
COMPUTER SIMULATION OF INITIAL
VALUE PROBLEMS

I/(O/(WU N. IIEIUI/(E
PGD/MCS/232/96/97

DEPARTMENT OF MATHEMATICS!
COMPUTER SCIENCE,

FEDERAL UNIVERSITY OF TECHNOLOGY,
MINNA, NIGER STATE.

SEPTEMBER 2001.

COMPUTER SIMULATION OF INITIAL
VALUE PROBLEMS

BY

II(OI(WU N. 18E8UII(E
PGD/MCS/232/96/97

Being a Project submitted to the department
of Mathematics/Computer Science, Federal

~

University of Technology, Minna in partial
fulfillment of the requirementsfor the award of

c\., Post Graduate Diploma in Computer Science.

SEPTEMBER 2001.

APPROVAL PAGE

THIS IS TO CERTIFY THAT THIS PROJECT HAS BEEN READ AND

APPROVED BY MEETING THE REQUIREMENT FOR THE AWARD OF

POST GRADUATE DIPLOMA IN COMPUTER SCIENCE IN THE

DEPARTMENT OF MATHEMATICS / COMPUTER SCIENCE, FEDERAL

UNIVERSITY OF TECHNOLOGY MINNA, NIGER STATE.

DR. YOMI AIYESIMI
PROJECT SUPERVISOR

DR. S. A. REJU
HEAD OF DEPARTMENT

EXTERNAL EXAMINER

DATE

DATE

DATE

11

ACKNOWLEDGEMENTS

I would like to express my gratitude to Almighty God for preserving

my life throughout my study at the F.U.T. Minna.

I am much indebted to my project supervisor, Dr. Yomi

Aiyesinmi, for the innumerable sessions we had during which he

made illuminating suggestions, which were fully utilized for the

completion of this work. Special thanks go to the head of

department, Dr. S. A. Reju and Other Lecturer's in the

department, who have contributed in one way or the other for the

realization of this project

Finally, I wish to thank my wife Mrs. Agnes, Ibebuike for her

encouragement and assistance.

1ll

DEDICATION

This work is dedicated to my wife Agnes Ibebuike and my

daughter Ogechi P. A. Ibebuike.

IV

ABSTRACT

The purpose of this study was aimed at verifying and

introducing a numerical computation of the solution of ordinary

differential equation under initial value conditions. The numerical

methods for the solution of the differential equation (dy/dx = f (x,y)

y(xo) = yo) are the algorithm which will produce a table of

approximation values of y(x)at certain equally spaced paints called

grid, nodal, net or mesh point along the x coordinate. Each grid pOint

in terms of the previous paint is given by the relationship.

Xn + 1 = Xn + h, n = 0, 1, 2, ... , N-l

Where h is called the step size. The program used a single step

procedure based on the Runge - Kutta method of order N = 4 (RK4).

v

TABLE OF CONTENT

Title Page

Approval Page .. ii

Acknowledgements ... iii

Dedication iv

Abstract .. v

CHAPTER ONE

1.0 Numerical Methods and Computer Simulation 1

1.1 Introduction 1

1.2 Statement of Problem 2

1.3 The Needs for Numerical Methods 3

1.4 Numerical Computation 4

1.5 Characteristics of Numerical Method 5

1.6 Algorithms 6

1.7 Flowchart Language 7

1.8 Iterative Loop 8

1.9 Logic of Computer Programming 8

1.10 Steps for Solving Problem on Digital Computer 11

Vi

.11 The Presence of Error

.. 12 Purpose of Study

l.13 Area of Study

L .14 Definition of terms

CHAPTER TWO

2.0 Ordinary Differential Enq. Under Initial Condition

2.1 Introduction to Differential Equation

2.2 The Geometric Interpretation

2.3 Euler's Method

2.4 Taylor's Series Method or Method of Successive

Differentiation.

2.5 Runge-Kutta Methods

2.6 Gill's Method

2.7 Merson's Method

CHAPTER THREE

3.0 Research Design and Methodology

3.1 Introduction

Vll

12

13

14

14

17

17

20

21

23

24

30

32

34

34

3.2 Purpose of Study

3.3 Initial Value Problem of Interest

3.4 Algorithm (RK4)

CHAPTER FOUR

4.0 Data Analysis and Discussions

CHAPTER FIVE

5.0 Summary

5.1 Conclusion

5.2 Recommendation

REFERENCE

Appendix A

Appendix B

(Written Program Codes)

(Output)

Vlll

34

34

34

36

38

38

39

40

CHAPTER ONE

1.0 NUMERICAL METHODS AND COMPUTER SIMULATION

1.1 INTRODUCTION

Humans have been calculating for thousands of years. The

Pythagorean formula, an early landmark of mathematics, is a

computational formula. In ancient Greece, Archimedes and others

approximated II. Hundred of years ago mathematical tables were

used in warfare and navigation. And yet the field of Numerical

Analysis only came into being about fifty years ago, just after World

War II. How did the human race avert computational disaster for all

these centuries?

Even though Numerical Analysis as a separate topic is relatively

new, the underlying ideas and goals are not. It is only with the

invention of the electronic computer in the 1940's that large-scale

automated calculations become an important tool for science and

technology. This invention has two implications for us.

i) Computer arithmetic is not the same as "pencil and paper"

arithmetic. In hand calculations, it is possible to monitor the

intermediate results and adjust the accuracy of the

1

calculation as required. With computer arithmetic, each

number has a fixed number of digits, which in some cases

may be inadequate for a calculation.

ii) A hand calculation will usually be short, whereas a computer

calculation can involve millions of steps. Tiny errors that

would be negligible in a short calculation can be devastating

when accumulated over a long calculation. Also, methods

that are perfectly adequate for a small problem may be

hopelessly inefficient when scaled to a large problem.

1.2. STATEMENT OF PROBLEM

During the past decades, giant needs forever more

sophisticated mathematical models and increasingly complex and

extensive computer simulations have arisen. In this fashion, two in­

dissociable activities, namely mathematical modeling and computer

simulation, have gained a major status in all aspect of sciences,

technology, and industry.

In order that these two sciences be established on the safest

possible grounds, numerical method is indispensable. For this reason,

2

two companion sciences: numerical methods and scientific software

have emerged as essential steps for validating the mathematical

models and the computer simulations that are based on them.

1.3 THE NEEDS FOR NUMERICAL METHODS

The Means by which physical situations and processes are

described, analyzed, designed and simulated is through mathematics.

Natural laws are stated in terms of mathematical equations, and the

behaviour of systems that obey these laws is described by their

solutions.

Unfortunately, the mathematics of many of the processes we

would like to study quickly becomes intractable when approached by

conventional means. The best that can be done, in the traditional

sense, is to attempt a series expansion of the solution.

Today, there is another approach: the problem statement and

variable of interest can be approximated numerically. Analysis and

problem solution can then be performed through numerical

computation with the aid of high-speed digital computers. In this

3

way, numerical computing serves as a bridge between scientific

theory and practical knowledge.

Similar uses of numerical computing arise in most branches of

science and technology. The design of earthquake-resistant

structures, the prediction of ground water, the understanding of the

inner mechanisms of the atom, the design of electron devices, the

development of petroleum recovering technologies, and the

interpretation of medical CAT scans are just a few of the many tasks

that exploit high - speed computers to solve complicated

mathematical problems numerically. In some cases, numerical

computing actually aids in the exploration of new scientific principles.

1.4 NUMERICAL COMPUTATION

Numerical analysis involves development and evaluation of

methods for computing required numerical results from given

numerical data. This makes it a part of the modern subject of

information processing. The given data are the input information, the

required results are the output information, and the method of

computation is known as the algorithm. These essential ingredients

Input Information 1---'--1 The Algorithm 1-----+---1 Output Information

4

of a numerical analysis problem may be summarized in a flow chart

below:-

1.5 CHARACTERISTICS OF NUMERICAL METHODS

Numerical methods describe schemes that are used on

computers, and its objective consists in obtaining a clear, precise,

and faithful representation of all the "information" contained in a

mathematical model.

They frequently yield only an approximation to the exact

solution of the problem. However, this approximation can be refined

if we are prepared to expend more computational effort in order to

obtain a better accuracy.

They are conceptually and farely simple, not in volving an

elaborate knowledge of mathematics and can be expressed concisely

in algorithmic form.

They are readily adaptable to implementation to a digital

computer.

5

1.6 ALGORITHMS

The concept of an algorithm is basic to any computational

scheme, numerical or non-numerical.

An algorithm can be defined as a finite set of rules, which gives

a sequence of operations for solving a specific type of problem. It has

the following important features:

i. Finiteness: Algorithm should always terminate after a

finite number of steps.

ii. Definiteness: Each step of the algorithm is precisely

defined. This means that the rules should be consistent

(contradiction-free)

iii. Completeness: The rules must be complete so that the

algorithm can solve all problems of a particular type for

which the algorithm is designed.

iv. Input - Output: An algorithm has certain inputs, and

certain outputs that are in specific relation to the inputs.

In formulating an algorithm, we are concerned with the efficiency

which is a function of:

i) Speed of solution (Economy of Operation).

6

ii) Stability of solution (for small errors in input, large errors in

output do not occur).

iii) Accuracy of the result.

These three aspects serve as a measure for comparing two or more

algorithms for solving a particular type of problem.

1.7 FLOWCHART LANGUAGE

One of the most convenient languages, which is effective for

the communication, and description of an algorithm is the language

of flowcharting.

A flowchart consists basically of a diagram of characteristically -

shaped boxes connected by directed line segments. Each

characteristically - shaped box usually represents a particular type of

activity. The boxes represent groups of elementary steps of the

algorithm. The statements in the boxes are simply the elementary

steps of the algorithm. The directed lines show us the flow of the

algorithm.

7

1.8 ITERATIVE LOOPS

A basic component of an algorithm is iteration. This word is

synonymous with repetition and it indicates the repeated execution

some of the elementary steps of an algorithm.

A loop usually starts after the initialization of certain quantities,

and consists of mainly three types of step:

i. Computation of Elementary Steps,

ii. Test for termination;

iii. Updating or modification of Repetition

It is possible for such an iterative loop to occur with some other

iterative loop.

1.9 LOGIC OF COMPUTER PROGRAMMING

A mathematical algorithm as defined in section (1.6), describes

a finite sequence of operations which must be performed to arrive at

the solution of a problem. This algorithm has to be converted into a

list of statements or sentences which a computer can analyze and

execute. Such a finite sequence of statements, which completely and

unambiguously defines the sequence of operations a computer must

8

carry out in a calculation, is called a program. Most of these

statements specify the actions to be performed by the computer, and

they are known as executable statements. The remaining statements

in the sequence describe the elements that appear in the executable

statements, and they are called declaration statements.

The executable statements are very closely related to the

algorithm. A class of executable statements that is often unnecessary

in mathematical algorithms is that of input and output statements.

Associated with these statements are declarations that describe the

exact form of the inputs and outputs. Thus, a program is organized

as follows:

Declaration of variables

Declaration of input/output

Input statements

Computations

Output statements

(declarations)

(executable statements)

The executable statements contain both imperative and

interrogative sentences, and these respectively correspond to the

function box and the decision box of the flowchart. The functions and

9

decisions are, of course, to be chosen from the following

fundamental set of operations, which can be performed by a digital

computer.

i. Transferring data from external devices to the fast memory

or vice versa, and from one storage to another.

ii. Executing certain basic arithmetic and logical operations.

iii. Testing whether a logical statement is true or false or a

numerical quantity is positive, negative, or zero and

accordingly branching out into one or more alternative paths

in the program.

These operations have specific codes in a numeric form for each

computer. This is called the machine language. Since the machine

language is very inconvenient to use, a language called the

assembly language, which uses mnemonic word (a word intended

to aid the memory) rather than a numeric code, is developed. The

assembler is a program that translates this assembly language into

the machine language.

In order to make the task of programming easier, a class of

higher-level languages has been developed. Such languages are

10

translated into the machine language by what is known as the

compiler. The algorithmic programming languages, for example,

Fortran, Pascal, Algol, and PL/l, belong to this class. It is safe to say

that there is no mathematical problem that cannot be solved by using

one of these algorithmic languages.

1.10 STEPS FOR SOLVING PROBLEM ON DIGITAL COMPUTER

The steps involved in solving a problem on a digital computer

can be summarized from the foregoing discussion as follows:

i. Converting the problem into a mathematical and/or logical

model if it is not already in such a model.

ii. Selecting or devising an algorithm suitable for a digital

computer.

iii. Draw a flowchart for the algorithm.

iv. Based on the flowchart (or the algorithm), writing an

ordered sequence of instructions, called the program, in a

language the computer will recognize and accept. This

process of writing computer instructions is called coding.

11

v. Punching the program and the data (input to the program),

if any, on punched cards, and hence preparing the job deck.

vi. Making a test run on the computer. If the machine indicates

coding errors or yields incorrect answers to a (test) problem

or operates in an unplanned manner (such as a permanent

loop), the coding should be checked and then corrected. The

process of checking and correcting the codes is called

debugging.

vii. Using the debugged coding for a production run.

1.11 THE PRESENCE OF ERROR

Several algorithms are available for producing the required output

information, and we must choose between them. There are various

reasons for preferring one algorithm over another, but two obvious

criteria are speed and accuracy. Speed is clearly an advantage. The

issue of accuracy will expose the subject, the presence of error.

Rarely will input information be exact, since it ordinarily comes from

measurement devices of some sort. And usually the computing

algorithm introduces further error. The output information therefore

12

contains error from both these sources, as suggested in a second

flow-chart below:

Input Errors 1---..------1 Algorithm Errors 1---40-----1 Output Errors

An algorithm, which minimizes error growth, clearly rates serious

consideration.

1.12 PURPOSE OF STUDY

The aim of this study is to carry out a Computer Code based on

Pascal, to simulate the solution of an initial value problem in Ordinary

Differential Equations (ODEs) over the interval (a, b). The program

shall use a single - step procedure, based on the Runge-Kutta

method (RK 4 5).

1.13 AREA OF STUDY

This study is to design and carry out a numerical experiment to

verify numerically the solution of the function.

yl = 1 + y2 , yeO) = 0 (0,1.4),

by solving an appropriate initial value problem,

13

using digital computer

True solution: Y(Xk) = tan (X)

1.14 DEFINITION OF TERMS

ALGORITHMS: A numerical algorithm is a precise, step-by-

step description of the implementation of a numerical method.

COMPUTER: A Device which is capable of accepting

information, performing arithmetic and logical operations upon this

information and producing the results of such operations.

CALL: A reference in a program to another program or

subprogram which then assumes control of processing until all of its

instructions have been executed, at which point it returns control to

the original program.

DATA: Any information, numeric or non-numeric coded or

literal. By input data for a problem, we mean numbers that are

required to be provided in order for the solution process to start or

continue. Output data are numbers generated by the solution

process.

ERROR: Difference between the approximation to a quantity

and its true value. An error bound is a positive number that is known

to be larger than the magnitude of an error.

EXIT: The return of control to the supervisory routines after

completion of a job.

FORMAT: The general arrangement of data and identification

for input and output purposes.

14

INPUT: Data or other information in a form which may be

directly transmitted to the computer.

INPUT-UNIT: A part of computer used to feed program and

data.

INSTRUCTION: A command given to a computer. Is normally

consists of a code to indicate the operation to be performed and

address or addresses of a memory where the operand would be

found.

DEBUGGING - PROCESS: The process of tracking down and

correcting execution in a program.

ITERATION: Repeated process, where the input to each cycle

is determined from the output of preceding cycles. The input to at

least the first cycle is given in order to start the process. Criteria for

stopping the iteration must be provided.

NUMERICAL ANAYSIS: The study of the solution of

mathematical problems through the implementation of numbers.

PROGRAM: A series of sequential instructions in a computer

language for the performance of some task.

READING: The process by which information is transmitted

from a peripheral device to the Central Processing Unit (CPU).

ROUTINE: A program or program segment designed to carry

out a cohesive operation.

STABILITY: A numerical is unstable if, when it is applied to a

well - conditioned problem, a small change in the data results in a

15

large change in the numerical solution. It is stable if the change in

the solution remains small.

WRITING: The process of transmitting output to a peripheral

device.

SIMULATION: The representation of the behaviour of a

physical system on some other system intended to imitate that

behaviour.

16

CHAPTER TWO

2.0 ORDINARY DIFFERENTIAL EQUATION UNDER INITIAL

CONDITION

2.1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

Ordinary differential equations (ODE) are the principal form of

the mathematical models encountered in the sciences and

engineering, and consequently their numerical solution is a very large

area of study. Consider the equation

y' = dy/dx = 1-exp (-x) 2.1

It is a differential equation because it involves the derivative dy/dx of

the "unknown function" y=y(x). Only the independent variable x

appears on the right hand side of equation (2.1); hence a solution is

an anti derivative of 1-exp (-x). The rules for integration can be used

to find

yCx) = x + exp (-x), ------------------------ 2 2 .

Where C is the constant of integration. All the functions in eqn. (2.2)

are solutions of eqn. (2.1) because they satisfy the requirement that

y' (x)=l-exp (-x). They form the family of curves in fig (2,1).

17

c=l

o~-----------------.

fig 2.1 The solution curves x

y(x) = x+exp(-x)+c

c=l

Integration was the technique used to find the explicit formula

for the function in eqn. (2.2), and Fig. (2.1) emphasize that there is

one degree of freedom involved in the solution, namely the constant

of integration C. By varying the value of C one "moves the solution

curve" up or down and a particular curve can be found that will pass

through any desired point.

One usually measures how a change in one variable affects

another variable. When this is translated into mathematical model,

the result is an equation involving the rate of change independent

and/or dependent variable.

18

Consider the temperature yet) of a cooling object. It might be

conjectured that the rate of change of the temperature of the object

is related to the temperature difference between the temperature of

the object and that of the surrounding medium. Experimental

evidence verifies this conjecture. Newton's law of cooling asserts that

the rate of change is directly proportional to the difference in these

temperatures. If A is the temperature of the surrounding medium

and Yet) is the temperature of the body at time t, then

dy/dt = - key-A), -------------------------- 2.3

Where K is a positive constant. The negative sign is required because

dy/dx will be negative when the temperature of the body is greater

than the temperature of the medium.

If the temperature of the object is known at time t=o, we call

this an initial condition and include the information in the statement

of the problem. Usually we are asked to solve

dy/dt = - k(y-A)with yeo) = Yo -------------------- 2.4

The technique of separation of variables can be used to find the

solution:

y = A + (Yo-A) exp(-kt) 2.5

19

For each choice of Yo, the solution curve will be different, and

there is no simple way to move one curve around to get another one.

The initial value is a point where the desired solution is "nailed

down". Several solution curves are shown in Fig. (2.2) and it can be

observed that as t gets larger, the temperature of the object

approaches room temperature. If y<A, then the body is warning

instead of cooling

y

Fig 2.2 t

The solution E-curves y=A+(yo-) exp(-kt)

for Newton's law of cooling (and warming)

2.2 THE GEOMETRIC INTERPRETATION

At each pOint (x,y) in the rectangular region R: a s x s b, c s y

s d, the slope of a solution curve y=y(x) can be found by using the

impliCit formula /(x,y(x». Hence the values mi,j = /(xi, yi) can be

20

computed throughout the rectangle, and each value mi,j represents

the slope of the line tangent to a solution curve that passes through

the point (Xi,yi).

A slope field or direction field is a graph that indicates the

slopes (mi,j) over the region. It can be used to visualize how a

solution curves "fits" the slope constraint. To move along a solution

curve one must start at the initial point and check the slope field to

determine which direction to move. Then take a small step from Xo to

Xo + h horizontally and move the appropriate vertical distance hf (Xo,

Yo) so that the resulting displacement has the required slope. The

next point on the solution curve is (Xl, Yl). Repeat the process to

continue your journey along the curve. Since a finite number of steps

will be used, the method will produce an approximation to the

solution.

The methods of numerical solution can be derived by various

means, including the finite difference formulae and the truncated

Taylor series. These derivations show that in each computation an

approximation is made, and this introduces an error.

21

2.3 EULER'S METHOD

L. Euler was the first to devise an approximate method to solve

ODEs and this method serves to illustrate the concepts involved in

the advanced methods. It has limited usage because of the larger

error that is accumulated as the process proceeds.

Consider a first order ODE in the symbolic form:

QL = /(x,y). Ie: y(xo)=Yo

dx

2.6

Integrating Equation (2.6), we obtain y as a function of xi thus,

Y = 0 (x) ------------------------ 2.7

The graph of Equation (2.7) is a curve in the xy-plane. Since a

smooth curve can be considered linear over a small length, we can

write the approximate relation.

t1Y= [~)
!!,.)(dx X = Xo

Thus

t1.Y=~ [~J
dx X=Xo

so that

y, = Yo + t1.y = Yo + ~(...dyJ
ldx X=Xo

------------------ 2 8 .

------------------ 2 9 .

-------------------- 2.10

Then, the values y corresponding to X2 = (Xl + hl),
X3 = (X2 + h2) , ... are

2.11

22

o

o

o

Thus, we can integrate Equation (2.11) and obtain the results as a

set of the corresponding values of x and y; hi, h2' "" however, have

to be suitably chosen.

2.4 TAYLOR'S SERIES METHOD OR METHOD OF SUCESSIVE

DIFFERENTIATION.

The IVP is

[~= I(X,Y)·

Obtain y (xo + h)

Ie: y=Yo at X=Xo

By the Taylor series, we write

y(xo+h) = y(xo) + hy'(xo) +[2~] Y"(Xo) + .. .'

We have

y' = f(x,y), y'(xo) = /(x,Y) I xo,Yo

y" = g(x,y), y"(xo) = g(x,y) I xo,yo
o

o

o

23

------------------- 2.12

-------------------- 2.13

substituting the values of y', y", ... , in equation (2.12), we obtain

y(xo+h). Again this method is not very practical. However, we can

make use of it to get a rough idea of the solution.

2.5 RUNGE - KUTTA METHODS

The methods named after Carl Runge and Wilhelm Kutta are

designed to initiate the Taylor series method without requiring

analytic differentiation of the original differential equation. Recall that

yeO) = Yo,
}

2.14

We need to obtain y", ylll, ... by differentiating the function, f. This

requirement can be a serious obstacle to using the method. The user

of this method must do some preliminary analytical work before

writing a computer program. Ideally, a method for solving equation

(2.15) should involve nothing more than writing a subprogram to

evaluate the function f(x, y)

24

RUNGE-KUTTA METHOD OF ORDER 1

The IVP is

Q¥ = /(X,y).
dx

Find y(xo+h).

Ie: y=Yo at x=O

From the Taylor series, we have V(xo+h)

= V(xo) + hy' (xo) + h2 y" (xo) +
2!

An evaluation of the derivatives V', V", ... is avoided in the Runge -

Kutta method by defining certain functions:

V' = gy = /(x,Y),
dx

y" =...Q (/(x,y,)) = /x+ fly [it + / a "I /
dx lax ayJ

=0,/,

V", = / xx + f xy y' + f(f xy + f yy .y') + f y (fx + f y·f)

= f xx + 2ffxy+ f2 f fyy + fy (fx+ fyf) =01
2
/ + fy 0,/)

if /xy = /yx

25

= fxxx + fxxyf + 2(fx + ffy)fyy+ 2f(fyyl: +fxyyf) +

It should be noted that
Z f - (;3 fx=Q1,fxx=QJ., xxx-_

Qx ax
z a/

/xy= Z Q1, ... ,
axay

y(xo + h) = y(xo) + hy' (xo) + hZ y" (xo) + h3 ylll (xo) + ...
2! 3!

= y (xo) + hfo + 11z (fx + ffy)o + h3 (fyy + 2ffy + fy (fx + ffy»o
2! 3!

+ -----------------

SECOND ORDER RUNGE-KUlTA METHOD

Define

K1 = h f (xo, Yo), Kz = hf (xo + ho, Yo + PK1)

Then, let

Y (xo + h) = Yo + k

2.15

2.16

Where a1 P1 0)1 and O)z are constants selected in such a way that

equations 2.11 and 2.12 agree up to and including the terms in hZ:

Kz = / (xo + uh, Yo + Pk1) = /0 + (uh a/ax + Pk1) /0) + ...

h

26

= Jo + ch.(Jx) 0 +phJo (Jy) 0 + ... ,

Therefore,

K = WihJo + W2 {hJo +ah2 (Jx) 0 + Ph2Jo (Jy)o + ... } --------- 2.17

Comparing Equations 3.10 and 3.17, we get

Scheme 1: we write Wi = O. Then, W2 =1,

a = 112, P = 112. Thus

Ki = hJ(xo, , Yo)

Y(xo+h) = Yo + k

THIRD ORDER RUNGE KUlTA METHOD

Define

Ki = hJ(xo, Yo)

2.18

27

Where a, p, a, p, f.J, W1, W2, W3, are chosen such that Equations

2.11 and (2.12) agree up to and including the terms in h3
• Hence, the

third order Runge-Kutta schemes can be written as follows:

Scheme 1

Kl = hj(xo, Yo)

K2 = hj(xo + h/2, Yo + kV2),

K3 = hj(xo + h/2, Yo + kl + 2 k2),

Y (xo +h) = Yo + k

Scheme 2

Kl = hj(xo, Yo)

K2 = hj(xo + h/3, Yo + kJ3),

K3 = hj(xo + h/3, Yo +2 k2/3), ------------------------ 2 19 .

Y (xo +h) = Yo + k

FOURTH ORDER RUNGLE-KUTrA METHOD

The fourth order Runge-Kutta scheme is derived in the same

way as the third order scheme.

Define

Kl = hj(xo, Yo)

28

Kz = hf(xo + h/2, Yo + k1h),

K3 = hf(xo + h/2, Yo + 2 kz/2),

Kt = hf(xo, + h, Yo + k k3),

K = 1/6 (kl + 2 k2 + 2 k3 + ~),

y (xo + h) = Yo + k

As can be seen, the solution at y (xo + h) is obtained at the

expense of evaluating the function f four times. The final formula

agrees with the Taylor's expansion up to and including the term h4.

The error therefore, is O(h4).

RUNGE-KUTTA-FEHLBERG METHOD (RKF4S)

A more sophistated method for automatically adjusting the step

size in algorithms for the initial value problem was developed by E.

Fehlberg (1969). The Fehlberg method of order 4 is of Runge-Kutta

type and uses these formulas: From the slopes:

Kl = hf(xo, Yo)

K2 = hj(xo + 1I4h, Yo + 114 k1),

K3 = hf(xo + 3/8 h, Yo + 3/32 kl + 9/32 kz),

29

Kt = hj(xo, + 12/13h, Yo 1932/2197 kl - 7200 k2 j7296/2197k3),

Ks = hj(xo + h, Yo + 439/216k1 - 8k2 +3680/513k3 - 845/4104!<.t),

I<e, = hj(xo + h, Yo - 8/27k1 + 2k2 -3544/2565k3 + 1859/4104k4),-11/40ks

We obtain two approximate solutions kn + 1,4 and kn + 1, 5,

kn + 1, 4 = (Yn +25/216 kl + 1408/2565k3 + 2197/4104\<.t - 1/5ks)

kn +1, 5 = (Yn + 16/216 kl + 6656/12825k3 + 28561/56430kt -

9/50ks + 2/551<c>)

Respectively or orders p=4 and p= 5.

The error En = 1 =Ikn + 1,5 - kn +1,4 I/h

= 11/360Kt - 128/4275K3 - 2197/75240Kt + 1/50Ks + 2/55K6 I /6

The optimal step size 5h can be determined by multiplying the scalar

5 times the current step six h. The scalar 5 is

5= TOl 114

~IKn + 1,5 - Kn + 1'~
0.84 T 0 l h 114

Kn + 1,5 - Kn + 1, 4 I
Where TO l is the specific error control tolerance.

30

2.6 GILL's MOTHOD

Gill (1951) developed a step-by-step integration procedure base

on the Runge-Kutta method. This procedure has the following

advantages over the other available methods:

i. It needs less storage registers

ii. It controls the growth of rounding errors and is usually

stable.

iii. It is computationally economical.

let the IVP be

dYl = flex, Yl, Yb --- Yn)

dx

dY2 = f2(x, YI, Y2, ... Yn)

dx
o

o

o

dy = fn(x, Y1, Y2, --- Yn)

dx

I . c. : at x = Xo, Y1O, Y2 = Y20, Yn = Yno.

Integrate step-by-step from x = x to Xo = X2 at an interval of h, i.e,

obtain YI, Y2, '" Yn at x = Xo (h) X2.

The gill algorithm can be given as follows:

31

Step 1 set x = xo, YI = YIO, Y2 = Y20, ... , Yn = Yno

Step 2 set j = 1

Step 3 set x = x + h/2

Step 4 compute kl = li(X, Y1, Y2, ... , Yn), i = I (I)n.

Step 5 compute Y; + h (ai (~ - bjq)), q = q + 3 (al ~ - bjqi))

- cj ~, I = I (I)n

Step 6 set j = j + 1

Step 7 I I j = 5, go to step 9; otherwise go to step 8

Step 8 I I J = 3, go to step 3, otherwise go to step 4

Step 9 I I x ~ X2, stop; otherwise go to step 2.

2.7 MERSON'S METHOD

Let the I V P be

y' (x) = I(x, Y), i.e: Y(Xo) = Yo

The formulae proposed by R. H. Merson for step-by-step integration

for this problem are

y + 1 = Yn + 112 (kl + 4kt + ks) + O(hs),

Xn+ 1 =Xn+ h

Where

Kl = 1/3 h/(xn, Yn),

n = 0, 1, ...

32

K2 = 1/3 hj(xn + 1/3h, Yn + k1),

K3 = 1/3 hj(xn + 1/3 h, Yn + 1/2 Kl + 1/2 k2),

Kt = 1/3 h(xn + lhh), Yn + 3/8Kt + 9/8k3),

Ks = 1/3 hj(xn + h), Yn + 3/2Kt - 9/2k3 + 6~).

The advantage of this method is that an estimate of the truncation

error E is given by

5E = kl - 9/2k2 + 4~ - 1/2 ks.

Interval changing criterion. If the right hand side of equation above is

greater than five times the preassigned accuracy, then the interval h

is halved and the computation of the step is begun again; but if the

right-hand side is less than 5/32 of the preassigned accuracy, the

interval may be doubled and the calculation for the step is repeated.

33

CHAPTER THREE

3.0 RESEARCH DESIGN AND METHODOLOGY

3.1 INTRODUCTION

The design stage is probably the most important stage and it

outlines or defines the set of roles required for the solution of the

problem. It involves the listing and ordering of successive steps and

activities to be undertaken to achieve the desired goal. The tool

mostly used in this stage is pseudocodes, which is used for algorithm

representation.

3.2 PURPOSE OF STUDY

This research project was on attempt to verify and introduce a

computer simulation of initial value to problems.

3.3 INITIAL VALUE PROBLEM OF INTEREST IN THIS STUDY

We would compute and print a table of the function

y1 (X) = 1 + y2 , yeO) = 0 to cover the interval (0, 1. 4)

34

3.4 ALGORITHM

The pseudocode below would be used to approximate the

solution of the initial value problem

F(x) = 1 + yZ

Over the interval (0, 1.4) by using the formula:

Yk + 1 = Yk + h/6 (kl + 2k2 + 2k3 +~)

INPUT (A, B, YeO»~ {ENDPOINT AND INITIAL VALUE}

INPUT M {NUMBER OF STEPS}

H = (B - A) / M {COMPUTE THE STEP SIZE}

x (0) = A

FOR J = 0 TO M-1 DO

X = X(J) and Y(J)

Kl = N X F (X,Y)

K2 = H * F(X + h/2, Y + 5*K1)

{INITIALIZE THE VALUE}

{Local Variables}

{Function value at Xl}

{Function value at Xl + V2}

K3 = H * F(X + h/2, Y + 5*K2) {Function value at X + 112 }

Kt = H * F(X + H, Y + K3) {Function value at X + 1}

Y (J + 1) = Y + (Kl + 2kz + 2k3 + Kt)/6 {integrate F (X, V)}

X (J + 1) = A + H * (J + 1) {General the mesh point}

FORJ = aTO M DO

PRINT X (J), Y (J) {Output}

35

CHAPTER FOUR

4.0 DATA ANAL VSIS AND DISCUSSION

TABLE: RK4 SOLUTION TO Vi = 1 + y2, YeO) = 0

XK RK4 APPROXIMATION TRUE SOLUTION ERROR
F(XK) Y(XK) = tan (XK) V(XK) - F(XK)

0.00000 0.00000 0.00000 0.00000

0.10000 0.10033 0.10033 0.00000
,

0.20000 0.20271
I

0271 0.00000 ' . ! l.

!

0.30000 0.30934 : :0934 0.00000

0040000 0.42279 '12279 0.00000

0.50000 0.54630 0 1630 0.00000
!

0.60000 0.68414
I 10.0. :414 0.00000

0.70000 0.84229 0.00000).84·'29
:

0.80000 1.02964 : L.02~~64 0.00000

0.90000 1.26016 1.26016 0.00000

) 0.00000 1.55741 L55741 0.00000

l 0.10000 1.96475 1..96476 0.00001

2 0.20000 2.57207 2.57215 0.00008

3 0.30000 3.60156 3.60210 0.00054

4 0.40000 5.79197 1>79788 0.00091

36

The Runge-Kutta method (RK4) just outlined was quite stable

and easily programmed, but rather wasteful of computing time.

In realistic situations involving the numerical solution of initial

problems, there is always a need to estimate the precision attained

numerical solution must not deviate from the true solution beyond

this tolerance. Once a method is selected, the error tolerance needed

on one portion of the solution curve, where as a larger one may

suffice else where.

Unfortunately, this was lacking in Runge-Kutta method of order

4. The algorithm for the numerical process was given in pseudocode,

and this was easy for students to translate into BASIC, C, FORTRAN

OR PASCAL.

37

CHAPTER FIVE

5.0 SUMMARY

The research project was an attempt to verify and introduce

the computer simulation of initial value problems.

In chapter one emphasis was placed on understanding why

numerical methods work and the processes in computer simulations.

In chapter two, ordinary differential equation (ODE) under

initial conditions were explained and various methods were explained

and derived.

The desired processes were given in chapter three. In chapter

four, the data obtained was compared and contrasted with the true

solution (y (x).

Chapter five was a summary, conclusion and recommendation.

5.1 CONCLUSION

The Runge-Kutta method of order 4 was easily programmed

andself-starting in the Sf ,e that d di not require the help of

another method In c;tart cor : ;~-'(; , ex) at X =-c ", X = Xl = Xo +

h, X = X2 = Xl + h, or equivalently, it did not require the knowredge

38

"­,

of Y (Xt), Y(X2), , Y (Xp) before computing the derivative of the

function F(X,Y)

5.2 RECOMMENDATION

For automatically adjusting the step size in algorithms for the

initial value problem, a more sophisticated method developed by E.

Fehberg was recommended for more accuracy, speed and stability.

Also recommended is Gill's method of step-by-step integration

procedure based on the Runge-Kutta method. This procedure has the

following advantages over the other available methods:

(1) It needs less storage registers

(2) It controls the growth of rounding errors and is usually

stable.

(3) It is computationally economical.

39

REFERENCE

1 John H. Mathews (1987)

Numerical Method for Mathematic Science and

Engineering

Prentice. Hall, Engle Wood Cliffs

N. J.

2. Shampine, Lawrence F, and M. K. Gordon (1973)

Numerical Solution of Ordinary Differential Equations:

The initial. W. H Freeman and Company Publishers.

3. Scraton R. E. R.E. (1984). Basic Numerical Methods. An

Introduction to a Micro Computing.

Edward Arnold Battimore.

4. Rice, John Rischard (1983)

Numerical Methods,

Software and Analysis IMSL Refence Edition.

MCGraw - Hill New York.

40

5. Sewell, Granvilla (1988)

The Numerical Solution to Ordinary Partial Differential

Equations; Harcourt Brace Jovanorich, San Diego Clif.

6. Pearson Carl E. (1986).

Numerical Methods in Engineering and Science.

Van Nostrand Reinhold New York.

7. Gear C. William (1971).

Numerical Initial Value Problems in Ordinary

Differential Equation Prentice Hall, Englewood Cliff N. J.

8. Caroll John M. (1987).

Simulation Using Personal Computers.

Prentice Hall, Englewood Cliff N. J.

9. Ward Cheney; David Kincaid.

Numerical Mathematics and Computing.

41

Brooks/Cole Publishing Company (1991)

10. M. K. Jain (1987)

Numerical Solution of Differential Equations.

Wiley Eastern Limited.

11. E. V. Krishnamurthy; S. K. Sen (1986)

Numerical Algorithms:

Computations in Science and r 19ineering.

Affiliated East - West '~s

Private Limited.

12. Simeon Ola-Fatunla (19)

Fundamentals of Fort - ~n PJ 09 rnming.

ADA + JANE Press Nigeri; ~-td.

13. Encyclopedia of Physkal Science and Technology.

Second Edition.

Volume 11 - None - On

42

Program Runge (Input, Output, Fileout) ;
Uses graph, crt;
Var

m,i,j:Integer;
flag, choice: Integer;
h,k1,k2,k3,k4:real;
yyrad,xx,yy,lower,higher,inival:real;
x,y:array[l .. 200) of real;
ans:char;
Fileout:text;

Function Convert_to_Rad(r : real) :real;
Begin

Convert_to_Rad := r * pi/180;
end;

Function f(a,b:real) :real;
Var g : real;
Begin

f := 1 + (b*b);
{f := sqrt(l - (0.25*sin(b)*sin(b}»;}

end;

Procedure Clear;
Begin

Clrscr;
Writeln(' ':20, '=================================');
Writeln(' ':20,' Computer Simulation of '};
Writeln(' ':20,' Runge Kutta Problems ');
Writeln(' ':20, '=================================');

end;

Procedure EnterData;
Begin

flag := 1;
clear;

End;

Writeln{'Enter Lower Endpoint
Writeln('Enter Upper Endpoint
Writeln{'Enter Initial Value
Writeln('Enter Number of Steps

Procedure Computen;
Begin

h := (Higher - Lower)/m;
x [1] : = Lower;
y [1) : = Inival;
for j := 1 to m do
begin

xx := x[j);
yy .- y[j] ;
k1 .- h * f(xx,yy);
k2 := h * f(xx+h/2,yy+0.5*k1);
k3 := h * f(xx+h/2,yy+0.5*k2};
k4 := h * f(xx+h,yy+k3);

I); Readln(Lower);
'); Readln{Higher);
'); Readln{Inival);
'); Readln(m);

y[j+1] := yy + «K1+2*K2+2*k3+k4) /6);
x[j+1] := lower + h * j;

end;
end;

Procedure Outputter;
Begin

End;

clear;
Writeln;
for j := 1 to m+1 do
begin

Writeln(x[j] :10:5,y[j] :10:5) i
end;
readln;
Rewrite (Fileout) ;

Writeln(Fileout) ;
Writeln(Fileout,1 x f(x) I);
for j := 1 to m+1 do
begin

Writeln(Fileout,x[j] :10:5, i 1 ,y[j] :10:5);
end;
close (Fileout) ;

Procedure Computev;
Begin

if flag = 0 then
Begin

clear;
gotoxy(20,10);Write('Empty Data !, Select options 1 before 2 I)
Delay(3500) ;

end
else

Begin

End;

Begin

clear;
Computen;
Outputter;

Write(IPress Enter to Continue I) ;readln;
end;

flag := 0;
assign(Fileout, lout.outl);

repeat
repeat
clear;
gOLoxy(25,5) ;Writeln('M A I N MEN UI);
gotoxy(25,6) ;Writeln('*****************');
gotoxy(23,8) ;Writeln('1. Enter Variables I);
gotoxy(23,12) ;Writeln('2. Computation I);
gotoxy(23,16) ;Writeln('3. Quit Program I);
gotoxy(25,19) ;Write('Enter Choice (1-3) I) ;readln(choice);

until (choice> 0) and (choice <= 3);
Case Choice of

l:EnterData;
2:Computev;

end;
until choice = 3;
end.

x
0.00000
0.10000
0.20000
0.30000
0.40000
0.50000
0.60000
0.70000
0.80000
0.90000
1.00000
1.10000
1.20000
1.30000
1.40000

f (x)
0.00000
0.10033
0.20271
0.30934
0.42279
0.54630
0.68414
0.84229
1.02964
1.26016
1.55741
1.96475
2.57207
3.60156
5.79197

