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ABSTRACT

This thesis discussed the Numerical Solution of Boundary
value problems for Ordinary differential equations oczuring
in many branches of mathematics and engineering.

The notion and nature of Bounding-value problems constitute
the introductory chapter. The finite-~-difference method,
Galerkin and Collocation methods of solving boundary value
problems are discussed under the Numerical methods, chapter
three contains a prcgram written in Pascal language for
solving a boundary value problem using a finite difference
scheme. Various Errors arising in the methods discussed are

considered in the last chapter with comparison of results.
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CHAPTER ONE

INTRODUCTION

1.1 NOTION OF BOUNDARY~VALUE PROBLEM

Boundary value problem for ordinary differential equation 1is
a differential equation which is associated with the condi-
tions specified at the and points of an interval and its
solution over the interval is to be determined such that the
end conditions are satisfied.

The name boundary value problem derives from the fact that
the points x = a and x = b at which conditions on the de-
pendent variable are specified usually coincide with some
physical boundaries in the problem. For example, in the
elementary theory of the strength of material, a simply
supported beam of length L is a flexible beam supported at
each end in such a way that the points of support are on the
same horizontal level as shown in (FIG 1). It is shown that
if the beam is homogeneous with mass (M) per unit length, the
moment of inertia of its cross-sectional is I, and Young's
Modulus for the material is E, then provided the deflection Y

is small, it satisfies the differential equation.
d2y/dxz = M/2EI (x2? - Lx) (1.0)
The determination of the deflection Y is a two point boundary

value problem (b.v.p) for the equation (1.0) because y must

satisfy the two boundary conditions



y(2) = 0 and y(L) = 0 (r.1)
These conditiors require the end points to experience no
deflection, as the beam is rigidly supported at its ends.

The boundary value problems occur in many branches of mathe-
matics and Engineering. In practice, in most cases we fail to
find the exact solution of these problems. This happens
mainly not because we do not know the way in which the exact
solution is found but usually owing to the fact that the
desired solution is not expressible in elementary or other
function usually known to us. So that recourse has to be
made to Numerical approach. Therefore numerical methods
aszume ever greater importance, especially in connection with
the increasing role of mathematical methods in various
fields of Science and Technology and owing to the advent of
highly efficient electronic computers.

By numerical methods, we mean the methods of solving problems
which are reduced to arithmetic and certain logical opera-
tiong on numbers, that is to the operations usually performed

by computers.

1.2 NATURE OF BOUNDARY VALUE PROBLEM
We use the example of a second-order differential equation
F(x,y,y',¥y") = 0 (1.2)
to discuss the solution of the Dboundary-value problem for
ordinary differential equations.
The simplest two-point boundary value problem for (1.2) is

[roed es f-1llows: We have to find the function y= y(x) which



satisfi~c _yuation (1.2) within the interval [a,b]l and the

bounu.. ., Zitions
ayy(a) + ayy'(a) = A
Boy(b) + Byy'(b) = B (1.3)

Let us consider some kinds of two-point boundary value prob-
lem (1.2)
Assume for instance that we are given a second-order differ-

ential equation

y" = £(x,y,y") (1.4)
With the boundary ccnditicen y(a) = A, y(b) = B (a < b) ie
the values of the required function y = y(x) at the boundary

points %= a and x = b are known. Then in terms of geometry,
the solution cf cquation (1.4) is an integral curve y = y(X)
which passes through the given points M(a,A) and N(b,B) as
shown in FIG 2

Assume that for equation (1.4) we are given the values of the
derivatves of the required function at boundary points, ie
y'(a) = Ay y' (k) = By. Then in terms of geometry,

the solution cf equation (1.4) means that we have to find an
integral curve y = y(x) of this equation which would cut
through the straight lines ¥ = a and x = b at the angles o =
arctan A and $ = arctan B, respectively, as shcwn ir FIG 3.
Assume, finally that for equation (1.4), we Kknow the value of
the required function y(a) = A at orie boundary point and the
value of the derivative of this function y'(b) = B; at
other the point. A boundary - value problem of this kind is

nown as the third (wired) boundary - value problem.



In terms of geometry, the soluticn of equation (1.4) means
that we have <o f.nd an integral curve y = y(x) of this
equation whicl would pass through the point M(a,A) and cut

the straight line x = b at angle B = arctan B, as shcwn in

FIG 4.
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CHAPTER TWO

NUMERICAL METHODS OF SOLVING BOUNDARY-VALUE PROBLEMS

2.1. THE FINITE DIFFERENCE METHOD

2.1.1. BASIC CONCEPT.

We assume that we have a linear differential equation of
order greater than one, with conditions specified at the end
(boundary) points of an interval [a,b]. We divide the inter-
val (a,b] into N equal parts of width N. We set x, = a, xy =
b and x; = x5 + ih (i =1, 2,..., N-1).

Altogether forming a system of equally spaced points with

spacing

We define x; = x_ + ih (i =1, 2,..

i o ., N-1) as the interior

mesh points. The corresponding values of y at these mesh
points are denoted by Y; = Y(xg + ih) (i = 0,1..., N).

We shall sometimes have to deal with points outside the
interval [a,b]. These will be called the exterior mesh
points, those to the left of X, being denoted by X_q9 = X4 -
h, x_, = x5 - 2h, etc, and those to the right of xy being
denoted by Xyiq = Xjy41 T Dy Xyt = Xygyop o ete.

The corresponding values of y at the exterior mesh points are

denoted in obvious way as Y_,, Y_,, Yy . ;, Yy 4 5 etc.

To solve a boundary-value problem by the method of finite



differences, every derivative appearing in the equation, as
well as in the boundary conditions, 1is replaced by an appro-
priate difference approximations. Central difference approxi-
mations are usually preferred because they lead to greater

accuracy.

2.1.2. PFINITE~-DIFFERENCE APPROXIMATIONS.
Analytically if y = f(x), the first derivation of y is de-

fined by:

dy/dx = lim v/ X

I
h
[
b
T
th
x

As shown in FIG 5 higher-order derivation are similarly
defined.

In the method of finite differences x does not approach
zero but is given a finite value h. The derivations of y at x
= x; are approximated by formulae which use values of y at
points spaced at distance h apart. With reference to FIG 6,

the first derivative can be represented in one of the three

ways.
1. Using forward differences.
(dy) = Yiv+r ~ Y3
(dx) 5 -—; --------------
2. Using central differences,
(dy) ~ Yit1 7 Yi-a
(dx) ;1 -_——gg —————————————



3. J3ing backward differences,

(dy) X Yy T Yi-1

(dx) h

The second derivative of y can also be represented in one of

the three ways.

1. Using forward differences, by

(@2y/dx®); ® yj ~2Yi.q *Yip

2. Using central differences, by

(@2y/dx®); & yy_3-2y5 +yia

3. Using backward difference, by

(d?2y/dx®)y = Yi_o ~ 2Y5.-1 t Yi

The third derivatives are approximated by.

1. Using forward differences,
ABv/ax3d). ~ - v. + 3 _
(Ay/ax7)y = Yi ¥ 3Yi41 7 3¥i4o Vi3
h3
2. Using central differences,

3 3 o - -
(d7y/ax"); = = ¥Yi.p * 2¥j1 7 2Yi41 t Yiso

2h?
3. Using backward differences,
23 3 ~ .
(67y/dx"); B - ¥j3 Y 3Yj_p " Wi t Yy
h3
Higher-order deriviat:ons can be similarly defined. 1In each case of



finite-differencerepresentationij;anO(hZ)approximationsto the resj

tive derivative.



FIG 5 . INFINITESIMAL DIFFERENCES
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2.1.3. STATEMENT OF PROBLEMS

For illustration,we consider the linear second-order.differ-
ential equation.

y"(x) + £(x) y'+g(x)y = qa(x) (2.0)

Under the boundary conditions.

Y (%) a (2.1.)

Y (x =B (2.2).

n)

The finite-difference approximation to equation (2.0) is

Yi- ~2Y{ tYi41 F E(Xp) (Vigq — Yi-1) * 9(x5)y; = d(%3)

h2 2h2
Setting f(x;) = £y, 9(x;) = g; and g(x; = g
(1=1212, , n - 1)
We have

Collecting liked terms, we have
(1 -h/2f;)y;_q1 + (- 2 + h2g;)y; + (1+h/2f;)y; 47 = h2qg;

(i =1,2,...N - 1). (2.3)

Since y, and y, are specified by the conditions (2.1)

and (2.2), Hence (2.3) is a linear system of N - 1 equations in N
unknowns.
Writing out equation (2.3) and replacing y, by o and v, by B,

11



the system takes the form.

(-2 + h2gqy)y; + (1+ h/2f)y, = hzqy - (1—h/2fl)a.

(1 - h/2f,)y, + (=2 + h2g,)y, + (1+h/2f;)y; = h*q,.

(1 - h/2f4)y, +(~2+h?g;)y; + (1+h/2f3)y, = h2q; (2.4)

(1-h/2fg_,)yy_3 *+ (-2+h%gy_ 2)yyn-, + (2+h/2f, —,)yy -, = hiay -5-
(1-h/2fy_1)Yyoo + (-2+h2gy_q)yy_q = h?dy_y - (L+h/2fy ;)B.

The coefficients in (2.4) can, of course be computed, since f(x), g(x) an
g(x) are known functions. This linear system may be written in the
Ay = Db (2.5)

Where A 1is the N-1 Tridiagonal matrix of coefficients
Y = [Y9/Yoreeer¥Yn=-1]1T/ representing the vector of unknowns, b
representing the vector of known guantities. The matrix A has

a special from.

o] c 0
1 1
a, d2 C, }

The system Ay = b can be solved easily by Gauss elimination
method.

Furthermore if the boundary condition (2.1) is of the form ie
at the point x = x

o

12



y'(xg) + TY(Xg) = 0 (2.6)
o that darivatives are involved, we must make an approxima-

tion to (2.6) using Central differences ie we replace (2.6)

Which on rearrangement yields

Yi - Y9 * 2hty, = 0 (2.7)

Since we have introduced an exterior point y_, we must now
consider Yo as well as yq,¥5,++--- YN-1 @s unknowns. We now
have N unknowns so we must have N equations for the solution
of the linear system. We can obtain additional equation by
taking 1 = 0 in (2.3). If we then eliminate y_, using (2.7)
ie y_q, = vyq *+ 2h1y,

We will have for the first two equations

[2h7(1 - h/2f_) + (-2 + h2gy )] y, + 2y, = h2q, i = 0.

(L - h/2f4)y, + (-2 + h2g;)yq + (1+h/2f )y, = h2q4 i=1.

The remaining equations will be the same as those appearing
in (2.4). The system is still tridiagonal but now of order N.
It can alsc be solved using the same Gauss elimination meth-

od.

Example 1.
Using the method of finite-difference, let us find
the solution of the boundary-value problem.

xy" + x2y' =1 (2.8)

y(1) = 0, y{1i.4) = %51n2(1.4) = 0.0566

13



Solution.
We firstly replace equation (2.8) by corresponding difference

approximations.

Xj (Yigr — 2Y5 * Yi—g X3 (Yi41 ~ Yi-1)

Collecting the like terms we've

(2x4-hx;2)yi_9 - (4%5)y; + (2% + hx2)y 44

= 2h2
We divide the interval [1,1.4] into parts with a step h =
0.1, then we get five nodal points with abscissa x; = x4, + ih
hence Xg =1, x4, = 1.1, %, = 1.2, x5 = 1.3, x, = 1.4,
Writing equation (2.10) for each of the interior points x; (i=1,2,3,) v
get.
For i = 1
(2x1 - hxlz)yl_1 - (4xl)y1 + (2% + hxlz)y1+l = 2h?2
= (2.08y, - 4.40y, + 2.32y, = 0.02
For i = 2
(2%, “hx,2)y,1 = (4%5)y, + (2%, + hx,2)y,4q = 2h2.
= 2.26y; - 4.80y, + 2.54 y, = 0.02
for i = 3.
(2x5 - hx3%)y5_q1 — (4%3)y5 + (2%3 + hx;2)ys.q = 2h2.

= 2.43y, - 5.20y, + 277y, = 0.02.

14



Altogether we h.ve the system.

2.08y, - 4.40y; + 2.32y, = 0.0

X9

0.02

il

2.26y4 - 4.80y, + 2.54y3
2.43y, - 5.20y4 + 2.77y, = 0.02

From the boundary conditions y, = 0 and y, = 0.0566
we have

-4.40y, + 2.32y, = 0.02

2.26y1 - 4.80y2 + 2.54y3 = 0.02

2.43 y, - 5.20 y5 = - 0.137

Solving this system by Gauss elimination method we

-4.40 2.32 0 Y 0.02
2.26 -4.80 2.54 yo| = 0.02
0 2.43 ~5.20 Yy 0.02

-4.40 2.32 0 0.02
2.26  -4.80 2.45 0.02
0 2.43 -5. 20 -0.137

Multiplying the first row by 0.5136363 and adding to the
second row to eliminate Yy, from the second to the third

equation we get.

|-4.40 2.32 0 | 0.02 |
| 0 -3.61 2.54 -0.03 |
| o 2.43 -5.20 - 0.137]

15



Finally m.tiplyi. - the secorw —ow by 0.6731301 and adding to

the tui T v w ¢ ellmina*z y, -rwm the third eguation we get

|-4.40 2.32 c { 9.02 |
| 0. -3.61 2.54 0.03 |
| o. 0 -3.49 -0.117]

Using back substitution, we get

ys3 = 0.034
Yy, = 0.016
y; = 0.004

Example 2

Let us solve by finite - difference method the boundary value

problen
dzy
-+ y = 0 y(O) = 0, y(l) = 1 (2.1.1)
ax?

Solution

Replacing (2.1.2) by its equivalent finite difference approx
imations we have

__________________ + y; =0 (2.1.3

we now divide the interval [0,1] into parts with a Step
h = 0.25. Then we get four nodal points with abscissa
Xg = 0, X = 0.25, Xy = 0.50, Xq = 0.75, Xy = 1.
Siwplifying equation (2.1.2) we have

Yi-1 = 2Yj * ¥juq t hPy; =0

= yi“l + (“2+h2)yi + yi+1 = 0 (2.1.4)

156



(i =1,2,3,)
Writing out the equation (2.1.4) for each of the mesh
points (i = 1,2,3,) we have
Yo - 1.9375y; + y, = 0
y, - 1.9375y, + y; =0
Yy, - 1.9395y; + y, =0
From the boundary conditions Yo = 0 and Y, = 1 we get the

system

17



- 1.9375y, + y, =0
Yq - 1.9375y, + y53 = 0
Yy, = 1.9375y5 = -1

Solving the resulting system by Gauss elimination

r -1.9375 1 0 1 r Y11 r o014

I 1 -1.9375 Iy, | =1 0]

L o 1 - 1.9375 4 Ly, Lo
r 1.9375 1 o | 0 1
= | 1. -1.9375 1 | o |
L o. 1 -1.9375] -1 4

Multiplying the first row by 0.516129 and Subtracting the

Second row from it, to eliminate y, from the second equations

we get
r-1.9375 1 0 | 04
| 0 - 1.4214 -1 | o |
Lo 0 -1.9375 | -1

Again multiplying the second row by 0.7035317 and subtracting

the third row from it we get

r -1.9375 1 0 | 0 -
| 0 1.4214 -1 | o |
Lo 0 1.2340}| 1 4

Using back substitution, we get

y; = 0.8104
y, = 0.5701
y, = 0.2942

18



Example 3

Using finite difference method, let us find the boundary -

value problem

y" - xy' £+ 2y =x + 1 (2.1.5)
y(0.9) - 0.5y'(0.9) = 2 (2.1.6)
y(i1.2) =1

Solution

We divided the interval (0.9, 1.2] into parts with a step h =
0.1 to get the nodal points with abscissa x; = 0.9, x; =

1.0, x5, =1.1, %5 = 1.2

Using the boundary conditions (2.1.6) we set up a finite
difference equations at the end points to replace the deriva-

tive we have,

Yo = 0.5(yy - ¥Y_3) = 2 (2.1.7)

|
o
N
v
(0]
|
o
w0
<
[t
+
(@)
w
~
-
I
o

.4 (2.1.8)

y_q = 0.8 - 0.4y, + y, (2.1.9)

At X = 0.9 the approximation to (2.1.5) is

Y1 - 2Y0 t Y1 - 0°9(Y1 - Y_l) + ZYO = 1.90

"""""""""""""""""" (2.2.0)
(0.1)2 0.2

= 0.2(yy - 2 Yy + Y_q) - 0.009(y;- y_;) + 0.004y_

1
o
o
o
w
0

Simplifying and collecting the like terms we get
0.181y; - 0.396y, + 0.209y._; = 0.0038 (2.2.1)
Substituting for y_; in (2.2.1) using (2.1.9) we obtain
0.4y; = 0.4796y, = -0.1634

= 1.20y0 - Yy = 0.409 (2.2.2)

19



The finite difference approximation t» (2.1.5) is

= 2yj41 — 4Y§ t 2y5oq - hxyyy.q + hxg vy + 4htyy

I

2h? (x; + 1)

Collecting the like terms and taking into account that h =

0.1 we have

(2+hXi)yi_l - 4(1—h2)yi + (Z-hXi) Yiy1 = 2h? (Xl + 1)

= (2 + 0.1x3)yj_q - 4(1-0.01)y; + (2-0.1%3)yj,q = 0.02(x;+1)

(2.2.3)

Writing (2.2.3) for each of the mesh points (i = 1,2)
2.1 y, - 3.96y; + 1.9y, = 0.04

2.11y, - 3.96 y, + 1.89 y; = 0.042

This problem with the boundary conditions reduce to
solution of the system of equations

1.20y, - y; = 0.409

2.1 yg - 3.96y; + 1.9y, = 0.04

2.11 y; - 3.96 y, + 1.89 y; = 0.042

==> 2.11 y; - 3.92y, = - 1.848

From yg3 =1

Solving this system by Gauss elimination method

r 1.20 -1 0 ; 0.409 A
| 2.1 ~-3.96 1.9 | 0.04 |
Lo 2.1 -3.96 | -1.848

Multiplying the first row by 2.1/1.20 and subtracting

second row from it we have

20
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r 1.20 -1 0 | 0.409 4
| © 2.21 -1.9 | 6.676 |
Lo 2.1% -3.96 | -1.848 A

Multiplying the second row by 2.11 and subtracting the third

row from it we get

r 1.20 -1 0 | 0.409 4
| o 2.21 -1.9 | 0.676 |
Lo 0 2.15 | 2.493 4

Using back Substitution we get

y, = 1.160
y, = 1.303
Yo = 1.426

2.2 THE PASSAGE METHOD

We observed that the accuracy of the finite difference method

can be considerably increase if the mesh length chosen for the interval c
the Boundary - value problem becomes smaller. However, the system of 1in
equations obtained becomes large and the solution of this system of equa-
tions becomes rather cumbersome. We introduced a simple method develope

specially for solving such kind of system called The passage method

2.2.1 Basic Concept

Let us consider a linear boundary - value problem

Y+ P(x)y' + d(x)y = f(x) (2.20)

aoy(a) + g y'(a) = A

21



Boy(b) + Bl y'(a) = B (2.2.1)

Replacing (2.20) and 2.21) by their Central finite - differ-

ence relations

Simplifying and collecting the like terms we get
= (2 + hPl)yl+1 + (2qlh2 - 4)yl + (Z—hpi)yi_l = 2h2fi

Dividing through by (2+hP;)

= (2q;h2-4)yy (2-hP;y) {4
Yi+1 T oo—mmmmm—— mmmm e
2+hPi 2+hPl
= 2h2fi
————————— = (2.2.2)
2 + hPl
(L = 1,2. n-1)

The boundary conditions are given by

@o¥o *1¥17Yg

—————————— = B (2.2.3)

We write first n-1 equations of system (2.2.2) in the form

Yiep ¥ MiYy T KyYyoy = 2hF/240Py = @y

where my

ki

(29{ h2z - 4)/(2+hPy

(2-hP;)/(2+hPy) (2.2.4)
We then reduce these equations to the recurrence form
Yy = Ci(d) - ¥Yisq) (i = 1,2, «ccoo.. , n-1) (2.2.5)

where the coetfficients C;, d; are computed by the following

1

22



d1 = 2f1h2 Kq Ah KlAh

—————— + -———— - ¢1 + - —————

2+ hPl g - aoh aq aoh

(2.2.6)

for i = 2, n,
The recurrence formula below can be used
i = ¥/my -k Gy
di = Zfih2/2+hpi - kici_ldi_l = ¢i - kici—l - di—l (2.2.7)
These computations are carried out in the following
succession

Direct procedure: We find m;, k; by formulae (2.2.4)

i.e My = 2q;h?2-4/2-hp;,

ki = z-hpi/2+hpi
We compute Cl' d1 from (2.2.6) and then using recurrence

formulae (2.7), we successively find C;, d;

i (i= 2,...,n).

Reverse procedure: We write down equation (2.2.5) for i = n,
i = n-1 and the last equation of (2.2.3)

Yn = Cn (dy = Yp41) (2.2.8)

Yn+1 = Cn (dpy Y

Bo¥Yn * B1¥p4a f Yn-1

________________________ (2.2.9)



Using the knowing number C,, d,, Cp_q, We find yp
The value of y; (i= n-1, ... 1) are obtained from the reoc-

currence formila (2.2.5), Yg being computed from the equation

¥ * 23 Y3 Yo
_____ = A
h
g = @1y — Ah
o =  mmmEme—--
@y - ash

2.2.1 statement of preoblem

Example 4.

Using the passage method let us find the approximate solution
of the boundary -value problem

y" - 4xy' - 2y = - 8% (2.30)

Satisfying the boundary conditions

y(0) - y*(G) = C 2y{1) - y'(1) = 1 with h = 0.1 (2.31)

Solution:
We first replace equation (2.30) and (2.3.1) by the

Corresponding finite - difference equations

Yigr ~ 2Y1 * Yi i Yir:r “Yi-1 2y .
————————————————— -_— 3 . - — e —— -/ . = - X.
1 1 1
h2 2h
= 2Yi41 ~ 4Y3 t 2Y4.q — 4bXyY 4+ 4hXgYy_g

- 4hz = -16h2x,

Collecting the like terms

(2-4hx3)yi4q - (4+4h2)y; + (2+4hx3)yi_4 =
- 16h? Xi
Dividing through by 2 we get

(1 - inh) Viel ~ (2+2h2)yi + (1+2Xih)yi—
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Thus we have
my; = (-2+2h2) /(1-2x;h), Ky = (1+2xih)/(1-2xih) ,

¢ = (—8h2X1)/(1"2Xl) (l = 0,1,2,.u.10)

From (2.3.1) we have

Direct procedure:- We enter the number x; = 0.1 in the

i
Table 1 below and Compute the value of mi'ki' ®4 (i =

1,2, ....10)

Then using formulae (2.26) we compute for Example Cy

Cqy = (al - ao)/(mi {al - ao)+K1 al)

(-1.1)/(2.06(¢(1.1) - 1.041) = (-1.1)/(1.226) = - 0.897

d; = (2+£,%)/(2+hp,) + (k,Ah)/(a; - ¢y h) =

We write the obtained values in Table 1 and proceed with

successive computaticn of C:

; and d; by formulae (2.2.7)

Thus for i 2 we get for example

Cy, = 1/(m; - kK, ©y) = 1/(-2.104 +(1.083) (0.897)) = 0.883.
d2 = ¢2 - k2 Cq dl = - 0.017 - 1.083 * 0.897 0.008 = -0.025
Computation for i1 = 3,4, ....10 are carried out analogoushy.

All the value are entered in the columns for the direct

prccedure of Table 1.
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Reverse procedure

We determine y,, by the formula (2.2.9) 1i.e

2Bh - B, (dp Ch-1 dn_l)
yi= ———————————————————————————————
28, +B1 (Cn-1 1/cy)
0.2-0.636 - (0.726%0.492)
Yig = ——-=-=-——--—-------- = 0.793/0.311 = 2.54

0.4 + 0.726 - 1/0.096

We write down the obtained value in the last row of table 1,

we then successively find y; (i = 9,8...1) using recursive

formula.

yi = C;(d; - y;+1) for example.

Yo = Cg (dg=Yqg = 0.726 (-0.49 - 2.54) = 2.20

Yg = Cg (d7 = yg) - 0.754 (-0.37 - 2.20) = 1.94

Y7 = €9 (d;-yg) = - 0.871 (-0.27 - 1.94) = 1.73

Yo = Cg (dg - y;) = -0.806 (-0.20 - 1.73) = 1.56

Y5 = €5 (dg = Yg = - 0.829 (0.13 - 1.56) = 1.40
Computation for Yy (i=4,3,....1) are carried out in the
way.

Finally by formula y, = (a; y; - Ah)/(a; - agh) we get

Yo = (-0.93)/(-1.1) = 0.85

26
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Direct procedure Reverse

procedure
1 X M K E C d Yy
0 0.0 0.85
1 0.1 - 2.061 1.041 - 0.008 - 0.897 - 0.008 0.93
2 0.2 - 2.104 1.083 - 0.017 - 0.883 - 0.025 1.03
3 0.3 - 2.149 1.128 - 0.026 - 0.867 - 0.051 1.14
4 0.4 - 2.196 1.174 - 0.035 - 0.849 - 0.087 1.27
5 0.5 - 2.244 1.222 - 0.044 - 0.829 - 0.134 1.40
6 0.5 - 2.295 1.273 - 0.055 - 0.806 - 0.196 1.56
7 0.7 - 2.349 1.326 - 0.065 - 0.781 - 0.274 1.73
8 0.8 - 2.405 1.381 - 0.076 - 0.754 - 0.372 1.94
9 0.9 = 2.463 1.439 - 0.088 - 0.726 - 0.492 2.20
i0 1.0 - 2.525 1.500 - 0.100 - 0.696 - 0.636 2.54

2.3. GALERKIN'S METHOD

The previously considered method enables us to approximate
the solution of a boundary - value problem in tabular form.
We now treat an analytical method which make it possible to
find the approximate solution of linear boundary value prob-
lem in the form of an analytical expression named Galerkin's

method.
2.3.1 Basic Concept

Suppose we have a linear boundary - value problem

y" tP(x) y' + a(x)y = £(x) (2.3.2)

g y(a) + aqy'(a) = A

By(0) + Byy'(b) =B  (2.3.3)

Where P(x), q(x), f(x) are known quantities continuous on the interval [:
of the function agy, a4, BO,Bl,A,I3aregivenconstantsandIaol-+|a1|=t

and |By| + [By]| =0
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Let us now introduce the following notation.

Lly]l = y" + P(X)Y' + a(xX)Y (2.3.4)

A

il

T lyl = agy(a) + ajy'(a)
Tyl = Bgy(b) + B,y'(b) =B (2.3.5)

Let us in an interval [a,b] there be given system of basis
functions.

Ug(x), Uy (%), ..., Un(x) (2.3.6)

Satisfying any of the following conditions.1l

1. System (2.3.6) is orthogonal i.e.

Ui(x)Ujdx =0 for i = j

Uiz(x)dx

I
(@]

(.2.3.7)

2. System (2.3.6) 1is a complete one, i.e there is no other
non-zero function which is orthogonal to all the functions
U; (x) (i=0,1,2...,n)

3. The finite system of basis function {U;(x)} (i=0,1,...,n)
is chosen so that the function U,(x) satisfies the non-
homogeneous boundary condition.

r [Ugl = A, Tp(U,] =B (2.3.8)

and the function Ui(i) (i=1,2,..,n) satisfy the homogenecus
boundary conditions.

T,[U3] =Ty (U3 =0 (i =1,2, ....n) (2.3.9)

Vie shall look for the solution of the boundary - value proklem (2.3.2) &

(2.3.3) in the form

y{x) = UO(X)+ Zl=l ClUi(X) (2.40)
It follows from the conditions (2.38) and (2.3.9) that this

function satisfies the boundary condition (2.3.3) above.



Now let us consider the expression called the residual
We choose the coefficients C; so as to obtain the least value

of the integral of the squared residual.

J Rz (x, ¢4 Cy,y ...,CL)dx (2.4.2)
It is proved that this is achieved only if the residual

R(x, ¢y, ¢y, ...,C is orthogonal to all the basis func-

n)
tions
Ui i= (1,2,..1'1)

Let us now write down the condition of orthogonality.

j U; (x) R(x, ¢ c5 ...cp)dx = 0 (k=1,2,...,n)
or in full

2i=lci _[ Ul(X) L[Ul]dx
= I U; (x) {f£(x) - L{Ugzl}dx.

Thus, we obtained a system of linear algebraic equation with

respect to Cj (i =1,2,..... n)

We r.ote that in choosing the basis functions the condition of
orthoganality (1) is not obligatory if the coefficients are
chosen proceeding form minimality condition of the integral
(2.4.2)

For instance, taking for the basis functions, a complete

system of orthogonal functions on the interval (a,b), we may



cnoose as the basis functions the linear combinations of
functions from the system. It is only necessary and suffi-
cient that the chosen function be linearly independent on the

interval [a,b].

2.3.2 Statement of Problems

Example 5

Let us for example approximate the solution of the following

equation using Gelerkin's method

y" - y' y(0) =0, y(1) =1 (2.4.3)

Solution

As the system of the basis functions U;(x) (1 =,0,1,2) Let us
chocge the following polynomial functions

U; = x(x-1) and U, = x2(1,%) where Uy, = 0

These functions are linear independent on the interval [0,1]

also U, and U, satisfy zero boundary condition. We look

for an approximate solution of the problem in the form

y = CU; + C,U,

==>Yy = Cy (x* - x) + Cy (x2 - X3
= Cyx?2 - Cyx + C, x2 - C2X3
y' = 2cy - ¢y + 2¢yX - 3c, X2

y" = 2¢q +2c, - 6CyX

y" - y'-1 =0 = R(x,c,cz)

==> R (x,cl,cz) = 2cy t2c,y - 6CyX — 2C9X + Cy -

2 1

202x + 3c2x
Taking into consideration the orthogonality of th= function R

with respect to the functions U, (x) and U; we have



'

\ - . 1
J U; R (%, ¢, C;) = (x2-x) (2¢cq +2C, = 6CyX
© - 2CqX Cq - 202x+3:2x2—1) dx = 0

f [2CX2+2C,X2~6C, %> = 2¢4
) + 2 e 3 4_ 2
C1X2=2CyX~ + 3CyX X

= 2CX—2C,yX+6C, X2 +2C X2 ~Cy X+CHX2

3
- 302x

+x]1dx=0

= 2/3c,X3+ 2/3c,X -6/4c,X4-2/4+c,x?

+cq/3%3 = 2/4c,x? + 3/5c,%x% - %33

- 2/2022+6/3c2x3 +2/Sclx3~cl/2x2
+2/3c2x3—3/4c2x4+%x2

= 2/301 + 2/3cy-3/2 Cy - 1/2cl tcq/3 - 1/2c,+3/5¢c,
-1/3 - cl/l - Cy/1 + 2cy/1 + 2¢4/3 - cq/2 + 2¢c,/3
- 3c,/4 + X

= -1/3c, + 11/60 ¢, - 1/6

Also

J|U2 R(X,Cq, Co ) £(x2—x3)
O

(2cq +2C5=6C5X-2C X+C -2C,X+3Cyx2-1]dx = 0

\
- ~ - 3
= f f2cy %2 + 2c, x2 6C, X

o

3

3 2 -
201 X~ + Ccq X 2c2 X +
302 x4 - X2 - 201 x3 - 2c2x3 + 6c2 x4
4 4 3
+ 2¢cq X ~c1x3 + 2cy X7 - 3c2x5 +x~]dx =0

, a3
2/32,%x> + 2/3c,x

x3 - 2/402x

6/ac, x* -274c x*+1/3¢c;

4 4 3/502 x2 - x3/3 - 2/4c1x4 -

5 4

2/402x4 + 6/Zcyx
5

+ 2/5c x> cq/4%

+ 2/5C,x7 - 3/6c2x6 + x4/4 r°= 0
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= 2/3cy *+ 2j3c, - 6/4c, - 2/4cy + Cy/3 - 2c,/4 +
3/5¢cy - /3 - 201/4 - 202/4 + 6/5c,+2c4/5
- C /4 +2cy /5 - 3/5C, + =0
= 3/20 C; - 21/15c, = 1/12
We now have a system of linear algebraic equations for deter
mining the coefficients C, and C,
-1/3 ¢ + 11/60 C, = -1/6
3/20 cq - 2/15Cl = 1/12
Solving this system we get
c, = 75/183, C, = -330/2013
Fromy = ¢4 Uy + C, U = Cy (x2-%x) + c2(x2—x3)
Substituting the values of C; and C, we get
y = 75/183 (x% -x) - 330/2013 (x2 - x°)
For comparison purpose Table (1) gives the values of the
obtained approximate solution and the exact solution
1/(2 - e) + 1/ (e~1)e® - x
Takle (1)

Approximate and Exact Soclution of Example 5

Xf{ 0.25 0.50 0.75

y{ 0.085 |- 0.123 -0.0992

}i -0.085% - 0.122 - 0.099
Example 6

Using Gakerkin's method, let us approximate the solution of the
equation

y" +y +x =0 (2.4.4)

Satisfving the boundary conditions

y(0) = y(1) =0 (2.4.5)

32
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Solutions
Choesing thae followirg functions as the system of basis
funcitions U; (i = 1,2,)

U; (x) = x(1-x), Uz(x) = x2(1,-X)

They are linearly independent and satisfy the Homogeneous
boundary condition. We look for an approximate solution of
the problem in the form

2

y=¢6 U +C, U, =C; x (1-%x) + Cox® (1-X%)

3

<
Il

- 2 -

2

C1 - 2Cl X + 2C2 x2 - 3c2 X and

o
il

y" = —2cy t+ 2c, - 6CyX

y" +y + = - 2cyt2c, ~6CHX + CyX - clx2 - c2x3 + x =0

R(x, ¢4, cy) = -2cqt2c, - 6Cyx +Cyx = clx2 - Cy X3 +x

Jq (%) R(x,cl cz)dx =0

I _ _ 2 3
L L | 2cq + 2c, 6Cyox + Cqx

!
Q
([
»
1
Q
N
x
+
w
Q
X
1
o

)
J [-2Cyx + 2C,%x - éc, x2 + c1x3

3 4 2

© 4 Cp X7 = Cox” + x% + 2c,% - 2C,X%

3 4 4 5

+

3
602x - Clx + Clx ~C2x +C2x

x3]dx = 0

2 .
= = Cx% 4cyx? - Zeyxd 4 1/3Cyx3 -

%Clx4 + %czx4 - 1/5c2x5 +1/3x3 + 2/3clx3 - 2/3c, X3 + 6/402x4

- . t
- cy/axt + 1/5c%x® - 1/5c,/3%° + cy/6 x° - xtya )
For Comparison Purpose Table (3) gives the value of the

obtained approximate solution and the exact solution



(:1 Cl C2 C2 1 < 2 6
-cqg tcy "20p - =4 - - - - - + -
3 4 4 5 3 3 4
- ¢ /4 + /5 - c_ !5+ cy/6 - %
= 3/10cy + 3/20c, = 1/12
[}
Also JUZ(X) R(x,cq, Cy)Adx = 0
=]
{ 3 3
= J(xznx ) (-2¢q + 2C,; - 6CyX + CX = CqX2Z + CyX?2 = CoX~ +
o
+ x)dx = 0
b
= J [-2cyx2 + 2c,x%x2 - GCZX2 . clx3 - c1x4 + 0224 - c2x5 + x3
®
+ 2clx3 - 2c2x3 + 6c2x4 - clx4 + clx5 + c2x6 - x4]dx =0
= —2/301x3 + 2/3c2x3 - 6/4c2x4 + %clx4 - 1/501x5 + 1/5c2x5
- 1/602x6 + %x4 + 2/4clx4 - 2/4c2x4 + 6/502x5 - 1/5c1x5
+ 1/6cyx® - 1/6c,x® + 1/7c,x7 + 1/5%° |!

-2/3cy +2/3cy - 6/4c, + %cqy - 1/5¢q + 1/5c, - 1/6C, + %
+ 2/4cy - 2/4c, + 6/5c, - 1/5c; + 1/6c; - 1/6¢C,
+ 1/7cy + 1/5

= 3/20c; + 13/105c, = 1/20

We have system of linear algebraic equation from which we can

determine the coefficient ¢, and c¢,. Solving thie system we
get
cq = 71/369 and Cy = -71/41

From y = cq(x-%x2%2) + c2(x2—x3)
We have

y = 71/369(x-x2) + 7/41(x2-x7)
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Table (3)

xi 0.25 0.50 0.75
yi 0.044 0.069 0.060

y 0.044 0.070 0.060

2.4. THE COLLOCATION METHOD
2.4.1 Basic Concept
Let us assume that we have a second - order linear boundary -

value problem

Ly = y" + P(x)y' + a(x)y = £(x) 2.4.6)
ay y(a) - a5 y(a) =A
By vi{a) = 81 y'(b) =B | ag |« + [Bg] # 0 (2.4.7)

We look for the solution of the b.v.p (2.4.6) & (2.4.7)

in the form

y(X) = Ug(x) + £, C; Uj(x) (2.4.8)

where Uj (%) (i = 0,1,..... ,N) are linearly indeper.dent func-
tions satisfying the conditions.

I,[Ugl = A, Tylugl = B (2.4.9)

Iy, (u;] = Tlugl =0 (i=1,2,..... n) (2.5.0)

Let us require that the residual

R(x,cl, CorevesCq) = L{Y) - f(x) + %izlciL[ui] (2.5.1)
Vanish for a certain system of points x;, X, ...x, of

the interval [a,b] called the collocation points (the number

of such points must equal the number of the coefficients Cq

Cy «.. Cp in the expression (2.4.8). Then for determining Cqy
Cy ....C, we get the following system of equations.
T(%4,Cq, -<-,Cp) =0



K(Xp, Cp Copennnn Cp) = 0

Solving the obtained linear system of equations, the solution
c, (i =1,2,...n) is substituted into (2.4.8) to obtained the
desired approximate solution.

The basis functions U; (x) are usually chosen so as to have
one or more of the following properties

(1) The U;(x) are continuously differentiable on [a,b]

(ii) The U (x) are orthogonal over the interval [a,b], i.e

b
1 U; (x) Uj(x)dx = 0 for 1 = jJ

(iii) The U; (x) are "simple" functions such as polynomials or
trigonometric functions

(iv) The U, (x) satisfy the homogeneous boundary conditions
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2.4.7 "ement of problems

Example 7

Using colloca*ior mz2thod let us approximate the solution of
the boundary = value problem

y"+x2y - x = 0 (2.5.2)

with the boundary condition

y(-1) =y(1) =0 (2.5.3)

Solution

Let us choose for the basis functions the polynomials

Ug(x) = 0, Uyj(x) = 1 = %2, Uy(X) = x2(1-%2) which all satisfy
the boundary conditions.

We now seek for the solution of the problem in the form

y = ¢p{1-%2) + Cc, x?(1-x2)

=Cq - c1x2 + 02x2 - c2x4

y' = =2cqx + 2cyx - 402X3

y" = -2cq4 - 2c, =~ 12c,y%?

The residual R(x%;, C;, C,) = -2Cy+2C,-12C,x?2

+ xi‘[cl - Cq1X2 + Ccox2 - czx4]— x =0
= —ch +2c2 - 12c,x? + clxz-clx4 +czx4

- c2x6 - x =0

= (~x4 +x2-2) cq + (—x6+x4 —12x2+2) - x =0

Taking %45 = 0 and x; = % as the colleetion points we've

- 5/16cy + 61/64c, = %

Solving this linear system, we get
cq = Cy = 32/41

Hence we have approximate solution

y = 32/41 (1-x"} = 32/41 (22 -x%)
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Example 8

Let wus find the arproximate solution of the

equation
y" o~y =1 (2.5.3)
y(0) =0, y(1) =1 (2.5.4)

Using collocation method.
Solution

Choosing U, = 0, U, = x(1-x) and U, = x2(1-X%)
o 1 2

differential

as the basis functions, we look for solution in the form

Yy = cq Uy + cru,(x)

Y = ©p (x=x?)+cy (x2-%7)

y = clx—c1x2+czx2 - Cy X3

y! o= cq - 2c1x + Zc2x —3c2x2

y" = '2C1 +2c2 - 6c2x
R(x,cl,cz) =y" - y' -1 =0
R(x,cqy cy) = —-2cq t2c,; - 6CHx -

(c1 -2c4 x+202x - 382x2) -1 =0

= - ch +2c2 - 6c2x -y + chx -

2c2x + 302x2 -1 =20

= ~3c1 + 202 - 8c2x+2c1 X+302X2 -1 =0

(2% --3)c1 + (3x2 - 8x+2)c2 =1

1

Taking Xy = % and x, = 3/4 as the collocation pcints we

obtained the following systemn

- 10/4 ¢y + 3/16 c, = 1

- 6/4cy - 37/16c, = 1

50lving this linear system, we get

Cq = -40/97 ana c, = - 16/97

LY
e8]



ilence we have an approximate solution

y & -40/97 (x - x%) - 16/97(x? - x3)
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CHAPTER THREE

3.0 COMPUTER ANALYSIS

Given the task of developing a program to solve a problem
like boundary problem, we begin with a very clear idea about
how the program is to be written. Putting into consideration
the Methodology for the development of the program and the
language in which the program is to be written. Development
of program involves one or more stages that, by careful
integration and control, will bring order and direction to
the flow of the program. We have stages like Problem Analy-

sis, Program Implementation and Program Debugging & Testing.

3.1 Problem Analysis

Before we can hope to develop a program to solve any problem,
we must understand exactly what the problem is. In this
particular case, our problem is to develop a program in a
Pascal Language to solve a boundary-value problem using a
finite-difference scheme that has been discussed earlier in
this project. At this stage, a concise statement of the
problem to be solved and the constraints that exist for its

solution is made. A functional specification is produced.

3.2 Program Design

The central task of this phase is to take the agreed Func-
tional Specification and derive from it a design that will
satisfy it. At this stage we design how the data are %to be

stored and manipulated by the computer. A flowchart contai-
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ning necessary steps to be taken in writing the program is
drawn. We adopted a modular design for solving this problen,
in which case the program is divided into subprograms (proce-
dures) that can be tested separately. A main program invokes

these modules as they are needed.

3.3 Program Implementation

The implementation phase of this program is concerned with
translating the design specifications into source code
(Pascal). The primary goal of this phase is to write source
code and internal documentation so that conformance of the
code to the functional specification of the program can be
easily verified, and so that debugging, testing and modifica-
tion are eased. This goal is achieved by making the source
code as clear and straightforward as possible. Source code
clarity is enhanced by structured coding technique with

Pascal language.

3.4 Program Debugging and Testing

Program debugging deals with correcting known errors in the
program. One become aware of errors in the program in three
ways. First, and explicit diagnostic provide us with the
exact location and nature of the error. Second, a diagnostic
may occur but the exact location of error is unclear. For
example, the computer may indicate that an error has occurred
in a line representing a long equation including user defined

functions. This error could be due to syntax error in the
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equation or it could be due to syntax in the statements defin-
ing the functicons. Third, no diagnostic occur but the pro-

gram does no: opzsrate properly. after debugging, the program

is finally tested in modules.
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CONCLUSIO.l AND RECCMMENDATION

CONCLUSION
The importance of Numerical approach to boundary-value prob-
lems arising in the area »f engineering and physical sciences
has been emphasized, the concepts of Numerical methods like
Finite-differences, passage, Galerkins and Collacation have
been discussed.
It has been found out that Numerical methods of solving
bourndary-value problems reduce the problems to arithmetic and
certain logical operations on numbers, that is to the opera-
tions usually performed by computers.
The solution obtained by any of the numerical methods dis-
cussed is usually approximate, that is it has some error.
The following are some of the sources of error in an arproxi-
mate solution:

(i} The error of the Initial data (Input parameters)

(ii) The error of the method of solution

(iii) Round-off error in arithmetic and other type of

operations on the numbers involved.

Accuracy attainable with finite-difference method clearly
depend upon the fineness of the mesh and upon the order of
the finite-difference approximation. As the mesh Is refined,
the number of equatinons to be solved increases and becomnme
more difficult. Tnhe use of higher-order apprcximations will
yield greater accuracy for the same mesh size but results in
considerable cor.plication.

In Galerkin ar X Cullccation methods one can obtain a sequence
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of approximations by increasing the number N of basis func-
tione. An estimate of the accuracy can then be obtained by
comparing thesse approximate soluticn at a fixed set of points

on the Interval [a,b].

RECOMMENDATION

Since Numerical methods of solving boundary-value problenms
reduce the problems to arithmetic and certain logical opera-
tions on numbers which are usually performed by computers,
also considering the speed and ease at which computer can
evaluate these operations to give the soclution to these
problems, more effort should be geared towards the study of
Numerical approach to boundary-value problems. In particular
I recommend further study on other numerical methods, 1like
variational, least sgquare and shooting methods for solving

boundary-value problems.
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APPENDIX B

Program Numso_;
uses Ccrt;

const npts 50;

type vectl arrayf{Z..50] of real;
Var x0,%¥n,h,xX:real;
_,f g,qg:integer;
mesh : integer;
£f1,91,ql:real;
eps:real;
y_out:vectl;

Function fncl(x:real):real;

begin
for 1 := 1 to mesgh do
X := xo+{i*h);
fnci = f£x{xo+(i%h))
end;

Function fnc2{x:real):real;

begin

for 1 := 1 to mesh do

X := xo+{i*h);

fnc2 := gx{xo+{(i%h))
end;
Function fnc3({x:rezl):real; '
begin

for i := 1 to mesh do

¥ o= (1*h)

frne3 = q* xo+{i*h}))
end;

Procedure Assign{f,g,q:real};

begin
{ fi:=fnci;
gl:=fnc?2;
gl:=fnc3; 1}
end;
Procedure tridiag{n: integer; =z, b, c: vectl; var d: vectl;

eps: real);

2 2 I T T I T T I T T T R T e T

Solution of simultaneous linear equations with tridiagonal
coefficient matrix. N is the number of linear equations. a,
b, and ¢ are the arravs of the subdiagonal, diagonal, and
superdiagonal elements, respectively. d is the constant
vector on input and the solution vector on output. The matri:
is singular or ill-conditioned if a diagonal element becomes
< eps

X % % X X X X % %
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}

type
flag = (continue, singular);

var
k: integer;
stasus: flag;

begin
if (b[1] < eps )} then stasus := singular
else stasug := continue,;

for ¥ := 2 ton do
while {stasus = continue) do
begin
alk] := a[k]/b[k—l]
b{k]l := blk] - alkl*cl[k-17;

{check that diagonal element doesn't become too small}

if (b[k] < eps) then stasus := singular;
alfkl := dalfk] - alkl*dlk-11]
end;

case stasus of
continue: {perform backward and forward sukstitution}

begin
Aln] := 4Alnl/blnl;
for kK := n-1 downto 1 do
Alk] := (dlk] - c{kI*dlk+2]1)/p k]
end;
singular: {Error section}

writeln('***Error***xMatrix is singular or ',
'ill-conditioned')
end ‘cof case}

end;

Procedure RBoundval{npts:integer;xo,xn:real;var y:vectl;eps:real;fl:rz.
I

P A RS S RS EE R EEES RS S EEEEEEEETEEEEEE IR SRR SRS SRR SR d s il s ddddd i i
* Soluticn of the second-order boundary value problem

*

* y" o+ f(xz)y' o+ g(x)y = q(x)

*

* using the finite difference method with npts mesh points.

* x0 = x{1) and x{N}) = x{npts). vy{1) and v{0) are known; this
* procedure determines the sclution at the interior mesh point:.
* The data type vector is defined as array [1..npts] of

* real in the calling program. f, g, and g are user-supplied

* functions. eps is the smallest tolerable diagonal element for

o)



* the tridiagonal matrix to be considered nonsingular.
*
*

Kk Kk kK Kk ik ok ok Kk w k de kK sk ks ok ok ok ok sk ok ok ok ke sk sk R ok ok ke ok ok sk e sk ok ok sk ok ok sk sk ke ok ok ol ok ok ok ok ok ko ke ke ke ok ok ke ok ke ko

}

var
a, b, c, d: vectl;
temp, h : real;
1, mesh: integer;

begin
{calculate step size}

h := {xn - x%0) / {(npts - 1 );
mesh = npts - 2;

{Evaluate tridiagonal matrix and constant vector}

for 1 := 1 to mesh do

begin
temp := fncl(x) * h/2.0;
ali] := 1 - temp; {subdiagonal elements}
pli] = -2 + fnc2(x)*sqgr(h); {Diagonal elements}
cli]l := 1 + temp; {superdiagconal elements}
dlil := fnc3{x)*sgr(h) {Constant vector}

end;
{Add end conditions}
dafi} := alil - alil* y(il;
dfmesh’ := d[meshl - cimesh] * y[npts];

{80lve equations and store solution in v}

tridiag(mesh, a, b, ¢, 4, eps);

for i := 1 to mesh do
vil + 1} = afil
end;
begin
clrscr;
write{'Enter the first point'};
readln{xo);
write{'Enter the last poirnt'};
readln(xn):
write('Enter the value of £ '};
readin(f);
write{ 'Enter the value of g '};
readlin(g;);
write('EZnter the value of g '};

write(' 'Enter the value of eps');
readin{eps);
boundval(npts,xc,xn,y_out,eps,f,g,q9);
writeln{'runnirg');



for 1 := 1 to mesh do
writeln{y outl[1+il);

readln;

end.



