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ABSTRACT

In this paper, a new trigonometrically fitted Improved Runge-Kutta (TFIRK) method is constructed and
implemented. The new method is based on an explicit three stage Improved Runge-Kutta (IRK) method
of order three. The convergence of the method is established and numerical results from its application
to oscillatory problems show the accuracy and computational efficiency of the scheme.
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INTRODUCTION

In the last few decades, there has been a
growing interest in the research of new
numerical techniques for approximating the
solution of first order initial value problem of
the form.

Y'(0) = floy()yxo) =y xelx, Xl (D)

with periodic or oscillatory solutions. This type
of problem arises in different fields of science
and engineering, which includes quantum
mechanics, classical mechanics, celestial
mechanics, astrophysics, theoretical physics
and chemistry, nuclear physics and biological
sciences. In the quest for methods that best
approximate the solution of (1), many authors
considered different modifications to Runge-
Kutta methods, such work can be seen in
Geoken et al. (2000); Phohomsiri et al. (2004),
Udwadia et al. (2008) and Xinyuan (2003).
However most of the methods presented are
obtained for the autonomous system while the
Improved Runge-Kutta methods (IRK) can be
used for autonomous as well as non-
autonomous systems. Rabiei et al. (2011)
constructed the new Improved Runge-Kutta
method with reduced number of function
evaluations. The method proposed is of order
three with two stages. In furtherance to this,
Rabiei et al. (2011) developed the fifth-order
Improved Runge-Kutta method for solving

ordinary differential equations. The method is
of five stages.

In this paper we present a trigonometrically
fitted method based on two-step explicit third
and fourth order Improved Runge-Kutta
method derived by Rabiei et al. (2013).

METHODOLOGY

Trigonometrically Fitted Methods
The Improved Runge-Kutta (IRK) method can

be written as follows:

Yna1 = Yn + by f O, ¥) — hb_y f (tp—1, Yn—1)
s
+h ) bi(F e + o, YD)
i=2

= f(xpoq + iR, Y) 2

Yi =yn+h2aijf(xn+cjh,Y-) (3)

j=1

i-1

Vo= yaath ) ayf(os +ghY,) (@)

j=1
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where y,,; and y, are approximations to
y(xn41) and y(x,) respectively.
Trigonometrically-fitted methods are generally
derived to exactly approximate the solution of
the IVPs whose solutions are linear
combination of the functions {,/e®*,,/e~%*},
where a can be complex or a real number.
Suppose G(x) = e*® where i =+/—1 is an
imaginary unit, is the solution of (1). Applying
(2) — (4) to G(x) generates the Recursive
relations (5) — (8) (Jikantoro et al., 2015).
i-1

cos(ciz) =1— zz a;; sin(cjz), i=23,..,s (5

j=1
i—-1

sin(c;z) = ZZ a;; cos(cjz), i=23..,s (6)

j=1

S
cos(z) =1—zb_; sin(z) — ZZ b; sin(c;z)

i=2

+z Z b; sin(z(c; — 1)) 7

S
sin(z) = zb; — zb_; cos(z) + ZZ b; cos(c;z)

i=2
_ZZ b; cos(z(ci - 1)) (8

The relations (5) — (8) are the relations of
order conditions of the trigonometrically fitted
method. These relations replace the equations
of order conditions of two-step Improved
Runge-Kutta (IRK) method, which can be
solved to give the coefficients of a particular
method based on existing coefficients for
solving problem of the form (1).

The order conditions up to order three of two-

step IRK methods derived by Rabiei et al.
(2013) is:
order1:b; —b_; =1
N
1
order 2: b_, + Z b=

i=2

5 c )
order 3: Z b;c; = 12
i=

All subscripts run to s or less.

Derivation of TFIRK Method with s =
3,p=3
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The Butcher array for the IRK3-3 method as
derived by Rabiei et al.(2013) is
Table I Coefficients of IRK3-3

0
1 1
A
1|=-= =2

3 3
1] 11 1 1
12 12 3 4

To derive the third order three stage TFIRK
method, we make the substitutions = 3,¢; =0

in the recursive relations (5) and (6)

Fori =2
cos(c,z) —1=0 (10)
sin(c,z) — za,, = 0 (11
Fori =3
cos(czz) — 1 + zaz, sin(c,z) = 0 (12)
sin(c;z) — 2[33_1 +az; cos(czz)] =0 (13)

Now, substituting s = 3, ¢; = 0 in equations (7)
and (8)

cos(z) — 1 + zb_; sin(z) + z[b, sin(c,z) +

b sin(c32)] — z[b, sin((c, — 1)z) + by sin((c; —
1z)] =0 (14)
sin(z) — zb, + zb_; cos(z) — z[b, cos(c,z) +

b; cos c3z] + Z[b2 cos((cz - 1)2) + by cos((c3 -
Dz)| =0 (15)

Equations (12) — (15) are now the equations of order
conditions  for third order three stage
trigonometrically fitted method that replaces the
order conditions of the original method presented in
9).

To obtain the coefficients of the method we solve the
system of two equations, (14) and (15) together with
an additional equation from the order condition (9)

namely,
b1 - b_1 = 1 (16)
1
b_1 + b2 + b3 = E (17)

These sum up to four equations with six unknown

(b_1,by, by, bs, ¢, and ¢3). The equations are solved in

31 62
terms of two free parameters (c, = =G = g) whose
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values are obtained from the Butcher Tableau of IRK3-3
methods presented in Table I. Equations (16) and (17) are
chosen to augment the updated (14) and (15) so that

(b_4, by, b, and b;) are not taken as free parameters.

L im
1 = —EM—Z
=2,
L 1My ) (18)
27 oM,
b = LMz
37 2M,
where
M; = z cos(z) sin Gz) — zsin(z) + zsin (%z)
+ cos(z%) — 2 cos(z) + 1 + sin(z?)
— 2sin(z) sin (3z) (19)
M, = z(cos(z) — 1) (sin(z) _2sin (%z» (20)
M3 = —2zsin(z) cos(z) + 5z cos(z) sin (% Z)
+zsin(z) — 3zsin (%z) + cos(z?) —2cos(z) + 1
+ sin(z2) — 2 sin(z) sin (%z) 21
M, = z(cos(z) — 1) (sin(z) — 2sin (%z» 22)
Mg = zsin(z) + 2 cos(z) — 2 (23)
Mg =1z (sin(z) — 2sin (%2)) (24)
M, = cos(z?) — 2 cos(z) + zsin(z) + 1
+2z cos(z) sin Gz) —3zsin (%z) —sin(z?)
+2 sin(z) sin Gz) (25)
My = z(cos(z) — 1) (sin(z) _2sin (%z» (26)

Convergence Analysis

It is important to note that the original method,
that is, IRK3-3 method needs to be recovered as
z approaches zero. As such, the Taylor series
expansions of the coefficients
b_4,bq,b,,and b3 in (18) are obtained as

1

b_ - ___ _ 2 4
1= T2 " Taa0” Toe)
11 7
b, = 4
=1 " 1az0? T o@D @7
b _1 1 2 1 4—+ ( 6)
2737720 “Boea0’ "%V
1 1
— . 4
4+16OZ + o(z%)
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From (27) itis clear that as z approaches zero
the original method IRK3-3 is recovered.

Next is to verify the order of the method. To
check if the method is order three as claimed,
we substitute the coefficients of the method into
order conditions (9) up to order three and take

the Taylor series expansion of each to obtain
orderl : by b_1 =1+o0(z%)

order2 : b_ +Zb ——+0(z4)

. - - 4
order 3 : Zb,c, +1SOZ +0(z*)

From (28) as z tends to zero the order
conditions of the Improved Runge-Kutta
method up to order three are recovered, which
implies that the coefficients of
Trigonometrically-fitted third order three stage
method satisfies the IRK order three conditions.

RESULTS AND DISCUSSION

Numerical results of TFIRK3-3 applied to
problems 1-5 with different step sizes and
integration intervals are presented in Tables Il
—VI. The intervals of integration are taken to be
100 and 200. Both small and large integration
intervals are considered to measure the stability
of the method when solving highly oscillatory
problems.

Problem 1 (Homogeneous problem)
y'(x) = —2cos(8x) — 8sin(8x), y(0) =1, and
the fitted frequency w = 8

Exact solution: y(x) = —%sin(Bx) + cos(8x)

Source: Senu et al. (2009)

Problem 2
y'(x) = cos(x), y(0) =0, w =1

Exact solution: y(x) = sin(x)

Source: Dormand et al. (1996)

Problem 3 (Inhomogeneous problem)

y'(x) = cos(x) —sin(x) +1,y(0) =1, o = 1
Exact solution: y(x) = sin(x) + cos(x) + x

Source: Al-khasawneh et al. 2007
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Problem 4

y'(x) = 2cos(2x),y(0) =0, w=2

Exact solution: y(x) = sin(2x)

Source: Kasim et al. 2015

Problem 5 (Homogeneous problem)

y'(x) = =2 cos(10x) — 10 sin(10x),

w =10

y(0) =1,

Exact solution: y(x) = —%sin(le) + cos(10x)

Source: Senu et al. 2009.

Table 11 maximum errors of TFIRK3-3 and IRK3-3 for problem 1 with w = 8

h  Method 100 NFEs 200 NFEs
1 TFIRK3-3 9.3660000000x 10~%7 6000  9.3740000000x 10~%7 12000
20 IRK3-3 2.7788280559x 1074 6000  2.7788281310x 1094 12000
1 TFIRK3-3 3.0084400000x 102> 12000 3.0084400000x 10~2° 24000
40 IRK3-3 1.7761677402x 107°> 12000 1.7761677402x 109> 24000
i TFIRK3-3 8.6135090000x 10~2* 24000 8.6135090000% 1024 48000
50 IRK3-3 1.1199891883x 107°¢ 16000 1.1199891904x 1096 48000
Table 111 Maximum errors of TFIRK3-3 and IRK3-3 for problem 2 with w = 1
h  Method 100 NFEs 200 NFEs
i TFIRK3-3 4.2263157370x 10722 6000  4.2263157370x 10722 12000
20 IRK3-3 3.5643932006x 107°% 6000  3.5643935071x 10708 12000
i TFIRK3-3 1.0734211713x 10~2° 12000 1.0734219515x 10~2° 24000
40 IRK3-3 2.1989518187x 10799 12000 2.1989518188x 10~9° 24000
1 TFIRK3-3 5.9559291864x 10~'° 24000 5.9559291864x 10~1° 48000
80 IRK3-3 1.3653424903x 10~ 19 24000 1.3653424903x 10~ 10 48000
Table IV _Maximum errors of TFIRK3-3 and IRK3-3 for problem 3 with w =1
h  Method 100 NFEs 200 NFEs
1 TFIRK3-3 1.6174317000x 1072 6000  2.7875850000x 10~2* 12000
20 IRK3-3 8.4735653434x 10798 6000  8.4735653434x 10798 12000
i TFIRK3-3 6.9814438400x 10-1° 12000 1.3947720310x 10~'8 24000
#0 IRK3-3 5.2677758618x 10799 12000 5.2677888558x 1079 24000
i TFIRK3-3 3.1929235780x 1017 24000 6.3918365678x 1017 48000
50 IRK3-3 3.2834602772x 10719 24000 3.2834608592x 10~1° 48000
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Table V Maximum errors of TFIRK3-3 and IRK3-3 for problem 4 with w =2

39

h  Method 100 NFEs 200 NFEs
1 TFIRK3-3 9.0308640000x 1072* 6000  9.0308640000x 10~2* 12000
20 IRK3-3 5.8501579254x 10797 6000  5.8502330957x 10797 12000
i TFIRK3-3 4.2263157870x 10722 12000 4.2263157870x 10722 24000
#0 IRK3-3 3.5643935071x 10798 12000 3.5643935071x 10798 24000
i TFIRK3-3 1.0734219523x 10720 24000 1.0734219523x 10720 48000
50 IRK3-3 2.1989518188x 10799 24000 2.1989526444x 10~°° 48000
Table VI Maximum errors of TFIRK3-3 and IRK3-3 for problem 5 with w = 10
h  Method 100 NFEs 200 NFEs
i TFIRK3-3  9.8300000000x 10728 6000  1.1080000000x 10~27 12000
20 IRK3-3 6.7000921829x 107 6000  6.7000928259x 10794 12000
i TFIRK3-3 4.7781000000x 1072 12000 4.7803000000x 10~2¢ 24000
%0 IRK3-3 4.3052030611x 107°5 12000 4.3052030611x 10~°> 24000
i TFIRK3-3  2.3634560000x 1024 24000 2.3634560000x 10~2* 48000
80 IRK3-3 2.7183122806x 1079 24000 2.7183123207x 10~%¢ 48000
Tables Il to VI depict the results of solving REFERENCES

Problems 1 to 5 using various forms of step
length h. When h = % with 100 grid points as

well as 200 grid points, the TFIRK3-3 method
exhibits less errors than the non-fitted IRK3-3
method with the same number of function
evaluations (NFEs). The same scenario occurs

when h is reduced to ﬁ and % respectively.

CONCLUSION

A three stage third order trigonometrically
fitted Improved Runge-Kutta (TFIRK3-3)
method for numerical integration of 1\VPs with
oscillatory solutions has been derived. The
order of the non-fitted IRK3-3 method was
recovered from the Taylor series analysis of the
new method; hence its convergence.
Comparison of numerical results obtained
showed that the TFIRK3-3 method is more
effective and efficient than the IRK3-3 method.
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