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ABSTRACT 

The purpose of this study was aimed at verifying and 

introducing a numerical computation of the solution of ordinary 

differential equation under initial value conditions. The numerical 

methods for the solution of the differential equation (dy/dx = f (x,y) 

y(xo) = yo) are the algorithm which will produce a table of 

approximation values of y(x)at certain equally spaced paints called 

grid, nodal, net or mesh point along the x coordinate. Each grid pOint 

in terms of the previous paint is given by the relationship. 

Xn + 1 = Xn + h, n = 0, 1, 2, ... , N-l 

Where h is called the step size. The program used a single step 

procedure based on the Runge - Kutta method of order N = 4 (RK4). 
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CHAPTER ONE 

1.0 NUMERICAL METHODS AND COMPUTER SIMULATION 

1.1 INTRODUCTION 

Humans have been calculating for thousands of years. The 

Pythagorean formula, an early landmark of mathematics, is a 

computational formula. In ancient Greece, Archimedes and others 

approximated II. Hundred of years ago mathematical tables were 

used in warfare and navigation. And yet the field of Numerical 

Analysis only came into being about fifty years ago, just after World 

War II. How did the human race avert computational disaster for all 

these centuries? 

Even though Numerical Analysis as a separate topic is relatively 

new, the underlying ideas and goals are not. It is only with the 

invention of the electronic computer in the 1940's that large-scale 

automated calculations become an important tool for science and 

technology. This invention has two implications for us. 

i) Computer arithmetic is not the same as "pencil and paper" 

arithmetic. In hand calculations, it is possible to monitor the 

intermediate results and adjust the accuracy of the 
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calculation as required. With computer arithmetic, each 

number has a fixed number of digits, which in some cases 

may be inadequate for a calculation. 

ii) A hand calculation will usually be short, whereas a computer 

calculation can involve millions of steps. Tiny errors that 

would be negligible in a short calculation can be devastating 

when accumulated over a long calculation. Also, methods 

that are perfectly adequate for a small problem may be 

hopelessly inefficient when scaled to a large problem. 

1.2. STATEMENT OF PROBLEM 

During the past decades, giant needs forever more 

sophisticated mathematical models and increasingly complex and 

extensive computer simulations have arisen. In this fashion, two in­

dissociable activities, namely mathematical modeling and computer 

simulation, have gained a major status in all aspect of sciences, 

technology, and industry. 

In order that these two sciences be established on the safest 

possible grounds, numerical method is indispensable. For this reason, 
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two companion sciences: numerical methods and scientific software 

have emerged as essential steps for validating the mathematical 

models and the computer simulations that are based on them. 

1.3 THE NEEDS FOR NUMERICAL METHODS 

The Means by which physical situations and processes are 

described, analyzed, designed and simulated is through mathematics. 

Natural laws are stated in terms of mathematical equations, and the 

behaviour of systems that obey these laws is described by their 

solutions. 

Unfortunately, the mathematics of many of the processes we 

would like to study quickly becomes intractable when approached by 

conventional means. The best that can be done, in the traditional 

sense, is to attempt a series expansion of the solution. 

Today, there is another approach: the problem statement and 

variable of interest can be approximated numerically. Analysis and 

problem solution can then be performed through numerical 

computation with the aid of high-speed digital computers. In this 
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way, numerical computing serves as a bridge between scientific 

theory and practical knowledge. 

Similar uses of numerical computing arise in most branches of 

science and technology. The design of earthquake-resistant 

structures, the prediction of ground water, the understanding of the 

inner mechanisms of the atom, the design of electron devices, the 

development of petroleum recovering technologies, and the 

interpretation of medical CAT scans are just a few of the many tasks 

that exploit high - speed computers to solve complicated 

mathematical problems numerically. In some cases, numerical 

computing actually aids in the exploration of new scientific principles. 

1.4 NUMERICAL COMPUTATION 

Numerical analysis involves development and evaluation of 

methods for computing required numerical results from given 

numerical data. This makes it a part of the modern subject of 

information processing. The given data are the input information, the 

required results are the output information, and the method of 

computation is known as the algorithm. These essential ingredients 

Input Information 1---'--1 The Algorithm 1-----+---1 Output Information 
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of a numerical analysis problem may be summarized in a flow chart 

below:-

1.5 CHARACTERISTICS OF NUMERICAL METHODS 

Numerical methods describe schemes that are used on 

computers, and its objective consists in obtaining a clear, precise, 

and faithful representation of all the "information" contained in a 

mathematical model. 

They frequently yield only an approximation to the exact 

solution of the problem. However, this approximation can be refined 

if we are prepared to expend more computational effort in order to 

obtain a better accuracy. 

They are conceptually and farely simple, not in volving an 

elaborate knowledge of mathematics and can be expressed concisely 

in algorithmic form. 

They are readily adaptable to implementation to a digital 

computer. 
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1.6 ALGORITHMS 

The concept of an algorithm is basic to any computational 

scheme, numerical or non-numerical. 

An algorithm can be defined as a finite set of rules, which gives 

a sequence of operations for solving a specific type of problem. It has 

the following important features: 

i. Finiteness: Algorithm should always terminate after a 

finite number of steps. 

ii. Definiteness: Each step of the algorithm is precisely 

defined. This means that the rules should be consistent 

(contradiction-free) 

iii. Completeness: The rules must be complete so that the 

algorithm can solve all problems of a particular type for 

which the algorithm is designed. 

iv. Input - Output: An algorithm has certain inputs, and 

certain outputs that are in specific relation to the inputs. 

In formulating an algorithm, we are concerned with the efficiency 

which is a function of: 

i) Speed of solution (Economy of Operation). 
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ii) Stability of solution (for small errors in input, large errors in 

output do not occur). 

iii) Accuracy of the result. 

These three aspects serve as a measure for comparing two or more 

algorithms for solving a particular type of problem. 

1.7 FLOWCHART LANGUAGE 

One of the most convenient languages, which is effective for 

the communication, and description of an algorithm is the language 

of flowcharting. 

A flowchart consists basically of a diagram of characteristically -

shaped boxes connected by directed line segments. Each 

characteristically - shaped box usually represents a particular type of 

activity. The boxes represent groups of elementary steps of the 

algorithm. The statements in the boxes are simply the elementary 

steps of the algorithm. The directed lines show us the flow of the 

algorithm. 
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1.8 ITERATIVE LOOPS 

A basic component of an algorithm is iteration. This word is 

synonymous with repetition and it indicates the repeated execution 

some of the elementary steps of an algorithm. 

A loop usually starts after the initialization of certain quantities, 

and consists of mainly three types of step: 

i. Computation of Elementary Steps, 

ii. Test for termination; 

iii. Updating or modification of Repetition 

It is possible for such an iterative loop to occur with some other 

iterative loop. 

1.9 LOGIC OF COMPUTER PROGRAMMING 

A mathematical algorithm as defined in section (1.6 ), describes 

a finite sequence of operations which must be performed to arrive at 

the solution of a problem. This algorithm has to be converted into a 

list of statements or sentences which a computer can analyze and 

execute. Such a finite sequence of statements, which completely and 

unambiguously defines the sequence of operations a computer must 
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carry out in a calculation, is called a program. Most of these 

statements specify the actions to be performed by the computer, and 

they are known as executable statements. The remaining statements 

in the sequence describe the elements that appear in the executable 

statements, and they are called declaration statements. 

The executable statements are very closely related to the 

algorithm. A class of executable statements that is often unnecessary 

in mathematical algorithms is that of input and output statements. 

Associated with these statements are declarations that describe the 

exact form of the inputs and outputs. Thus, a program is organized 

as follows: 

Declaration of variables 

Declaration of input/output 

Input statements 

Computations 

Output statements 

(declarations) 

(executable statements) 

The executable statements contain both imperative and 

interrogative sentences, and these respectively correspond to the 

function box and the decision box of the flowchart. The functions and 
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decisions are, of course, to be chosen from the following 

fundamental set of operations, which can be performed by a digital 

computer. 

i. Transferring data from external devices to the fast memory 

or vice versa, and from one storage to another. 

ii. Executing certain basic arithmetic and logical operations. 

iii. Testing whether a logical statement is true or false or a 

numerical quantity is positive, negative, or zero and 

accordingly branching out into one or more alternative paths 

in the program. 

These operations have specific codes in a numeric form for each 

computer. This is called the machine language. Since the machine 

language is very inconvenient to use, a language called the 

assembly language, which uses mnemonic word (a word intended 

to aid the memory) rather than a numeric code, is developed. The 

assembler is a program that translates this assembly language into 

the machine language. 

In order to make the task of programming easier, a class of 

higher-level languages has been developed. Such languages are 
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translated into the machine language by what is known as the 

compiler. The algorithmic programming languages, for example, 

Fortran, Pascal, Algol, and PL/l, belong to this class. It is safe to say 

that there is no mathematical problem that cannot be solved by using 

one of these algorithmic languages. 

1.10 STEPS FOR SOLVING PROBLEM ON DIGITAL COMPUTER 

The steps involved in solving a problem on a digital computer 

can be summarized from the foregoing discussion as follows: 

i. Converting the problem into a mathematical and/or logical 

model if it is not already in such a model. 

ii. Selecting or devising an algorithm suitable for a digital 

computer. 

iii. Draw a flowchart for the algorithm. 

iv. Based on the flowchart (or the algorithm), writing an 

ordered sequence of instructions, called the program, in a 

language the computer will recognize and accept. This 

process of writing computer instructions is called coding. 
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v. Punching the program and the data (input to the program), 

if any, on punched cards, and hence preparing the job deck. 

vi. Making a test run on the computer. If the machine indicates 

coding errors or yields incorrect answers to a (test) problem 

or operates in an unplanned manner (such as a permanent 

loop), the coding should be checked and then corrected. The 

process of checking and correcting the codes is called 

debugging. 

vii. Using the debugged coding for a production run. 

1.11 THE PRESENCE OF ERROR 

Several algorithms are available for producing the required output 

information, and we must choose between them. There are various 

reasons for preferring one algorithm over another, but two obvious 

criteria are speed and accuracy. Speed is clearly an advantage. The 

issue of accuracy will expose the subject, the presence of error. 

Rarely will input information be exact, since it ordinarily comes from 

measurement devices of some sort. And usually the computing 

algorithm introduces further error. The output information therefore 
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contains error from both these sources, as suggested in a second 

flow-chart below: 

Input Errors 1---..------1 Algorithm Errors 1---40-----1 Output Errors 

An algorithm, which minimizes error growth, clearly rates serious 

consideration. 

1.12 PURPOSE OF STUDY 

The aim of this study is to carry out a Computer Code based on 

Pascal, to simulate the solution of an initial value problem in Ordinary 

Differential Equations (ODEs) over the interval (a, b). The program 

shall use a single - step procedure, based on the Runge-Kutta 

method (RK 4 5). 

1.13 AREA OF STUDY 

This study is to design and carry out a numerical experiment to 

verify numerically the solution of the function. 

yl = 1 + y2 , yeO) = 0 (0,1.4), 

by solving an appropriate initial value problem, 
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using digital computer 

True solution: Y(Xk) = tan (X) 

1.14 DEFINITION OF TERMS 

ALGORITHMS: A numerical algorithm is a precise, step-by-

step description of the implementation of a numerical method. 

COMPUTER: A Device which is capable of accepting 

information, performing arithmetic and logical operations upon this 

information and producing the results of such operations. 

CALL: A reference in a program to another program or 

subprogram which then assumes control of processing until all of its 

instructions have been executed, at which point it returns control to 

the original program. 

DATA: Any information, numeric or non-numeric coded or 

literal. By input data for a problem, we mean numbers that are 

required to be provided in order for the solution process to start or 

continue. Output data are numbers generated by the solution 

process. 

ERROR: Difference between the approximation to a quantity 

and its true value. An error bound is a positive number that is known 

to be larger than the magnitude of an error. 

EXIT: The return of control to the supervisory routines after 

completion of a job. 

FORMAT: The general arrangement of data and identification 

for input and output purposes. 
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INPUT: Data or other information in a form which may be 

directly transmitted to the computer. 

INPUT-UNIT: A part of computer used to feed program and 

data. 

INSTRUCTION: A command given to a computer. Is normally 

consists of a code to indicate the operation to be performed and 

address or addresses of a memory where the operand would be 

found. 

DEBUGGING - PROCESS: The process of tracking down and 

correcting execution in a program. 

ITERATION: Repeated process, where the input to each cycle 

is determined from the output of preceding cycles. The input to at 

least the first cycle is given in order to start the process. Criteria for 

stopping the iteration must be provided. 

NUMERICAL ANAYSIS: The study of the solution of 

mathematical problems through the implementation of numbers. 

PROGRAM: A series of sequential instructions in a computer 

language for the performance of some task. 

READING: The process by which information is transmitted 

from a peripheral device to the Central Processing Unit (CPU). 

ROUTINE: A program or program segment designed to carry 

out a cohesive operation. 

STABILITY: A numerical is unstable if, when it is applied to a 

well - conditioned problem, a small change in the data results in a 
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large change in the numerical solution. It is stable if the change in 

the solution remains small. 

WRITING: The process of transmitting output to a peripheral 

device. 

SIMULATION: The representation of the behaviour of a 

physical system on some other system intended to imitate that 

behaviour. 
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CHAPTER TWO 

2.0 ORDINARY DIFFERENTIAL EQUATION UNDER INITIAL 

CONDITION 

2.1 INTRODUCTION TO DIFFERENTIAL EQUATIONS 

Ordinary differential equations (ODE) are the principal form of 

the mathematical models encountered in the sciences and 

engineering, and consequently their numerical solution is a very large 

area of study. Consider the equation 

y' = dy/dx = 1-exp (-x) 2.1 

It is a differential equation because it involves the derivative dy/dx of 

the "unknown function" y=y(x). Only the independent variable x 

appears on the right hand side of equation (2.1); hence a solution is 

an anti derivative of 1-exp (-x). The rules for integration can be used 

to find 

yCx) = x + exp (-x), ------------------------ 2 2 . 

Where C is the constant of integration. All the functions in eqn. (2.2) 

are solutions of eqn. (2.1) because they satisfy the requirement that 

y' (x)=l-exp (-x). They form the family of curves in fig (2,1). 
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c=l 

o~-----------------. 

fig 2.1 The solution curves x 

y(x) = x+exp( -x)+c 

c=l 

Integration was the technique used to find the explicit formula 

for the function in eqn. (2.2), and Fig. (2.1) emphasize that there is 

one degree of freedom involved in the solution, namely the constant 

of integration C. By varying the value of C one "moves the solution 

curve" up or down and a particular curve can be found that will pass 

through any desired point. 

One usually measures how a change in one variable affects 

another variable. When this is translated into mathematical model, 

the result is an equation involving the rate of change independent 

and/or dependent variable. 
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Consider the temperature yet) of a cooling object. It might be 

conjectured that the rate of change of the temperature of the object 

is related to the temperature difference between the temperature of 

the object and that of the surrounding medium. Experimental 

evidence verifies this conjecture. Newton's law of cooling asserts that 

the rate of change is directly proportional to the difference in these 

temperatures. If A is the temperature of the surrounding medium 

and Yet) is the temperature of the body at time t, then 

dy/dt = - key-A), -------------------------- 2.3 

Where K is a positive constant. The negative sign is required because 

dy/dx will be negative when the temperature of the body is greater 

than the temperature of the medium. 

If the temperature of the object is known at time t=o, we call 

this an initial condition and include the information in the statement 

of the problem. Usually we are asked to solve 

dy/dt = - k(y-A)with yeo) = Yo -------------------- 2.4 

The technique of separation of variables can be used to find the 

solution: 

y = A + (Yo-A) exp( -kt) 2.5 
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For each choice of Yo, the solution curve will be different, and 

there is no simple way to move one curve around to get another one. 

The initial value is a point where the desired solution is "nailed 

down". Several solution curves are shown in Fig. (2.2) and it can be 

observed that as t gets larger, the temperature of the object 

approaches room temperature. If y<A, then the body is warning 

instead of cooling 

y 

Fig 2.2 t 

The solution E-curves y=A+(yo-) exp( -kt) 

for Newton's law of cooling (and warming) 

2.2 THE GEOMETRIC INTERPRETATION 

At each pOint (x,y) in the rectangular region R: a s x s b, c s y 

s d, the slope of a solution curve y=y(x) can be found by using the 

impliCit formula /(x,y(x». Hence the values mi,j = /(xi, yi) can be 
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computed throughout the rectangle, and each value mi,j represents 

the slope of the line tangent to a solution curve that passes through 

the point (Xi,yi). 

A slope field or direction field is a graph that indicates the 

slopes (mi,j) over the region. It can be used to visualize how a 

solution curves "fits" the slope constraint. To move along a solution 

curve one must start at the initial point and check the slope field to 

determine which direction to move. Then take a small step from Xo to 

Xo + h horizontally and move the appropriate vertical distance hf (Xo, 

Yo) so that the resulting displacement has the required slope. The 

next point on the solution curve is (Xl, Yl). Repeat the process to 

continue your journey along the curve. Since a finite number of steps 

will be used, the method will produce an approximation to the 

solution. 

The methods of numerical solution can be derived by various 

means, including the finite difference formulae and the truncated 

Taylor series. These derivations show that in each computation an 

approximation is made, and this introduces an error. 
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2.3 EULER'S METHOD 

L. Euler was the first to devise an approximate method to solve 

ODEs and this method serves to illustrate the concepts involved in 

the advanced methods. It has limited usage because of the larger 

error that is accumulated as the process proceeds. 

Consider a first order ODE in the symbolic form: 

QL = /(x,y). Ie: y(xo)=Yo 

dx 

2.6 

Integrating Equation (2.6), we obtain y as a function of xi thus, 

Y = 0 (x) ------------------------ 2.7 

The graph of Equation (2.7) is a curve in the xy-plane. Since a 

smooth curve can be considered linear over a small length, we can 

write the approximate relation. 

t1Y= [~) 
!!,.)( dx X = Xo 

Thus 

t1.Y=~ [~J 
dx X=Xo 

so that 

y, = Yo + t1.y = Yo + ~(...dyJ 
ldx X=Xo 

------------------ 2 8 . 

------------------ 2 9 . 

-------------------- 2.10 

Then, the values y corresponding to X2 = (Xl + hl ), 
X3 = (X2 + h2) , ... are 

2.11 
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o 

o 

o 

Thus, we can integrate Equation (2.11) and obtain the results as a 

set of the corresponding values of x and y; hi, h2' "" however, have 

to be suitably chosen. 

2.4 TAYLOR'S SERIES METHOD OR METHOD OF SUCESSIVE 

DIFFERENTIATION. 

The IVP is 

[ ~= I(X,Y)· 

Obtain y (xo + h) 

Ie: y=Yo at X=Xo 

By the Taylor series, we write 

y(xo+h) = y(xo) + hy'(xo) +[2~] Y"(Xo) + .. .' 

We have 

y' = f(x,y), y'(xo) = /(x,Y) I xo,Yo 

y" = g(x,y), y"(xo) = g(x,y) I xo,yo 
o 

o 

o 
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substituting the values of y', y", ... , in equation (2.12), we obtain 

y(xo+h). Again this method is not very practical. However, we can 

make use of it to get a rough idea of the solution. 

2.5 RUNGE - KUTTA METHODS 

The methods named after Carl Runge and Wilhelm Kutta are 

designed to initiate the Taylor series method without requiring 

analytic differentiation of the original differential equation. Recall that 

yeO) = Yo, 
} 

2.14 

We need to obtain y", ylll, ... by differentiating the function, f. This 

requirement can be a serious obstacle to using the method. The user 

of this method must do some preliminary analytical work before 

writing a computer program. Ideally, a method for solving equation 

(2.15) should involve nothing more than writing a subprogram to 

evaluate the function f(x, y) 
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RUNGE-KUTTA METHOD OF ORDER 1 

The IVP is 

Q¥ = /(X,y). 
dx 

Find y(xo+h). 

Ie: y=Yo at x=O 

From the Taylor series, we have V(xo+h) 

= V(xo) + hy' (xo) + h2 y" (xo) + .... 
2! 

An evaluation of the derivatives V', V", ... is avoided in the Runge -

Kutta method by defining certain functions: 

V' = gy = /(x,Y), 
dx 

y" =...Q (/(x,y,)) = /x+ fly [ it + / a "I / 
dx lax ayJ 

=0,/, 

V", = / xx + f xy y' + f(f xy + f yy .y') + f y (fx + f y·f) 

= f xx + 2ffxy+ f2 f fyy + fy (fx+ fyf) =01
2
/ + fy 0,/) 

if /xy = /yx 
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= fxxx + fxxyf + 2(fx + ffy)fyy+ 2f(fyyl: +fxyyf) + .... 

It should be noted that 
Z f - (;3 fx=Q1,fxx=QJ., xxx-_ 

Qx ax
z a/ 

/xy= Z Q1, ... , 
axay 

y(xo + h) = y(xo) + hy' (xo) + hZ y" (xo) + h3 ylll (xo) + ... 
2! 3! 

= y (xo) + hfo + 11z (fx + ffy)o + h3 (fyy + 2ffy + fy (fx + ffy»o 
2! 3! 

+ .... -----------------

SECOND ORDER RUNGE-KUlTA METHOD 

Define 

K1 = h f (xo, Yo), Kz = hf (xo + ho, Yo + PK1) 

Then, let 

Y (xo + h) = Yo + k 

2.15 

2.16 

Where a1 P1 0)1 and O)z are constants selected in such a way that 

equations 2.11 and 2.12 agree up to and including the terms in hZ: 

Kz = / (xo + uh, Yo + Pk1) = /0 + (uh a/ax + Pk1) /0) + ... 

h 

26 



= Jo + ch.( Jx) 0 +phJo (Jy) 0 + ... , 

Therefore, 

K = WihJo + W2 {hJo +ah2 (Jx) 0 + Ph2Jo (Jy)o + ... } --------- 2.17 

Comparing Equations 3.10 and 3.17, we get 

Scheme 1: we write Wi = O. Then, W2 =1, 

a = 112, P = 112. Thus 

Ki = hJ(xo, , Yo) 

Y(xo+h) = Yo + k 

THIRD ORDER RUNGE KUlTA METHOD 

Define 

Ki = hJ(xo, Yo) 

2.18 
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Where a, p, a, p, f.J, W1, W2, W3, are chosen such that Equations 

2.11 and (2.12) agree up to and including the terms in h3
• Hence, the 

third order Runge-Kutta schemes can be written as follows: 

Scheme 1 

Kl = hj(xo, Yo) 

K2 = hj(xo + h/2, Yo + kV2), 

K3 = hj(xo + h/2, Yo + kl + 2 k2), 

Y (xo +h) = Yo + k 

Scheme 2 

Kl = hj(xo, Yo) 

K2 = hj(xo + h/3, Yo + kJ3), 

K3 = hj(xo + h/3, Yo +2 k2/3), ------------------------ 2 19 . 

Y (xo +h) = Yo + k 

FOURTH ORDER RUNGLE-KUTrA METHOD 

The fourth order Runge-Kutta scheme is derived in the same 

way as the third order scheme. 

Define 

Kl = hj(xo, Yo) 
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Kz = hf(xo + h/2, Yo + k1h), 

K3 = hf(xo + h/2, Yo + 2 kz/2), 

Kt = hf(xo, + h, Yo + k k3), 

K = 1/6 (kl + 2 k2 + 2 k3 + ~), 

y (xo + h) = Yo + k 

As can be seen, the solution at y (xo + h) is obtained at the 

expense of evaluating the function f four times. The final formula 

agrees with the Taylor's expansion up to and including the term h4. 

The error therefore, is O(h4). 

RUNGE-KUTTA-FEHLBERG METHOD (RKF4S) 

A more sophistated method for automatically adjusting the step 

size in algorithms for the initial value problem was developed by E. 

Fehlberg (1969). The Fehlberg method of order 4 is of Runge-Kutta 

type and uses these formulas: From the slopes: 

Kl = hf(xo, Yo) 

K2 = hj(xo + 1I4h, Yo + 114 k1), 

K3 = hf(xo + 3/8 h, Yo + 3/32 kl + 9/32 kz), 
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Kt = hj(xo, + 12/13h, Yo 1932/2197 kl - 7200 k2 j7296/2197k3), 

Ks = hj(xo + h, Yo + 439/216k1 - 8k2 +3680/513k3 - 845/4104!<.t), 

I<e, = hj(xo + h, Yo - 8/27k1 + 2k2 -3544/2565k3 + 1859/4104k4),-11/40ks 

We obtain two approximate solutions kn + 1,4 and kn + 1, 5, 

kn + 1, 4 = (Yn +25/216 kl + 1408/2565k3 + 2197/4104\<.t - 1/5ks) 

kn +1, 5 = (Yn + 16/216 kl + 6656/12825k3 + 28561/56430kt -

9/50ks + 2/551<c> ) 

Respectively or orders p=4 and p= 5. 

The error En = 1 =Ikn + 1,5 - kn +1,4 I/h 

= 11/360Kt - 128/4275K3 - 2197/75240Kt + 1/50Ks + 2/55K6 I /6 

The optimal step size 5h can be determined by multiplying the scalar 

5 times the current step six h. The scalar 5 is 

5= TOl 114 

~IKn + 1,5 - Kn + 1'~ 
0.84 T 0 l h 114 

Kn + 1,5 - Kn + 1, 4 I 
Where TO l is the specific error control tolerance. 
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2.6 GILL's MOTHOD 

Gill (1951) developed a step-by-step integration procedure base 

on the Runge-Kutta method. This procedure has the following 

advantages over the other available methods: 

i. It needs less storage registers 

ii. It controls the growth of rounding errors and is usually 

stable. 

iii. It is computationally economical. 

let the IVP be 

dYl = flex, Yl, Yb --- Yn) 

dx 

dY2 = f2(x, YI, Y2, ... Yn) 

dx 
o 

o 

o 

dy = fn(x, Y1, Y2, --- Yn) 

dx 

I . c. : at x = Xo, Y1O, Y2 = Y20, Yn = Yno. 

Integrate step-by-step from x = x to Xo = X2 at an interval of h, i.e, 

obtain YI, Y2, '" Yn at x = Xo (h) X2. 

The gill algorithm can be given as follows: 
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Step 1 set x = xo, YI = YIO, Y2 = Y20, ... , Yn = Yno 

Step 2 set j = 1 

Step 3 set x = x + h/2 

Step 4 compute kl = li(X, Y1, Y2, ... , Yn), i = I (I )n. 

Step 5 compute Y; + h (ai (~ - bjq )), q = q + 3 (al ~ - bjqi)) 

- cj ~, I = I (I)n 

Step 6 set j = j + 1 

Step 7 I I j = 5, go to step 9; otherwise go to step 8 

Step 8 I I J = 3, go to step 3, otherwise go to step 4 

Step 9 I I x ~ X2, stop; otherwise go to step 2. 

2.7 MERSON'S METHOD 

Let the I V P be 

y' (x) = I(x, Y), i.e: Y(Xo) = Yo 

The formulae proposed by R. H. Merson for step-by-step integration 

for this problem are 

y + 1 = Yn + 112 (kl + 4kt + ks) + O(hs), 

Xn+ 1 =Xn+ h 

Where 

Kl = 1/3 h/(xn, Yn), 

n = 0, 1, ... 
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K2 = 1/3 hj(xn + 1/3h, Yn + k1), 

K3 = 1/3 hj(xn + 1/3 h, Yn + 1/2 Kl + 1/2 k2), 

Kt = 1/3 h(xn + lhh), Yn + 3/8Kt + 9/8k3), 

Ks = 1/3 hj(xn + h), Yn + 3/2Kt - 9/2k3 + 6~). 

The advantage of this method is that an estimate of the truncation 

error E is given by 

5E = kl - 9/2k2 + 4~ - 1/2 ks. 

Interval changing criterion. If the right hand side of equation above is 

greater than five times the preassigned accuracy, then the interval h 

is halved and the computation of the step is begun again; but if the 

right-hand side is less than 5/32 of the preassigned accuracy, the 

interval may be doubled and the calculation for the step is repeated. 
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CHAPTER THREE 

3.0 RESEARCH DESIGN AND METHODOLOGY 

3.1 INTRODUCTION 

The design stage is probably the most important stage and it 

outlines or defines the set of roles required for the solution of the 

problem. It involves the listing and ordering of successive steps and 

activities to be undertaken to achieve the desired goal. The tool 

mostly used in this stage is pseudocodes, which is used for algorithm 

representation. 

3.2 PURPOSE OF STUDY 

This research project was on attempt to verify and introduce a 

computer simulation of initial value to problems. 

3.3 INITIAL VALUE PROBLEM OF INTEREST IN THIS STUDY 

We would compute and print a table of the function 

y1 (X) = 1 + y2 , yeO) = 0 to cover the interval (0, 1. 4) 
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3.4 ALGORITHM 

The pseudocode below would be used to approximate the 

solution of the initial value problem 

F(x) = 1 + yZ 

Over the interval (0, 1.4) by using the formula: 

Yk + 1 = Yk + h/6 (kl + 2k2 + 2k3 +~) 

INPUT (A, B, YeO»~ {ENDPOINT AND INITIAL VALUE} 

INPUT M {NUMBER OF STEPS} 

H = (B - A) / M {COMPUTE THE STEP SIZE} 

x (0) = A 

FOR J = 0 TO M-1 DO 

X = X(J) and Y(J) 

Kl = N X F (X,Y) 

K2 = H * F(X + h/2, Y + 5*K1) 

{INITIALIZE THE VALUE} 

{Local Variables} 

{Function value at Xl} 

{Function value at Xl + V2} 

K3 = H * F(X + h/2, Y + 5*K2) {Function value at X + 112 } 

Kt = H * F(X + H, Y + K3) {Function value at X + 1} 

Y (J + 1) = Y + (Kl + 2kz + 2k3 + Kt)/6 {integrate F (X, V)} 

X (J + 1) = A + H * (J + 1) {General the mesh point} 

FORJ = aTO M DO 

PRINT X (J), Y (J) {Output} 
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CHAPTER FOUR 

4.0 DATA ANAL VSIS AND DISCUSSION 

TABLE: RK4 SOLUTION TO Vi = 1 + y2, YeO) = 0 

XK RK4 APPROXIMATION TRUE SOLUTION ERROR 
F(XK) Y(XK) = tan (XK) V(XK) - F(XK) 

0.00000 0.00000 0.00000 0.00000 

0.10000 0.10033 0.10033 0.00000 
, 

0.20000 0.20271 
I 

0271 0.00000 ' . ! l. 

! 

0.30000 0.30934 : :0934 0.00000 

0040000 0.42279 '12279 0.00000 

0.50000 0.54630 0 1630 0.00000 
! 

0.60000 0.68414 
I 10.0. :414 0.00000 

0.70000 0.84229 0.00000 ).84·'29 
: 

0.80000 1.02964 : L.02~~64 0.00000 

0.90000 1.26016 1.26016 0.00000 

) 0.00000 1.55741 L55741 0.00000 

l 0.10000 1.96475 1..96476 0.00001 

2 0.20000 2.57207 2.57215 0.00008 

3 0.30000 3.60156 3.60210 0.00054 

4 0.40000 5.79197 1>79788 0.00091 
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The Runge-Kutta method (RK4) just outlined was quite stable 

and easily programmed, but rather wasteful of computing time. 

In realistic situations involving the numerical solution of initial 

problems, there is always a need to estimate the precision attained 

numerical solution must not deviate from the true solution beyond 

this tolerance. Once a method is selected, the error tolerance needed 

on one portion of the solution curve, where as a larger one may 

suffice else where. 

Unfortunately, this was lacking in Runge-Kutta method of order 

4. The algorithm for the numerical process was given in pseudocode, 

and this was easy for students to translate into BASIC, C, FORTRAN 

OR PASCAL. 
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CHAPTER FIVE 

5.0 SUMMARY 

The research project was an attempt to verify and introduce 

the computer simulation of initial value problems. 

In chapter one emphasis was placed on understanding why 

numerical methods work and the processes in computer simulations. 

In chapter two, ordinary differential equation (ODE) under 

initial conditions were explained and various methods were explained 

and derived. 

The desired processes were given in chapter three. In chapter 

four, the data obtained was compared and contrasted with the true 

solution (y (x). 

Chapter five was a summary, conclusion and recommendation. 

5.1 CONCLUSION 

The Runge-Kutta method of order 4 was easily programmed 

andself-starting in the Sf ,e that d di not require the help of 

another method In c;tart cor : ;~-'(; , ex) at X =-c ", X = Xl = Xo + 

h, X = X2 = Xl + h, or equivalently, it did not require the knowredge 
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"­, 

of Y (Xt ), Y(X2), .... , Y (Xp) before computing the derivative of the 

function F(X,Y) 

5.2 RECOMMENDATION 

For automatically adjusting the step size in algorithms for the 

initial value problem, a more sophisticated method developed by E. 

Fehberg was recommended for more accuracy, speed and stability. 

Also recommended is Gill's method of step-by-step integration 

procedure based on the Runge-Kutta method. This procedure has the 

following advantages over the other available methods: 

(1) It needs less storage registers 

(2) It controls the growth of rounding errors and is usually 

stable. 

(3) It is computationally economical. 
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Program Runge (Input, Output, Fileout) ; 
Uses graph, crt; 
Var 

m,i,j:Integer; 
flag, choice: Integer; 
h,k1,k2,k3,k4:real; 
yyrad,xx,yy,lower,higher,inival:real; 
x,y:array[l .. 200) of real; 
ans:char; 
Fileout:text; 

Function Convert_to_Rad(r : real) :real; 
Begin 

Convert_to_Rad := r * pi/180; 
end; 

Function f(a,b:real) :real; 
Var g : real; 
Begin 

f := 1 + (b*b); 
{f := sqrt(l - (0.25*sin(b)*sin(b}»;} 

end; 

Procedure Clear; 
Begin 

Clrscr; 
Writeln(' ':20, '================================='); 
Writeln(' ':20,' Computer Simulation of '}; 
Writeln(' ':20,' Runge Kutta Problems '); 
Writeln(' ':20, '================================='); 

end; 

Procedure EnterData; 
Begin 

flag := 1; 
clear; 

End; 

Writeln{'Enter Lower Endpoint 
Writeln('Enter Upper Endpoint 
Writeln{'Enter Initial Value 
Writeln('Enter Number of Steps 

Procedure Computen; 
Begin 

h := (Higher - Lower)/m; 
x [1] : = Lower; 
y [1) : = Inival; 
for j := 1 to m do 
begin 

xx := x[j); 
yy .- y[j] ; 
k1 .- h * f(xx,yy); 
k2 := h * f(xx+h/2,yy+0.5*k1); 
k3 := h * f(xx+h/2,yy+0.5*k2}; 
k4 := h * f(xx+h,yy+k3); 

I); Readln(Lower); 
'); Readln{Higher); 
'); Readln{Inival); 
'); Readln(m); 

y[j+1] := yy + «K1+2*K2+2*k3+k4) /6); 
x[j+1] := lower + h * j; 

end; 
end; 



Procedure Outputter; 
Begin 

End; 

clear; 
Writeln; 
for j := 1 to m+1 do 
begin 

Writeln(x[j] :10:5,y[j] :10:5) i 
end; 
readln; 
Rewrite (Fileout) ; 

Writeln(Fileout) ; 
Writeln(Fileout,1 x f(x) I); 
for j := 1 to m+1 do 
begin 

Writeln(Fileout,x[j] :10:5, i 1 ,y[j] :10:5); 
end; 
close (Fileout) ; 

Procedure Computev; 
Begin 

if flag = 0 then 
Begin 

clear; 
gotoxy(20,10);Write('Empty Data !, Select options 1 before 2 I) 
Delay(3500) ; 

end 
else 

Begin 

End; 

Begin 

clear; 
Computen; 
Outputter; 

Write(IPress Enter to Continue I) ;readln; 
end; 

flag := 0; 
assign(Fileout, lout.outl); 

repeat 
repeat 
clear; 
gOLoxy(25,5) ;Writeln('M A I N MEN UI); 
gotoxy(25,6) ;Writeln('*****************'); 
gotoxy(23,8) ;Writeln('1. Enter Variables I); 
gotoxy(23,12) ;Writeln('2. Computation I); 
gotoxy(23,16) ;Writeln('3. Quit Program I); 
gotoxy(25,19) ;Write('Enter Choice (1-3) I) ;readln(choice); 

until (choice> 0) and (choice <= 3); 
Case Choice of 

l:EnterData; 
2:Computev; 

end; 
until choice = 3; 
end. 



x 
0.00000 
0.10000 
0.20000 
0.30000 
0.40000 
0.50000 
0.60000 
0.70000 
0.80000 
0.90000 
1.00000 
1.10000 
1.20000 
1.30000 
1.40000 

f (x) 
0.00000 
0.10033 
0.20271 
0.30934 
0.42279 
0.54630 
0.68414 
0.84229 
1.02964 
1.26016 
1.55741 
1.96475 
2.57207 
3.60156 
5.79197 


