The Implementation of Electronic
Purse (E-Purse) System in the

Banking Sector
(A case study of Guaranty Trust Bank (Nigeria)
PLC)

BY

MOHAMMED, AYANNIYI

PGD/MCS/2006/2007/1213

DEPARTMENT OF MATHEMATICS/COMPUTER
SCIENCE, FEDERAL UNIVERSITY OF TECHNOLOGY
MINNA.

SEPTEMBER, 2008

The Implementation of Electronic
Purse (E-Purse) System in the

Banking Sector
(A case study of Guaranty Trust Bank (Nigeria)
PLC

BY

MOHAMMED, AYANNIYI

PGD/MCS/2006/2007/1213

A PROJECT SUBMITTED TO THE DEPARTMENT OF MATHEMATICS/COMPUTER
SCIENCE FEDERAL UNIVERSITY OF TECHNOLOGY MINNA, IN PARTIAL
FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF POST GRADUATE

DIPLOMA IN COMPUTER SCIENCE.

SEPTEMBER, 2008

CERTIFICATION

This is to certify that this project, titled: “The Implementation of Electronic Purse (E-Purse)
System in the Banking Sector has been read and confirmed by the undersigned as meeting the

requirements of the Department of Mathematics/Computer Science, Federal University of

Technology, Minna.

MR BOLARINWA G. DATE
PROJECT SUPERVISOR

DATE
HEAD OF DEPARTMENT

EXTERNAL EXAMINER DATE

i

DEDICATION

This project is dedicated to God for His affections and enablement, to my wife Mrs

Suwaibat Mohammed and my Parents.

v

ACKNOWLEDGMENT

I wish to express my sincere gratitude to God who in His infinite mercy made it possible for

me to complete this programme.

Special thanks to my Supervisor, Mr. Bolarinwa Gbolahan who, despite his busy schedule,
could afford to read the manuscripts, gave guidance in the course of writing this project and
subsequently gave his approval. I also wish to thank my Head of Department Dr. N. 1.
Akinwande, my course coordinator Alhaji Ndanusa A. and all my Lecturers in the department

for their immense contributions towards the success of this program.

I also appreciate the encouragement of my wife Mrs Suwaibat Mohammed whose support has
been so enormous. Appreciations to my Parent, brothers and sister for their endurance

throughout the period that the program lasted.

My sincere gratitude goes to Engineer Dayo Faleye for taking pains to read through the papers
and made appreciable contributions.
I wish to thank all my course mates, brothers, sisters, and friends who contributed in various

ways towards the successful completion of this work.

ABSTRACT

Electronic Purse (E-Purse) also known as Smart-cards acts as an electronic payment
alternative to bank notes. Automated currency solutions offer greater levels of convenience to
consumers, incremental sales opportunities and reduce operating costs to merchants and new
service revenue streams to banks.

Smart card applications reduce operating costs and control fraud in electronic benefits
programs, carrying patient information for healthcare applications and providing a secure
vehicle for delivering government benefits such as social insurance and welfare programs.
Smart cards (e-purse) are used in a variety of other applications that require greater processing
power and/or more secure storage. College students use smart cards (e-purse) to pay for
cafeteria and bookstore purchases and to access health, recreation and other services;
commuters use smart cards (e-purse) to pay tolls and parking fees; and parents use smart cards

(e-purse) to pay for child care.

Vi

TITLE PAGE
CERTIFICATION
DEDICATION

ACKNOWLEDGEMENT
ABSTRACT
TABLE OF CONTENTS

TABLE OF CONTENTS

Chapter 1

INTRODUCTION

1

The Electronic Purse (E-Purse) Introduction

1.2 Definition Of Terms
1.3 History of GTB Bank Nigeria Plc.
1.4 Problem Definition
1.5 Objectives
1.6 Limitation
1.7 Methodology
Chapter 2
LITERATURE REVIEW
2.1 The Nigerian Payment System
2.2 Evolution of Smart Cards
2.3 Operation of CashPlus Product
2.4 Benefits of CashPlus

2.5 Barriers to the Development Of

E-Purse Payment Systems

Vi

Vil

11
11
12
12

13
14
15
20

22

Vil

Chapter 3

NEW SYSTEM DESIGN
. Methodology 23
3.2 Input Design 25
3.3 Output Design 28
3.4 File Design 31
3.5 System Specification 34
3.6 System Security 37
3.7 Cost and Benefits Analysis - 38
Chapter 4
SYSTEM IMPLEMENTATION
4.1 Choice of Language 41
4.2 Features of Language chosen 41
4.3 Changeover/Conversion Procedure 43
44 Software & Hardware Requirements 44
4.5 Cash Plus Communication Links 46
4.6 Maintenance 46
4.7 Training 47
4.8 Starting the System 47
Chapter 5
5.0 Summary 48
5.1 Conclusion 50

References - 51

Viil

Chapter 1
INTRODUCTION

1.1 The Electronic Purse (E-Purse) Introduction

An Electronic purse is a Smartcard that holds an electronic equivalent of cash. The
electronic purse can be used for the payment of goods and services i.e. the electronic

purse is a substitute for bank notes.

Interest is fast developing in a multipurpose prepaid smart card commonly known as
the electronic purse. In contrast to a debit card, the electronic purse is intended to
facilitate a variety of small-value retail transactions and so it is a clear substitute for

currency. It might function as follows.

Monetary value would be loaded onto the card, with a corresponding debit to the
cardholder’s account at a financial institution. In a retail transaction, monetary value
would be transferred from the purchaser’s card into the merchant’s terminal in an off-
line mode. The value of consumer purchases made with electronic purses would
accumulate in the merchant’s terminal and would be transferred to the merchant’s

account at a financial institution from time to time through on-line transactions.

More technically, in many purse systems the financial institution issuing the card
would earmark or put a hold on an amount of funds in the cardholder’s account that is
equivalent to that recorded on the smart card, and would in effect be providing a

guarantee of the value shown on the card. When a transaction is cleared through the

payments system, a debit would be made to the cardholder’s special suspense
account, and a credit would be made to the merchant’s bank account. This type of

electronic purse would essentially function as an off-line debit card (Figure 1).

Figure 1- Electronic purse system model

i

In most proposed systems, the cardholder would be able to “replenish™ the monetary
value on the card at Issuer’s bank. Such electronic purses would have to be equipped
with personal identification in order to keep track of individual transactions. This

feature would also assure the cardholder of enhanced security.

Other purse systems are being designed that share physical currency’s characteristic
of anonymity; they would be an even closer substitute for cash. Any institution
issuing this type of electronic purse would have to establish a general suspense
account for the amount outstanding in its issued purses. In such systems, monetary
value could be transferred directly between cards without the action of an

intermediary.

1.2 Definition Of Terms

Smartcard is a new concept in the Nigeria Payment and Settlement System. It is
therefore, necessary to start this overview with definition of some of terms used.
The following terms are in common use:

e Smartcard

e Electronic Purse

e Cardholder

e Issuer Bank

e Acquirer Bank

e Merchant

e Merchant/Transport Card

o Bank Teller Terminal (BTT)

¢ Point of Sale Terminal (POS)

e Hotlist

121 SmartCard

The term ‘Smartcard’ applies to all a technology that has become a generic term for
all sorts of advanced card technology. A card is in accordance with International
Organization for Standardization (ISO), a piece of nominal dimension:

85.6mm x 53.9mm x 0.76 mm
The term ‘Smart’ applies to a card that carries a semi-conductor chip. The chip

contains basic features of a computer and thus has a small processor, storage facility,

an operating system and set(s) of stored instructions called programs. Thus,
Smartcard is a card of ISO dimensions which has in-built logical ability. Smartcard
range from small capacity memory only chips (mainly used for Phone cards) to large
(16k bytes) memory capacity microprocessor chips and more recently,
microprocessor chip with an added high speed arithmetic unit for use on public key
cryptographic calculations such as Random Security Algorithm(RSA) and Data
Encryption Standards.

There are basically two types of Smartcards viz: Disposable and Re-loadable cards.
The disposable card is that is disposed off after user, example is Phone cards, while
re-loadable card allows users to replenish the value of their card as often as they
wish.

1.2.2 Electronic Purse

An electronic purse is a device (smartcard) that holds an electronic equivalent of cash.
The electronic cash is commonly accepted for payment for goods and services at
designated Point of Sale (POS) outlets. Values are loaded onto the card in a bank and
unloaded (deducted/debited) at the Point of Sale outlets in payment for goods and

services. The purse can only be used while its balance is positive.

123 Cardholder
A cardholder is the bank customer who having purchased and loaded a card in a bank

will use the card in payment for goods and services.

1.24 Issuer Bank
Issuer bank is the bank that issues the card to its customers. It obtains the card from
the Smartcard company, embosses them to identify users and thereafter, issues them

to the customer.

1.2.5 Acquirer Bank
This is the bank that negotiates and enters into agreement with merchants (shop

owners) to accept Smartcard(Electronic Purse) in payment for goods and services.

1.2.6 Merchant
A merchant is a service provider/trader, who has Point of Sale (POS) terminals
installed in their shops, offices or outlets for Smartcard (electronic purse)

transactions.

1.2.7 Merchant Card or Transport Card
A merchant card or transport card is issued to the merchant by an acquiring bank.
The card is issued to sum up periodic transactions. All transactions are uploaded

from the merchant POS terminal to a Bank Teller Terminal (BTT) via a merchant

card or modem if on-line. The merchant card is also used to transfer the hotlist to the

merchant POS terminal.

1.2.8 Bank Teller Terminal (BTT)

The Bank Teller Terminal is used to interact with cardholders and merchant cards. It
will be located in the bank branches and will be operated by bank employees, who
will provide services to cardholders and merchants. The Bank Teller Terminal will

have an on-line connection to the Server.

The functions provided by the BTT are as follows:
e Exchange of value on card for cash.
e Loading value onto card.
e Transaction amount entry.
e Off-line PIN validation.
e Card identification and validation.
e Card balance checking and inquiry
e Print or view customer card transaction history.
e Key maintenance.
e Destroy hotlisted cards inserted in the terminal.
e Receipt printing.
¢ Transaction reports, summary and details.
e Upload of transactions from a merchant card.

e Download hotlist to merchant card.

e Issue card to cardholder, i.e. cardholder selects own PIN.

e Bank Teller Terminal (BTT)

1.2.9 Merchant Point of Sale Terminal
The merchant Point of Sale terminal is used to store payment transactions once value
has been removed from a cardholder’s card as payment for goods and services. Each
Point of Sale device within the system will have a unique identification number. The
Point of Sale terminal will support the following on-line and off-line functions:

e Exchange of value for goods and services

e Exchange of value on card for cash

e Receipt printing

e Transaction amount entry

e Off-line PIN Validation

e Destroy hotlisted card inserted on the machine

e Card identification and validation

e Upload hotlist from merchant card

e Card balance checking and inquiry

e Printing customers’ card transaction history

e Key maintenance
e Transaction reports, summary and details
e Upload transaction files via modem

e Download of hotlist via modem.

e Point of Sales (POS)

1.2.10 Hotlist
Hotlist is a list of lost or stolen cards made available to bank’s branches connected to
the hub. When a card is reported lost or stolen, the card is hotlisted. The uploaded

hotlist is then transferred to the merchant terminals through the merchant card.

1.3 History of Guaranty Trust Bank Nigeria Plc.

Guaranty Trust Bank plc was incorporated in July 1990, as a private limited liability
company wholly owned by Nigerian individuals and institutions. We were licensed as

a Commercial Bank in August 1990 and commenced operation in February 1991.

In September 1996, Guaranty Trust Bank plc became a publicly quoted company and
won the Nigerian Stock Exchange President's Merit award that same year and again
in the years 2000, 2003,2005 and 2006. The Bank was also runner-up for the quoted
company of the year award in 2005. In February 2002, we obtained a Universal
Banking license and were appointed a settlement bank by the Central Bank of Nigeria
(CBN) in 2003.

Our quest to continue adding value to the businesses of our stakeholders has seen us
emerge as a pacesetter and industry leader over the years. This is evident in our
introduction of real time online banking in 1990, mobile, telephone and internet
banking in 2002, Slip free banking in 2006 and the first fully interactive self service
call centre; GT Connect in 2006.

Mission Statement

We are a high quality financial service provider with the urge to be the best at all
times whilst adding value to all stakeholders.

Vision Statement

We are a team driven to deliver the utmost in customer services.

We are synonymous with innovation, building excellence and superior financial

performance; and creating role models for society

RATINGS
Guaranty Trust Bank financial capacity to meet obligations as they fall due has been
recognized by several rating agencies Agusto & Co, (one of the foremost credit rating

agencies in Nigeria) has reaffirmed the Bank's triple A (Aaa) risk rating every year

for the last four years. Guaranty Trust Bank plc is one of only two banks in Nigeria
with such a rating.

Fitch, one of the foremost international rating agencies assigned the Bank a double A
minus (AA-) risk rating in recognition of the its strong domestic franchise, good
quality assets and sound earnings record. This is the highest rating ever received by
any Nigerian or West African based bank.

Standard & Poor's, another international rating agency assigned the Bank a double B
minus (BB-) risk rating. The Bank is the only Nigerian financial institution with such

a rating, which is the same as the Agencies Sovereign rating for Nigeria.

BELIEFS & CULTURE

The Bank maintains a culture of excellence, and goes to great lengths to ensure that
customers are satisfied at all times. Our values are hinged upon professionalism,
integrity and superior service delivery.

We maintain an informal but competitive environment where people call each other
by their first names from entry level through to the Managing Director- no Sirs or
Madams. This informal culture is not common practice in Nigeria, but true to its
convictions, the non-regimented and open environment brings out the best in
Guaranty Trust Bank employees.

The Bank also maintains an open door policy. This reinforces the informal
atmosphere and breeds a feeling of equality. Everyone is accessible and

approachable, working in open offices along side their colleagues.

10

The work environment is built saliently on Total Quality Management, and a thirst for
excellence in every thing we do. Quality is an integral part of the Bank and its
improvement is not just in the hands of a few but in the hands of every member of
staff. Delivering quality is the way we know how to sustain our competitive

advantage.

1.4 Problem Definition

The following problems are being encountered with the present Nigerian payment
system.

e Some of the present payment system involves too much cash carrying for

exchange of goods and services.

e Lack of trust on some of the payment instrument.

e Insecure payment instrument.

e Faking, forging and cloning of the payment instruments.

e Movement of large sum of cash exposes the carriers to imminent danger in the

hand of hoodlums.

1.5 Objectives

The objectives of this project work are:
¢ To provide alternative to the present payment system that eliminates too much
cash carrying for exchange of goods and services.
e To provide a secured payment instrument.

e To make payment for goods and services easier.

11

e To provide a reliable and trusted instrument.
1.6 Limitation

e This study is concerned with the mode of payment through electronic purse
(smartcard) within Guaranty Trust Bank Nigeria Plc only.

e The payment currency is limited to only Naira and is within Nigeria.

e Of all Smartcard payment system, only electronic purse is considered.

e Due to the cost of acquiring the Bank Teller Terminal (BTT) and Point of Sales
machine (POS), Guaranty Trust model were used for the test running of the

software.

1.7 Methodology

This project work is done by studying and reviewing the present payment system in

Nigeria, other products that are related to the electronic payment system.

12

Chapter 2

LITERATURE REVIEW
2.1 The Nigerian Payment System
A country’s payment system comprises of all items used in payment for goods and
services in the country. It is dynamic and changes over time, depending on the level
of economic activities, the sophistication of the financial and banking system and

level of financial literacy.

As financial transactions in Nigeria are predominantly cash-based, with attendant
risks and high handling costs. The need for a more secured and convenient means of
payments has led, many banks in recent years to introduce alternatives. Presently, the
Nigerian payment system comprises:

e Money (Coins & Bank Notes)

e Personal Cheques

e Certified Cheques

e Bank Drafts

e Bankers Payment

e Mail Transfers

e Electronic Funds Transfer

e Automated Teller Machines

e Plastic Money/Card (Credit Cards, Smartcard)

13

The most recent of these payment systems is the Smartcard technology used in certain
parts of the world today, with Nigeria not left out this time around. Smartcards are
already gaining grounds in Nigeria through Valucard, Smartpaycard, ESCA, and

Paycard.

2.2 Evolution of Smart Cards

The smart card technology originated in both France and Japan and much of the
impetus for its development has come from the national governments of these two
countries. In France, the Director General of Telecommunications, faced with
modernizing the national telephone system in 1974, decided that using smart cards
would be a good way to update its pay phone system. It was also felt that this new
technology could be a key factor in responding effectively to an expected strong
growth in demand for home banking and shopping services. Furthermore, the French
banks were interested in smart cards because of an earlier explosive increase in the
issuance of cheques and because of a problem with fraud related to their Automated
Teller Machines which operated, generally speaking, in an off-line mode. Finally, the
French government had invested substantially in computer research and development
in the second half of the 1970s, contributing still further to the development of the
smart card. In Japan, the national government placed special emphasis on the role of
computer technologies in its national economic development programs. The
subsequent emergence of a large computer-chip manufacturing industry in Japan also

contributed to the development of smart card applications in that country.

14

Smart cards have found extensive applications in United State of America; with an
estimated half a billion cards in use worldwide as of 1994 (Ravensbergen 1994). The
diffusion of smart card payments applications has been particularly rapid in Europe
and East Asia, reflecting in part the relatively higher cost of telecommunications
services in those countries than in North America. At the moment, most prepaid cards
are employed for single purpose transactions, although interest in the electronic purse
application is growing rapidly. Many electronic purse pilot projects have been

announced over the past year, both in North America and overseas.

Still more recently, there has been interest in developing payments systems for use on
the Internet and other personal computer networks (Crone 1995; Holland and Cortese
1995). While some of these systems simply involve the use of bank and credit card
numbers for purchases on the Internet, other systems are to include the “virtual™

equivalent of an electronic purse card.

2.3 Operation Of CashPlus Product

2.3.1 CashPlus Product
The Smartcard scheme will offer a re-loadable, EMV complaint, electronic purse,
branded CashPlus, aimed at cash substitution, by providing an electronic means of

payment for goods and services at the Point of Sale.

The electronic purse will be PIN protected and receipt will be produced after each

credit and debit of the purse. The last ten transactions will be stored on the card.

15

2.3.2 System Components

A number of separate components operate together to create the complete CashPlus
E-purse Payment System. The components include:

e Cards

e Merchant POS terminal

e Banks Teller Terminals

¢ CashPlus Management System

23 CashPlus Security

¢ Personal Identification Number (PIN)

PIN is a set of codes (numbers) selected by any cardholder as security lock/key for
access to his card either at points of loading or payment. If it is forgotten, only the
issuing bank can undo the codes and give the cardholder another opportunity to select

new set of codes as security to his card.

¢ Personalization
Cards will be electronically and physically personalized by issuing bank (GTBbank)
at the bank’s head office. Electronic personalization will involve printing the card

number, cardholder name and expiry date on front of the card.

e Information Privacy
Information stored in any card cannot be made available to anyone except with the
knowledge/consent of the owner. This is the essence of PIN, which serves as the

gateway to access the card for whatever data manipulation.

16

¢ Hotlist
This is a document containing series of cards reported lost or stolen. This list
instructs POS terminals to disregard information on such cards and to destroy such

cards. The hotlist is distributed to all merchants, who in turn load the refreshed list

into the POS.

¢ Risks
Risks to all participating partners have been identified, isolated and minimized to the

least conceivable.

2.3.4 CashPlus Operations
The operations of the CashPlus Management System include the following:
e Cardholder/Merchant Registration
e Card Issue
e Card Balance
e Cash Load/Unload
e Change PIN/Unlock PIN
e Upload Transaction from BTT
¢ Upload Transaction from Merchant/Transport Card
¢ Hotlist Management
e Reports
e Users Configuration

e Bank’s Liability Management

17

Cardholder/Merchant Registration
This module handles the registration of both New Cardholder and Merchant.
Information on the Cardholder/Merchant form are extracted and input through this

module.

Card Issue

Card will be issued through the cardholder’s branch on application by him/her. The
branch will forward the application, including customer information, the branch code
and account to which the card is linked to the bank’s head office. On personalization,
the cards are then delivered to the branch. The customers will collect the cards at
their branches where they will be required to enter their own PIN, which replace the

default PIN created on the cards when they were personalized.

Card Balance

It is possible for cardholder to check his balance through the branch Bank Teller

Terminal, merchant Point of Sale and card reader device.

Cash Load

Cardholders may be able to load at all branches of their bank if the branches are on-
line. Once a card has been issued, the cardholder may load value onto his/her card,
using the Bank Teller Terminal in the bank branch. The cardholder will insert the

card into the PIN pad attached to the Bank Teller Terminal; the customer service

18

officer will enter the amount to be loaded. The bank’s liability is adjusted less the
cash loaded amount. When the transaction is completed, the value is loaded onto the

card and a receipt is printed.

Cash Unload

Cardholder may decide to get cash from his card at the bank’s branch. The card is
inserted, the officer enter the amount to unload, after verifying, the cardholder will
enter the Personal Identification Number (PIN). The system check whether the PIN
entered is correct, if yes, the value is unloaded and a receipt is printed. The bank’s

liability is adjusted with the cash unload amount.

Change PIN/Unlock PIN
It is possible for cardholder to change his Personal Identification Number (PIN) at
any time provided he knows the old PIN. If he lost his PIN there is an option called

Unlock PIN that is used to introduce new PIN without asking for old PIN.

Upload Transactions from BTT/Transport Card
All transactions of Bank Teller Terminal and Point of Sale are uploaded to the

central database through the Upload transactions option. This update the master files

of all records and tables affected.

19

Hotlist Management

Issuing banks will place cards reported lost or stolen on a hotlist. Placing card on
hotlist ensures that the card will be destroyed if used. Branch Bank Teller Terminal
download hotlist online at least once in a week while the Merchants™ Point of Sale

received Hotlisted Cards through the Transport card.

Reports
The following reports are possible with the CashPlus card Management System.
¢ Daily Transaction Report
¢ Cardholder stat.ement report
¢ Hotlisted Cards
e Active Cards

e Expired Cards

Administration
New users are first introduced to the system through the Users configuration modules.
Menu are also assign to new users. Modification and deletion is done here.

Liability Management is also under this module.

24 Benefits Of CashPlus

2.4.1 Benefits for Bank

e Improved payment system through replacement of cash
e Reduced cash handling costs

e Improved transaction times at branches

20

24.2

243

Reduced security risk for staff

Improved customer service image.

Benefits for Merchants

Safer and more secure payment system to customers

A better way of documenting transactions as each of them is receipted
automatically and added up at end of each business period.

Reduction in the volume of cash handled at the shops.

Outlet managers will have better accountability and cash pilferage will be
eliminated.

Offers opportunity to design special loyalty schemes for customers.

Increase in customer base.

Retention of market share and improved market positioning

Faster transaction time

Cost saving from reduced infrastructure equipment (Note counting machine,

Note binder, Counterfeit detector, etc.)
Enhanced corporate image

Match competitor’s offering.

Benefits for Customers

Increase security
Reduced handling of cash

Greater convenience

21

2.5 Barriers to the Development of E-Purse Payment Systems

In spite of the strong interest worldwide in the electronic purse, the adoption of this

innovation has been comparatively slow. There are a number of reasons for this.

e First, the market for the electronic purse, like other innovations that involve the
creation of networks between the suppliers of services and their customers, needs
to attain a critical mass before the purse can be used effectively. Prior to this
stage, there will be considerable uncertainty among both consumers and
merchants as to the potential usefulness of the product. Clearly, the benefits to
consumers will rise as the new means of payment becomes acceptable to
merchants, while the benefits to merchants will rise with greater usage by

consumers.

e Second, lack of good telecommunications network affects the connectivity of the

smart cards networks.

e The average consumer may also prove to be slow to accept the electronic purse,
because cash is still such a basic feature of daily life. Many people may consider
an electronic purse more complicated to use than cash and may have concerns
about the risk of card or equipment failure or about difficulties in recharging an
electronic purse. Others may also be bothered by the potential loss of privacy,
particularly in the case of multifunction applications, where a variety of personal

information might be stored on a single card.

e Lack of experience with Electronic payment systems

e Lack of suitable merchants

22

Chapter 3
NEW SYSTEM DESIGN

3.1 Methodology

The methodology adopted for the proposed system is the System Life Cycle approach

as shown below:
Preliminary Survey/Study
Feasibility Study

v
Investigation & Fact Recording

v
Analysis

|

Design

v
Implementation

v
Maintenance & Review

23

3.1.1 Preliminary Survey/Study
The purpose of this survey is to establish whether there is a need for a new payment

system and how cash carrying Nigeria society can be turned to cashless society.

3.1.2 Feasibility Study
The purpose of the feasibility study is to investigate the alternative to the present
Nigerian payment system i.e. electronic purse payment system and how it is being

operated in other countries, the cost and benefits analysis.

3.1.3 Investigation & Fact Recording

Detailed study on the present and proposed system is conducted. This is a more

detailed and comprehensive than feasibility study.

3.1.4 System Analysis
Analysis of the full description of the present payment system and of the objectives of

the proposed system is done here.

3.1.5 System Design

Next to the System Analysis is the Design phase i.e. the designing of the proposed
system called Electronic Purse/Smartcard Payment System. A system specification is

produced.

24

3.1.6 Implementation

This system is implemented using a modern day development tools and a robust
database engine. Microsoft Visual Basic is used for the front-end, SQL Server 2000

for the backend and Crystal Report for the reporting tool.

3.1.7 Maintenance & Review

After the system is implemented and operational, it is examined to see if it has met

the objectives set out in the specifications.

3.2 Input Design

This is the means where data is transferred into the central processor. The adopted

method is by using keyboard to key data directly to the system.

Basically there are 4 input Forms.

Cardholder Details Form

Branch/Merchant Form

Cash Load Form

Cash Unload Form

i) Cardholder Details Form

Purpose: This is used to capture data of new cardholder.

23

J Eoreeruse e
€ 2 C 1 wip/localhostana/e pursef g ; r O~ F-

GTB E-Purse

Card Holder's Details
Tite:
Surnama:

Other Name:

Card Details Furse Details
Effective Date: . ™ Max Balance:
Expiry Date: T Currency:

Card Numbsr; =PI for ———

| [Balance

i) Branch/Merchant Form

Purpose: For the registration of new branch or merchant.

26

Purpose:

F Eorsepune

« Lo <

Purpose:

¥ 0 oo runsa
o < r

Cardholder Details Form

This is used to capture data of new cardholder.

—r T

> O S

Socathost 400 ¢

GTB E-Purse

| ke Mamege Costomer | fanage Martets . Thaemscuon Card sty

Other Name:

Card Details Purse Detalis
{Effective Date: i TR Max Balance:
Expiry Date:
Card Number:
‘Balance | Credit

Branch/Merchant Form

For the registration of new branch or merchant.

Cash Load Form

27

Purpose: Use for loading of cash to the card.
iv) Cash UnLoad Form

Purpose: Use for unloading of cash to the card.

GTB E-Purse

Card Number:
Amount:

3.3 Output Design

Output is the means by which computer communicate result to the users for decision

making. This can be through Monitor(soft copy) or Printer (hard copy).

Reports available:
O Daily Transaction Report
O Card Holder Statement
O Hotlisted Cards
O Active Cards

O Expired Cards

i) Daily Transaction Report

28

This is a daily transaction report. It gives details of all transactions (Cash Load and
Cash unload) for a day. It contains the following columns:

¢ Transaction ID

e Card Number

e Card Acceptor Terminal ID

e Card Acceptor ID

e Amount

e Transaction Type

¢ Date/Time of transactioni

J Ectserune
€ 3 C| ¥ hip/ocalhost8iadie-purse/ 7 0 LY

GIB E-Purse

Marane Marchants Transaction Card Hixtory Hanage User

iy ‘Vahoo! Sia SNt

29

This report shows all the transactions the cardholder has done. It consists of the
following:

e Date/Time of transaction

e Transaction type

e Branch/Merchant Name

e Debit

e Credit
F Eoreerune - R——
€5 € W om S

Monsge Cimtomer | Manage Marchanls | Tramarion || Card Mistory || Manage User |

8099 7 Date = Amount Fin v Trans Type

. Seps, 2008 7 09/09/08 5000.0 8099 Withdrawal

sep 18, 2008 % 09/0%/08 10220.0 8099 Deposit

e

iii) Hotlisted Cards report

This shows the list of all hotlisted cards. It contains the following columns:

30

e Card Number
e Card Holder Name

e Hotlisted Date

iv) Active Cards

This is list of all active cardholders.
e Card Number
e Cardholder Name

e Expiry Date

V) Expired Cards

This is the list of all expired cardholders.
e Card Number
e Cardholder Name

e Expiry Date

3.4 File Design

This describe how the data is to be structured and physically stored on backing

storage device.

DATABASE : EPURSE
FILENAME: EPURSE_DATA .MDF
DATABASE ENGINE: SQL SERVER 2000

STORAGE MEDIA: HARD DISK

31

¢ TABLE NAME: CardHolderDetails

PURPOSE: This holds the details of the Cardholders.

PRIMARY KEY : CardNumber

Column Name Data type Length | Description

Title Varchar 10 Title

FirstName Varchar 20 First Name
MiddleName Varchar 20 Middle Name
LastName Varchar 20 Last Name
[DType Varchar 15 Identification Type
IDString Varchar i Identification String
Language Varchar 10 Language

Account Varchar 13 Account Number
EffectiveDate Datetime 8 Effective Date
ExpiryDate Datetime 8 Expiry Date
CardNumber Varchar 13 Card Number
NCurrency Varchar 16 Nigerian Currency
MaxBalance Numeric 9 Maximum Balance
PinBalance Varchar | Pin Balance
PinCredit Varchar 1 Pin Credit
PinDebit Varchar 1 Pin Debit

Hotlist Varchar | Hotlist
HotlistedDate Datetime 8 Hotlisted Date

¢ TABLE NAME: TransactionDaily & TransactionMaster
PURPOSE: TransactionDaily keeps transactions pending
the time it will be uploaded while TransactionMaster
contains all transactions.

PRIMARY KEY : TransactionlD

32

Column Name Data type Length Description
TransactionID Varchar 20 Transaction
Identification
TransactionType Varchar 11 Transaction Type
CardNumber Varchar 13 Card Number
Catid Varchar 15 Card Acceptor Terminal
Identification
Caid Varchar 15 Card Acceptor
Identification
DateTime Datetime 8 Date/Time of
Transaction
Amount Numeric 9 Amoount
Userld varchar 12 User Identification

¢ TABLE NAME: BranchMerchant

PURPOSE: Keeps the records of Branches and Merchants.

PRIMARY KEY : Catid

Column Name Data type Length | Description

BranchMerchantName | Varchar 60 Branch/Merchant Name

Address Varchar 200 Address

Catid Varchar 15 Card Acceptor Terminal
Identification

Caid Varchar 15 Card Acceptor Identification

¢ TABLE NAME: BranchLiability

PURPOSE: Bank Liability entry is kept here.

Column Name Data type Length | Description
LiabilityAmount Numeric 9 Liability Amount
AmendmentDate datetime 8 Amendment Date

¢ TABLE NAME: User_tab

PURPOSE: Keeps the records of users.

PRIMARY KEY : Userid

33

Column Name Data type | Length | Description
User_name Varchar 64 User Name

User_id Varchar 12 User Identification
Staff _id Varchar S Staff Identification No.
Start_date_profile Datetime 8 Profile Start Date
End_date_profile Datetime 8 Profile End Date
User_class Varchar 20 User Class
User_branch Varchar 30 User Branch
User_pass Varchar 12 User Password
Remarks Varchar 16 Remarks

3.5 System Specification

The system specification describes the new system. The software for the new is
known as GTB E-Purse Payment System. This system is a windows based system

using a menu and submenu technique.

¢ REGISTRATION MENU
This registration menu is used for the capturing of Cardholder and Branch/Merchant

Data into the system.

34

J Eoreerune

Address:
T i

M|l card Acceptor
|| Terminal 1d

|l card Acceptor 1d:

Merchant Registration form

J Eorserune

€ = | C | v¢ nupy/locathostiiad/e -purses

GIB E-Purse

Welcome | Manage Customer Marage Marchants Transaction Card History Manage User

Card Holder's Details
Tlu':i .
Surname:

Othar Name:

Card Details
Eﬁeéh;o Dile:
|Expiry Date:

1<iard Number:

Furse Details
Max Balance:
Currency:

PN for
i

["'Balance [Credit " Debit

Customer Registration form

a5

¢ CARD OPERATIONS
This menu handles the following operations:

Card Issue

Card Balance

Card Load

Cash Unload

o Change PIN

o Unlock PIN

o Upload Transactions from BTT

O O O

O

o Upload Transactions from Transport Card

o Download Hotlist

¢ REPORTS
This produce reports for the following:

o Daily Transaction Report
o CardHolder Statement

o Hotlisted Cards

o Active Cards

o Expired Cards
e ADMINISTRATION

This is used for setup of the following:

o Users Configuration

o Change Password

o Bank’s Liability Setup
o Update Hotlist

36

3.6 System Security

Security is the protection of data against unauthorized access against accidental or

intentional or destruction of data. While designing the system, the following

essentials were put into mind:

o

O

Users must be created by the System Administrator.

Users must be positively identified by the system before they are given
access to the data.

User’s action should be authorized once they have been allowed to access
the system.

Data should be auditable.

All transactions carried users id.

Data should be protected from fire, theft and other forms of destruction.

Daily backup of data.

37

Login Screen

'Eleme.pu:u Ao,
« C ' ¥ i //lecathost 3085 /e puse ' > B~ £~

GTB E-Purse

Wakome Plaase Login 3 Minage Customes | Manage Marcrants

&

eBeet | G GTBE-Purse - Goog... | BB Secure DGHATSIONs 2 [~ Vahoot Search B8 &R0 a2

Users are expected to supply their Login name and Password before they can use the
Cash plus card E-Purse Payment System. The system will check the data supplied
against the stored data. If find it continues else it displays error message “User

Unknown, Contact Administrator”.

3.7 COSTS AND BENEFITS ANALYSIS

COSTS

The overall cost of producing smartcards depends on how long the cards last and how

many cards are needed.

38

The project of smart cards production is comparable to any other stationary or
security printing, in that, the higher the number of copies required, the cheaper the
cost. This is so, because both the hardware and software that are installed to produce
a single smart card is what is needed to produce a million copies. The only additional
cost involved is the length of period of production, quantity of card and energy

dissipation.

However, below is the approximate figurative analysis of the production of one single
smart card. It is assumed here that, smart card facilities are just being introduced to a
particular populace.

(i) Cost of carrying out feasibility study — N2.5m

(if) Cost of carrying out public enlightenment — N1.5m

(iti) Cost of preparation of software — N0.5m

(iv) Cost of procurement of hardware — N2.0m
(v) Cost of other accessory equipment — N1.5m
(vi) Cost of rent/erection of stations — NIS5m
(vii) Cost of hiring personnel — N1Om
(viii) Cost of procuring security cards — NSm

(ix) Cost of providing training for personnel— N3m
(x) Logistics - N2m

(xi) Miscellaneous expenses -
NO5m

Total N48m

39

Above is an approximate figure for the production of a single unit of smartcard.

However, to produce 100 million smartcards may not exceed N55m.

From the analysis above, it will be observed that smartcard project is capital

intensive. Meanwhile, the benefits accrued are enormous.

BENEFITS

Deploying Smart Card login to your network will provide the following benefits:

e Itis an alternative to banknotes

e The Automated Currency solutions offers greater level of convenience to
customers

e [t provides increased sales opportunity and reduce operating cost of merchants
and control fraud

e It carries holders health information for health care applications and provides
secure vehicle for delivering government benefits such as social insurance and
welfare programs

e It reduces the risks of carrying life banknotes around in exchange of services

e [t protects the privacy of the cardholders

e [t improves business transaction time.

e The card store inf;)rmation, money and or application that can be used for
banking/payment, loyalty and promotion, access control, ticketing, store value,
identification, parking and toll collection.

e Smart cards provide powerful authentication to prevent misuse of your resources.

40

Chapter 4
4.0 SYSTEM IMPLEMENTATION

4.1 Choice of Language

The choice of programming language used in this project work is Sun java system
application server 9.1 (Glassfish v2)

This is because it is able to compile on any system that runs windows of any version.
Since the work comprises the use of database management system and the data so

stored, has the ability to grow by the day.

Sun java system application server 9.1 (Glassfish v2) is most suitable as it can handle
large independent data conveniently. Independent, in that, it only acts as user
interface, not having direct contact with the raw data, rather it exposes object that

manipulate this data regardless of the database management system used.

4.2 Features of java programming language.

Java programming language has the following significant features namely:
1. Platform Independence: Java compilers do not produce native object code for
a particular platform but rather byte code instructions for the Java Virtual
Machine (JVM). Making Java code work on a particular platform is then
simply a matter of writing a byte code interpreter to simulate a Java Virtual
Machine (JVM), what this means is that the same compiled byte code will run

unmodified on any platform that supports Java.

41

10.

Applet Interface: In addition to being able to create stand alone applications,
Java developers can create programs that can be downloaded from web page
and run on a client browser.

Object Orientation: Java is a pure object oriented program. This means that
everything in a Java program is an object and everything is descended from
root object class.

Familiar C++ like syntax: One of the factors enabling the rapid adoption of
Java is the similarity of the Java syntax to that of the popular C++
programming language.

Garbage Collection: Java does not require programmers to explicitly free
dynamically allocated memory, this makes Java programs easier to write and
less prone to memory errors.

Rich Standard Library: One of Java’s attractive features is its standard library;
the Java environment includes hundreds of classes and methods in six major
functional areas.

Language support classes for advanced language features such as strings,
arrays, threads and exception handling.

Networking classes to allow inter-computer communications over a local
network or the Internet.

Input/Output classes to read and write data of many types to and from a
variety of sources.

Applet is a class that makes it possible to create Java program that can be

downloaded or run on client’s servers.

42

11. Utility classes like a random number generator, date and time functions and
container classes.
12. Abstract window Toolkit for creating platform-independent Graphical User

Interface (GUI) applications.

4.3 Changeover/Conversion Procedure
This is simply moving from old system to a new system. There are various
changeover methods, such as :- Direct changeover, parallel changeover and pilot /

piecemeal changeover

Direct Changeover is discarding the old system completely and immediately using
the new system, thus the old system is discontinued altogether and new system

becomes operational immediately.

Parallel Changeover is using both old and new system until it is confirmed that, the
new system performs correctly, thus the old and new systems are run concurrently
using the same inputs. The outputs are compared and reasons for differences
resolved. Outputs from old system continue to be distributed until the new system
has proved satisfactorily. At this point the old system is discontinued and the new

one takes its place.

Pilot Changeover is having only a small group of people over a period of time to

establish its reliability and acceptance. Upon confirmation, the remaining section of

43

the populace is introduced into the new system. In this method the test period can
either be run in parallel with the existing system or in direct changeover. This method
is the same as the piecemeal method. It has an advantage of showing earlier, all
potential implications in the new system to enable the proponent device appropriate

solutions.

4.4 Software & Hardware Requirements

For successfull implementation of GTB E-purse payment system, the following

equipments are required:

The following hardware resources need to be put in place in order to power the
application:

1. A Pentium IV processor powered Computer

2. 80GB of hard disk space to meet up the space requirement of the system.

3. Intel processors

4. A high speed internet connection

Software requirement

1. Mysql database engine.

2. Sun java system application server 9.1 (Glassfish v2)

3. mysql connectorj (for database connectivity from the java program)
4. NetBeans Integrated development environment

5. Java development toolkit

44

+ Bank Teller Terminals (BTT)

+ Point of Sales (POS) machine

+ Printers (LaserJet)

+ Uninterrupted Power Supply (UPS)
+ Stabilizer

+ Wide Area Network

Installation procedure

1. Install tomcat web application server with an administrator password admin and
user name admin.

2. Install mysql database and configure it with user name root and password admin
3. Start the tomcat web application server from the server control console

4. Open your web browser and type http://localhost to go to tomcat web server

home page. Below is the tomcat home

e Tomeat - Mazilla Frefox

< S o T i) : <l w3 »
£ Mast Visted @ Getting Staced . Latest Headlines
5| 118 Using sercliing tabs on tabbox © [0 Working with Table Layout < [T] Apache Tomeat x

Gt r

Apache Tomcat '

.y@ Wpache Software Foundation

il http://www.apache.org/ |
A s

If you're seeing this page via a web browser, it means you've setup Tomcat successfully. Congratulations!
As you may have guessad by now tis is the dafault Tomcat home page It can be found an the local filesystem at
SCATALINA_HOME/webapps/R00T/index.html

where "SCATALINA_HOME" is the root of the Tomcat instaliation directory If you're seeing this page. and vou don't think you shouid be. then vou're |
either a user who has arnived at new installaton of Tomcal or you're ar administrator who hasn't got hisiher setup guite right Pravding the latteris

NOTE: For security reasons, using the tion webapp is to users with role “admin™. The manager webapp is
restricted to users with role “manager”. Users are defned in sTATALINA HOME/conf/tomsat-usars. kel

Included with this release are a host of sample Serviats and JSPs (with associated source code), extensive documentation and an introductory
guide to developing web applications

Tomeat maifing ksts are available a1 tne Tomeat project web site

« users@tomcat.apache.org for general questions related to configunng and using Tomeat
» dev@tomcat.apache.org ‘or developers working on Tomeat

Thanks for using Tomcat!

Arana
¥, Gne gaused dewniond Z0LEID

Dltckor > caWITE Ao 615

45

5. Click the tomcat manager link to logging to the tomcat web application

manager

4.5 CashPluscard Communication Links

Designated branches for Guaranty Trust Bank card are linked up to the Head Office
Server through VSAT.

L=<y
AIDUGURI
BRANCH

SOKOTO

BRANCH

¢ B N —— YOLA
Rz BRANCH
IBADAN
BRANCH CashPlusCARD
HEAD OFFICE

FCANTDAL CCDV/ED

BRANCH

BRANCH

BRANCH

A central server at the head office with branches connected

through VSAT

4.6 Maintenance

For a smart card project to survive, a good maintenance framework must be put in

place and sustained.

46

Foremost, trained personnel must be stationed at all the sub — stations of the project
network to attend to errors on the supporting equipment.

All the supporting equipment such as encoder and decoder, servers and energy source
must be placed on routine check, to ensure that they are on standby round the clock.

A smart card project, whether loaded or unloaded must be kept save in a manner that
all financial transactional instruments are kept under lock and key. It must not be
defaced in any form otherwise, the security print within it may be altered. Balance on
a smart card must be confirmed periodically to avoid NILL balance.

Loss of smart card must be promptly reported to the issuing authority.

4.7 Training

There will be training on the use of Guaranty Trust Bank E-purse system, BTT, POS
for the Bank’s Tellers, POS for the Merchant, Mysql database engine and Sun java
system application server 9.1 (Glassfish v2) for the Guaranty Trust Bank

Administrator.

4.8 Starting up the system

When the system has been successfully installed, the system name Guaranty Trust
Bank Electronic Purse appears on the start menu when clicked upon the main menu
comes up after the logging has been successfully recognized by a user with a valid
user identification and password. Once the main menu is on, other outputs are ready

for functions.

47

Chapter 5

5.0 Summary

The worldwide growth in the popularity of smart card solutions is driven by the

ability of smart cards (e-purse) to securely store information—for payment and other

sensitive applications in a variety of environments. This security, provided by the

microprocessor chip integrated into a smart card, is opening many application

opportunities that were previously impractical or impossible to implement using

conventional magnetic-stripe cards.

Smart cards (e-purse) are platform for lucrative frequent-shopper loyalty
programs used either independently (off line) or as integrated components of a
retailer’s computer system.

Smart cards which serve as an electronic purse, acting as an electronic payment
alternative to bank notes. Automated currency solutions offer greater levels of
convenience to consumers, incremental sales opportunities and reduced operating
costs to merchants and new service revenue streams to banks.

Smart card applications reduce operating costs and control fraud in electronic
benefits programs, carrying patient information for healthcare applications and
providing a secure vehicle for delivering government benefits such as social
insurance and welfare programs.

Smart cards (e-purse) hold the promise of providing secure access to payment and
other banking services from the home and other *“virtual” environments, allowing

consumers to securely initiate payment for goods and services over the Internet

48

and enabling them to reload their stored value electronic purse cards almost

anywhere.

Smart cards (e-purse) are used in a variety of other applications that require greater
processing power and/or more secure storage. College students use smart cards (e-
purse) to pay for cafeteria and bookstore purchases and to access health, recreation
and other services; commuters use smart cards (e-purse) to pay tolls and parking fees:
and parents use smart cards (e-purse) to pay for child care.

As the number of smart cgrd (e-purse) applications grows, consumer awareness of the
convenience provided by smart card-based applications is driving the adoption of
new ways to conduct business. This familiarity increases interest and further

accelerates the expansion of opportunities to apply smart card technology.

The growth in the number and variety of smart card applications is also being
accelerated by the current flurry of activity within business and industry as banks,
credit card companies, equipment manufacturers, processors and others increase their
commitment to the use of smart cards (e-purse). This commitment is perhaps best
exemplified by the number of partnerships and industry forums devoted to the

development and promotion of smart card technology.

49

3.l CONCLUSION

In conclusion, all signs point to the rapidly expanded application of smart card
technology. Industry leaders are positioning themselves now to profit from the
application of this technology through various partnerships and alliances with
organizations that are the innovators and principal drivers in the use of smart cards (e-

purse).

50

REFERENCES

l. ALAN DANIELS & DON YEATES, (1989), Basic Systems Analysis, 3rd
edition, Singapore, ELBS.

2 FERNANDO G. GUENENO & CARLOS DUARO ROJAS, (2001), SQL
Server 2000 Programming by Example, 1*' edition, New York, Que.

3 GERALD STUBER, The Electronic Purse — An Overview of Recent
Developments and Policy Issues,

http://www.bankofcanada.ca/

4. JOHN WENNINGER & DAVID LASTER, The Electronic Purse,
http:// www.ny.frb.org/

3. http://www..com

6. http://www.cenbank.org/

o http://www.fsbint.com/

8. http://www.smartcardalliance.org/
9. http://www.smartcard.co.uk/

10. http://www.smartcardclub.co.uk/

11. http://www.valucardnigeria.com/

31

APPENDIX A

PROGRAM LISTING

32

/*

* To change this template, choose Tools | Templates
* and open the template in the editor.

P

package org.naf.account;

import java.io.Serializable;

import javax.persistence.CascadeType;
import javax.persistence.Entity;

import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

import javax.persistence.OneToOne;

/**
*
* @author aliyu
*/ g
@Entity
public class Client implements Serializable {
@OneToOne (mappedBy = "client",cascade=CascadeType.ALL)
private Purse purse;
private static final long serialVersionUID = 1L;
@Id
@GeneratedValue (strategy = GenerationType.AUTO)
private Long id;
private String surname;
private String othername;
private String title;

public Long getId() ({
return id;
}

public void setId(Long id) {
this. id = id;
}

@Override

public int hashCode() {
int hash = 0;
hash += (id != null ? id.hashCode() : 0);
return hash;

}

@Override
public boolean equals (Object object) {
// TODO: Warning - this method won't work in the case the id
fields are not set
if (! (object instanceof Client)) {
return false;
}
Client other = (Client) object;
if ((this.id == null && other.id != null) || (this.id != null &&
'this.id.equals (other.id))) {]
return false;
}
return true;

}

@Override
public String toString() {
return surname+" "+othername;

}

/**
* @return the purse
S
public Purse getPurse() {
return purse;
}

/**
* @param purse the purse to set
*
public void setPurse(Purse purse) {
this.purse = purse;

}

/**
* @return the surname
a7
public String getSurname() {
return surname;
}

/**
* @param surname the surname to set
e
public void setSurname(String surname) {
this.surname = surname;

}

/**
* @return the othername
.
public String getOthername() {
return othername;
}

2
* @param othername the othername to set
a7
public void setOthername(String othername)
this.othername = othername;
}

/**
* @return the title
L
public String getTitle() ({
return title;
}

/**
* @param title the title to set
ik
public void setTitle(String title) {

{

thig. title = title:;

/*

* To change this template, choose Tools | Templates
* and open the template in the editor.

57

package org.naf.account;

import java.io.Serializable;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

/ * *
4
* @author aliyu
g
@Entity
public class Marchant implements Serializable {
private static final long serialVersionUID = 1L;
@Id
@GeneratedvValue (strategy = GenerationType.AUTO)
private Long id;
private String name;
private String address;
private String cardAcceptorTerminalld;
private String cardAcceptorld;
public Long getId() {
return id;
)

public void setId(Long id) {
this,id = ¢d-
}

@Override

public int hashCode() {
int hash = 0;
bhash #= (id !'= null-? id.hashCode() : 0);
return hash;

}

@Override
public boolean equals (Object object) {
-// TODO: Warning - this method won't work in the case the id
fields are not set
if (! (object instanceof Marchant)) ({
return false;
3}
Marchant other = (Marchant) object; ;
if ((this.id == null && other.id != null) || (this.id != null &&
'this.id.equals (other.id))) ({
return false;
%
return true;
}

@Override
public String toString() {
return "org.naf.account.Marchant[id=" + id + "]*';

}

/**
* @return the name
ey
public String getName() ({
return name;
}

/**
* @param name the name to set
)
public void setName(String name) {
this.name = name;
}

/**
* @return the address
*h
public String getAddress() {
return address;
}

/-lr*
* @param address the address to set
o
public void setAddress(String address) {
this.address = address;

}

/**
* @return the cardAcceptorTerminallId
i
public String getCardAcceptorTerminalId() {
return cardAcceptorTerminallId;
}

/**
* @param cardAcceptorTerminalIld the cardAcceptorTerminalId to set
ok

public void setCardAcceptorTerminalId(String cardAcceptorTerminalld)

this.cardAcceptorTerminallId = cardAcceptorTerminalld;
}

/** 3
* @return the cardAcceptorId
R
public String getCardAcceptorId() {
return cardAcceptorId;
}

/**
* @param cardAcceptorId the cardAcceptorId to set
7
public void setCardAcceptorId(String cardAcceptorId) {
this.cardAcceptorId = cardAcceptorId;
i

/*

* To change this template, choose Tools | Templates
* and open the template in the editor.

i

package org.néf.account;

import java.io.Serializable;

import java.util.Date;

import javax.persistence.Entity;

import javax.persistence.GeneratedvValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

import javax.persistence.OneToOne;
import javax.persistence.Temporal;

/**
3
* @Qauthor aliyu
534
@Entity
public class Purse implements Serializable {
private static final long serialVersionUID = 1L;
@OneToOne
private Client client;
@Id
private String pin;
private String currency;
private double maxBalance;
@Temporal (value = javax.persistence.TemporalType.DATE)
private Date effectiveDate;
private boolean isPinForBalance;
private boolean isPinForCredit;
private boolean isPinForDebit;
@Temporal (value = javax.persistence.TemporalType.DATE)
private Date expiryDate;

/**
* @return the client
2
public Client getClient() {
return client; °
}

/**
* @param client the client to set
*y
public void setClient(Client client) {
this.client = elient;

}

/**
* @return the pin
47 .
public String getPin() {
return pin;
}

/**
* @param pin the pin to set

L7
public void setPin(String pin) {
this pin = pin;
}

/**
* @return the currency
Ly
public String getCurrency () ({
return currency;
}

/**
* @param currency the currency to set
Gt
public void setCurrency(String currency) ({
this.currency = currency;
}

/**
* @return the maxBalance
¥y
public double getMaxBalance() {
return maxBalance;
}

/**
* @param maxBalance the maxBalance to set
./
public void setMaxBalance (double maxBalance) {
this.maxBalance = maxBalance;
}

/**

* @return the effectiveDate

*/ A

public Date getEffectiveDate() {
return effectiveDate;

}

» /i‘*
* @param effectiveDate the effectiveDate to set
ik
public void setEffectiveDate(Date effectiveDate) {
this.effectiveDate = effectiveDate;
}

/**
* @return the isPinForBalance
B
public boolean isIsPinForBalance() ({
return isPinForBalance;
}
/**
* @param isPinForBalance the isPinForBalance to set
A

public void setIsPinForBalance(boolean isPinForBalance) {
this.isPinForBalance = isPinForBalance;
}

/**
* @return the isPinForCredit
e
public boolean isIsPinForCredit() {
return isPinForCredit;

}

/iui '
* @param isPinForCredit the isPinForCredit to set
= Y
public void setIsPinForCredit (boolean isPinForCredit) ({
this.isPinForCredit = isPinForCredit;
A

/**
* @return the isPinForDebit
%)
public boolean isIsPinForDebit() {
return isPinForDebit;
}

/**
* @param isPinForDebit the isPinForDebit to set
*/ : .
public void setIsPinForDebit (boolean isPinForDebit) {
this.isPinForDebit = isPinForDebit;
}
/**
* @return the expiryDate
A

public Date getExpiryDate() {
return expiryDate;
}

/'A"k
* @param expiryDate the expiryDate to set
g
public void setExpiryDate (Date expiryDate) ({
this.expiryDate = expiryDate;
}

/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
bl

package org.naf.account;

import java.io.Serializable;

import java.util.Date;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

import javax.persistence.ManyToOne;
import javax.persistence.Temporal;
import org.naf.auth.User;

/**
*
* @author aliyu
xf
@Entity
public class Tx implements Serializable {

private static final long serialVersionUID = 1L;
@Id
@GeneratedValue(strategy = GenerationType.AUTO)
private Long id;
@Temporal (value = javax.persistence.TemporalType.DATE)
private Date txDate;
private double amount;
private String cardnumber;
private String type;
public Long getId() {
return id;
}

public void setId(Long id) ({
ehig id=id.
}

@Override

public int hashCode() {
inet hash =0
hash += (id !'= null ? id.hashCode() : 0);
return hash;

}

@Override
public boolean equals(Object object) {
// TODO: Warning - this method won't work in the case the id
fields are not set ;
if (! (object instanceof Tx)) {
: return false;
}

Tx other = (Tx) object;
Bl (fEhd s ddi=="mull s Yother fad 0= nuld) || (ehisiid t= null, &&
'this.id.equals(other.id))) {

return false;

}
return true;

}

@Override
public String toString() {
return "org.naf.account.Transaction[id=" + id + "]";

}

/**
* @return the txDate
=
public Date getTxDate() {
return txDate;
}
/**
* @param txDate the txDate to set
*/ {

public void setTxDate(Date txDate) {
this.txDate = txDate;
)

/**
* @return the amount
o
public double getAmount () {
return amount;
}
/**
* @param amount the amount to set
ol

public void setAmount (double amount) {
this.amount = amount;

)

/**
* @return the cardnumber
7
public String getCardnumber () {
return cardnumber;
}

/**
* @param cardnumber the cardnumber to set
Lty
public void setCardnumber (String cardnumber) {
this.cardnumber = cardnumber;
}
/**
* @return the type
*/ -

public String getType() {
return. type;
}

/*-k

* @param type the type to set

*/ -

public void setType(String type) {

this.type = type:;

/*

* To change this template, choose Tools | Templates
* and open the template in the editor.

e

package org.naf.auth;

import java.io.Serializable;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

/*‘*
*

* @author aliyu
s
@Entity
public class Department implements Serializable {
private static final long serialVersionUID = 1L;
@Id '
@Generatedvalue (strategy = GenerationType.AUTO)
private Long id;
private String title;
public Long getId() {
return id;
}

public void setId(Long id) ({
thisad = 3d:
}

@Override

public int hashCode() {
int‘hash = 0:
hash += (id 1= null ? id.hashCode{) : 0);
return hash;

}

@Override
public boolean equals (Object object) {
// TODO: Warning - this method won't work in the case the id
fields are not set
if (! (object instanceof Department)) {
return false;

}
Department other = (Department) object;
if ((this.id == null && other.id != null) || (this.id != null &&

'this.id.equals (other.id))) ({
return false;
} d
return true;
i

@Override
public String teStringl): {
return "org.naf.auth.Department[id=" + id + "]";

}

public String getTitle() {

return title;
}

public void setTitle(String title) {
this . title = title;
}

/*

* To change this template, choose Tools | Templates
* and open the template in the editor.

*7

package org.naf.auth;

import
import
import
import
import
import
import
import
import
import
import
import

/**

*

java.io.Serializable;
java.util.ArrayList;

java.util.List;

javax.persistence.
javax.persistence.
javax.persistence.
javax.persistence.
javax.persistence.
javax.persistence.
javax.persistence.
javax.persistence.

CascadeType;
Entity;
FetchType;
Generatedvalue;
GenerationType;
Tcl;

ManyToMany ;
ManyToOne;

org.naf.util.UserStatus;

* @author aliyu

i

@Entity (name="Users")

public class User implements Serializable {
private static final long serialVersionUID = 1L;
@Id
@GeneratedValue (strategy = GenerationType.AUTO)
private Long id;
private String userName;
private String password;
private String firstName;
private String lastName;
private UserStatus status;
public Long getId() {

}

return id;

public void setId(Long id) ({

}

this.id = id;

@override
public int hashCode()

}

int hash =-0;

{

hash += (id != null ? id.hashCode() : 0);

return hash;

@Override
public boolean equals (Object object) {
// TODO: Warning - this method won't work in the case the id

fields

are not set

if (! (object instanceof User)) {

return false;

}

User other = (User) object;
if ((this.id == null && other.id != null) ||
'this.id.equals (other.id))) {

({6 o e W

te= nudd

&&

return false;
}
return true;

}

@Override
public String toString() {
return "org.naf.auth.User([id=" + id + "]";

}

public String getUserName () {
return userName;
}

public void setUserName (String userName) {
this.userName = userName;
}

public String getPassword() {
return password;
}

public void setPassword(String password) {
this.password = password;
}

public String getFirstName() {
return firstName;
i

public void setFirstName (String firstName) ({
this.firstName = firstName;

}

public String getLastName() {
return lastName;
}

public void setLastName (String lastName) {
this.lastName = lastName;

}

/**
* @return the status
*/
public UserStatus getStatus() {
return status;
}

/**
* @param status the status to set
*/
public void setStatus(UserStatus status) {
this.status = status;
}

/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
et

package org.naf.controllers;

import java.util.logging.Level;

import java.util.logging.Logger;

import org.naf.auth.User;

import org.naf.dao.facade.LoginService;

import org.naf.dao.facade.UserJpaController;

import org.naf.dao.facade.exceptions.NonexistentEntityException;
import org.naf.dao.interfaces.LoginManager;

import org.naf.exception.NafException;

import org.naf.util.PasswordManager;

import org.zkoss.zk.ui.Component;

import org.zkoss.zk.ui.event.Event;

import org.zkoss.zk.ui.event.EventListener;

import org.zkoss.zk.ui.util.GenericForwardComposer;
import org.zkoss.zul.Button;

import org.zkoss.zul.Include;

import org.zkoss.zul.Messagebox;

import org.zkoss.zul.Textbox;

import org.zkoss.zul.Window;

/**
*
* @author aliyu
xy
public class AppView extends GenericForwardComposer {
private Window mainUI;
private Window passUI;
private User user;

public void onCreateSappView(Event evt) {

mainUI = (Window) evt.getTarget();
showLogin () ;
}

£
1/ public void doAfterCompose (Component comp) throws Exception ({
Ir mainUI = (Window) comp;
T mainUI.addEventListener ("onLoginRequest", new EventListener()
{
//
£ public void onEvent (Event event) throws Exception ({
// doLogin() ;
// }
s 308
// mainUI.addEventListener ("onLogoutRequest", new EventListener ()
{
L
// public void onEvent (Event event) throws Exception ({
i doLogout () ;
74 }
//)
// mainUI.addEventListener ("onPasswordChangeRequest", new
EventListener () {
£/

s public void onEvent (Event event) throws Exception ({

i/ intPasswordChange () ;

// }

// Y

/i showSplashScreen() ;
fd }

private void doLogout () {
try {
int response = Messagebox.show("Are you sure You want to
logout", "Confirm Logout", Messagebox.YES | Messagebox.NO,
Messagebox.INFORMATION) ;
if (response == Messagebox.NO) {
return;
}
mainUI.getDesktop () .getSession() .invalidate() ;
mainUI.getDesktop () .getExecution() .sendRedirect ("/");
} catch (InterruptedException ex) {
Logger .getLogger (AppView.class.getName()) .log(Level.SEVERE,
null, ex);
}
}

private void doLogin() {
try {
Textbox username (Textbox) passUI.getFellow("userid");
Textbox password (Textbox) passUI.getFellow("pass");
LoginManager loginService = new LoginService() ;
user = loginService.loginUser (username.getValue(),
password.getValue()) ;

mainUI.getDesktop() .getSession() .setAttribute("user", user);
passUI.detach() ;

Inn

return;
} catch (NafException ex) ({
try {
Logger .getLogger (AppView.class.getName()) .log
(Level.SEVERE, null, ex);
Messagebox.show(ex.getMessage(), "login error",
Messagebox.0K, Messagebox.ERROR) ;
return;
} catch (InterruptedException exl) {
Logger .getLogger (AppView.class.getName()) .log
(Level.SEVERE, null, exl);
return;

}
}

private void showLogin() {

passUI = (Window) mainUI.getDesktop () .getExecution
() .createComponents ("pages/fragments/login.zul", null, null);
Button btn = (Button) passUI.getFellow("loginbtn") ;

btn.addEventListener ("onClick", new EventListener() {

public void onEvent (Event event) throws Exception {
loginUser() ;
}
1)
passUI.doHighlighted() ;

private void loginUser() {
doLogin() ;

}

private void showSplashScreen() ({
Include ic = (Include) mainUI.getFellow("nextframe") ;

ic.setSrc(null) ;
ic.setSrc("splash.zul");

}

private void showUserMenu (User user) {
}

private void show(String url) {
Include ic = (Include) mainUI.getFellow("nextframe") ;

ic.setSrc(null);
ic.setSrc("pages/" + url + ".zul");
//Messagebox.show("ok... " + id);

}

private void intPasswordChange() {

passUI = (Window) mainUI.getDesktop () .getExecution
() .createComponents ("WEB-INF/password.zul", null, null);
Button btn = (Button) passUI.getFellow("passbtn");

btn.addEventListener ("onClick", new EventListener() ({

public void onEvent (Event event) throws Exception {
changePassword () ;
}

}):
passUI.doHighlighted() ;

}

private void changePassword() {

1Y user=(User) ntiUI.getDesktop().getSession().getAttribute
("user") ;
Textbox oldpass = (Textbox) passUI.getFellow("oldpass") ;
Textbox npass = (Textbox) passUI.getFellow("npass") ;
Textbox cpass = (Textbox) passUI.getFellow("cpass");
if (cpass.getValue().equalsIgnoreCase (npass.getValue())) {
PasswordManager pm = new PasswordManager () ;
if (pm.isPasswordvalid(oldpass.getValue(), user.getPassword
) |
try {

user.setPassword (pm.encryptPassword (npass.getValue

()));
UserdpaController facade = new UserdpaController();

facade.edit (user) ;
Messagebox.show("your password change

successfully..", "password change", Messagebox.OK, Messagebox.ERROR) ;
passUI.detach() ;
return;
} catch (NonexistentEntityException ex) {
Logger.getLogger (AppView.class.getName()) .log

(Level.SEVERE, null, ex);
} catch (Exception ex) {
Logger.getLogger (AppView.class.getName()) .log

(Level.SEVERE, null, ex);

}
} else {
try {
Messagebox.show ("your old password does not match
the supplied old password try again..", "old password mismatch error",

Messagebox.0K, Messagebox.ERROR) ;
return;
} catch (InterruptedException ex) {
Logger.getLogger (AppView.class.getName()) .log

(Level.SEVERE, null, ex);
return;
}

}
} else {

try {
Messagebox.show("you new password is not same as the

confirm password...", "password mismatch error", Messagebox.OK,

Messagebox.ERROR) ;
return;
} catch (InterruptedException ex) {
Logger .getLogger (AppView.class.getName()) .log

(Level.SEVERE, null, ex);
return;

}

/*

* To change this template, choose Tools | Templates
* and open the template in the editor.

®y

package org.naf.controllers;

import java.util.ArrayList;

import java.util.List;

import java.util.logging.Level;

import java.util.logging.Logger;

import org.naf.account.Client;

import org.naf.account.Purse;

import org.naf.dao.facade.ClientFacade;
import org.naf.dao.interfaces.ClientManager;
import org.naf.renderers.ClientRenderer;
import org.naf.util.PinGenerator;

import org.zkoss.zk.ui.event.Event;

import org.zkoss.zk.ui.event.EventListener;
import org.zkoss.zk.ui.util.GenericForwardComposer;
import org.zkoss.zul.Button;

import org.zkoss.zul.Checkbox;

import org.zkoss.zul.Datebox;

import org.zkoss.zul.Doublebox;

import org.zkoss.zul.ListModel;

import org.zkoss.zul.ListModelList;

import org.zkoss.zul.Listbox;

import org.zkoss.zul.Listitem;

import org.zkoss.zul.ListitemRenderer;
import org.zkoss.zul.Messagebox;

import org.zkoss.zul.Textbox;

import org.zkoss.zul.Window;

/**
w*
* @author aliyu
®
public class ClientsUI extends GenericForwardComposer {
private Window clientsUTI;
private Window clientUI;
private List<Client> clients=new ArrayList();

public void onCreate$clientsUI (Event evt) {
clientsUI=(Window) evt.getTarget();
fillClientList();
}
public void onClick$clientBTN (Event evt) {
showClientForm() ;
}
public void onClickS$SclientDeleteBTN (Event evt) {
Listbox list=(Listbox) clientsUI.getFellow("clientlist");
Listitem item=list.getSelectedItem() ;
if (item!=null) {
Client client=(Client) item.getValue();
ClientManager facade=new ClientFacade() ;
facade.deleteClient (client) ;
fillClientList();
}
}
private void deleteClient () {

Listbox list = (Listbox) clientsUI.getFellow("clientlist");
Listitem item = list.getSelectedItem() ;
if (item != null) {
Client s = (Client) item.getValue() ;
ClientManager facade = new ClientFacade() ;
clients.remove(s) ;
facade.deleteClient (s) ;
refreshClientList () ;
} else {
try {
Messagebox.show("Please select supplier to delete..",
"supplier error", Messagebox.OK, Messagebox.ERROR) ;
} catch (InterruptedException ex) {
Logger.getLogger (ClientUI.class.getName()) .log
(Level.SEVERE, null, ex);
}
}

private void fillClientList() ({
ClientManager facade = new ClientFacade() ;
clients = facade.getClients();
refreshClientList () ;

}

private void refreshClientList () ({
Listbox list = (Listbox) clientsUI.getFellow("clientlist");
ListModel model = new ListModelList (clients) ;
ListitemRenderer rnd = new ClientRenderer () ;
list.setModel (model) ;
list.setItemRenderer (rnd) ;

}
private void addClient () {
try {

Textbox title = (Textbox) clientUI.getFellow("title");

Textbox name = (Textbox) clientUI.getFellow("surname") ;

Textbox othername = (Textbox) clientUI.getFellow
("othername") ;

Textbox cardnumber = (Textbox) clientUI.getFellow
("cardnumber") ;

Datebox edate = (Datebox) clientUI.getFellow
("effectivedate") ;

Datebox exdate = (Datebox) clientUI.getFellow("expirydate");

Doublebox balance = (Doublebox) clientUI.getFellow
("balance") ;

Textbox currency = (Textbox) clientUI.getFellow("currency");

Checkbox pinbalance = (Checkbox) clientUI.getFellow
("pinbalance") ;

Checkbox pindebit = (Checkbox) clientUI.getFellow
("pindebit") ;

Checkbox pincredit = (Checkbox) clientUI.getFellow
("pincredit") ;

Purse p = new Purse():;

.setCurrency (currency.getValue()) ;
.setEffectiveDate (edate.getValue()) ;
.setExpiryDate (exdate.getValue()) ;
.setMaxBalance (balance.getValue()) ;
.setIsPinForBalance (pinbalance.isChecked()) ;
.setIsPinForCredit (pincredit.isChecked()) ;

Lol o Roikio B oo

.setIsPinForDebit (pindebit.isChecked()) ;
Client c = new Client();

'c.setOthername (othername.getValue()) ;
c.setSurname (name.getValue()) ;
.setTitle(title.getValue());
.setPurse(p) ;

.setClient(c);
.setPin(cardnumber.getValue()) ;
ClientManager cm = new ClientFacade() ;

c = cm.addClient (c);

fillClientList();
: Messagebox.show ("Customer registered successfully customer
'is : " + p.getPin(), "Customer registration", Messagebox.OK,

ox . INFORMATTON) ;

clientUI.detach();
} catch (InterruptedException ex) ({

Logger.getLogger (ClientUI.class.getName()) .log(Level.SEVERE,
X) ;

private void showClientForm() {

if(clientUI!=null) {

clientUI.detach() ;

}

clientUI=(Window) clientsUI.getDesktop () .getExecution
() .createComponents ("pages/fragments/client.zul",null,null);
Button btn=(Button) clientUI.getFellow("nclientBTN") ;
btn.addEventListener ("onClick",new EventListener() {

public void onEvent (Event event) throws Exception ({
addClient () ;
}

}):
Textbox cardid=(Textbox) clientUI.getFellow("cardnumber") ;

PinGenerator pg=new PinGenerator();
cardid.setValue(pg.getUniquePIN()) ;
cardid.setDisabled(true) ;
clientUI.setPosition("center");
clientUI.doOverlapped() ;

