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ABSTRACT

The project studies expensively some application of optimal
control theory; and with respect to Kalman and Ackerman equations.
Pontryagin's maximum principle otherwise called the Hamiltonian
form was‘used to obtain the Riccati Equation ; from which the
optimal control of a duédratic cost function is.obtained.

At the centre of the project is the Fad@eev‘algorithm which.
helps tp obtain the transfer functions. A computer program was
developed for the algorithm to handle up to 3 dimensional matrices,
indicating the number of iterations before convergence. The

algorithm code was used to solve sample problems. These examples

are obtained as output in the last pages of chapter 2.
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CHAPTER ONE
ELEMENTS OF CONTROL THEORY

1.1 INTRODUCTION

We study in this chapter as literature review the elements of
time—~invariant linear system. Our concern is specifically on the
representation of a control system by block diagram and analysis of

state space system

DEFINITIONll.l (CONTROL SYSTEM)
A control system maybe defined as consists of components which
functions under excited signals. The signals are the input response

and the output response.

1.2 BLOCK DIAGRAMS OF CONTROL SYSTEM

Systems" are often represented by block diagrams. It is
essential to understand and learn the rules for working with block

diagrams.

»'Definitiqn 1.2 (Open Loop Control System)'

An open loop control system maybe defined as the simplest
system whose components respond only to the input response and the
output}response. In this system no feedback is fed back ipto the -

system to monitor it's function.




R(s) (Input) ‘ C(s) (Output)
g CONTROL SYSTEM >

Fig 1.1 A simple control system.

R(s) is the Lgplace transform of the reference (input) response and

C(s) 1is the Laplace transform of the output response.

1.2.1 THE FEEDBACK CONTROL SYSTEM

A feedback system is representable by the block diagram

below: -

R(s) »  G(s) »C (S)

E(s) (Error) Y

H(s)

F(s) (Feedback)

Fig. 1.2: Feedback Control System

Every feedback control system can be represented bythe general
block diagram éhown_in fig'1.2, in which G(s) is sometimes called
the direct transfer function or direct transmission gain (DTG).

H(s) represents all the componénts between the output and input




summing points via the feedback path (H(s)). In many instances H(s)
is merely a constant and quite frequently it is equal to unity.
When H(s) = 1, the signal E(s) is the difference between the input
and output

[R{s} - C(s)}E(s) is commonly called the error. It 1is
also called the actuating signal since a signal present at E(s)
will actuate or make the system'respond. The signal F(s) represents
the feedback signal. When H(s) = 1,F(s) is equal to the output
cis) .

Referring to figure 1.2 we can write

C(s) = G(s)E(s) (1:2.1)
F(s) = H(s)C(s) (1.2.2)
E(s) = H(s) - F(s) : (1.2.3)

Substituting (1.2:2 into (1.2.3) yields

E(s) = R(s) - H(s)C(s) (1.2.4)

and now substituting (1.2.4) into (1.2.1) we get

C(s) = G(s) [R(s) - H(s)C(s)]

= G(s)R(s) - H(s)G(s)C(s)
i.e.
C(s)[1 + H(s)G(s)] = G(s)R(s) (1.2.5)




C(s)/R(s) = G(s)/[1 + H(s)G(s)] (1.2.06)

.

Equation (1.2.6) which relates the output to input is called the

closed loop transfer function of the system the quantity H(s) G(s)
is the product of all the gains in the loop it is also the ratio of

feedback signal to error signal with feedback loop
F(s)/E(s) = H(s)G(s) (1.2.7)
Equation (1.2.7) 1is called the open loop transfer function or

simply the loop gain.

Equation K1.2.6) can‘be stated as
CLOSED LOOP TRANSFER = DTG/[l + LOOP GAIN] (1.2.8)

" Another equation of interest is obtained by substituting e.g

(1.2.1) into (1.2.6) to get
E(s)/R(s) = 1/[1 + H(s)G(s)] (1.2.9)

called the actuating signal ratio. Equation (1.2.9) relates the
error to the input.
If the input R(s) is sef to zero we get

1 + H(s)G(s) = 0 (1.2.10)



called the characteristics equation of the system.

It is from this equation that information about the stability

or behaviour of the system is derived.

1.3 THE DYNAMICS OF LINEAR SYSTEMS

The dynamic behaviourl of many dynémic systems 1is quite
naturally characterized by systems‘of first order differential
equations For a general system these equations in state space

notation take the form
g’ = F(xf u, t) (1.3.1) -
and in a linear system they take the special.forml
x' = A(t)x + B(t)u {1:.3.2)

where x = [x1, X2, .., %xn] 1s the system state vector and u = [ui,
uf, ..., Ua] 1is the input vector.

If the matrices A and B in (1.3.2) are constant matrices that
is not functions of time he system dynamics is said to be "time
invariant", with the state space methods the description of the
system dynamic’ in the form of differential equations is retained
throughout this project. If a subsystem is characterized by a
transfer function it is often necessary to convert the transfer

function to differential equations in order to proceed by state




space methods.

In chapter 3 we shall develop the general formula for the
solution of _a. vector mat;:ix differéntial equation in the form of
(1.3.2) in terms of a very important matrix known as the state
transition matrix using the Féddeev algorithm which described how
the state X(t) of the system at time t evolves into (or from) the
" state X(t) T time to, for time invariant system the state
trangitién matrix 1is the matrix exponentiallfunction which 1is

easily calculated

1.3.1 DERIVATION OF STATE VARIABLE MODEL
Consider the single input single output (SISO) nth-order

transfer function of a system

(bmSNI + bm—lsm-1 + ... ¥ bis + b)
H{s8) =

s" + an-18""'+ ... + Qs + a

The first order differential equations are formed from phase

variable states; selected via defining the variables as

x1(t) = y(t) ' (1.3.4)

®2{t) = x"1{t} = $" (L) (1.3.5)
x3(t) = x"2(t) = y''(t) (1.3.6)
#s k) = mVadt) = 9 (&)



= iy (t) - azy'(t) - ... - an-1y" " (t) + Ku(t) (1.3.7)

From which the first order d.e for the variables xi(t), X (B)y «uuy
xn(t) are given by: ' -
x"1(t) = xz2(t)

x'2(t) = x3(t)

x'a(t) = = auxi(t) - ozx ") - ... - n-1Xn-1t) + Ku(t) (1.3.7)
Y(t) = (bp- buat) (b1 = Bvar) ... (bu-1 - Bvaw-1)X + Ku(t) (1.3.9)
4 "
i I~ P

x'1(t) 0O 1 0 ... 0 X1 0 ui

x'2(t) 0 0 1 ...0 X2 0 uz
i = I A (1.3.10)

X'n(t) -1 -0 —0ln Xn K U

n = J L _ R |

Equations (1.3.9) and 1.3.10) may be written in the general form as

x"(t) = Ax(t) + Bu(t) {1.3.11)

‘y(t) = Cx(t) + Dul(t) (1.3.12)

where u(t) is the single input or forcing signal y(t) 1is the
si 21 output signal; A is termed the nxn-dimensional input matrix;

B . he nx1l dimensional'input matrix; C is the 1lxn dimensional




output matrix and D is the 1x1 dimensional feedforward matrix.




CHAPTER TWO

TRANSFER FUNCTION

2.1 INTRODUCTION

In analysis and design, differential equations are usually
used to describe control systems. Block diagrams are devices for
displaying the interrelationships of the equations pictbrially.
Each componeht is described by its transfer function. Here in
this chapter, we shall study the interrelationship of these

components using the faddeev algorithms.

.

2.2 TRANSFER FUNCTIONS

A monovariable system with input U(t) and outputy(t) is said
to be linear if the relationship between u(t) and y(t) is a
linear differential equation with constant coefficients (a, and

B.);

n . Y
andy-r .-t a ay +auy:=bmd u+....+b au

y b
dt tdt dem 1 dt % Sl

ceea(2.2.1)

’

Using the Laplace transforms, this equations gives the

transfer functiong:

y(s) = bmsfm el d AT bl.sﬂ'__t_)_‘e‘. - H(s) IRE ¢ % %, &'
U(E) a,8" 1,000t @881 8,

The ratio of the function defined by H(s) of the Laplace
transform is called transfer function.
The componenets (u(t) and y(s)) are assumed at rest prior

to excitation; all initial values are assumed to be zero when

-9



determining the transfer function.

P 1 (M

Consider the mechanical system shown in figure 2.2.1. It
is simply a mass M attached to a spring (stiffness K) and a dash
pot (visqpus friction coefficient f) on which the force f£

operates. Displacement'k is positive in the direction shown.

DLLIILNINIL L LT L

Figures 2.2.1 (a): MASS-SPRING-DASHPOT (b) :FREE-BODY DIACRAM.

The position is taken to be at a point where the mass and
spring are in static equilibrum.
nd. :
i . g f motion to the free-bod
By applying Newton's 22 . law o Y

diagram the force equation can be written as

dx d?x d?x dx
- — "k :M—- "F:M“_*f"— ka o e o 202-3)
Fofge =M gez | at (

10



Equation (2.2.3) shows that the dynamics of mass-spring-

dashpot shown in figure (2.2.1a) is described by the second-order

differential equations (2.2.3).

Taking the Laplace transform of each term of this equation,

we obtain (assuming zero initial condition)

F(sS) 3 MS? X(S) + FS X(S) + K X(S) ceeeeeas(2.2.4)

Taking x(s) to be the input and F(s) as the output, the
transfer function is

X(s) X

H(s)
(%) " pis)y " WaTa £s 2 Kk

sesennldeded)

LE. P
The Resistor, Inductor and Capacitor are the three basic
elements of eléctrical circuits. These circuits are analysed by
the application of kirchoff's voltage and current laws.
Consider the L.R.C series circuit shown in figure (2.2.2).

The governing equations of system are

Ird;

1 e,
lind] e = i 2 =0
ST RI b f_o.ldt e (2 )

L -
"Efmldt -eo 000.00(2.2.7)

1"



Figure (2.2.2): RLC SERIES CIRCUIT.

Taking the Laplace trasform of each term equations 2.2.6 and
(2.2.7) with zero initial conditions, we have the following

resulting equations:

SLI(s) + RI(s) + ééz(s) 2 E(s) b i (2.2.8)
L 1(s) =E.(s) (2.2.9)

NOW ASSUMING e is the input variable and g, the output

variable, the transfer function of the system is

Eo(s ) (s) =Lc's'2:IRc’s“fi RS T 1.3
From eduations (2.2.1) and (2.2.2), we see that equations
(2.2.5) and (2.2.9) reveal that the transfer function is an
expression in S.domain, relating the output and input of the
linear time-invariant system in terms of the system parameters’
and is independent of input. ‘

Transfer functin of physical system is represented in Blocks

diagrams. Each block describes a trasnfer function. The Block-

12




diagram of equation (2.2.10) for example is depicted I figure (2.2.3)

E(s) y E(0)
LCS, + RCS + 1

A\

P

Figure (2.2.3) Block diagram for transfer function for eq. (2.2.10)
2.3 STATE PHASE -VARIABLE USING TRANSFER FUNCTIONS. -

It is possible to determine the phase variable state model once the system model is known
in the transfer function or in the differential equation form.

The general form of an n" - order differentiz;ll equation relating output y(t) and the input
u(t) of a linear continuos-time system is given by equation (2.2.1) where the ai’s and bi's are

constants, m and n are inputs with m > n and

. (23.0)

Under the assumption of zero condition, the transfer function is given by equation (2.2.2).
Consider a case where the transfer function does not have zeros. Such a transfer function

has the form.

13



Y(s b
il U(s) s"vass"'v ...va,,s+a, .(2 24)

Equation (2.3.2) has a corresponding differential equation

e lhiy"‘l'....0anly la,y bu ceees(2.3.3)

Let the state variables as

X =Y
X, =Y
x‘=yll
X, =y 118 2 s s 3ok 3 g e 5 TR 0 0 e (2.3.4)

Equations (2.2.4) is reduced to a set of n-first-order

differential equations given below:

X, = X

X, = X,

xll 1 xn

X, = =a,Xx d, Xze...... “a,X, + b, ... (2.3.5)

Equations (2.3.5) results in the following state eguation:

X, [ x,

x 0 1 0 .....0| 0

£ 0 0 1 ..... 0| % Jlo

O Y s+ u P - ¢
_’1 0 0 0 ..e.. 1f|° :
xn- a, 4, a,, a, *a Lbj

*an {xn




or

xI =Ax+Bu (2.3.7)

y =Cx (2.3.8)

Equation (2.3.7) is called the equation of state while equation (2.3.8) is the
" .

The matrix " A" has avery special form. it has all 1's in the upper off-diagonal, its

last row is comprised of negatives of the coefficients of the differential equation and all
other elements are zero. This form of matrix A is known as the

BUSH-FORM OR COMPANION FOR M\

2.4 DERIVATION OF TRANSFER FUNCTION FROM STATE MODEL.

Consider the general state model .

x =Ax + Bu (2.4.1a)
Y= Cx + Du (2.4.1b)

The transfer functions may be obtained as follows:

Taking the Laplace transform of equations (2.4.1) , we have "

Sx(s) - X, =Ax(s) + Bu (u) v (2.4.2a)
Y (s) - Cx (s) + Du (s) (2.4.2b)

ie X(s) = (SI - A) x, + (SI- Ay BU(s) (2.4.3)
substituting (2.4.3)in (2.44b),

Y(s) = C(SI-A)» X,+C(SI-A)'BU+DU (s) (2.4.4)
Assuming zero initial conditions, we get the system transfer as

H(s) = Y(s) = ¢[SI-AB+D =Cadj(SI-A)B +D ...(2.4.5)
u (s) det (SI-A)

15



The quantity (SI-A)' of equation (2.4.5) is called the

Resolvent matrix.

EXAMPLE 2.4.1 (SINGLE - INPUT - SINGLE - QUTPUT)

Consider the linear single-input single-output (SISO) system .

(A,B,C",D)  described by -

1 01 0]|* 0 :
x2 : 0 1 1 x2 + lu ..l.(2.4'6)
Xy 0 0 3]ix, 1
Y=I1 0 OF scacnis (2:4.7)
s =1 0
The det (SI-A)= det |0 s+l 1 S(811)(813) seese(2.4.8)
0 0 st3

Therefore the transfer function H(s) is given by

(s1l1)(s'3) (s'3) 1 0
0 (s'3) 3 :l
y(s) o 0 0 (s'3)|11] 512 . T
u(s) LW S(x'1)(s'3) :*s(s.l)(s.3) ol £ )
2.5 FADDEEV ALGORITHM FOR THE RESOLVENT CALCULATION

.

There are numerous methods for the computing of the

resolvent [(SI-A)™*]. One of such methods is the use of (2.4.5).

This requires the calculations of determinants in both the
numerator and denominator. Another method for calculating

(SI-A) ' is the iterative scheme called the Faddeev ALGORITHM.

16




Suppose we denote (SI-A) = M then the inverse of M could be

written as

M1 = (ST A)°1 = adlsrfil‘é... sesslZeBal)

Letting det (SI A) - |SI'A| =¢(S) - S"+a,,s"'+..+a; ..(2.5.2)
and
adj (SI A) 2T, 8" 1 T 8" & «ue# I,

Where T'i are matrices and ai are constants.
Then . o .

(ST Ayl =TS ¥ D, 8" ¥ .ir T,
S e, S™ ta,. 5" ¢ it

- - S <A 2Snz b esi T
- . 0
P(s) )

ceee(2.5.4)

an-l ’ an

-2 7 oo...’ aO P P

a
. CF
n= =A T
L S ; a"_! - BEr
2'A (AP‘W)
I = £
0= Ar tar; , =

: n (4 T,)

1
i y




O:A I‘O..aoI o--o-(2.505).

Where tr(X), the trace of x, is the sum of all the diagonal

elements of the matrix X.

EXAMPLE 2.5.1 (FADDEEV ALGQRITHM) '
We want to compute (SI-A)* which appeared in .example
(2:4.1) by Fa-ddeev. ALGORITHM.

By applying the recursive Ii's and ai's, we have

Oy =T = I, & = - E.(AT,)
01 0][1 0O 01 0
T,10 "1 11|10 1 0 0 1 1|-=-(0-3-1) - 4
0 0 -3]{001 0o 0 3

lcon !
owno
B0

1
1
[l eR =
I
or
[ |
wHOo
{
cor
or o
\ HOOT
+

4 1 OJT
= 0 -3 =1
0 0' 1
. @ 1 0][4 1 0 3
1 =
a,,,z Q; = le -5 To01 /{0 3 2
0 0 3/l0 0 1

18




o O w

3 -1
(0] 0
© 0 0

Thus from (2.5.2) and (2.5.4)

s’ t4s +3 st3 -1

(BEAY L o ol 0

- — : s? 4+ 3s -s
521452138

0 0 .. 822

EXAMPLE 2.5.2 (EQUATION OF STATE TO TRANSFER
FUNCTION BY FADDEEV ALGORITHM)

Consider a monovariable process described by its equations

of state and of measurement as:

0 1 0 0
x={0 0 1(x+|0ju....(2.5.6)
1 3 4 10

Determine the transfer function Y(s) |U(s, of this process

using Faddeev algorithm.
SOLUTION -
. By using equaton (2.4.5) . ’

H(s) = Y(s)/U(s)
= CI[SI-A] "B
We can calculate the Resolvent first by the Faddeev

algorithm.
Now I'; = I; by definition

o, = o % (Mz)

19
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= -1/3(-1-1-1) =1

S(S14)13 Si4 1
Thus (ST A)l:.‘b_(lg7 1 S(514) S
1 -3(5-1) g?

where p(s) = S + 45’ + 35 + 1 -

So finally, the transfer function

(s13)(s'1) (s14) 1
1 s(s'4) s
-5 3(s 1) s?
s%i4s%i4s11

C[SI ATl B=C B

10

- 10
C(SI a)yiB= T

TO TRANSFER FUNCTION)

Find, by uSe of the Faddeev algorithm, the transfer function

of the linear system (A,B,C;) given by

- - & =
[ 2 0 1 1 C= (-1 1 0)
A = g =2 1 B = 2
0 -3 -2 2
SOLUTON

We first apply the Faddeev algorithhm, then obtain the

resolvent matrix.
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10 0 4 0 1 3 =% 3
0 1 0{sS2+|0 4 1|s8s+|0 4 2
(sT a) ! =10 01 0 34 0 64
S3165%115s5114
i =2 0 117 3 2 & 14 12 0
st 0 2 1|0 4 2= -ofl0 14 0 :._;.(-42) 14
0 -3 -2,/0 6 4 0 0 -14
s?t4sv] =3 st2
0 s‘v4st4 st2 |
0 (35%6) s?t4std]
s3y6s?+15s+14
32f4s+7 -3 st2 1
C™(SA I)'B=[ 110] 0 s?r4ast4 s¥2 | x|2| + s’16s?1155114
0 (3s#6) s?rasra| (2
Thus the transfer function is
2—
-~ H(sO el
s316s%+15s+14
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R e R

Now (5 A)™ = sausalPyBsB)

‘ 8% 4 0,87 ¢ jones 1,
2 0 1
NowA=|0 2 1
0" 3 2
'y = I; by defnition.
O’;='tx[Arz]
1 0 1](1 00 2 0 1
t, |0 2 1|/010 t, |0 2 1|=2—(-6)=6
0O 3 2|0 01 0 3 2
'y = Ay + ;1
2 0 1 6 00 4 0 1
0 2 1|+#|06 0/=|0 4 1
R 3 -2 0 0 6 0 3 4
a, = -T,/2[AI]
2 0 1/|/4 0 1 " 8 3 2
0 2 1ffo 4 1f=-Crlo 11 2 |=-2(30) 15
0 3 2|10 3 4 0 6 11
r, = Al', + o1
2 0 1](4 0 1 15 0 0
- 0 2 1]/10 4 1/4+|/0 15 o0
0O 3 2|{0 3 4 0 0 15

8 3 2| [15 0 0] [7 32
210 11 2 [+]|0 15 0| =[0 4 2
o 6 11/ |0 o0 15| |0 6 4

o, = -t,/3[Ar,)

23




1
le(s?+as+7) (s?ras+l ) |2

L 2] . _s™-14s5-7+2s?Hist] s 6
S*+65?+155+14 s%16s5%1155+14 s%16s?115s114
EXAMPLE 2.5.4 (RESOLVENT AND TRANSITION MATRICES)

This example is very important for the study of the next
chapter - the transition matrix.

Find the resolvehts and transition for each of the

following:
) 1 0 0 : 2 1 1
(i) A, =1 ® 0] (ii) Az|l ‘-2 7]
1 2 43 1 1 4
Solution:
() 10 0
A, =l 2 0
’ 1 2 3

The resolvent matrix of A, is:

Adj[SI A)] _ T,,;8"MS"°T, jtee.otTy
det (ST A,) Pp(s)

(ST Ay 1=

Now n = 3, thus:

r, = I, by definiton
a, = -tr[AL].
1 0 0
=~ =t,(1 2 0| =1(1 2 3)= -(-4) =4
1 2 3

2l



k)

I, = AT, + a1

o o~
o N N
On o~
n
o o
o « o
< O O

oo M
o N N
L e B |

n

@, = -t,/2[AT,]

= Lligay .
7 ,[5743] 1

o e M
o ™ o

n ™M <

~

S O ™

O N N

[T I B |

= AT, + oI

Ty

& o N
o M ™

< N o

S O ~
S ~ O
-~ O O

2]

co M
o ¥ N

n M
"

o = -t,/3 [AL)

0
s425-3 0

S45s+6

S+3
st4

2s~2

1}

siys=2

§M48%8 6

O ™M <

-
1}
032h
0 oMo
|
+ o
w-

%} ~N
L

o —
S ]
022“7...
; "
O =
+ N
~ i@
. no
JIL
o O =
o ~ O
- o o
.-"II.IL
\l

D

—_—

<

~

%))

N
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(s+2)(st3) 0 0

= (s+3) (s*3)(s-1) 0
S+4 2(s-1) (st2)(5-1)
(s=1)(s+2)(s+3) '

1 0 0 |

s-1
1 3 0
(s-1)(st2) s12
si4 4 19
(s-1)(s542)(s+3) (s+2)(s543) s+3]

Thus (2.5.9) is the resolvent matrix.
By taking the inverse laplace transform of (2.5.9), we

obtain the transition matrix ¢(t) .

et 0 0
_;_l t ~2t . -2t
xisie‘-ZOVére’“*- i_e".\t 2 (e 2t=gt) ed.nl

Solution I1: .

=2 1 1

(ii)y A, |1 =2 1

1 1 -2

S16T a1 5 SHp 5,

5%a,8%va, Sy
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M.. - M ™ m oo™
01 —~
- -
.t e - m Y m Mm N ™M
M iy " " u
=5 | _— M ™ Sy
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N 44 S — Y mm
— = N =
1
- —_— Tl._t ~— 121 T.M.
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s* 0 0 411 33

0 s2 0|+(1 4 1|s+ (3 3

0 0 s?| (114 33
s%16s?19s

w w w

~[SI A)™! =

s3r4st3 s+3 st3
st3  s?’4s+3 s+3

s+3 513 s?t4s+3
- 8(8*¥6519)

1)

(srl) (st3) st3 st3
s+3 (st+l) (s+3) S+3

s43 S¥3 (s'1)(s13)
S(s+3) (s*3)

"

(s+l) 1 - 1
S(s+¥3) s(st3) s(st3)
| (stl) &
s(s+3) s(st3) s(s+3)

i 1 (s11)
| S(s*3) s(st3) s(s5%3)]

W

A2 1 1 A1
38 (s#3) 35 3(st3) 35 3(s:3)
1 .1 . 1_ 2 1. 1 .
= 135" 3(s¥8) 35 3(s#3) ds 3(sey | -reeeeril2:5.10)
1 1 _ 1 1_ 2
35 3(s+3) 3s 3(st3) 35 3(s#3)

Equation (2.5.10) is the transition matrix. Taking the inverse

of Laplace transform of equation (2.5.10) gives us the transition

¢ (t)
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Bty (1-e

1-2&™%*) (1—e‘u) el

s 1-2e7°%) il

1 l-e™) ( 5 gt
B ~e"3t) 1-e77t)

h ’ (1-e™*) ¢
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2.5.1. THE QUTPUT OF FADELEV ALGORITHM FOR RESOLVENT MATRIY
Civen a 3 b9 3 (3x 30 Matrix bolow: '

| w1l oal2 ald " a ' ‘
A - | all a2 all
. @31 a32 al3 .

Zolutinny- the Faddeev algorithm is calculated using the
£ -1

following thecry of resolvent matrix [SI-Al"-1.

Dimzncsion For Row Al:
-

J .
Dimension For Row Al:

Input P Hatrix A

noon 1
2 2}
3 c -
an~ - ~
- A ==k v
~ m.. hala] ra o
> L -.'.(F ...);L = E’
. nA )
i ED3 c2I
SR iyiET oy Tl s:iewsawamn ,
g % 0
~
3 0 2
~ ) z
Az -T & |

Thz above i A2 i3 to be added to a2 which will be koyed in
% @ N

Loiow

Tnaut Far @2

“ho volue of gammal is as shown below
0 3 0
3 6 2

-12 -7 o .

o5lving for Alphal........
al = -Tr(ATr.)/2
0 1 0 "
3 0 2 . .
-12 -7 -&°
6 1 0
3 & 2
-12 -1 0




3 & 2

-6 -11 0

294 19 =1d

al = -Tr!AT1)/2 = 11 o .

réc = ATl + all

'Solving for TO ..........
3 € 2
-6 -11 C-
-21 -12 -14
11 0 0
0 11 0
0 o 11

The above 1s the result of AfM + qIl and
the result of the additicn is below :

146 2
-6 0 0
-21 -12 -2
Solving for aO ...........
0 1 0

3 0 2
-12 -7 -6
14 6 2
-6 0 0
-21 =12 -3
-6 0 0

0 -5 0

0 n -£

ad = -Tr(ATD)/3 = 6
The Numboer of Iteration is 5

Cubztituting the iterative values for the value of Ti's o
and ai'z, we obtain the following resolvent matrix : R,
r2s2 + T18 + TO ‘
(ST - A)"-1 = ey T RO o e o
$73  + 0222 '+ qls + a0

See next paje for the result.
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-3
=
o
Fe
a
h
O
3
o
)
—

- A)Y"-1 is as shown below

1 0 0

1 0 0

0 0 1

€ 1 0

3 6 2
=32 =¥ 0

25 £ 2
i 4 o

-21 -12 0

373 + € 32 + 118+ 6

—~

(o Ran B E G 5]

- AYT-1 =
c24 65+ 14
i 18+ 6

¥ 08+ 2

24

L8

3
~n

182+ 38+-6
0S2+ 68+ C
0S?+ 28+ 0

08? +~1284~2
0E*+-T8+~12
182+ 0S+-3 g

1

2~3 4+ 6 8% + 11 & + 6

QUTPUT 2
Solving For a2 ........ tc get Trace value
imenzi-n For Row Al: X

3

Dimen~inn For Row Al:
a .

Tnput For Matrixz A ‘ '

0
0 =
0

SR

IO

a2 = ~Tr(AP2)/1 = 4
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rlt = AT2 + a2l

Solving for Il

...........

0 1 0
g -1 -1
0 0 =3

The above is AP'2 is to .be added to a2 which will be keyed in
below

Input For a2

The value of gammal is as shown below

4 1 e

0 -3 -1

0 0 1 ;
Sclving for Alphal........
al = -Tr(ATr1)/2

0 3 0

o -1 -2

0 0 -3

4 1 0

0o -3 -1

0 0 1

g 3 -1

0 -3 9]

0 c -3

1 = -Tr(Ar1)/2 = 3

£

r0 = AT + all

Solving for IO ..........

1 0.
g . -1 =18
0. 0 -3 '
4 1 0
0 8 =i
0 0 0

The above i3 the result of Arl +.011 and
the recult of the addition is below
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QLD
o
OO

o2lving for a0 ...........

b

0 1 0
0 -1 *=1
0 0. =3
3 3 =1
0 0 0
0 C 0
0 0 e
0 C 4]
0 0 e

a0 = -Tr(Aro)/3 = 0

The Number of Iteration ié 5

’

Sukctituting the iterative values for the valus of I'i's

arid ai'z, we chtain the fcllowing resolvent matrix

Sce nztt pags for the result.

mhercfore (2I - A)"-1 is as shown below

1 ¢} 2

2 n 0

0 0 B

4 1 -0

0 3 -1

0 0 1

3 3 -1

0 0 0

0] 0

€3 + 4 82 + 38 + 0
(€SI - A)"-1 =

182+ 4S5+ 3 )
0S2+ 1S+ 3
0€2+-021-1



12%+ 0S8+
05%+ 38+
0S2+-1S+

0c2+ 0SS+
CS%2+ 02+
182+ 1S+

oOOO (> Ne N

573 + 48 +3S8+0

CUTPUT 3

Solving For a2 ........ to get Trace value
Dimensioh'Far Row A: '

3

Dimenszion For Row A:
- :
")

Input For Matrix A
1
1

G2 = -Tr{Ara)/i

h
(o)}

r1 = AT2 + a2l

The above is ATl'2 is to be added to a2 which will be keyed in
below

Input For a2
The value of gammal.is as shown below
‘4 0 1

0 4 i

0 -3 4

Solving for Alphal........
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(e N e e O O O Oty

0
1
3

D = s

0
4
e

=3
-1
-6 -11

(S5 o8 e

= -Tr(Ar1)/2 = 15

o]
[N

ro = A™1 + all

-8 -3 2
0 -11 2
0 -6 -11
15 0 0
0 15 0
0 0 15
The abocve is the result of AT1.+ all and
the result cf the addition is below .
7 -3 2
0 4 -
0 ~-£ 4

Sclving for a0 ...........

=g 0 1

0 -~ 1L

9] - 3 -2

7 +3 2

0 & %

0 - 4

14 0 0

0 14 0

c n -14

a0 = -Tr(AT0)/3 = 14
The Number of Iteration is 5

Subzsctituting the iterative values for the value of Ti's
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ar.d ai's, we obtain the following resolvent matrix

S™3 + a@2S?® + alS + aO
See next page for the raesult.

Therefore (2SI - A)"-1 is as shown below

1 0 )
1 0 0
0 0 1
4 0 1
0 4 1
0 -3 4
7 =3 =
C 4 2
o -6 4
83 + 6 £ + 15 8 + 14
(51 - A)"-1 =

182+ 48+ 7
0S2+ 08+-23
.. 08%+ 15+ 2
182+ 0%+ 0
0S2+ 4S8+ 4
082+ 1¢+ 2

0S2+ 08+ 0

NS24+-35+-6

182+ 45+ 4

S°3 + € 32 + 15 S + 14

QUTPUT 4

Solving For a2 ..e64:6. to get Trace value
Dimencion For Row Al:

3
Dimension For Row Al:
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3
Input For Matrix A

1 2 1
0 1 2
3 0 1
a2 = -Tr(Ar2)/1 = -3

't = AT2 + a2l

Solving for 1 ......... é g
1= 2 -3
0 % 2
3 -0 1

The above is AT2 is to be added to a2 which will be keyed in

below

Input Fcxr a2 -
The value of gammal is as shown below

-3 2 1

0o -2 2

3 c -2
Solving for Alphal........

al = -Tr(AT1)/2

1 2 1
0 1 2
3 n 1
-2 2 1
0 -2 2
3 0o -2
1 -2 3
€ -2 =2
-3 6 1 -

al = -Tr(Ari)/2 = o
r'o = Ar1 + g1r

Solving for ro

----------
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o g 000 wok
o

" i ' 11 and
above is ‘the result of Arl toa
result of the addition is below

3
o o©

=2 -2
=3 6 1

Solving for a0 ...........

1 2 1
0 1 <
3.0 1
1 -2 3
6 -2 -2
-3 6 1
10 © 0
0 10 0
0 0 10

a0 = -Tr(Aro)/3 = -10
The Number of Iteration iz 5

Substituting the iterative values

' i for the Value of ri's
and ai's, we cbtain the following

resolvd@t matriy -

——~———-———-‘———._-..__—_———.

573+ a28? 4+ q1g + a0

Cee next Fage for the result.

Therefore (1 - A)"-1 is as shown below
10 5y
1

=6 &3

O) k2 Qo

0
e
o
0

[SS ORI )




™3 +-3 8% + 0 8 +-10
(8I = A)™-1 =

183 3-2¢8
082+ 2¢
0S%2+ 12+

LI =

28%*% DE+ E
08* +-284~2
QE*+ 204-2
NC¥y 384+-3
N22; 02y €

1

1224+ -28)

£87°3 v-23 SF-+ € 8 =10

L0




2.5.2 FADEEV ALGORITHM FLOWCHART FOR

THE RESOLVENT MATRIX

Enter the dimension of the /

matrice

/Enter matrice A i.e Alpha 2

l

Solve for the trace value
( sum of diagonal)

Alpha 2

nter the trace value obtained
in solving for Alpha 2

/ Output the value obtained for

<

Add it to the value entered for
in matrice A to obtaain Gammat

/Output the value for Gamma/
Output the value

Solve for Alpha 1 (trace value)

/ Output its value /

obtained for the

Resolvent matrice
i.e (SI-A)

[
/ Output the value obtained /
l .

Solve for Gamma 0

/ Output the value for Alpha (V
(i.e Trace value)

Solve For Alpha 0
i.e Trace Value

Fig. 2.2.4 Fadeev Algorithm Flowchart
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CHAPTER THREE

STATE TRANSITION MATRIX AND ITS APPLICATION

3.1 INTRODUCTION

Consider a process described in the form

X = AX B EARY
Y=CX . , (3.12)
with U(t)=0

Knowing that at t =0, X(t) = X(0), we can calculate X(t) and therefore Y(t) for t > 0, by

directly integrating the equation of state 3.1.1)

X = AX

Thisimplies X =€ XO) G13)

Definition 3.1.1 (Matrix of Transition)

.

The matsix ¢, also denoted by (1), is called the matrix of transition.
Now when U(1) is difterent from 0, the solution of the equation of state is written as
X ©WN, {,cp(; -1 )BU( T )dt 13.04)
Now consider the general form of the state equation:
X)) = AX@) + BUW (315)
The Laplace transition of (3.1.5) is givén bS(

SX(s)- X, - AX(s) 1 BU(s) (3.1.0)

Whre X(s) is the Laplace transtorm of X(t) and U(s) is the Laplace transform of U

Solving for X(s) we obtain

Y2




X(s) = [SI-A]'Xy + [SI-A]'B U(s)
X(s) = [Xo + BU(s)] (81 - Ay (3.1.7)
The inverse of the Laplace transtorm of equation (3.1.7) gives the state transition equation

(3.1.4); where the transition matrix is defined by

®@) = L fIst- A"}, viso (3.18)

Definition 3.1.2 {The Resolvent NMatrix)
The inverse matrix [SI- A]! is called the Resolvent matrix.
When the input U = 0, equation (3.1.4) reduces to

X(1) = e¥X, (3.1.9)

Definition 3.1.3 (Fundamental Matrix)
“An nx nmatrix function y(.) is said to be a tundamental matrix ot
X = A X _ (3.1.10)

If the n columns of vy consists of n linearly independent solution of (3.1.10).

Example 3 1.1 (Fundamental Matrix)

Consider the dynaimical equation

X = [O OI’(,'] (3.1.11)
! OI.'\_J

This actually consists of two equations
X, =0; X, = 1X,. ‘ (3.112)

The solutions of these two equations are




Properties of Transition Matrix

We have the following very important propertics of the state transition matrix.

(i) O()=1 (3.1.15)
(i) D (1, to) = W(t) ¥'(1) = D(1, 1) (3.1.10)
(1) D (12, t o) = D (b, 1)) DL, 1g) (3.1.17)

Forany t, t), tyand t € [-20, w]
(iv) D" (1) =D (-1) (3.1.18)
Equation (3.1.4) can be modified by letting t = t,. Solving f(_)r Xo, we ¢btain the tollowing

expression:

Xo - ©(10)X(10) -7 (1,)[2 O(1,- T)B(T)dT (3.1.19)

Using (3.1 18), this equation can be written as -

No o O 1)X(10)-O(-1,) [, (10~ T)Bu( T )dt (3.1.20)

Substituting equation (3.1 20) into equation (3.1.4), the following expression is obtained -

X OOD-1,)X(1,) - SOD-L) [, - DBu(exdr + [OG - ) Bu(r)de  (3.121)

’

Using equation (3.1.17), equation (3.1.21) can be reduced to

X O -1)X(10) 1 [ (4~ 1) Bu(r e (3.122

quation (3 1 22) is the state equation of the system for t = ty.

Ly




Xi (1) =X (to) . (3.1.13)
X (1) = 0.5 Xi(ta) + Xo(lo) (3.1.14)
and are linearly independent soiutions
y =101 jamc.l ye =121
can casily be obtained by sclAling
Xi(ty) =0 and X, (1y) = | and
Xiltay =2 for Xum) =1°.

- Hence the matrix

o

1s a fundamental matnix,

Definition 3.1.4 (‘Transition Matrix)
Let wy( ) be any th‘ndzuncmal matiix of
X = A()X(1) (31.15)
and let D1, 1), DAL, L), o , (1, ) be the set of solutions of equation (3.1.15)
associated with the corresponding imtial conditions:
| 0 ‘ 0y
| of | | (0} ‘
X)) = e = | LX) = e = | X.(t,) = e, = [

9]
0

Combining the solutions, we define the nox n matrix
@ 1) = [0 1) (L ), e LD, )]

which is called the transition matrix when A = A(t)

LS




Theorem 3.1.1 (Fundamental Theorem) ‘

Every tundamental matix y is non-singular ¥ € (-0, «)

Proof’-

Let w() be 5 solution of X = A()X and y(te) = 0 for some 1, then the solution wy(.) is
identically zero; that is w( ) ~0. Thus y = 0 is the solution of .Y =A(1)X(t) with y(ty) = 0.

Again, from lth uniqueness of the solution, we conclude that () = 0 is the only solution .
with y(ty) = 0.

Now the proof ot the theorem is by contradiction. Suppose that

det w(ty) -~ det [yn(to), \V'z(t(,),'...., Wa(to)] = 0

for some t, Then the set of n constant column Vectors Wilte), Walo)..., Wallo) are lincarly

dependent in (R R) 1t follows that freal o for 1= 1,2, nonot all zero,
fl
3 zal wn(tl)) - 0
[

Which together with the fact that

n

S ¢ W.() isasolution of
[

X = A)X

| implies .
S W) =0
i 1 .

This contradicts the assumption that v ), for (i =1, 2, ., n) are linearly independent. Hence

we conclude that

detwy(t) £ 0, ¥V te|-w, w).

L6




Example 3.1.2  (Determining State Transition Matrix)

Consider an open-loop system where the transfer tunction of the controlled process is given

, Oty
HS) T 3

s corresponding diflerential equation is given by
C(r) = u(t)
Define the state variables as
' Xi(t) = C(l)‘

XAt)= C (1)

The system can be described by the following first-order ditferential equations:

X,y = X,(1) = C)
)'(z(t) = u(t)

Theretore the entire sysiem can be described by the state equation
A () =AX(1) + B U(Q)

where

’

oo} o _[xio) X, (1)
A=lg o BT 4] X0~ X.0 ] (')_" X, (1)

Now the state transition matrix is defined by -

®) = L' {Ist - A]'}

W7

(3.1.23)

(3.1.24)

(3.1.25)

(3 1.20)

(3.1.27)

(3.1.28)

(3.1.29)




.

This can be obtained from (3.1.28). We find

si-a - |* L]0 !
SO o s oo

= |* _I-J ’ (3.1.30)
0 s .
It 1s known that
adj A
' _‘dggjﬂ . (3.131)
Theretore,
[s l] [S l] L |
0 S 0 S e =1
[st- A" -y = g ' 5; (3.1.32)
0 o
[o sJ S

The state transition matrix obtained by equation (3.1.5) is the inverse transition of this
matrix. It s given by

d(1) = L']S1 - A]'

. u(ty
Lo wn|

Example 3.1.3 (State_Vector) ) —

With the knowledge of the state transition matrix, we can find the state variables .

Suppose the initial-state vector is ‘given by

) C[x@]
S [xm] ) H

1,8




We can find the state vector X(1) as a function of time.

- Now state vector is defined as

X (1) =@ (1) Xo (3.1.34)
-ty 1 X, . ¢
L0 w(n) ][ X,(0) : :

futry o 101
O

X )=U@MF2A 130 . (3 135)

X (1) = 2U(1) . (3.1.36)

3.2 SOLUTION OF THE STATE TRANSITION MATRIX
The aim of this section.is to show how one can obtain a complete solution for the output in
the time domain of a control system by the state vanable method. We will illustrate how to

determine a complete solution by evaluating equation 3.1 .4, the state transition equation.

Consider a system described by the tollowing differential equation:

C@y + 2C1) = i) + 1) (321)

Determine the output C(t), given that the input r(t) is given by

.

r(t) = Sin(t) ' . (322)

and the initial conditions are

C)=1and C(0)=0 (323)
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SOLUTION
First determine the state transition matrix, then evaluate (3.1.4) for X(t). The output C(1) is
then evaluated trom
Ct)=L X(1) (324)
Now suppose the state variables are defined by
| Xi) - €U, X0 = C 1) | | (3:24)

and

U(t) = 1(t) ' (325)

‘Then the system can be described by the following two first order differential equations:

X, (1) = X,(),

(3.206)
X,(t) = -2X,(1) - X, (1) + u(t) + a(t)
Thus the system can be described by
X (1) - AX() + BUQ) + U (1) - ' (2.7
Where '
A = [_Ol —-lz-J‘» B = [(‘)J X = [:l((:))J X() = [;'ﬁﬂ (328)

The transition matrix, which is defined by (3.1.4), can be obtained from (3.2.8). We tind

R

(3.29)
s -
11 §5+2

Now we know that for any matrix A, its. inverse (A') is. defined as

c0

-




adj A
ton Akl 3210
A ( )

41
Theretore

a1 - 4]

N - A i
[51-Af |81 - A
S+2 1
. IS
TN
N+2 1
S+1F  ($+1)° _
=4 _.|) \ & ‘ 3.2.11)

($+1) S+1)°

Now by the method of partial fractions and inverse transition, (3 2.11) is given by

M) LVSt-A)]!

feterny e
-1 e -1}

The full solution for the output can be obtained from equations (3.1.4) and (3.2 4) as
tollows:

X() = @ X, i+ [ou - Ude (3213

C) = 1. X(1) (32 14)
Now M(t) is known from (3.2.12) also by inspection

L[l 0]

X, (0) i .
L, = = 32158
Xo [X_'(O)] [OJ‘ ( :
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For this system, the input function

U(r) + U(r) = sint + cos 1 (3.2.10)

Substituting all the values into the output equation:

) LOWX, | L@ - 1) BU(T)dr (3.2.17)

ety et l
C(t)=[l 0]{_,01 e’(l-l)][0]+

, (32.18)
1 (f“ r) (l—.T)L" v 0
l O T + -
_[[ ][—(I~r)q"‘ D LD r41) x| [sin 7 + cos r]dr
On simplitying, the result becomes
. t .
W = e' @ty + [[t-rpe ] Gsin v+ cos d (32.19)
8]
Integrating and simplitying, we finally obtain the output as
) 2ot te” IS' t IC t;, 120 ' 3.2.20
| - - o —8Sin - ==L N 2 R PP
( 2‘ ¢ 5 i 5 ost ( )

Example 3.2 2 (State Transition Matrix)-

A very mteresting  ecological problem is - that of rabbits and foxes in a controlled
environment. If the number of rabbits were left alone, they would grow indefinitely until the food
supply was exhausted. Representing the number of rabbits by X, (t), their growth rate is given by

X ()= A X,(t) " (3.221)

However, rabbit-cating foxes in the environment change this relationship to the tollowing;
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X(1)=A X, (1) - B X.(1) (3222

Where X,(t) represents the fox population. In addition, if foxes must have rabbits to exist, their

growth rate is given by

Xo(t)=-C X, (1) + DXA1) 3223).

(a) Assume that A = |, B =2, C=2and D = 4. Determine the state transition matrix for this
ecological model.
(b) From the state matiix, determine the response of this ecological model when Xy(0) -+ 100 and

X(0) = S00. Explain your results.

SOLUTION

(a) We have

X0 = A X(1) - B Xo(t) (3221

xxwacmm+bxm) (3.2.25)
With the values of A, 3, C, D given, we have the systems (3.2.24) and (3.2.25) as

X 1(1) = X,(1) - 2 Xa(1) | (3.2.20)

X o(t) =-2 X(t) + F Xu(t) (3.227)

Thus we can write (3.2.20) and (3.2.24) as
X =AX(Q ,

8= 2] r
2 N4 N

I'hus the state transition matrix is defined as

J, [SI - A] =

[
where A = [ 2 4

AN =AY -

' 1
UNNERY -3
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{(3-4) =3 (S-4) -2
L=2 $-b} | -2 (-1

(S-1) 2 % = 58
2 ($-4)
_S-4 -2
- AT = |8 <58 § -8
=> [SI - A] 5 S|
$*-58 § -58
(3.2.28)
S-4 -2 ‘
S5 -35) S -5)
S .
[S(5--5) (S -5)
Applying partial raction principle on equation (3.2.28). we have
4 I 2 2
0l ek e e
. 58 5(85-5) 55 S(8-5
' SYS(S-5) SV S S)
Taking the inverse Laplace, we have
4+ 2-2e
s s ;
@(1) 2-2¢% 144" vty

Thus equation (3.2 29) is the state transition matrix.
(b) The response of this ecological model are the state variable Xi(t) and X (1)

Now,

Lo%)
to
wo
(=
N

X, (1) = GOX, | @2

(L X (0)

{ )
XL (1) %0
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Putting equation (3.2 29)in (3.2.31)

4 1 cﬂ r) n 2\:5(

LX) | s T (100
Ay = [x_.(l)J R [50]

5 5 o ’

X |80 1’2()._:“" 20 — 20"
X, 40~ 4067 101 406
Thus  X(t) - 80 + 20¢™ - 20¢™ + 20
Xi(t) =80+ 20

Xi(t) = 100

Xo(t) - 40 40e™ + 10 + 40¢™

XJ“) =50
Explanation:
In the mitial state, X(0) = 100

and XA0) =50
Now at Xi(t) = 100

and X.(t) =50
That is the state of mcrease of rabbits remains constant as is the state of increase of rabbu - eating
foxes. The rabbits therefore continue to increase by 100 as is the increase of foxes by S0 i unit
t-ilsnc. Should the increase of foxes surpasses the SO constant increment, the rabbits state ol mcrease
will diminish. Wil!l time, they shall become extinct. Also a decrease in the inciease of the foxes

will surge the number of rabbits such that with time, their food would be used up.
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Example 3 2.3 (Transition Matiin)
Substances X(1) aind Nut) arc involved in the reaction of & chenicad IOCUDS.

cquations representing this caction are as fui rws:
‘ Xit) = - AXu(1) 1 2X,(0)
Xoa(1) = 2X0 (1) - Xot)
() Determine the state transition matix G ihis chemical process
(b) Determine the resporae of this systemn when:

Xi(9) = 200,000 nits

| N0y - 10,600 uui;s

Solution

X (1) = - AX,{1) F2N.AL)

X0 = 22Xy (1) - Nl

Lquations (3.2.32) and (3.2.33) can be expressed an

Xl(‘) = A X()

| - (1) - X, (1) X(1) = | X | A e [”‘ 2
YRR s = _»‘;_.mj' A = l:\g(n__l m I
s

Now . ) I:" T “\l | A H .

Also fiom (3 2 35)
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(3.232)

(3233)

(3.2.31)
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[S+1 2
2 S5+4
8% + 58

st1 2
. L |SSFs) S(5+s)
[S1 - Al 2 S+44

| S(S+5) S(S+5)

Expressing (3.2 36) in partial fraction, gives

I 4 3 &
1 1SS S(S.ks) SSTS(S+S)
[St- Al =175 7% 4 1

SSTS(S+5) Sy S(S+5)

Taking the inverse Laplace of (3.2.37)

2¢
: N

List-Al' =, 2« . 2w
s 5

Equation (3.2.385 is the required state transition matrix.
(b) Determining the response of this equation when
| Xi(0) = 260,000 units
X0) = 10,000 units

The response is given by the state equation

55

(3.2.30)

(3.237)

(32 38)
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X(1) = ()X,

' lf'-‘c.‘ N 2" 2&‘ %
711200000
= X)) = |, 3 >
- 2-2e M A4 10000 :
5 5 - J
" 40000 1 10000 ™ + 4000 - 4000¢
;_~ l S
o () 80000 -80000¢ ™ + 8000 - 2000¢™

—2 Xa(1) - 40000 4 160000 1 4000 - 4000

<1000+ 1So00e™ (3.2 39)

X.(1)  BBOOO - 785000 ¢ ‘ (3.2.39)

56




CHAPTER FOUR

COMPUTATION OF OPTIMAL CONTROL SYSTEM OF A SINGLE

INPUT SYSTEM WITH FADDEEY ALGORITHM

4.1 INTRODUCTION

In this chapter we compute the optimal control of a single-
“input single-output system using the Faddeev algorithms and the

Kalman equation aided with the Ackerman equation.

Definition 4.1.1 (OPTIMAL CONTROL)

Control may be defined as an act of manipulation with a view
to achieving or to fulfilling a desired objective. Large numbers of
controls may exist to fulfil the given objective in such a case,
the most désirabie control in the sense of minimizing a given
criterion function can be used. Such a control is said to be an

optimal control.

.

4.2 COMPUUTATIONAL METHOD OF OPTIMAL CONTROL OF A SINGLE INPUT

SINGLE OUTPUT SYSTEM THEORY

In computing the optimal control for a multi-input multi-
output system (see chapter 5) a positive definite solution of a
matrix P incorporated in an equation called Riccati equation must
be found. For a single input single output (SISO) system the

optimal control can be calculated from Kalman and Ackerman




equations without the need to first obtain the P.

The Kalman equation is uniquely calculated as follows:

1 - F'(=jyl - A")7"(1 -F"(3yl - A)'b) .

=1+ (1/x) [ [HGwI-8)" 0 (4.2.1)

For a single input system A, b, Q, r, are assumed to be given and

the optimal control F' may be calculated as follows

1st Step:

Note the Kalman equation (4.1.1) multiply (4.2.2) by

d(s)P(-s) to obtain

det (-ST _ A" - bF')det(SI - A - bF') = ®(s)D(-s)
# (1/r)b'adj (ST - AT)Qadj (SI - A)b (4.2.2) -
where o " N
(ST - A)™' = [adj(SI - A)]/det(SI -A) (4.2.3)

The roots of the right side of equation )4.2.4) are of the

form A, -A, -A., ... -A,, A, are calculated.
2nd Step:

Find the n roots with negative real parts from the above roots

of (4.1.2) Let them be denoted by Al and calculate
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ds(s) = fL-I(SI—M) = 8" + an-18"? + ... + 00

Re A < 0 (i=1, 2, ... n)
3rd step:

Find the control laf F' satisfying'

det(SI - A - bF') = s" + an-18"" + ... + ao
This can be done using Ackerman algorithm:

F' = -[0, 0, ...i][b; AB, A’B, ... A"'] ®¢(n)

- = <[0, 0, ...1)8®c(A)

EXAMPLE 4.2.1 (SINGLE-INPUT OPTIMAL CONTROL)

Find the optimal control for a linear system:

01 0|
x* = |oo1 x+ |olu
00 1

which minimizes

€
J = L)XT 020 X + u2 dt
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(4.2.5)

(4.2.6)

(4.2.7)

(4.2.8)

(4.2.9)




SOLUTION
The solution is obtained by the single-input method as outlined
above. First we apply the Faddeev algorithm of éhapter 2 to

calculate _ . .

(ST - A)™' = [adj(SI - A)]/det(SI -A)

= (Tn-1 8™ + Tn2s™2 + ...T)\®(s) (4.2.10)

With question, we are dealing with a third order matrix. Thus n =

a.
Thus
I's-1 = T2 = I by definition
e
1 0 0
I'2=1010
\0 0
a2 = - Tr[Al2]
010|100 010
= - Tr [0 0O 1 (/01O = - Tr |0 01 = 0
00 O0)J0 01 000
Thus

az = 0 (4.2.11)
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I'o = AT: + aoI

But equation (4.2.11) gives az = 0

Therefore,
I = ATI:
0
ar = —Tr(Arl)/Z = 1
0 0JW 0O
0 01
-Tr 0.5 0 0 0= 0 ,
00O
I'o = ATT + oaul
01 01

0011001
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001

00O
00O
oo = - fr(Aro)/3 =0
D(s) = s" + on-15"t + ... + a0 (4.2.13)
But n = 3. Then
®(s) = - s?

Therefore by a similar deduction,

®(-s) = -1/ (s") . (4.2.14)

Also

adj(SI - A) = (In-2 8™ + In-2s™2 + ...To)

Thus

s = (100 s + 01 0)s 001

01 001 000
00 00O 00O
s 1

s s

0 s
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In a similar vein,

adj (-SI - A") = (s O 0
s -s® 0

1 -s -s?
substituting the calculated values into equation (4.2.2) yields

det (SI - A -bF')det(-SI - AT - bF") =1 - s*
= (1 - 8%) (1 + s%

+1

]
Il
+
[
o]
o]
()]
Il

®:s(A) sf 0 0 O
0 1 0 {4.2.15)
0O 0 -1

Now applying Ackerman eqﬁation:
i1.8.

F' = —[0 0 1] (b AB A’B] ®s(A)
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But

001

" [b AB A’B] =
010
100

FT=—(O.01) 001 0 0 O

=-(001) (0 O

o

= (001 (4.2.16)
0 1 0
o o0 -

Hence the optimal control for the given linear system is:

u=Fx =- (001 x1
X2
‘ X3
X1
X2 |= - x3
X3
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CHAPTER FIVE

COMPU 'TATION OF THE OPTIMAL CONTROL OF A QUADRATIC,

COST FUNCTION

5.1 INTRODUCTION

This chapter studies the method for calculating the optimal control of a quadratic cost
function. Pontryagin’s maximum principle otherwise known as the Hamiltonian form is the
instrument used to drive an equation called the Riccati equation. From the Riccati equationa
symmetric positive definite matrix P-is obtained. With this P known the optimal control of

a quadratic cost function is obtained.

5.2 THE LINEAR QUADRATIC PROBLEM
5.2.1 THE LINEAR REGULAT®O R.
Linearization of a linear equation around a suitable trajectory or equilibrium point is
possible.
In this case we dgsbribe many systém by the staté-space equations.
X'(t) = A(D)x(t) + B(t)u(t) | (5.2.1)
where X is the n™ order state vector U is the m™ order control vector and A, B are
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respectively nxn and nxm time varying matrices.
The cost function we wish to minimize is the weighted quadratic function of state and

control that is:

J = 0S[XT (tr)sx(tr) + 05 [ (X" ()QM) X (1)
‘ + UT(OR@OU(t)dt ..(522)

Q, s are assumed to be real symmetric positive semi-definite matrices and R is a real
symmetric positive definite matrix.
The assumption is that the states and controls are not bounded and that x(t;) is free. The cost

function maintains the state vector near the origin,

66




of the state space without utilizing excessive contro! effort. The weighted matrices Q) R, S
_ cnable us to. deline the relative importance of keeping the states near the origin,

Using the Pontryagi’'s maximum principle as enunciated in section 5.2, we solve the
above problems Wiite the T function as.

| | . ., )
e X Q) Xy b a) Ry u@y + AN + AOB(E) (524)

Jhe optimality conditions in this case yield

L -

0w o RIEBIA@) (5-241)

P

II" @ , 1

oy AW = QXM+ ANDAWY (925)
With the termmgl conditions

A) s(t) X(1)) (S270)

substitating (S 4 <4y (54 1) yields
N AMNQ) - BORTTOB () At (52:7)
with X{ty) Na {%2:8)
Theretore our iwo pomts BVE becomes one ol solving equations (5 4.5), (52.7)
subject to 1 Cs (S 4 oyand (v 48)
Suppose that the solution for the costate A s
S ply X {¥2.9)
Then
() N T p)NQ) ‘ (210

Consider cquations (54.5) and (5 4.7), equations (5 < 10) becomes
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) =QXQ) - ADAQ)

plyX(y + p(!)[/\(t)X(t) + ls(l)k"(t)u"(n)p(x)xu)]

o

5'2,11)

or [ pH + pmOA® 1 AP - pOBOR OB WM + QW 1YW 0
Thus we must have )
Pl -pOA() - A (Hp() + POBOR OB (Hp(1) - Q) = 0 (52.12)
with the terminal condition being given by the equation as
Pt S. (52.13)
In cquation (5.'212), P oIS an noxonosymmetric atrix Imvi’ng ‘n(nl 1)/2 ._.di.~'|incl
clements  This equation (S. ‘fgl?_) is known as the matnx RICCATT l-_iqua!ic_n; The cqualiu.n
I integrable
Ihe opumial control |s wiven by
ulty =R BYOp)X) (5 214
Thus we stmarize our results: B

I we wish to mimmize
3 NTNG, ) Xa,) [ Yoo xe v o' oroun e s2.15)

where Q) S are real symmetric positive seni-definite matrices whilst Rois o real synuetiie

positive definite matrx, subject to the constraints

N(t)  A()X(1) + LEu(y ' (57210}
X(!")' Xl’ ‘52-'7)

‘Then the optimal contiobis given by

wly R BN Opt)X() (5.201%)
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where

P~ -pHAQ) - AT (Op(t) + pOBOR™ (OB (0p(t) - Q1)

with p(t)) '—.S | (5.219)
and where A B, Q, R are time invariant, t; —> « and if the system is controllable, then
u - GX, where Gis time mvanant and

G- -R' B ()p() ' ' (5 220)

EXAMPLE S2 1 (OPTIMAL CONTROL)

Iind the optimal control trajectory u(t) which minimizes

] _‘,"-()\ + u:)ZII ' ' (5,221)

t

subject to
X - 2X +3u (5'222

How does this control ditTer from the one obtained when the optimisation horizon is infinte?

SOLUTION

A2 B-30=1and R =|
solving using Riccati equation, we have
()

Pt =pOA() = A'p(y) + pOBGR (OB p(1) - Q1)

. (5:223)
CS2p - 2p) b opt - b

Ij‘: - ‘)jp"(l)dl -4 jp(l)dt - jl di
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"
[3 xp') - 2pT() - l];

-~ 3x8-2x4-2
w2482
=14 °

Hence p = 14.
Thus the optimal control is given by
u(t) = GX(t)
where G = R B'p
~-1x3x14
- =42
Lu(t). =42 X()
(b)
If the oplimisaliu;\ horizon is infinite, t; -» « and
pu) 0
~ > fiom cquation (5.4.23) that
0 -dp(t) 1 9p’(t) - 1
9p (1) - 4p(iy - 1

4 !

Le p i (Ve

iep= ok

But p is positive definite by definition, thus

2 V13
+ =y

l) O 5]

Hence the optimal control law is

- "
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EXAMPLE S22 (OPT1MATLL CONTROL TRAJECTORY)

Find the optimal control trajectory which minimizes

subject o

SOLUTION

Consider the RICCATT matrix CQUALIGN

Pl -DIDA(L - A'plt) b opoBHR OB P - Qo)

i Lol - | (,’
Here A - l‘;u f,,‘i'():’
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. d__"l’n Pl B IHO l] Pu P ‘I'n' pl 00
Codt P I’::J I_O Oj{p. P P Pn)ll O
|0 o opnl 10
_[lu /-J[ ﬁo q[/n /h]_[ ]
P Pl LB /).*;J 0 2]
—I)I.'I /’2_’- -I)IZ .0“ N 0 p, | 0 0
0 0 S O pujr. p

_-Zpll P " P /’13/’::"I 1 O-I
Pz U, PP /’_':: i 0 2_'

: lplzl B 2|)|: +.| Pi:P2 =P

PP P Py 2 J

| J’(p'll -2p. - I)‘I’ ,':(pnl':: "p:;')‘”r'

» I(P::I’z; - P:_")‘l’ I(P_-:z -2)4./! J

y [pn P
h P P

Py - j(pl_,l —2p,. + |)¢II

= 813 4 -2
ol N

3 3

Pua T j‘(l"::2 - 2)‘/’

- 8/3 -4
-4
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<Py = '%j'(/’l:2 l)‘ll |
o 14
_ ) % [Pl'%?j(}) N ,J :

| _%& .

= 1) . : .

4

CPeope |l |-10/3 0 ,
[ V2T B R VA
Now by (5=204) p is positive.

2 The optimal control law is

| S1073 0[] "
)y -fo I][ 0 _4/3J[,\'.(/)J

o] o o 'I[X,(})"
] [0 43X

u, (1) oo ]{X.(/)'l
u)|  [-4/3) X))

tHence y (1) - % X, (1)

EXAMPLEES 253 (OPTIMAL CONTROL )

Obtam the control faw which minimizes the performance index

R I(.\',z f tf)(ll

~ for the system
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o
X,

0oy o
o ofx, |1}

Given that

We shall apply the RICCATT s matrix equation
A'PEPA-PBR'B'P Q0
Wenote P - 0, since time is infinite

0 l‘l , 0
Now A o Bl B3 - 1%

R =1{2] =5 R? - [173]

The reduced Riccati matrix equation is

‘O O_. [Pn /’n:, % {‘Pr. I)Il.l'-o ll _,:pu

R R S P l':.-,J 0 0f {p

"() Ii Py 2 U‘l 0 0

+ =3

I % N T R O
[0 0 , 'u ,,,,'J 1o p. ;[ 0 0 l Lz 0f
| e - - i + |4 ) 2
1/’11 IR A L 210 /’:.'_l P P O_OJ

! I . -
) Gy, Al 2P 112 0 0 0!
e Py 2p. Footto o o ()_!
" o o P> A P | - :

Substituting equation (5:2:20) yields

Sy




' (5:2.27)

[ .
LA =9 .
[ 4

The solution of equation (5::227) yields the positive definite matrix

afa 3
Pl 2 a2

From cquiﬁiun (5:2.14), the optimal control law is given by

utt) - =R B' p X(1)

_— 0 1 .sz 2 X,(l)}
| 2 2V2 || X.()
. -J[z 2v/2] 2 el
2 XL () ,
X, (1)
[ Jz][xml
= <X, (1) - V2 X, (0
EXAMPLE 524 (INFINITE TIME OPTIMAL CONTROL)

Consider an mtinte time regulator, this tune for a system ol second order.

i ¢ the systemis desciibed by
x| = xl + X-) i u| ' ]
, ' (35242
X, = =X; ¥ u, @

-,l,-:[(xf F2X ot u,’)dt

J =

In this case, the Riceati equation can be written using the fact that
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so that it becomes
dlrn po ! Py pPal | p., W=l 17
dtyp. p. N Pis P Pl 0 _IJ
K

e ,':"H ] ) il :iL;J o 3

since the final time ;> «

.d Pu M:‘»
dt (p: pa

So that we can cither solve this iteratively or by taking t to be sufliciently long for
Pt Piz peo,we then mtegrate the Riceati equation backward tiom
pu(t) = 0; Pra(ty) = 0, pax(ty) = 0
Suppusé we take .l. = 8 and this gives the constant gain nualﬁx

C o o4087 Q1274
YTl 00274 07995

so that

[ 0.4087 0.:274] X, (1)
MO 01274 07994 1 X, (1)

5.3 ~-;§DIS(TRI'I'I'E LINEAR QUADRATIC PROBLIEM
Many systems particularly of social economic class are most naturally represented as
discrete time processes. It s theretore possible to use a discrete version of the discrete

Pontryagin’s maxumum principle.
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Consider a discrete time non-lincar dynamical system with state vector X(k) and
control vector, u(h), at the instant k. The state at the instant k+1 is related to state at instant
k by
X(kil) - (X, u, k) 334y~ *

where (s a continuous function:

Consider the regulator prul)lcpl
b o . s jrade ;

mind Xk Sy 4 oY {!].\;jl‘g‘ ' "uL"'R‘} (532)
- -AI "

Where Q. S are non-negative definite whilst R is positive definite subject to the linear
dynamical constants

N(h 1) A(Kk) X(k) 1+ B(h)u(k) (53 3)

This problem s solved by forming the Hamiltonian function as

no el 0wy - el ke 4 2w AR GY sG] (S 3

Applying the necessary conditions for optimality, we have:

il : ‘ &
e Aky o QKXY + ANK)AK +) . ‘ (5.3%)
A N ) |
Fquation (S5 9) is not solvable unless A is invertible.  But A is a state transition

. _I & .
matrix, A7 exisls

The boundary condition is

Ak,)  SX(K,)) (530)
for the control
1/ ; , —
,'l 0 Rekyuth)y + B (k) Ah oY) - (33D
culh) '
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o ouk) = -R'(KB'(K) Ak 1 1)

We can obtain the control by solving the equations

X(h1) - A(K) X(k) - Bk R7(k) BI(h) Ak 1) (5.38)

"X(ho) = Xo N | . (5.39) .
and )

Alk) = (}(k)};(k) +AYK)AGK ) (5.3 10)

with the boundary condition
ACk,) - S(k)X(k)) , (3:311) .
As the continuous regulator treated previously, take the solution of the forny
Ak pk)X(h) (5312)
Considering (5.5 8) and (5.5.10) with respect to (S.St 12);
that is -
X(kt 1) Alk) X(k) - B(h) R™'(k) BY(K) p(k ; DXkt 1) (53 13)
and
> po)X(h)  Q(h)N(K) + A Kkt DXL D) (53 14)

Solving for X(kt1)and climinating from (5.5 13) and (5.5.14), we obtain:

Ntk [ Beor g B g pek D] Ak Xy

Theretore considernng (5.5 14),
| pIOX(h) - QUOX(R) + A Rp(ht DL+ BROR () B ptr DITAGIX@D (33 19)
Where Lis the identity matrix.
This cquation holds for arbitrary N(h) only if
p(h) -~ Q) + A'(k) p(‘k‘ll_)l Fi BkOR (k) B (h) pik+ 1] Alk) (53.10)

with the condition at the final stage bemg,

"
g
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p(k)) = S (5-347)
The optimal contro! requires the solution of the matrix Riccati equation (5:3,15) and
(5.5.16) backwards i time from k- k¢ to k=k, and then
u(k) -~ -R'(k) B'R) A [py - Q) X(K) ' (5.3-18)
= G(k) X(k) | _ (5.3:19)

where G(k) could be thought as a “Gain™

53.1 Infinte Stage Regulator
It A, B, Q R are ume mvarant, S=0 and the system is controllable, then p(k)

becomes constant as k- » ., thus G the “Gain™ becomes constant.

EXAMPLE S 31 (FINMEINVARIANT) .

Find the optimal control for the system

X (k)] ool X (k) ! 1
; B . + u(k)

Nkl e 2wl o)
where the cost function to be minmmised s

D N OSSR (ST

R )
SOLUTION
The Riccati matiix equation is y

Ph) - O(k) 1P T AT L1800 Rk Pkt D AGK)
with the terminal solution

])(k|) )
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Now since the problem s an infinite regulatory one, ‘'we can take G to be a constant.

SRIEER

i boojlr o
. '!o e

16 16

Thus the optimal trajectory s

"l() |(,l['x‘(k,)]
u(h, ) 'i. 0O 0 ;;z\'v.(!\‘.)_i

s oulk,) TS 10X (k) - 16X,(Kk,)
e uk ) - -TON (k) + ToX (k)
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EXAMPLE 532 (2 POINTS BVP)

Write down the two ponit BVP for the optimal contrel problem of minimizing

"x,(k)"" 10 x,(k)'r.'
: X0 [0 31Xk

X" 't ol X (o S
J - Vl i( ) 1( ) + 2:\ .
2 [X.06)] |0 2]|X,(0) ar ;

Lo k) [0 0] [u, (k)
u, (k)] |0 2 {u,(k)

subject 1o the constraints

[u (k)

[ X, (k1) 2] X, (k) ’l‘l 0
Lus(k) |

Xoke ) L0 aIX| o 1

SOLUTION
Rewrnite the question as:
minimize
] = —l[-\;-‘m+ 2xf(k)] + i{[x,z(k)Jr}x::(k)] Hu 1)+ 20,7 k)
2 ko

s

subject to

Mkt h) - 2Xo(k) + Xu(k)

Xo(kT1) = Xy(k) v Xo(k) 4 up(h) + us(k)
Then the Hamiltonian function is

W X0 3RS+ ul k) + 207 8) 2+ D[2X k) + X (b))
AKX R XL (k) u, (k)

The optimality conditions are
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H
=0 s dudk) + A(k+l) =0

i, .
|
S LA

Thus H_l]l - .X 'k+l o e -

WSk vy C kD = 2%+ Xk
i

Y

a1 5
v = A (k) = 06X, (k) + A(k+1) + A, (k+1)

" The Buudzuy conditions
A(0) - 2X,(0), A.(0) = 12.X,(0)
Thus the two points BVE becomes:
XI(kt1) = 2X1(k) + X22(k)
Xo(ht1) = Xo(h) + Xo(k) - /20 (k1) - 1/4 By (K +1)
and
AR) - 2Xi(K) F 2R (K1) F AR
Ah) - 6Xa(K) + Ay (k1) + Aa(k 1)
with the terminul. c'm\diiions |

M) - 2X,(0)

A:(0) - 12X(0)

CONTROL PRCBLEM)

EXAMPLE 533 (SCALAR DISCRETE OPTIM 1AL

Consider the scalar problem:
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Consider the scalar problem:

LA I
min J = L,}'X'(I«) + ~2u‘(l()

| T

subject to X(k +1) = X(k) + u(k), X(0) =
The discrete optimal control for the regulatory problem is given by
wh) - -R'GBR) A pi) - Q] XK
I'rom the Riccati equation, |
With the condition at the final stage being
plh) = S
Hence p(ky) - ps = 0, since S =0
A=1 B-1 Q=1 R=1
P2y TEIXO Db IxExINO) )
> 2y = § |
phy 1t
: l.l 2 = LA
Lop(l) LS
poy 1 LS xSt
=14 Ix15(25)
= b+ LS2S =106
o) o |
'I:l'wrcfurc u(k)l .—lAl (10-1)X;
| © 0.6 X(k)

= u(k) - -0.0 X(k)
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5.4 CONCLUSION AND SUMMARY

The project was aimed at obtaining the solution of a
state-space equation; the optimal control for a single
input single output (SISO) system and the optimal control
for minimizing the quadratic cost function using the multi-
input multi-output (MIMO) state-space as constraints.

For the state space solution, we achieved this aim by
the application of Fadeev algorithm. This Faddeev algorithm
also helped in the calculation of the optimal control of a
single-input-single-outpﬁt system using the Kalman and
Ackermann equations. The calculation of the optimal control
of the quadratic cost-function of MIMO was achieved by the
use of the Pontryagin's maximum principle otherwise called
the Hamiltonian form. By the Hamiltonian form, we are able
to find an equation called the Riccati equation from which a
symmetric positive definite metrix P is calculated. This
value of P is used to obtain the MIMO optimal control
system:

u= -rR™1BTpx (5.4.1)
if the system is a continuous problem, otherwise for a
discreté quadratic problem, the optimal control is

U(k) = -R71 (k) BT(K)A™1fP - Q)X

(5.4.2)
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APPENDIX

CLS -
FOR x = 40 TO 25 STEP -1

LOCATE 10, x: COLOR 3, 0, 0: PRINT " The Application of Faddeev
Algorithm " -

LOCATE 12, x: PRINT " ~ To Transfer Function " .
NEXT
AS$ = INPUTS (1)
CLS

OPEN "fadeev.out" FOR OUTPUT AS #1

DIM A1(20, 20), B1(20, 20), C1(20, 20), ABi(ZO, 20), D1(20, 20)
DIM E1(20, 20), x(20, 20), B11(20, 20), F1(20, 20), A(20, 20)

LS
sStart:

CLS

PRINT #1,

PRINT #1, "To obtain the Tranfer Function of a linear sysytem"
PRINT #1, "using the Faddeev Algorithm. Example: Given a system"
PRINT #1, " (A,B,cT) below "

PRINT #1,

PRINT #1, "- | o .12 o] - | o |

PRINT #1, " A =3 o0 2 | B=|1] eT=]-2 1 0|
PRINT #1, ™ | -12 -7 -6 | -4 F *

PRINT #1, "Solution :- The Faddeev Algorithm is calculated using
the "

PRINT #1, "following theory of resolvent matrix [SI-A]"-1."
PRINT #1, "This will be demonstrated in the next page. "
PRINT #1,

PRINT #1, "(SI-A) -1 = 'm-1 " !

PRINT #1, "Thus n=3 "

PRINT #1, "Hence 2 I; By definition "

PRINT #1, "Also, a2 -Tr (Ar2) "

CLS

PRINT #1, :

PRINT #1, "Solving For a2 ........ to get Trace value"
PRINT #1, : PRINT #1, : PRINT #1,

Thkkkkkhkkxxkkkkrkx TO SOLVE FOR @2 ***kkkkkkkkkkhkkkkhkxkhx y
NIteration = O

GOSUB RD1
GOSUB matinputA: GOSUB diagnal:
PRINT #1, " o2 = -Tr(Ar2)/1 = "; -1 * ((dgnal) / 1)

GOSUB iteration
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thkkkkkkhkkkkkhkkk*x TO SOLVE FOR 1 #*khkkkkhhhkkhhhk**kkk*

CLS

PRINT #1, ~

PRINT #1, "I'l = Al'2 + @2I " -
PRINT #1, o _ '
PRINT #1, "Solving for I'L ........... "

GOSUB PROCESS

FOR 1 = 1 TO irow
FOR j = 1 TO icol
LOCATE i + 5, j * 5
PRINT #1, Al(i, j)
NEXT j, 1
PRINT #1, "The above is AI'2 is to be added to o2 which will be
keyed in below"

v

"PRINT #1, : PRINT #1, ¢

GOSUB' Rd2: GOSUB MatinputB: 'To key in Alpha2 at the keyboard
GOSUB addmat 'To add the values of A2 + «2

LOCATE 8, 2: PRINT #1, "The value of gammal is as shown below"

FOR 1 = 1 TO irow
FOR j = 1 TO icol
LOCATE 5 + 1 + 5, j * 7: PRINT #1, C1(i, 3)

C NEXT j, i

GOSUB iteraticon

T XAk kX kA hkkhkktiAh TO SOLVE FOR al AR R R R R R R R R R R R R R R E R
100 CLS

PRINT #1, : PRINT #1, : PRINT #1,

PRINT "Solving for Alphal..... s

GOSUB PROCESS :
PRINT #1, "ol = -Tr(AI'l)/2"
FOR i = 1 TO irow
FOR j = 1 TO icol
LOCATE 2 + i + 5, j * 7: PRINT #1, A1(i, j)
LOCATE 2 + i + 5, j * 7 + 30: PRINT #1, C1/
NEXT j, i

i, 3)

FOR 1 1 TO dirow -

FOR 3] 1 TO icol

E1(i, j) = C1(i, 3) :
NEXT j, 1

nwo

FOR i = 1 TO irow
FOR j = 1 TO icolz2
AB1(i, j) = O
FOR k = 1 TO icol
AB1 (i, i) = AB1(i, j) + Al(i, k) * El(k, 7j)
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LOCATE 10 + i + 5, j * 8: PRINT #1, AB1(i, j)
NEXT k, j, i

dgnal2 = AB1(1, 1) + AB1(2, 2) + AB1(3, 3)
PRINT #1, : PRINT #1, " ol = -Tr(ATl)/2 = "; -1 * ((dgnal2) / 2)

GOSUB iteration

thkkkkkkkkxkkkkkkk TO SOLVE FOR 'O ***hkkkhkhkkhkkhkakhkkkxk*k

CLS
~ PRINT #1, "I'0 = Al'L + alI"
-PRINT #1, : PRINT #1,

PRINT #1, "Solving for IO L , /

GOSUB PROCESS

FOR i = 1 TO irow?2
FOR j = 1 TO icol2
Bli{i, j) = AB1{i, 3j)
LOCATE 2 + i + 5, j * 7: PRINT #1, B1l1l(i, j)
NEXT j, i

GOSUB Alphal

PRINT #1, "The above is the result of Al + «olI and"
PRINT #1, "the result of the additicn is below "

LOCATE 15,
LOCATE 16,

(S %]

FOR i = 1 TO irow
FOR j = 1 TO icol
D1(i, j) = Bii(i, j) + x(i, 3)
LOCATE 12 + i + 5, j * 7: PRINT #1, D1(i, 3j)
NEXT j, 1

GOSUB iteration

T *hkkkkhkhkhk k¥ hkkhk*xhik 'I‘O SOLVE FOR ao khkhkhkhkhkkhkhhkkhkhkdhkhkhkhdxkkd
CLS ' .

PRINT #1, : PRINT #1, : PRINT #1,

PRINT #1, "Solving for o0 ........... " . .

GOSUB PROCESS ' .
taxxkxxkkxx print #1, ING OUT THE VALUE OF A ¥ **xdkkkkkddkx
FOR 1 = 1 TO irow .
FOR j = 1 TO icol
LOCATE 3 + 1 + 5, Jj * 7: PRINT #1, Al(i, j)
NEXT j, 1
PRINT #1, "": PRINT #1, "» .
taxxxxxxx*  print #1, ING OUT THE VALUE OF [0  ****xakxxanx
FOR i = 1 TO irow
FOR j = 1 TO icol
LOCATE 3 + i + 5, § * 7 + 30: PRINT #1, D1(i, j)
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NEXT j, i

'#*xxxx MULTIPLYING THE VALUES OF A AND I'0 {i.e -Tr(AL0Q)) *x**xx
FOR i = 1 TO irow

FOR j = 1 TO icol

NEXT j, i

FOR i = 1 TO irow
FOR j = 1 TO icol2
Fl(il J) e 0
FOR k = 1 TO icol
-F1(i, j) = F1(i, j) + AlL(i, k) * Bl(k, 3j)
LOCATE 10 + i '+ 5, j * 8: PRINT #1, F1(i, 7j)
NEXT k, j, 1i

PRINT #1, : PRINT i1, _

dgnal3 = F1(1, 1) + F1(2, 2) + F1(3, 3) . _

PRINT #1, " a0 = -Tr(Aro)/3 = "; -1 * ((dgnal3) / 3)

74

GOSUB iteration

CLS

LOCATE 5, S: PRINT #1, "The Number of Iteration is "; NIteraticn
PRINT #1, : PRINT #1,

PRINT #1, "Substituting the iterative values for the value of T'i's"
~PRINT #1, "and «oi's, we obtain the following resolvent matrix : "
PRINT #1, '

PRINT #1, " 282 + ri8 + ro "
BRINT #iL, ™ [BI ~ BAI1®™=1 8 crecsmonsmacesasmes s s "
PRINT #1, " S™3 + w2S? + 1S + o0 "

PRINT #1, : PRINT #1, "See next page for the result. "
PRINT #1, '

CLS

'"FOR m = 9 TO 11

' LOCATE m, '9: PRINT #1, CHRS$(179)

'  LOCATE m, 23: PRINT #1, CHRS(179)

' LOCATE m, 29: PRINT #1, CHRS$(179)

' .LOCATE m, 43: PRINT #1, CHRS$(179)

' LOCATE m, 49: PRINT #1, CHRS$(179)
' LOCATE m, 63: PRINT #1, CHR$(179)
' NEXT

LOCATE 7, 5: PRINT 1, "Therefore (SI - A)"-1 is as shown below "
'LOCATE 10, 24: PRINT #1, "S2 +"-
'LOCATE 10, 44: PRINT #1, "S +"

A(1, 1) = 1: A(1, 2) = 0: A(L, 2) =0
A(2, 1) = 0: A(2, 1) = 1: A(2, 3) =0
A{3, 1).= Q: A(3, 2) = 0: Af{3, 3) = 1
FOR i = 1 TO irow

FOR j = 1 TO icol
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LOCATE 5 + i + 3, j * 5 + 5: PRINT #1, A(i, j)
NEXT j, i

FOR 1 = 1 TO irow
FOR j = 1 TO icol o
LOCATE 5 + 1 + 3, j * 5 + 25: PRINT #1, C1(i, 3)
LOCATE 5 + 1 + 3, j * 5 + 45: PRINT #1, D1(1, 933
NEXT j, 1i. . , .

"POR x = 11 TO 62: LOCATE 12, x: PRINT #1, "-": NEXT
LOCATE 14, 24 )

- PRINT #1, "S"3 +"; -1 * (dgnmal); "S2 +"; -1 * (dgnal2 / 2); "S +";
-1 * (dgnall3 / 3)

PRINT #1, : PRINT #1,

CLS -

'"FOR m = 6 TO 8

' LOCATE m, 18: PRINT #1, CHRS(179)

' LOCATE m, 33: PRINT #1, CHRS(179)

' LOCATE m, 38: PRINT #1, CHRS(179)

' LOCATE m, 50: PRINT #1, CHRS(179)

' "LOCATE w, 49: print #1, CHR$(179)
"LOCATE m, 63: print #1, CHRS(179)

' NEXT

LOCATE 10, 5: PRINT #1, "(SI - A)"-1 ="
FOR i = 1 TO irow
FOR j = 1 TO icol
ASi{i, 73) = STRSIA(L, F)) + uwg2w
Cis(i, 7) STRS (C1(i, j)) + "g»
D1$ (i, 3J) STRS (DL (1, 3J)) ‘
D11S(i, 3) = AS$S(1, J) + "+" + C1$(i, j) + "+" + D1IS (i, 7)
LOCATE S + i, § * 20: PRINT #1, D11$(i,s3)

NEXT j, i

'FOR x = 20 TO 70: LOCATE 10, x: PRINT #1, "-": NEXT

LOCATE 12, 30

PRINT #1, "S"3 +"; -1 * (dgnal); "S2 +"; -1 * (dgnal2 / 2); "S +";
-1 * (dgral3 / 3) '

CLOSE #1

END

RD1: 'Subroutine that request for matrice dimensionl

INPUT "Dimension for Row Al: " irow
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INPUT "Dimension for Column Al: ", icol

PRINT #1, "Dimension for Row Al: ": PRINT #1, irow
PRINT. #1, "Dimension for Column Al: ": PRINT #1, icol

*- RETURN o i
Rd2: 'Subroutine that request for matrice dimension2
INPUT "Dimension for Row «o2: ", irow2
INPUT "Dimension for Column «2: ", icol2
PRINT #1, "Dimension for Row «2: ": PRINT #1, irow2
PRINT #1, "Dimension for Column «2: ": PRINT #1, icol2
RETURN
matinputA: 'Subroutine matrice input for trace value

PRINT #1, "Input For Matrix A "
FOR 1 = 1 TO irow
FOR j = 1 TO icol
LOCATE i + 15, j * 10: INPUT.Al(i, j)
PRINT H1, AL(i, j)
NEXT j, 1, :
RETURN

MatinputB: 'Subroutine for matrice input for «2

PRINT #1, "Input For «2 "
FOR 1 = 1 TO irow2
FOR § = 1 TO icol2
LOCATE 5 + i + 10, j * 10: INPUT B1l(i, j)
PRINT #1, Bl (i, 3)
NEXT j, i

RETURN

addmat: 'Subroutine that check the Rows and Columnsg
'equality before matrice addition

10 CLS _

IF irow <> irow2 THEN PRINT " ERROR! ": GOTO 10
IF icol <> icol2 THEN PRINT " ERROR! ": GOTO 10
GOSUB Add ' '

RETURN :

Add 'Subroutine for matrice addition




LOCATE i + 10, j * 10 '
PRINT #1, Cl(i, j)
NEXT j, i

RETURN

diagnal: *Subroutine that picks the Trace value for o2 :
dgnal = A1{1, 1) + ALl(2, 2) + AL(3, 3)

RETURN

matricemult:

FOR 1 = 1 TO 1irow

FOR j = 1 TO icol

. ABl (i, j) =0

FOR k = 1 TO icol2

ABrii, 9) = A1{i, k) * Cii{k, 3)

LOCATE 12 + 1 + 5, j * 10: PRINT #1, AB1(i, j)
NEXT k, j, i

RETURN

PROCESS: 'Subroutine that causes little dalhy

FOR x = 1 TO 150

LOCATE 4, 27: PRINT 1, “/f: LOCATE 4, 27: PRINT 1, "I"
LOCATE 4, 27: PRINT 1, "\": NEXT

RETURN

iteration:
Nliteration = NIteration + 1

RETURN
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