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ABSTRACT

A study on the application of Markov and Semi-Markov modeling for the
control of Catarrh and leprosy diseases have been reported in this thesis. The
models incorporate the concept éf preventive/curative treatment and also the
effect of seasonal variation on the catarrh disease. Exponential and Weibulll
probability distribution functions were used to describe the time a leprosy
patient stays in each staie of irle models. The models were considered also
for the both the discrete and continuous times. The minimum cost of control of
the diseases was obtained through the Markov reward model. It was found
that catarrh disease is not seasonal. The continuous time models for Semi-
Markov performed better than the discrete time. A contrast of the two
probability functions showed that the exponential function is better and it is
easily handled. The cost model showed that it is cheaper in the long run to
A

¢
visit a medical doctor and to use"high priced drugs’ than self-care and low

priced drugs.’
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CHAPTER ONE

1.0 INTRODUCTION

1.1 BACKGROUND TO THE STUDY

It is a popular saying that health is wealth; in other words, goc‘>d health is
wealth. This statement perhaps méy not have much meaning to a man that is
in a good condition of health until he falls sick and becomes ill, it is then and
only then he can realise the usefulness of good health. Lack of good health is
a state of ill health. Poor heaiit: is caused by a disease. A disease is an illness,
a disorder of the body and/or of the mind, Macqueen (1985).

The main causes of disease are small organisms. They are so small that
we cannot see them with the naked eye. These organisms include viruses,
bacteria and parasitic worms. Many diseases exist in the human world. Some
diseases are common to people that live in the tropical part of thge world and
they are called tropical diseases. '

Catarrh and Leprosy are some of the diseases that are common in the
tropics. Catarrh is one of the diseases that many people do not take seriously.
This is because they believe that Catarrh is not an independent disease on its
own. Thus, they think t\Fuat.Cé‘t'érrh is a sign or a symptom of some other
diseases. Consequently, Catarrh does degenerate to one or two other
diseases in many patients, because, it has not been given the desired
recognition and attention.

Leprosy disease means different things to many people including some

of the elites. To some people, Leprosy is a hereditary disease. That is, parents
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simply pass it on to their off-spring at birth. But, to some other people, the
disease is not only hereditary; it-also cannot be treated or cured.

It is very important not only t;be aware of these diseases but also to be
able to exercise the God-given power and authority to cure them. There are
two ways by which a man can control these diseases. It is often said that
prevention is better than cure. A man can be given a preventive treatment so
that he does not become infected with a disease. It is also an important
practice that a man is given curative treatment so that he can recover from a

disease with which he has become infected.

1.2 MARKOV AND SEMI — MARKOV PROCESSES

Andrei Andreivich Mgrkoy (1 856 — 1922) a Russian Mathematician, is
recognized as the ‘inventor of Markov chains. The basic concept of Markov
processes is that of “state “ of a system and state “transition”. It is a process
that runs in time. A Markov process in discrete state and time is called a
Markov Chain. When the particular set of states have been specified it is
necessary to record the probability of change from one state to another during
a unit of time. This information can be shown in a ‘directed graph’ called
transition diagram and recorded in the transition matrix which is a stochastic
matrix.

The Markov chain requires the process to change state or remain in the
same state at the approp\r_iafe time units. Therefore, we consider a situation
where transition occurs at several units of time.

This leads to the general form of Markov process called the semi-

Markov process. Simply put, @ semi-Markov process is that process that
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depends on the transition probability matrix P; and holding time matrix h(t)
(where, ij = 1,2,3........ denote states). These two parameters form the input
data for the interval transition probabilities Qy(n) where n = 0,1,2 ...........

representing time.

1.3 JUSTIFICATION

Mathematical models can be categorized broadly as being probabilistic
or deterministic. Among situations where probabilistic models are more
suitable, very often a better representation is given by considering a collection
or a family of random variables instead of a single one. A collection of random
variables that are indexed by a parameter such as time and space is known as
stochastic process (or ‘random’ or ‘chance’ process). Markov processes form a
sub-class of stochastic processes with highly simplified assumptions and a
wide range of applications including recovery, relapse and death due to
diseases. X -

Catarrh and leprosy diseases have been used to provide illustrations to
these models. We also wish to create a greater awareness on the readers
about these diseases by modeling.

These models can be used as a predictive device for studying the health

status of catarrh and leprosy patients. The predictions will be useful to the

doctors, hospital administrators, policy makers and the general public.

1.4 THE OBJECTIVE OF THE STUDY
(i) The primary objective of the study is to develop a mathematical

model using the principles of Markov chain and semi — Markov.



processes for the control of catarrh and leprosy diseases. The
other objectives are:

(ii) To model the seasonal effect on the catarrh disease using

the two major seasons in Nigeria.
(i)  To determine specifically the degree of effectiveness of the

treatment using the models on the sensitivity analysis

R

(optimal degree of effectiveness).

(iv) To make a qomparison of the discrete and the continuous
time cases as well as the two distribution functions; the
exponential and the Weibull.

(v)  To educate the general public on diseases used in the
models and to further impress and inspire the possible
application of Markov process to other fields of study.

} (vi)  To determine the optimal costs of control analytically using

the principle of Markov decision processes.

1.5 PROBLEM OF THE STUDY

The existing modals do not help us to determine the control of leprosy in
the future on the basis of the present level of control. We therefore intend to
develop a model to predict the control of disease in the future on the basis of
present level of control.

As for the catarrh disease there is no quantitative result as for whether
or not catarrh disease is seasonal. These are the fundamental problems these

models are designed to solve.



1.6 SIGNIFICANCE OF THE STUDY

The models are predictive tools for studying the progression of catarrh
and leprosy diseases. These results are important information to the patients,
Government and non — governmental organizations that are concerned about

the control of these diseases.

1.7 SCOPE OF THE STUDY

Although, the models have potential for general application to diseases
and the related processes, we have limited our study to catarrh and leprosy
diseases
1.8 LAYOUT OF THESIS

The work presented in this thesis covers the research carried out by the
author and it is presented as follows:

A discussion of the background to the study, including the justification
and the objectives is followed by a review of related literature consisting of the
application of simple mathematical techniques to the study of disee;ses with the
epidemic of the Hippocrates (459—377BC). Later development in this area of
research resulted in the more complex deterministic equations, the chain-
binomial and the stochastic techniques or the simulations. Catarrh, Leprosy
and the major seasons ir: Nig:r&a are then presented.

One of the important simplified assumptions of Markov and Semi-
Markov techniques is that, the time the process stays in a state should be
described by a function of probability distribution. The exponential and Weibull

probability distributions are the probability functions for this process. They



have been discussed, including thé introductory materials in the theory of
Markov and Semi-Markov processes.

Markov and Semi-Markov techniques constitute the tools for the
formulation and developmei‘\?t“oft’ﬁ'é"’models. ‘These models are simple
theoretical frameworks to study Catarrh and Leprosy cases. They are
subjected to verification or illustrations using data, be it live data or hypothetical
data, for a better understanding and clarity.

The conclusions and suhmaw of the work as well as the areas that

require further investigation are finally presented.
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CHAPTER TWO

2.0 REVIEW OF LITERATURE

21 MODELLING FOR THE CONTROL OF DISEASE

In this chapter, we prés',ehi a prief historical account of modelling for the
control of diseases, the growth and development of mathematical theories of
the spread of diseases is given. We also present the deterministic and
stochastic analytic models. The most recent scientific approach of simulation
modelling is presented. We also discuss the modelling approach used in this
project. The leprosy and catarrh diseases were also discussed including the

seasonal variations in Nigeria.

2.2 THE BEGINNING OF THE MATHEMATICAL MODELLING OF

DISEASES.

The modelling of diseases started as far back as the ancient Greeks, with
the epidemics of Hippocrates (459 - 377 BC), Bailey (1975). John (1620 - 1674)
and William Petty (1623 - 1687) could be considered as pioneers of medical
statistics and the understanding of large-scale phenomena connected with
disease and mortality, but the time was not ripe for anything approaching a
connected theory of epidemics. This was because the requisite mathematical
techniques were themselves only thén in the process of development. Another
reason was the insufficient knowledge about the spread of disease. A good
start was made in the field of mechanics and astronomy more than 200 years

before any real progress was aonieved in the Biological Sciences (Bailey, .
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1975). Daniel Bernoulli in 1760 used mathematical methods to assess the
effectiveness of inoculation\ag'aingt«smaII pox, with a view to influencing public
health policy.

The major feature of the beginning of modern scientific achievement in
this field was the rise of the science of bacteriology in the 19th century. The

work of Pasteur) and Koch involved mainly the statistical appraisal of records

showing the incidence and locality of known cases of diseases, Bailey (1975).

The work of Farr was mathematically sophisticated. He ﬂttedAa normal
curve to quarterly data on deaths from smallpox. Brownlee used a similar
method to predict the course of outbreak of rinderpest amongst cattle. The
curve was fitted to four rising successive monthly totals and extrapolated
values used for prediction.\,’\!fhc:;gh observed aiid predicted curves were both
bell-shaped, agreement in detail was not very good.

The work of Farr and Brownlee involved more of curve fitting and
prediction. Deterministic and stochastic models were developed in the early
part of the 20™ century Bailey(1975) Generally, there are three modelling
approaches for disease control: Deterministic, Analytical stochastic, and

Simulation, usually stochastic.

2.3 DETERMINISTIC MODELLING

Ross(1911) presented a mathematical model for malaria, which attempted
to take into account a set of measures describing various aspects of
transmission. The study of respiratory disease using a deterministic approach

to the heterogeneity of spread of infection was provided by Becker and Hopper



in 1983. An epidemiologic£I abpliéétion of sophisticated control theoretic model
was provided by Hethcote (1983).

The age-dependent immunisation model was designed to predict
appropriate strategies for disease control. Hethcote utilised data on measles
and rubella to determine vaccination strategies appropriate for their control at

various levels of immunisation coverage.

2.4 STOCHASTIC MODELLING

Deterministic models soon lost their popularity because of their inability to
accurately describe recurrent cycles of disease (Bailey 1982). When data
became more extensive ahd mu;;1 smaller groups were considered, elements
of “chance and variation” became more prominent. Mckendrick (1926) was the
first to construct stochastic models of epidemic processes. Greenwood gave
an alternative probability treatment five years later (Bailey, 1975)

“Continuous infection” and “chain binomial” stochastic models were
introduced next. These probability models were more appropriate ‘for dealing
with smaller groups in which random variation would play a larger role.
Although these models achieved popularity they are usually mathematically
and computationally more complex than the simple deterministic models.

Stochastic models now appear more frequently in the study of diseases
(Bailey, 1975). Kimber and Crowder (1984) proposed a model to analyse
resistance times to infection under treatment. A general stochastic model was
proposed by Hillis (1979).

Several stochastic models have been presented to describe distributions

of infectious disease over time and space. Goldacre (1977) attempted an
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analysis of meningitis using space-time clustering techniques introduced by
Knox (1964) to detect the existence of factors associated with infection.

Trend surface analysis, a pqunomial regression technique developed for
use in geology, was applied to small pox data from Brazil Angulo( 1977) to
determine if general trends in what appeared to be random spatial patterns
could be detected. A centrifugal pattern emerging from the center of a city and
spreading outwards was\det.ec'té'd. Box-Jenkins models, variants of the ARIMA
(Autoregressive Integrated Moving Average) models utilized in economics,
were applied to infection of Chickenpox. Time-series data also provided the
data base for models of epidemic velocity proposed by Cliff and Haggett
(1982).

The etiology of disease is of primary concern to many epidemiologists and
can be seen either in a deterministic or stochastic framework. A deterministic
perspective is one in which factor x causes y if (all other factors being held
constant) a change in the value of x results in a change in the values of y, in a
completely prescribed way t_racing out a mathematical function of some form. In
practice, probability thé\éry aﬁd statistical techniques are used to assess
evidence regarding causality. In any causal analysis of data, the goal is to
account for variation in the dependent variable.

Several models of this sort have been utilized to analyze data in studies of
infectious diseases, including most commonly linear regression, log-linear
analysis, . logistic .regression, discriminant analysis, and proportional hazards
modelling. An example is the work of Stevens and Lee (1978) who used a
generation effect model to assess the impact of anti-tubercular chemotherapy

on mortality. The generation effect model assumes that the mortality pattern for 4

10
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each cohort is set early in life; rates vary only according to birth cohort. This
model was used to project current mortality experience using past cohort data.
The large differences noted by Stevens and Lee (1978) between the expected
and the observed rates were ascribed to the effect of inter\;ention with
chemotherapy. '

Discriminant analysis was used to study chronic obstructive pulmonary
disease (Lebowitz and Burrows, 1977). Linear regression models were utilized
for analysis of risk assdc\:iaféd with influenza mortality (Clifford et al, 1977). A
model of risk factors in a non-infectious disease, skin cancer, has been
constructed using logistic regression (Vitaliano, 1978). The following year, log-
linear models were used to analyze data from cohort study of acute respiratory
iliness (Melia et al, 1979).

Markov chain models have been applied to study the progression of
disease. Fix and Neyman (1951_) constructed a simple stochastic model of
recovery, relapse, death and loss of patients. They are concerned with the
difference in effect either of the same treatment applied to different categories
of patients or of different treatments applied to a specified cétegory of patients.
In all cases the criterfan "for"‘;comparison was the frequency of surviving
specified periods of time. That model was used to study the effects of treatment
of cancer of the breast. Marshall and Goldhammer (1955) applied Markov
processes to study the epidemiology of mental disease. Markov chain models
have also been constructed to study the effect of weather on asthma (Jains,
1986 and Jain R.K. 1988). Similar studies have been reported in Roberts et al
(1990), Sacks et al (1977), Sargent (1991), Schenzled et al (1979), Anderson

et al (1991), Shahani et al (1987) and Shahani (1981).

11



Many disease models have yielded valuable information and more
information is still being sought to meet the demand of dynamics of diseases
and complexities. However, Mathematical modelling is more suitable for very
simple systems that allow high simplifying assumptions and not for systems
that involve uncertainty, complexity and scarce resources. In such cases

simulation models are often appropriate and preferable.

p

—

2.5 SIMULATION MODELLING

Simulation is a process for studying or finding a solution for a problem, or
calculating the effect of a course of action, by representing it in mathematical
terms, especially using the computer, (Readers’ Digest Universal Dictionary,
1989). A simulation model is an abstract model which represents some system
in the real world. Simulation methods have developed since the 1é60s and may
well be the most commonly uséd of all the analytical tools of management
science (Pidd, 1992).

Complete fade-out of infection may occur in sufficiently small communities
if fresh cases are not Tnt.;oduCed, whereas, in communities above a certain
critical size it will merely happen that infection reaches a low level before
building up again for a fresh out break (Anderson and May, 1982). These
conclusions are in agreement with observed data and with the results of
empirical investigations using Monte Carlo methods in conjunction with the
electronic computer. A computer simulation study was conducted in the area of

recurrent epidemics and endemicity with special reference to the interpretation

12
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of real public health measles data, Bartlett (1961). This perhaps marks the
beginning of the use of computer simulation.

Computerized simulations have been extremely valuable in elucidating the
properties of multi-state models of disease and in shedding light on proposed
intervention strategies. Extensive studies of this type have been made in
tuberculosis control by Waaler, Geser and Anderson (1962).

Another area of some public health consequence is the interference and

interaction phenomena that may occur between different disease organisms.
Lila Elveback and her co-workers have developed a series of six fundamental
models of increasing c;b‘mple;i(fty that can be used for the study (by
computerised simulations) of public health control of poliomyelitis by means of
live polio vaccine, including the situation where effect of the vaccine is inhibited

by enterovirous infections. The chief reference is (Elveback, Fox, and Varma,

1964).

Simulation modelling is a very attractive powerful method for dealing with
the complications of a variety of diseases including asthma. A Simulation model
for managing asthma has been reported in Shahani et al. (1994).

The evolution of modern (more powerful, less expensive and easier to

use) computers and high ‘level languages has popularized (Zeigler, 1979) the

application of simulation for solving real-life problems in several descriptions,
and the expected advances in computer technology indicate that this trend will

continue.

13
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2.6 A REVIEW OF LEPROSY MODELS
There has been a widespread use of statistical techniques in clinical trials
and in attempting to determine variables which are relevant to the epidemiology
of leprosy, but the application of Operational Research techniques to the study
of leprosy has been minimal.
g Bechelli adopted the kinship coefficient in his study of the correlation
lé: between leprosy rates in villages different distances apart, Bechelli (1973).
According to him, given n villages V; (i =1,2,------ , n) the i™ village having
population Wi and a gene frequency Fi for one genetic marker, the kinship

=

coefficient between all villages at distance x from each other is estimated by

ZIWj(R_P)(PJ"P)
!//(x)P_ P( P) VV'IJVJ
= Pow

where P is the average gene frequency for all villages separated by distance x,

and the summation is extended over all village pairs V; and V; that.distance
apart. This indicator may be interpreted as a coefficient of intra class correlation
between the gene frequencies for all the pairs of villages separated by the
same distance. The kinship coefficient is expected to decrease with distance

and its estimate may be fitted by a monotonically decreasing function of the

N

type:

5 e—bx

(1+x)€

W(x) =

where a is the mean coefficient to kinship for local population (equivalent

to the coefficient of inbreeding as a result of subdivision of a population). b is a

T 3

function of the standard deviation of the distribution of distance‘betwggn- '
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villages and of the systt—;ﬁati&pressure on the genetic marker, and c is a
coefficient measuring the dimensionality of migration.

Bechelli concluded that “if we consider that the biological and
environmental factors and the socio economic condition in the different villages
were fairly uniform, the relation between prevalence rates and the distance
between villages would be primarily a function of the number of‘leprosy and
other infectious cases. An untreated Lepromatous patient exposes those in
close contact with him to a high risk of infection, and the risk decreases with a
decrease in contact’.

In a similar study of how the incidence of Leprosy does relate to
prevalence, Lechat (198\1) observed that if such a quantitative relationship can
be established, it could become possible to

(1) predict future incidences under present conditions of control.
(2) simulate how changes in the control measures affect incidence.

The mathematical model employed was as follows:

(incidence) = f(prevalence),
where annual incidence is considered as dependent on past prevalence and j
corresponds to the duration of the incubation period.

The model was run on a twenty-year time period in order to achieve (1)
and (2) above. Of all the cqntrol measures he used, the specific vaccination for
leprosy comes out by fz;r as thé most effective measure. With a 100% vaccine
coverage, incidence of new cases was predicted to reduce to zero in 11 years.

He concluded that leprosy cannot bring results overnight. Long term
planning and sustained efforts are required. The message is of special

importance for international agencies and non-governmental organizations,
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which at times display a tendency to expect short term results and get
discouraged when the so-called eradication is not soon materializing.

Leprosy is a chronic disé;se caused by infection with mycobacterium
leprae. Susceptibility to leprosy is influenced by both genetic and non-genetic
factors and the disease is known to cluster in families. One measure of genetic
effect is the relative recurrence risk ratio AR. Estimate of this parameter can be
inflated if environmental risk factors which also cluster in families, such as
household contact, are not properly accounted for. They presented the result
of fitting a cross ratio model that allows estimation of the odds ratio of disease
conditional on disease or no disease in a given relative, given measured
covariates. From the model, they could predict fitted values for AR that
represent familiar risk not\a‘c’coqgged for by other covariates including observed
household contact. If all the covariates could be measured, this would be the
“genetic relative risk ratio”. They found that AR > 1 for all relative pairs except
grandparent-grandchild, and AR > 2 for siblings Chris Wallage et al (2003).

In a related study Roy (2003) in a letter to the Editor titled “What is the
actual male/female sex ratio in Leprosy patients?, stated that during a period
of 30 years, carrying out leprosy treatment in North Eastern NigeriAa, ending in
1982, they noted a puzzling pattefn of male/female ratio in the out patient and
inpatient population. A study done in 1969 of 6,691 patients revealed that
74.3% of patients were male. 32.6% female. Thus there is a preponderance of
male of 2/3. The conclu%idh irom the study is that leprosy infects men more
severely.

Continuous Time Markov process model for the spread of AIDS

Epidemic has been discussed lwunor (2001). A continuous time Markov .
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Process model with four transient and two absorbing states was developed to
be used as a framework for analyzing the spread of AIDS. In the model
presented, individuals in a population are classified according to their condition
with respect to HIV infection into six states, namely: Murray (1989).
Si:Susceptible, Sa:Infectives, Sa: Seropositive non-infectives, S4. AIDS Patients
Ss: Natural (non-AlDS induced) deaths, Se: AIDS induced deaths. |

States Sy to S4 are transient while S5 and S6 are absorbing. The paper
presented a theoretical result relating to the application of the continuous time
Markov process model in studying the spread of AIDS epidemic. The results
are expected to have prao:é:é! usefulness in tracking the spread of this
menacing epidemic in situations where the relevant data could be generated.

Several attempts have been made in the past few years at developing
models for studying aspects of human reproduction process. Iwunor (2001) in
the paper titled “A Semi-Markov Process Model in human reproduction”
discussed the application of the Semi-Markov process model in studying the
human reproductive process.

The model considered the rebroduction pattern of a married female
known to be non-pregnant and fecundable at the time of marriage. At any time
after marriage (and before the occurrence of menopause or secondary sterility)

this woman can be in one, and oniy one, of the following states with respect to

reproductivity.

So = non-pregnant, fecundable state.

Sy = pregnant state.

S2 = postpartum sterile period associated with abortion or foetal loss.
Sz = postpartum sterile period associated with still birth.
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Ss = Postpartum sterile associated with live birth.

It follows that the reproductive history of a female is characterized
completely by the knowledge of the sequence in which these states are visited
and of the length of time spent in each state at each visit. |
Some parameters provided in the model i.nclude:

| The First Passage and re-occurrence times.
2: The Conception rate and Birth rate.
2. The limiting state prot}ab'izitéas:

The model thus provfdes a very important theoretical framework for
understanding the fertility behavior of women by tracking the actual fertility
performance of a cohort of women.

The Semi-Markov Process model provides an important tool for
assessing the impact of different direct fertility interventions suqh as
Contraceptive use, abortion, breastfeeding, abstinence etc.,on fertility
reduction. It was observed that the result presented will be of great value to
population programme designers and implementers.

Markov and Semi-Markov processes have been applied to manpower
system in recent years. lwunor (2001) in his paper titled “Forecasts of the
grade sizes in a manpower system assessed on the Markov and Semi-Markov
process models” discussed the forecast of the mean grade sizes in a Markov
manpower system with Poisson recruitment based on the Markov and Semi-
Markov process models.

In that paper, forecasts of the mean grade sizes for a five-grade
universities faculty manpower system are obtained by applying the theories of

the continuous time homogeneous Markov process and Semi-Markov process
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models with Poisson recruitment . The limiting grade sizes are obtained based
on each of the models. The reliability of the forecasts are tested and the
relative performance of the two models were compared.

The models considered a five grade faculty manpower system namely:
Sy — Assistant Lecturer, S, — Lecturer, S3 — Senior Lecturer, S4 —AReader and
Ss — Professor. The absorbing state S6 is the state of having departed the
system. It was assumed that recruitment is allowed into any of the grades and
wastage (retirement, resignation, dismissal and death) is possible from any of
the grades. R

It was concluded that by incorporating information on the length of stay
in each grade before moving to the next, a Semi-Markov process model yields
better forecast of the mean grade sizes compared with a Markov process
model, although, in terms of information requirement and computational ease,
the latter model has some merit. A related study by the same author cited in
Ilwunor (2001) is lwunor (1987).

In a related study Uche (2601) provided a number of models in his work
titled “ Stochastic Models in Education and Manpower”. The Markovian Model
of Graded Systems (Education) considered the hierarchical concept in
education, such as the grades”of the system, movement between grades in
hierarchy, movement within the system and out of the system and partition of
grades into absorbing and non-absorbing states.

The models also considered the homogeneous and heterogeneous
classes. That is, a class of students may be made of fast movers and slow
movers. If transition is considered for this class with the two types of movers

lumped together, we have a heterogeneous class. If the fast movers are

19



A

separated and treated separately, we have homogenous sub-classes out of the
class.

The models further explain the use of the fundamental matrix P in the
aspect of educational planning. Such as the probability of going from one grade
to another in a given year, the probability that a student in a given grade will still
be in the University after a number of years and also the averagé number of
years of schooling left. |

Other graded systems discussed are:-

(1)  the models discussed above can be applied to any other graded or
hierarchical sys\teni, Tor example a career progressions.

(2) the Health Sector — for any living organism, the state of being in
good health (G), Sick (S) or Death (D). An explanation was offered
for the transition between these states, the absorbing state (D) and
the expected fransition times.

Generally, the models provide a framework for specific research work in
any identified area of the graded system. Related studies by the same author

have been reported in Uche (1987, 1988, 1991).

27 THE MODELLING APPROACH IN THIS PROJECT

The analytical stochastic approach of applied mathematics has been
employed in this project. Following Abubakar(1995), the process of leprosy is
considered as a semi-Markov process. Four states of the disease were
specified. The states are finite, mutually exclusive and exhaustive. The first
three states are transient states and the fourth state is an absorbing state and it

is the state of death due to leprosy. The effectiveness of treatment on the .-
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interval transition probabilities is tha.major result cbtained from the model .This
model was considered for discrete state and discrete time unit.

In this work in addition to the discrete state and time the model
incorporates the discrete state and continuous time unit. This will enable us to
obtain information about the leprosy patient at any point in time and provide a
basis for comparison.

A three state Markov chain model was also considered fér catarrh
disease with respect to the two seaéonal variation in Nigeria. This model also
incorporates the discrete state and continuous time which enables us to obtain
information about the catarrh patient at any given point in time. These
stochastic analyses could be used as a predictive device to study the health
status of leprosy and catarrh patients.

Stochastic models have been employed to explain the uncertainties,
which are intrinsic features of dynamic economic systems. The central purpose
of theories of economic growth is to understand the factors behind long-run
growth of economies, and explain differences in growth performances of
economies. .

Hongliang (2002), discussed the dynamic implications of the stochastic
growth and trade model with the savings rate depending on capital-labour ratio
and the policy parameters .They extended the trading two-sector economy with
uncertainty and analysea the diffusion process for the capital labour ratio,
moreover, the crucial boundary conditions of the diffusion process were
examined and the steady-state probability distribution of the capital-labour ratio

was derived. Some other related studies are contained in Barro et al (1995),
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HEK (1999), Gandolfo (1997), Grossman (1996), Jensen et al (1997), Jensen
(1999), and Joshi (1998) to mention iust a few.

Markov models have been extensively applied to the management of
forestry. Acevedo et al (1995) and his colleagues have described and applied a
correspondence between two major modeling approaches to forest dynamics:
Transition Markovian models and gap models or JABOWA-FORET type
simulators. According to them, a transition model can be derived from a gap
model by defining states on the basis of species, functional roIes,A verticaIA
structure or other convenient cover tybes. A gap-size plot can be assigned to
one state according to the dominance of one of these cover types. A semi-
Markov framework is used for the transition model by considering not only the
transition probabilities amorig thc -states but also the holding times in each
transition. The holding times are considered to be a combination of distributed
and fixed time delays. Extensions in spatial are possible by considering
collections of gap-size plots and the proportions of these plots occupied by
each state. The advantages of this approach include; reducing simulation time,
analytical guidance to the simulations, direct analytical exploration of
hypothesis, and the possibilities of fast computation from closed-formlsolutions
and formulae. A preliminary application to the H.J. Andrew forest in the Oregon
cascades was presented for demonstration.

In a related application of Markov models, Rajulton (1992) reviewed
some types of analysis that ‘a’re‘ “possible using life history information that
includes data on the timing, sequence, and a number of occurrences of specific
life events, the paper aims at bringing out relevant points regarding two
fundamental assumptions in life history analysis (a) that a specific stochastic

3
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process generates events, which cén be appropriately analyzed and (b) that
certain characteristics of individuals, as well as of context, affect change
processes.

The application of Mé%‘kévaaﬁ assumptions to the study of the theory of
queues has a long history. This gave rise to the classification of Queues
generally into the Markovian and non- Markovian Queues. The Markovian
queues are the most popular, and are easily handled. Some of the most recent
studies in this field include Hiroyuki et al (2003). This paper considers a work
conserving FIFO single-server queue with muilti batch Markovian arrival
streams governed by a continuous time finite-state Markov chain. A particular
feature of this queue is that service time distributions of customers may be
different for different arrival streams. After briefly discussing the actual waiting
time distributions of customers from respective arrival streams, they derived a
formula for the vector gen\eréting';function of the time-average joint queue
length distribution in terms of the virtual waiting time distribution. Further
assuming the discrete phase-type batch size distributions, they developed a
numerically feasible procedure to compute the joint queue length distribution.

Similar work has been reported in Soohan et al (2003) titled Fluid Flow
Models and Queues. A connection by stochastic coupling, Guan-lin et al (2003)
in the paper B-Invariant measures for transition matrices of GI/M/I type. In
another development, a new type of discrete self-composability and its
application to continuous-time Markov processes for modeling count data time
series, has been reported in Rong et al (2003), and Qi-Ming (2003) has also
published a related work he rfitled,‘:; fixed point approach to the classification of

Markov chains with Tree State.
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Lawrence (2003) and his colleague in the study titled, Statistical Signal
Processing with Nonnegativity Constraints, observed that, Nonnegaivity
Constraints are frequently in statistical learning and pattern recognition, that,
multiplication updates provide natural solutions to optimization involving these
constraints. One well known set of multiplicative updates is given by the
expectation maximization algoritﬁm for hidden Markov Models, as used in
automatic speech recognition. Recently, they derived similar algorithm for
nonnegative deconvolution and nonnegative quadratic programming. These
algorithms have applicatiéﬂs‘lteficjw-level problems in voice processing, such as
the training of large margin classifiers.

In the maximum likelihood estimation, they begin by reviewing
multiplicative updates and nonnegativity constraints in a familiar context.
Maximum likelihood (ML) estimation in discrete hidden Markov Models (HMMS)
also cited in Baum (1972). They considered an HMM with n hidden states
Se(1,2,........,n) and in observatiqns 0eg(1,2,........,m). The parameters of the
HMM are the transition matrix a; = P(St1 = J'| St = i), the emission matrix
b=P(0t = j|St = i), and the initial distribution ¢ = P(S = k). These parameters
obey simplex constraints. They are nonnegative, and the distributions they
represent must be prdp\iérl"y normalised. The goal of ML estimation s to
maximize the log-likelihood L=log P(as, az, ...., ar) of one or more observation
sequences.

Specific models used in current research include Markov decision
processes, semi-Markov decision processes hidden Markqv models, partially
observable Markov decision processes; reinforcement learning,:in particular

ierarchical and memory-based methods. The applications involve complicated
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models of learning and sécjuéntial decision-making under uncertainty in single-
agent and multi-agent domains and their application to real world problems in
robotics and industrial processes. These results have been extensively
reported in the publications, Ghavamzadeh (2003), Ali (2001) and Ali (1996)
respectively.

Similar results have also been presented in the conference papers by the

same author in Ghavamzadeh (2003), (2002) and (2001) respectively.

28 LEPROSY DISEASE

DEFINITION OF LEPROSY

Many definitions of leprosy exist but Hunter (1966) defined leprosy as a
chronic infectious disease primarily of the skin and nerves caused by
Mycobacterium leprae. It is one of the least infections of all the infectious
diseases. The incubation period varies from less than a year to many years, but

probably averages three to five years.

TYPES OF LEPROSY

Several variants of the disease are demonstrable, but the disease can be
divided generally into -\twd polar types; tuberculoid and lepromatous. A
transitional or demorphous type may show a variable degree of similarity to the
tuberculoid or the lepromatous types depending upon which pole it
approximates.

The non-lepromatous cases exhibit resistance to the infections evidenced

by paucity of bacilli in the lesions and their tissue response. In the lepromatous

NROE e
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type there is obvious lack of resistance with an abundance of bacilli in the

-

lesion.

TUBERCULOID

Tuberculoid and the non-lepromatous types have a small number of bacilli
limited to the intracellular locations and ordinarily have no means of exit from
the body, Job (1981). In other words, this group of leprosy is not responsible for

the spread and transmission of leprosy on a large extent.

LEPROMATOUS

Lepromatous types are so baccilliferous to such an extent that organisms
overflow from them into the environment. The patients of lepromatous and the
borderline lepromatous disphargg Mycobacterium leprae into the surrounding
through Nasal secretions, salivar, exudate from ulcer on the lepromatous skin
and the normal secretions of the sweat, and mammary glands, Job, (1981).

The traditional and the simplest explanation of the spread of leprosy is by
close and pro-longed contact of the susceptible individual with infectious case.
The source of infection is often not known. Susceptibility is important in the
understanding of the epidemiology, natural history and clinical classification of
leprosy, probably all cases go through an indeterminate phase, whether the

point of entry is through the broken or unbroken skin.

DISTRIBUTION
Leprosy is widely disrt'ribUtévé in the tropical and sub-tropical regions. This
constitutes the top 25 countries that have nearly 94% of the world cases,

Noordeen et al (1992). From the mid-sixties to the mid-eighties global

estimates appeared to be constant at between 10 and 12 million. The
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introduction of multi-drug therapy (MDT) in many countries and the consequent
reduction of prevalence of the disease has necessitated a re-assessment of the
global estimate. Based on the available data and its interpretation, the number
of leprosy cases in the world in 1991 had been estimated at 5.5 milli;an. The
number of individuals with deformity Idue to leprosy had been estimated as
between 2 and 3 million. The following table summarizes the regional

distribution of leprosy cases.

-

Table 1: The estimated and Registered cases of Leprosy in the (WHO)

regions 1991 (x1,000)

REGION ESTIMATED REGISTERED

1. Africa 735 280
2. South East Asia 3,744 2273
3. America 327 295
4. East Mediterranean 162 57
5. West Pacific - 207 89
Total (top 25 countries)\\\\' " 5,165 ’ 2,994
Total (all countries) 5511 3,162

Source: Noorden (1992)

The top 25 countries have the largest number of estimated leprosy cases

and contributes 93.7% of the total estimated cases in the world.
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DIAGNOSIS AND TREATMENT
Diagnosis

The cardinal diagnostic signs are the presence of anaesthetic macular
lesion or thickening and tenderness of peripheral nerve trunks and the
demonstration of bacilli. Search should be made for suspicious macules or
infiltrations of the skin and for the thickening of ear lobes and the eye brows.
The peripheral nerves should be palpated carefully. The patient should be
examined in bright sunlight'.to appreciate fully even to find certain lesions of
leprosy.

Smears should be made from several sites, skin lesion, earlobes and the
nasal septum. Since bacilli are usually obtainable only from lepromatous and
the demorphous lesions, many cases should be diagnosed on the basis of
clinical appearance and the presence of anaesthesia in simple macular or
tuberculoid lesion. In such lesions, loss of sensitivity to light touch énd absence
of pain on pin prick justify the diagnosis. Test for instamine flare and for
sweating afford Confirmatory evidence.

TREATMENT

x

General treatment, ihclUdihé personal and environmental hygiene, a well
balanced diet and the correction of concomitant conditions is important. With
such measures even severe lepromatous cases may show some degree of
amelioration, at least for a time, Hunter (1966).

Ideally, the most promising drugs for use in combination with dapsone or
for the treatment of patients with dapsone resistant leprosy are:* Rifampicin,

clofazimine, ethionomide, prothionamide and thiacethazone, Ellard (1981).
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DURATION OF TREATMENT

Dapsone treatment of paucibacillary leprosy is still of long duration; 2 - 5
years. Lowe recommended 24 months treatment, Wheate and Pearson
suggested 2 years to 5 years and the third and fourth WHO expert Committee
reports recommended that tuberculoid patients should continue treatment for
18 months after all activities has ceased and the lesions have become
quiescent, which means a total of 24 - 36 months (See Warndorff, 1982).

It was observed that Rifampicin (RMP) is highly bactericidal for
mycobacterium leprae, Warndorff (1982). Based on previous studies it was
thought that it should be,‘bos,sjble to cure patients with short regimen of 8
weekly doses of 900 mg Rifampicin. Nevertheless, treatment of paucibacillary
leprosy should be aimed at two objectives. The killing of bacilli and stopping the
allergic reaction. Evidently, Rifampicin can realise the first objective rapidly and
efficiently, since in the present series, no relapses were observed after 8
weekly doses of 900 mg of Rifampicin. The second objective will have to be

taken care of by other drugs.

RELAPSE RATE

For a long term treatment with dapsone, several cases of relapse had
been reported. A follow up study of 6 monthe to 4 years on 69 patients
observed 11.6% relapses\ Lowc; (1954) cited in Waaldttk (1989). Seven of the
eight relapses occurred within 3 - 12 months after treatment ceased and one at

28 months. Three of the 7 patients had been treated for less than a year, 3 for

between 1.and 2 years and 2 for 2 - 2.5 years.
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NATURAL HISTORY OF LEPROSY

Leprosy is a common disease that may begin at any age but due to long
incubation period of Mycobactgn'Um /gprae (2 - 5 years), its appearance during
infancy and childhood is minimal. For the greater part of leprosy patients, there
is a history of leprosy in members of the immediate family. Perhaps, this is the
reason why some people think that leprosy is hereditary.

There is no spontaneous recovery without treatment and usually all latent
cases develop overt disease except if dying in the meantime. Resistance to
leprosy is not uncommon be it genetic or immunological.

It is generally accepted that Mycobacterium leprae (Hansen, 1874), cited
in Hunter (1966) is the etiological agent of leprosy. Deformities in fingers, feet
(toes), eye brows, nose and earlobes is not uncommon with leprosy patients.
Death due to leprosy itself is.infreqn ient. Pulmonary tuberculosis and nephritis
are common terminal events, although the frequency of tuberculosis has

greatly diminished since the advent of sulfone treatment, Hunter (1966).

29 CATARRH DISEASE

Catarrh otherwise known as common cold = Oterion Anoma catarrhdis
Rhinitis’, is caused by the influenza virus . The incubation period ié from 24
hours to 48 hours. It is an air-borne disease resulting from breathing in infected
air through the nostril tube. This develops into the inflammation of a mucus

membrane usually accompanied by excess secretion of mucus.

Other types of cataith .ars-hay fever, tronchial catarrh, gastric and
intestinal and vesical catarrh, the inflammation of the bladder. The catarrh of

interest in this paper is the one in which the mucus membrane is at first
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congested swollen, hot and dry and then subsequently produces a free mucoid
or watery discharge , which may become purulent before drying up as the
inflammation abates.
TREATMENT

The treatment involves the application of Nasal decongestants (Ollivirin

Nospamin) and Prolachic antibiotic (septrin) in addition to analgesic

N

(paracetamol).

210 THE SEASONAL VARIATIONS IN NIGERIA

Generally, two seasonal variations can be identified in Nigeria. The wet
seasons wind and rainfall (April to October); the full effect of the tropical
maritime air mass as the méin factors which bring rainfall is felt in this season.
Dry season wind and rainfall (November to March). This is the dry season
when rainfall is least.

The mathematical formulations on the epidemiology of leprosy are not
new. These in several occasions have been used to study the transmission and
spread of the disease side by side with the past prevalence and incidence of
new cases. Leprosy is the least infectious of all the contagious diseases. The
cases of leprosy may be found anywhere in the world but much more in the
tropical and subtropical countries. The disease is not hereditary as some
people may want to believe and Leprosy patients can be treated and cured.

The model developed in this project incorporates uncertainty and variability.
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CHAPTER THREE

3.0 STOCHASTIC PROCESSES, FORMAL DEFINITIONS AND THEORY
3.1 STOCHASTIC PROCESSES

The family of random variables {X(t), t>0} indexed by the time pa;rameter
t. The values assumed by the process' are called ‘states’ and the set of possible
values are called the state space. The set of possible values of the indexing
parameter is called the ‘parameter space’ which can be either continuous or

discrete. In the discrete case;the rrocess is represented as {X,n=0,1,2,........ }.

3.2 MARKOV PROCESSES

The stochastic process occurring in most real-life situations are such
that for a discrete set of parameters t4, t5,........t, t, T, the random variables
X(t1), X(t2), ....X(tn) exhibit some sort of dependence. The simplest. type of
dependence is the first-order dependence underlying the stochastic process.
This is called Markov dependence, wﬁich may be defined as follows;

Consider a finite (or countably infinite) set of points (to, t1,.....tn, t), to < t4
<th..<ty<tandt t,eT (r=1,2, ..... n) where T is the parameter space of the
process {X(t)}. The depende\nce exhibited by the process {X(t)}, te T is called
“Markov - dependence” if the conditional distribution of X(t) for given values of
X(t1), X(t2).....X(tn) depends only on X(t,) which is the most recent known value
of the process.
that is, if

PIX(t) < x | X(tn) = Xn, X(tn-1) = Xn-1, - X(to) = Xo]

= P[x(t) = X | X(tn) = Xa]

= F(Xn, X: tn, t) (1.0)

32




The stochastic process exhibiting this property is called a ‘Markov
Process’. In a Markov process, therefore, if the state is known for any specific

value of the time parameter {, that information is sufficient to predict the next

behavior of the process beyond that point.
As a consequence of the property given by (1.0), we have the following

relation:

F(Xo, X: to, ) =lyes F (¥, X, 1, t) dF (X, V, to.2) (1.1)
where top <t <tand s is the stéiel's;;ace of the process x(t).
When the stochastic process has a discrete state space and a discrete

. parameter space, (1.0) and (1.1) take the following forms: for n>ni>n2>... ... > N
and n and ny, N2 .....Ng belonging to the parameter space.
P(Xn = j|Xni =i1, Xn2 =iz,===Xnk = i)

= P(Xa=j|Xa1 = i)

=pj(Mi,n) | (1.2)

Using this property, for m <r < n we get

Pij(m, n)=Pi= jip =)

= X Pyl B Kz =4
ke
- Z P. (m9 I‘) P .(I', Il) 1.3)
e Ik kj (.
where we have again used S as the state space of the process.

* Equations (1.1) and (1.3) are called the “Chapman-Kolmogorov

equations” for the process. These are basic equations in the study of Markov

processes. They enable us to build a convenient relationship for the transition
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probabilities between any points in T at which the process exhibits the property

of Markov — dependence.

Another statement of the Chapman — Kolmogorov equation and the
proof is given below:

Pit+s) = PX(T +S) =j1X¢o) =i) (definition)

=3 P(X(E+8)=j,X(t)=k|X(0)=i) (marginal from joint)
- ; P(X(t+s5)= j|X (1) = k, X (0) = )P(X(t) i: X (0)=i)

= Z P(X(t+s)= j|X O=kP(X()= k|X 0)= 1) (Markov assumption)

N

= P(X(s)= jlX(0) = F)P(X(1)=k|X(0)=i)  (Stationarity)
k
=3 Pb(f)P,.,(,') (definition)
k
Thus P,(t+5)=) PP’

This is the Chapman-Kolmogorov equation in general form

We shall use it in the special form of

P(t+h0)= ), BU P, (A1)

1<

-~

This equation requires tﬁe Markov assumption to permit a
multiplication of the probabilities referring to events during t and to events
during At. it also requires stationarity to permit use of the same

probability functions for the interval t and for the later interval At.
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Depending on the nature of the state space and the parameter space,
we can divide Markov procesgés into four classes, which are given here in the
form of a table. Wherever the parameter and state spaces are discrete the
Markov process is called Markov chain. Otherwise the process is simply
referred to as a Markov process.

Table 2: Classification of Markov processes

PARAMETER SPACE STATE SPACE.
Discrete Continuous
Discrete Markov Chain Markov Process
Continuous Markov Process Markov Process

3.3 MARKOV CHAINS

A Markov chain is the Markov process with discrete time and parameter
spaces whose state space could be finite or countably infinite.
Let {Xn, n=0, 1, 2,...} be a Markov chain with a state space
SCY={0,1,2, ...}. While discussing a finite m-state chain, we shall identify the
state space S to be given by the set (1, 2, ...m). The element Pj, means the
probability that x4 = j if you know that %o = i. It is a conditional probability
Pi, = p(X1=]|Xo=i).

In the time homoggnegujs_j Markov chain the n - step transition
probabilities are defined p;™ = p(Xn=j|(Xo= i)

The conditional probability P(X,=j|Xn-1=i) is referred to as the one step

transition probability from i to j at time n. If for all m and n,




P(Xn=j|Xn-1=1) =P(Xm=j|Xm-1=i), the Markov chain is said to be stationary.
Stationary and time homogeneous are synonymous.

The stationary assumptio\h is one of ‘constancy’ over time. It suggests
stability of the process, although, of course, it does not imply that the process
remains in fixed state or even that there is a sluggishness in the rate at which
transition occurs. It is the probability mechanism that is assumed stable.

‘n-step’ refers to the time interval between observations. In matrix form,

P. P, P,
21 S N

and

n n n
P 00 P 01 P 02000e

we have ies
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3.4 THE n- STEP TRANSITION PROBABILITY MATRIX

Let P be the transition probability matrix of a Markov chain and let P,™
be the probability that the process is in state j after n transitions (unconditional

N

probability), denoted by the row vector of probabilities P, jeS.

) and the unconditional

The n-step transition probabilities Pifn

probabilities P; ™ , i, j, S are determined by the following.
Theorem 3.1 pM= pn L4
and P®™=pOp" 15

For the proof, see Bhat (1984) pages 38 and 39.

3.5 FIRST - PASSAGE AND RETURN PROBABILITIES

The probabilities treated so for answer questions of the general form that
is, what is the probability of being in a certain state at a time? One other
important question of interest is how long will it take to reach a certain state?
The answer involves probabilities, but the random variable is the number of
transitions that occur before a specified state is reached rather than the state
after a specified number of transitions. |

When we speak of the number of steps required to reach state j for the |

first time, we mean the number of steps required to reach state j for the very

first time.

Definition (1):- A state i is said to be recurrent if and only if starting from state /,

eventual return to this state is certain. In terms of probabilities fii, this implies
that the state i is recurrent if anid only- i i = 1
A recurrent state can be further classified either as null recurrent or

positive recurrent.



(1) A recurrent state / is said to be null recurrent if, and only if, the mean
recurrence time is o, that is, if mj =

(2) A recurrent state is said to be positive recurrent if, and only, if the mean
recurrent time is finite, that is, m; < o

For a finite Markov chain m, i eQ is always finite. Therefore null recurrence is

possible only when the state space is countably infinite.

We therefore consider the firet nassage probability ﬂ,-(") defined thus ;

ﬂj(n) — P(xn == j) Xn__1¢ j,xn_z * j...Xl #£ jlxo = i)

n—1
e (n) z k (n—k)
- Pij 3 fij ij

k=i

Hence the f{™ can be obtained iteratively if the Pi" are kniown clearly
i =Py,

The above definition assumes that j and j are distinct. If théy are not, the
formal definition would be exactly the same but we would speak of ‘first return’

N

rather than first passage so that

=

fi™ =P (X =i, Xn1 21, X2 1, ... ... X1# i | Xo = i)

3.6 ERGODIC MARKOV CHAINS

When the process is irreducible, recurrent-positive and aperiodic, (see
definitions 1,3, and 6). We call the Markov chain ergodic. When the model is
ergodic, several additional quantities, other than the transition probabilities can

,easily be calculated. Two of the most important of these are steady-state




Mathematically, P™ and P™" are essentially the same for large n, -

p™ = pr+) p

And
lim P®=lnm PP
n—w n—w
7ty Ay sl | % g 22 R
ﬂl ﬂ'z ”3 &0 e | == 7[1 ﬂ-z ”3 e P
L. . ¢ R _: . i
7 = 7P

Let Njrepresent the random variable for the number of Epoch to reach j for the

first time starting from i, then
P (Nj = n) = ;™

Because the f.,‘“’ give the distribution of Nj, the passage time from i to j,

denoted mj; is given by

m;; = E(Nij)= Z nfij(n)
f=]

In this case i = j, M; would be called the mean recurrence time.
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3.7 MARKOV CHAINS AND CLASSIFICATION OF STATES

The value of x, for a specific realization of the process is called the state
of the process.
Definition (2): State j is said to be accessible from state i if j can be reached
from i in a finite number of steps. If two states i and j are accessible to each

other, then they are said to communicate. Probabilistically, these definitions

imply
i > j(jaccessible from i) if for somen>0 P;™ >0
i>id D B
i €| j(iand j communicate),, ,, ., . P >0
W owowm20 P™>0
Conversely,

i +> j(j is not accessible from i) if for some n >0 Pu("’ =0

jr> i, . T ) R P =0

i €| j(iandjdo not communicate),, ,, , . P®™=pPM=0

It has been shown Bhat(1984) that all the states that communicate in a
finite Markov chain form an equivalence relation.
Definition (3): If a Markov cha\in has all its states belonging to one equivalence
class, it is said to be irreducible.
Definition (4): A state i is said to be transient if, and only, if starting from state,
there is a positive probability that the process may not eventually return to this
state. This implies that f'ii < 1
Definition (5): A state i is said to be an absorbing state if and only if Py = 1.
When i is absorbing fii"’ = P; = 1 and hence fii = 1 and m; = 1, showing that i

is positive recurrent.
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Definition (6): The period of a state i is defined as the greatest common divisor
of all integers n > 1, for which Pi” > 0. When the period is 1, the state is

referred to as aperiodic.

3.8 DISCRETE STATE AND CONTINUOUS TIME PROCESSES

A continuous time stochastic process is similar in many respecté to a
discrete time stochastic process. However, complexity does occur because
each infinitesimal time is available as a possible transition time.

A continuous time stochastic process {x(t)} is an infinite family of random
variables indexed by the continuous real variable t. That is, for any fixed t, x(t)
is a random variable, and the collection of all of these (for all t) is the stochastic
process.

We think of t as time, so we may expect x(t1), the random variable at
time t; to be dependent on x(to), where to < t1 but not upon x(t2), where t; > t4.

We refer to the value of x(t1) as the state of the process at time t;. we
assume x(t) are discrete — state, continuous — time stochastic processes. ;

If for all tn, th4, ........to satisfying th > tha > . > tp, we have that
P(x(t) = jn|x (tn-1) = jn1 ........X(to) = jo) = P(X(ta) = jn | X(tr-1) = Jn-1) We say that
the process has the Markov property or is a (continuous time) Markov process.
Definition (7): A Markov process\rié' saia to be time homogeneous or stationary if
P(x(t2) = | x(t1) = i) = P(x(tz = t1) = | x(0) = ).

For all i, all j, all t{ and t; such that t; < ta.

In words, the process is stationary if these conditional probabilities

depend only on the interval between the events rather than on absolute time.
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A stationary Markov process is completely described by its transition

probability functions, denoted Pj(t) where Pj(t) = P(x(t) = j | x(0) =i)

Note: Pj(t) functions are probabilities, for all t. they are non negative, bounded

functions because they must lie between 0 and 1.
Pi(0) = P (x (0) =j | x (O) =i). Clearly, for i different from j,

Pii(0) = 0 and for i equal to j, Py(0) = 1. if we fix i and vary j over all states, the

sum of the Py(t) must equal 1 (for all t).

Y. Bi(t)=), P(x(t)=jix(0)=1i)

= P(x(t) =any of iis possible states |x(0)=1i)

Under the assumption that the Pj(t) are continuous functions of time, we

can express P for small At by the use of Maclaurin ‘s series.
Py (At) = Py(0) + Pj(0) At + O(AT)?

Where O(At )"represents all terms of the order of (At)? or higher. If we consider

this expression for i = j, and 5

let ;= P{(0), we obtain

Pi(At) = A At + O(At)?
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We may think of this as a linear approximation to Pj(t) which is a good

approximation as long as At is small
The Ajis called the transition rate frem itni.

Since P;(0) = 0 and this is the minimum value, we should be certain that A; is

non negative.
Fori =}, the Maclaurin’s series expansion yields
Pj(At) = 1 + Py(0) At + O(At)%

And if let & = Py(0), we get the linear approxi.mation
Pi(At) = 1 + A4At + O(At)

Since we know that P’ (0) = 1 and thatis the maximum value, we may be

certain that A;is non — positive.
If we non consider the Chapman — Kolmogorov equation
Pj(t + At) = = Py P
For small At, and substituting linear approximation, we get

Pyt + At) = P [1 + At + 0(At] + > Pi [AgAt + 0(At)?]

k#j

and

N

P, (1)0(A1)* :
S SRk 2 {P.-k "k +

k#j

Pij(t + At) _Pij (t)
At

=P, (04, + Py (1)0(AD) }

At
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P. (DO(A)?
Z Zl’ik(t),lkﬁz%

Taking the limit as At =2 0

dP.(t) -
— = ZPik (t))*kj i
dt "

The terms of the order (large order) (At)? go to zero faster than At so these

terms drop out.

The result is an exact (not approximate) differential equation for Pj(t) in terms of
the Pi(t). it is a linear, first —order differential equation with constant

coefficients Ay's.

Recognising the above sum as matrix multiplication, we may express all of the

differential equations at once in the matrix form

RS

dP(t) _
— = P(HA

Where dP(t) / dt is the matrix whose (i )" element is dPj(t)/dt, P(t) is the matrix

whose (i,j)" element is Py(t),and A is the matrix whose (i,j)" element ish;,
The elements of A may be further related by extending the properties of P(t).

In particular, since for each i
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thena; ZJ: Pij (1) o= E[l]lmo

d
—P (t)._.,=0
> Bl

i

ZM:O
j

N

In words, each row of A must sum to zero. Since every off-diagonal element
is non negative, the diagonal element A;, must be equal in magnitude and

opposite in sign to the sum of others in the same rows. That is,

}"ii % "Z }‘ij
J#

39 SEMI—MARKOV PROCESSES

A semi — Markov process is a process in which changes of state occur
according to a Markov chain and for which the time interval between two
successive transitions is a random variable whose distribution may depend on
the state from which the iransition takes place.

Proposition (1): Let {X,, n = 0, 1,....} constitute a Markov chain with
state space E and transition probability matrix P = (Py). A continuous

parameter process Y(t) with state space E defined by Y(t) =X, ont, <t <tnhyg,
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is called a semi — Markov process. Tiie Markov chain {X,} is said to be an
embedded Markov chain of the semi — Markov process. X, refers to the state of
the process at transition occurring at epoch X, and Y(t) that of the process at its
most recent transition.
WAITING TIME
Let the time spent by the process in state j before its next

transition, given that the next transition is state K be a random variable Ti
having distribution function

Wi(t) =P [Tk <t] =P (thst =ta <t | Xh =), Xn+1 =K)j, K=1, 2,....m.
The random variable T, s called the Surjourn time or waiting depends on the
state X, being visited and the \stafe Xn + 1 to be entered in the very next

transition.

INTERVAL TRANSITION PROBABILITY

Theorem(3.2): for all i, jand fort > 0

8,(t) =8, hi(t)+ X Py [ [ (), (1-%) 4
where hi()y  =1-3 4, (1)

=1-W, (1)
=P(T,>1)
and 5,={],2) "~ istheKronecker'sdelta function.
In summary, suppose that a process can be in any one of N states 1, 2,........ N

and that each time it enters state i, it remains there for a random amount of
time having mean M; and then makes a transition into state j with probability P;;.
Such a process is called a semi — Markov process. We note that if the amount

of time that the process spends in each state before making a transition is
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identically 1, then the semi — Markov process is just a Markov chain. Thus a

Markov process is a semi — Markov process but the converse is not true.

3.10 THE EXPONENTIAL AND THE WEIBULL DISTRIBUTIONS

We shall briefly discuss the exponential and the Weibull distributions as
they relate to the duration of stay in a disease state. They have been used in
this project for distributions of holding times in states. We end the discussion

with some comparisons of the two distribution functions.

N

3.11 THE EXPONENTIAL DISTRIBUTION

The probability density function of the random variable T having the exponential

distribution is given by

f(t)= ge A 1>0
elsewhere
Where A >0

The distribution has A as a parametér.x also determines the shape of the

distribution. The mean p of the exponential distribution is

u=E)= ,f:me-"dz = [}’ de ™ di
Substitutingw = At = t =w/A and dw = Adtin the integrand gives
Lo

u=1"re" dw= e |-ilge aw

2
A




Thusp =1/4
E@?y=["rag"

Letw= At = t=w/1 and dw = Adt

2

Sothat (1) =14 di gf”j"?g" dw

‘1’2 'W‘ 2 © —-w
=rge l—-;fo we adw
2 -w:i 2

TR . R
The variance o? of the exponential distribution is therefore given by
o® = oE(T%) - (E(M)*
= 2NE=1A2T1
Thus 6® = 1/A?
Definition (7): The survivor function S(t) is given by
Sl = AT >

= P

and it is the probability that an individual has survived up to time t.
Suppose F(t) is the distribution function of the random variable T. Then
S(t) = 1 - K1)

For the exponential distribution
F(f)=P(T<t)= ,[:f(s)ds

=] 2evas

Therefore
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To interpret h(t) we consider the conditional probability P(t < T <t + At| T > ¢).
That is, the probability that the individual will die during the next At time units,

given that he survived at time t. Using the definition of conditional probability,

we have
Pt<T<t+At| T>t) = P(t<T<t+At)
P(T > t)
X t+At
|/ (s)ds
:p(T>t)
_ /(&)
s(1)
Wheret< <t + At

The failure rate or the hazard rate, ‘i’ associated with the random varizbie 7 is
given by
h(t) = Rty/S(f)

This failure rate is a constant in the case of the exponential distribution.

That is, the hazard rate is given by h(t) =4

PARAMETER ESTIMATIOl;

It is clear that the exponential distribution has a simple probability density
fuhction. It is specified by a single parameter A. This parameter is estimated by
specifying the mean of the distribution. Thus if the mean pn is specified then the

parameter is estimated using

A=1/u
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ILLUSTRATION
The mean holding time 42 in the state of treatment (State 1) see page
104, is 3 years. If the holding time in the state follows the exponential

distribution, then the parameter A is estimated thus:-

A=1/u=1/3 =0.33 (corrected to 2 dp).
Hence f(f) = Ae"¥=0.33¢3

This is illustrated in figure 1.

Figure 1: The graph of an exponential distribution.

The exponential distribution is a prominent statistical measurement model.
It has the advantage of being specified by one parameter. Most applié:ations
are based on its ‘memoryless’ property,- when the measurement variable T has
a time dimension. This property refers to the phenomenon in which the history
of the past events does not influence the probability of occurrence or future
events/present events. The appiicaiion of the exponential model arises in the
theory of queues in conjunction with the Poisson and Erlang models. From the
At

waiting time interpretation of Erlang variable T, it follows that f{t) = A €* is the

waiting time model to the first Poisson event. But the exponential model is
‘memoryless’ as mentioned earlier. Consequently, the waiting time to the first

Poisson event is the same random variable as the waiting time between any
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1 0 adjoining Poisson events. The exponential distribution is a special case of
the Gamma and the Weibull distributions.

| Despite the above adV\antageﬁ of the exponential distribution, it has the
weakness of the measure of hazard rate which is constant . Thus it does not
accurately define the holding time in the states of a disease which changes with

time.

1 3.12 THE WEIBULL DISTRIBUTION

The probability density function of a random variable T having the three

Bt v e

parameter Weibull distribution is given by

(
& BLi-c p-1 t
; () E98
fO=2%"" exp t>=c
v __ o 1<0
apc>0

The scale parameter is a. It is the characteristic life that specifies the

100 (1 - & )™ distribution percentile of (¢ - ¢). The parameter p determines the i
shape of the distribution and it is therefore called the ‘shape parameter’. The
‘location parameter’ is ¢, it shows the position along the t-axis. where the
distribution should lie. It is also called the threshold parameter, because, if ¢ is
the failure time, the probability of failure before time c is zero.

We can always reduce the distribution to a two parameter Weibull by

putting ' =t- ¢, thus




X

The distribution function is given by
F(t") =1 - exp (t'/2)B

The mean p of the two - parameter Weibull distribution is given as

i o -1 s
u=5D=Lp0=F2{L e (L] a

Substituting w = (t/a)&hen dw = Fo(t/a)* 'dt

so that
1
u=fa w?  expx"" dw

o (141/8)-1
iy I w exp™™ aw
X 0,

= ol (1+1/B) 3.2
Where I"denotes the Gamma function. By definition /{a)=(a-1)!
The variance of the two parameter Weibull distribution is given by
E(T%) - (E(T)
but

Ery=[r g(:fr)ﬁ ~exp™(3) At
Put (¢/a)’=w then dw =f/a(t/a)” 'dt and t = aw™”
In the integrand gives
' —gp= | o0 1
BT )= _[) a’*wlfeaw

© 2y.1 _
=a2J; w B e gy

=a’T(1+%)
Thus E(T?) - (E(T))? = 2T (1 + 2/)-(ad{1+1/8)°
=o[T(1+2/B) — (C(1+1/B))]

. 2= AT(1+2/B) — (C(1+1/8)] - 3.3
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The failure rate function for the Weibull is as defined for the exponential
distribution. Nevertheless, the failure rate function is an increasing function if
the failure time is described\by'a Weibull distribution with shape parameter p>1
_For this case we have
h(t) = Blo(t/o)B”

t>0

PARAMETER ESTIMATION

One method through which the parameters can be estimated is by use of
percentile. This is the method used in this project. Dubey (1967) proposed
percentile estimators for both the shape (o) and the scale (B) parameters of the
distribution based on two sample percentiles.

For any given p, 0 < p < 1, the 100" percent percentile of the Weibull
population is defined as the value t = fp such that

F(tp) = 1-exp(tp/a)f = p 3.4

The 100 percent percentile of the sample is denoted by y,. From 3.4,

log (1 - p) = ~(tp/2)

and

log (- log (1-p)) = B(logtp - log o) .3.5
so that for any two real numbérs p1 and p2 with 0 < p; < p2 <1 we have
log (- log (1-p1)) = B(logtp: - log o)
and log (- log (1-p2)) = B(log tp2 - log o)

e B=,Hloa¢- (log(1-P1)) -log (- log (1-p2))
log tps - log tp2

B* = log - (log(1-p1)) -log (- log (1-p2))
log ypt - 10g yp2
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where B" is the percentile estimator of B based on two orde(ed sample
observations from a Weibull population.
From expression (3.5) the pércentile estimator for o can be obtained in
the following three ways
1. a*=expllog y; - log (-log(1-p1)/
AL

2. oa*=expl/log y2 - log (-log(1-po)/
B*

3. a*= exp/% glogyi - log (-log(1-py)/
B*
The above three are identical and can be written as Dubey (1967)
o= exp/w log y1 + (1 - w) log yof

Where w

1 -Iog K1
K

K = log (-log(1 - p1)) - log (- log(1 -p2)) and
Ki

-log (1 -p1).

ILLUSTRATION

We shall now give some examples to demonstrate step by step, the
procedure for obtaining the numerical values for the shape and scale
parameters discussed in the last section.

1. p1=40% p2 = 60%
ty = 7 years t, =10 years

Now B* = log (-log(1 - p1) -1og (- 10g(1 - P7)
log y; - log y2

log (- log(1 - 0.6) - log (- log(1 - 0.4)
Iog 7-log 10
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- 0.6717269 - (-0.0874215)
1.944459101 - 2.3025851

1.6382016
a*=exp/wlog yr +(1-w)log ya/

butw =1-logK; = 1--06717269
K -0.5843054

= 1-1.1495205 =-0.1495205

a*  =exp/-0.1495205 x 1:9459101 + 1.1495205 x 2.302585 /

= exp /2.3559152 /

=10.54778

\
J0

20 %
40 %

' lo Tyear leo lOyears'/
Figure 2: Graph for illustration 1 for the estimated values of aand B

2 p1 = 50% p2=70%
ty = 2 years f = 3 years
B = log(-10g(0.5) - log (- 10g(0.3)
log2-log3
= 1.3617438

o =exp/0.3361952 x 0.6931471 + 0.6638047 x 1.0986123 /

) = exp / 0.9622968 /

=2.6177021




20 %
50 %

>
tso to t
2years 3years

D e
e

Figure 3: Graph for illustration for the estimated values of a and B

3. p1=60% p2 = 80%
ty = 2 years t; = 4 years
£ = log(-10g(0.4) - log (- l0g(0.2)
log 2 - log 4
= 0.8126794

o = exp / 0.8448065 x 0.6931471 + 0.1551934 x 1.3862944 /

=exp/0.8007191/
R .,, — =

=2.2271419

56




)

e .
20 %
60 % -
>
ten tro t
2years 4years

Figure 4: Graph for illustration 3 for the estimated values of a and B

R 5

The percentile points (py and p2) and the corresponding times (f; and t,)

for illustrations 1, 2, 3 and the estimated values for o and B are summarized in

table 3. |
Table 3: The percentile points and estimated values of the Weibull I
parameters
‘ Time % of Time = % of Time % of
i‘ people people people
7 40 2 50 2 60
10 60 3 70 4 80
= 105 o 2.7 a 5.3
B 1.6 B 1.4 B 0.81

It must be noted that we have that ¢ = 0. Thus the graphs lie on the origin

as shown in figures 2, 3 and 4.
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The Weibull distribution is prominent in applied sciences, mainly in the
analysis of extreme value phenomena and in the field of reliability engineering.
Karl (1975) The failure rate for the Weibull .is not constant for § # 1. Therefore,
it accurately measures the holding times in the states of a disease which
changes with time.

The exponential and the Weibull distributions are prominent probability
distributions. The relative advantage of the exponential distribution is that, it is
specified by a single parameter and can be easily estimated from the mean. It
also has the ‘memoryless’ proper,ty as explained in the previous section. The
exponential distribution is a sp\ecial cése of the Weibull distribution when the
shape parameter (B) is one. However, the failure rate function of the
exponential distribution is constant, this does not accurately measure the
holding times in the state of some diseases. For instance, the probability of an
HIV positive individual to develop AIDS in 15 years (say) should be more than
the probability of the individual developing AIDS in 3 years (say). According to
the exponential distribution these probabilities are the same, hence the beauty
of the Weibull distribution emerges. It defines an increasing function for the
failure rate thereby taking care of the weakness of the exponential distribution.
3.13 MARKOV DECISION PROCESSES

Bhat in 1984 summarizes the definition of Markov decision processes
thus; Markov decision processes bring together the study of sequential decision
problems of statistics, and the dynamic programming technique of applied

mathematics and operations research.
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Consider a process that is observed at discrete time points to be in any
one of m possible states, which we number by 1,2,3,...m. After observing the
state of the process, an action must be chosen, and we let D, denote the set of
all possible actions , we assume D is finite.

If the process is in state i at time n and action k is chosen, then the next state

of the system is determined according to the transition probabilitie§<Pi,-.
Following Ross (1989), let X, denote the sfate of the process at time n and K,
the action chosen at time n, then the above is equivalent to stating that
P(Xne1=]1Xo0,Ko, X1,Kt, ... Xn=i, Kn=k) = “Py
Thus the transition probabilities\ aré aependent on the present state and
subsequent action.
Definition (8): A policy; by a policy we mean a rule for choosing actions. A
policy is a sequence of decisions, one for each state of the process.
Definition (9): Dynamic programming is an approach for optimizing multistage
decision processes. It is based on Bellman'’s principle of optimality.
BELLMAN’S PRINCIPLE OF OPTIMALITY

An optimal policy has the property that regardless of the decisions taken
to enter a particular state in a particular stage, the remaining decisions must
constitute an optimal policy for leaving the state.

Consider a Markov chain\WithA Sféte space S. Suppose with every state
we associate a decision to be chosen out of a set D.

Let KP., be the probability of the one step transition from i to j. i,je S under
decision KeD.

‘Also we associate a reward “R; with decision K and transition i to j .

Knowing the set of alternatives in the decision set and the corresponding
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transition probabilities and rewards, the objective of the process is to select the
optimal decision under certain criteria. When we associate rewards with every

decision, maximization of expected reward over a given time horizon is the

natural criterion.

If costs are associated with decisions; costs are essentially negative
rewards and so minimization of expected costs is called for.
Let “v{™ be the expected total earnings-in n future transitions if decision K is
made when the process is in state i. For the optimal decision K= 0 if it exists:

we have

V= maxZ kPu[k&ﬁon("-”\l"n=1'v.2.’3"'ies -

keD jeS

This is a functional equation satisfied by the expected reward.

3.14 MARKOV REWARD PROCESSES
Consider an aperiodic, irreducible Markov chain with m states (m<w) and

the transition probability matrix

£, R, .A,
P: : i
Pm] Pm2 Pmm

With every transition i to j associate a reward Ry. If we let V{"be the expected

total earnings (reward) in the next n transitions, given that the system is in state

i at present . A simple recurrence relation can be given for {Vi("’}"zl“’ as

follows:

VO =Y PR, +V VL0 = 1,23,...mn = 1,2 .. 36

J=
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Let Z‘Pi le j =0,
Jj=
Equation 3.6 can now be written as

Vo =0, +§E,V,‘""’ 3.7

R

setting n=1,2,.... We get

V;(l) = Qi +ZI)UV(0)
=

Ve =0+ L RI0,+ 2PV
j=1 k=1

=043 B0 AR RBEYS
j=1 k=1 j=1

1 j=

=0, +‘}:1;Q,. +§1;"’V,‘°’
=}

=l

Where P is the (i,j)" element of the matrix P"

o
=] 5 r[ff]f

R
v 0,
V(") X
Let V(n)=| ? 0=
| 0.
LV (m)

Equation (3.7) can be put in matrix notation as

y® =0 +PQ+PV®

Extending thisto a general n, wé have

Y™ =Q+PQ +P’Q+..;...+P‘"‘"Q+P”V‘°’

N *
N D




n—1
{1 + ZPk}Q +PV©

k=1

() _ o)
but P = Hj+e,.j

Where {1‘1 j};"ﬂ is the limiting distribution of the Markov chain and

(m)

pai n
le,j <=cr

with c>0 and O<r<1. therefore, as n — «, ¢, ” — 0geometrically.

Let =n(n) ., s

(n
€y

A 5 AR 4
And []=|11, II, II,

_Hl H2 H,,,J
In Matrix notation, we can write P" as

p" :H+n(")

Substituting this in (3.7) we get
5 s B ®) " 0y
o=\ en e+ 1+ 7

k=1

n-1
=p® { n("’}Q +nl1Q+7 " V® 3.8

k=1
In deriving (3.8), we have noted that 7 =1-11

Now consider the sum

n-1 L)

TP =3 7% -

©
k=0 k=0 k=n

n® ' 3.9

62




It should be noted that eaci: teiririn n*is less than or equal to cr* (c>0,0<r<1)

in absolute value, and hence for large n the second term on the right hand side
of (3.9) approaches an m x m matrix with zero elements. For the same reason
the last term in (3.8) approaches a null matrix for large n.

Thus asymptotically we have

o =HV(0> +i’7kQ+nHQ
k=0

which gives
i =211 ij(O) +2.7,Q;, +n2 11,0, 3.10
j=1 j=l j=1

where we have written i 7= iiyb '
k=0

writing

LILV,®+207,0,= 8,
Jj=1 Jj=1

210,0,=4

J=1

so that (3.10) can be put in the form
Vi) =B, +nq
which shows that for large n, ™ is a linear function of q for every i. Further, for

different values of i 7" ara represented by parz!lel straight lines with slope q
and intercept g, (i =1,2,..m)

So far, we have considered the transition probability matrix P and the reward
matrix R as given.
Instead, suppose that the decision maker has other alternatives and so is able

to alter elements of P and R. To incorporate this feature, define D as the
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decision set, and under decision Ke D let KP;j and KR be the probability of the
transition from i to j and the corresponding reward respectively for “v{®- The

expected total earnings in n transitions under decision K; we have the

recurrence relations (K=0 represents the optimal decision)

W = max,, Y 4P [ER 47 n=12,..i=12,..m 3.11

J=1
giving

i At maxkeu{"Qi 5 00 OVf("'U]-i =12,.mn=12

J=1

where we have written > P,“R =*Q,
j=1

Recursive relation (3.11) gives an iteration procedure to determine the optimum
decision dPe D, For i=1,2...APand7i=1,2...

This is a Standard technique in Dynamic programming and it has been
shown Bhat(1984) that this iteration process will converge on best alternative
for each state asn— .

Since the procedure is based on the value of the policy (total earning) for
any n, it is called the Value Iteration Method (VIM).

The method is based on recursjvely determining the optimum policy for
every n, that would give the maximum value.

One major drawback of the method is that, there is no way to say when
the policy converges into a stable policy, therefore, the value iteration
procedure is useful only wh\en n is fairly small .This is the reason why it is

appropriate for our diseases model as indicated in the following section.
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CHAPTER FOUR

4.0 THE DEVELOPMENT OF THE MODELS
41 A THREE STATE MARKOV CHAIN MODEL FOR CATARRH DISEASE

A finite Markov chain is a discrete time parameter stochastic process in
which the future state of the system is dependent only on the present state and
is independent of the past history and the number of states are finite or
countably infinite.

Suppose an individual has mild catarrh sometimes or severe catarrii some
other time and most often has no symptoms of catarrh. We have the following
three states if we should consider the disease catarrh as a Markov process.
State 1: No catarrh
State 2: Mild catarrh
State 3: Severe catarrh

It is assumed that the possibility of death due catarrh is very small and
could be neglected. The classification of states for a Markov model is
dependent on the nature of the process involved and the intended use of the
model.

The transition diagram for this process is shown in the figure below

STATE 1

A 4

STATE 2 b 5 STATE 3

A
A

Figure 5: The state transition diagram for the process.
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The transition between the states is described by the following transition

probability matrix.

P P, .P13
P = Py Pzz Py
_P31 P, P33_

Thus we define a l;narkovﬂchain as a sequence Xp, Xi,... of random
variables with the property that the conditional probability distribution of X, + 4
given Xo, X4,...Xn depends only on the value of X, but not further on Xo, X1,...Xn
-1.that is, for any set of values h, i ... j in discrete state space P(xn+1=j/Xo =h

wXn=1)=POas1=jlXa=i) = Pyij=12.3.

Let
P" =(R", P, P)
denote the probabilities of finding the patient in any of the states 1,2,3
respectively on day n. then .
P"=pP"-'p 4.1
on iteration, we have
P"=PP",n=0,1,23 ...

where PP is any starting vector of probabilities.

The Markov chain analysis requires that the process be considered at
discrete uniformly spaced intervals of time. It is assumed that the time between

transitions is one day.
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The fundamental assumption of Markov chain is that the probability of

making a transition from state i to the jin the next time interval is a function of

i and jand not of any history of the process before its arrival in state ;.

4.2 THE LIMITING STATE PROBABILITIES

The state — occupation probabilities is independent of the starting state
of the process if the number of time of the ‘state transition’ is large. Thus the
process reaches a steady state 'after_a sufficiently large period of time. This is
the equilibrium probability distribution IT = (H],Hz,m) and letting n— o in
equation (4.1)

we have

II =1IIP

and sum of the components of IT must be unity i.e.

3
I o= 1

i=1
we use these last two equations to find the limiting state probabilities for the

process.

4.3 MODELLING THE EFFECT OF PREVENTIVE TREATMENT

A good measure of the effectiveness is obtained by defining
E, = Q-k)P,;, j=23
where k is a positive real number in the interval [0, 1). Then

E, = 1 - YE,, 4.2
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where j =2 and 3 and the transition matrix is P with the first row replaced by

E,j= 2 and 3.

44 MODELLING THE SEASONAL EFFECT
Suppose that the probable course and outcome of the catarrh disease
changes with the seasons. We may consider two seasons as the transition
times.
(1)  The wet season (April - October)
(2) The dry season (Ngvembfz[ - March)
Each season has its own ;ran;i;;on count and transition probability matrices.
We denote these as follows.
M;: Transition count matrix for Wet season
M.: Transition count matrix for Dry season
Ps:  Probability transition matrix for Wet season
P2:  probability transition matrix for Wet season

Let

M,=f k) L3243 ad k=12
and P, =P;(k)i,j=1,2,3and k=12,

f, (k) denotes the transition count from state / to state ; for the season
k. P, (k) is the transition probability from state i to state j for the season

k.

Accordingly,




Accordingly,

I;y(k) = j;_((:)) k =12 and i,j = 1,2,3.
where  f, = ZB: f (It),,m S 4.3

.

45 TEST FOR STATIONARITY OF THE PROBABILITY MATRICES Pk.
To test for independence of Pxon K. the Null hypothesis is stated thus
P,(k)=P, for all i, j=123
Hi: Pjj(k) depends on K.

The likelihood ratio Test for the above hypothesis, is

R 4.4
where f, = Zz; £, (&)

The maximum likelihood estimate of the stationary transition probability matrix
is

7y 4.5

. Ji
3
where f, = f,

i=

The 4, the likelihood ratio criterion is given by

According to Bhat (1984)

-2InA = Z:(.-lx.‘r-—l)

69




where m is the number of states ahd T is the time parameter. We evaluate
A,and calculate - 2/nA. We then get the critical value of 7* ar «

significance level and compare it with b 2In A. Itis then decided to accept or
reject the Null hypothesis. V\Vith 'thewacceptance of Ho, we have a homogeneous
Markov chain model. The model is represented by a single transition count

matrix in (4.4) and the P, s are estimated from (4.5). Otherwise we have the

non- homogenous Markov chain model.

4.6 NON - HOMOGENEOUS MARKOV CHAIN MODEL

Following Howard (1971), the stochastic matrix P can be written as

P =PsPzand the P;s are estimated from (4.3).
The limiting state probability vector IT, and IT, for the two seasons

are then obtained from the icllowing

HI:HOPl
II, =1II,P,

itis observed that IT , = IT,

47 DISCRETE STATE AND CONTINUOUS TIME MARKOV

MODELLING FOR CATARRH DISEASE.

In the previous section we cénsidered the catarrh disease as a Markov
process in discrete state and time. We shall now consider the three state model
of the disease in continuous time, which will enable us to obtain information
about the patient at any givéﬁﬁa%ﬁfin time.

Following the work of Howard in 1960, we let a; represent the transition

rate of the patient from state/ tostatej , i = j.In a short time interval
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(I, r + At), the patient currently in state i will make a transition to state ;
with probability a, Az,i # j. if X; is the state of the process at time t, then we

have

PXea=j| xe= 1) = ayat

N

The probability of two or more state transitions is of order (Az)* or more
and it is negligible if Az is sufficiently small.
Suppose that the transition rates do no change with time (a, 's are constants).
and

a, = -y a,, i,j=123 4.6

Y
We describe the process by a transition — rate matrix A with components a, .

Suppose P, (t) is the probability that the patient is in the state i at time ¢ after
the start of the process and let P,(r + Atr) be the probability that the patient

will be in state ; a short tifis Aiater.

Then,

P].(t+At)=Pj(t)(l—ZaijAtJ+ZP,.(t)a,jAt j=123 47

izj izj
Equation (4.7) can be explained thus: There are basically two mutually
exclusive ways in which the patient can be in state j attime (t +  At) first,

he could have been in state ; at the time t and make no transition during the

interval. (t,t+At) These events have probabilities Pj(t) and 1 — Z a , At since

iz j

the probability of multiple transition is of the order higher than Arand is

RN —_—
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negligible. The probability of making no transitionin (¢, ¢ + At) is 1.minus
the probability of making a transitionin (1, + + Ar)tosome i = j

Another way that the patient could be in state ; attime + + Ar is to have
been in state i/ # ; at time t and then make a transition from i to j during

the time Atz. -

= =D

Equation (4.7) is obtained by multiplying the probabilities and adding

over all i that are not equal to ; because the patient could have entered ;

from any other state i putting (4.6) in (4.7) and rearranging terms gives

PG+ A)-P, () = 3 P,()a,bt

i=1

Thus we have

dt

3
de(f) - ZPi(t)"u § =133
i=1

in matrix form, we have L S

%—P(t) = P()A. 48

P(t) is a row vector of state probabilities at time t.

To obtain the solution to (4.8), the initial condition
P,(0), i =1,2,3; mustbe specified.

Taking the Laplace transform of (4.8) we have
P(s) = pPO)(ST - 4)'

Thus P(t) is obtained as the inverse transform of P(s).

RSN
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In fact, equation (4.8) is an exact (not approximate) differential equations for

dPij (t)
dt

P;(t)in = Y p,way (Chapman Kolmogorov equation). It is a linear, first-

order differential equation with constant coefficients — the aj’s. in this particular
case, they are simple enough to solve directly. Making use of whatever
manipulations or solution technique we find most convenient (apart from the
one proposed above) and using the initi‘gl conditions P, (0)= 0 fori #j and

i

Pij(0)=1 fori=j

48 MODELLING THE EFFECT OF PREVENTIVE TREATMENT
Following Korve(2000), suppose the catarrh patient is in state 1 at time
t , then he has probabilities of a,, A7 and a,At of making a transition to

state 2 and state 3 respectively. This means that the times taken for the patient

to make a transition from state 1 to states 2 and 3 are exponentially distributed

with mean respectively.

a; a;
N

: apey Si AR 5 : 1 ;
When preventive treatment is given these mean times are increased to — i
12

and —l—, respectively. And the probabilities of making transition from state 1
13

and3in (t, + + At)arereducedby b,At and b, At respectively.

The measure of this effectiveness is obtained from the following expression

B a + k)—l—, j=23
bj ay. :

where K is a positive real number. If k = 0, the treatment has no effect and if k >

e T @

0 the treatment has effect.




We let

b, = a, and . I

and the b , s are obtained from (4.6) and in (4.8) we have

2 ph) = PGB 4.9

The matrix B has components b, l_] = 1.2.3.

4.9 A SEMI-MARKOV MODEL FOR LEPROSY DISEASE

In this chapter we consider,ed leprosy as a disease where the transition of
people from one state of the disease to another may not necessarily occur at
discrete time instants. We therefore look at a situation where the time between
transitions may be in several units of time interval, and where the transition
time can depend on the transition being made. This leads us to a generalization
of a Markov process called the semi-Markov process (Howérd, 1971). In other
words we shall consider the disease leprosy as a semi-Markov procesé running
in discrete time and continuous time respectively.

One other mathematical definition of a Markov chain is a sequence Xj,
Xi, - - - - of discrete random variables with the property that the conditional
probability distribution of Xy + & giVen,Xo, X1, - - - - X, depend only on the value
of X, but not further on Xo, Xj, - - - - X.4. That is for any set of values, h, i, - - -
Jin the discrete state space,

PXas1=j|Xo =h, ----- o= =PXas1=j| Xn=)=Pij.0,j=1,2 3,4

The matrix P whose entries are the Pys is called the transition probability

matrix for the process. The above chain is a first order Markov chain, In this

process, the probability of making transition to a future state does not depend
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on the previous states but only depends on the present state. In other words,
the probability of making a transition to a future state does not depend on the
past history. :

The matrix P and the initial state transition probabilities completely specify
the process. If the transition probabilities depend on time, then the Markov
chain is non-homogeneous, otherwise, it is homogeneous. In this project we
shall only consider the Markov chain that does not depend on time. Thus we
have stationary transition probabilities.

The Markov process discussed above has the property that state changes
can only occur at the appropriate time instants. However, given the nature of
the disease leprosy, transition may not actually occur at these time instants.
We therefore consider a ‘situatio\n’ where the time between transition may be
several of units of time and where the transition time can depend on the
transition that is being made. This leads to a general form of Markov process
called a semi-Markov process (Howard, 1971). In section 4.2 we use the

characteristics of a semi-Markov process to develop a model for the control of

leprosy.

410 THE DEVELOPMENT OF THE MODEL

In this section we shall develop a semi-Markov model for leprosy. The
assumptions of the model are made in_section 4.1 1, the model is formulated in
section 4.12. Interval transition probabilities are given in section 4.13 and

effectiveness of treatment is considered in section 4.14.
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411 MODEL ASSUMPTIONS

Leprosy is considered as a disease that runs in time. Some suit‘able
states of the disease are specified and tﬁe description of the manner in which
the patient moves from one state to another is given. The states of the disease
are finite. It should be readily observed that there is no unique set of states and
the progress of the people through tie states can be described in a variety of
ways. The choice of states should therefore be governed by the intended use
of the model and the availability of data.

The basic assumption in developing the model is that the transition from
one state to a different state should not occur at time t = 0 (year 0) and that the
basic unit of time is one year.

A leprosy patient that dies during treatment is assumed to die of leprosy.
Natural death is not considered.

A patient that fails to recover from treatment after completing a session of
treatment has developed a resistance to the drug and is consequently

considered to develop a relapse from the state of treatment.

412 FORMULATION OF THE MODEL

We consider a leprosy patient. Let us assume that each year the leprosy
patient is under treatment or has recovered from the disease or has relapsed or
has died from the disease. We therefore have a four state process.

State 1 - Under treatment
State 2 - Recovery

State 3 - Relapse
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State 4 - Death due to leprosy.
These states are assumed to be mutually exclusive and exhaustive. The
transition from one state to another is indicated in the transition diagram shown

in figure 6.

o 3

Figure 6: Transition diagram for leprosy.

We observe that states 1, 2 and 3 are transient states and state 4 is an
absorbing state. In other words, all possible transitions of the process are made
between states 1, 2 and 3 but once a transition is made to state 4 the‘process
terminates. We would like a transition to occur at a time the duration of stay in a
state is completed, even if the new state is the same as the old. Such a
transition is called virtual transition, and are represented by loops in the
transition diagram. o
From the above transition diagram we can record the transition probability

matrix ‘P for the process as shown below.

B, P, B; B,]

o B B O
|By B, By O]
o o o P,]

We use the semi-Markov process technique to analyse the process with
the above set of. states. The transitions can be readily identified from the

transition diagram shown in figure 5 or from the transition probability matrix P. <,

RS ,7:,77
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To study this process, we have to specify the probabilistic nature of the

transition. We shall think of this process as a process whose successive state
occupancies are governed by the transition probabilities of a Markov chains,
but whose stay in any state is described by a random variable that depends on
the state to which the next transition _is made.

In precise terms, let P;be the probability that the leprosy patient who is in
state 7 on his last transition will enter state ¥ on his next transition, i, j =1, 2, 3,
4. The transition probabilities must satisfy the following

P;>0,ij=1,2 3, 4.
4

and 2.P, =1, i=1, 2, 3, 4.
j=1

whenever the patient enters state 7 he remains there for a time Tj; in state
i before making a transition to state /. Tj is called the ‘holding time’ in state |.
The holding times are positive integer valued random variables each governed
by a probability distribution\ ;function fy () called the holding time distribution
function for a transition from staie i to state J.

Thus P(Tj=m)=fi(m). m=1,2,3,...
,j=1,23, 4

We assume that the means p; of all holding time distribution are finite and

that all holding times are at least one year in length. That is,
fj (0)=0

To completely describe the semi-Markov process we must specify four
holding time distribution functions in addition to the transition probabilities. For
a fixed value of i Tj is the same for each value of j, (i, j =1, 2, 3, 4).

\

Figure 7 shows a po:tioh_ot_g possible trajectory for the leprosy patient.
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Figure 7. A possible trajectory for the process

Let F; () be the probability distribution of Tj.

Ry = ATy <) = 3, ()

and F ( ) be the complementary probability distribution of 7.

F () =1-Fy(n) = P(Ty > n) = 3.7, (m)

m=n+1

Suppose the patient enters state i. Let Y; be the time he spent in state |
before moving out of the state i. Then Y; is called the waiting time in state i.

We let w; () be the probability distribution function of Y. Then
4
wi(m) = P(Yi = m) = 2P, 7, (m)
J=1

The probability distribution W; ( ) and the complementary cumulative

N

probability distribution W, () for {he v;/-aiting times are given as follows

Wi(m)= P(Y; < 1) = S,(m)

and

i) = P> ) =1 - Win) = Sw(m)

m=n+1
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=3P, Fy(n) 4.9

413 INTERVAL TRANSITION PROBABILITIES
We define ¢, (n) to be the probability that the patient will be in state jin

year n given that he entered state / in year zero. This is called the interval
transition probability from state i to state j in the interval (0, n]. Then

n

9, (”) =0, ﬁ;,(n)+ Z Pikaik (m)¢1g (” ¥ m)

4
k=1  m=l

51] :{(I)I;JJ
ij=1,2,3,4  n=13, . ...

W (n) is as defined in (4.9).

414 EFFECTIVENESS OF TREATMENT
When the leprosy patient undergoes treatment, it is expected that this

treatment should have an effect on the disease. This effect should be noticed in
the increase in probability of recovery, a decrease in the probabilities of death
and having a relapse. An apprdpriqtg measure of this treatment effectiveness is
obtained from the following expressions.

Eiz2 = (1 +k)Ps2

Ey=(1-KPy, j=3,4

when k is a positive real number in the interval [0, 1). Then

L3
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and the transition matrix is P with the first row replaced by E4. J=1, 2, 3, 4.
415 SEMI - MARKOV MODEL IN CONTINUOUS TIME

In the last section we have considered the disease leprosy in discrete
states and time. We should think of the same process in discrete state but in
continuous time.

The continuous time case has essentially the same properties as the
discrete time in respect to the transition probabilities of the Markov chains, the
holding times and their probability distribution functions.

>

Let £, () be the probability distribution of continuous random variable T,

() =p(T,

i)

<n) = jfﬁ (m)dm

0

And Fi;( ) be the complementary cumulative probability distribution of 7.,

P(Tij > n) = Tfij(m)dm

m=n+l

iy
—
~
1}
—_—
|
_"’7
T
=
N
1]

Suppose the patient enters state i. Let ¥, be the time he spent in state i before
moving out of the state i. Then Y, is called the waiting time in state ;.

we let w. () be the probability distribution function of 7.

S &
T = m) = ZPijfij(m)

=l

Il

Then w;(m)
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The probability distribution w,( ) and the complementary probability

distribution w; () for the waiting times are given as follows

w, (n) = P(Yi < m) = iwi(mﬁm
Tk st = P
and wy (m) = P(Y, > n) =1 - win)
= Iw(m)a?n

4 -
= ZPf j.Fi J(n)
j=t

416 INTERVAL TRANSITION PROBABILITY

The interval transition probability is defined thus:

6.0) = 5, wm) + Pt [ 7::(m) @, ,(n = m)dm
=] 1
5 1 i=j
= _{o i#j Lj=1234,n= 123,

This is the interval transition probability from state ito state j in the ‘interval

(0,n].

PR
S E = '
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417 OPTIMAL MARKOV MULTIDRUG DECISION PROCESSES FOR THE

CONTROL OF CATARRH AND LEPROSY DISEASES

FORMULATION OF THE DECISION MODEL

So far, we have not taken into account the possible cost of control
(treatment) of the diseases (catarrh and leprosy) considered in this project.
However, we shall introduce the concept of Markov decision process as it may
affect the patients or the medical personnel’s in the choice of drug for
administration.

At any given point in time and state of the process. The patient has an
opportunity or a privilege to \make a choice of the possible combination of
drugs.

The choice of drugs may however be dependent on:
(1) Availability of the drugs
(2) Resources available to the patient
(3) The state or severity of the disease.
For the sake of simplicity let us divide the drugs into two groups as follows:
(1)  Low priced drugs

(2)  high priced drugs

.
}f
i
g‘ h

From every day expe[ience, it is known that low priced drugs are less
costly and are often administrated f,or longer duration of time. Whereas, the
high priced drugs are usually more costly and are often administered for a
shorter period of time.

Suppose that the following alternatives exist for the three states:

State 1:

Alternative 1: Self medication/self care
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Alternative 2: Go to see a doctor

State 2: )

Alternative 1: Low priced drugs

Alternative 2: high priced drugs

State 3:

Alternative 1: Continue without change of drugs

Alternative 2: Change drugs

Costs are usually associated with each of these alternatives.

Our objective is to obtain the policy or alternative that minimizes the costs
of the control of the diseases at any given state and time in the control process
of the diseases. .

Thus instead of considering the cost of individual drug to be administered,

we shall consider the cost of a combination of drugs to be administered at any

given state and time of the diseases.

418 ASSUMPTIONS

Markov reward process requires that the Markov chain to be a periodic
irreducible and positive recurrent. (ergodicity). We thus assumed that the three-
state Markov chain for catarrh diseases is ergodic.

For the four-state model for the leprosy disease, records have shown that
death due to leprosy is uncommoh, although not imnaossible. The usual terminal
event is the deformity of fingers, toes etc or tuberculosis.

On the basis of that, we assume that death due to leprosy is rare and could be

neglected. Thus we have a three state model for leprosy.
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given as follows:

3]

11

Ba
Pz(Rj)z by Py

B Py
and

Rﬂ Rl2
R=(R))=|Ry Ry,

Ry R,

-~ get

m
. A b Oy @-1)
= min;p Qi+§: & ¥y
=

'0,='P, 'Ry + Py Ry +' Py 'Ry = e

419 MODEL IMPLEMENTATION

Let the transition probabilities (P;) and the corresponding reward (R;) be

=~

RSN 2

£,
PB -!j,‘: 13213
By

R,
R, =135
R,

Let D be the decision set as defined in the previous section so that in every
state of the diseases we have two alternative decisions available to the patient.
That is, Altemative 1; and Alternative 2; Thus in every state we have k=1,2eD.

We shall now determine the best policies for every n using

m
orm) _ s kp[kp Loy D)
V" =min, ., ) Pf][ R+, ]

j=1

Let % = ofor i=1,2,3. Then for n=1, we have

lQl =an an"'ll:;leu '*JR:;IRB =

—_—

lQ3=1P311R91 +IP32 lRaz "'lgisas =,

We shall now implement the second alternative for the three states. Thus, we




2 _2p 2 2p 2 ip 2p _
Q="R,"R,+'R,"R,+'F;,’R; =«q,

2Q1=2P21 2R21+2P22 szz +2P23 ZR’B =a;
le :2P31 2R31 +2P32 2R32 +2P33 2R33 =

The value of a,i=1273,4,56 wiii determine which of the alternatives

minimizes our cost for n=1. Since we are concerned about minimizing the costs
of drugs to be administered; the alternative that yields least value of
a,i=1273,456 constitutes the best policy for n=1, that is, if the least value
occurs between ¢,,i =1,2,3. then alternative 1 constitutes the best policy thus
%i® = min, ,*Q, and hence
¢ =1and d," =1
Now let °V;" and %," be the minimum cost/reward corresponding to d;" and
d,\" respectively.
For n =2 we have X
%o =min,,|'0,+ 3B, %, i
And the iteration continues forn=3,4,5...

The successful use of these models developed here would require joint
work by the medical personnel and applied mathematician. The problem of

communication between these two groups of people is greatly reduced by not

using advanced mathematics. , f
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CHAPTER FIVE

5.0 APPLICATION OF THE MODELS, RESULTS AND DISCUSSIONS
51 APPLICATION OF MARKOV CHAIN MODELS.

The following tran§itioh counts were recorded for forty-seven individuals
during the wet season and dry season respectively. Since the Markov chain

requires the process to change at a given unit of time interval. Our unit of time

is one day.
TABLE 4. Transition count for wet season
} ACTUAL DAY
i - STATE 1 STATE 2 STATE 3
g STATE 1 19 1 2 22
% STATE 2 2 9 4 15
§ STATE3 | ~ 1 2 7 10
& . i
TOTAL 47
TABLE 5. Transition count for dry season
ACTUAL DAY
STATE 1 STATE2  STATES3
| g STATE 1 12 2 3 17
z STATE 2 6 6 7 19
g STATE 3 1 2 8 11
g:' TOTAL 47




We k?l'.if:.ll"i the ﬁﬁ.lnhiliun countmatrixifortne two'seasons

19 1 27 i FO.864 0045 0.091]

M= 2 9 4|, P,=/0133 0600 0267
REE 5 0100 0200 0.700
[12 2 & [0.706 0.118 0.176]
1 M,=|6 6 7|, P,=|0316 0316 0368
|1 2R 0091 0182 0.727
Thereforg da i "
R 0795 0077 0128]
) M=|8 15 11|, P=|0235 0441 0324
2 4 15 {0095 0190 0714
3+ 42 (k)
N (k)
}Wi}ilkltl[ L ]

(£, (Df," ONAY IS (D4f,® @8
=Py [Py )™ (BofBy )™ (PfPy )™ (PufPy 7)™ (BfPy )™ (PP 5
f() f() (1) f() (2) f()

AR T N n{Pzz (Pfy”)

(D\f ) (D\f W) (1) £.0 ¥) £.@ )IN: () N ()
(PP ) (PP )" (P331P33 )> (BulPy ") (PllPy ™)™ (PP )"

= (0.7987181 J 0.863636)'° (0.7692308 [ 0.4545455)" (0.12820513 }
0.090909090909)? (0.79487178 f0.70588235)'? (0.7692308 f0.11767706)?

(012820513 £0.17647059)° (0.2352412 [0.133333)% (0.44117647 J0.6)° < .- . b

: oy I
88 P u‘“ 3
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g A
(e gsian

(0.32352941 / 0.2666667) (0.4411764 / 0.31578949)* (0.323552941 /
0.36842106)" (0.095238095 [ 0.1)' (0.19047619/ 0.2)? (0.714285714 J0.7)’
(0.095238095) 0.9090909)" (0.19047619 40.1818181 8)? (0.714285714 )
0.72727273)°

A =0.10205577

Herem=3, T=2

Therefore

2InA= x23(3-1 )y = xzs

-2 In A = 4.564867465 = 1% '

the critical value of y% at o = 0.05is 12.59

Therefore the null hypothesis of constant transition probability matrix cannot be
rejected.

The test statistic as shown above indicates that the two seasons from
which the data were obtained are stationary. That is to say that the occurrence
of catarrh disease in the two seasons is fairly uniform.

It is therefore very important to mention at this point that catarrh disease
is Not Seasonal. We shall now proceed to obtain the result for the model using
this preliminary result. X

The model can be represented by a single transition count matrix.

Thus the maximum likelihood estimate of the transition probability matrix is

given thus:
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0.795 0077 0128
P=|0235 0441 0324| correctedto3dp
0.095 0190 0.714

calculating P", we have

0575
P’=|0359
0.259

0455
P =| 0395
0363
0416

0.405
0399

0409
P" =| 0406

PIO =

0.404

0.408
=1 0407
0.406

0.145
0.223
0.226

0179
0.196
0.204

0.190
0193
0.195

0.192
0193
0193

0192
0.193
0.193

0.280
0419
0515

0366)

0.409
0432,

0394
0402
0407

0399)
0401
0.401)

0.400)
0401

0401 - ==

041 019 040

=|041 019 040| corrected to 2dp
041 019 040

5.1

and for n > 16, we find that P" gets closer and closer to exactly (5.1) that is, as

n increases.
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041 019 040
041 019 040

= PO PO PO
(P4P2P8) L oa1 010 040

= (0.41 0.19 0.40)

Again as n increase this approximation becomes more and more accurate.
That is

P" > (0.41 0.19 0.40)

The limit state probability vector is given by

r=np = (0.41 0.19 0.40)

This shows that in the long run 41% of the individual wi!' have no catarrh. 19%

will have mild catarrh and 40% will have severe catarrh.

5.2 OPTIMAL EFFECT OF PREVENTIVE TREATMENT

Suppose treatment is given to prevent an individual from developing mild
or severe catarrh. That is, the probabilities of making transitions from state 1 to
state 2 or state 3 is reduced. This reduction of course depends on‘ the
effectiveness of the preventive treatment: The results are summarized in the

table below when the treatment is assumed to be 50%, 90% and 99% effective

respectively.

Table 6: A summary resuli of the-effective of preventive treatment.
K P11 P12 P13

0 0.79 0.08 0.13

50 0.90 0.04 0.06

90 0.98 0.01 0.01

99 1.00 0.00 0.00
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It can see from the above table that the probabilities of‘no catarrh *

increased by 12%, 19%, and 21% respectively when the treatment is assumed ! |
to be 50%, 90% and 99% effective respectively. l |

Conversely, the probabilities of an individual to develop a mild catarrh
luced by about 4%, 7% and 8% respectively when the treatment is assumed to
50%,90% and 99% effective respectively.

Similarly, the probability of an individual to develop a severe catarrh has

uced to 7%, 12% and 13% respectively when the treatment is assumed to be
%, 90% and 99% effective respectively.

The fore-going analysis shows that it is possible to maximize the probability of

individual not to develop the symptoms of catarrh by 99 percent and at the il
ne time minimize the probability of an individual to develop mild or severe !

|
arth by at most 99 percent. It is clear from the above table that the probability of | "
] i

Conversely, the probability of developing mild or severe catarrh has been bl |

iimized to zero. However, these optimal results are dependent on the |
I i1

i
having catarrh has been maximized to unity. i ’ '
|
|
i

activeness of the preventive treatment. Hence, collaboration with medical f ; ‘

|
ctors, Pharmacologists, Pharmacists and Nurses is crucial (medical personne!) and 1
st be carried along for effective and optimal prevention of catarrh. [

i

il‘.i . 1]
3}  THE NON- HOMOGENEOUS CASE !" 'p '

It is possible that the assumption of constant transition probabilities may not

- —~

appropriate. In this case, we consider the non- stationary Markov chain.

-
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Suppose the null hypothesis is not accepted at the significance level
own in the previous illustration. The rﬁaximum likelihood estimate of the
nsition probability B and P are as follow:

0864 045 0091
P,=| 0133 0600 0267
0100 0200 0.700

0.706 0118 0176
P,=10316 0316 0368
0091 0182 0.727

0632 0133 0235
P=PP,=|0308 0254 0439
0197 0202 0.600

(0487 0165 0348)
P?={0359 0194 0447
\0306 0.199 0496,

(0403 0182 0416)
P*=|0381 0186 0416
\0372 0187 0441/
(0386 0185 0429
P*=[0385 0185 0430
\0.385 0185 0431
0386 0185 0430
P =|0385 0185 0430
0386 0185 0430
039 019 043
=1039 019 043 |corrected to2dp
039 019 043

o= mop = (0.39 0.19 0.43)

1= mop1 =(0.40 0.21 0.39)

SN

mz =mip2 = (0.39 0.19 0.43)

=
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observe that mg = 2 numerically as earlier stated.
It is understood that the severity of catarrh increases from about 39% during
wet season to about 43% during the dry season.

Also the probability of not having catarrh reduced from 40% in the wet
season to 39% in the dry season. This result confirms the seemly belief that
the individual develops catarrh more often in the dry season than in the wet
season or vice versa. We gbserve for the sake of emphasis that this seemly
belief has been proved wrongr in our earlier result. The algorithm and the

computer program in Fortran is presented in the appendix A.

54 APPLICATION OF THE CONTINUOUS TIME MARKOV MODEL
The problem of continuous time Markov process is to find the probability

that the individual will be in state i at time t given that he was in state j at time t.

The differential equation in matfix form is dl;gt) =P(t)A where P(t) is a row
vector of state probabilities at time t. To obtain the solution to the above
differential equation, the initial condition Pi(0), i = 1, 2, 3 must be specified.
The development of\the.eqﬁations that determine the Pj(t) functions for

this process can be simplified if the following assumptions are made:

(1)  The process satisfies the Markov property

(2)  The process is stationary

(3)  The probability of a transition from one state to a different state in a

short time interval is proportional to At.

(4)  The probability of two or more changes of state in a short interval At

is zero.



We shall consider the transition count matrix of the stationary Markov chain

discussed in the previous section

31 3 8
M= 8 15 11
2 4 15

Normalizing this matrix using aj,- = -Zaij , we have

-8 3 5
A= 4 -15 11
2 4 =6

Thus, the matrix A can be interpreted as the reciprocals of the ‘mean times’ of
the negative exponentially distributed random variable having the cumulative
distribution 1-e™* and mean value 1/A.

The above matrix indicates that if the individual is in state |, the time he
takes to make a transition to state 3 is exponentially distributed with mean 5

days.

That is to say that if the individual is in state 1, he has a probability %At

of making transition to state 2 and a probability of %At making transition to

state 3 in the time interval (t, t + At).

Similarly, if the catarrh patient is in the state 2 he has a probability of V4

At and probability of 1/11 At of making transition to state 1 and state 3

N —~

respectively in the interval (t, t + At)
And if the patient is in the state 3, he has probability of 2 At and a

probability of ¥4 At of making a transition to state 1 and state 2 respectively in a

short interval (t, t + At).
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Table 7: The values of Pyo(t) fort=0,1 ..... 12

T Pia(t)
0 0.00000000
1 0.05864984
2 | 0.14598341
3 0.213049294
2 0.25630439
5  g— 0.28206333
6 0.29674701
7 0.30489939
8 0.30934997
9 0.31175269
10 0.31304009 _
11 ~ 0.313726298
12 0.31409075
=
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Table 8: The values of Py(t) fort=0, 1 .....12

t Pia(t)
0 0.00000000
1 0.05235628
2 0.09323153

E T 0.11975316

23 0.13559574
5 0.14464284
6 0.14967139
7 0.1524186
8 0.15390246
9 0.15469777
10 0.15512179
11 0.15534703
12 0.15546636

g THIY

These results is as illustrated in figures 8 and 9.
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55 COMMENTS N

Pi2(t) is the conditional probability that an individual will develop mild
catarrh at time t given that the patient had no symptoms of catarrh at time zero.

P13(t) is the conditional probability that an individual will have a severe
catarrh at time t given that the patient has no symptoms of catarrh at time zero.

We have obtained the values for these functions fort =0, 1,...... 12 that
is, for 12 days since our basic unit of time is a day.

We observe that the limit .of each function as t goes to infinity or fairly
large is immediately apparent, both in the functions themselves and in the
graphs of the functions. The convergence is smooth and monotonic, as
opposed to discontinuous, csciiiating or both.

P11(t) is the conditional probability that an individual will not have catarrh
at time t given that the individual has not symptom of catarrh at time 0. This is
the complement of pi2(t) and pia(t).

When this result is contrasted with the discrete time case, we see that
the discrete time case gives a higher accuracy for the optimal effectiveness of
preventive treatment which is unity for not having catarrh and zéro for mild and

severe catarrh respectively.

5.6 THE CONTRAST OF DISCRETE TIME AND CONTINUOUS TIME
MARKOV CHAINS FOR CATARRH DISEASE
P42 for the discrete time Markov chain for the first day is 0.077.
P42(t) for the continuous time Markov chain for the first day is 0.059
P43 for the discrete time Markov chain for the first day is 0.128 and

P43(t) for the continuous time Markov chain for the first day is 0.052.
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‘We observe that

. C TR Rl e Beiiee - ¢ SRRk S ae
prj:l ,7=123 NS
J

YL SRE

3
Zpy' =PutPatDys
Jj=

= p,, +0.077+0.128
= p, +0.205

- p, =1-0.205
=0.795

Similarly for the continuous time case we have

FP,J =2 PaO=jxO0)=i) ..

il g - -q.,_‘ﬂ.-——-\vv—’—:‘—:*"“

i{-’i : 11213

= }7( %(6) — Any of its possible statesfx(0)=i) = 1

"

ZR,-(X(I)=J’|X(°) =4

‘ = Pys(1) + Pia(1) + Pi3(1)

P11(1) + 0.059 + 0.052

Pi1(1) +0.111
- Pyy(1) = 1-0.111
=0.889
- For t=1
From the above analysis, we see that the probability of not having
catarrh for the discrete time is 0.795 and for' the continuous time is 0.889.
We therefore conclude that\the cdﬁiinuous time case'provides a higher

accuracy than the discrete case. The discrete time converge to 0.41,0.19 and

——

- 0.40 respectively for states 1, 2 and 3 at the sixteenth day or step, whereas the

|
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continuous time stabilised to 0.54, 0.31 and 0.15 respectively for states 1, 2

and 3 at t‘ = 10.

5.7 AN ILLUSTRATION OF THE SEMI-MARKOV MODEL

Suppose the following data were collected on a single leprosy patient for
24 years as shown below in tabie 3.

Table 9: Transition count for leprosy

Actual year
State 1 State 2 State 3 State 4 Total
State 1 5 3 2 1 11
State 2 0 3 2 0 5
Preceding State 3 4 2 1 0 F§
Year State 4 0 0 0 1 1
24

N

The transition probabilities are then estimated from this data using relative

frequencies. Thus

lO 06 04 O

P=
|06 03 01

[04 03 02 o.ﬂl
|

0|

lo o o 1]

58 EXPONENTIAL HOLDING TIMES IN STATES (DISCRETE)
Suppose that the holding times in each state before making a transition
to another state follows the exponential distribution with parameter A. This

implies that the mean holding time in each state is 1/A (in years). The mean

holding time in each state is shown in table 10.
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“Table 10: Exponential holding time in states

-

Mean holding time

State 1 State 2 State 3

3 2 2

The results for the model using these mean holding times are shown in

ables 11 -13 and in figures 10 — 12. Using:

D12(n)= Zplkij;k (m)@y,(n—m)

r - p”ilf” (m¥p(n —m) + pzf () (=m0 + P 3 fm)stn =)
P fralm), (- m)
= P> 0336707,
Similarly

(1) = p3 Y 0.33e7"5"

m=]

and

¢a(n) = pmz 0.33¢7"%"
m=I

The algorithm ,the computer brogram' in Qbasic, and the program output

are presented in the appendix C.
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able 11: Interval transition probabilities from state 1 to state 2

2

N K=0 K =0.50 K =0.99
] 1 0.0711734593 0.1067601815 0.1416351795
& 0.1223417446 0.1835126132 0.2434600741
3 0.1591278315 0.2386917472 0.3166643977
B 0.1855742335 0.2783613503 0.3692927361
5 0.2045871764 0.3068807721 0.4071284831
6 0.2182560414 0.3273840547 0.4343295097
- 7 0.2280829102 0.3421243429 0.4538449890
8 0.2351476699 0.3527214825 0.4649438472
9 0.2402267000 0.3603400290 0.4780511260
10 0.2438781261 0.3658171892 0.4853174686
11 0.2465032190 0.3697548509 0.4905414283
| 12 0.2483904809 0.3725857139 0.4942970574

Table 11 presents the interval transition probability from state 1 to state 2.

5. (n)forn=1,23,---12. ¢, (n) is the probability that a leprosy patient will

12

Je in state of recovery in year n given that he was under treatment in year zero.

n other words, @,, (n) is the probatility of recovery from treatment at time n
¥ Y12

jiven that the patient started treatment at time zero.
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' Table 12: Interval transition probabilities from state 1 to state 3

15 (M)

] K=0 K =0.50 K=0.99

1 0.0474489704 0.0237244852 0.0004744892
2 0.0815611631 0.0407805815 0.0008156108
3 0.1060852185 0.0530426092 0.0010608512
4 0.1237161532 0.0618580766 0.0012371604
5 0.1363914460 0.0681957230 0.0013639132
6 0.1455040276 0.0727520138 0.0014550389
7 0.1520552635 0.0760276318 0.0015205512
8 0.1567651033 0.0783825517 0.0015676495
9 0.1601511240 0.0800755620 0.0016015097
10 0.1625854224 0.0812027112 0.0016258527
11 0.1643354744 0.0821677372 0.0016433533
12 0.1655936539 0.0827968270 0.0016559350

Table 12 shows the interval transition probabilities ¢,, (n) forn=1,2, 3, - -
-12. ¢,, (n) is the probability that a leprosy patient will be a relapse in year n

given that the patient was under treatment in year zero. It also represents the

probability that a leprosy patient will develop a resistance to the treatment.
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Table 13: Interval transition probabilities from state 1 to state 4.

)

N K=0 K=0.50 K=0.99

1 0.0237244852 0.0118622426 0.0002372446

2 0.0407805815 0.0203902908 0.0004078054

3 0.0530426092 ) 0.0265213045 0.0005304256
4 0.0618580766 0.0309290383 0.0006185802

5 0.0681957230 0.0340978615 0.0006819566

6 0.0727520138 0.0363760069 0.0007275195

7 0.0760276318 0.0380138159 0.0007602756

8 0.0783825517 0.0391912758 0.0007838248

9 0.0800755620 0.0400377810 0.0008007549
10 0.0812927112 0.0406463556 0.0008129263
11 0.0821677372 0.0410838686 0.0008216766
12 0.0827968270 0.0413984135 0.0008279675

Table 13 presents the interval transition probabilities ¢,, (n)n=1, 2, - -- - 12.

¢,, (n) is the probability that a leprosy patient will die in year n given that the

patient was under treatment in year zero.

The above results are illustrated in figures 10 - 12.
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for exponential distribution in Discrete Time.
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Figure 11: The Graph of interval transition probabilities from state 1 to 3 and the effectiveness of Treatment
for exponential distribution in Discrete Time
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| 5.9 WEIBULL HOLDING TIMES IN STATES (DISCRETE)

The results for the model using oo = 10.5 and 3 = 1.6 (see table 3 in page

53) are presented in tables 15-17 and figures 13-15 using:

4 n
- 4,(m)=>" p,, > 0.152380952(m/10.5)"° exp— (m/10.5)"

Jj=2 m=1

Table 14: The interval transition probabilities from state 1 to 2.

¢,
n K=0 K =050 K =099
1 0.0095754713 0.0143632062 0.0190551877
2 0.0220378209 0.0330567323 0.0438552648
3 0.0356860533 0.0535290837 0.0710152462
4 0.0496131815 0.0744197667 0.0987302288
5 0.0632850900 0.0949276388 0.1259373277
6 0.0763817355 0.1145725995 0.1519996524
7 0.0887717359 0.1330755502 0.1765469015
8 0.1001924053 0.1502885967 0.1993828863
9 0.1107673943 0.1661510915 0.2204271257
10 0.1204402894 U.1606504415 0.2396761775
11 0.1292348504 0.1938522607 0.2571773529
12 0.1371911019 0.2057866454 0.2730102837
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Table 15: The interval transition probabilities from state 1 to 3

by (n)

n K=0 K=0.50 K=0.99

1 0.0063836472 0.0031918236 0.0000638364
2 0.0146918809 0.0073459405 0.0001469187
3 0.0237907022 0.0118953511 0.0002379068
4 0.0330554519 0.0165377259 0.0003307542
5 0.0421900600 0.0210950300 0.0004219002
6 0.0509211533 0.0254605766 0.0005092110
7 0.0591446869 0.0295723435 0.0005914463
8 0.0667949319 \0.0333974659 0.0006679487
9 0.0738449320 0.0369224660 0.0007384486
10 0.0802935287 0.0401467644 0.0008029345
11 0.0861565620 0.0430782810 0.0008615648
12 0.0914607272 0.0457303636 0.0009146064
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Table 16: The interval transition probabilities from state 1 to 4

#a (1)
n K=0 K=10.50 K=0.99
1 0.0031918236 00015959118 0.0000319182
2 0.0073459405 0.0036729702 0.0000734593
3 0.0118953511 0.0059476756 0.0001189534
& 0.0165377259 0.0082688630 0.0001653771
5 0.0213950300 0.0105475150 0.0002109501
6 0.0254605766 0.0127302883 0.0002546055
7 0.0295723435 0.0147861717 0.0002957231
8 0.0333974659 0.01 6698‘7330 0.0003339743
9 0.0369224660 0.0184612330 0.0003692243
10 0.0401467644 0.0200733822 0.0004014672
11 0.0430782810 5\021 5591405 0.0004307824
12 0.0457303636 0.0228651818 0.0004573032

These results are illustrated in figures 13 - 15.
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for Weibull distribution in Discrete Time.
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510 COMMENTS

The values of the interval transition probabilities ¢;(n)1 j =2,3 and 4, n=0,
1,2 .... Presented in the previous tables shows a low degree of variability in the
sensitivity analysis (i.e. the optimal modeling) for both the exponential and
Weibull distributions when the time is. measured discretely. The behaviour of

the probabilities that are evident in the graphs is quite interesting especially in

the case of treatment effectiveness.

THE EXPONENTIAL DISTRIBUTION

For the exponential distribution,$12™ increased by about 3% and 7% for
the first year. It also increased by about 12% and 24% for the twelfth year
when the treatment is about 50% and 99% effective respectively

When the mean holding time in the states is negative exponentially
distributed, ¢13™ for the first year decreased accordingly by 2% and 4%. A
corresponding decrease of about 8% and 16% are indicated respectively for
the twelfth year period when the treatment is assumed to be 50% and 99%
effective

 $14™ for the exponential decreased by about 1% and 2% for the first

year. It further decreased by about 4% and 8%for the twelfth year period when

the treatment is assumed to be 50% and 99% effective.

THE WEIBULL DISTRIBUTION

When the holding time in the state takes Weibull distribution there is little
variation (increase) of about 0.4% and 0.9% for the first year for the interval

transition probabilitiesd12™ when ths treatment is assumed to be 50% and 99%

117




effective respectively. However, an increase of about 6% and 13% is obtained
for the twelfth year when the treatment is assumed to be 50% and 99%
effective respectively.

&2 was minimized by about 0.3% and 0.6% when the treatment is
assumed to be 50% and 99% effective respectively for the first year. For the
twelfth year period a minimum of about 5% and 9% is obtained when the
treatment is assumed to be 50% and 99% effective.

014" for the first year.was minimized by abaout 0.2% and 0.3%
respectively when the treatment is assumed to be 50% and 99% effective.

This is further minimized by about 2% and 5% respectively for the twelfth year

period when the treatment is assumed to be 50% and 99% effective.

511 EXPONENTIAL HOLDING TIMES IN STATES (CONTINUOUS TIME)

Here we assume that the holding time in the state follows the exponential
distribution shown in previous section:.
The interval transition probabilities obtained for the continuous random

variables are presented in Tables 18 - 20.Using:

O12(n)=3 p | £ (m) Prefn-rmyem
k=1

& pnjfn (m)p,,(n —m)dm + pn_.‘flz (m)@,, (n — m)dm + pHJ.fU(M)(ﬁ_,: (n—m)dm
+ Pra | Sra ()b, (n —m)dm

= ple-j;Z (m),,(0)dm = pl:j.flz(m)dm

-033m|n

0

n
= Py [033¢™ 7 dm = ~pe

:_pn[e—o.ssn +e°]= Plz[_ e°'55'+1]
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Table 17: Interval transition prchability from state 1 to state 2

AN

N K=0 K=0.50 K =0.99

1 0.0843228847 0.1264843345 0.1678025424
2 0.1449446082 0.2174169123 0.2884397507
3 0.1885270029 0.2827905118 0.3751687407
4 0.2198594362 0.3297891319 0.4375202656
5 0.2423850298 0.3635775447 0.4823462069
6 0.2585792542 0.3878688812 0.5145726800
7 0.2702216506 0.4053324759 0.5377410650
8 0.2785916328 0.4178874493 0.5543973446
9 0.2846090198 0.4269135296 0.5663719177
10 0.2889350653 0.4334025979 0.5749807954
11 0.2920451462 0.4380677342 0.5811698437
12 0.2942810655 0.4414216280 0.5856193304

Table 17 presents the interval transition probability from state 1 to state 2.
¢, (n)forn=1,2, 3, ---12. ¢,, (n) is the probability that a leprosy patient will
be in state of recovery in year n given that he was under treatment in year zero.
In other words, ¢, (n) is the probability of recovery from treatment at time n

N

given that the patient started treatment at time zero.
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Table 18: Interval transition probabilities from state 1 to state 3

B (n)

N K=0 K=0.50 K =0.99

1 0.0562152565 0.0281076282 0.0005621520
2 0.0966297314 0.0483148657 0.0009662964
3 0.1256846637 0.0628423318 0.0012568455
4 0.1465729475 0.0732864738 0.0014657282
5 0.1615900248 0.0807950124 0.0016158987.
6 0.1723861545 0.0861930773 0.0017238599
7 0.1801477522 0.0900738761 0.0018014759
8 0.1857277602 0.0928638801 0.0018572757
9 0.1897393316 0.0948696658 0.0018973915
10 0.1926233619 0.0963116810 0.0019262319
11 0.1946967691 0.0973483846 0.0019469658
12 0.1961873770 0.0980936885 0.0019618720

Table 18 shows the interval transition probabilities ¢, (n)forn=1, 2, 3, - -
-12. ¢,, (n) is the probability that a leprosy patient will be a relapse in year n
given that the patient was under treatment in year zero. It also represents the

probability that a leprosy patient will develop a resistance to the drug.
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Table 19: Interval transition probabilities from state 1 to state 4.

¢ (n)

n K=0 K=0.50 K=0.99

1 0.0281076282 0.01 405381 41 0.0002810760
2 0.0483148657 0.0241574328 0.0004831482
3 0.0628423318 0.0314211659 0.0006284228
& 0.0732864738 0.0366432369 0.0007328641
5 0.0807950124 0.0403975062 0.0008079493
E? 0.0861930773 0.0430965386 0.0008619300
) 0.0900738761 0.0450369380 0.0009007379
8 0.0928638801 0.0464319400 0.0009286379
9 0.0948696658 0.0474348329 0.0009486958
10 0.0963116810 0.0481558405 0.0009631159
11 0.0973483846 0.0486741923 0.0009734829
12 0.0980936885 0.0490468442 0.0009809360

Table 19 presents the interval transition probabilities ¢,, () n=1,2, ----
, 12. ¢,, (n) is the probability that a leprosy patient will die in year n given that

the patient was under treatment in year zero.

The above results are illustrated in figures 16 - 18.
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5.12 WEIBULL HOLDING TIMES IN STATES

Here we assume that the holding time in the state follows the Weibull

distribution with parameters o and g. Percentile points are used to estimate the

parameters of the distribution as in discrete case.

The interval transition probabilities are presented in Tables 20 — 22 and figures

19-21. Using:

¢,(n) = p,,(1-exp—(n/10.5)"°

j=234.

Table 20: The interval transition probabilities from state 1 to 2.

#5n)

7] K=0 K =0.50 K =0.99

1 0.0424016714 '0.063602507 1 0.0843793303
2 0.0788103342 0.1182154939 0.1568325609
3 0.1100730374 0.1651095450 0.2190453410
4 0.1369170994 0.2053756565 0.2724650204
5 0.1599670649 0.2399505824 0.3183344603
6 0.1797591746 0.2696387470 0.3577207625
7 0.1967538744 0.2951308191 0.3915402293
8 0.2113465667 0.3170198500 0.4205796719
9 0.2238767594 0.3358151317 0.4455147386
10 0.2346359193 0.3519538641 0.4669254720
11 0.2438744158 0.3658116162 0.4853100777
12 0.2518071532 0.3777107298 0.5010962486

125



Table 21: The interval transition probabilities from state 1 to 3

és (n)

n K=0 K =0.50 K=0.99'
1 0.0282677803 0.01 41338902 0.0002826775
2 0‘0525402203 0.0262701102 0.0005254017
3 0.0733820200 0.0366910100 0.0007338195
< 0.0912780687 ° C.0456390344 0.0009127798
5 0.1066447049 0.0533223525 0.0010664461
6 0.1198394448 0.0599197224 0.0011983933
7 0.1311692446 0.0655846223 0.0013116912
8 0.1408977062 0.0704488531 0.0014089757
9 0.1492511630 0.0746255815 0.0014925102
10 0.1564239413 0.0782119706 0.0015642379
11 0.1625829339 0.0812914670 0.0016258279
12 0.1678714305 0.0839357153 0.0016787127
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Table 22: The interval transition probabilities from state 1 to 4

¢ (n)
n K=0 K =0.50 K=0.99
1 0.0141338902 0.0‘070669451 0.0001413388
2 0.0262701102 0.0131350551 0.0002627008
3 0.0366910100 0.0183455050 0.0003669097
- 0.0456390344 0.0228195172 0.0004563899
5 0.0533223525 0.0266611762 0.0005332230
6 0.0599197224 0.7029959861 2 0.0005991966
7 0.0655846223 0.0327923112 0.0006558456
8 0.0704488531 0.0352244265 0.0007044878
9 0.0746255815 0.0373127908 0.0007462551
10 0.0782119706 0.0391059853 0.0007821189
11 0.0812914670 0.0406457335 0.0008129139
12 0.0839357153 0.0419678576 0.0008393563

These results are illustrated in figures 19 - 21.
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5.13 COMMENTS

In the last section we discussed the interval transition probabilities for
the exponential and the Weibull distributions when the time is measured
discretely. We shall now examine the interval transition probabilities for the

same probability distributions but the time is considered on a continuous scale.

EXPONENTIAL DISTRIBUTION

012" increased by ‘abcut 4% and 8% for the first year when the
treatment is assumed to be 50% and 99% effective respectively. An increase
of about 14% and 29% is obtained for the12 year period when the treatment is
assumed to be 50% and 99% effective respectively.

$13™ on the other hand witnessed a decrease of about 3% and 5% for
the first year, about 10% and 19% for the 1gh year when the treatment is
assumed to be 50% and 99% effective respectively.

Like the ¢13™, the ¢14™ is minimized by about 1% and 3% for the first
year and about 6% and 10% for the 12" year when the treatment is assumed to
be 50% and 99% effective respectively.

WEIBULL DISTRIBUTION \

012" was maximized by about 2% and4% for the first year, about 14%
and 26% for the 12" year when the treatment is assumed to be 50% and 99%
effective respectively.

d13™ was reduced by about 1% and 3% for the first year, about 8% and
17% respectively for the 12" year, when the treatment is assumed to be 50%

and 99% effective.
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However, a reduction of 3% and 5% for the first year, about 10% and
19% is obtained from the negative exponential distribution. ¢13™ for the Weibull
and continuous time case witnessed a decline of about 1% and 3% for the first
year, and about 8% and\ 17% réspectively for the twelfth year when the
treatment is assumed to be 50% and 99% effective respectively.

The exponential distribution for the ¢14™ for the discrete time case
reduced by about 1% and 2% for the first year, about 4% and 8% for the twelfth
year. The Weibull distribution also has a reduction of about 0.2% and 0.3% for
the first year, about 2% and 5% for the twelfth year at 50% ‘and 99%
respectively.

For the continuous time case, ¢14™ is reduced about 1% and 3% for the
first year and about 6% and 10% for the twelfth year, when the treatment is
assumed to be 50% ancj 99% effective respectively for the exponential
distribution.

b14"™ for the Weibull is minimized by about 0.7 and1% for the first year,
about 5% and 9% for the twelfth year respectively when the treatment is
assumed to be 50% and 99% effective.

Thus, we conclude that ¢4, j=2,3 and 4 have consistent predictive
power even at the zero level (k=0). This could be explained in terrﬁs of low
degree of variability for the 50% and 99% treatment effectiveness respectively.

These results are summarized in the tables 23 24 and 24 below.
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Table 23

A summary of the Results of the comparison of the Discrete and

Continuous Time for the Exponential and the Weibull Distributions: from state 1

to state 2.
$12 ()
Exponential Weibull
Time 50% | 99% | Time | 50% 99%
1% yr 3 7 1yr |04 0.9

Discrete 12" yr 12 24 12%yr |6 13

1t yr 4 8 ™ 12 4
Continuous | 12™ yr 14 29 12"yr | 14 26
Table 24

A summary of the Results of the comparison of the Discrete and Continuous

Time for the Exponential and the Weibull Distributions: from state 1 to state 3.

13 ()
Exponential Weibull
Time 50% 99% | Time | 50% 99%
1% yr 2 4 1yr |03 0.6
Discrete 12" yr 8 16 12Myr |5 9
1Uyr 3 5 1yr |1 3
Continuous | 12" yr 10 19 12"yr |8 17

134




Table 25
A summary of the Results of the comnarison of the Discrete and Continuous

Time for the Exponential and the Weibull Distributions: from state 1 to state 4.

$14 (N)
Exponential Weibull
Time 50% 99% Time 50% 99%
1% yr 1 2 1yr 0.2 0.3
Discrete | 12Myr 4 8 12y 1 2 5
1% yr 1 3 1%yr |07 1
Continuous | 12" yr 6 10 12%yr |6 9

515 AN ILLUSTRATION OF\ THE MARKOV-MULTIDRUGS DECISION
PROCESS FOR THE CONTROL OF DISEASES
In this section, we shall provide the numerical illustration for the Markov-
Multidrug decision algorithm discussed in the last chapter.
We shall consider the stationary transition probabilities for catarrh disease
discussed in chapter three.

0.795 0.077 0.128 0.8 0.1 0.1
P = 0235 0441 0324|=| 02 05 03| toldp
0.095 0.190 0.714 0.1 02 0.7

Suppose that

A
1
— N O

1 3 s
3 4| inN 100 is the corresponding rewards (costs) to the transition
2 4

matrix P.
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We also suppose that when the patient is in state 1 the two alternatives open to

him/her are:

Alternative1: Self-medication/ cares

Alternative2: Go to see a doctor

Let the corresponding transition probabilities and rewards (costs) be given as
("P11 'P12 'P13) = (0.6 0.2 0.2)

('Ri1 'Ri2 'Ryz)=(1 1 3)

And

(%P11 2P12 2Pya) = (0.8 0.1 0.1)

(*R11 *Ri2 Ria) = (1 2 2)

When the patient is in state 2, the two .alternatives open to him/her are:
Alternative 1: low priced drugs

Alternative 2:high priced drugs

Let the corresponding transiticn procabilities and cost be given as
(‘P21 'P22 'P23) = (0.1 0.6 0.3)

('Rt 'Raz 'Ras) =(2 2 3)

And

(*P21 %P2 2P23) = (0.6 0.3 0.1)

(*Ra1 Rz “Ras) = (3 2 4)

When the patient is in state 3, the two alternatives open to him/her are:
Alternative 1: continue without change of drugs

Alternative 2: change drugs

Let the corresponding transition probabilities and reward be given as
('Par 'Paz 'Paz) = (0.1 0.2 0.7)

('Ras 'Raz 'Raa)=(1 2 4)
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And

(3P31 %P3 2P33) = (0.5 0.4 0.1)
(®>Ra1 “Ra2 “Raaa) = (3 2 1)
We shall use these values to determine the best polices for every n.

Using

oV = min. | g1+ > v n=1,2345andi=1,23, k=1,2
Ké

3
where *¢, => ¥ p, *R;

=

Forn =1, we have

19, = 'P11'Rys + 'P12'Riz + 'P13'Rys
=06*1+02*3=14

10, = 'P21'Rar + 'P22'Raz + 'P23'R2s
=01*2+06*2+03*3=23

10,= '"P31'Rat + 'P22'Raz + 'Pa3'Ras
=0.1*1+02*2+0.7 *4\= 3.3

20, = ?P11?R11 +?P12°Ri2 + *P13°R13
=08*1+01*2+01*2=1.2

20,= ?P21’Ra1 +?P22’Raz + ?P2°Ras
=06*3+03%*2+01%*4=28

20,= ?P31"Ra1 +*P3°Raz + ?P33°Ras
=05*3+04*2+01*1=24

And hence we have

4" =2, dy™M =1, d3 = 2 with

o, M =12, V" =23 and V5" =24

- >
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The continuation of this computational procedure is contained in appendix D.

The summary of the results is nresanted below:

TABLE 26: A Summary result of the Optimal Policies and Costs

R 4,™ A RQ CVAQ) EVAQ EVAQ)

1 2 1 2 1,200 2,300 2,400

. 2 2 2 2,850 4,450 4,160

3 2 2 4,340 6,260 6,020

4 2 2 2 5,900 7,880 7,680

5 2 2 2 7,480 9,470 9,270
2

5.16 COMMENTS

The fore-going results indicate the best policies for every n. di” where
n=12 34 5andi=1, 2, 3. nrepresents the time; in the case of catarrh
model the time frame is a day and for the leprosy model the time is a year.
d™ represents the best policy for each state i at time n. Thus, we have
obtained the best policies for the three states in five days for the catarrh models
and five years for the leprosy models.

In addition to the best policies, the corresponding expected total
minimum costs are also provided. For instance, di ") = 2 with °V4""=1.2 means
that the best policy for state 1 for the first day/year is to see the doctor and the
corresponding expected total \cost is one hundred and twenty Naira (N120.00)

We can see from the results that except for the d2 ") = 1 with °V,{"V =23
the best policy for others is 2. Which means that the best policy for every other

state and time is the ‘Alternative 2’. This is a kind of convergence to a stable
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policy. This type of convergence is not generally true of this iterative algorithm

as earlier mentioned. However, it adds some beauty to this resuilt.

” We have earlier indicated that this algorithm despite its weakness for non-
convergence for a large n; it is appropriate in our case for the following
reason(s).

The iterations signify time and usually the treatment of catarrh disease
takes at most 7 days depending on the type of drugs. If recovery is not
achieved, the patient has to be referred for laboratory test for some other
diseases.

In the case of leprosy disease, the treatment is in average of 5 years. It
again depends on the types of drugs.

In view of the above analvsie we see that 5 to 7 time units for the

iteration is small and reasonable.
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CHAPTER SIX

6.0 CONCLUSION, SUMMARY AND SUGGESTIONS FOR FURTHER

STUDY
6.1 CONCLUSION

The results obtained from these models are as follows:

1) The three state models for catarrh disease indicates from the
available data that catarrh disease does not depend on the
season. The implication of this result on the part of
microbiologists is that the influenza virus grows and spreads
evenly in the two seasons. On the medical point of view drugs
for the treatment of catarrh should be readily available
throughout the seasons.

2) Although the result is as stated in (1) above, it is possible to
obtain a contrary result hypothetically as provided for in the
model.

3) One other important result of the catarrh and leprosy models is
the determination of the preventive treatment and curative
treatment on the sensitivity analysis. The result indicates that:

(1) It is possible to attain 99% preventive treatment to the
individual not to develop catarrh disease. |

(i) It is also possib|e- by 99% to maximize the recovery of
leprosy patient from the disease.

(i) It is at the same time possible at the percentage to

minimize ialap<e or death due {0 leprosy.
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The comparison of the results obtained for the leprosy model
for the discrete time and continuous time shows that the latter
provides higher values. Thus for a greater accuracy the
continuous time model should be adopted. A similar result was
also obtained for the Markov chain model for catarrh.

When the Weibull and the exponential distributions are
contrasted w:e observed that basically they provide the same
result both for the continuous and the discrete time units. We
therefore conclude that either one of them is sufficient for the
distribution function of the holding time in the disease states
The leprosy model enables us to establish quantitatively the
level of control of leprosy in the near and far future on the basis
of the present level of control. This is the basis of Markov
process, given the present; future is independent of the past.
This result is of great importance to the government and non-
governmental organisations that are involved in the eradication
of leprosy disease.

We have been able also to determine the optimal costs of
control of the disease using Markov decision processes. Thus,
we conclude that it is ‘cheaper’ to visit a medical doctor and

{
make use of ‘high priced’ drugs instead of self-care and cheap

drugs‘respectively.
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6.2 SUMMARY

In chapter one, we presénted the research problem(s) thus: the existing
models do not help us to predict the future control of leprosy based on current
level of control and whether the catarrh disease is seasonal. The significance
of the study includes; thc - models are predictive tools for studying the
progression of the catarrh and leprosy diseases. The results are important
information to the patients, government and non-governmental organizations
that are concerned about the control of these diseases/eradication of leprosy in
5-12 years.

We also gave brief formal definitions and theory of stochastic processes;
a family of a random variables indexed by a time parameter is called a
stochastic process.

Markov processes form a subclass of stochastic process with highly
simplified dependence assumptions and a wide range of applications including
recovery, relapse and deatn due to diseases.

Depending on the nature of the state space and the parameter space,
we could divide Markov processes into four classes. When the parameter and
state space are discrete, the Markov process is called a Markov chain.
Otherwise the process is simply referred to as a Markov process.

A semi-Markov process is a stochastic process in which the changes of
state occur according to a Markov chain and for which the time interval
between two successive transitions is a random variable whose distribution

may depend on the state from which the transition takes place.
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The influenza virus causes catarrh, otherwise known as common cold.
The period of incubation is from 24 hours to 48 hours. The treatment involves
the application of Nasal decongestants, antibiotics and analgesic.

Leprosy is defined as a chronic infectious disease primarily of thé skin
and nerves caused by ‘mycobacterium Iéprae’. It is one of the least infectious
of all the infectious diseases. The incubation period varies from less than a
year to several years with an average of three to five years. The two main
types are the tuberculoid and the isgiviinatous. Leprosy is widely distributed in
the tropical and sub-tropical regions. Leprosy can be treated and cured even
without the associated deformities, if it is discovered and treated early.

The exponential and Weibull distributions have been discussed as they
relate to duration of stay in a state. They have been used for the distributions
of holding times in the state. The relative advantage of exponential is that, it is
specified by one parameter and can be easily estimated. It has property of
‘memoryless’. It is a special case of the Weibull distribution. The relative
advantage of the Weibull distribution is that it provides an increasing function
for the hazard or failure rate. The percentile points have been used to estimate
the two parameters of the Weibull distribution.

We see that the modeling for the control of diseases started as far back
as the ancient Greeks with the epidemic of Hippocrates (459-377BC).

Deterministic and stochastic models were developed in the early part of
the 20™ century. The deterministic perspective is the one in which a change in
the independent factor x results in a change in the value of the dependent vy,
leading to a mathematical function of some kind. In the stochastic models,

probability theory and statistical techniques are used to access evidence
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regarding causality. In causal analysis of data, the goal is to account for
variation in the dependent variable.

It was observed that mathematical formulations on the epidemiology of
leprosy are not new. In several occasions, models have been used to study
the transmission and spread of leprosy side by side with the past prevalence
and incidence of new cases.

We presented a three state model for the catarrh disease. The model
provides for the stationary Markov chain and the non-stationary (Non-
homogeneous). The result obtai\ned from the Markov chain indicates that
catarrh disease does not depend on the season of the year. On the basis of
this stationary process of catarrh we further considered the model for discrete
states and continuous time. This will enable us to obtain information about the
catarrh disease at any given point in time. These models provide illustrations
for the optimal level of the effectiveness of the preventive treatment.

A semi-Markov model is presented. We considered leprosy as a
disease where the transition of people from one state of the disease to another
may not occur at discrete time instants. We theréfore look at a situation where
the time between transitions can depend on state from which or to which the
transition is being made. This Iea\ds to one form of Markov process called the
semi-Markov process. In other words we have considered the leprosy disease
as a semi-Markov process running in discrete and continuous times. The semi-
Markov process requires input data such as the transition probability of the
Markov chain and mean holding time in the state. Four distinct and mutually

exclusive states were specified for the process. The model was considered, for

discrete state and discrete time and also for discrete state and continuous time
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It is in the literature that the exponential and Weibull distributions are the only
candidates for holding time in the state Howard (1960). It is on this basis that
we make use of the two functions for the sake of comparison. We observed
that the two distribution functions produce the similar results. We contrasted the
discrete and continuous time and we observed that the continuous time gave
higher values for the interval transition probabilities. The semi-Markov model
can be used as a predictive device for studying the health status of leprosy the
patients. The predictions will be useful to doctors, hospital administrators,
policy makers and the general public.

The successful use of thése models developed here would require joint
work by the medical personnel and applied mathematicians. The problem of
communication between these two groups of people is greatly reduced by not

using advanced mathematics.

6.3 SUGGESTIONS FOR FURTHER STUDIES

Three seasons (the wet season, cold-dry season and hot-dry season)
could be considered for the catarrh model instead of the two overlapping
seasons proposed by lloeje (1981). The leprosy model could be more realistic if
the following conditions were considered: The state of recovery (state 2) could
be an absorbing state so that th\e patieﬁt that does not develop a relapse gets
absorbed and recovered from the disease forever since leprosy can be treated

and cured. Also, many leprosy patients could be studied using this model.

These could be basis for further research.
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APPENDIX A
The following is the algorithm presented in the flowcharts, and the computer

programs in the FORTRAN language for the Markov chain (discrete state and

time) model for Catarrh disease. .

e

¥
;

158




Trial =0

T

' Nn
Input M e
Password i

= Js trial =32
g

Nno [ . .
=1 Trial = (rial 4 | ]

Yie

Read Rowsl, Rows?2,
Colsl,Cols2, N

1S
Matl = Mat 2
Rows| = Rows2?

Read Mat A R | .
Mat BB

v

Vi

Nn
Call Mat Add

Call Mat Prob
Call Mat Mul

Y

; Call Mat Prd

. - {’
‘ m Flow chait-dor the main program
| .




Call Mat Add

- 2l l.oon
Do Row = [ .Rows| . L L
: l |
<|)n('()|= I.Cols2

N

l |splny Rcsull

l.oon

| M(Row, Col) —
Exil MI(Rowsl,Colsl) +
NI Rawe? Cnle?)
Relurn

Ilow chart for sub procedure addition

Call Mat Prd ]

¥

Exit lLoon *
Do Row = |.Rowsl = l

Exil

i _ <)n Col =1.Cols2

Call Mal Mut -
[ Temp =10

@ @K = 1. Cols 2
f [.oon

| P3(Row, Col) =
st PI(Rows!,Colsl) *
2w Cole?Y

Flow chart for sub procedure product of 1 and P2




Ao, P
R

Call Mat Pro ”

4

Exil I.oon
Do Row = 1 Rowsl "\l

4
lixit
TR Do Col =1 (Cols?2 e
- ShS s /
play Resull .
Iixit

l.oon

T e | Dum= Dum t N(Row, Col)
Y Do Col = 1 Colsl \ Cum= Cum + MI(Rows],Cols1)
g O e RO SR Meved Tioded),

‘ EHARAR b

[.oon

P =M (Row, Col)/ Dum \
Pl =M1 (Rowsl, Cols!)/ Cum
P2 = M2 (Rows2, Cols2)/Sum

rtfor sub procedure probability

Call Mat Mut

5

ClH(Rows1,Cols]) =
C(Rows2,Cols2),

owsl,Colsl) & ‘ Count = |
ws2,Cols2) 4

Exit < > l.oon
Do Row = | Rows]
A = 55
y
Display Resull ©_Exil ™~
\? Do Caol = (T()ISZ)

—
-

|

’ Temp =0

. N

y g |
| ColEenien T o o e

Yes : o \T T f/1 Loon :

Call Mat Decp _i PI(Row, Col) =

—

CH(Rows | ,Colsl) ¢

’ IFlow chart for sub procedure iterntive _PRovwee? (nle?)
Retum Multiplication of transition 1’4

102




Call Mat Mul

-
| S———

4
CH(Rowsl,Colsl) =
P(Rows2,Cols2),
e | Count = |
vsl,Colsl) =
;2,Cols2)

LL<—‘ > L.oon .
Do Row = | Rows| LB .-___A
ot Dlsplay Result [ Exil
B P l)() Col=1.Cols2

,.ﬁ.____Y__<___,,._

Iunp = () ‘J

Count = ( L+
oun oun ’ Do K = 1. Cols 2
l.oon

Iixil

Is Count = N?

Call Mat Deci Pd(Row, C ()l) =

CH(Rows1,Colsl) *
1 B_"“'Q?,.(:f"""
Return '

’

Flow chart for sub procedure iterative
multiplication of teansition P

109



T

i e

Mat Deco

DoZ=1,3 >

y

Exil Loop
(R Do Row = Rows3 el

Exil ‘

y Do Col = 1.Cols2
/Display Rcsulls/ * Loop
[ , ' Lxil

Sy =0

C Rewm_ Q) K = 1. Cols 2 > \
»

Suim = T(Rows!,Colsl) * N
P4(Rows2,Cols2) + Sum |4 Then
TORAw Cal) = Snm

:

Sum =TI (Row, Col) *
P2 (Row, Col) ‘+ Sum
T2(Row,Col) = Sum

1 Tl Sum = T0 (Row, Col) *
_Else lhen '
< PP (Row, Col) 1 Sum

_THRaw Col) = cnm

Flow chart for sub procedure Herative
multiplication of P with'T'

sloH



Mat Deci

Exit

Display Resul(s

Flow chart for sub procedure Decision m

Do Row = Rows3

arix P

M N e

ACCUM = |. KS
EM(Col) = Accum
EMI (col) = EM1(Col) + EMT (col)
L2 (coly =] - LT (col)

———

Do Col = I.(.‘olsi>

Suny == 'l'(l(()\\'sl,(.'()lsl) *
l)(Rmst,(.‘olsZ) ISum

-l 'l_'ﬂll(_.l{!nv (_'nl! = Qi

e e e

DRG0 ) S

Input value
for Ks

)* P(Row, Col)

——— o
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sTHIS PROGRAM CALCULATES THE ADDLITION,
*SQUARE MATRICES AND A VECTOR NATRIX

.

.- " ® > ® ® ®w > »

OiohblhhibhbilblltltlAhllnthbootllnApba

S12E,
ROWS 1
coLsl
ROWS 2
COL32
ROWS 3
coLs3

LIMIT,

1,J,K, ROW, COL

MATI
MAT2
FORM

.
.
.
.

PARAMETER SPECIFYING MAZINUM DINENSTONS OF HATRICES

OF
OF
oF
OF
OF
OF

nows In
coLuMHs
ROVIS 1N
COLUMNS
ROVIS 1N
COLUMIS

SUBSCRIPT
THE FIRST MATRIX
THE SECOND MATRIX
HARACTER VARIABLE USED TO ouTpPUT ADD

coMMoN CH(10,10)
INTEGER SIZE,
4coLS3, N, TRAIL,BIG,2,B161,G,1,U,V
PARMMETER (SIZE=10) :
REAL M1 (SIZE,SIZE), M2 (S12E.SI12E) .M(SI2E, S12E) AISIZE,SIZE),

4T (SIZE,SI2E), SUM, DUM, AWE, WEA, CUI1, P(S12E,812E),P1(S1ZE,S1ZE),
+P2(SI12E,SIZE), L(SIZE,SIZE), X(ST2E,S12E),R(S12E,ST2E),

ROVS 1,

lllllllllllllllAll‘lOlCllllAAllllll

DIVISION AUD NULTTLICATION OF ’

18T MATRIX

I

1 -

MATRITX

2-5T MATRIX

m

2

- MATRIX

3-5T MATRIX

m

3 -

MATRIX

404 (S12E,812E) ,DB(SIZE, S12E),C(S12E,514E),D(STLE, 312E),

OS(SIZB,SIZE),EFF(SIZ’.B),F.t‘l"l,F.P'lf'?,l(."y,l‘!(SlZI-'.,!H'/.F.)
CHARACTER* 12 FORM
CHARACTER* 15 GORM
CHARACTER

*15 Founn

LOGICAL MATCH

LOGICAL
Foulip =
DATA FORM /' (1X,

FOUND
' OMOISEMOJE"'
KiEB.3) "/

DATA GORM /' (1X, NIFD.2
PRINT *, 'ENTER PASSWORD'

READ *,

80

PWORD
I1F (FOUND) THEN

)i/

PRINT * ,'ENTER THE VALUE FOR n'

READ 2, N

FORMAT (12)

PRINT *,'ENTER RIGTH-JUSTIFIED IN TWO SPACE Z0HE THE DIMEN

oF'

PRINT *, 'ML:'
READ '(212,TL2,A2)',ROWS],COLS], GORM(6:T)
PRINT *,'M2:'

READ '(212,TL2,A2)',ROWS2,COLS2Z,

PRINT

IF (ROWS]

LIPS ¢
READ '(212)',ROW33,COLS)

LNELL) TH

1F (COLS]
PRINT
GO TO 3

END IF

END IF

L]
’

.NE. COL
'ROWS 3 =

kN
g91)

1 AND COLS)

READ IN M1 AND M2 ROWISE

PRINT *,

'ENTER THE ELEMENTS OF HATRIX

1F (A(ROW,COL)

JEL 0)

THEN

N

THEN

100 -

FoORM(6:7)

e COLS T o coLs2!

ROWISE'

BAGOAAMIADAGANAAMAMAMAMNGLILANLY

coLS1, ROWS2, COLS2, 1,,K,ROW, COL, ROWS Y,

S10N



DONE'

DONE'

10

20

22

28

NO 10 NROW =
PRINT GORM, (M ({ROW, COL), COL ], COLEY)

READ *, ((A(ROW,

ELSE
PRINT *, 'ZERO

GO TO 8
END IF
PRINT *, 'ENTER
1F (B (ROW, COL)

READ *, ((B(ROW,

ELSE
PRINT *, 'ZERO
GO TO 9

END IF

PRINT *,'ENTER

READ *, ((T (ROW,

PROGRAM TO ADD

CALL MATADD (A, B,
IF (HMATCH) THEN

READ (*,*) MHX
PRINT *, 'SUM OF
PRINT *, 'M:°

CONTINUE
END IF

PROGRAM TO CALCULATE

COoL),CGL=1,COLS]), ROW=], ROWS])

1S NOT ACCEPTABLE FOR DIVISION THAT WILL BE

THE ELEMENTS OF NMATRIX 2 ROWIGE'
LJUEL 0) THEN

COL),CcOoL=1,COnLS52), ROW 1, ROWY2)
ACCEPTABLE DIVISION THAT WILL DE

IS8 nor FOR

THE ELEMENTS OF MATRIX T 1N ONE ROW'
COL),COL=1,COLS3), ROW-=1, ROWS 3)

MATRTX
M, STZF, ROWS], COLS], ROWS2,COLS2, MATCH)

MATRICES M1 AND 12 !

1, ROW3 1

PROBABILITY

CALL MATPRO(CUM, DUM, SUM, ROWS L, ROWS2, 9 12E,

READ (%, *)
PRINT
PRINT *,
DO 20 ROW =

MIHX

L L

1M, A, 3, COLS]1,COLS2, P1, P2, P, PROD)
*, '"MATRIX PROBABTLITY'

1, ROWS1

PRINT FORM, (Pl (ROW,COL),COL=1,COLS52)

CONTINUE

PRINT *, 'P2:'

DO 22 ROW = 1],

ROWS |

PRINT FORM, (P2 (ROW,COL),COlL = 1,COLS2)

CONTINUE
PRINT.*, YPu!
DO 28 ROW =

1, ROWS ]

PRINT FORM, (P (ROW,COL), colL = 1, (:(v)l.f.iZ)

CONTINUE

READ (*, *)
PRINT
PRINT *,

MMX

PROD

*, 'PRODUCT OF MATRICES

PROBABTLITY'

PROGRAM TO CALCULATE PRODUCT OF THE PROBABILITY MATRICES

CALL

MATMUL (P1, P2,P, P, P4, N, ROWS]L, ROWSD, CCLiy, COLE2, 814K, ROW, COL,

& f )

+T,ROWS3,COLS]3,C,R, S, ELT)

READ (*,*) MMX
PRINT *, 'MATRICES Pl AND P2’
PRINT *, 'P1l’
DO 37 ROW = 1, ROWS]

PRINT FORM,
CONTINUE
PRINT

(Pl (ROW,COL),

.'lpzr

CoL = 1,COLS2)



DO 47 ROW = 1,ROWS1
PRINT FORM, (P2 (ROW,COL), COL=1, COLS?)
47 CONTINUE = ’

L PROGRAM TO CI\LéUl.I\TE PRODUCT OF MATRIUVES PI AND D2
CALL MATPRD (P, P2, P, N, RONS T, COLS T, ROWS? , COLSD, ROWS Y, COLS Y,
1SIZE, P4,T,D, L, X)
ELS3E .
TRAIL = TRAIL 1
IF(TRAIL .LT. 3) THEHN
GO TO 80
ELSE
PRINT *, 'UNAUTHORISE USER STAY CLEAR, BEY FOR HOW'
END 1IF
END IF
END
R R R A O O O O O O O B O O O O I O N O N W O N O O O 'Y
*

* THIS SUB PROGRAM IS USED FOR MULTPLICATION OF MATRIXES T AND P4
+
4
*

R R N N N N N RN R R R R R R R )

’ SUBROUTINE DECI(P4,T,D,P,EFE, LINIT, ROWS Y, COLSY, COLS )
INTEGER ROW33,COLSJ, COLS], ROW, COI,
REAL T (LIMIT, LIMUT), PA(LILIET, LINET) , DL LiMer),
+ P(LIMIT, LIMIT), K, EFE (R0 )=
SUM = 0
EFF1 = 0.0
ACCUM = 0.0

DO 21 ROW = 1, ROWS]

DO 14 COL = 1, COLY]

DO 7 K = 1, COLSI

SUM = SUM + T(ROW,K) * P4 (K,COL)

7 CONTINUE
D (ROW,COL) = SUM
SUM = 0

14 CONTINUE

21 CONTINUE
PRINT *

PRINT *, 'PREDICTION 1'
DO 108 ROW = 1, 1
PRINT 13, (D(ROW,COL),COL = 1, COLSJ})
13 FOIUMAT (1X, 20 (F5.2, 3X))
108 CONTINUE

PRINT *, ' ENTER 0,0.5,0.9,0.99 FOR THE VALUE OF K5'
Do 17 2 = 1,4
PRINT *,'ENTER VALUE FOR Ky'
READ *, KS %
DO 16 ROW = 1, 1
DO 15 cOL = 2, COLS3]
ACCUM = (1.0 - KS) * P(ROW,COL)
EFF (COL) = ACCUM
EFF1 = EFF1l + ACCUM
PRINT 41, EFF(COL)

15 CONTINUE

108



S s

41 FORMAT (2X,F4.2)
16 CONTINUE
EFF2 = 1.0 - FEFFI
EEFFl = O
PRINT 41, EFF2
17 CONTINUE
RETURN

END

Y I R A T N Y N N o N I R A I N R N

‘
# THIS SUB PROGRAM IS USED FOR MULTIPLICATION T AND P4, T1 AND TO

*

+ T1 AND T2

+

T NN S NN R R R R R N N R N ]

*

SUBROUTINE DECP(Pl,P2,P4,T,D,L,%X,LIMIT,ROWS3,COLS3,COLS])

INTEGER ROWS3,COLS3,COLS1, ROW, COL, K, W, R

REAL T (LIMIT,LIMIT), P4 (LIMIT,LINIT),D(LIMLT, LIMIT),
+L (LIMIT, LIMIT), X (LIMIT, LIMIT), Pl (LIMIT, LIMIT),
+P2 (LIMIT, LIMIT),SUM, AWE,WEA

AWE = 0

WEAN = O

SUM = 0

DO 21 ROW = 1, ROWS3

DO 14 COL = 1, COLS)

DO 7 K = 1, COLSI

SUM = SUM + T(ROW,K) * P4(K,COL)

7 CONT INUE
D (ROW, COL) = SUM
SUM = 0 '

14 CONTINUE

21 CONTINUE

READ (*,*) MM4X

PRINT *,. 'TO'

DO 101 ROW = 1, ROWS3 % =

PRINT 1%, (D(ROW,COL),COL = 1,COLS3)
101 CONTINUE

DO 42 ROW = 1, 1
DO 41 COL = 1, COLS3

DO 17 W = 1, COLSI

AWE = AWE + D(ROW,W) * P1(W,COL)

17 CONTINUE
L (ROW,COL) = AWE
AWE = 0

11 CONTINUE

42 CONTINUE

READ (*, *) MMX

PRINT *,."%TL'

DO 102 ROW = 1,1

PRINT 11, (L(ROW,COL),COL = 1,COL33)
102 CONTINUE

DO 49 ROW = 1, 1
DO 43 COL = 1, COLS3]

']Oj



;'; a | :

; DO 87 R = 1, COLS1
‘ WEA = WEA + L(ROW,R) * P2(R,COL)

- 87 CONTINUE
K- . X (ROW,COL) = WEA
‘ WEA = 0
\ 43 CONTINUE
‘ 49 CONTINUE
READ (*, *) MMX '

PRINT *, ‘T2!

DO 103 ROW = 1,1 . .

PRINT 11, (X (ROW,COL),COL = 1,C0OLS33)
103 CONTINUE

X FORMAT (1X, 20 (F4.2, 3X))

RETURN
END

N N N N N R R R R R R R R R R A T I Y
N
L

¥ THIS SUB PHOGRAM IS USED FOR ADDITION OF MATRIXES MATL AND MAT2
IR}
N N R R R R R R T

SUBROUTINE MATADD (M1, M2, M, LIMIT, ROWS],COLS], ROWS2,COLS2, MATCI)
INTEGER ROWS1,COLS1,ROWS2,COLS2, LINIT, 1,J,K, ROW,COl,
REAL M1 (LIMIT,LIMIT), M2(LIMIT,LIMIT), M(LIMIT,LIMIT)

LOGICAL MATCH

IF (ROW3S1l .EQ. ROWS2) THEN
IF (COLS1 .EQ. COLS2) THEN
MATCH = ,.TRUE, '

DO 30 ROW-= 1,ROWS]
DO 20 COL = 1,COLS2 ‘
M(ROW,COL) = Ml (ROW,COL) | M2 (R0W,COL)
20 CONTINUE
30 CONTINUE

ELSE
MATCH = .FALSE.
END IF
END IF
RETURN < >
END

Bhh b bbb bbb b kb bk h bk b bbb kA b b A A h R AR R A A A AL AN AR AN AR

]

' THIS SUB PROGRAM IS USED FOR SELF MULTPLICATION OF MATRIX P
1
N o O O O O O O O O O O R O O O N S N N S N S N AP Y

SUBROUTINE MATMUL(P1,P2,P,C, P4,H, ROMS), COLYL, ROWS2, COLS2, LIMLT,
+ROW,COL,T,ROWS3,COLS]3, D, L, X, EE)
coMMON - CH1(10,10)
INTEGER ROW, COL, K, COUNT, N, ROWS 1, ROWS2,COLS],COLS2, LIMIT, ROWS3,
41COLS3,Q,BIG
REAL P(LIMIT,LIMIT), [’4(l,1l'lI'F,L[HI'I‘)‘, C(LIMIT,LIMIT), TEMP,

KE.C



+T (LIMIT, LIMIT),D(LIMIT, LIMIT), P1(LIMIT, LIMIT), P2 (LIMIT, LIUIT),
4L (LIMIT, LIMIT), X (LIMIT, LIMIT) ,EFE (LIMIT)

DO 191 ROW = 1,ROWS1

DO 191 coOL = 1,COLS2

CH (ROW,COL) = C(ROW,COL)
191 CONTINUE : @

COUNT = 1
Q=2 '
5 DO 150 ROW = 1,ROWS1
: DO 140 cOL = 1,COLS2
TEMP = 0 ' ' '
DO 130 K = 1,COLS1
TEMP = TEMP + CH(ROW,K) * P(K,COL)
130 CONTINUE '
P4 (ROW,COL) = TEMP
140 CONTINUE
150 CONTINUE

DO 151 ROW = 1,ROWS] B> o ome
DO 151 cOL = 1,COLS2
CII (ROW,COL) = P4 (ROW,COL)

151 CONTINUE

READ(*,*) MMM
COUNT = COUNT + 1
IF (Q .EQ. COUNT) TIHEN
PRINT *, 'P(',Q,')"
DO 57 ROW = 1,ROWS] '
g PRINT 99, (P4 (ROW,COL),COL = |,COLS1)
99 FORMAT( 1X,80(F5.3, 3X))
57 CONTINUE
Q=0Q+2
ENRIF
IF (COUNT .LT. N) THEN
GO TO 5
END IF
CALL DECI(P4,T,D,P,EFF,LIMIT, ROWS3,COLS3,COLS])

RETURN
END

I O O I O O O O O O O O O O O O I O I I N I O S O S N O O N S R R S N S N O I S N N A ' )

IS SUB PROGRAM I3 USED FOR SELF MULTPLICATION OF MATRIC PJ3

1113 THE PRODUCT OF Pl AND P2 S

N N N O O O O O R I R N B )

SUBROUTINE MATMUT (P1,P2,P3,C,P4,N, ROWS],COLS], ROWS2, COLS2, LIMLT,
4ROW, COL, T, ROWS3,COLS3,D, L, X)
COMMON CH(10,10)

COMMON CH .
INTEGER ROW, COL, K, COUNT, N, ROWS 1, ROWS2, COLS 1, COLS2, LIMIT, RUWS 3,

+coLS3,Q,BIG
REAL P3(LIMIT,LIMIT), P4(LIMIT, LIMIT), C(LINMIT,LIMLIT), TEND,

AT (LIMIT, LIMIT), D(LIMIT, LIMIT), PL(LIMIT, LIMIT), P2 (LIMLT, LIHIT),
| $L(LIMIT, LIMIT),X (LIMIT, LINMIT)

DO 192 ROW = 1,ROWS!

171




I R R R R R R N N NN N O O I O N N )

+

' THIS SUB PROGRAM 18 USED FOR MULTPLICATION OF MATRIXES

»

YR R R R R R R O o o o O O o O L

]

DO 192 coOlL =
Clt (ROW, COL)

1,Cc0L82
= C(ROW, COL)

P3 (K, COL)

1,COLS1)

CALL DECP(P1,P2,P4,T,D,L, X, LIMII, ROWSI, COLS 3 COLST)

SUBROUTINE

192 CONTINUE
READ (%, %) MMX
COUNT = 1
Q=2
6 DO 152 ROW = 1,ROVSI1
DO 141 COL = 1,COL32
TEMP = 0
DO 131 K = 1,COLS1
TEMP = TEMP + CH(ROW,K) *
133 CONTINUE
P4 (ROW,COL) = TEMP
141 CONTINUE
152 CONTINUE
DO 153 ROW = 1,ROWS!I
DO 153 COL = 1,COLS2
CH(ROW,COL) = P4 (ROW,COL)
153 CONTINUE
READ (%, %) MMM
COUNT = COUNT + 1
IF (Q .EQ. COUNT) THEMN
BERINT *, 'P{Y;Q,%)"
DO 50 ROW = 1,ROWSI
PRINT 109, (P4 (ROW,COL),COlL =
109 FORMAT( 1X,80 (F5.3, 3X))
50 CONTINUE
Q=Q + 2
ENDIF
C C(ROW,COL) = TEMP
IF (COUNT .LT. 10) THEN
GO TO 6
END IF
RETURN
END

Pl AND P2

N

IATPRD (P1, P2, P3, N, ROWS1,COLS 1, ROWS2, COLS2, RUWS 3, COLS 3,

+LIMIT,P4,T,D, L, X)

INTEGER ROWS1, ROWS2,COLSL,COLS2, 514K, K, ROW, COL, ROWS3, COLS3

REAL P3(LIMIT, LIMLT),SUHM,

pr(noner, LaMer), P2(LIMUE, LIMIT),

+P4 (LIMIT, LIMIT), T(LIMIT, LIMIT), D(LIMLT, LIMIT) , X (LTMIT, LIMIT),

+L (LIMIT, LIMIT)
BIG = 0
DO 10 ROW = 1, ROWS1
DO 20 COL = 1,COLS2
SUM = 0

DO 30 K = 1, COLS!

\



DO 192 CcOl, = 1,COLS2
CH(ROW, COL) = C(ROW,COL)
192 CONTINUE
READ (*, *) MMX
COUNT = 1
Q = 2
6 DO 152 ROW = 1,ROWSI
DO 141 COL = 1,COLS52
TEMP = 0
DO 131 K = 1,cCoO0LS81
TEMP = TEMP + CH(ROW,K) * P3(K,COL)
131 CONTINUE
P4 (ROW,COL) = TEMP
141 CONTINUE
152 CONTINUE

DO 153 ROW = 1, ROWSI

DO 153 col = 1,€0182

CH(ROW,COL) = P4 (ROVI, COL)
153 CONTINUE

READ (*, *) MMM
COUNT = COUNT + 1
IF (Q .EQ. COUNT) THEN
PRINT *, 'P(',0Q,')"'
DO 50 ROW = 1,ROWS1
PRINT 109, (P4 (ROW,COL),COL = 1,COLS1)

109 FORMAT( 1X,B80(F5.3, 3X))
50 CONTINUE
Q=Q + 2
ENDIF
(o C(ROW,COL) = TEMP

IF (COUNT .LT. 10) THEN
GO TO 6
END IF
CALL DECP(PI,PZ,P4,T,D,L,X,LIMIT,HUWH!,CULS],UOLSI)
RETURN
END

ll.‘.ﬂ..ih.lﬁﬁﬁﬁllﬁb.h.lbﬁ‘llillhbhldblll‘lblldlll’lblllllhblllhlllh.hﬁ
*

' \
* THI8 SUB PROGRAM 1S USED FOR MULTPLICATION OF MATRIXES Pl AND P2
*
Qi.h.‘l‘.l‘b‘ilﬁ“lh‘lllhhlll‘lhhhllhDAAAAAllhlilLllhlllbillhlllllllib
*

SUBROUTINE
MATPRD(P1, P2, P3, N, ROWS1,COLS1, ROWS2, COLS2, RUWS 3, COLS Y,

+L1MIT,P4,T,D, 1, X) i

INTEGER ROWS1, ROWS2,COLS1,COLS2, 512, K, RUW, COL, ROWS 3, COLS 3

REAL P3(LIMIT, LIMIT),SUM, PI(LIMIT, LIMET), P2 (LIMIT, LIMIT),
P4 (LIMIT, LIMIT), T(LIMIT, LIMIT) , D (LINLT, LIMIT) , X (LTMIT, L1MIT),
+L (LIMIT, LIMIT)

BIG = 0

DO 10 ROW = 1, ROWS1

DO 20 COL = 1,COLS2

SUM = 0

DO 30 K = 1, COLSI

1y



———

APPENDIX B
The following is the algorithm presented in the flowcharts, and the computer
programs in the VISUAL BASIC and the output of the program for the Markov

chain (discrete state and continuous time) for Catarrh disease.

-
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_ / INPUT K /

v

=0

4
o

v

?1 =0.3145 - 0.9124¢ "™ + 0.5979¢ "™

| |
‘ v

M =0.5899-0.5382¢" 2.0 0518¢ " 12"

J e

0= 0.1556-0.29704¢ %40, 14147

L v
M=0.1760- 0.1138¢"2*.0.0622¢™'*™

v

t =t+1

v

/ PRINT Pt1, P12, P13, Pt4 /

YES

s

i Tirs




/ . | 2 2 Tdb Pt n ubl ’
Dim dblPt? As Douhlo, dblPt4 As Double

:t:e Sub cmdS_ Click(){r,g&;\g i
g vbTab

4 e 8

| Rtb.SelText = String(60, " ") ;vbCrLféa &g}fﬁ;,_m
“ Rtb.SelText = vbTab & "t" & vbTab & vbTab & "K = 0" & vbTab & ‘vbTab & vbTab & "K
‘b & vbTab & vbTab & vbCrLf
! Rtb.SelText = String(60, " ") & vbCrLf
For t = 0 To Val (txtA.Text)

dblPtl = Round(0.3145 - 0.9124 * Exp(-0.6415 * t) + 0.5979 * Exp(-0.9879 * t), 8)
dblPt2 = Abs{Round(0.5899 - 0.5382 * Exp(-0.2633 * t) - 0.0518 * Exp(-1.1267 * t), 8))
itb.SelText = vbTab & t & vbTab & vbTab & dblPtl & vbTab & vbTab & vbTab & dblPt2 & vbTab &
b & vbTab & vbCrLf
fext t
Rtb.SelText

0. 99" &

vbCrLf & vbCrLf

fth.SelText = vbTab & vbTab & "P13(t)" & vbTab & vbTab & vbTab & "P13(t)" & vbTab & vbTab &
» & vbCrLf y
J{Rtb.SelText = String(60, "_") & vbCrLf
Rtb.SelText = vbTab & "t" & vbTab & vbTab & "K = 0" & vbTab & vbTab & vbTab & "K = 0.99"
BTab & vbTab & vbTab & vbCrLf
Rtb.SelText = String (60, "_") & vbCrLf
For t = 0 To Val (txtA.Text)
dblPt3 = Abs (Round(0.1556 - 0.29704 * Exp(-0.6415 * t) + 0.1414 * Exp(-0.9989 * t), 8)
WiPtd = Round(0.176 - 01138, * Exp(-0.2633 * -t) —- 0.0622 * Exp(-1.1267 * t), 8)
Rtb.SelText = vbTab & t & vbTab & vbTab & dblPt3 & vbTab & vbTab & vbTab & dblPt4 & vbTab
flab & vbTab & vbCrLf :
| Next t S
fsub

ite Sub Form MouseUp (Button As Integer, Shift As Integer, X As Single, Y As Single)
[ Button = vbRightButton Then

W.PopupMenu mnufile

b If

{iub

‘pte Sub mnuexit Click()
d
b

te Sub mnuprint Click()
| Error Resume Next
If ABU Is Nothing Then Exit Sub

lith CommonDialogl
.DialogTitle = "Print"
.CancelError = True
.Flags = cdlPDReturnDC + cdlPDNoPageNums
If Rtb.SelLength = 0 Then
.Flags = .Flags + cdlPDAllPages

Else 3 ~=
.Flags = .Flags + cdlPDSelection

End If

.ShowPrinter

If Err <> MSComDlg.cdlCancel Then
Rtb.SelPrint .hDC

End If

hd With

Wb
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P12(t) P12(t)
t K=0 K =0.99
0 0 -0.0001
1 0.05675225 0.15949878
2 0.14447771 0.26659275
3 0.2122045 0.34385282
4 0.25588307 0.40159367
5 0.28186633 0.44543846
6 0.29665859 0.47896199
7 0.30486081 0.50466957
8 0.30933348 0.5244081
9 0.31174575 0.53957153
10 0.3130372 0.5512229!
11 0.31372511 0.56017652
12 0.31409026 0.56705726
13 0.31428362 0.57234513
14 0.31438583 0.57640889
15 0.3144398 0.57953193
16 0.31446827 0.58193203
17 0.31448328 0.58377652
18 0.31449119 0.58519404
19 0.31449536 0.58628341
20 0.31449756 0.58712061
21 0.31449871 0.58776401
22 0.31449932 0.58825847
23 0.31449964 0.58863846
24 0.31449981 0.5889305
25 0.3144999 0.58915492
26 0.31449995 0.5893274
27 0.31449997 0.58945995
28 0.31449999 X 0.58956182
29 0.31449999 0.5896401
30 0.3145 0.58970027
3 0.3145 0.5897465
32 0.3145 0.58978204
33 0.3145 0.58980934
34 0.3145 0.58983033
35 0.3145 0.58984646
36 0.3145 0.58985885
37 0.3145 0.58986838
38 0.3145 0.5898757
39 0.3145 0.58988132
40 0.3145 0.58988565
41 0.3145 Q-.sm
42 0.3145 0.5 1
43 0.3145 0.58989349
44 0.3145 0.58989499
45 0.3145 0.58989615
46 0.3145 0.58989704
47 0.3145 0.58989773
48 0.3145 0.58989825
49 0.3145 0.58989866
50 0.3145 0.58989897
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P13(t) “P13(t)

t K=0 K =0.99
0 0.00004 0
1 0.05128323 0.06838433
2 0.09243775 0.10225504
3 0.11931056 0.12222976
4 0.13537601 0.13561802
5 0.14454047 0.14527099
6 0.14962556 0.15248326
7 0.15239862 0.15795915
8 0.15389391 N e 0.16214579
9 0.15469417 0.16535625
10 0.15512029 0.16782125
11 0.1553464 0.16971489
12 0.1554661 0.17116994
13 0.15552936 0.17228808
14 0.15556276 0.17314736
15 0.15558037 0.17380772
16 0.15558966 0.17431521
17 0.15559455 0.17470522
18 0.15559713 0.17500495
19 0.15559849 0.17523529
20 0.1555992 0.17541231
2 0.15559958 0.17554835
2 0.15559978 0.17565291
px} 0.15559988 : 0.17573325
24 0.15559994 0.175795
25 0.15559997 0.17584246
26 0.15559998 ' 0.17587893
7 0.15559999 0.17590695
28 0.1556 0.17592849
9 0.1556 0.17594505
30 0.1556 0.17595777
k)| 0.1556 0.17596754
2 ; 0.1556 0.17597506
3 0.1556 0.17598083
34 0.1556 ' 0.17598527

35 0.1556 ® 0.17598868
% 0.1556 0.1759913
37 0.1556 0.17599331
38 0.1556 0.17599486
39 0.1556 0.17599605
40 0.1556 0.17599697
4 0.1556 0.17599767
Q2 0.1556 0.17599821
43 0.1556 0.17599862
4 0.1556 0.17599894
45 0.1556 0.17599919
46 0.1556 0.17599937
47 0.1556 0.17599952
48 0.1556 0.17599963
49 0.1556 0.17599972
50 0.1556 0.17599978
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APPENDIX C
The following is the algorithm presented in the flowcharts, and the cbmputer

programs in QBASIC and the program output for the Semi - Markov model For

Leprosy disease.
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N=0
Sum =10

.
D=.33 * Exp (-.33 * N)

!

| Sum =sum + j
Prod =(14+k)*.3*Sum

!

Prod 2 =(1-k)*.2*Sum

l

Prod 3 =(1-k)*.1*Sum

| :
/ Prints /
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_g_.———

= 0

T "ENTER THE RANGE OF VALUES "; N

\T "NUMBER", "EXPONENT SUM"; SPC(7); "EXPONENT SUM * 3"
‘T | | [ TP H, [, (LA v < ull SR i "; SPC<7) ,. D e i [ e B X s it bt S e i s "
k= 1.7T0 N

»33 = BXP{-.33 * k)

= sum + jJ

i= .3 * sum

T k, USING ("#.#########"); sum; SPC(8); prod

t= 20 OR k = 41 OR k = 62 OR k = 83 THEN PRINT "press any key to contint
'k A
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|
m=0

INPUT "ENTER THE RANGE OF VALUES ";

INPUT "enter the value of k:",

’

N
k: CLS

LOCATE 1, 20: PRINT "FOR WALUE OF K="; k
T spC(10); "@i2", SPC(12); "@13"; SPC(10);

FOR s = 1 TO N

j = (.152380952# * (s / 10.5)
Sum = Sum + jJ

prod = (1 + k) * .3 * Sum

T .B) ¥

prod2 = (1 - k) * .2 * Sum

prod3 = (1 - k) * .1 * Sum
T 8; USING ("#.H#H##H#H##HHH#H{A"); SPC(4); prod;
}= 20 OR 8 =

s

|
|
‘ | 183

PRINT
"@14"

(EXP(-(s / 10.5)) " 1.6)

SPC(4); prod2; SPC(4); prod3

43 OR s = 66 OR s = 89 THEN PRINT "PRESS ANY KEY TO CONTINUE";



m= 0

INPUT "ENTER THE RANGE OF VALUES "; N
INPUT "enter the value of k:", K: CLS : PRINT
PRINT "FOR K="; K
PRINT "s"; SPC(12); "ei2", SPC(12); "e@l13"; SPC(10); "@14": PRINT
FOR 8 = 1 TO N
j =1 = EXP(=~.33 * s8)
prod = (I + K) * .3 * j
prod2 (L - K) * .2 * 5
prod3 (1 - K) * .1 * j

PRINT s; USING ("#.##########"),; SPC(10); prod; SPC(10); prod2; SPC(4);

P
'IF 8 = 21 OR s = 44 OR s = 66 THEN PRINT "press any key to continue:"; INP
KT s
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m=0

NPUT "ENTER THE RANGE OF VALUES "; N
INPUT "enter the value of k:", k: CLS
LOCATE 1, 25% PRINT ." FOR K= "; k
T SPC(5); SPC(10); "@12", SPC(12); "@l1l3"; SPC(10); "@14": PRINT
FOR s = 1 TO N
j = (1L - EXP(-(s / 10.5)) ~ 1.6)
prod = (1 + k) * .3 * j

prod2 = (1 - k) * .2 * j

prodd = {1 = k) * .} * 5
T s; USING ("#.#i#t##HHHHH#H#H#"),; SPC(10); prod; SPC(10); prod2; SPC(4); prod3
l= 20 OR 8 = 43 OR s = 65 OR s = 87 THEN PRINT "press any key to continue:"
KT s ; -
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APPENDIX D

The computational Procedures for the illustration of the Markov-Multi

drugs decision processes for the Control of diseases.

N 5

=
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We shall use these values to determine the best policies for every n. we
have

'Q, = 'Py1 'Ry + 'Pyz 'Riz + 'Pya 'Ry

'Q, =06x1+02x1+02x3=14

'Q, = 'Pyy 'Ry + Py Ry TRy

'Q, =0.1x2+06x2+03x3=23

'Q; = 'Py 'Rys + Py Rz + P13z 'Ras

'Qy =01+ %2 +0.7x4=33

2Q, = 2Py "Ry + P13 Rz + 2P "Ry

Q, =0.8x1+01x2+0.1x2=12

2 2 25 2
= 2P,, "Ry + *Pay Ry + ‘P23 “Ras

o
|

2Q, =06x3+03x2+01x4=28

2P, “Ryy + *Pa; “Rap + “P3; “Ras

£
I

2Q, =05x3+04x2+01x1=24

Let O, = O foris 1. 2, 3v\ Then for n = 1 we find V,'"" = Min,> "Q, and
hence
dM=2 g N=1'and ds'"' = 2
Let OV, O,'" and %V, be the minimum earnings (cost) corresponding
tod,"", d,'" and d5'". We have

O = 1.2 %Y =2 3and "W =24

For n=2, we have

OV, = Min, 5 ['Q,+ 37 OVE)
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V7= Ming, Qo+ 3T 0y )

= Ming o ["Q # B+ P B 4 R, Py ™)
=1 k=1 WET T4 Py, Ov ™ s Sy, Bt T, By
=14+06x12+02x23+02x24-= 3'.00
i=1 k=2 V,"=2Q,+ 7Py, O, "N 4 2P, Oy 4 2p_ Oy
=12+06x12+03x23+01x24=285
i22. k=1 'Qp+ Py WM+ Py, O M 4 Py, Oyt
=2.3 40 1% 1.2 + 0.6 x 2.3 03x24=452
=2, k=2, Q5 +2Py W 2Py, O 4 2P, Oyt ’ '
=28+06x12+03x23+01x24=445
i=3. k=1, 'Qs+'P;, W, 4 'Paa VL' TPy Oy
'33+O1x14+" x23+07x24=556
L i=3.k =2 2Qy# 2P W 4 2Py, Oyt a 2p Oyte
=24+05x12+04x23+01x24=416
We see that forn =2
d®'=2, & ¥=2 anid ¢, P = 2
with %@ = 2 85, %, = 445 ang W= 4 18
Forn =3, we h}."-v'é . |
kv = Min, o[ " oV‘m; ks °V2‘2’+ P 0v312)]
=1 k=1 "V,?='Q,+ P, V2 + 'P,, V)2 4+ 'p,, Oy,
=14+06x285+02x445+02x4.16 =483
i=1, k=2 2V, =2Q, + 2P, W, + TP, V7 4 7Py, OV,

=12+08x285+01x445+0.1x4.16 =434
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i=2. ke 0Py WP 8 1R O 4 P, MY
=23+01%x285+06x445+03x416=650
i=2.k=2 Q,+7P; o P VT TP
=28+06x285+03x445+01x4 16 =626
i =3, % = 1 BER# 'Py; W Py W s TRy B
=33+01x285+02x445+07x4.16=7.39
i=3,k=2 Qs+ Py VP 2Py, OV 4 2Py, Oy
=24+05x285+04x445+01x416=6.02
g e d =2 and d™'= 2
with V' = 4.34, °V,' = 6.26 and "v,'"' = 6.02
Forn=4
VI = Miny [MQu+ TR VT TP VR )
i=1:k=1.'Qy + Py, VP + P, AP 4 'R, VR
=14+06x434+02x626+02x602=646
i=1,k=2 2Q,+7%P,, OV,‘3"+ 2p,, O, 4 2P, Oy,
=12+0.8x4.34+01x626+0.1x602=5g90
1=2.k=1. 102’ + 'Pyy oV, + 'pzz v, 'Pm OVJ‘:”.
=23+01x434+06x626+03x602=530
FIE2,k=2, Q¢+ ‘P +'2P22 Ve P, ov3f3)
=28+06x434+03y 626 +0.1x6.02 = 7.88
=3, k=1, "'Q,+ Py ov’m + 1Py, O,y Py O,y
= 338 x 254 + 02x626807 « 6 072 920
1=3. k=2 °Q;+ 2Py, O, 4 2P, Nt +ﬂb33 A
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=24+05x4.34+04x626+0.1x602=768
di'"'=2.d,"=2and dy"=2
with v, = 5.0 %, - 7 88 and N,"=768
Forn=5
i=1. k=1, 'Q,+ 'P;; Vi¥%p,, O, + 1P, OV,
=14+06x59+02x7.88+0.2x7.68=8.05
=1, 22 A0, + 1P, Ve P SN Pp By W)
=12+08x59+01x7.88+0.1x7.68=7.48
=2 K=" 10, % Py WP + 1Py s TP, O
=23+0.1x59+06x7.88+0.3x768=992
Ci=2,k=2, Q¢ zéz, OV 2Pgp OV, 4 2Py, OV
=28+06x59+03x7.88+0.1x7.68=09.47
i=3, k=1, 'Q, 3 'Par V4 + 'P3, OV, + TPy OV

=33+0.1x59+02x7.88+0.7x7.68=10.84

i=3 k=2 2Q,+ 2P, ov'(a) & 2p,, O, + 2, Oy,
=24+05x59+04x788+0.1x7.68=09.27
di®=2,d,®=2and dy¥=2

- with °OV4® = 7.48, °V,® = 9.47 and v, = 9.27
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