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ABSTRACT 

In this thesis, we propose a proportional integral derivative (PID) Neural Network 

Algorithm, which is used to model and solve continuous stirred tank mixer (CSTM) 

problem. This hybrid algorithm, which is new is robust and converges fast without being 

trapped into a local minimal as is the case with the popular neural network we establish 

the characteristics equation governing the dynamics of the continuous stirred tank mixer/ 

reactor. A controller was formulated and was tested and found to be consistent. The 

proportional integral derivative (PID) network was used to simulate typical continuous 

stirred tank mixer reactor (CSTMR) problems, of which predictive accuracy was found to 

be 96%. Also examine the computational richness of the human brain, which is exhibited 

in the highly complex interconnection of neurons with the brain. Simplified 

neurobiological studies of concepts learning by the human brain were modeled 

mathematically. 
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CBAPTERONE 

INTRODUCTION 

1.1 GENERAL BACKGROUND TO NEURAL NETWORK 

Neural network simulations appear to be a recent development. However, this 

field was established before the advent of computers, and has survived at least one 

major setback and several eras. 

Many important advances in technology have been boosted by the use of 

inexpensive computer emulations. Following an initial period of enthusiasm, the field 

survived a period of frustration and disrepute. During this period when funding and 

professional support were minimal, important advances were made by relatively few 

researchers. These pioneers were able to develop convincing technology which 

surpassed the limitations identified by Minsky and Papert (Ref.). Minsky and Papert, 

published a book (in 1969) in which they summed up a general feeling of frustration 

(against neural networks) among researchers. Currently, the neural network field 

enjoys a resurgence of interest and a corresponding increase in fmding. 

The history of neural networks that was described above can be divided into 

several periods. 

FIRST ATTEMPTS:- There were some initial simulations using formal 

logic. McCulloch and Pitts (1943) developed models of neural networks based on 

their understanding of neurology. These models made several assumptions about how 

neurons work. Their thresholds were based on simple neurons which were considered 

to be binary devices with fixed thresholds. The results of their model were simple 

logic functions such as "a" or "b" and "a and b". Another attempt was by using 

computer simulations. Two groups (Farley and dark, 1954; Rochester Holland, Haibit 

and Duda, (1956). The first group (IBM researchers) maintained closed contact with 

neuroscientist at MC Gill University. So, whenever their models did not work, they 

consulted the neuroscientists. This interaction established a multidisciplinary trend 

which continues to the present day. 
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PROMISING AND EMERGING TECHNOLOGY 

Not only was neuroscience influential in the development of neural networks, 

but psychologists and engineers also contributed to the progress of neural network 

simulations. Rosenblatt (1958) stirred considerable interest and activity in the field 

when he designed and developed the perceptron. The perceptron had three layers with 

the middle layer known as the association layer. This system could learn to connect or 

associate a given input to a random output unit. 

Another system was the ADALINE (Adaptive Linear Element) which was 

developed in 1960 by Widrow and Hoff (of Stanford University). The ADALINE was 

an analogue electronic device made from simple components. The method used for 

learning was different to that of the perceptron, it employed the least-mean-squares 

(LMS) learning rule. 

PERIOD OF FRUSTRATION AND DISREPUTE 

In 1969 Minsky and Papert wrote a book in which they generalized the 

limitations of single layer perceptrons to multilayer systems. In the book they said 

"our intuitive judgment that the extension (to multilayer systems) is sterile". The 

significant result of their book was to eliminate funding for research with neural 

network simulations. The conclusions supported the disenchantment of researchers in 

the field. As a result, considerable prejudice against this field was activated. 

INNOVATION 

Although public interest and available funding were minimal, several 

researchers continue working to develop neuromorphically based computational 

methods for problems such as pattern recognition. 

During this period several paradigms were generated which modem work 

continues to enhance Grossberg's (Steve Grossberg and Gail Carpenter in 1988) 

influence founded a school of thought which explores resonating algorithms. They 

developed the ART (Adaptive Resonance theory) networks based on biologically 

plausible models. Anderson and Kohonen developed associative techniques 

independent of each other. Klopf (A. Henry Klopf) in 1972, developed a basis for 

learning in artificial neurons based on a biological principle for neuronal learning 

called heterostasis. 
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Werbos (paul Werbos (1974) develop and used the back - propagation 

learning method, however several years passed before this approach was popularized. 

Back propagation nets are probably the most well known and widely applied of the 

neural networks today. In essence, the back - propagation net is a perceptron with 

multiple layers, a different threshold function in the artificial neuron, and a more 

robust and capable learning rule. 

Amari (A shun - ichi 1967) was involved with theoretical developments: he 

published a paper which established a mathematical theory for a learning basis (error­

correction method) dealing with adaptive pattern classification. While Fukushima (F­

Kunihike) developed a stepwise trained multilayered neural network for interpretation 

of handwritten characters. The original network was published in 1975 and was called 

the cognitron. 

RE-EMERGENCE 

Progress during the late 1970s and early 1980s was important to the re­

emergence on interest in the neural network field. Several factors influenced this 

movement. For example comprehensive books and conferences provided a forum for 

people in diverse fields with specialized technical language, and the response to 

conferences and publication was quite positive. 

Academic programs appeared and courses were introduced at most major 

universities in the US and Europe. Attention is now focused on funding levels 

throughout Europe, Japan and the US and as this funding becomes available, several 

new commercial with applications in industry and fmancial institutions are emerging. 

TODAY:- Significant progress has been made in the field of neural networks 

- enough to attract a great deal of attention and fund for further research. 

Advancement beyond current commercial applications appears to be possible, and 

research is advancing the field on many fronts. Neurally based chips are emerging and 

applications to complex problems developing. Clearly, today is a period of transition 

for neural network technology. 

1.2 BACKGROUND TO THE STUDY 

What is a Neural Network? 

An Artificial Neural Network (ANN) is an information processing paradigm 

that is inspired by the biological nervous systems, such as the brain, process 
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information. The key element of this paradigm is the novel structure of the 

information processing system. It is composed of a large number of highly 

interconnected processing elements (Neurones) working in unison to solve specific 

problems. 

Artificial Neural Networks, like people learn by example, (ANN) is 

configured for a specific application such as pattern recognition or data classification 

through a learning process. Learning in biological systems involves adjustments to the 

synaptic connections that exist between the neurons. Neural networks, with their 

remarkable ability to derive meaning from complicated or imprecise data can be used 

to extract patterns and detect trends that are too complex to be noticed by either 

humans or other computer techniques. 

A trained neural network can be thought of as an "Expert" in the category of 

information it has been given to analyze. This expert can be used to provide 

projections given new situation of interest. The importance of Neural networks are: 

1. Adaptive Learning:- An ability to learn how to do tasks based on the 

data given for training or initial experience. 

2. Self organization:- An Artificial Neural Network can create its own 

organization or representation of the information. It receives during 

learning time. 

3. Real time operation:- Artificial Neural Network computation may be 

carried out in parallel and special hardware devices are being designed 

and manufactured which take advantage of this capacity. 

4. Fault tolerance via redundant information coding partial destruction of 

a network leads to the corresponding degraduation of performance. 

However, some network capabilities may be retained even with major 

network damage. 

The application of neural network gives this description of neural networks 

and how they work, what real world applications are they suited for? 

Neural networks have broad applicability to real world business problem. In 

fact, they have already been successfully applied in many industries. Since neural 

networks are best for identifying patterns or trends in data, they are well suited for 

prediction or forecasting needs including: 

1. Sales forecasting. 

2. Industrial processing control. 

4 



3. Customer research. 

4. Data validation. 

5. Risk management. 

6. Target marketing. 

But to give some more specific examples, artificial neural network are also 

used in the following specific paradigms: 

1. Recognition of speaker in communication 

2. Diagnosis of hepatitis 

3. Recovery of telecommunication from faulty software 

4. Interpretations of nuitinceaning Chinese word 

5. Under sea mining detective 

6. Texture analysis 

7. Three dimensional object recognition hand-written word recognition 

and facial recognition. 

Also, an artificial neural network is a massively distributed processor or 

simply computing system made up of a number of simple highly inter-connected 

signal or information processing units (called artificial neuron) for storing 

experimental knowledge and making it available for use. (Haykins, (1994). It 

resembles the human brain in that. 

(i) It can acquire and store knowledge through a learning process. 

(ii) It can make available the knowledge stored when required. 

5 
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FIG. 1.1 SCHEMATIC ARCmTECTURE OF ARTIFICIAL NEURAL 

NETWORK 

Specific paradigms: 

1. Recognition of speaker in communication 

2. Diagnosis of hepatitis 

3. Recovery of telecommunication from faulty software 
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4. Interpretations of nuitinceaning Chiness word 

5. Undersea mine detective 

6. Texture analysis 

7. Three dimensional object recognition hand-written word recognition 

and facial recognition. 

1.3 THE PID CONTROLLER 

PID controller meaning Proportional-Integral-Derivative controller (PID 

controller) is a common feedback loop component in industries control system. 

The PID loop tries to automate what an intelligent operator with a gauge and a 

control knob would do. The operator would read a gauge showing the input 

measurement of a process, and use the knob to adjust the output of the process ("the 

action") until the process's input measurement stabilizes at desired valve on the 

gauge. In order control literature this adjustment process is called a "rest" action. 

The position of the needle on the gauge is a "measurement", "process value" 

or "process variable". The desired valve on the gauge is called a "Set Point". The 

difference between the gauge's needle and the Set Point is error. A control loop 

consists of three parts 

1. Measurement by a sensor connected to the process 

2. Decision in a controller element 

3. Action through an output device (Actuator) such as a control valve. 

The PID loop adds positive correction, removing error from the process's 

controllable variable (it input). Differing terms are used in the process control 

industry. The "Process Variable" is also called the Process Input or "Controller 

Output". 

REF ---+:i0'4 CONTROLLER ~---~~ PLANT 

FIG. 1.2 OUTPUT FEEDBACK CONTROL SYSTEM 
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The process's output is called the "measurement" or "input" controller. This, 

up-a-bit down-a-bit movement of the Process's Input Variable is how the PID loop 

automatically finds the correct level of input for the process. 

Removing the error "turn the control knob" adjusting the process's input to 

keep the process's measured output at the setpoint. 

PID is named after its three correcting calculations, which all add to and adjust 

the controlled quality, these additions are actually subtractions of error because the 

proportional are usually negative. 

INPUTFL 

I C1 

CONCENTRATION 

u 

STIRRED 

INPUT FLOW F2 

CONCENTRATION C2 

~----------- VOLUME V 

OUTPUT FLOW F3 
CONCENTRATION C3 

FIG. 1.3 STIRRED TANK REACTOR 

Variation in mixture volume in the tank. The input flow rates F I and F2 are in 

Fig. 1.3 controlled by input valves while the output flow is assumed to be through a 

constant size orifice. This output flow rate is assumed to vary as the square root of the 

static pressure head at the orifice with constant cross-sectional area of the tank this 

means. 

Where V is the volume of the material m the tank and K is an 

experimentally determined constant following K and S 

K = O.002m312 sec. 

is used here. The problem here is to control input flows F I and F2 so that the output 

product concentration C3 is as near as possible to the desired nominal valve C3. At the 
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same time the volume of the mixture in the tank (V) is to be maintained at or near a 

desired nominal value so as to insure both a sufficient hold time in the tank to achieve 

the desired degree of mixing and also a sufficient near constant output flow rate F3• 

1.4 DYNAMICS OF THE TANK 

With notation as defined above, the dynamics of the tank may be described by 

the mass balance equation as 

This equation simply means that the rate of change of product in the tank 

varies with time as the difference between input product rate and output product rate. 

Volume V in the tank change as the difference between flow in and flow out with a 

few obvious manipulation (6.96) may be put into the form. 

dC
3 
= (CI - C3)FI + (C2 - C3)F2 

V . 

dV 
-=FI +F2 -F3 
dt 

Which is the x = f(x) form desired here. 

1.5 NEURAL COMPUTING TECHNIQUES: 

Neural networks take a different approach to problem solving from that of 

conventional computers. Conventional computers use an algorithmic approach i.e. the 

computer follows a set of instructions in order to solve a problem. Unless the specific 

steps that the computer needs to follow are known the computer cannot solve 

problem. That restricts the problem solving capacity of conventional computers that 

we already understand and known how to solve. But computer would be so much 

more useful it they could do things that we don't exactly know how to do. 

Neural Network processes information in a similar way the human brain does. 

The network is composed of a large number of highly interconnected processing 

elements (neurons) working in parallel to solve a specific problem. Neural Network 

learns by example. They cannot be programmed to perform a specific task. The 

examples must be selected carefully otherwise useful time is wasted or even worse the 
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network might be functioning incorrectly. The disadvantage is that because the 

network finds out how to solve the problem by itself, its operation can be 

unpredictable. 

In contrast to conventional computing which requires an explicit analysis of 

the problem to be solved to enable the programmer write down a step by step sets of 

instruction to be followed by a computer, Neural computing does not require an 

explicit description of how the problem is to be solved. The neural computer is able to 

adapt itself during training period, based on examples of similar problems often with a 

desired solution to each problem. After a sufficient training the neural computer is 

able to relate the problem data to the solutions input to outputs, and it is then able to 

offer a variable solution to a brand new problem. 

1.6 THE MAJOR ELEMENTS OF NEURAL NETWORK 

The neuron is the basic unit of brain, and is a stand alone analogue logical 

processing unit. 

The basic function of a biological neuron is to add up its inputs and produce 

an output. If the sum of the input is greater than sum value, known as the threshold 

value; then the neuron will be activated and "FIRED" if not, the neuron will remain in 

its inactive, quiet state. 

NEUTRON 

FROM OTHER 
NEURONES 

Fig. 1.4 (a) 

FIG. 1.4 THE COMPONENT OF A NEURON 
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The inputs of the neuron arrive along the dendrites which are connected, to the 

outputs from the other neurons by specialized function called synpses. These 

functions alter the effectiveness with which the signal is transmitted, some synapses 

are good function and pass a large signal across whilst other are very poor and allow 

very little through. 

DENDRITES 

CELL BODY 

INPUT + 
THRESHOLD 
\l 

AXON 

SUMMATION 

FIG.I.S A SIMPLE NEURON 

f (.) 

INPUT 

INPUT LAYER 

Fig.1.6(a) Fig.I.6(b) 

FIG. 1.6 A SINGLE MODEL NEURON 

The firing rule is an important concept in neural networks and accounts for 

their high flexibility. A firing rule determines how one calculates whether a neuron 

should fire for any pattern. It relates to all the input patterns, not only the ones on 

which the node was trained. Just like the biological neural network, the neuron is the 

major elementary processing units in artificial neural network. 
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In most common networks, neurons are arranged in layers with the input layer. 

The data fed to the network at input layer. The data then passes through the network 

to the output layer to provide the solution or answer. 

At each neuron, every input has an associated weight which is the strength of 

each input connected to that neuron. The neuron simply adds together all the inputs 

and calculates an output to be passed on. 

1. 7 BENEFITS OF NEURAL COMPUTING 

(i) ABILITY TO TACKLE NEW KINDS OF PROBLEMS 

Neural network are effective at solving problems whose solutions are difficult, 

if not impossible to define, and since it has the ability to learn from experience 

(previous examples) when presented with a new but similar problem, it can 

provide solution. 

(ii) FAULT TOLERANT 

Since data and processing are distributed rather than centralized, neural 

network can be very tolerant of faults. This contrasts with conventional 

systems where the failure of one component usually means the failure of the 

entire system. 

(iii) ROBUSTNESS 

Neural networks tend to be more robust than their conventional counterparts. 

They have ability to cope well with incomplete FUZZY data. 

(iv) FAST PROCESSING SPEED 

Neural network are very fast because they consist of larger number of 

massively inter-connected processing units, all operating in parallel on the 

same problem. This contrast to the serial, one step at a time processing. 

(v) FLEXIBILITY AND EASE OF MAINTENANCE 

Neural computers are very flexible in that they are able to adapt their 

behaviours to new and changing environments. This contrasts to the serial 

conventional computing which is strictly algorithmic and requires writing a 

new program for any modification. 
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They are also easier to maintain. To accommodate changes or modifications 

some networks have the ability to learn from experience in order to improve their own 

performance. 

(vi) PARALLEL PROCESSING 

Parallel processing is a processing technique, which involves multiple 

operations being carried out simultaneously. Parallelism reduces 

computational time. For this reason, it is used for many computationally 

intensive applications such as predicting economic trends or generating special 

visual effects feature films. The high speed with which the brain and Artificial 

Neural Networks (ANNs) are able to process information is astounding. 

Consider the amount of computational needed to process a single visual 

image. If one restricts the image resolution to 1,000 x 1,000 receptors, a small 

number compared to the retina over one million (three millions for colour 

images) must be examined and several million computational performed in 

order that object in the image are identified. Even at the nanosecond speed of 

modem computers, this task can require several seconds in conventional 

computers. In contrast biological visual system computerizes such tasks in 

milliseconds. 

(vii) By Patterning Themselves after the architecture of the brain, they provide a 

plausible model of intelligent mechanism. 

(viii) They provide a tool for modeling and exploring brain function. 

1.8 NEURAL NETWORK ARCmTECTURES 

Artificial Neural Networks (ANN) use a variety of architectural of which the 

multilayer feed forwards perceptron and the recurrent neural networks are notable. 

Others include the radial basic function network [(Broomhead and Lowe 1988) -

(Moody and Darken 1989), the adaptive and learned vector quantization network 

(Kangas et-al, 1990)] use for data compression, the Kohonen self-organizing maps 

(Kohonen, 1988, 1998 the counter-propagation neural network (Hecht-Alnielson, 

1987), the adaptive resonance theory ARTI and ART2) proposed by (Carpenter and 

Grossbery 1987, 1988), Probabilistic neural network (Cain 1990, Specht, 1990), the 
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self-organizing feature maps (SOFM) Fukushima 1989 and the cellular neural 

networks (CNN) (Chua and Yang 1988), Chua et at (1993). 

1.9 SCOPE OF THE STUDY, AIMS AND OBJECTIVE OF THE 

RESEARCH METHODOLOGY 

AIMS 

(1) To use Neural Network to obtain the output of a PID controller stirring 

tank reactor. 

(2) To simulate a controller for a Chemical Processing problem the 

continuous Stirred Tank Mixer (CSTM) and continuous stirred tank 

reactor. 

THE OBJECTIVES 

(i) Formulate a control tutorial for matLab to solve problem. 

(ii) Formulate a cost function for PID control process in a mixer by 

keeping the eflluent and volume of the mixture in the tank at a desired 

level. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 NEURAL NETWORK RESEARCH. 

Artificial Neural Network (ANN) has been shown to be effective as 

computational processor for various tasks including data compression, classification; 

combinational optimization problem solving modeling and forecasting, adaptive 

control, multi sensor data fusion, pattern recognition e.g. speech and visual Image 

recognition, noise filtering etc. ANN uses a variety of architectures, the notable ones 

are listed in section 1.2 in Chapter One. It is believed by many researchers in the field 

that neural network modcls otIer the most promising unified approach to building 

truly intelligent computer system; and that the usc of distributed, parallel 

computations as perfonned in ANN is the best way to overcome the combinational 

explosion associated with symbolic scrial computations when using Von Ncuman 

Computer Achitecture. 

Hopfeild (1982): Presented a paper at the national academy of science de cribing 

how an analysis of stable point could be perfonned for symmetrical recurrent crossbar 

networks. The analysis was based on the use of a Lyapunuvs energy function for the 

nonlinear equation. He showed that the encrgy function dissipated (decreased) and 

converged to a minimum and remained thcre. 

The successful implementation of the application of artificial Neutral networks 

(ANN) have been reported in arcas such as eontro)[(Balakrishan and Weil, 1996)], 

telecommunications [(cooper, 1994)] BioMedical [(!\lvager et al 1994) Hasnain 

(2001), Muhammad (2001)],remote sensing [(Goita, et al.(1994)] pattern recognition 

[(Smetanin, Y. G (1995)] RFI Microwave designee Zhang and crccch,(1999)] 

Microstrip circuit design [(IIomg et al (1993)] Microwave circuit analysis and 

optimization [(Zaabab et a11994)] Application of ANNs to biologicals systems (Stem 

cells) [(Szu and hwang (2003) Szu (2003), Grop-llardt and Laux (2003)]. 

Neural Nctworks based on adaptivc resonance theory are cquipped with 

unique computational abilitics that arc needed to functjon authomonuo. ly in a 

changing environmcnt [(Carpenter and Grossberg, (1988)] [(Catpcnter et a1. (1992)] 
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[(Aldrich C, Moolman D.N and van Deventer,(l995) at the Department of Chemical 

Engineering at the University of Stellenbosch successfully implemented a self­

organizing and adaptive neural network system in the monitoring and control of the 

behaviour of an IndustriallPlatinum flotation plant (Hydrometallurgical process). 

Other network formalism; namely radial basis function (RBF) and adaptive resonance 

theory - 2 (ART 2) network have also been employed for fault detection diagnosis 

and process monitoring task [[Leonard and Kramer, (1991)], [Whiteley and Davis, 

(1994)]. [Zhang and Julian, (1994)] used a locally recurrent Neural Network to model 

the pH dynamics in a continuous stirred tank reactor (CSTR) in a problem taken from 

[McAvoy et al, (1972)]. 

Stephen Grossbery (1982), founder and director of the centre for adaptive 

systems and professor of mathematics, psychology and biomedical engineering at 

Boston University also carried out several researches on the Psychological and 

biological Information Procession and in the use of Artificial neural Network (ANN) 

to model human perceptron and recognition. His earlier work focus on co-operative 

competitive learning systems leading to the creation of constructs such as instar, 

outstar and avalanche used in learning and recall of spatia]· temporal patterns. Later, 

Grossbery and his colleagues focused on the Mathematical dynamical properties of 

ANN. This work led an important theorem on the global convergence of dynamic 

networks [(Cohen and Grossbery 1983)]. Gorssbery is perhaps best known for the 

highly successful adaptive resonance theory networks (ART Networks). 

The Japanese researeher Kunihiko Fukushima (1988) founder, of the cognitron 

and Neocognitron networks [(Fukushima and Myaki 1982) Fukushima (1988)], has 

the most recent networks called the Neocognition which is a hierarchical feed forward 

network that learns through either; supervised or unsupervised methods. The network 

is modeled after biological Visual neutral systems. 

Fukushima K. and Myaki (1982) published result showing that Neocognitron 

is capable of recognizing hand written character, independent of scale, position and 

some deformation in the characters [(Fukushima and Wake 1991 »). 
One of the earliest example of ANN used in solving optimization problem is 

the Dynamic Recurrent Network (DRNN). The behaviour of the DRNN has been 

described by Pneda, (1988), (1989) and studied by several other researchers, including 

Almeida (1987), Williams and Peng (1990), Zisper(1989), Peaelmuttcr (1998) among 

others. ANN has been used for a number of problems that require finding an optimal 
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or near optimal solutions. Such problems typically require the satisfaction of some 

constraints. Some examples of optimization problems include, scheduling of 

manufacturing operation; finding the shortest of all distance of paths through a large 

number of cities that must be traversed sequentially with a single visit, minimizing 

some cost functions under a set of constraints, N-Queen Problem, graph colouring and 

max (graph) cut etc. These grow at exponential rate with the problem parameter size. 

Optimal solutions to those problems require prohibitive computational costs. 

Therefore; near optimal solutions are acceptable compromises. 

Tank and Hopfield (1987) implemented the dynamic recurrent Neural 

Network in solving the traveling salesman problem. Since then, many other solutions 

have been proposed, including those due to Aarts and Korst (1989) and the SOFM 

network angeniol et al (1988). Following the results of the Application of neural 

network for industries (ANNIE) project in Europe documented in the project ANNIE 

Hand book, Croall and Manson (1991) revealed that one of the applications chosen 

for investigation and successfully solved is the crew scheduling problem. 

The objective of the problem is to optimally satisfy a given set of tasks using 

available resources subject to certain constraints (priorities, deadlines, cost). The goal 

is to minimize a cost function, which depends on service time and cost of service. In 

1986, Carnegie - Mellon University converted a commercial van into a laboratory 

vehicle (Navlab. 1) to act as a test bed for the autonomously driven (driveless) vehicle 

experiments [Thorpe et al (1991), kanade et aI., (1994)]. One of the control systems, 

the AL VNN (i.e. Automatic Land vehicle in a Neural Network) is neural net based. 

AL VNN is not the only successful ANN control system for autonomous vehicle 

driving. 

The Advanced Research Project Agency (ARPA) had also built Automatic 

Land Vehicles (AL V) as well as European and Japanese organizations. Staib and 

Staib (1993) of the Neural Application Corporation develop an intelligent arc furnace 

ANN controller for positioning electrode in the furnace for steel making, thus 

minimizing the high cost involved and improving on the operating efficiency. Toshiba 

also developed a microwave oven toaster that is controlled by both a neural network 

and fuzzy logic controller. The oven is capable of estimating the number of items 

being cooked and the oven temperature. The network then decides the optimum 

cooking time using fuzzy reasoning. The cooking time depends on the number of 
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items in the cooker and their initial temperature. This is sensed and estimated by the 

neural network, which regulates the flow of cooking gas. 

Recurrent Neural Network (RNNS) has been used in a number of interesting 

Applications including associative Memories, Spatiotemporal pattern classification, 

control, optimization and forecasting. It has been shown to perform computational 

task equivalent to finite state automata (Elman 1991) as well as more general turning 

machine (Williams and Zipser 1989) 

One of the most important developments of recent neural network research is 

the discovery of a learning algorithm to adjust the weights in multiplayer feed forward 

networks (also called multiplayer perceptron). The algorithm is known as back 

propagation. Since the weights are adjusted from the output layer backwards, layer­

by-layer to reduce the output errors. The method was discovered at different times by 

Werbos (1974), Parker (1985) and Rumelhart, Hinton and Williams of the parallel 

distributed processing (PDP) Group (Rumelhart et al 1986). 

The feed forward networks are commonly utilized for pattern recognition task. 

The feed forward network trained, using the back propagation (BP) algorithm 

(Rumelhart et al, 1986, Rumelhart and McClenland (1986) is found to be very 

effective for process faults detection. Reddy et al (1997) is found to be very effective 

for process fault detection Reddy et al (1997) implemented a modified back 

propagation neural network methodology for identifying and interpreting variation in 

process pattern. In the application of neural network to control and optimization 

problems, much success has been made and the discipline is still an active area of 

research. 

2.2 PROCESSING CONTROL SYSTEM 

Process control involves the regulation of variables in a process. A process is 

any combination of materials and equipment that produces a desirable result through 

changes in energy, physical properties, or chemical properties, Bateson (1993). 

Example of a process includes a petroleum refinery, a fertilizer plant, a food 

processing plant, an electric power plant and a home heating system. The most 

common controlled variables in a process are temperature, pressure, flow rate and 

level. Others include density, composition, PH and viscosity. 

The process control system usually incorporates a device or combination of 

devices that automatically controls a mechanism, a source of power or energy or other 
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variables. The system automatically compares the controlled output of a mechanism 

to the controlling input. The difference between the settings or position of the output 

and input is called the error signal which regulates the output to a desired value. 

The process of sending the error signal back for comparison with the input is 

called feedback and the whole process of the input, output, error signal and feedback 

is called a closed loop, process control systems may be either open-loop or closed 

loop, but the closed loop system are more common. 

Process control systems are usually encountered among other fields in 

chemical engineering, electrical engineering and mechanical engineering. This 

research work focuses on chemical process control. Theoretical papers on chemical 

process control started to appear about 1930. Grebe et al, (1933) discussed some 

difficult PH control problems and showed the advantage of using controllers with 

derivative action. Ivanoff, (1934) introduced the concept of potential quantitative 

evaluation of control system. [Calendar et al, (1936) showed the effect of time delay 

on the stability and speed of response of control systems. The field has continued to 

attract researchers and many attractive research results continue to appear in 

publications. [Kestenbaum et al, (1976) published an article on "Design concepts for 

process control"], [Castellano et al, (1978)] published results of "Digital control of a 

Distillation System", [Brosilow and Tong, (1978) discussed "The Structure and 

Dynamics of Inferential Control Systems", [Stephanopoulos (1982)] researched and 

published results on the "optimization of closed-loop Responses". [Aldrich C., 

Moolman D.N. and Van Deventer, (1995) of the Department of Chemical engineering 

at the University of Stellenbosch successfully implemented a self-organizing and 

adaptive neural network system in the monitoring and control of the behavior of an 

industrial/platinum flotation plant (Hydrometallurgical process). 

2.2.1 FEEDBACK CONTROL 

Essential to all automatic control mechanism is the feedback principle, which 

enables a designer to endow a machine, reactor or system with the capacity for self­

correction. A feedback loop is a mechanical, pneumatic, or electronic device that 

senses or measures a physical, quantity such as position, temperature, size or speed 

e.t.c., compares it with a pre-established standard, and takes whatever preprogrammed 

action that is necessary to maintain the measured quantity within the limits of the 

acceptance standard. In a feedback control loop, the controlled variable is compared 
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to the set point, with difference, deviation or error acted upon by the controller to 

move in such a way as to minimize the error. This action is specifically a negative 

move in such feedback, in that an increase in deviation, moves so as to reduce the 

deviation. (positive feedback would cause the deviation to expand rather than 

diminish and therefore does not regulate.) The action of the controller is selectable to 

allow the use on process gains of both signs. 

DISTURBANCE 

CONTROLLED-OUTPUT 
PROCESS 

VARIABLE 

CONTROLLER 

FIG. 2.1 STRUCTURE OF A FEEDBACK CONTROL SCHEME 
CHENUCALPROCESSCONTROLSTEPHANNOPOULOS 

Basically feedback control loop consists of: 

i.) Sensor: to detect the process variable. 

ii.) Transmitter: the transmitter is the interface between the proc.ess and its 

control system. It incorporates a converter or transducer that converts 

the sensor signal (millivolts, mechanical movement, pressure 

differential e.t.c.) into an equivalent air or electrical control signal. 

iii.) Controller: That compares this process signal with a set point and 

produces an appropriate control signal. 

iv.) Control value. 

There are different types of feedback controllers namely 

(i) Proportional controller. 

(ii) Proportional-integral controller. 

(iii) Proportional-derivative controller. 

(iv) Proportional-integral-derivative controller (PID) 
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2.2.2 FEED FORWARD CONTROL 

Most feedback systems act "Post facto" (after the fact) that is after the effect 

of the disturbances has been felt by the process. Unlike the feedback systems, a feed 

forward system uses measurements of disturbance variables to position the 

manipulated variable in such a way as to minimize any resulting deviation. 

The disturbance variable could be either measured loads or the set point. The 

feed forward gain must be set precisely to offset the deviation of the controlled 

variables from the set point. 

FIG. 2.2 

CONTROLLER 

MANIPULATED 
VARIABLE 

1+----------1 DISTURBANCE 

PROCESS 
CONTROLLED-OUTPUT 

STRUCTURE OF A FEED FORWARD CONTROLL SCHEME 
(CHEMICAL-PROCESS CONTROL, STEPHANNOPOULOS 1982) 

Feed forward control is usually combined with feed back control to eliminate 

any offset resulting from inaccurate measurements and calculations and unmeasured 

load components. 

SET 
POINT 

ERROR 

FIG: 2.3 

FEEDBACK 
CONTROLLER 

FEED FORWARD 
CONTROLLER 

MANIPULATED VARIABLE 

FEEDBACK LOOP 
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2.2.3 COMPUTER CONTROL 

Computer has been used to replace analog Proportional Integral-Derivative 

(PID) controllers, either by setting set point of lower level controllers in supervisory 

control or by driving value directly indirectly digital control. 

In distributed control systems with the digital processor shared among many 

control loops, the separate processors are used to monitor different activities. Other 

types of controller include self-optimizing controllers and Neuro-Fuzzy based 

controller (Shink, 1988). 

2.2.4 CHEMICAL PROCESS CONTROL 

Most chemical process control occurs in a chemical plant. A chemical plant is 

an arrangement of processing units (reactors, heat exchangers, pumps, distillation 

columns, absorbers, evaporators, tank e.t.c.) integrated with one another in a 

systematic and rational manner for performance of a set task. The plant's overall 

objective is to convert certain raw material (input, feedstock) into desired products 

using available sources of energy in the most economical way. 

Chemical plants must satisfy several requirements imposed by its designers 

and the general technical, economic and social conditions in the presence of ever­

changing external influence (disturbances). 

Among such requirements are the following. 

(i) production specifications 

(ii) operational constraints. 

(iii) Safety 

(iv) Environmental regulations 

(v) Economics 

These requirements listed above dictate the need for continuous monitoring of 

a chemical plant and external intervention (control) to guarantee the satisfaction of the 

operational objectives. In the light of the foregoing, chemical control system must 

satisfy the following three general classes of need. 

(1) Suppressing the influence of external disturbances. 

(2) Ensuring the stability of a chemical process. 

(3) Optimizing the performance of a chemical process. 
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Chemical reactors are often the most difficult units to control in a chemical 

plant, particularly if the reactions are rapid and exothermic. For example an increase 

in temperature of 1 DC may increase the reaction rate by 10% enough to cause 

significant changes in conversion and perhaps in yield. And the increase in rate with 

increasing temperature tends to make the reactor unstable. 

TYPES OF REACTOR 

There are several types of reactor. Below is the list of the most common 

reactors used in chemical process plants. 

(1) Batch reactor 

(2) Continuous reactor 

(3) Semi - continuous reactor. 

(4) Tank reactor 

(5) Tubular reactors 

(6) Tower reactor 

(7) Fluidized - bed - reactor. 

2.2.5 DESIGN ELEMENT OF A CONTROL SYSTEM 

(A) VARIABLES 

In attempting to design a control system that will satisfy the control needs for 

a chemical process one must be able to identify and classify the variables 

associated with the chemical process. 

The variables (flow rates, temperature, pressure, concentrations e.t.c) 

associated with a chemical process are divided into two: 

(1) Input variables 

(2) Output variables. 

The input variables can be further classified into two categories: 

(1) Manipulated (or adjustable) variables. 

(2) Disturbances. 

The output variables are also classified into two: 

(1) Measured output variables 

(2) Unmeasured output variables. 
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(B) BLOCK DIAGRAMS 

For control problems, it is helpful to use a block diagram to show the 

functional relationship between input and output. 

·1 
G 

~ y 

(a) y=Gx (b) 

y = f(x,t) 

(a) Dynamic relationship (b) 

FIG. 2.4: BLOCK DIAGRAM COMPONENT 
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-------------------, 

JACKET 

--~~I G1 
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+ 
e 

-y 

e = x-Y 

Comparison of signals 

1---.---.0 

Os 

MEASUREMENT lag 

FIG. 2.5: BLOCK DIAGRAM FOR A TEMPERATURE CONTROL 
SYSTEM (pROCESS CONTROL HARRIOT) 

(C) STATE VARIABLE AND STATE EQUATIONS FOR THE CHEMICAL 

PROCESS 

In order to characterize a processing system (tank, batch reactor, distillation 

column e.t.c.) and its behavior, the following are needed. 

(i) A set of fundamental dependent quantities whose values will describe the 

natural state 

(ii) A set of equations, in the variables above which will describe how the 

natural state of the given system changes with time. 
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F or most of the processing systems of interest to a chemical engineer there are 

only three such fundamental quantities: mass, energy, and momentum: quite often, 

though, the fundamental dependent variables cannot be measured directly and 

conveniently. In such cases other variables are selected, which can be measured 

conveniently, and when grouped appropriately ,they determine the value of the 

fundamental variables. Thus, mass, energy and momentum can be characterized by 

variables such as density, concentration, temperature, pressure and flow rate. 

These characterizing variables are called state variables and their values defme 

the state of a processing system. The equations that relate the state variable 

(dependent variables) to the various independent variables are derived from 

application of the conservation principle on the fundamental quantities and are called 

state equations. 

The principle of conservation of a quantity S states that 

ACCUMULATION OF S FLOWOFS FLOWOFS 

WITHIN A SYSTEM = IN THE SYSTEM - OUT OF THE 

TIME PERIOD TIME PERIOD TIME PERIOD 

AMOUNTOFS 

+ GENERATED WITHIN SYSTEM -

AMOUNT OF S CONSUMED 

WITHIN A SYSTEM 

TIME PERIOD TIME PERIOD. 

The quantity S can be any of the following fundamental quantities: 

Total mass. 

Mass of individual component 

Total energy 

The balance equations for these quantities are given as. 

Total mass balance. 

Mass balance on component A. 

Where the variables in the above equations are 
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p = density of the material in the system 

Pi = density of the material in the ith inlet stream 

Pj = density of the material in the jth outlet stream 

V = Total volume of the system. 

Fi = Volumetric flow rate of the ith inlet stream 

Fj = Volumetric flow rate of the jth output stream 

CA = Molar concentration (Moles/volume) of A in the system. 

CAi = Molar concentration of A in the ith inlet 

CAj = Molar concentration of A in the jth output 

r = reaction rate per unit volume for component A in the system. 

2.3 THE MATHEMATICAL THEORY OF BIOLOGICAL NEURAL 

NETWORK 

According to Pellionisz (1990), brain theory or the mathematical theory of 

biological neural network is only in its infancy. There is a strong belief that the 

mathematics underlying brain function is neither algebra nor even calculus, but 

Geometry, particularly fractal geometry in the neuron structure. 

In this section, it is shown that the mathematics associated with the 

functioning of biological neural networks is not fractal geometry only. In order to 

understand the mathematical theories or concepts surrounding biological neural 

network, it requires a good knowledge or understanding of the basic mathematical 

theories/concepts underlying the functionality, dynamics, capabilities and general 

behavior of Neural Network (System). Our finding and other researches reveal that 

some of the mathematical concepts/theories that are closely related to neural network 

theory and operations include. 

(1) Vector and linear algebra. 

(2) Matrices 

(3) Pseudo - inverse. 

(4) Principle Component Analysis (PCA) 

(5) Statistics and Probability. 

(6) Calculus. 

(7) Differential Equations. 

(8) Fuzzy set theory and fuzzy logic. 

(9) Information theory. 
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(10) Lyapunovexponents. 

(11) Fractal Dimension. 

(12) Non - Linear System theory. 

2.4 MATHEMATICAL MODEL OF A NEURAL NETWORK 

The basic function of a neuron is to concept inputs add them in some fashion 

and produce an output. A neuron can accept many inputs Xi. If there are n inputs, 

associated with each input neuron is a weight vector Wi and a bais O. A neuron yields 

its output by performing the weighted sum, adding a bias and then passes the result 

through a non - linear function known as the activation function or linear combiner. 

XI-~---/ 

W 
X2-...;...;..&---f 

xn-~--~ 

F(.) 1------+ Y 

FIG. 2.6 INPUTS/OUTPUT TO A SINGLE MODEL NEURON A 

NETWORK 

Here we define the input to the neuron as a vector x of n - tupelo. i.e. 

X= (Xh X" . . ~ ] 

The model neuron calculates the weighted sum of its inputs as follows: 

It takes the first input, multiplies it by the weight on the input line, and does 

the same for the next input and so on, adding them all up at the end. This sum is then 

compared in the neuron with the threshold value. 

This is written as 

Total input = W1XI + W2X 2 + ... + WnXn. 

2.3 
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XI 

In a multi-layer feed forward Network, the neutrons are arranged in consecutive 

layers (fig2.7) so that inputs to neutron in a particular layer are composed solely to the 

outputs of the neutrons in the immediately preceding layers 

INPUT FIRST LAYER SECOND LAYER TIURDLAYER 
,( 

a a '\ ( a 
( 

a a 

f r J 
b b b b 

.------.a ....----.a .----..... a .....---..... a ,.....----.a 

f 
b ~_....Jb b 

a a a a """---'a 

f 
L....-or--....Jb b ~-....Jb b L--~....Jb b 

'\ 

\"--_____ J ,, __________ J '--'--_____ ........ ) '--____________ ) 

FIG. 2.7 A MULTIPLAYER FEEDWARD PERCEPTRON MATLAB 

NEUTRAL NETWORK. 

Now, we present the forgoing using mathematical notations, for the purpose of 

designating a particular neutron, we use subscript notations to identify the layer and 

the position within the layer. 

Let the vectors XPl= [xpII , xpI2 ........ xpln]T 

Where T denotes transpose, be the inputs vectors to any neutron in the I th layer 

corresponding to the pth pattern presented to the net. Associated with the nth layer is a 

weight vector. 

W In =[W InI , W In2 ..... ..... wIn N] T and bias Oin; is the number of 

weights in the layer. 

The neutron forms the sum: 

2.4 
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Augmenting Xpi by 1 and Win by Oin allows us to write the sum in a simplified form 

as. Ypin = X; Win 

Where Xpi by 1 and Win are now N + 1 vectors. 

The outputs of the neutron is 

Y pin = F [Y pin]. 

The output to any neutron in the next layer is then 

X [X 1+1 X 1+1 ,2 xp 1+1 ;] 
P\+\ = P , P •••••••• 

= [ZPpli, Zp12, ...... .... .... .... ... ZpliJ T 

Where j is the number of neutrons in the layer. 

2.5 

2.6 

2.7 

The neutron in the (L + 1 tt layer generate the outputs ,which are inputs to neutrons in 

the next layer, and this continues to the neutron in the output layer whose output is the 

output of the net 

A widely used activation function is the sigmoid function, given by 

1-.e-sY 

Fs(Y)- --
1+.e-sy f -1 

2.8 

Where the parameter S specifies the steepness of the curve. The sigmoid 

function is a smooth switch function having the property of 

F(y) ~ {I 

-1 asy q 00 

Other possible activation functions are the arc tangent function given by 

2 
F(y) = - arc - tan(y) 

1t 

And the hyperbolic - tangent function given by 

f -1 
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All these logistic functions are bounded, continuous monotonic and continuously 

differentiable. 

2.4.1 CONCEPT LEARNING IN ARTIFICIAL NEURAL NETWORKS 

DEFINITION 2.1 

A concept is the mental representation of a category of objects in the world. 

Concept is grouped into classes of equivalence. The mechanism by which intelligent 

systems group physically distinct objects into classes of equivalence are probably 

among the most fundamental aspects of cognition. Without these mechanisms, every 

instant of each type of object, events or situation would appear new every time it is 

encountered. 

Since we are dealing with a dynamical environment which compensate for 

variations in input stimuli the Neural Network learning process should posses an 

adaptive learning property. There are several iterative learning procedures that have 

been developed for a variety of Artificial Neural Network (ANN) architectures and 

much interest and research s still been focused on their learning efficiencies. Jacobs 

(1988), Giles and Maxwell (1987), Werbos (1988), Hinton (1989). 

Learning in ANN is accomplished in one of the following ways: 

(1) By the establishment of connections between nodes. 

(2) Adjustment of the weight values on the links connecting nodes. 

(3) Adjustment of the threshold values of node activation function or 

combination of the three operations. If a bias input is included with 

each of the nodes in a network and the number of initial nodes and 

interconnections is sufficient for the application, it is possible to learn 

through weight adjustments alone, since the bias weight can serve as 

the threshold value. 

Learning method for Artificial Neural Network (ANN) can be classified as 

one of three basic types: 

(1 ) Supervised learning 

(2) Reinforcement learning 

(3) Unsupervised learning 
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2.4.2 PERCEPTRONS 

The tenn, perceptron was first used by Rosenblatt to refer to a network that 

has adjustable thresholds on individual unit from which they could learn by 

systematically adjusting their weight (Rosenblatt 1962). 

The tenn, perceptron, is used to refer to the class of two layer feed forward 

networks: 

(a) Those whose first layer units have fixed functions with fixed 

connections weight from inputs and 

(b) Those whose connections weights linking this first layer to the second 

layer of output are learnable, together with the thresholds of the units 

in that output layer. 

We use the tenn (multi -layer learning network or multi-layer perceptron) to 

denote feed-forward networks that have more than one layer of learnable parameters. 

DEFINITION 2.2 

Let R = {Xl, X2 ••• Xn} be a set ofn real variables Xi, i = 1,2, ... , n defined 

over an n-dimensional finite subspace in Rn. The components of R are sometimes 

arranged as a two-dimensional array referred to as a Retina. A predicate or decision 

function defmed on R will be 1 and 0 or 1 or-

DEFINITION 2.3 

Let <l> be a family of M(partial) function on the elements of R. The '" is a 

linear threshold function (L TF) with respect to <l> if there exists set of coefficients 

{WJ:~1 such that 

,¥(x) = Tb(t, Wi~,(X) + Wm+,) = Tb(t, WiYi + Wm+l) 

For X={Xj .. Xk}cRwithl~i~k~n'yj =cpj(x)e<l> 

1 if x>O 

(l if X S 0 

where (l may be 0, - 1 or a small positive number. 
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DEFINITION 2.4 

A perceptron is a feed forward network that has only one layer of fixed 

processing units and trainable threshold logic unit (TLU) and is capable of computing 

'II E L(<l» for a given <l> by adjusting the weights and the threshold of its trainable 

TLU. The fixed processing unit computing may be realized by any fixed device (Bose 

and Liang 1996). 

2.4.3 LINEAR SEPARABILITY OF TRAINING PATTERNS 

Let the input to a network be denoted by the n-dimensional vector X = (Xi + X2 

... Xn)T ERn. An input vector is called a pattern, an exemplar, or a sample, and n­

dimensional space Rn is called the pattern space. 

In this section, it is assumed that every input X contains all the variables in R. 

Therefore, an input X can be denoted as an n-dimensional vector X = (X}, X2, 

... Xn)T E RD an input vector is called a pattern, exemplar, or a sample, and the n­

dimensional space R n is called a pattern space. Suppose that there are M neurons in 

the fust layer. 

The output from the Jth neuron in this layer is denoted by 

Yj = 0j{x) for j = I, 2, ... M. 2.15 

The vector (y}, Y2, .•. Ym)T = <l>(x) = (0J(x) O2(x) ... 0 m(X»T which is the 

input vector to the training TLU, is called a first -layer image pattern. 

It represents the image of the original pattern x in the space RM with 0 1(x) 

O2(x) ... 0 m(x) as the coordinate axes. 

The space to which the image patterns belong is called the image pattern space 

or the first - layer image space. The mapping <l>(x): RD 7 RM from the original 

pattern space (referred to as the feature space) to the image pattern space, as 

illustrated below is nonlinear. 

A surface that separates the patterns into different classes is called descision 

surface. Patterns belonging to one class all lie on one side of the decision surface, and 

patterns belonging to the other class lie on the other side of the side of the decision 

surface. In the case of a perceptron, the decision surface is the hyper plane defined in 

the image pattern space by 

m 

LWiYi +WmYi =0 
i=1 
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Perceptron categorizes a set of image patterns into two classes according to 

whether 

m m 

L WiYi + W m+l > 0 or L W i Yi + W m+l < 0 and the hyperplane in A 
i=l i=l 

nonlinear map pattern space n = 3. 

FIG. 2.8 

o 

o 
NOT LINEARLY SEPARABLE 

LINEAR SEPARABILITY 

G 
G 0 

LINEAR SEPARATION 

Case is called a linear dichotomy. A linear threshold function then defmes 

linear separability of the image pattern {01(x) O2(x) ... 0 m(X)T} X c R in the image 

pattern space. 

2.5 PERCEPTRON LEARNING ALGORITHMS 

Let the training exemplar set be {X(i)} ~1 where i is the index associated with 

the i th training pattern. For simplicity, suppose that these exemplars are members of 

either of two known classes, C+ and C_. Let the value of the real-valued variable 

direction in which E(w) will decrease at the fastest possible rate, and therefore the 

weight update equation is 

W(K+1)=w(k)-c VE 2.16 

where c is a suitable constant. If we define an error function at an iteration as 

f K (w(k), y(k) = Ih (lw(k).y(k)l-w(k).y(k) ; 2.17 

then 

8Ek(w(k) y(K) = ~ (y(k) Th(w (k)·Y(k)----Y(k) 

8w(K) 2.18 
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Where 1 ifw(k). y (k) > 0 

Tb (w(k). y(K) = 2.19 

- 1 if w(k). y(k) < 0 

Substitution of the equation (2.18 into 2.16 yields the fixed increment rule. 

c 
W (k+l) = W (k) + - (y (k)-y (k) Tb (w(k). y (k)) 

2 
2.20 

The error function of equation 2. 17 is minimum when w (k). y (k) > O. Note 

that this procedure differs from the stand and gradient descent algorithm in that the 

error function is different for each training pattern. 

The foregoing error function can be considered as an estimate of the true 

function 

E (w) = € K (w,y (k)). 2.21 

That should be minimized, where Y is the set of all training pattern. It can be 

shown that all solutions must lie in a single open convex polyhedral cone with its 

vertex at the origin. That is, the error function E (x) in the weight space has a unit 

unique valley with flat bottom. Therefore, convergence is guaranteed with gradient 

decent when the step size is appropriately chosen. 

2.5.1. THE PERCEPTRON CONVERGENCE THEOREM 

THEOREM 2.1 

If the training set is linearly separable, i.e. if there exist a W such that w.y > 0 

for all adjusted augmented training pattern, then perceptron learning using the fixed­

increment rule will fmd a solution. W* infinite time such that W*. y> 0 for training 

patterns. In other words, there exist 

Ko such that W (leo) =W(KO+ 1)= W (leo + 2) = ------- and W* = W (leo) 2.22 
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PROOF 

Let Y be the set of all training patterns. Although Y is a fInite set, the training 

patterns are presented repeatedly in learning. For national convenience, we feel free to 

donate y (1) by yi and w (k) by wk. Re-Iabel the training patterns in successive steps 

of the algorithm as YI. y2----yk-----

Let the corresponding weight vectors be wI, W2,. . Wk .... Assume that the 

pattern and weight vectors at those steps where there is no change to the previous 

weight vectors, i.e Wk+l = Wk are removed from the sequences 

Since in each step where correction is needed, Wj . Yj ~ 0 and the weight 

vector is up dated using the fIxed-increment rule with C = 1, we have 

W k+l = W 1= + Y1 +Y2 + ....... tyk 

Because the patterns are linearly separable, there exists a solution region W 

such that any WEW, w.y > 0 for all training patterns. Picked a W* EW (the w * here 

is chosen arbitrarily since W* is any of the winning neutrons within the solution 

region w), and 

let Min y • w* = a and ~ = Wi • W* 
yeY 

2.23 

Where a> O. Taking the inner product with w* of both sides of equation 2.20, 

we have 

2.24 

From equation 2.23 noting that all the Yi .W* terms in equation 2.22 are 

positive, we have 

Wk+l W* ~ Ka + ~ 2.25 

2.26 

2.27 

Thus, the squared magnitude of the weight vector grows at least quadratically 

with number of correction steps. Next, we obtain an upper bound for the squared 

magnitude of the weight vector growth from another line of reasoning. Since 

Wj +1 = Wj Yj for all j, we have 
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2.28 

Since Wj . yj SO (why?) 

2.29 

The preceding inequality is summed over j = 1, 2. . ... k and simplified to 

yield. 

K 

IWJ+11
2 ~L lyjl 2 +Iwl ~kA+IWiI2 2.30 

j-l 

Where A= max yeY lyl 2 

This inequality shows that the squared length of the weight vector cannot grow 

faster than linearly wit the number of correction steps 

For sufficiently large k equation (2.26) and (2.30). becomes contradictory 

Therefore, k cannot be larger than km which is the solution to the equation. 

K A +Iw 12 = (kmu + /3) 2 
m 1 Iw*1 2 

2.31 

Therefore, the number of correction step must be less than km if the patterns 

are linearly separable. The training patterns are repeated until a solution vector is 

found the proof of this theorem is due to Rosenblath 

2.6 HOW NEURAL NETWORK LEARNS (TRAINING IN THE NET) 

Training in a neural net can be viewed as mapping a set of input vectors to 

another set of desired output vectors (supervised training). To train the net to perform 

the desired mapping, we apply an input vector to the net and compare the actual 

output of the net with the desired output (the output vector corresponding to the 
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applied input). The difference between the actual output and the desired output (i.e. 

the error) is used to update weights and biases associated with every neutron in the 

net, until this difference average over every input and output pair is below a specified 

tolerance. 

A net performs the desired mapping when each neuron in the net yields a 

correct response. Training the net, hence implies training each neutron in the net. 

Now, assume that the desired output values of the neuron are known. 

The output values of the linear combiner dp, p =1, 2 ..... m (where m is the 

number of patterns in the input are known. Then, the error of a node corresponding to 

pattern Pis 

1 2 
Ep = 2"(dp - Yp) 

Where, Yp =WTXp is the actual output of the linear combiner. s 

The total mean squared error of the node is 

2.32 

2.33 

To find the optimum weight vector that minimize ET, we take the gradient of 

ET with respect to W and set it to zero, as follows: 

m 

VE= ~)dp - WTXp)Xp =0 2.34 
p=) 

Hence, we have 2.35 

Defining 

2.36 

and 

2.37 

We can write equation 2.34 in matrix form as RW = P 2.38 

The matrix R can be interpreted as the correlation matrix of the input set and 

the vector p as the cross correlation between the training patterns and the 

corresponding desired responses. 
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Equation 2.3 8 is referred to as the detenninistic normal equation in the context 

of adaptive filtering, and the optimum weight vector is the solution to (2.38) equation 

(2.38) can be solved iteratively by a number of descent methods, such as the steepest 

descent method, which yields the popular Delta - leaning rule, by conjugate gradient 

method, and several other quasi-Newton methods. 

2.6.1 BACK PROPAGATION OF ERROR 

Recall (2.33) 

Let ETP = I ETLN 2.39 

Where ETP is the total mean square error of the net association with the pth 

training pattern. L is the number of layer in the network and the index n is over the 

neurons in the output layer .. 

From 2.39 and 2.32. We know that the error 

OPL n = dpLn - Y pLn 2.40 

Associated with the pth training pattern at the nth output node can be expressed as 

o In = -BETP 2.41 
p BY 

pin 

Based on this observation, we defme the error associated with any node; 

hidden or otherwise as the derivative of ETP w.r.t the linear combiner output at the 

node: 

o = -BETP 
pin BZ 

Pin 

2.42 

The task now is to calculate d pin at every node. For the output nodes the 

desired result is given by (2.40) for the hidden layers (i.e L =1,2 .... L -1 ), we have 

that: 

o = BETP = - BETP BZTP 
pin BY

pln 
BZ

pln
' BY

pln 

2.43 

By the chain rule, the first factor m 2.43 can be expressed as a linear 

combination of the derivations of ETP w.r.t the variables associated with the node m 

the next L+ 1 layer as follows: 

BE TP = L BETP . BYp1+1r 

BZpln BYp1+1r BZ pln 

2.44 
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Where r is over the nodes in the layer L+ 1 using 2.42 in 2.44 w arrive at the 

recursion 

Opln = pI (Ypln )Zl>pI + 1.2W1+I.r.n 

Where 

az 
pl(y )=~ 

pin ay 
pin 

By definition 

2.45 

2.46 

To summarize, the output errors calculated from the 2.40 are back propagated 

to the hidden layers by recursively using 2.45. 

Once the error is available in a particular node, it can be used to update the 

weights, as will be shown in what follows 

Let the weight vector at iteration t be Win (t). The minimizing E (Ep) or taking 

the gradient with respect to the weight vector and adjusting Win (t) in the direction of 

steepest descent yields 

Win (t+l) =Wln (t) + Jl(- VEp) 

Where n is the step size. 

Since 

Ypln = W~ Xpl 

We can write. 

-oE 
V EP = TP :V Ypln 

aYpln 

2.47 

2.48 

2.49 

Substituting 2.42 in 2.49 and observing from 2. 47 that VYp In = xpl. we have 

V EP = -opInXpl 

And hence 

Win (t+l) =Win (t) + JlopInXpl 

2.50 

2.51 

Equation 2.51 is variously called the Delta rule or method of steepest descent. 

When 2.51 is used in conjunction with 2.42 and 2.45 the resulting iterative scheme, is 

referred to as the back propagation. (Rumelhart et al 1987), (parker, 1985) and Hacht­

Nielson; 1987). 

39 



2.7 THE CONJUGATE GRADIENT ALGORITHM 

The back propagation algorithm was the fIrst and until recent, the only 

algorithm to train feed forward Multi layer perceptrons. We here present the CGM 

Variant. 

Until recently, when the extended conjugation gradient Method (ECGM) was 

fonnulated, the conjugate gradient method (CGM) has been one of the most effective 

Method among the iterative method for solving linear system of equations (of the 

fonn in equation 2.38) as a minimization method. The CGM provides faster 

convergence for quadratic functional than gradient descent methods while avoiding 

computation of the inverse of the Hessian matrix. 

FORMULATION 

Since R is a positive defInite, real symmetric n x n matrix, then the quadratic 

functional 

Has a unique minimum point W* which is a solution of the system of 

equations Qx = b 

Since Vf(x} = Qx - b 2.53 

Then we can write 

Qx' -b 

The minimization iteration updating method for (2.5.2) is given as 

WK +! = WK + UK (RWK -p} 

Where 

2.54 

2.55 

The value of the step SIZE UK that minimizes f(XK+J can be defIned by 

setting 

df(x K -UKY(QX K -b) 

dU K 

Yielding 

(Qx K -bY(QxK -L) 
UK = 

(Qx K - by Q(QxK - b) 
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With the step size UK chosen as in equation (2.55), we have the following 

important result on the convergence rate of the gradient descent method. 

THEOREM 2.2 

For any Xo E RD
, the gradient descent method with UK chosen as in equation 

(2.55) converges to the unique minimum point X· of a quadratic function f. Moreover, 

the following inequality holds at every iteration K: 

2.58 

Where E(x) =~(x-x'rQ(x-x') and r is the condition number of the matrix Q, 
2 

aefmed as the ratio of the largest and the smallest eigen values of Q 

Hence we state conjugate Gradient Algorithm Being 

Set co = - 'YEo 

For each P. 

W(L+I) =W(t) +f.!p Cp 

Cp + I = - 'YEp + 1 + apcp 

2.59 

2.60 

2.61 

2.62 

If estimating R is not feasible, we may set up f.!p and a p constant: f.!p=f.! and 

a.p = a.. In this case, after substituting (2.61) in (2.62) the rule by which the weight 

vector is updated becomes 

W(t+l) = Wet) +f.! ((-'YEp) + f.!a cp-l 

But since, 

Cp-l = (I/f.!) (w(t) -W(t-l)} 

From (2.62),(2.64) is written as 

W(t-l) = wet) +f.!{- 'YEp) + aW(t) - wet -1) 
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2.7.1 THE MINIMUM OF A FUNCTIONAL 

PROPOSITION 2.1 

For a given quadratic functional of the fonn 

F (x) = Fo +~[a,x]+~[Xl Ax] if the operation A is positive defInite 
22 ' 

then a minimum X*exists and it is unique and given by X* = - A -I a 

PROOF: 

1 
F(x)=Fo+(a, x) + -(x, Ax) 

2 

Where x, a, AEH a Hilbert space. 

Since A is symmetric 

~ (x, Ay) = (AX, Y) 

2.66 

2.67 

As in the classical extreme problems of the calculus ,we consider where the 

gradient is null to fInd the extremum. 

1 1 
:. FI (x) = 0 + (a,-) + -(-,Ax) + -(x,A-) = (a + Ax,-) 2.68 

2 2 

Where the dot on RHS indicates the position of the argument of the functional. 

The gradient of the functional F is hence 

g(X)=a+ Ax 

We consider X* such that 

AX* =-a 

2.69 

2.70 

We assume for the moment that such an X* exist, and obviously for each an 

X* the gradient is null. 

We evaluate, 

F (X*) =Fo(a,X·) +~(x*,AX*)t 
2 

= Fo 112 (a, x*) 

2.71 

Using (2.70) now we consider a perturbation about x * of the fonn (x * +z) € E, 

for this element 

F(X* +Z) = Fo+ (a,x * +z)+ ~ (x * +z,A (xx *+z) 

=:Co (a,x *) + (a,z) + IhAX Ax *, ) 112 

(x * AZ) + y. (Z, AX*) + In.(Z, AZ) 2.72 
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F 0 + Yz (Z, AX *) + y, Z, AZ) 

From (2.66) and fact that (Z, AX * ) = (AZ,X*) since A is symmetric form 

(2.71) and (2.70) 

F (x * + z) = F (x *) + Yz (Z, A) 

From (2.73) we draw the following conclusion about F. 

1. If the linear operator A is positive definite i.e. (Z, AZ) ) 0 VZ 

Then x * is a minimum of F 

ii. If A is positive semi definite, I.e. (Z, AZ) ~ 0 VZ 

Then x * is a minimum from F but it is not necessarily unique. 

iii. If A is indefinite.? Then x * does not exist. 

2.73 

2.7.2 DESCRIPTION OF TIlE CONJUGATION GRADIENT DESCENT 

Recall (2.66) 

2.74 

With X and a in Hilbert space H (i.e at XEH) and A a positive definite 

symmetric linear operator. 

From 2.52 we know that a unique minimum X* exists. 

With the CGM, first element of the descent sequence Xo is unique, while the 

remaining members of the sequence are found as follows. 

P o=-go =-(a+AXo) 2.75 a 

X j+l= Xj +alj 2.75 b 

(glgl) 
2.75 c a l = 

(pjAPj) 

g j+1 =g) +ajAPj 2.75 d 

Pi+1 =-gi +I+P iPi 2.75 e 

Pi = 
(gi+I,gi+) ) 

2.75 f 
(gpgi) 

Where gi, a i and Pi denote respectively the gradient of F(x), the step length of 

the descent sequence, Xi and the descent direction at the i th step. 

It is obvious from (2.75c) that the sequence converges, that is a i = 0, if the 

gradient gi is null. 
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We give an expression for the descent direction at the I th step Pi in terms of the 

gradients 

Recall 

Thus. 

=- g2 + (g2g2) [- go - (glgl) go ] 
(glgl) (gogo) 

(g2g2) (g2g2) 
=-g + g - g 

2 (gig)) I (gogo) 0 

P (g3g3) (g3g3) 
3 =-g3 - (g2g2)g2 - (glgl) gl-

(g3g3 ) 

( ) 
go. 

gogo 

From which we can see the recursion relationship 

K gl 
PK=-(gKgK)I ( ) 

i=o glgl 
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CHAPTER THREE 

METHODOLOGY 

3.1 INTRODUCTION TO PID CONTROLLER 

A proportional- integral-derivative controller (PID controller) is a common 

feed back loop component in industrial control systems. The controller compares a 

measured value from a process with a reference set point value. The difference (or 

"error" signal) is then processed to calculate a new value for a manipulated process 

input that brings the process measured value back to its desired set point. Unlike 

simpler control algorithms, the PID controller can adjust process outputs based on the 

history and rate of change of the error signal which gives move accurate and stable 

control. 

(It can be shown mathematically that PID loop will produce accurate, stable 

control in cases where a simple proportional control would either have a steady state 

error or would cause the process to oscillate). Unlike more complicated control 

algorithms based on optimal control theory PID controllers do not require advance 

mathematics to design and can be easily adjusted (or ''tuned'') to the desired 

application. 

3.2 PROPERTIES OF A PID CONTROLLER 

The PID loop adds positive correction, removing error from the process' s 

controllable variable (its input). Differing terms are used in the process' s control 

industry. The "process variable" is also called the "process's input" or "controller' s 

output". The process' s output is also called the "measurement" or "controller's input". 

This up a bit, down a bit movement of the process's input variable is how the PID 

loop automatically finds the correct level of input for the process. Removing the error 

"turns the control knob" adjusting the process' s input to keep the process's measured 

output at the set point. The error is found by subtracting the measured quantity from 

the set point. 

"PID" is named after its three correcting calculations, which all add to and 

adjust the controlled quantity. These additions are actually "subtractions" of error, 

because the proportions are usually negative. 
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3.2.1 PROPORTIONAL 

To handle the present, the error is multiplied by a (negative) constant p (for 

"proportional") and added to (subtracting error from) the controlled quantity. P is only 

valid in the band over which a controller's output is proportional to the error of the 

system. 

For example, for a heater, a controller with a proportional band of lOOc and a 

set point of 20°c would have an output of 100% at 10°c, 50% at 15°c and 10% at 

19°c. Note that when the error is zero, a proportional controller's output is zero. 

3.2.2 INTEGRAL 

To handle the past, the error is integrated (added up) over a period of time, and 

then multiplied by a (negative) constant I (making an average) and added to 

(subtracting error from) the controlled quantity. Integral (I) average the measures 

error to find the process output's average error from the set point. A simple 

proportional system oscillates moving back and forth around the set point because 

there is nothing to remove the error when it over shoots? By adding a negative 

proportion of (i.e subtracting part of) the average error from the process input the 

average difference between the process output and the set point is always being 

reduced. Eventually, a well-tuned PID loop's process output will settle down at the set 

point. 

3.2.3 DERIVATIVE 

To handle the future the first derivative (the stop of the error) over time is 

calculated, and multiplied by another (negative) constant D, and also added to 

(subtracting error from) the controlled quantity. The derivative terms controls the 

response to a change in the system. 

The larger the derivative term, the more rapidly controller responds to changes 

in the process's output. Its D term is the reason a PID loop is also called a "Predictive 

controller". The D term is a good thing to reduce when trying to dampen a controller's 

response to short term changes. Practical controller's for slow process can even do 

without D. Move technically, a PID loop can be characterized as a filer applied to a 

complex frequency-domain system. This is useful in order to calculate whether it will 
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actually reach a stable valve. If the values are chosen incorrectly the controlled 

process input can oscillate and the process output may never stay at the set point. 

PID controller is called PI, PD, or P controller in absence of respective control 

actions. It may be noted that EWMA (Exponential Weighted Moving Average) 

controller is equivalent to PI . The generic transfer functions for a PID controller of the 

interacting form is given by the transfer function; 

H(S)=pDS2 +S+I 
s+c ' 

3.1 

with C being a constant which depends on the band width of the controlled system. 

Traditionally we can write. 

Output = P contribution +1 contribution + D contribution - 3.2 

Where P contribution. I contribution and D contribution are the feedback 

contributions from the PID controller, defined below 

P contribution = Kp e(t) 

I contribution = KI I ~ e(t) dt 

D contribution =Kt de(t) 

dt 

Where Kp, K" Kt are constant that are used to tune the PID control loop. 

REF CONTROLLER PLANT 

FIG.3.1 FEEDBACK ONLY THE OUTPUT SIGNAL. 

3.3a 

3.3b 

3.3c 

OUTPUT 

3.2.4 Kp: PORPORTIONAL GAIN - Larger Kp typically means faster response 

since the larger the error the larger the feedback to compensate. KI : 

INTEGRAL GAIN - Larger K, implies steady state errors are eliminated 

quicker. The trade-off is larger overshoot ANY negative error integrated 

during transient response must be integrated a way by positive error before we 

reach steady state. 
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3.2.5 ~: DERIVATIVE GAIN - Larger ~ reduces overshoot, but slows down 

transient response. Normally it is implemented with Kp the I contrib. and D 

contrib. terms as well in the following form. 

d (I) 
Output = K (e(t)+K1 jl e(t)dt + ~_e_ 

P.l-", dt 3.4 

Most standard turning method, such as Ziegler. Nichols and others, are based 

on this form, as it reduces interaction. In this form, the Ki and ~ gains relate only to 

the dynamics of the process, and the Kp «proportional gain) relates to the gain of the 

process. Often, one deals with discrete time interval. instead of the continuity. 

The PID controller may also be dealt with recursively. 

OUtputn+1 = OUTPUTn+ Kpen + ~(eD~D-l) 3.5 

Here, the first term is integral the second proportional and the third derivative. 

Note that in this form, Ki must be identically I, otherwise the controller will not even 

come close to converging to the set point. This isn't quite the same integral as in the 

continuous form, but its analogous. In piratical, most PID controller employs 3 

slightly different constant which correspond to these proportional, integral, and 

derivative gain 

3.3 PROPORTIONAL BAND: - (Often abbreviated Pb) This is the band where 

proportional gain acts upon. To get larger Kp we decrease Pb as follows: 

I 
K=­

P Pb 
3.6 

3.3.1 INTEGRAL TIME; - (Often abbreviated It) This is the time we finding the 

average error over. Because it is time, we conclude the following with a dimensional 

analysis 

Ki=~ 
It 

3.7 

3.3.2 DERIVATIVE TIME: - Often abbreviated Dt this is the time we evaluate the 

derivative of the error over. Because Dt is time, we conclude the following with 

dimensional analysis. 

3.8 
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This example will show that the characteristics of each of the proportional (P), 

integral (I), and the derivative (D) controls, and how to use them to obtain a desired 

response. In this example, we will consider the following unity feed back system. 

R e CONTROLLER u PLANT 

+ -

FIG 3.2: A SYSTEM TO BE CONTROLLED 

Controller: provides the excitation for the plant, designed to control the over all 

system behavior. First, let us take a look at how the PID controller works in a closed­

loop system using the show above. The variable (e) represents the tracking error the 

difference between the desired input value (R) and the actual output (Y). This error 

signal (e) will be sent to the PID controller, and the controller computes both the 

derivative and the integral of the error signal. The signal (U) just past the controller is 

now equal to the proportional gain (Kp) times the magnitude of the error plus the 

integral gain (K1) times the integral of the error plus the derivative gain <K<t) times the 

derivative of the error. That is U = Kplepl+Kileil+Ktledll 

where 

The transfer function of the PID controller looks like the following. 

KI KoS+KpS+K, 
Kp +S+Kos = S 

Kp = proportional gain 

KI = integral gain 

Kt = derivative gain 

and 

PI. = Kpe + KI Jedt 

de 
PU=Kpe+Kt -

dt 
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de 
PID = Kpe + KI Jedt+Kp­

dt 

From that controller the signal (u) will be sent to the plant, and the new output 

(y) will be obtained. This new output (y) will be sent back to the sensor again to find 

the new error signal (e). The controller takes this new error signal and computes its 

derivative and its integral again. This process goes on and on. 

3.3.3 CHARACTERISTICS OF P, I, AND D CONTROLLERS 

A proportional controller (Kp) will have the effect of reducing the rise time 

and will reduce, but never eliminate, the steady-state error. An integral control (KI) 

will have effect of eliminating the steady-state error, but it may make the transient 

response worse. A derivative control Q<.d) will have the effect of increasing the 

stability of the system, reducing the overshoot and improving the transient response. 

Effects of each of the controllers Kp, ~ and KI on a closed-loop system are 

summarized in the table below. 

CLRESPONSE RISE TIME OVERSHOOT SETTING TIME S-S-ERROR 

Kp Decrease Increase Small change Decrease 

KI Decrease Increase Increase Eliminate 

Kd Small change Decrease Decrease Small change 

FIG 3.3 CHARACTERISTIC OF PID 

Note: that these correlation may not be exactly accurate, because Kp, KI and ~ are 

dependent of each other. In fact changing one of these variables can change the effect 

of the other two for this reason, the table should only be used as a reference when you 

are determining the value for Ky, Kp, and ~. 

Suppose we have a simple mass, spring and damper problem. 

50 



bX 

K 

FIG. 3.4 SIMPLE MASS, SPRING AND DAMPERS 

THE MODELLING EQUATION OF TIllS SYSTEM is 

Mx + bx + kx = F ------­

x(m+b+k)= F 

x(T)=F 

F 
x=-

T 

----+F 

Taking the Laplace transform ofthe modeling equation (3.13), we obtain; 

3.13 

MS2X(S) + bSX(S) + kX(S) = F(S) 3.14 

The transfer function between the displacement X(S) and the input F(S) then becomes 

X(S) = __ 1 __ 
F(S) MS2 +bS+K 

3.4 A STEP RESPONSE OF PID CONTROLLER 

3.15 

Lets first view the open-loop step response with a new m-file and add in the 

following code 

nurn = 1 

Den = [1,10,20] 

STEP (Nurn, Den) 

Running this m-file in the matLab command window will give us the plot 

shown below 
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FIG. 3.5 

1.4 

1.2 

i 
0.8 1 

0.6 

0.2 

a 
a 

Step Response 

0.2 0.4 0.6 0.8 12 1A 1B 1B 

Time (sec) 

OPEN LOOP STEP 

2 

The DC gain of the plant transfer function is 1120 so 0.05 is the final value of 

the output to an unit step input. This corresponds to the steady-state error of 095, quite 

larger indeed. Furthennore, the rise time is about one second and the setting time is 

about 1.5sec. Let's design a controller that will reduce the setting time and eliminate 

the steady-state error. 

EXAMPLE 3.1 

PROPORTIONAL CONTROL 

From the table shown above, we see that the proportional controller (Kp) 

reduces the rise time, increases the overshoot and reduces the steady-state error. The 

closed-loop transfer function of the above system with a proportional controller is 

1 
G (s) - --=---

p - S2 +S+1 

U(s) = Kp E(s) 

K 
OLTF= P 

S2 +S+1 

3.16 

3.17 

3.18 

3.19 
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So from the table above we have 

3.20 

So, let the proportional gain (Kp) equals 300 and change the m-file to the following. 

Kp= 300 

Nurn= [Kp] 

Den = [1,10,20,+Kp ] 

t = [0,0:01:2 ] 

step (nurn, den t) 

By running this m-file in the matLab command window will give us the 

following plot. 

Q) 
"C ,g 

t 

FIG. 3.6 
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CLOSED-LOOP STEP: Kp = 300 

Note: The matLab function called loop can be used to obtaining a closed-loop transfer 

function directly from the open-loop transfer function (instead of obtaining closed­

loop transfer function by hand). The following m-file uses the loop command that 

should give us the identical plot as the one shown above. 

Nurn:= 1 

Den = [1, 10,20] 
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Kp=300 

[num cl, den cl] = cloop [Kp * num, den] 

t = [0, 0.01, 2] 

STEP (num cl, den cl, t) 

The above plot shows that the proportional controller reduces both the rise 

time and the steady-state error, increases the overshoot, and reduces the setting 

time by a small amount. 

EXAMPLE 3.2 

PROPORTIONAL - DERIVATIVE CONTROL 

U(s) = (Kp + KDs) E(s) 3.21 

OLTF= 3.22 

CLTF = 
S2 +(l+Kd)S+(l+Kp ) 

3.23 

Now let's take a look at a PD control from the table shown below. We see that the 

derivative controller (Kd) reduces both the overshoot and the setting time. The close 

of loop transfer function of the given system with a PD controller is 

3.24 

Let Kp be equal to 300 as before and let ~, be 10; enter the following command into 

an m-file and run it in the matLab command window. 

Kp = 300 

~=10 

num=~,Kp] 

den = [1, IO+~, 20+Kp] 

t=0;0.OI;2 
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CLOSED - LOOP STEP Kp = 300, ~ = 10 

This plot shows that the derivative controller reduced both the overshoot and 

the settling time, and had small effect on the rise time and the steady state error. 

EXAMPLE 3.3 

PROPORTIONAL - INTEGRAL CONTROL 

U(S) =(K +!.L) 
E(S) P S 

3.25 

Y (S) = (K + !.L)G (S) 
E(S) P S P 

3.26 

= (KPSS+K1 )Gp(S) 3.27 

CLTF= K~+KI 
S3 +S2 +(1+Kp)S+KI 

3.28 

Before going into PID control, let's take a look at a PI control from the table, 

we see that an integral controller (K1) decreases the rise time, increases both the 

overshoot and the settling time and eliminates the steady-state error for the given 

system, the closed-loop transfer function with PI control is 
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3.29 

Let' s reduce the Kp to 30, and let KJ equal to 70 create an new m-file and enter 

the following commands. 

Kp=300 

KI = 370 

num=[Kp.Kd 

den [1 , 10, 20+Kp, Kd 

t. 0.0, 01 , 2. 

Step (num, den, t) 

We run this m-file in the matLab command window and obtain the following plot. 
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FIG. 3.8 
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~ 
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1.4 1.6 1.8 2 

CLOSED-LOOP STEP: Kp = 30 Kl = 70 

We have reduced the proportional gain (Kp) because the integral controller 

also reduces the rise time and increase the overshoot as the proportional controller 

does (double effect). The above response shows that the integral controller eJirnjnated 

the steady-state error. 
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EXAMPLE 3.4 

PROPORTIONAL - INTEGRAL DERIVATIVE CONTROL 

U(S) = (Kp + !r.+ Kds) E(S) 
S 

3.30 

3.31 

3.32 

82 8 
CLTF= Kd +Kp +K/ 

S3 +(10+Kd)S2 +(20+Kp)S+K/ 
3.33 

Now let's take a look at a PID controller the closed-loop transfer function of the given 

system with a PID controller is 

3.34 

After several trial and error runs, the gain Kp = 350, KI = 300, and Kd = 50 

provided the desired response. To confIrm, enter the following command window will 

get the following step response. 

Kp= 350 

KI = 300 

K<t = 50 

num [K<t, Kp, Kd 

den [1, 10+K<t, 20+Kp, Kd 

t = 0:0, 01:2 

Step (num, den, t) 
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FIG. 3.9 CLOSED - LOOP STEP: Kp = 350K) = 5500 

Now, we have obtained the system with no overshoot t, fast rise time, and no 

steady-state error. 

3.5 THE DYNAMIC OF THE STIRRED TANK MIXER 

The problem under consideration is a non - linear stochastic problem which to 

be precise is stirring tank mixer (CSTM). This has practical application in many 

chemical, pharmaceutical and petroleum industries as well as in environmental 

engineering and waste management. 

The problem from (Hasdorff, 1976), is illustrated in fig. 3.9 below. There are 

two input flows (with flow rates FI and F2, concentrations C1 and C2 respectively) 

going in at the top of the mixer. The two inputs ~e mixed in the tank to produce 

output with flow rate F3 and concentration C3 out at the bottom. 
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Fl CONTROL STIRRED (pROPELLER) 

F2 CONTROL 

CONCC2 INPUT FLOW F2 

VOLUME V 

FEEDBACK 

SENSOR 

OUTPUT FLOW F3 

FIG. 3.10: A CONTINUOUS STIRRED TANK MIXER 

We see that volume V in the tank changes as the difference between flow in 

and flow out with a few obvious manipulations. 

dC3 (C l -C3 )FI +(C2 -C3 )Fl 
=~~-=~~~--~~ 

dt V 

dV 
-=Fl +Fl - F3 
dt 

which is the x = F(x) from desired here. 

3.35 

3.36 

3.5.1 CHOOSING THE CONTROL VARIABLE AND DESIGN OF THE 

CONTROLLER 

From the tank Fig 3.9 it can be seen that the input flow rate FI and F2 are the 

controlled variables. Since they can be measured directly and conveniently, moreso 

that measurement of output concentration C3 and flow rate F3 is a related to volume V 

as in (equation 3.4) the controller is thus to measure C3 and F3 and produce control 

variables FJ and F2. 

The simplest type of controller that can be though of to do this is a linear 

controller that measure perturbations of the control variable. Such a controller is 

shown in the figure below and the control law is given by. 
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+ 

FIG. 3.11 A FEEDBACK CONTROLLER FOR THE CONTINUOUS 

STIRRED TANK MIXER7 

3.37a 

F2 = K21 C3 + K22F3 - K21C30 - K22F30+F20 3.37b 

Realistically, the input flow rates can only fall within finite ranges. Here we 

use the following bounds. 

o ~ F 1 ~ F 1 max = 2F 10 

o ~ F2 ~ F2 max = 2F20 

From the designed controller, the problem is reduced to that of determining 

the four parameters Kl]' K12, K21 and K22. Now, we choose a cost criterion on the 

operation of the system and then minimize this cost criterion as 

3.38 

This is simply an integrated square error criterion on the error nominal output 

concentration C3 and volume V. 

Hence, we can now write a proper formulation for the cost criterion and the 

system dynamics as (there in equation (3.35), (3.38) with two new variables) 
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XI = (C I -XI)FI +(C2 -XJF2 

X 2 

X2 = - F30~X2 +FI -F2 

X3 = (XI - C30)2 

~=(X2- voi 

Where the state variable assignments are 

X I =C3 } 

X2 =V 

3.39 

3.40 

have been made X3 and ~ can be seen to give sum square error in concentration C3 

and volume V. The objective turning 3.38 is then expressed as 

J = X3 (tt) + R . ~ (tt) 

If X3(to) = ~ (SSto) = 0 is of the desired form 

J = 0 (x(tt)). 

Then the control law using the state variable assignment of 3.40 and control law from 

3.36 is 

FI = KIIXI + KI2 (F30~X2 ) - K II C30 - KJ2F30+F IO 

F2 = K21 XI + K22 (F30~X2 ) - K21 C30 - K22F30+F20 

With saturation limits as 

0~FI~2FIO 

o ~ F2 ~ 2 F20 

3.41a 

3.41b 

with the dynamics equation 3.39 and the control law 3.43a and with cost criterion as 

in 3.41 the problem is in the proper formulation. 

3.5.2 SOLUTION BY GRADIENT METHOD 

Our cost criterion equation 3.38 is a continuous, quadratic, constrained 

optimization problem subject to a dynamical set of constraints. The problem could be 

properly put as 

Minimise J = 0(X(tf)) 3.42 

Subject to the dynamical equations: 

. 
XI = (CI - XI)F1 + (C2 - X I)F2 
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. 
X2 = - F30~X2 +FI -F2 

• - 2 
X3 = (XI - C 3e) 

X4 =(X2- Vei 

where X3 and X4 are two new state variables and C30 and V 0 are here replaced with 

C3e and Ve in other to solve this problem, we first convert the constrained problem 

into an unconstrained one by introducing penalty constraints and then writing we have 

3.43 

Subject to 

XI = (CI - XI)[KIIXI+KJ2(0.02~) - KIIC30 - KJ2F30 + FlO] 

+ (C2 - XI)[K2IXI + K22 (0.02 ~) - K21C30 - K22F30 + F20]/X2 3.44 

X2 = - 0.02 ~ [KlIXI+KJ2(0.02~) - KIIC30 - KJ2F30 + FlO] 

+ [K2IXI + K22 (0.02 ~ ) - K21C30 - K22F30 + F20] 

X3 = (Xl - c30i 

X4 = (X2- Voi 

3.45 

3.46 

3.47 

We introduced four penalties constant A), A2, A3 and A4 and then write the 

Hamiltonian form as 

H = (Xl - 1.25i + R(X2 - Ii + AI[(CI - xI)(Kllxl + KJ2(0.02~) - KIlC30 - KJ2F30 

+ FlO] + (C2 - XI)[KJ2XI + K22 (0.02~) - K2lC30 - K22F30 + F20]/X2 + A2[-

0.02~ +[KlIXI + KJ2 (0.02~) - KlI C30 - KJ2F30 + FlO] + [KJ2x\ + K22(0.02~ 

- K2\C30 - K22F30+F20]+A3[(X\-C30i]+A4[(X2-Voi] 3.48 

The necessary condition for optimality of H is 

8H • 
-=-A =0 ax I 

I 

3.49 

3.50 
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BH = 2(Xl-1.25)+A.l {CIKll-2kllXl-KdO.02 Ft )+KII C30+K12F30-F 1O+[C2K12-
&1 

3.51 

3.52 

2K12XI-K22(0.02..j-;z; )+K21C30+K22F30-F20]}1X2+A.2(K11+K21)+A.3[2(X1-C30)] 3.53 

K22(0.02..j-;z; )+K12C30+K22F30-F] }1X2+A.2(K11+K21)+A.3[2(X1-C3o)]. 

BH =0 
BX 3 

BH =0 
BX4 

3.54 

3.55 

3.56 

In solving the above set of equations, it is necessary for us to obtain 

quantifiable numerical throughput values for the respective concentrations and flow 

rates by chemical laboratory experiment. These would enable us obtain the states and 

co-states of the above stated simultaneous set of equations. These are solvable using 

first order partial differential equations principle. With the analytical solutions so 

obtained, we can do simulations to have visual concepts of the nature of the respective 

states and co-state functions. 
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CHAPTER FOUR 

THE APPLICATION OF NEURAL NETWORK PREDICTIVE 

CONTROLLER ON THE STIRRED TANK REACTOR 

4.1 SYSTEM IDENTIFICATION 

The fIrst stage of model predictive control is to make a neural network to 

represent the forward dynamics of the plant. The prediction error between the plant 

output and the neural network output is used as the neural network training signal. 

The process is represented by the following fIgure 4.1 

u YP 
PT .ANT 

NEURAL 
NETWORK - + 

MODEL 

t Ym error 

· · · · · · 
LEARNING 
ALGORITHM 

FIGURE 4.1: NEURAL NETWORK PLANT MODEL 

The neural network plant model uses previous inputs and previous plant outputs to 

predict future values of the plant output. The structure of the neural network plant 

model is given in the following fIgure 4.2 
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bi 

~ b2 1 
1 

FIGURE 4.2: NEURAL NETWORK 

This network can be trained offline in batch mode, using data collected from 

the operation of the plant. Any of the training algorithms discussed in Back 

propagation, can be used for network training. This process is discussed in more detail 

later in this chapter. 

4.2 PREDICTIVE CONTROL 

The model predictive control method is based on the preceding horizon 

technique. The neural network model predicts the plant response over a specified time 

horizon. The predictions are used by a numerical optimization program to determine 

the control signal that minimizes the following performance criterion over the 

specified horizon 

N2 N. 

Minimize J = ~)Yr(t+ j)- Ym(t+ j))2 + PL(u'(t+ j -1)-u'(t+ j -2) 4.1 
NI j=1 

where N2 , Nt and Nu define the horizons over which the tracking error and the 

control increments are evaluated. The u' variable is the tentative control signal, Yr is 

the desired response and Ym is the network model response. The P value determines 

the contribution that the sum of the squares of the control increments has on the 

performance index. 
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The following block diagram illustrates the model predictive control process. The 

controller consists of the neural network plant model and the optimization block. The 

optimization block determines the values of u' that minimize J , and then the optimal 

u is input to the plant. The controller block has been implemented in Simulink, as 

described in the following section. 

Yr 

CONTROLLER 

.................................. . ••••••......•........... · Ym · · · · · · · · • · · 11 · · Neural · ...•.••••••...............• ~ · Optimization ..... -
Network 
Model .....-. 

u 
PLant 

FIGURE 4.3: NEURAL NETWORK PREDICTIVE SYSTEM 
CONTROLLER BLOCK 

4.3 USING THE NN PREDICTIVE CONTROLLER BLOCK 

Yp 

This section demonstrates how the NN Predictive Controller block is used. 

The first step is to copy the NN Predictive Controller block from the Neural Network 

Toolbox blockset to your model window. This demo uses a catalytic Continuous 

Stirred Tank Reactor (CSTR). A diagram of the process is shown in the following 

figure4.4. 
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Wo 

FIG 4.4: A STIRRING TANK REACTOR 

The dynamic model of the system is: 

dh(t) = WI (t) + w
2 
(t) - 0.2.j h(t) 4.2 

dt 

dCb(t) = (Cbl(t)-Cb2(t)WI(t) + (Cb2 _Cb(t)) W2(t) _ kPb(t) 4.3 
dt h(t) h(t) (1 + k2Cb (t))2 

where h(t) is the liquid level, Cb (t) is the product concentration at the output of the 

process, wl(t) is the flow rate of the concentrated feed Cbl ,and w2(t) is the flow 

rate of the diluted feed Cb2 . The input concentrations are set to Cbl = 24.9 and 

Cb2 = 0.1 . The constants associated with the rate of consumption are kJ = 1 and 

The objective of the controller is to maintain the product concentration by 

adjusting the flow w2(t) . To simplify the demonstration, we set WI (t) = 0.1 . The 

level of the tank: h(t) is not controlled for this experiment. To run this demo, follow 

these steps 

Example 4.1 (Running the Predictive Controller) 

To run this demo, follow these steps. 

(1) Start MA TLAB. 

(2) Run the demo model by typing predcstr in the MA TLAB® command 

window. This command starts Simulink and creates the following model 

67 



window. The NN Predictive Controller block has already been placed in 

the model. 

NN Predictive Controller 

Random Reference 

Flow Rate 

Neural Nelwolk Predictive Control of a Continous Stirred Tank Reactor 
(Double clid< on the"?' for more info) 

To start and stop the simulation, use the "Start/Stop" 
selection in the "Simulation" pull·down menu 

Clod< 

Concentl3lion 

Plant 
(Continuous Stirred Tank Reactor) 

Double clid< 
here for 

Simulink Help 

The continuous stirred reactor tank has the following embedded dynamic transfer 

diagram 

FIGURE 4.5: PREDICTIVE CONTROLLER BLOCK 

X{2Y) 
Graph 

3 Double-click the NN Predictive Controller block. This brings up the following 

window for designing the model predictive controller. This window enables us 

to change the controller horizons N2 and Nu • (N] is fIxed at 1.) The 

weighting parameter p , described earlier, is also defmed in this window. The 

parameter a is used to control the optimization. It determines how much 

reduction in performance is required for a successful optimization step. One 

can select which linear minimization routine is used by the optimization 

algorithm, and decide how many iterations of the optimization algorithm are 

performed at each sample time. The linear minimization routines are slight 

modifications of those discussed in Backpropagation 
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. 
• ) Neural Network Predictive Control ~~~ 
File Window Help 

Neural Network Predictive Control 

Cost Horizon (N2) I 8 I Control Weighting Factor (p) I 0.5 

Control Horizon (Nu) I 3 I Search Parameter (cr) I 0.01 

Minimization Routine I csrchbac .:J tterations Per Sample Time I 3 

( Plant Identification ) ! OK ) ! Cancel ) ( Apply 

Perform plant identification before controller configuration. 

FIGURE 4.6: NEURAL NETWORK PREDICTIVE CONTROL 

4 Select Plant Identification. This opens the following window. The neural 

network plant model must be developed before the controller is used. The 

plant model predicts future plant outputs. The optimization algorithm uses 

these predictions to determine the control inputs that optimize future 

performance. The plant model neural network has one hidden layer, as shown 

earlier. The size of that layer, the number of delayed inputs and delayed 

outputs, and the training function are selected in this window. One can select 

any of the training functions described in Backpropagation, to train the neural 

network plant model. 
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.. I~ l~----·~ 

File Window Help 

Plant Identification 
Network Architecture 

Size of Hielden Layer No. Delayed Plant Inputs 

SampHng Interval (sec) No. Delayed Plant Outputs 

o Normalize Training Data 

Training Data 

Training Samples r--:-:--:-:--, 
~ Limit Output Data 

Maximum Plant Input Maximum Plant Output 

Minimum Plant Input Minimum Plant Output 

Maximum Interval Value (sec) SimuHnk Plant Model: Browse 

Minimum Interval Value (sec) cstr 

( Generate Training Data I I Import Data I I Export Data 

Training Parameters 

Training Epochs Training Function trainlm 
...... _---

~ Use Current Weights ~ Use Validation Data 0 Use Testing Data 

t P Cancel I 

FIGURE 4.7: PLANT IDENTIFICATION 

5 Select the Generate Training Data button. The program generates training data 

by applying a series of random step inputs to the Simulink plant model. The 

potential training data is then displayed in a figure similar to the following. 
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, .) Plant Input -Output Data 

File Edit View Insert Tools Desktop Window Help 

Plant Input 
4.----------,~,,--~--~------~--_n--, 

3 

2 

0 
0 500 1000 1500 

time (s) 
Plant Output 

24 

23 
? 

22 

21 

? 20 

19 ;) 

0 500 1000 1500 
time (s) 

FIGURE 4.8: PLANT INPUT AND OUTPUT DATA 

6 Select Accept Data, and then select Train Network from the Plant 

Identification window. Plant model training begins. The training proceeds 

according to the selected training algorithm (trainIm in this case). This is a 

straightforward application of batch training, as described in Backpropagation. 

After the training is complete, the response of the resulting plant model is 

displayed, as in the following figure. (There are also separate plots for 

validation and testing data, if they exist.) One can then continue training with 

the same data set by selecting Train Network again, erase Generated Data and 

generate a new data set, or accept the current plant model and begin simulating 

the closed loop system. For this demonstration, begin the simulation, as shown 

in the following steps. 
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" fraining with rRAINLM ~lQJL8J 
File Edit View Insert Tools Desktop Window Help 

Performance is 3. 39939 e-007 • Goal is 0 
10-~r--------.-------'--------'-------~--------'-------~------~ 

<= 
Q) 

~ 10'11 (!) 
C:: 
C> 

.~ 

:E 
<U 
> 
Q) 

=> 
(D 

b> 10'7 <= 
'c 
.~ 

I-

10-8L-______ -L ______ ~L_ ______ ~ ______ ~ ________ ~ ______ _L ______ ~ 

0234567 
stop Training 7 Epochs 

FIGURE 4.9: TRAINNING WITH T AINLM 

'.1 Training data for NN Predictive Control ~(gJC8J 
File Edit View Insert Tools Desktop Window Help 

Input Plant Output 
4.-----.,,-.,.-r----. 23 ,,----------,----, 

3 
22 
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21 

500 1000 

Error NN Output 
0 .02,-----------, 23,,-------,----, 

0 .01 
22 

21 
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2o~--~~~-~~ 
o 500 1000 

-0.02 ~--~---~--' 
o 500 1000 

time (s) time (s) 

A:. _ ,:J _ A _==~ 

FIGURE 4.10: TRAINNING DATA FOR NN PREDICTIVE CONTROL 
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7 Select OK in the Plant Identification window. This loads the trained neural 

network plant model into the NN Predictive Controller block. 

8 Select OK in the Neural Network Predictive Control window. This loads the 

controller parameters into the NN Predictive Controller block. 

9 Return to the Simulink model and start the simulation by choosing the Start 

command from the Simulation menu. As the simulation runs, the plant output 

and the reference signal are displayed, as in the following figure. 

IN Insert Tools Desktop Window Help 

It ~ ®..e..O~ ~ 0 lE iii (gJ 

x Y Plot 
24~-------r--------~-------'---------r--------~------~ 

~3.5 

23 

~2 . 5 

FIGURE 4.10: THE PLANT OUTPUT AND REFERENCE SIGNAL 
DISPLAYED 

Example 4.2 (NN Predictive Controller) 

In a sequential procedure as in example 4.1, we carry on the process of 

simulating for the Plant output and reference signal in this order. This second example 

is obtained by changing the inputs data as shown in the figures below: 
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.) Neural Network Predictive Control ~~~ 
File Window Help 

Neural Network Predictive Control 

Cost Horizon (N2) 8 Control Weighting Factor (p) 0.005 

Control Horizon (Nu) 4 I Search Parameter ( a) 0 .0001 

Minimization Routine I csrchbac -=-1 Iterations Per Sample Time 4 

Plant Identification OK Cancel Apply 

Perform plant identification before controller configuration. 

FIGURE 4.11: NEURAL NETWORK PREDICTIVE CONTROL 

----------------------------------
-.1 Training with lRAlNLM ~LQ)L8J 
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FIGURE 4.12: 
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TRAINING THE IDENTIFICATION CONTROLLER 
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--- -~.~.---------------------

-) Training data for NN Predictive Control ~@cgJ 
File Edit View Insert Tools Desktop Window Help ~ 

Input Plant Output 
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FIGURE 4.13: TRAINING DATA INPUTS AND OUTPUT PLANT, ERROR 
AND NN OUTPUT SIGNALS 
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FIGURE4.14: THE PLANT OUTPUT AND REFERENCE SIGNAL 
DISPLAYED 

75 



APPENDIX A 

The programmes generated by the neural network system for the outputs 

» predcstr 
TRAINLM, Epoch 0/200, MSE 1.25774e-006/0, Gradient 82.5739/1e-OlO 
TRAINLM, Epoch 11200, MSE 2.98939e-007l0, Gradient 3.53103/1e-OlO 
TRAINLM, Epoch 2/200, MSE 2.94471e-007l0, Gradient 30.1914/1e-OlO 
TRAINLM, Epoch 3/200, MSE 2.90718e-007l0, Gradient 0.0710876/1e-OlO 
TRAINLM, Epoch 4/200, MSE 2.90207e-007l0, Gradient 0.010794711e-Ol0 
TRAINLM, Epoch 51200, MSE 2.89765e-007l0, Gradient 0.0361354/1e-OlO 
TRAINLM, Epoch 6/200, MSE 2.89236e-007l0, Gradient 0.069115111e-Ol0 
TRAINLM, Epoch 71200, MSE 2.88734e-007l0, Gradient 3.91579/1e-Ol0 
TRAINLM, Validation stop. 

??? Invalid handle object. 

Error in => nncontrol\private\nnident at 1583 
f2=get(fig2, 'userdata '); 

Error in > nncontrolutil at 20 
feval( command, varargin {: }); 

??? Error while evaluating uicontrol Callback. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

5.1 SUMMARY AND CONCLUSION 

We have successfully modeled the mechanism governing the functionality of 

the brain. To achieve this goal, biological neurons were described in sufficient detail 

to permit meaningful modeling. The brain has been viewed as a network of billons of 

simple computing devices, each operating on its own set of inputs and transmitting its 

output to specific sets of other computing devices in the network. 

The highly complex interconnections of neurons produce the computation 

power of the brain. Artificial neural network mimicking the computation richness of 

the brain implanting our hybrid. Proportional Integral Derivative Algorithm was 

successfully used to provide solution (maintaining) the volume of the mixture in the 

tank, checking unnecessarily high inlet flow rate and ensuing the stability of the 

system for the continuous stirred tank reactor (CSTR) problem, which is nonlinear 

and dynamic in nature. The results of this work strengthen the fact that neural 

networks can be used for fault detection and diagnosis purposes. This work also 

shows that this Proportional Integral Derivative (Pill) controller provides an 

alternative attractive method for solving the Continuous Stirred Tank Reactor 

(CSTR) problems. 

In this research, we were able to 

(I) come up with a proportional integral derivative controller which 

simulates and provides an alternative solution to the continuous 

stirred tank reactor problem. 

(II) provide a model system that can be easily extended to solve multiple 

fault detection in system with non linear dynamics like the continuous 

stirred tank reactor. 

(III) design a very stable transfer functions (controller) that was used to 

determine the behaviors of the control variables in the problem. 

(IV) established that the Continuous Stirred Tank Reactor problem is a type 

of optimal control problem and hence a cost function was formulated 

for the system in terms of the parameters of interest (i.e concentration 
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5.2 

C and volume V). We can therefore say that artificial neural networks 

can be successfully used to solve problems, process control and fault 

detection and diagnosis problems. The controller under consideration 

follows a second order reaction as a result; this controller system may 

be able to handle problems of higher order. 

RECO~NDATIONS 

INVESTIGATION 

FOR FURTHER RESEARCH 

Since neural network model offers very promising approach to building truly 

Intelligent Systems which can provide good optimal solutions for the control 

problems, we hereby make the following recommendations. 

(I) Research candidates should be made to explore the full potential of this 

new computing technique to solve other industrial problems. 

(II) Further research should be directed towards Continuous Stirred Tanks 

Reactor problem whose reaction is of higher order. 
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