!s

s0 that

- {«(g-q,)°}dq

................. 2.7.18

............ 2719

............... 2.7.20

................. 2.7.21
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This is the mean square fluctuation of any quantity q by calculating

the quantity.
QY= @ - @ eeverennneneens 272 i

If we want the fluctuation on particle number.

N = LINExp {uN/KT-Ei/KT} =KT o OO 2.7.24
4 £ op
N? = YEN® Exp {uN/KT- ByKT} = K2 8% .. 27.25
% Lo ot
Hence
N2-N=KTSN 2.7.26
Op
Similarly for energy and for convenient let us set B = /KT
E = IYEiExp {(uN-EDB} = I/ESL ...oooviiininn 2.7.27
Z 0B
E’ = LSEiExp {(uN - EDB} = /ZYZ ..o 2.7.28
£ oB*

Since (T = -1/KB)

Hence E* - B2 = KT?*8E ..o, 2729
6T

But ¢E = Cv (in thermodynanmi.s)
ot
Then E’ - E* = K1°Cv
The fluctwation in n : i ON i
umbe : s¢ Tarue if BN s Laroe i (o canyeiti
r only becomes large i 6N is large, 1.0, N is sensitive to smal.

opt
change i ion i , e
ge in p. And Huctuation in energy only gets lurage if E is sensitive w T or if Cv is Jarg
c\'



CHAPTER THREE
STATISTIC AL MECHANIC PROBLEMS ALGORITHM

3.1 INTRODUCTION

What we have estal.lished so far can be applied to physical probleris such as the
harmonic oscillators, thernm.odynamic probabilities, steller, intersteller gas, :.:laxation time
problems e.t.c. to mention but few.

In this chapter, we shull consider some of these problems namely; hariconic oscillator
and the thermodynamic probubilities problc ms, and then write algorithm for i .

Prior to each proble:r algorithm we shall establish (state) some of thic procedure and
relationships that are relevarnt to the problem. It possible see through same duc. vations.

3.2 THE PROBLEMS SV CIFICATIONS

In the harmonic osciilation, we shall be restricted to the simple ones w0 wre there is no
frictions and no external force influence. With tnis we shall study the displac-iu .ats, velocitics,
accelerations and various encrgics as varies with time and positions of the bod: s appropriate.
Also, we shall try to prese.:! some gruphical relationships between these quai. wes.

In the case ot thermodynamic probabilitie. problem, we want to know .ow probable a
microstate s and the number of microstates that make up a microstate. Tl > will be done
viewing particles from three statistics, namely: Bose-Einstein, Fermi-Dirac and Maxwell-
Boltzman statistics

3.3 ALGORITHMS

An algorithm is a fnite set of instructions for carrying out a specific procedural task.

Examples of algorithms arc program (which are specifically expressed in third yeneration high
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level languages capable of execution by a con.juter), pseudocodes flow charts, NSSF-diagram

formulae decision tree and Enghisl. "wnguage.

In this work, pseudocodes is used to express (write) the algorithms of the problems
considered.

Pseudocode is a logical representation of an algorithm using such third generation
languages style like DO, WHILE, IF... THEN, ELSE, FOR, NEXT, ENDIF ¢c.t.c.

3.4 SIMPLE HARMONIC MOTION

Any harmonic oscillator which moves without frictions and external force influence is
known as simple harmonic motion and its motion is known as simple harmonic motion.
The equation describing the motion is:

md'x + kx = O ....3.4.1
de?

If the solution to the above problem is

X = A SHIWE oottt e, 3.4.2

which is the angular frequency.
Where k and m are spring constant and mass respectively.
The velocity of the oscillator is given by

Vo= dx = AwCoswt ............ 3.4.4
dt

and its acceleration is

a = d°x = -AwSSinwt ...l 3.4.5
de’




The period of the motion is

T=2n/(0/k .. .eennn. 3.4.6

and its frequency is

F=1V&mM .. 3.4.7
27

The potential energy of the body is given by
P.E. = hkx? = BLKASIwt ................ 3.4.8
and its Kinetic energy is

KE = AMV? = U MA'W-Cos*wt ....... e 3.4.9

ALGORITHM (5.H.M)

{computation of the properties of a body undergoing simple hi. monic oscillation}.
DECLARE

K,V,W M A T,t F, PE, KE, &, x; reul.

CONST; =, K

CHAR; G, CH

EXECUTE

ARRAY : V, P, KE, a, x, E.

QUTPUT You are about to compute simple harmonic oscitlati n prebiem.

QUTPUT What is the spring constant ol your spring in use.

INPUT "Amplitude”, A




QUTPUT what is tl.c mass of the body attached to ilic spring.

INPUT m

OUTPUT Compute the angular frequency, period and trequency of the motion.
W o« (k/m)*
TP « 2 w(m/k)"
Froe (k/im)*2x
OUTPUT  Ini-alise start time
t< 0
For i< ltoL
X(i) «< ASINW!¢
V(1) <« AWCOSW1
a(i) < AW’ Sin wt
PE(@) < ¥4 KASIN'wt
NE(i) < A MA w?*Cos*wt
(i) « PE(i) + KEQ)

OQUTPUT i, 1, x(i), V(i), a(i), PLEG), KE(1) E() t= 1+ 0.1

i.NDFOR
{In plouing various graphs of this motion we sce a lot of beauriful and interesting
figures.}
QUTPUT The following options are available in gruphics. Choose your : ppropriate
desire by pressing the corresponding code.

OUTPYT 1. TABLE: for table ol values

n
w



QUTPUT 2. MOTION:  for  graph or X agi.nst t

OQUTPUT 3. VEL for graph of \Y aguinst t
QUTPUT 4. ACC: for graph of a against t
QUTPUT 5. PET: for  graph’ of PE  against t
OUTPUT 6. KET: for  graph of KE  against t
OUTPUT 7. PEAX:  for  graph of  PE  against X
OUTPUT 8. KEAX: for  graph of KE  against X
INPUT "what is your desire”, G
CHe Y

WHILECH < > N
SELECT CASE G
CASE "TABLE"
FORi<«< 1toL .
OUTPUT i, t(i), x(i), v(i), a(i,, PE(i), E(i)
ENDFOR
OUTPUT Table of values
CASE "MOTION"
CLEAR
TRANSFER CONTROL TO SUBROUTINL: FOR SETTING SCREEN AND COLOUR AND
DRAW AXIS.

LABEL the vertical axis as di:placement.

[.abel the horizontal axis as tiue



MARK 'he scale on vertical (x) axis

Mark the scale on time axis

Draw the graph.

OUTPUT_ Graph of displacement against time.
CASE "VEL"
CLEAR

TRANSFER CONTROL TO SUBROUTINE FOR SETTING.

Label vertical axis as velocity

Label horizontal axis as time.

Mark the scale on velocity axis.

Mark the scale on time  axis.

Plot the graph

OQUTPUT Graph of velocity against time.
CASE ACC”
CLEAR

TRANSFER CONTROL TO SUBROUTINE FOR SETTING

Label vertical axis as acceleration

Label the horizontal axis as time

Mark the scale on acceleration axis

Mark the scale on time axis

Plot the points

QUTPUT Graph of acceleration against time.

n
~2



CASE "PET”
CLEAR
TRANSFER CONTROL TO SUBROUTINE FOR SETTING
Label vertical axis as potential energ
Label the horizontal axis as time
Mark the scale of PE axis
Mark the scale on t axis
Plot the points
OUTPUT Graph of potential energy against time
CASE "KET"
CLEAR
TRANSFER CONTROL TO SUBROUTINE IF'OR SETTING
Label the vertical axis as kinetic enerpy
Label the horizontal axis as time
Mark the scale on KE axis
Mark the scale on t axis
Plot the points
OQUTPUT Graph of kinteic energy against time.
CASE "PEAX"
CLEAR
TRANSFER CONTROL TO SUBROUTINE FOR SETTING

Label the vertical axis as potential energy
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Label the horizontal axis as Displacement
Mark the scale on PE axis

Mark the scale on x axis

Plot the points

OUTPUT Graph of potential energy against displacement.

CASE "KEAX"
CLEAR
TRANSFER CONTROL TO SUBROUTINE FOR SETTING
Label the vertical axis as kinetic energy
Label the horizontal axis as Displacement
Mark the scale of KE axis
Mark the scale of x axis
Plot the points
QUTPUT Graph of kinctic encrgy aguint displacement.
ENDSELECT
OUTPUT Do you want to display more graphs (Yo./No).
INPUT "decision” CH
ENDWHILE
ENDSHM

3.5 THERMODYNAMIC PROBABILITY

To estimate the number of mi.rostates that make v @ microstate in a given system, one



will need to consider three statistics available for particles to obey, namely: Bose-Einstein,

Fermi- Dirac and Maxwell-Bolizn  n staustics.

(A)  Bose-Einstein statistic (B-E statistic)
When considering B-E statistics we speak of identical indistinguishable particles and there
is no restriction to the number of particle that can occupy a microstate.
If gi the degeneracy of a particular energy level and Ni is the number of particles in i

microstate, the microstaie contains

SBE = w(gi + Ni- )} 3.5.1
(gi-1)! Nil

And the total number of microstates in the system is given by
T=X S¢oiveinii. 3.5.2

The most probable microstate is given by Max SBE.

And the average occupution number Ni for a given degeneracy is given by
4

Nig TNL Sy e 3.5.3.

=1
T k

(B) FERM - DIRAC (F-13) statisiics.

The particles here are also identical and indistinguishable but maximum of only one (not
more than one) particle can occupy an energy state.
Using the same particle parameters above the microstate contain

Si:_u =7 gi_!_ """"" 35.4
i(gi -Ni)INi!
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(C)  Maxwell-Boltzman (M-B) statistics

Like the B-E statistic, the n: aber of particles that ocoupy a state are not resiricted but
the particles are distinguishab.2 and identical

Hence

SMB =N! 7 gi™ .. 3.5.5
Ni!

ALGORITHM (MICROSTATE)

{Compute the number of microstate that make up a microstate in a system}.
DECLARE
S, T, AVEN : real
gi, Ni,V, n : Integer
CONST:
CHAR: F,B, %, CH.
ARRAY: gi, Ni
EXECUTE
QUTPUT what type of statistics is to be consider
{F, for F-D, B for B-E and # for M-B]
CH<«Y
DO WHILECH < > N
SEI LCT CASE
CASE B

OUTPUT particles are identical, indistinguishable and no restriction to number of
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particles.
OUTPUT what is the value »f degeneracy
Fori<1lton
INPUT gi(i)
INPUT "No of particle in the level”, Ni(i)
ENDFOR
INITIALISE
TBE = O, .A = O, SBG = 1 MSBG=0
OUTPUT set temporary locations
FOR i< 1lton
Let V « gi(i) - 1
Transter control to subroutine for factorial
Restate the answer, into R
Let V <« (gi(i) +Ni(i)-1
Transter control to surontne for tactorial
Restate the answer into P
Let V. <« N,(i)
Transter control to subroutine for tactorial

Restate the answer, into M

SBG (i) « P
RM

TBE < TBE + SBE()

A < A + Ni(1))* SBE()



