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P  ABSTRACT |

The goal, the target, ‘the objectiv.e, and indeed, the very essence of any
Nﬁmerical r'ﬁethod, is to repliéate the Exact solution, o; at the least produce
Asolutions that are very close to the exact solution. Hence, the closér subh 'a
solution is to the exact solution, the better‘ the method. In the light of this, we
deQelop- in this work, a new six-stage Runge-Kutta method, of order five, for
the SOIQtion of Initial VaillueﬂProblems. The strength of the new‘scheme is
that it givés _sQlutions that are: very close to the exact solutions, even closer
_ | the_zp‘some popular éxisting méthods which are known to be highly efficient.
Solhe'lnitial Value Problems were solved using the new séheme and the

 results help to establish its very high degree of accuracy.
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CHAPTER ONE

GENERAL INTRODUCTION

1.1 INTRODUCTION

Historically, differential equations have originated in chemistry, physics and engineering.
More recently,v they have also arisen in medicine, biology, anthropology, and the like.
However, we are going to restrict oﬁrselves to Ordinary Differential Equations (ODE), with
special em};hasis on [nitial Value Problems (IVP) ; so called because the condition on the
solution of the differential equation, are all specified at the start of the trajectory i.e. they are

initial conditions.

Numerical solution of ODEs is the most important technique in continues time dynamics.
Since most ODEs are not soluble analytically, numerical integration is the only way to obtain
information about the trajectory. Many different methods have been proposed and used in an
attempt to solve accurately, various types of ODEs. However, there ?s a handful of methods
known and used universally (i.e. Runge-Kutta, Adam-Bashforth-Moulton and Backward

Difference Formulae). All these, discretise the differential system, to produce a difference

equation or map.

The methods, obtain different maps from the same equation, but they have the same aim; that
the dynamics of the maps, should correspond closely, to the dynamics of the differential ,
equation. From the Runge-Kutta family of algorithms, come (arguably) the most well-known

and used methods for numerical integration.



As stated earlier, mathematical modeling of physical everyday problems in different fields of
human endeavours, often results in differential equations. With a differential equation, we
can associate initial conditions, boundary, or auxiliary conditions on the unknown function
and its derivatives. If these conditions are specified at a single value of the independent
vvariable, they are referred to as initial conditions and the combination of the differential

equation and an appropriate umber of interval conditions is called an Initial Value Problem,

and these are the ones of particular interest to us in this work.

In ¢lementary treatment of differential equations, it is assumed that the IVP has a unique
solution ghat exist throughout the interval of interest and which can be obtained, by analytical
techniques. However, many of the differential equations encountered in practice, cannot be
solved explicitly, so we are led to methods for obtaining approximations to solutions. Such
solutions are usually called numerical solutions. In finding numerical solutions to differential
equations, the goal is to get a method, which will produce results that will (possibly) be the
same as the exact solution. While this goal may not be easy to achieve, we aim for a

numerical solution that is as close to the exact solution as possible.

With the advent of computers, numerical methods are now an increasingly attractive and
>fficient way to obtain approximate solutions to differential equations that had hitherto

sroved difficult, even impossible to solve analytically.

As was earlier noted, there exist a number of methods for solving differential equations this

way. These methods can be broadly grouped as: one-step methods, and multi-step methods.



However, for this work, we are particularly interested in the class of methods first proposed
by David Runge (1856-1927), a German mathematician and physicist, and further extended
by another German mathematician called Wilhelm Kutta (1867-1944); a method commonly

referred to as the Runge-Kutta methods.

1.2  LITERATURE REVIEW
The dynamics of the Runge-Kutta methods can be described as highly flexible. This is
because the slightest change in any of the unknown parameters (by, ¢, aj), in course of

formulating a Runge-Kutta scheme, would quite naturally result in a new scheme.

As a general example, if we consider the general S-stage Runge-Kutta method, a change in
any of the free parameters (the free parameters results from the difference between the
number of equations and the number of unknowns, during the Taylor series expansion), for a
method ot: a particular stage number, would give rise to a different scheme of the same stage,
and possibly the same order. As a specific example, let S = 2, we would arrive at a set of
three equations in four unknowns, and thus, there would exist one (free) parameter family of
solutions (i.e. one degree of freedom). Since there exists an infinite number of values that this
free parameter can assume, it implies that there is an infinite number of two-stage Runge-

tta methods of order two, that can be so derived by altering the free parameter. Lambert,

73)



The fundamental idea of the Runge-Kutta method is to avoid the computation of higher order
derivatives that the Taylor method involves, when employed in obtaining solutions for Initial

Value Problems (IVP).

DAVID RUNGE. [1895], in his paper on the numerical solutions of differential equations,
put forward a method for solving first order differential equations (specifically, IVP), that
achieved a higher order than the Linear Multi-step Methods (LMM), by sacrifieing the
linearity of the algorithm while preserving its one-step nature. His method involve's‘
extending the approximations of the improved of the improved Euler method further, so as to
obtain a one-step method having a higher order of accuracy. This is because one-step
methods, have the advantage of permitting a change of mesh length at any step, since no
starting process is required. Since the time of Runge, many researchers have taken advéntage

of the flexibility of the method to derive schemes either to improve accuracy or error control

strategies.

HEUN [1900], put forward the following third-order formula for a three-stage method

h
yn+l—yn=-4_(kl+3k3)
kl=f(xn’yn)
h h
k, = iy ek
2 f(xn+3yn+3 l)

2h 2h
k3 =f(xn +?7yn +?k2)



He reckoned that Runge’s work could be further extended to include terms up to order h’

previously ignored by Runge.

We however observe that the computational advantage in choosing b, = 0, in the above-
method, is somewhat illusory since, although k; does not appear in the first equation of the

scheme, it must nevertheless be calculated at each step, because we need k; to obtain kj.

WILHELM KUTTA [1901], extended the method of Runge further, to systems of
equations. Thus, this method has come to be known as the Runge-Kutta method. Kutta’s

third order rule is given by

h
Ynu1 = Vn =Z(k| +4k, +k3)
k]=f(xn9yn)
h h
k,=f(x +—,y +—k
] f(xn 2 yn 2 l)
ky=f(x,+hy,—hk, +2hk,)

According to Lambert [1973]; “it is the most popular third-order Runge-Kutta method, for
desk computations (largely because the coefficient —;— is preferable to—;—, which appears

“equently in Heun’s method).”

AERSON [1957], was the first to propose the idea of deriving a special R-K method, which
yjould admit an easily calculated error estimate, which does not depend on quantities

alculated at previous steps. Merson’s method is:



h
Yo ™ Vi =€(k| +4k, + k)
kl=f(xn’yn)‘ _
h

: h :
k = _— +-—k
2 f(x,._+3 Yot 1)

h Lol
k3=f[xn+—,yn+—(kl+k2)]
CRicA
g bl AL
k= A vtk +2hk,] 24

and it is defined by the Butcher tableau below:
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The above method, has order four and an estimate for the local truxication érror gikn by:'
307,,,, = h(=2k, + 9%k, + 8k, +k;)

* This meihod, hasbeen widély used for non-linear problems, although the error Mte 1s ‘

: vzi_lid onl); when the differential equation is linear in both x and y, that is of the form:

Y =ax+by+c

t t

ferson’s idea, is to derive R-K methods of order r and r+1, which share the same set of

ectors {k, } . This process is known as embedding.

lth a slight modification to the bButcher tableau, embedded methods following Merson’s

dea can be represented in the following form:




This notation is to be interpreted to mean that the method defined by ¢, A and b" has order r

and the method defined by ¢, A, and bT has order r+1. the difference between the values for

Va1 generated by these two methods, is then taken as an estimate for the local truncation

€1To0T.

The vector ET is bT-b", so that the error estimate is given by hz E.k;, where

E' =[E,,E,,..E,]. The label (r, r+1), is usually attached to such an embedded method.
1 2 r :

In the light of Butcher’s theorem (that there is no five-stage method of order five), it becomes

obvious that for a fourth order embedded method, a minimum of six stages will be needed.
This explains why Merson’s proposed error estimator could not be a valid one. Since this
method, without the error estimator, is a five-stage method of order four and with the error

estimator, it is a five-stage method of order five (which Butcher has since shown, to be

impossible).



Nevertheless, nothing should be taken away from Merson’s method, (represented by the
modified Butcher tableau below), for it did play an important role, in pointing the way to

future developments.

0
/3| 1/3

3| 1/6  1/6
/2| - 1/8 5348

i T O R T

/6 0 0 2/3 16
/10 0 3/10 2/5 1/5
~1/15 0 3/10 -4/15 1/30

HAMMING [1962], went a step further to derive and implement a fourth-order Runge-Kutta

scheme in solving differential equations.

BUTCHER J.C. [1963, 1976], in a long series of papers starting in the mid-sixties, has
developed various theories out of the Runge-Kutta method. Notable among his theories are;
i An s-stage explicit R-K method, cannot have order greater than s,

ii. There exists no ﬁve—stage explicit R-K method of order five.

He also established the order condition for all class of Runge-Kutta method.

is the representation of a Runge-Kutta scheme, in matrix notation; a form known as the

Butcher Tableau. Recall the general s-stage Runge-Kutta method

Yni1 =Vn = hzblkl

i=|

k = f(x, +c,hy, +hY a,k,),i=123,..s
i=1



Call the b.s the welghts, the cis the abscissae, and the k;s the slopes Butcher defined the s —

dlmensnonal vectors ¢ and b and thei s % ‘s matrlx A, byc= [c,,cz, =€, 1", and

b=[b,.b,...b,]" and A=[a,]. Thexi method expressed conveniently as Butcher tableau

E A { \‘ ’
= I - £ | 9 - Py By a8
€y Gy 8y Ay ays
B €3 |Gy Gy Ay sy
c, avl axz a. asx
bl b2 b3 bs
will assume
s-1
¢, =Y. a,,i=12.,s
J=t

One 1mportant use, to whlch the Butcher tableau could be put xs in deterrmmng the type of
: the method (ie. exphcxt nnphcnt and seml-xmphclt)
i If ‘A’ is strictly lower trtangular =5 exphclt method; ealculate ki exphcntly, then kj,
etc, up to_- ke ‘
e If3 a, #0,>1 i: imptiett method;
Requires a system of sxs (non-l"meaf) equatione be selved per'steb. :
o If a; = O, J>i arttl Ja, # 0 = setrii—implieit;

 Require s scalar (non-linear) equations be solved per step.

' CHER J.C. [1964], derived an m-stage unphcnt Runge-Kutta method, makmg suitable

Alces of the m(m+1) free parameters which has the maximal attainable order 2m, for all m.




demonstrated further, that the implicit Run‘ge-Kﬁtta methods are not attractive for general

e; because each integration step requires the solution of a system of equations, that is in

eneral non-linear for the m-unknowns.

CRATON [1964], derived a fourth-order estimate which admits an error which is valid for

 non-linear differential equation, unlike Merson’s. the method_is as belo_w:

1740 frE 3 b

porng o1y By g 20 g
Ya =In = b+ 50k Has ket g b
k f(xn9yn .
4 2n 2k
£; & gy
2 f(xn+ 9 y 9 I)
k3=f(xh+h,yn+l’;k +2k)
k, =[x, +-‘-1- ' I——(23k ~81k, +90k,)]
dh
9 ' 9
k, =,f[x,+1 1—0—0—(—345k +2025k, 1220k, +544k )]

He gave the estimate for the local truncation error as:

T,., =hqr/s

Bl JP L0 BE L  RY4
ST SNTI AL T

BT g Dog o gl 4

LR L L
St T e Rt A el TRl
s=k, —k,

wough, Scraton s estimate was more realistic than Merson’s when applled to a general

lmear dlﬂ"erentlal equatlon, it has the disadvantage that it is not lmear in the k,s As a

10




result, ii is applicable only to a single differential equation, and gioés not extend to a system
of equations. As noted by Laﬁib_ert, (1973); “in ofder to find a method which admits an error
tf;s;ixnate which is linear in the k,, and thus holds for a general non-linear differential
'equation, or system of equations, it is necessary to make further sacrit:lces in the form of

additional function evaluations.”

ENGLAND [1969], made the necessary sacrifices in the form of additional function

évaluations, and thus, came up with the following fourth-order six-stage method:

Ynr =V =g[k| +aky +k, ]
klzf(xn’yn)
ERTh h
Ve +—=,y,+=k)
2 =fE hmadato k)
e h
k3=ﬂng‘2'ayn+z(k|+kz)]
k4 =[xn.+'h9yn -th +2hk3 )]
.k = f1x, i +i(7k +10k, +k,)]
5 T S AT 37)’» a7 3 Ty

Wy +-:-, ¥ +-£—5(28k, ~125k, + 546k, + 54k, —378k;)]

He gave the associated estimate for the local truncation error as:
T, = 3—;’6-(_-42k, — 204k, 21k, +162k, +125k,)

ust be noted that, if the method is used without the error estimate, it is essentially a four-

& iilod. ‘The todified Bulcher tableat for the Erighind’s method is as below:

11




12| 1)2

12| 14  1/4

1 0 = 2

3| 7/27 1027 0

1/5 | 28/625 —1/5 546/625 —378/625

1/6 0 1/6 0 0
/24 0 5/48 27/56  125/336
SR 0 ~1/6  27/56  125/336

A feature of England’s method, is that (unlike Merson’s method), the last two elements of b'
are zero, implying that if the error estimate is not required, then only four stages (the
minimum possible for fourth-order) need be computed. The method, is thus, economical if

only occasional estimation of the error is intended.

SHAMPINE and ALLEN [1973], developed a subroutine for solving the fourth-order R-K

method which was different from Ralston’s fourth-order R-K method.

HAIRER and WANNER [1981], showed that R-K methods could be extended to orders
five and six which have the properties of order, stability and efficiency of implementation to

a high extent. These authors classified all algebraically stable methods of an arbitrary order

_and give various relationships between contractivity and order of implicit methods.

~ INUMANY]I, et al [1981], developed software for a method of finite approximations for the
umerical solution of differential equation, which was based on the Tau method. According
> them, problems with complex initial boundary conditions or mixed conditions involving

.ombinations of functions and derivatives values, can be dealt with by means of their

12



program. Accordingly, encouraging results have been obtained in the solutions of problems

with regions of rapid variation, oscillatory behaviour and in the presence of stiffness.

ONUMANYI and ORTIZ [1982], presented a method known as Numerical Solutions of
High Order Boundary Value Problems for ordinary differential equations with an estimation
of error. According to the authors, results of remarkably high accuracy and computational
simplicity can be obtained‘bky using Ortiz recursive formulation of Tau method. Besides, an

error estimate of the number presented can be produced at a low computational extra cost.

ASCHER and BADER [1985], discussed the stability of collocation at Gau§sian points.
Symmetric R-K schemes according to them are particularly useful for solving stiff two-point
boundary value problems. They observed that unlike initial value ODEs, the Jacobian of a
well-conditioned problem may have both eigen values with a large negative real part and
eigen values with a large positive real part. Hence, invariance with respect to the direction of

integration is a very desirable property; which symmetric schemes possess.

GUPTA [1985], u‘sed the finite difference methods which combine features of both R-K
process and Gap schemes to develop an adaptivity code for the solution of first order

ifferential equations with two boundary conditions. He found an eighth-order, A-stable
“nethod that has second, fourth, and sixth order A-stable methods embedded in it. He then

vent on to describe a variable order, variable step difference solver using the embedded

nethods.

13



BURRAGE [1987], examined the stability propetﬁes of some special class of multi-valued
methods known as multi-step R-K methods. He further constructed some families of
algebraically stable methods of arbitrarily high order for the solution of the first order initial
value problems. In particular, Burrage has studied the order conditions of these methods, and
has shown that one can always construct methods of order 2s+r-1, where 2s denotes the
highest order possible, and r-1, the number of free parameters existing in the methods.

SANNUGI and EVANS [1988], put forward a method, that surpassed that of England. They
presented a modified version of the fourth-order Runge-Kutta formula, which required no
extra function evaluation, yet provides estimation of the local truncation error. The basic idea
of t'he modiﬁcation, follows from the fact that numerical solutions of similar order can be
obtained by using Arithmetic Mean (A. M) and the Geometric Mean (G. M) averaging of the
functional values. The m;:thod is also suitable for the estimation of the local discretization
error of one step methodé known as embedding methods. Each step is integrated twice, using

the p™-order and the (p+1)"-order methods, then the difference between the values obtained,

|

gives the estimate of the error.

DORMAND, et al [1989], considered the applicat‘ions of Runge-Kutta interpolatioh to
global error estimation. They brought out some special formulae of orders two, four, and six
and went on to show that a pseudo-problem, which is based on dense output values within
any one step and reliable global error estimates could be mesh-points, by using the special R-

K formulae.

14



HUNDORFER and SHNEID [1989], made a joint discovery of the fact that among the
several stability and consistency concebls for R-K methods applied to stiff initial value
problems (IVP), B-stability and B-consistency turned out to be equivalent for IVP with a
one-sided Lipschitz constant K>0. They guarantee stability with respect to perturbations of

the IVP for m<0).

JAIN, et al [1989], have shown that by using the well-known properties of the s-stage
implicit R-K method for the first order differential equations, it is possible to obtain almost
supér stable methods of arbitrary order, for the direct integration of the general second order

IVP by increasing the number of stages s. the method, when used successfully, can solve

singular perturbation problems for which df /dy and/or df/0x are negative and large.

JAZCILEVICH and TEWARSON [1989], constructed functions characterizing the
stability of explicit boundary value R-K methods. The method is based on the generalization
of the algebraic stability criterion and can also be used to design methods with better stability
and the selection of mesh-points. The criterion obtained, was found useful in the study study

of explicit boundary value Runge-Kutta method.

KEELING [1989], constructed an implicit Runge-Kutta method with a stability function
having distinct real poles. Such methods offer a computational speed-up when used on
parallel machines (multiprocessor computers) with a modest number of processors.

Sometimes, the method is called Multiple Implicit Runge-Kutta (MIRK) and hence due to the

so-called order reduction phenomenon, the poles of the MIRK are required to be real.

15



He went further, to prove that the necessary condition for a g-stage real MIRK to be A-stable,
with a maximal order q+1, is that q must be either 1, 2, 3 or 5. he showed that for every
positive integer q, there exists a g-stage, real MIRK which is strongly Ag-stable with order

still g+1 and for every even q, there is a g-stable real MIRK which is L-stable with order q.

MUIR: and BEAME [1989], introduced a method called “AN Error Expression for
Reflected and Averaged Implicit Runge-Kutta method.” This method is useful in the
numerical solution of initial value problems as well as the solutions of two-point boundary
value problems. In t:acl, the main result of this method relate the error expression of an
averaged method, to that of the method upon which it is bsed, since it is derived from another
method by applying the results obtained, they showed that for each member of the class of
averaged methods, there exists an embedded lower order method, which can be usf:d for error

estimations, in a formula-pair fashion.

BUTCHER and CASH [1990], derived a special class of implicit R-K methods for the
numerical solution of stiff IVP. They derived the formulae from single implicit methods by
adding one or more extra diagonally implicit stages. For the derivation, they considered

singly implicit methods and in particular diagonally implicit methods.

They established that each class of methods offers some advantages over other methods as
well as some disadvantages. For diagonally implicit methods, their limitation of the stage-

order to 1, and the difficulty of finding high order for the methods as a whole, or of



constructing realistic local error estimates, makes these methods unlikely candidates for

incorporating into highly accurate and efficient software.

CALVO, et al [1990], developed a new pair of embedded Runge-Kutta formulae of orders
five and six. This method is derived from a family of Runge-Kutta methods depending on the

eight paramgters by using certain measures of accuracy and stability.

When this method is compared with the other methods of the same order, greater accuracy is
achieved, especially when used with an extra function evaluation per-step, a C'-continuous
interpolant of order five can be obtained.

SOMMEIER [1990], considered a method based on the simplest well known classical
Runge-Kutta method. The main characteristic of the resulting scheme of this integration rule,
is that the computational complexity is hardly increased. This means that the first spatial
operators are replaced by the finite difference or the finite element approximations that
termed the semi-discretization. Then the time-continuous system of the ordinary differential
equations, is integrated in time, by using the classical R-K method or by the forward Euler
scheme. Following this technique, several choiées have been made for the semi-discretization

as well as for the time integration.

SOWA [1990], investigated the linear stability properties of a R-K method for solving the
compressible Navier-Stokes equations and was able to produce another method. His method
was based on the Fourier-transformation of the linearized spatial operation in which he fully

considered unsplit spatial operator, resulting from a second order central difference

17



approximatioin of the spatial derivatives. He also compared the iheorelical stability limit with
that encountered in numerical simulations of an IVP, as well as with the practical stability
limit.is slightly more restrictive than the one theoretically derived. He made further attempts
to obtain an analytical expression of the stability limit, which was not possible, due to the
complexity of the eigen-values and the difficulty of solving the high degree polynomial

equation for the time step.

JULYAN and PIRO [1992], investigated the dynamics of a continuous time system,
described by an ordinary differential equation. They attempted to elucidate the dynamics of
Ithe Runge-Kutta methods, by the application of the techniques of dynamical systems theory
to the maps produced in the numqrical analysis. Their aim, was to investigate what pitfalls
there may be, in the integration of non-linear and chaotic systems.

HALL, G. [1992], was able to make a modification to the usual algorithm of codes for non-
stiff problems, which overcomes the difficulties usually experienced in the use of such codes.
Usually, codes for non-stiff problems can exhibit unnecessary roughness in the behavior of
the step size, when stability, rather than accuracy, is the determining factor. This is
inefficient, usually involving many rejected steps. Hall’s modification however, caused the
step size, to behave smobthly, and the new algorithm appears to be remérkably robust and

provides the optimal use of a given R-K formula.
VAN DER HOUWEN and SOMMEIJER [1995], in their work, titled, “Iteration of Runge-

Kutta Methods with Block Triangular Jacobians.” They considered iteration processes for

solving the implicit relations associated with implicit Runge-Kutta methods applied to stiff

18



IVPs. The conventional approach, for solving the R-K equations uses Newton iteration
employing the full right-hand side Jacobian. They noted that for IVPs of large dimensions,
this method is not attractive because of the high cost involvéd in the LU-decomposition of
the Jacobian of the R-K equations. They outlined an alternative approéch which directly
replaces the R-K Jacobian by a block-diagonal or block-triangulér matrix whose block
themselves, are block triangular matrices. Such a grossly ‘simplified” Newton iteration
process, allows for a considerable amount of parallelism. They then aimed to investigate the

effects on the convergence of block-triangular Jacobian approximations.

ADEWALE [1998], derived a new five-stage explicit one-step R-K methodof order four for
the numerical solution of IVPs. The new method aid computation through the use of whole

numbers instead of fractions as observed in existing methods of this form. This is helpful,

when the computations are performed manually, as it reduces the number of operations
involved in the evaluation of the k;s. He also provided a computer proéram, that uses the new

scheme, to solve IVPs. The new method with its corresponding Butcher tableau is as below:

Vot = == (2, 48k, +y )
kl =-f(xn>yn)
e h
k2 =f(xn +§’yn+§kl)

h h
k} =‘f(xn +‘2—kl’yn +-2—k2)

k, = flx, +h,y, +h(-3k, + 5k, —k,)]
kg = flx, +h,y, +h(3k, -3k, +k,)]
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GARBA and YAKUBU [1999], derived a new R-K formula of order five, which does not
require the use of error control strategy, but has better approximations than some existing R-

K formulae.

Earlier on, we did mention that when a Runge-Kutta method of desired order is derived, there

are in general, a number of free parameters whicﬁ cannot be used to increase the order, .any

further. Lambert (1973), give a number of uses to which these free parameters could be put:

(1) These free parameters, could be chosen in such a way that the resulting method have
simple coefTicients, convenient for desktop computations,

(i)  Perhaps, the most important tasks to which free parameters can be applied, is the

reduction of the local truncation error,

(ii1)  There are other ways in which we may attempt to use the free parameters in order to

improve local accuracy,

(iv)  Another area where we can look for some advantage from a judicious choice of the
free parameters, concerns the weak stability characteristics of R-K methods,

particularly for stages grater than four.
With regards to explicit Runge-Kutta methods of order greater than four, Julyan and Piro

(1992), identifies some unresolved issues:
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(a) What is the minimum number of stages necessary for an explicit method to attain
order p? This is still an open problem.

(b)  Exactly how many stages are required to obtain a ninth-order or tenth-order explicit
method? We only know that somewhere between twelve and se\;enteen stages will
give us ninth-order explicit method, and somewhere between that number and
seventeen Slages will give us a tenth-order explicit method.

(c) Nothir;g is known for explicit methods of order higher than ten.

We must note that for explicit Runge-Kutta methods of order five, it is quite obvious that the

minimum number of stages necessary, is six. This will bécome clearer, when we consider the

following general results, as put forward by Butcher (1963, 1976): |

(1) An explicit g-stage method, cannot have order greater than q; for <4,

(i)  There is no five-stage explicit Runge-Kutta method of order five.

- From the above, our assertion follows quite naturally.

A number of computer software have been developed for a system of differential equations

using the Runge-Kutta method.

For example, the C-XSC program was developed for a system of differential equations to be
solved by the Runge-Kutta method. The C-XSC program is very similar to the mathematical

1otation. Dynamic vectors are used to make the program independent of the size of the

system of differential equations to be solved.
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o RKSUITE is an excellent collecuon of codes based on Runge-Kutta methods for the

e i numencal solutlon of an VP for the first order system of ordmary dlfferennal equatlons It

. supersedes sorne very widely used codes, namely}RKF45» code and lts descendent DDERKF
" - mthe SiATEC li‘bré_ry'andD‘QiPAF and e'ssociated codes in the NAG Fortran library.
RKSUITE;s _';Nrjtten in standard Fortran 77 and is distributed in source form. RKSUITE
B irn‘p.lements three ’Runge-"Kutt.e nairsr. {2, 3) (4.5), and .(7 8). The (4,50 pair, for example uses v
._both a 4"' and a 5" order apprommanon to estimate the error in the 4" formula; using
'A : extrapolatlon, it then produces a formula of order ﬁve Sumlarly, the (2,3) pair produces a

: formula of order thme and the (7 8) parr, a formula of order elght
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: RKSUITE is an excellcnt collectlon of codes based on Runge-Kutta methods for the .
numencal solution of an IVP for the first order system of ordinary dlfferentlal equations. It
supersedes some very widely used codes, namely RKF45 code and 1ts‘descendent DDERKF
in the VSLATYEC llbrary end‘ DO2PAF and assoeiated codes in the NAG Fohtran library.
RKSUITE 'iis"Written in stan‘d.ard" Fortran 77 and is distributed in soiitce form: RKSUITE
nnplements three Runge-Kutta pairs: (2.3), (4,5), and (7.8). The (4, 50 pair, for example, uses
both a 4 and a 5" order approxxmatnon to estlmate the error in the 4" formula, using
': 'kextrapolatlon it then produces a fonnula of order ﬁve Sumlarly, the (2,3) pair produces a

7-foxjmula of.erder three, and the (7,8) pair, a formula of order eight.
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13 DEFINITIONS

Differential Equations:

A differential equation is an equation involving an unknown function and one or
more of its derivatives. It is a relationship between an independent variable x, a

dependent variable y, and one or more differential coefficients of y with respect to x.
Eg. —=2x+y.
g dx y

- Order of a Differential Equation:

*The order of a differential equation is given by the order of the highest derivative

. involved in the equation. For example f;—u = F()G(1) is of the first order.
Xl

]

Ordinary Differential Equations (ODE):

An ODE, is an equation that contains an independent variable x, an unknown function
y(x) and certain derivatives of y such as »'(x),y"(x), o " (x). For example,
y'=x+2y, is an ODE. In general, any equation of the form:

F(x,y',y",y")=0

is an ODE of order n, n>0.

Linear quations:
An equation of order n is said to be linear if it has the special form:
ay(x)y" +a, ()Y 4+ a,, D)y +a,(¥)y = [(x) (4)
where the a;(x) are arbitrary functions of x only. Also, we note that in this form, the
unknown function y and all its derivatives appear linearly.

xplicit Runge-Kutta (R-K) Methods:

Given that in a R-K method of order s; Sk

: 23



k= f(x, +@-,h, v, +hy ak).i=1(1)s
If we have that aj = 0, whenever j>i, I = 1(1)s, then each k; is given explicitly in
terms of previously computed kjs, j = 1(1)i-1, and the method is then an explicit or
classical R-K method.

Semi;implicit R-K Methods:

If on the other hand (from above), we have that ajj = 0 for j>i, then the method is a

semi-implicit R-K method.

¢

Implicit R-K Methods:

If we have a situation wherca, #0 for j>i, then the R-K method is an implicit

method and each k; is not given in terms of previously computed kj, j=1(1)i-1. Rather

a system of non-linear equations results.

Local Truncation Error (Ite):

The local truncation error (Ite) t,+ of the one-step scheme is given by
by = Y(X0) = Y(x,) —hp(x,,, y(x,); 1)
where y(x) is the true solution tovthe IVP.
The local truncation error simply put, is the amount by which the true solution of the
I'VP fails to satisfy the first order difference equation, under the simplying assumption

that the previous solutions are exact (i.e. y, = y(Xp))-

Initial Value Problems (IVPs):

If with a difference equation, we specify conditions at a single value of the

independent variable, these conditions are referred to as initial conditions. The
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CHAPTER TWO

NUMERICAL SOLUTION METHODS

We recall the first order differential equation
Y =fxysya)=y,, [ RxR” > R" ()
over some interval [a.b], where a <00, b <o

yi y2 Yk o Yn

I

a=0x; x Xk b=x,
The usual numerical method for solving (i) are referred to e;s discrete variable methods,
because they discretise the interval [a,b] into subintervals and then generate a sequence of
approximate solutions for y(x) i.e. y; y2,y3 ... at points X; . X, X3 .... No attempt is made
to approximate the exact solution, y(x), over a continuous range of the independent variable

%

Apparently, only a small class of differential equations possess analytical solutions y(x),
expressible in terms of known tabulated transc;endental functions that satisfy the differential
equation, as well as the initial conditions. Kamke, (1943). As an illustration, consider the
well-known Van der Pol oscillator

Y'+ul=y*)y'+ Ay =0; y(a), y'(a) given (if)
for some real positive numbers z and A . This problem was first formulated by B. Van der

Pol in 1926. The differential equation (ii), has attracted a lot of research attention both in

monlinear mechanics and in control theory. To date, this problem has no solution in terms of
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. known tabulated transcendental function. Even when the analytical solutions to certain

differential equations are available, their numerical evaluation may be quite intractable.

So, for such differential equations that are not soluble analytically, numerical integration is
the only way to obtain information about the trajectory. As stated in section 1, there are many
différent methods that have been proposed and used in an attempt to solve accurately, various
types of ODEs. Such methods, are known as numerical methods and they can be broadly
grouped into two, viz:

(a) One-step Methods, and

(b)  Multi-step Methods.

2.1 One-step Methods
A differential equation has no “memory”. That is the values of y(x) for x before x,, do not

directly affect the values of y(x)for x after x, Some numerical methods have memory, and
some do not. The class of methods known as one-step methods, have no memory; given yp,

there is a recipe for yu+s that depends only on information at x,, n=1,2,...,k.

So for one-step methods, (ér single-step methods) only the information from one previous
point (mesh point), is used to compute the successive point. For example, only the initial
point (X , yo) is used to compute (x; , y1), while (x; , y1) is used to compute (x3 , y2), and so
on. One-step methods are 'self-starting, and permit a change of step-length, in the course of

computation. A general one-step method can then be written in the form

yn+l_yn =h¢(xn9yn;h);y0 =y(x0) (".’)
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where ¢ is the increment function that characterizes the one-step method, h is the steplenght.
The goal would be to obtain algorithms for which the true solution, y(x)
almost satisfies (iii) i.e.

V(X)) = y(x,) +hp(x,, y(x,))+hz, (iv)

with 7, “small”. The quantity 47, is called the local (truncation) error.

2.1.1 Taylor series Method
Taylor series method is a straight forward adaptation of classic calculus to develop the
solution as an infinite series. The catch is that a computer usually cannot be programmed to

construct the terms and one does not know how many terms should be used.

Perhaps the simplest one-step methods of order p are based on Taylor series expansion (e.g.

Euler, Runge-Kutta) of the solution y(x). If y”*"(x) is continuous on [a,b], then Taylor’s

formula gives

hp—l p+l

V(%) = Y(x,) + Y (x, )+ y P (x,) —=1+ """ (p,)
P (p+D!

)

where x, <@, <x

n+l
The continuity of y*"(x) implies that it is bounded on [a,b]

and so ,

(p+1)

y*(0,) - = o) = ho(h?)

(p+D)!

Using the fact that y' = f(x,y), (v) can be written in the form
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i
) 1+ ho(h?) | (vi)

Y(%a) = Y02, ) HHLf (x,) 4+ £ O (%, (x,))

where the total derivatives of f are defined recursively by

L) = £+ f,(x, p),
=0+ @0 (6 ) k=23,

Comparison of (iv) with (vi), shows that to obtain a method of order p, we can let

AP
p!

B(x,, Y(x,)) = f(x,, y(x,)) ++-+ [ (x,, ¥(x,,)) (vii)

This choice leads to a family of methods known as the Taylor series methods, given in the

following algorithm.

Taylor-series Algorithm
To obtain an approximate solution of order p to the IVP (i) on [a,b], we will need to let
h=(b-a)/n and generate the sequence

p-1

' 3 h
Yo = Ya t WS Gy o4 07 (i y) =] (viii)

Xy =X, +h,n=012,---, k-1
where x, =a,and y, = A
We can easily observe from (viii) that the Taylor series method of order p = 1, is in fact the
Euler’s method:

Vurt =Vn +Hf(x,, ¥, )} @)
Xoa =x,+h

Taylor series can be quite effective if the total derivatives of f are not too difficult to

evaluate.
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Software packages, are available that perform exact differentiation, facilitating their use (e.g.
ADIFOR, MAPLE, MATHEMATICA, etc). However, most of today’s software packages

for solving IVPs, such as (i), do not employ Taylor series methods.

As stated earlier in this section, Taylor series method is the foundation for some of the
simplest and appealingly effective one-step methods, notably of these is the Runge-Kutta

methods.

2.1.2 Runge- Kutta Methods

The Runge-Kutta or R-k methods, are extensions of the basic idea of Euler’s method using
approximations which agree with more terms of the Taylor series. The Basic steplenght is h
as with Euler’s method, but some intermediate points are also computed and the slopes at
these points, are used to improve the overall cha.nge between x, and x, + h= x,,,. Start from
(XnsYn), take one step of Euler’s Rule of length c;h and evaluate the derivative vector at the
point so r'eached; the result is k,. We now have two samples for the derivative, k; and k,, a
weighted mean of k; and k; is used as the initial slope in another ‘Euler step (from (Xp,yn)) of
length c;h, the derivative at the point so reached is then evaluated; the result is k3. Continuing

in this manner, we obtain a set k;, [ = 1, 2, ..., s of samples of the derivatives. The final step
(Vois = Vs +hz b,k,) is yet another Euler step from (Xnyn) t0 (Xp+1,yn+1), USing as initial
i=]

slope a weighted mean of the samples ki, k,..., ks. Thus an explicit Runge-Kutta method
sends out feelers into the solution space, to gather samples of the derivative, before deciding

in which direction to take an Euler step.
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Runge-Kutta methods are designed to approximate Taylor series methods, but have the
advantage of not requiring explicit evaluations of the derivatives of f{x,y). The basic idea, is
to use a linear combination of values of f{(x,y) to approximate y(x). This linear combination is
matched up as closely as possible with a Taylor series for y(x) to obtain methods of the

highest possible order p.

So an S-stage Runge-Kutta process can thus be viewed as an extension of the Taylor

expansion scheme whereby the evaluation of the first and higher order derivatives, of f{x,y)
is replaced by S function evaluations within every interval of integration [X, Xq+1]. The R-K
scheme is basically a substitution method of the form

Vst = Vn +@re (X5 Y03 ) (%)

with the increment function ¢,, given as a weighted mean of the slopes at specific points.

The number of coefficients for each class of R-K method can be ascertained, as shown

below:

NUMBER OF

TYPE COEFFICIENTS

Explicit s(s+1)/2
Semi-
implicit s(s+3)/2

Implicit s(s+1)
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As discussed in section 1.2, various R-k schemes have been proposed. However, according to
bert (1991) the four-stage classical R-K scheme of order four, has proven to be the most
pular of them all.ATh.ercfore, it is only fitting that we illustrate the use of R-K methods, by

ing the classical scheme, to solve the differential equation
y'=x+y;5(0)=1
steplenght h = 0.1 and Xpy =X, +h

classical four-stage scheme is given as

.

Y1 =Vn +'2'(k| +2k, +2k, +k,)

kl =f(xn9yn)

* h h .
kz =f(xn +5syn +"2'k|)

: h h, .
k, = +—,y,+=k
i ; ] k4 .=f(xn +h.’yn +hk3)

rn=0,x=0.}

=¥, -|-'—21(Icl +2k, +2k, +k,)
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ky=f(x4,0)=0+1=1

ky = f(x, "fl/Zhsyo+l/2hk|)
= £(0.05,1.05) '
=0.05+1.05

Ckel]

ky = f(xo +1/2h, y, +1/2hk,)
= £(0.05,1.055)
=0.05+1.055

- ky =1.105

ky = f(xy +h,y, +hk;)
= £(0.1,1.11055)
=0.1+1:1105 -
.k, =1.2105

5 ._.1+96;1.(1+2.2+2.21+1.2105)
~1.110341667 - |

"n=1,x=02

¥, : ¥, +-6’1(k, +2k, +2k, +k,)
with

k= £ 0)

= £(0.1,1.110341667)
=1.210341667

k=10 +'%h, y, +0.05k,)

= f10.1+0.05,1.110341667 +0.05(1.210341667)] |
=1.32085875

- Lt




ky = f(x, +%h, ,0.05k,)

= f10.1+0.05,1.11034166 +0.05(1 .32085875)]
=1.326384605

ky=f(x +hy, +hky)
-k, =1.442980128
=y, =1.242805142

0.1
Vs=Y, +_6~(k' +2k, +2k, +k,)

k= f(x,,) _ &
- £(0.2,1.242805142) ' Y g |
=02+1.242805142 |
=1.442805142 " | |

k, = f(x, +~;—h, » +0.05k,)
=1.564945399

k= £, +%h, 3, +0.05k,)
| =1.571052412

ko = f(x, +0.1,y, +0.1k,)
-k, =1.699910383
= y, =1.399716995

n=3,x=0J3

Viky, +%;l(k, +2k, +2k, +k,)

k, = S(x3,3)
=1.699716995

k, = f(x,+0.1h,y, +0.1k,)
=1.784702844
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ky = f(x; +0.1h, y, +0.1k,)
=1.838952137

k, =(x, +h,y, +hk;)
=1.983612208

-y, =1.581894314
Solving the differential equation analytically we obtain
Ye(x)=2e" —x-1

-y (0.1)=1.1103418
y;(0.2) =1.2428055
y,(0.3)=1.3997176
y,(0.4) =1.5836494

2.2  Multi-step Methods
The numerical methods for the solution of the differential equation
V' =10, (%)= yo; [ RAXR" > R" (xi)
are called multi-step methods, if the value of y(x) at x = x,+) uses the values of the dependent

variable and its derivatives at more than one grid or mesh point. Suppose the approximate

values of y and y’'= f(x,y) at the points x, = Xo + mh, m = 1, 2, ...,n. We denote the
approximate values of these points by

V)= Vs S s V(X)) = frsm=01,--,m
Thus the general multi-step or k-step method for the solution of the IVP may be written as
Yut =0 Yy +A3 Y, ot O Yy Y (X1 X057 Xt Voo Yo+ Vi3 B) (i)
where h is the constant step size and a,,a,,---,a, are real given constants. If ¢ is

?hdependent of yn+1 then the general multi-step method, is called an explicit, open, or
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predictor method; otherwise an implicit, closed or corrector method. The k-1 values
Y15 V3" Vi Tequired to start the computation are obtained, using the single-step methods.

The special cases of the linear multi-step method are used for solving the IVP.

Explicit Multi-step Methods

Explicit multi-step methods, are obtained by integrating the differential equation
y'=fx)
between the limits x,_; and x,,, , to get

X+l

P(Xn) = 9%, )+ [£(x, ) (xiii)

This is then integrated by approximating f(x, y) by a polynomial which interpolates f{(x, y) at

k points x,,x,_,,***,X,4,;- LThe Newton backward formula of degree (k-1) could be used for

n?

this purpose. This will give us

k-1 . :
V(%) = Y(x, ) +BY y V" £, + T (xiv)
m=0

3\

A j(—l)*[;“)f‘*’(wdu

where: q (xv)

u)_' pym| TY
7S —_[( 1) (m )du

7

If we ignore the remainder term 7, in (xiv) we get

k-1 "
yn+| =yn-j +hz},r(nj)vmfn (XVI)

m=0
If the difference V" f, re expressed in terms of the function values f,,, from the definition

of the backwards difference operator V, we find
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predictor method; otherwise an implicit, closed or corrector method. The k-1 values ‘
Y15Ys "5 Yy Tequired to start the computation are obtained, using the single-step methods.
The special cases of the linear multi-step method are used for solving the IVP.

Explicit Multi-step Methods

Explicit multi-step methods, are obtained by integrating the differential equation
y'=5(xy)

between the limits x,_; and x,,, , to get

Y ) = ¥, )+ [ £, p)x (i)

X
This is then integrated by approximating f(x, y) by a polynomial which interpolates f(x, y) at

k points x,,x, .-+, %, ,,- The Newton backward formula of degree (k-1) could be used for

this purpose. This will give us

k-1 . )
y(xn+l)=y(xn—j)+hzyr(nj)vmfn +Tk(” (xiv)
m=0

T = B f(—l)‘[;u)f‘*’(¢)du

where: q (xv)
2 1 -Uu
¥ = j(—l)“[ )du
Ay m J

If we ignore the remainder term 7\ in (xiv) we get

k=l .
yn+] =yn—j +hz}’r(nj)vmfn (XVI)

m=0

If the difference V" f, re expressed in terms of the function values f,,, from the definition

of the backwards difference operator V, we find
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m m o
v"f, =Z(—1)”[p)f,,_p (xvii)
By substituting (xvii) into (xvi) and regrouping, we obtain
o
yn+| =yn—j +hzym(j)fn—m (xv,ii)
m=0

A number of interesting formulae can be obtained for various integer values of k in (xvi),

which is the general"explicit multi-step method.

Implicit Multi-step Methods

As we pointed out previously, explicit methods involve expressing y,,, in terms of
previously calculated ordinates and slopes. Implicit multi-step methods on the other hand,
involves the unknown slope y,,, on the right hand side, and are obtained by replacing
f(x,y) in (xiii) by a polynomial which interpolates f(x,y) at x,,x,,**,x,,,, for an
integer k > 0. The Newton backward difference formula which interpolates at these k + 1

points in terms of # = (x—x,)/h, when substituted into (xiii) yields

k
y(xn+l) =y(xn—|)+hzag)vmfn+l +Tlc.-£lj) (XiX)
m=0
*J + + l_u + ’
LP=0 | ' ( kﬂ}/‘* Y (p)du
where: } (xx)

o= (-1)“&“")@

If we ignore 7, in (xix), we get
. k.- -
yn+l =yn—j +hZO"(nj)men+l (xxl)
m=0

where
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o =14+

NS, T
o =—5(1+J)2

: 1 : 5
ay” =—1—2~(1+J)2(l—21)

: 1 I .
g =“§Z(1+J)2(1"J)2

. 1
o =———(+ H*(19-3874+2771 =67
i 720( J( J 2] =6]")

: 1
o =——— 1+ )*(27-54j+45;2 16 +2*
5 1440( Fini Jj+45) 27 )

If we replace the difference operator V" £,

n

.1 in terms of the function values, we obtain

k
Vs P+ Y o (xxii)

m=0
From (xxf) or (xxii), it is possible to obtain a number of multi-step formulae for various
integer values of j. It is obvious from (xix) that the implicit multi-step methods are of one

order higher than the corresponding explicit multi-step methods with the same number of

ordinates and slopes.

2.2.1 Adam-Bashforth Formulae (j = 0)
As observed in section 2.2, a number of interesting explicit formulae can be obtained for
various integer values of k. One of such formula is the Adam-Bashforth formula, which

results from equation (xvi) for j = 0;
k_l -
Ynr1 &Yy + hz v f, (xxiii)
m=0

Calculating a few of y{” from (xv), we obtain
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79 = Jdu=1+j;70 =1

7 = [ wdu=1/26- )1+ j); 7® =172

79 = [ Vouu+du=1/12(5-3/7 +2,°); 7 = 5/12

y = [ 1 6u(u+1)(u+2)du =1/24 3= 3+ j—j2 +7); 7@ =3/8

(1)_[ ——u(u+1)(u+2)(u+3)du=—(251 —90/% +110° —45;* +6;°); 7y =

y = L-ﬁau(u+l)(u+2)(u+3)(u+4)du - m—(S—j)(95+19j—25j2 +35;°

& A5
P 1440
Replacing the coefficients y” by their values in (xxiii), we get

251

e Yk + V + 2,, E e
Yna =¥a tH S, s VS + 720 L+ 1440 Vif, +]

The coefficients y, from (xxii) are given below:

*0) *0) *(0) *0): *(0) *O
k7 2 72 ; ™

Y3 Va4 Vs
| “l
9 3 _1
2 2
s e dE kS
7 12 12
g Ry g

Y SRR TR 24
1901 2774 2616 1274 251

720 720 720 720 720
4277 1923 ..9982 - 7298 . 2877 475

1440 1440 1440 1440 1440 1440

251

720

~14j°42j%);

It is obvious from that with k computed values, we obtain Adam-Bashforth formulae of order

k, since the truncation error is of the form ch**', where c is independent of h.

To illustrate how the Adam-Bashforth formulae are used, we shall solve the IVP below:
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y' =x+y,p(0)=1, with h=0.1

using the fifth order Adam-Bashforth method. The fifth order Adam-Bashforth method is

given by: ~ :
VYust =Vn +7;—0[1901f,, —2774f_, +2616f, , —1274f, , +251f, ,],n>4

The values for y,, y,,y; and y, are obtained using the Taylor series method of order five

hz hs 4 hs
=y, +hy'+— yn+—y,
yn+l yn y 2 "y 6 y 24y 120}'
where
Yn=%X,+Y,
yi=l+y,=l+x,+y,
¢ y:=y;‘=1+xn +yn
i y””=y:=l+xn+yn
yv" =yhn =l+x,+y, '
|
hence, we have
; ; h? P ht
=y, +h(x, +y;)+(1+x, + +—+—+—1,n=0,1,23
Ynn yn (xn yn) ( Xn y,,)[2 6 24 120]
n=0

' 0.01 _ 0.001  0.0001  0.00001

»= )’o+h(xo+}’o)+(1+xo+}’o)[ s 24 + 120-
0.01 _ 0.001 00001 0.00001
+ + )

6 24 120

un=umyw=n_%+% =0.1+1.1103418 =1.2103418 = ﬁ

]

=1+0.1+2(=
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0.01 0.001 0.0001 0.00001
=y, +h(x, +y,)+(+x, + + + +
Y=y +h(x, +y,)+( )l 5 6 24 120 ]
=1.1103418+0.1(1.2103418) + 2.2103418(0.0051709167)

=~ y, =1.2428055= y, =x, +y, =0.2+1.2428055 =1.4428055 = f,

n=2

pe g b4y )t (o x, 4y, 0L 0001 00001 0.00001,
e A At e T 24 120
—1.2428055 +0.1(1.4428055) + 1.2428055(0.0051709167)

5 Y, =13997176 = y; =x, +y, =0.3+1.3997176 =1.6997176 = f,

=y, +h(x, +y.)+(1+x, + )[0.0l 4 0.001 " 0.0001 % 0.0000I]
Yy ¥y 3T)s3 3t )3 5 p 4 ==
=1.3997176 +0.16997176 +0.03196

5y, =1.5836494= y, =x, +y, =0.4+1.5836494 =1.9836494 = f,

Thus the starting values are:

y, =1.1103418;; £, =1.2103418
y, =1.2428055; f, =1.4428055
y, =1.3997176; £, =1.6997176
y, =1.5836494 ; £, =1.9836494

Now, we will use these starting values in the Adam-Bashforth formula above;

b

Forn=4
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h
Vs =94 +=os {19011, ~ 2774, +2616/, ~12741, +2511,]

0.1 :
=1.5836494 + —%[1901(1 9836494) —2774(1.6997176) + 2616(1.4428055)

~1274(1.2103418) + 251(1)]
=1.5836494 +0.2137923
s =1.7974417 = y} = x, +y, =0.5+1.7974417 = 2.2974417 = f,

Forn=5

0 +7—;%[1901f5 ~2774f, +2616f, -1274f, +251f,]

=1.7974417 + %:) [1901(2.297447)—2774(1.9836494) + 2616(1.6997176)

—1274(1.4428055) + 251(1.2103418)]
‘Y = 20442356 = ! = x, +y, = 0.6+2.0442356 = 2.6442356 = f,

n=6

V1=, +%[1901f6 —277Af, +2616f, —1274f, +251f, ]

- =2.0442356 + ;)T:) [1901(2.6442356) —2774(2.2974412) + 2616(1.9836494)

—1274(1.6997176) +251(1.4428055)]
=~ Y, =2.3275055 = y!, = x, +y, =0.7+2.3275055 = 3.0275022 = f,

N7
Vs =Y, +7g—0[1901f7 -2774 f, +2616 f; —1274 f, +251f,]

=2.3275055 + ;)T:) [1901(3.0275022) — 2774(2.6442356) + 2616(2.2974417)

—1274(1.9836494) + 251(1.4428055)]
“ Y =2.6421209 =5 ! = x, +y, =0.8+2.6421209 = 3.4421209 = f,

As pointed out in section 2, there are two types of multi-step methods; Explicit multi-step

methods, and Implicit multi-step methods. Adam-Bashforth formula is an example of an
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explicit multi-step method, with j = 0. We will now consider the Adam-Moulton formula,

which is an example of implicit multi-step methods, with j = 0.

2.2.2 Adam-Moulton Formula (j = 0)

If we substitute j = 0 into Equation (xxi) we obtain

27
V4fn+| ——stm»l ]

iy 1 19
Y1 =yn+h[fn+l _Evfnﬂ i 3 1440

n+l i nl " mAn
12 24 720

The coefficients o, in Equation (xxii) are given below:

(0) 0) (0) (0) (0) (0)
k&) o, o, o; o, o,

0 1
j ke 1
S
PR e S S
13 101
PRy I o R
34 .4 ke 04

251 . 646 ° 264 . 106 19

M0 0 - 7010 720
475 1427 798 482 173 27

1440 1440 1440 1440 1440 1440

We will illustrate the use of this formula, by solving the IVP below:
y' =x+y,(0)=1, with h=0.1

The formula is as below
h y ‘ i ’
ynﬂ =yn +53[9fn+] +19fn+| _S.I;v—l +j;u—2] ’ NOte b .fn+| = yn+|

We note that y,,, is contained in both sides of the equation above. In other words the

unknown y,,. cannot be calculated directly, since it is contaiged within f,,, (ie. ¢ is
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dependent ony,,,). Help is required and to this, we engage the services of the predictor-

corrector method. The Adam-Bashforth method
h
Ynit =Vn +§[55fn _ngn—l +37fn—2 _9fn—3]

is used as a predictor, while the Adam-Moulton Method given above is used as the corrector.

Both methods will now be used to solve the above IVP.

Using the classical four-stage Runge-Kutta method, we get the starting values as:

¥, =1.110342; f, = y,; =1.210342

y, =1.242806; £, = y, =1.442806
y; =1.399718; f, = y; =1.699718

To determine y; we will use the predictor.

Atn=3
h
Ya = Vs +EZ[55f3 =397, +37f, =-9/,]

L8 A =1.583641292;fA4 =y, =1.983641292

We will now make use of the corrector

h
Ya: =V +’2_4[9f4 +19/, =51, + Ai];
-y, =1.58365019; f, =1.98365019

Atn=4
h .
Y4 =Y +§[55f3 ~39/;+37 4, =970}

Vs =1.797443843;/}5 =2.297434117
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= ys =1.797443843 ;jA'5 =2.297434117
= ys =1.797443843

By similar computations, we get

¥ =2.0442397
¥, =2.3275082
v, =2.6510854

As we stated earlier, Linear Multi-step Methods (LMM) sacrifice the one-step nature of the
algorithm, but retain linearity with the advantage that it is easy to estimate errors, but

difficult to change steplenght. On the other hand, R-K methods appears to have gone in the
opposite direction; sacrificing linearity while retaining the one-step nature of the algorithm;

with the advantage of easy change of steplenght, but difficulty in error estimation.

So, we are left with an ironical situation: with LMMs it is easy to ascertain when a change in
steplenght ir required, but difficult to change steplenght. While with Runge-Kutta methods, it
is Md to determine when a change in steplenght is required, but easy to change the
steplenght: Another disadvantage of LMMs is that they are not self starting. They rely on

one-step methods to obtain initial values to begin the computation.

A major advantage of multi-step methods over R-K methods, is that for the R-K methods
many function evaluations are required in taking one step (six in the case of a six-stage

method). On the other hand using the Adam-Moulton method as an example, the predictor

requires only the evaluations of f, and the use of the corrector requires the additional
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‘ evglu_atidn of f,,, for each iteration performed. There is obviously, a reduction of

computational time.




CHAPTER THREE

DERIVATION OF A NEW SIX-STAGE RUNGE-KUTTA SCHEME

An explicit s-stage Runge-Kutta (R-K) method for the numerical integration of a dynamical system
dy . :
— =) (i

with step size h, is a map (where fand y are vectors)

(x, ) > (x+h,y+h*b[11*k[1]+...+ h * b[s] * k[s]) (i)
with “intermediate stages” k[1],...k[s], given by

k(1] = f(x, »),

k[2]= f(x +c[2]1* h,y + h * a[2,1] * k[1]), (i)
k[s] =f(x+c[s*1*h,y+h*a[s1]*k[1]+ -+ h*a[s,s — 1 * k[s - 1])

Various numerical schemes arises from different choices of the Butcher parameters: the (sxs)-matrix

a[i,j], the weights b=[b[1]...b[s]], and the abscissae c=[0, c[2],...,c[s]].

3.1  The Philosophy Behind R-K Methods
Recall the IVP
y'=f(x), y@)=a (iv)
of all computational methods for the numerical solution of this problem, the easiest to implement is

Euler’s rule

yn+l=yn+hf(xn’yn) } .
V)
=y, +hf,

It is explicit and being a one-step method, it requires no additional starting values (i.e. it is self-
starting) and readily permits a change of step length during the computation. Its low order of accuracy

of course makes it of limited practical value. Linear Multi-step Methods (LMM) achieve higher orders,
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by sacrificing the ‘one-step nature of the algorithm, while retaining linearity with respect to

Jnsjs JusjsJ =0,,---, k. However, it is possible to achieve an even higher order, by sacrificing linearity

but preserving the one-step nature of the algorithm. This in essence, is the philosophy behind the
methods first proposed by David Runge and subsequently expanded by Wilhelm Kutta, and Heuﬁ.
Runge-Kutta methods thus, retain the advantages of one-step methods and may be regarded as a
particular case of the general explicit one-step method
Yust =Vn the(x,, 9,3 h) (vi)

Simply put, R-K methods are designed to approximate Taylor’s series methods, but have the advantage
of not requiring explicit evaluations of the derivatives of f(x,y); where x often represents time (t). the
basic idea is to use a linear combination of values of f(x,y) to approximate y(x). this linear combination

is matched up as closely as possible with a Taylor series for y(x) to obtain methods of the highest

possible order q.

We note that an s-stage R-K method involves s function evaluations per step. Each of the functions

k. (x,y;h), =1, 2 ,... , s, may be interpreted as an approximation to the derivative y'(x), and the

»
s

function ¢@(x, y;h) as a weighted mean of these approximations. Consistency demands that Z b, =1,

r=1
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If we can choose values for the constants b, ¢, as such that the expansion of the function

¢(x,y; h) as
#(x ;)= bk, , i
p r=|
kl =f(x’ y)’
: (vii)
r—1
k, = f(x+c,hy+h) a k,),r=23,-,R
s=|
r-1
=) a,,r=23,--,8
2 5
in powers of h differs from the expansion of the function ¢, (x, y;4) given by
: h (r-1
¢r(x,y;h)5f(x,y)+5f(x L f (x,»)
o= R
iy viii
,,o(r+1)f/ (Xn>¥n) (viii)

where

q=1,23"'a(p_1)

only in the p™ and higher powers of h, then the method clearly has order p. In (viii), we are assuming

that y(x) € C”[a,b]; that is y(x) possesses p continuous derivatives for x € [a,b].

There is a good deal of tedious manipulations involved in deriving Runge-Kutta methods of higher

orders. The process for deriving a given R-K scheme, can be summarised into the following three

steps:

Stepl:

Obtain the Taylor series expansion of &, (the slopes) defined by
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kr=f(zr9yn+hz'adkj)’ (’x)
Jj=

where
z,=x,+c,hr=K)s
about the point (x,,ys) in the solution space.

Step 2:

Insert these expansions and c, (¢, = Za,].,r =1(1)s) into the expression for the general s-stage R-K
J=1

method, given as

Bk =ijkj,s21 (%)
J=1

Step 3:
Compare the coefficients in powers of h for both the increment function @, of the Runge-Kutta
method given by (x) above and the increment function ¢, for the Taylor expansion method specified

by (viii).

The totality of the unknown coefficients {b,,c,,a,,j=1(ls)} normally exceeds the number of

equations, so some can be chosen so as to attain some desired goals. So‘me of these goals are:

(i) to minimize a bound of the local truncation error (lte) (Raltson 1962),

(ii) to maximize the attainable order of the scheme (King, 1966, achieved this for the differential
systems y' = £(x)),

(iii)  to optimize the interval of absolute stability (Lawson 1966, 1967b),

(iv)  to reduce storage requirements (Gill 1951, Conte and Reeves, 1956, Blum 1962, and Fyfe

1966,) and
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(v)  to achieve methods that uses whole numbers for computation instead of fractions as with other

methods (Adewale, 1998).

3.2 TAYLOR SERIES EXPANSION

The general 6-stage explicit Runge-Kutta method for the solution of the Initial Value Problem (IVP)
Y'=1(xy), ¥ay)=ay; [ RxRT >R” 0))
is defined by

Vst = Vn =h®(x, y;h)

where : |
6
O(x,y;h) =) b,k,
i=1
= Ypu = Vo bk, + bk, + b3k, + bk, +bsks + bk ] (2)
where
\
kl =f(xn9yn)
kz = f(x, +c2h’yn +haZlkl )
ky = f(x, +c;h+y, +h(ayk, +ayk,)), > 3)
k, éf(xn +c,h,y, +h(ayk, +auk, +agk,)),
ks = f(x, +csh,y, +h(agk, +agk, +agk, +agk,)),

ks = f{x, +csh,y, + h(agk, +agk, +agk, +agyk, +agks)).
and

€, =ay )
€y =a; +ay |

¢, =a, ta, +a, } 4)
C; =dg tag +ag; +as

Ce =g Tag +ag +Qag +ag

Equation (4) can be re-written as:
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- et

a; =C;—ay

a, =c,—(a, +ay)

as =cs —(as, +as +ag)

ag =cs —(ag, +ag +ag +ag

kl =f(x’r’yn)=f
k, = f(x, +c,h,y, +a, hk))

ky = f(x, +c3h, y, +hl(c; —ay, )k, +ayk,]
ki =f(x, +c,h,y, +hl(c, —(a, +a )k, +a,k, +a,k;)]

J .

By substituting Equation (5) into Equation (3), we

&)

ks = f(x, +csh, y, +hl(cs —(as, +ag; +ay )k, +agk, +agk, +agk,)]

ke = f(x, +cgh,y, +hl(cs —(ag +ag +ag +ag)k, +agk, +agk, +agk, +agk; )]

Call the k,'sthe slopes, b,'s the weights, and c,'s the abscissae, r=1(1)6

We proceed, to expand each k, in Equation (6) in turn, by Taylor’s theorem:

(©6)

FGtm, ) = £ 3)+ Df(5,9) 45 D £, 9)+ 3D S (5 3) -t~ D" £ (5,9)

where D is the differential operator, defined as:

mo no

D=—+—and
ox Oy
'l mo no
D" f(x,y)= (ax Qy] f(x,»)
= Df =mf, +nf,

D f= (ma gi) f(x,y)

(ma nd
x oy

ma no

mo no

D*f = (6;-+5;)(mf +nf,)=m’ [, +2mnf,, +n’f,,

mo nd

Df= (ax !

)(sz )
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=M [ +3m*nf o, +3mn’ £, 40’ f,
-mo no
DA = m—+——— D? ! {
Fd [ax ay)( f)
25 m"fxm +4m3”fm +4m2n2fw +4mn3fxyyy +n4fm
Therefore,

ki =f(x,59,)
k,=f(x, +c,h+y, + hc,k,)

The Taylor series expansion of &, about the point (x,, y,) in the solution space yields:

1 1
ky = f +¢,hf, +c,hk, f, +5(c22h2f” +2¢,’ Wk, f,, +(c2hk,)2fw)+g((c2h)3fm

+3((czh)2(c2h)kl)fxxy +3c, h(c,hk, )zfxyy +(c, hk, )3f”y)+zi4((c2h)4fx.m
'*‘4(("2"‘)4 klf.uxy +4(Czh)2(czhk|)2fuw +4czh(czhkl)3f;m; +(Czhk|)4fm)+0(hs)

with all the terms evaluated at (x,, y,)

Replacing k, with f, we now have:

ky = f+ e f, +c,hff, +§(c2’h2fx, 126,71, +(czh)2f2fyy)+%((czh)’f,;

+3((czh)3)ﬂuy +3(C2h)3f2fxyy +(CZhI )3f3fm),+%((c2h)4fxw

+ 4(("2h)4 ﬁmy 1 4(02h)4 fzfxx)y * 4((;.2}1)4 foxm A (czh)4 f4fy»'y) 4 0(h5 )
Collecting like terms together, we obtain

wky = fHe,h(f, +ffy)+%(czh)2(fu +20, +f2fyy)+—é(czh)3(fm #3043 Sy 4 )
+2i4(c2h)‘<fw VA FAL o $AS fo 4 [ ) +O(R)

Setting

F=1. + 1,
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G=fu +2ffy + /1,
H= fra +3 Moy +31 Sy 41 F ®)

g EYG S L T (L | SRL

From Equation (8)

= k. =f+c2hF+%(c2h)ZG+%(c2h)3H+§Z(c2h)‘1

Now from Equation (3),
k, = f (x, +c;h, y, +h((c; —ay, )k, +ay,k,)
By expanding k,in Taylor series about the point (x,,y,) in the solution space, and substituting f for

k, , yields

> ky=f+chf, +h((cs—ay,)f +ayk,)f, +%‘((Csh)2fu +2(C3h)(h(é3 —ay)f +ayk,)f,
+(h(c; —ay, )f+a32k2)2fw)+%((c‘3h)3fm +3(C3h)2(h((03 —ay)f+ayk;))f o,

+3(c;A)(h((c; —ay,) f +ayk, ))zfxyy +(h((c; —ay) f+ayk, ))me)+—217((c3h)4fm)

+4(c; 1)’ (M((c5 — a5 [ +3K,)) [y + 43 h) (h((c; —a3,) [ +a35K,))" [y
+4(c;h)(h((c; —ay,) f +ayk, )’ fx»y +(h((c; —ay,) f+ayk, ))4fw)+0(h5)

with all the terms evaluated at (x,,y,).

By collecting like powers of h together, we obtain



ky=f+h(c,f, +((c, —an)f+a32k2)fy)+%h2(c§fu2c3((c, —ay)f+ayk,)f,

+((c, —an)f+a32k2)2fw)+éh3(c;fm +3c]((c; —ay) f +ank,) fo,
+3c,((c; —ay) f +ank,)’ £, +((c; —a,) f +ank,)’ £,,,)

+—2%h‘(c3‘fm +4c;((c; —ay) f +ayk,) [, +4ci((c; —ayp) f+aynk,)? fr,
+4c,((c; —ay, )f+a_.,2vk2)3fer +((c; —ay) f+ayk,)" f,,,,)+o(h*)

Substituting for k; in k3 we now have:

ky=f+h(c,f.+((c, —a,z)f+a32(f+c2hF+%(c2h)2G+%(czth))fy)

+%h2(c32fn 2¢,((c; —ay,) f +ay, (f+c2hF+%(c2h)zG))fxy +((c;—ay)f
+ay, (f+c2hF+%(c2h)2G))2f”,)+éh’(c;‘fm +3c32((c3 ~dy )f +a5,(f +c,hF)) [,
+3c5((cy _032)f+032(f+02hF))2fo +((c; —ay) f+ay, (f+cth))3fm)

+%h4(c;fnxx +4c; ((c, —ay)f+a3u 1) f o +4c; ((c, —asz)f+aazf)2fmy

+4c;((cy —032)f+a32f)3fxm +((e; —asz)f+aazf)4fm)+0(hs)

On expanding, we get
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ky=f+hc,f, +hc,ffy —hay, ff, +ha, ff, +h2c2a32ny +%h3c22a32ny +éh4c§a321.{fy +%(}"c’)2fn
+(hc3)2ﬁ"xy —hzc3a32ﬁ’,}, +hzc3a32]}’,y +h3czc3a32foy +%h‘c§c3a32Gfxy +—:12-h2(c3f—-a32f
+a32f+hczanF+-;—hzczza32G)2f», +—;—(hc3)3fm +%h3c§(c3f—a32f+a32f+hc2a32F)fm
he, (¢ f-ayf+ay f+he,a, F) f,,, +éh3(c3 f-ayf+a,f+hc,a,F) f,,
+%(hc3)"fm, +%h (c3f Ay, [ +ay ) f oy + h4 s f - a32f+a32f) T
—h‘c,(c3f—032f+a32f)3fxm +Lh4(csf—anf+anf)fw +o(h*)

ky = f+he,(f, + ff,)+h c,an Ff, +— h’czag‘.2 Gf, +—é—h‘c;aany +—;—(hc3)2fn
+(hey)? S, +hcyca, B, +—£h4c22c3a32Gf,y +%h2(c32f'2 +2hc,cyay, Ff +h’cjcya,Gf) f,,
+%(hc3)3fm +%h3c§jfuy +—;—h4czc32a32Ffw +%h3c3 {eif? +2hc203a32Ff)f
+%h3(cgf3 +3hc,cia,Ff)f,, +—(hc3) At + h4 ﬁ’my+ h" s s

o g o +—h4 o ()

k, =f+h03f'+h2c2a32ny +5h3c22a3szy +gh ‘cran HY, +%(hc,)2(fn +2ff 0 + 1)
+h’c,c,a, Ff,, +%h‘c§c,a32Gfxy +%h2 (2hcyc ay, Ff +hicjeya5,Gf) f,,
+%(hc3)3(fm +3 My +3S [y +f3fm)+%h4czc§a32any +h'c,ciay, Fff,,,
+%h‘c2c32a,2Ff2fm +%(hc3)4(fm +4ff ey +4f2fnyy +4f3fxm, +f4fw)+o(h5)

From Equation (8), we now have

k; = f+he,F +h’c,ay, Ff, +%h3c§anty +-;—h4q§a32ny f—;—(hcs)zG
+h’cyc,a, Ff,, +%h"c22c3a32Gf,y +—;—h2(2hc2c3a32Ff+hzczzc3a32Gf)fW
+%(hc3)’H+—]2-h‘czc32a,2Ffw +h‘c2c§a32Fff,W +%h‘c2c§aan’fm

1
+§(h03)41+0(h5)
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o

Collecting like powers of h together, we arrive at

ky = f +he,F +h’[c,a, FY, +%C§G]+h3[%c22a326fy +c,¢5ay, Ff, ++c,c,a5, Fff,, +%C;H]

3 1 1 1 1
+h4[‘6‘c;asszy +Eczzcsasszxy +—2-c§c3032fo», +—2—czc§a32Ff“y "‘czcszastffw

1 1
+502632032Ff2f»y +2_4(hC3)4I]+0(h5) (10)

Next, we have;
ky = flx, +hey,y, +h((c, —(ag, +ag )k, +ank, +ak;)]
When we expand K4 in Taylor series about the point (x,,y,) in the solution space, and replace k; with

f, we obtain:
ky=f+hc f,+h((c,—(a,+ay))f +a,k, +a,k;)f, +—;—[(hc4)2fn +2(hc,)h((c, —(a,, +d43))f

+agnk, +agky) f,, +h (¢, —(ay +ay))f +a,k, +a43k3)2jj{v]+—é—[(hc4)"fm

+3(he,) h((c, —(ay, +ap))f +agk, +agks)f, +30rc, Y ((c, —(ay, +a,))f +ayk,
. +au k) [, +h((c, —(a,, -;-a“ NS +a,k, +a43k,)3fm]+21—4[(hc,,)4fm

+4(he, ) h((c, —(ag +a))f +agk, +auk,) fr +4(hc,) B (¢, —(ay, +a,) f

+auky +a4ky)? [ogy +4he Y (¢, —(ag +a))f +apk, +anks)’ £y,

+h* ((c, (@ +ap)f +auk, +agky)' £, 1+0(h*)

all the terms being evaluated at (x,,»,).

. Substituting k and kj into ks we have
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k,=f+hc,f, 4-h[c4f—a42f—a,,f+a42(f+c2hF+—;-(czh)2G+-é—(c2h)3H
+a, (f+hc3F+h2c2a32ny +%ﬁzc§G+—;-h3c§a32ny +h3czc3a32foy +h3czc3a32Fffw'
— SC;H)]fy +l(hc4)2fu +h2c4[c,,f—a42f—a43f+a4'2(f+c2hF+l(czh)2G)
+a,(f+he,F+h’cya, Ff, + HE) I + h leof —anf-auf
+d, (f+cth+5((:2h)2G)+a43 (f+hc3F+hzczaJ'2ny +§h2c32G)]2f},y +%(hc4)3fm
+%(hc4)zh[c4f—a42f—a43f+a42(f+c2hF)+a43(f+hc3F)]fxxy
+%(hc4)2hz[c4f—a42f—a43f+a42(f+c2hF)+a43(f+hc3F)]2fW

+—;-h3[c4f—a42f—a43f+a42(f+c2hF)+a43(f+h03F)]3fm

1 1
+§(hc4)4fxxu+g(hc4)3h[c4f—a42f_043f+a42f+a43f]fxxty
1 1
+g(hc4)2hz[c4f’a4zf"a43f+aazf+a43f]2fu;y+_(hc4)h3[c4f_a4zf_a43f
+a42f+a43f] fw 24h [eof - aazf auf‘*'auf"‘anf] f +o(h’)
: 1 1
ky = f+he f, +he ff, + K cya,, Ff, +§h3c22a42ny +gh4c§a42ny + hzc3a?,3ny +hc,ana,Ffy
5
+2h3 c;a,Gf, +— h"czana“ny2 +h'c,ciana,Ff,, f, + hicyciana, B, f,,

: 1
- gh"cgaBny +5(hc4)2 o thciffy, + W eyca,Ff,, + Eh‘czzc,,aqu,y +hcse,a,Ff,,

1 1
+h'c,c,ana,Ff, f, +5h“c32c4a43Gf,y +Eh2 i ff, +Peca,Fff,, +— h‘c2c4a42foyy

- 1 1 1
+h’c,c,a,Fff,, +h'cyc,ana, B, f,, +—2—h‘c32c4a43GﬂW +g(hc4 Yife +E(hc4)3ffuy

1 1 1 '
+5h4c2c3auany +5h“cgcfa43any +E(hc4)3f2fm, +h'c,cian Fff,, +h'cicia Fif,
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1
ky = f+hc,(f, +ﬂy)+h2(c2a42ny +c3a43ny)+h3(5czza4szy +h3"2“32“43Ff2y
1
+—2—h3c§a4Jny +hc,c,anFf,, +hcse,anFf, + Weycan B, + Weyc a0 )
gl s L3 1 5 13 2
+h (gc:,a‘szy +—6-c3a43ny +§c2c,a42Gfxy +—2-c2a32a436fy +¢,c,ana,Ff f,

1 1 1 1
+eycayna,ff L, f, +Ec§c4a436f;y +§c§c4a4szfw +Ec;c4a43fow +'iczc}a4zFfm ‘
+h'c,cana, FYf, f,, +c,c,ana, B, 1, +_2—03C}a43foxy +eycia0Fffy, +escian B,

bl Fff Sty Ff*f )+—1—(hc Y fu+2/,+2f,)
5 €264 w566, w )36 U x »

#(00) e+ Mg 431 g+ L) 45 B0 o + 4y +4S
F41 1 ) +0(R)

From equation (8) and gathering all like powers of h together:
k,=f+hc,F+ hz(%ch +¢ya,Ff, +canFf,)+ I %c;:f{ +%c22a42G'fy
+h'c,a,,a,Ff +%h3c§a43ny +he,c,a,Ff,, +Reca, Ff,,
+Weye,an Fff,, + Hec,a,Fif,) +h' (% cy I+ % c;a, H,

1 1 1
+ gcgaﬂny 3 Ecgc,,aqu,y + Ec22a3za43Gj”},2 +o,cana,.Ff f,

1 1 1
+eyeyananFf f, + ’2“33204“43Gfxy + ) c:¢4a,Gff,, + -2—03204043ij»,

1
+5C263a42Ffuy +h'c,ciaz,a, Fff, f,, +c,ciana0Fff, £,

1 i ink 5
+—2—cscfa43any +c,c,a, Fff,, +eycia,Fff,, +5‘czc4a4zFf L

+2eclan B fy ) +olh) an
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ks = flx, +hes, y, +h((cs —(as, +as; +ag )k, +agk, +agk, +agk,)]
Expanding ks in Taylor series as before, and putting f for k; yields;
ks = f +he f, + hl(c; —(ag, +ag, +a54))f+a52k2 +agk, +ayk,1f,
1
+—2—[(hc5)2fu +2(hey)h((cs — (ag, + agy +ay))f +agk, +agk, +agk,)f,,
1
* hz((cs —(as, +agy +ay))f +agk, +agk, + a54k4)2f»»]+g[(hcs)3
+3(hey) h((es — (ag, +ag, +ag))f +agk, +agk, +agk, 15
+3(hcs)h2((cs —(ag, +ag +ay))f +agk, +agk; + a54k4)2fxyy
+ 1 ((c5 —(agy +agy +ay))f +ank, +agk, +agk,)’ f,]
1
+2_4[(hc5)4fxm +4(hcs)3h((cs —(as, +ag +ay))f +ayk, +agk, +a,k, Wics
+4(hc,)’ B’ ((c; —(as, + asy +a,))f +agk, +agk;, +ayk,)’ [,
+4(hes)h* ((cs — (ag, +ag +ag,))f +agk, +agk; + aS4k4)3fxyyy

+h'((c; — (ag, +agy +ag) ) f +agk, +agk, +ayk,) [, 1+0(h*)

when we substitute for kj, ki, and k4 into ks we would have
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ks=f+hef, +hl(cs f—as, f—a,f—agf+as (f+(:2hF+-;—(czh)2G+—;-(c2h)3H)
+a, (f+hc3F+%h2c§G+h202a32ny +—;—h3czza32ny +h’c,c,a,, Ff,, ++h’c,c,a, Fff,,
+éh’c§’H+a54 (f+hc4F+%h2ch+h2c2au'ny +h*cya, Ff, +—é—h3c}H +%h3c22a426fy
+h302a32a43;“‘fy2 +%h3c32a4Jny +h3czc4a42foy +h3c3c4a43Ff,y +h302c4a4zFﬁ”yy
+};5c3c4a43FﬂW))]fy +%[(hcs)2fn +2(hey)h((cs f—ag f—ag [ —ay f
+a, (f+c2hF+%(c2h)zG)+a53 (f+hc,F+%hzc§G+ﬁ2c2a32ny)
+a,, (f+hc4F+%h2c}G+hzc2a42ny +h2c3043ny))fxy.
+h(cs—ag, f—ag, f—ag f+a,, (f+c2hF+—;-(czh)2G)+a53 (f+hc3F+%h2c3ZG
+hc,a, FY,) +ay, (f+hc4F+%h2ch+h’czaany +hic,anFY,)) 1]

+‘;‘[(hcs)3fm+3(hcs)2h(cs —ag, f-agf-ayf+ag,(f +c,hF)+ag,(f +he, F)

+a54(f+hc4F))fm+3(hc52{12(cs —ag, f—agf—as f+ag,(f+c,hF)
+ag(f+he,F)+ag (f +he,F)’ [, + 1’ (cs—agy, —ag f—ay f+ag,(f+c,hF)

+ag, (f +he,F)+ay, (f+hc,,F))J‘f”,y]+%[(hc5)‘fm,r +4(hey)’ h((cs —a, f—ag f

—ayf+anf+ayf+ay ) +4he) B (cs—ay f—ay f—agy f+ag f+ay f+ay[)? fo,
+4(he, )R’ ((c, ‘aszf_assf_as4f+aszf+a53f+as4f)3fxm
+h4v((05—aszf-asgf-a“f+a52f+053f+054ﬂfw]+0(h5)

On evaluating ks further, we obtain
kg = f+heg f, +hl(cs f +he,ag, F + %hzczzaszG +%h3c§aszH +hc,a, F +%hzc§a53G
+hc,a,a,Ff, + %h’czzanaﬁny +Hc,cianagFf,, ++h'c,cianas Fif,,
+ éh%‘;aﬁH +he,a,, F + %hcha”G +h’c,ana,,Ff, + h’c,a,as, ) —é— Wcla,H
Ly n Ff? + L1 claga Gf, + I F
+5 30405 Gf, + h cyaza5a5,Ff, + 2 €3a43a5,Gf, + ey apa5,Ff,,

-
+ h3c3c4a43a54foy + h3czc4a42a54Fff”, + h3c3¢:4a43a54 FFILS, + _2'[(hcs)2fxx +2(he, Ya(es f
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|
+c2ha,2F+%c22h2aszG+hc3a53F+Ehzc§053G+hzcza3za”ny +hc,a54F+%h2cfas4G

+h202a42a54ny +hzcaa43a54ny)fxy +h’(cq +czasth+%(czh)zaszG+hc3a53F
+%h2c§Ga53 +hzc2a3§a53ny +hc4a54F+%h2cfa54G+hzc2a42a54ny +h’cianauFf,)’ f,1

3 é[(hcs )’ fow +3(hes) h(cs +cyanhF + heyag, F + heyag, F) f o, +3(hes B (cs +c,as,hF

+hc',as3F+hc4as4F)2fw +1’ (c, +cza52hF+hc3as3F+hc4as4F)3fm]

+5'Z[(hc,)‘fm +4h'c] fo +AR'CS fop, +4R'C{ f,, +h'C £, 1+ 0(R°)

ks =f+hesf, +h[(csf+hc2a52F+%hzc§a52G+—;—hsc;aszH+hc3a53F+-;-h2032a53G
+h’c,anagFf, +%hsc§a32a53ny +h’c,csana4Ff,, ++h’c,cya, a5, Fff
+%hsc§a,3H+hc‘as4F+—;—hchas4G+hzczauas4ny +ﬁzc3a43a54ﬁfy +%h3c3054H
1 3.2 3 2 1 h3 2 h3
+5h €005 Gf, +h caqa4a5,FF, +E ¢3a4,a5Gf, +h cyciapas kY,
5 1 '
+h3"3"4a4aas4foy +h30204a4zas4Fﬁw +h363c4a43as4Fﬁ” s, +'2“[(hcs)2fn +2(hes)h(es f
h Ly h Lo h’ B, +heydy F +~ i clayG
*c, a52F+—2-czh a,G+ c3a.53F+E c;auG+h'c,anagFf, +heyag, +—2— c,dy
. v,-"“" ]
+h’c,a,a,Ff, +h’cyaiag, Ff,)f,, +h*(cq +czc152hF+—2—(czh)2aszG+hc3a53F
; I
+.l_h2(:§Ga53 +h’c,ana,Fyf, +hc4a54F+Eh2c3a54G+h2c2aua“ny +h’canag Ff,)’ f,,]

+é[(hc5)3fm +3(hcs)2h(cs +c2a52hF+hc3as3F+hc4a54F)fny +3(hc, )hz(c, +c,a,hF
+he,an F +he,ag F) f,, + 1 (cs +c,a0hF + hesan F +he,ag FY f,)]

+-2'Z(hc,)‘[fm VAfo +Afu 44, + [ ] +O(RY)
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k= f+ hc; (f, + 1) + K c,a, FY, +%h"c§a52ny + %h‘c;aszﬂfy +h’cja Ff,
+he,ananFf] + %h3c§aﬂny + %h‘czzanaﬂny2 + h‘czcsq”aﬁfoy T
+h'cycia,,a,Fff, f,, + —;—h‘c;aﬂny +h’c,a, Ff, + %h%fa“ny
+ +h3(:2a4za’54nyz ++h'c,aa., Ff) + %h‘cja“ny + %h"czza,,za“nyz
+ %h"c:a”a“nyz +h'c,anagag Ff,) + h'ceanay Y, f, + h'cc,apay FY, f,
+h'cye,anayFif, f,, + h'cc,apag FiY, f,, + %(hcs)2 S+ (hes)? S, + Reyesag FY,,
+ %h‘cgc,qssz,y + Wcyesag Ff,, + h'cycsanag Y, f, + %h‘cfc,aﬁGf,y
+he,csaq,Ff,, + %h‘cfc,a“Gj:y +h'cyesapay FY,, f, + h'ccsapag FY,, f,
+ %(th)2 I+ Heycsan Fif,, + —;—haczzcsasszfyy + Wesesag Fif,, + h'eycsanas Fif, f,,

1
+h'c,esay Fif,, + h'c,csanay FI, f,, + h'cesapnag FiY, £, + Eh"cgzcsasJG[fyy

| 1 & 1 1 1
+Eh4czcsas4,Gﬂ‘,y "‘g(hcs)me +E(hc5)3ﬁxxy +Eh4czcszastfm +5h4c3052a53any

1 1
+Eh4c4c52a54_any +—i—(hcs)3f2fm + h‘czcszastﬁ"w + h"c3csza53Fﬁ”w + h4c4c52a54Fij

1 | O 1 1
+g(hcs)3f3fm +§h4c2c52a52Ff2fm +5h463652a53Ff2fm, +Eh4c4csza54Ff2f”y

1

+§(hcs)4[fm, 8 o TS Joy + 4 Sy + T Fp ]+ 0(R)
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by = f +he,F + 02 (c,an B, + C;au Y, +c,au FY,) + h’(%czzasszy +%c§a53ny 3 %cfaﬁcfy

2 2 2 3
+eananFf) +c,ana0Ff) +ciagay Ffy +cycsan Ff, +csesag Ff, + hoeyesagy B,
1 1 :
4 3 3
+c,c5a, Fff,, +cicsan Fff,, +c,csag Fiff,,) +h (gczaﬂny +—gc3asany

I s Loa g1 ¥y 2
+gc4a54ny +Ec2a32aSSny +'2'c2042a54ny '*'5"3“43“54ny +cy6aynaq k., f,

+e,c,apauFf f, +ecsananFf, f, +cica a0 Ff f, +c,ca,a0Ff S,
+esesapag Ff, f, +c,cianan Fif f,, + e cpapag Fif f, +csca5a4Fff ],

3
+eycsanagnFff, f,, + c,anapag Ff) + c,csapas Fff f,, + csesagag Fif, f,

+—;—c§c5asszxy +%c32c5a536f,y +%c}c,as4Gfxy +—;—c§csasszfW +—;—c32c5a53foyy :
+%cfc5a546ffyy +%czcszastfuy +—;—c3c52a53Ffuy +é—c4c,2a54any +02052‘_'stfo
+c3c§a53Fﬂn,y‘h;|— ccianFlf +%c2c52052Ff2fm, +%c,c§a5?Ff2fm +—;—c4c52a54Ff2fm,
sy B} 42 () (o + 2l 4 [3)4 2 (00) Fu 430y + 3y + L)

+§(hc_s)‘[fm FAfu + AL +AL S + £ S T+ 0(R)

From Equation (8) and further grouping like powers of h together we get

K, = f+hc5F+h2[%c52G+(c2a,2 +c,a,, +c,aq, )ny]+h3[éc53H+(—;—c§a52

1, 1, 2
+ 5 6385 . 5 64 )G, +(€,83055 + €050, + C304505, ) Ff,
+(cy65a5, +c565ag +c,C5a5 ) Ff,, +(cyc5a, +cyc5a5 +cic5a5 ) Ff ]
1 1 1
4 4 3 3 3 2.2 2
+h [EZCS I+ ngy(czaSZ +¢3a5, +c,a5)+ Eny (€305,a5 + ¢, 0,50,

2
+€3a,305,) +(€,C305,05; +€5€,0,4,05, +€,C505,a55 +C5C,A,50,

+CyCs4 05 +C3Cs 4305, ) Ef o S, +(€20383053 +€,€,805 + 636404305
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+C,Cd5 05, +€,C40,,ay +CC5a,a. ), f,, +%Gfxy (ciesay, +clega,,
+c,,2csas4)+—;—fo}y(czzcsa52 +cjciag +ciciay,)
- +—;—Ffm(c2052as2 +eyciag +e,ciay)+(c clag +oyclag +egciay ) Ff,,
- +-;—Ff2fm(ccha52 +eyciag +e,cia,)+c,a5,aa,, Ff )] +o(h) (12)
ks = f(x,+hce fr,y, +h((cs —(ag, +ag +ag +ag )k, +agk, +agk, +agk, +agks))
By expanding kg as before and substituting f for k. we have
ke =f +hegf, + h((cs —(ag +ag +ag +ag))f +agk, +agk, +ayk, +agk;)f,
\+—;—(hc6)2fn +h’ci((cy —(ag +ag +ag +ag))f +agk, +agk, +ayk, +agks)f,
+‘;"hz((co —(ag +ag +ag +ag))f +agk, +agk, +ayk, "'assks)zf)y +%(hce)3fm
+?12‘h3"62 ((cs —(ag +ag +ag +ag)) [ +agk, +agk; +agk, +agks) [,
+-;—h3c6((c6 —(a, +ag +ag, ;065))f5+ ank, + agk, +ayk, +agks)’ £,
+%h3((c6 —(ag, +ag +ag +ay))f +agk, +agk, +a64k4‘+ Ak Y foy +21_4(hc6)4fxm
- %h“cz ((cs —(ag +ag +agy +ag))f +agk, + agk, +agk, + agks) fr,
+%h“c§((c6 —(ag +ag +agy +ag))f +agk, +agk, +ayk, +agks)’ f..,
+éh‘c6((c6 —(ag, + 84 +ag +ai))f +agk, +agk, +ayk, fa“k,)’fw

1
+2—4h‘((c6 —(ag +ag +ag +ag))f +agk, +agk, +ayk, +agk)' £, +o(h’)

with all the terms eva]uated at (x,,5,)

Substituting for k;, ks, k3, ks, and ks into ke:
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ke =f+hcyf, +hl(cs —(ag, +ag; +agy +ag))f +ag, (f+cth+%(c2h)2G+%(c2h)3H)
+ay, (f+hc3F+%h2c32G+hzcza32ny +%h3c22a32ny +h’cyeya, Ff,, ++hc,cia, Ff,,
; +—61—h3c33H)+a64 (f-iihc‘,F+—;—h2ch+h2c2a42ny +h’ca, Ff, +é—h3c:H+%h3c§a4szy
.+h3cza32a43{"f; +%h3c32a436fy +h’cyca,Ff,, +he,cqa Ff,, +heyca, Fff,

‘ +h3c"_3c4a,,_,Fffw)+a65 (f +he,F+h® %h2c§G+hzcza52ny +h’cyau Ff, + h'c,ay FY,
+%h3 TH+— 5 h3cza52ny +%h"c§a53Gf}, +%h303a54ny +h3c2a32as3ny2 +h3c2a42a54ny2
+h'c,apay, Ff] +WcyesanFf,, +hcicianFf,, +hec,alFf,, +We,ciag FYf,,
+h’cyesa, Fif,, + hcyesaq FiF)NS, +%(hcﬁ)2fx, +h’cg[(cs —(ag +ag +ag +ag))f
+a62(f+c2hF+%(c2h)2G)+a6,(f+hc3F+%h2c§G+h2c2a32ny)
+a64(f+hc4F+—;—h2ch+h2c2a42ny +h'cya, Ff,)+ag(f +hesF +h? %h2c§G+h2c2a52FfY
+h*c,ai Ff, + h'c,ay Ff )N, +—;—h2[(c6 —(ag +ag +agy +ag))f
+a62(f+cth+%(c2h.)2G)+a'm(f+hc3F+—;—hzcszG+hzcza32ny)+a64 (f +hc,F+
—;—hchG+h2c2a42ny +h’ca, Ff,) +ag(f +hesF+h? —;—hzcszG+h2c2a52ny +h’ciag Ff,

he,ayFf OV f,, += (hc6)f +— h3 (cs —(ag +ag +ag +ag))f : -
+a62(f+c2hF)+aG3(f+hc3F)+a64(f+hc4F)+a65(f+hcsF)]fw

—hcil(cy —(ag +ag +ag +ag ) f +ag (f+c,hF)+ag (f +he,F)+ag, (f +he,F)
+ag(f+hes I £, +%h3[(c6 —(ag, + g +ag +ag)) f +ag (f+c,hF) +ag(f +he,F)
+ag (f+he, F)+ag (f+hesF)Y £, +§12(hc6)‘fm, +—;—h4c2[(c6 ~(ag +ag +ay +ag))f +ag
tagf+ayf +agf1 + h4 2((ce —(ag +ag +ag, +a65))f+a62f+a63f+a&f+a§5f)2fm
+—;—h‘c6((c6 —(ag, +ag +ag +a’65))f+a62f+a§3f+a64f+a65f)’f,w

1 "
+-2:h“((c6 —(ag +ag +ag +a))f+anf+agf+agf+as)'f,, +oh’)
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- 1 5. o ANy
ke=f+he,f, +Hc,—ag, f—a,f-a,f-asf+a,f +c2a62hF+5czh a620+gcih an,H
b gy R ~ | B 3
+a63f+hc3a63F+—2—h c;a,G+h'c,anagkf, +Eh'czaasazszy +h'c,c,agay, Ff,,
1 1 <

+h3c2c3ix32a63Ffo. +gh"c;a63H+a(,‘f+hc4a64F+5l_tcha64(x+h2c2a42a64ny +h’ciaay Ff,
ROER Halne? Gf, +h’ B2+ Lpic? Gf, +h’ F

6 Cylgy +2 rc,anagUf, +hc,a5dsag f; +‘2‘ C30,3dg, fy"’ CyC4apdg, fxy
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3.3 Generation of Systems of Equations and their Solutions

We will now slot in the expressions for k,.k,.k, .k, .k and k into (2), to obtain an expression for
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By opening brackets and collecting like powers of h together, we obtain
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. by adding same terms together, and re-arranging, we get

‘ VA F Al AL 34 i # 1 S Y AT o AT, 46 S
SBJ2 12, Sy M Sy 3T Sy ¥4 S Sy ¥ IBI S Sy #1210 21,
TR LT R e A R M SN R AT B S L
AN P ot LT

Sl = L4 f, (fo 43y ¥ oy + L2 S )+ 8 [ 428 + £,
R 230, + L L) U ¥ 2y + S )2 frong + B}
FTo o 4 )46 f oy [+ ) 12, (o + ) 4672 S o (f+ 1)
F107, oy e + 1) 43S Sy o+ )4 2L fry

B =1+ny4Gfxy +4foyy +ny2 +ny3 +7foyfy +6Ffm +12Fffxyy +6Ff2fm
 H10F, £, 43y 42 f

by collecting like terms together, and factorizing we now have

Y =1+ Hf AG(f + [, + [ (GH+Ff )+ 6F(f o + 2 + [ f )
EFU0N T 438 S, TR 1)+ 21 [y

we now slot in the expressions for y', y", y", y" and y" into Equation (15), to give

3 1 1 1 1
=V, W, +=hF+—hG+—-h'Ff, +—h*H+ h G —h F
y 1 =Vat VY, 2 6 6 Trn 24 24 7y # 24 7

+;h Fff,, +1h ¢ +Lh I+Lh SHf, + LhG +ih’fo +Lh Gf]

120 120 30 30 120
1 o 1 A A il

+1—2-6h Ff; 1_26" Ff f, + h Ff,, h Fff,, + h ik PN h Y, Sy

+Eh . F, +—h f fm+o(h ) (16)

Next, we proceed to equate as many terms as possible in Equations (14) and (16), to obtain the coupled

system below:
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St L

b, +b, +b;+b, +bs +b =1 @)
b .
b.civbic, b0, +bc, +be, = 3 (i)
1
b2c22 +b3c‘32 +b4cf +b,c52 +b6"52 =§ (#ii)
1 :
b,c; +byc; +b,c; +bsci +be; = = (iv)
|
b,c; +byc; +b,c; +bsc; +bycy =§ v
2biay, +c)b,ay, +cibay, +cybsag, +cibsag, + ¢ biag, + ¢, bgag, +cibgag +c byag,
: 1 ’
+eba, = 3 (vi)
2 35 2 -y 2 S o 2 2
& bay, +cybsay, +csbiay + ey bsag, +cibsag +cybsag, + cybgag +cibgag + cybgag,
1 :
+c52b¢§a65 = — (vii)
12
3 3 3 3 3 3 3 3 3
6;bia, +cyb,a,, +c3b,a,, +cybag, + c;baag, + ¢ bag, +cybgag, +cybag +c bgag,
3 1
+ciba, = — (viii)
50605
20
ocha, +eeba, +eeb,a, ,‘*‘-czcsbs-a.sz +eyesbsag + ¢ ebsag, + e, cbga,
1 ]
+€3C4D5a; +€4Csbsag, +C5Cebsags - = § (ix)
2 gl at 2 2 2 2 2
o 6bay, +eyeb,ay, +cieba, +cyesbiag, +ciebag, + ciesbag, + cycgbag
+c5cebsag +cicgh sceb =9
C3Cs0A53 + C4CsDsAgy + C5CxDA(s = E (x)
2 2 2 ) 2 2 2
¢,6bsay, +c,cibyay, +cicibiay +c,¢5bsag, + cicsbiag +c csbsag, +c,cebgag
+c.clba,, +c,cth 2p e 2 (xi)
3C606 63 + €4C6 06064 + C5C6 Vs =10 X1
c,bayna,, +?2bsaszass +e,ba,a4 +cibsagag + ¢ bgayag + ¢ bgagag +c,byagag,
1 e
+¢,b4a5,a45 + C3bga53a45 + € bas,ags = 24 (xii)
’b,a..a,, +c2b +cibagag, +c2b.agag +c2baga. +cba,ay +cbasa
€30403,0,3 T+ Cy 0505, As3 + € 0504505y + C305043A54 + Cy0503Ag3 T €y 060404 + C3060,3064
1 .
2 2 2 il
+Cyb55y g5 + C3b5a5304 + Cybgau A = 60
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2 2 2 2 2 2 2
c,b,ana,, +cybagag +cybsagag +eybsagag +eybgayag +cybgag,ag +c; bsaag
1
60

c,c;ba,a,, +c,c,b,a5a,, +c,c,bsay a5, +c,¢,bsa, a4 +c5¢,bsaas, +cyc5b5a5 a5,

2 2 2
+eybgag,aq +csbsagag +cibsagag (xiii)

+€,05b5a,a5y +€3¢5b5a,3a4, +¢5C3b6a Y, aG + €3¢ by ag +63¢,bga3a6 +C,C5bsas5ags
+eyesbgagag +c,cibgagag +c,c0bgaynag +c,c0bgay,ag +c,64bga g ay +cyc6bgagag

1 .
+c3¢4bagaq5 +c,c5bgagaq = (xiv)

12
c;bsanagag +c,bsaganaq +c,baya5a4 +c,bgagasag +cybgagagag =Eb‘ (xv)
It is worth noting here that Equations (i)-(xv), are the necessary conditions for a Runge- Kutta method
to have order five. We must also state here, that there are actually twenty equations, but as can easily
be obsewed from Eq. (14), some of the equations have duplicates. So, to avoid solving the same
equation twice or even thrice in some cases, we considered only one of such equations, in each case.
Specifically, Eq (ix) occurs twice, Eq. (x) occurs twice also, Eq. (xi) occurs thrice, énd Eq. (xiv)

occurs twice. These amounts to five equations. Hence, we are left with fifteen equations.

Now, to compute our list of equations, we recall Eq. (5):

o AT _ (xvi)
a; =¢; —ay (xvii)
a, =c,—(a, +a,) (xviii)
a, =c;,~(a, +ag +ay,) (xix)
Ay =Cs —(ag +ag, +ag +ag) (xx)

So, altogether, we have twenty equations with twenty-six unknowns:
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g

¢, G ¢ Cs Cs
ay a, ay as ag
as ) as, as

Ay asy Qg

as, A

Qs

The number of unknown coefficients can be determined from the simple formula where s is the

s(s+1)
2

stage number of the process.

Thus we have six parameters family of solutions for a six stage method of order five; that is six
degrees of freedom in assigning values to some of these variables. The twenty equations can be
divided into three separate groups:

Group One

|
—

b,+b, +b, +b, +b, +b;

b,c, +bycy +b,c, +bscs +bge

2

b,cl +bycl +b,c! +b,c? +b,cl . (17)

b,c; +b,ci +b,c; +bscl +bc]

4 1 4 4 4
b,c, +b,cy +b,c; +bses +bge,

In the first group, we have five equations with eleven unknowns. Values will be assigned to
b,,c,,c;,¢,,¢5 and cs. b, is chosen, because it occurs only in the first equation. c,,c;,¢,,c; and ¢,
will be assigned values, so as to get a linear equation. When Eq. (17) is solved, we will have values for

b,,b;,b,,bs and by, in addition to b,,c,,c,,c,,c; and c; .
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. =

Group Two

6bay, +cba,, +cib,a,; +c,biag, +cbag +cbsag, + ¢,bgag, +cibgag +c,bgay,

1
+cha,, = —
5%%s
6 :
2 2 2 2 2 2 2 2 2
e bsay +c;b,ay +cibyay, +cybag +csbsag +cgbag +cibyag +cibgag +cibyag,
2 1
+cshea = —
5% %6s
12

3 3 3 3 3 3 3 3 3
c,ba,, +c3b,a,, +c3b,a,, + ¢ biag, + cybsag, +c,bag, +cybeag, +cybag, + ch.a
1

+ c,’bﬁa“ = 2—0

c,6hay, +cycb,a, +eic,bia,; +cycsbas, +cieibsag, +c,cibiag, +cycebay,
1 i
+¢5¢4b4a56, 1.—0,,c6b6a64 +CsChs s = g
cle.b.a., +c2cb,a,, +cic,b,a, +cicb.a, +cicba. +cicbha., +ccbha
23 3732 2¥474™42 3V474743 > A, e, il 7 ) 3575783 45558 27676762
e h
15
¢,clba,, +c,clba,, +c.clh,a, +c,clb.a., +ceclb.a. +c,cba., +c,clba
2630305, + 6,640,044, +C3€,0,043 +C,C505a5, +C3C505a53 +€,C505a5, +CyC5 D0,
2 2 2 o, 1
+¢5¢5b4ag, +c,cobgag, +cicbgagg . Z 10
6,000, +Cybsagag + c,bsaga, +cbsaya, +c bgagag + e bagag +cibgagag,
i
24

+¢3C4bsag, +Chebeag, +clcgbga

+¢,b5a5,a4 + cbgagag +c,byas,ag

¢3b,a5,a, +c3bsayag +ciba,ag, +c1bia,a,, +cybas,ag +cibgagay +cibagag,
1

60

6,¢3baza, +cy0,biaya,, +cy05b5aya5 +oyc,bsa,a +oicbsagag +eycsbsagasg,

2 2 2
+cybgagag +c; bsagag +cybgas,ag

+€,C5b3a4 a5y +€3C5b5a43a5, +€,C3bsa3 ag +C1C4bea 4, a5y +C3€,D6a4306 +C5C5bsas A

+eyesbgagag +c cbgagag +c c6bgasag +c,cbgagyay +oscgbsagag +c,csbgagag

, 1
+¢3C6bgas;ags +c,Cobsas,ags Ty
¢ybsanagag +cbgayagag +c,beayagag +c,bgag,aza4 +cybgagagag 120 a8)

For this second group of equations, we shall make use of values obtained from the first group, to solve

for as,,a,,a,,05,05,05,06,04,a4 and ag.
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Group Three

a4 =C,

a; =¢C; —ay

a, =c,—(a, +a,) > (19)
as =c¢; —(a;, +a, +ay,)

ag =Cs —(ag +ag +ag +dg5) ; ]

In summary, values will be assigned to b,,c,,c,,¢,,cs and cito get b,,b,,b,,bs b,
Ay, 5 0yy,04,05,,06,05,0,,0,,05,05,05,,0¢ ,d¢ ,dg, and ag. The values of all the unknowns, will
then be substituted into Eq. (2) and (3) to get the desired scheme. As a reminder, Equations (2) and (3)
are:

Yuut =V, + bk, + bk, + bk, + bk, + bk + bk ]
and

k=1 (%, 5,)

k, = f(x,+c,h,y, + hayk),

ky = f(x, + c;h+ y, + h(a; k, + ayk,)),

k, = f(x,+c,hy, +h(a,k, +a,k, +a,k,)),

ks = f(x, +csh, y, +h(ask, + a5k, + ag;k; +agk,)),

ks = f{x, +csh,y, + h(agk, + agk, +agk, + agk, + agk;)).

3.4  The New Six-Stage Runge-Kutta Method of Order Five

We will now proceed to assign the following values to some of the free parameters
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il
90
c, =1
el |
C, ‘—"5
1 b (20)
C4 =—5—
1
C5 =Z
3
Ce =Z

In choosing the above values, the goal was to get numbers which when substituted into Eq. (17), would
produce a matrix that has a solution, and that would also combine well together to produce a scheme,
that is of high accuracy, comparable to that produced by other schemes of the same order. Unlike the
old days, when schemes were developed for easy desk top use, these days computers are at our

disposal, to solve these schemes, so too much emphasis, was not placed on ease of desktop use.

Equation (20) would now be substituted into Equations (17), and the resulting systems of equations
would be solved using MS-Excel Paste Function and Numerical Solver respectively. For the first

group of equations we have the following augmehted matrix:

J

: :
S G | 1 1 L3 i

90

it TN N T e A0 S |

TR e ]

BN e S

. Ba 3163

T e et

8 125 64 764 4

s 3 o8}

% 16 625 2567256 -5 ]

On solving the matrix above, the following results were arrived at
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b, =0.077777777778 = x
90

b, =0.133333333333 = ]—25-
b, =-1.0516x10"7 =0 ! 1)
16

- by =0.355555555556 =
45

b, =0.355555555556 :%

These values along with those assigned tob,,c,,c,,¢c,,c; and c,, would now be substituted into Eq.

(18) to solve the second group of equations. On substituting, we get the coupled system of equations
below.

0.13333333333a,, +0.3555555555 6a., +0.17777777778a,, +0.0711111111 124,
+0.35555555556a,, +0.17777777778a,, +0.0711111111 12a,, +0.088888888894,,
= 0.1666666666 7

0.13333333333a,, +0.3555555555 6a., +0.08888888889a,, +0.14222222222a,,
+0.35555555556a,, +0.08888888889a,, +0.14222222222a,, +0.02222222222a,,
= 0.083333333333

0.13333333333a,, +0.3555555555 6a,, +0.0444444444 4a, +0.00284444448a,,
+0.35555555556a,, +0.04444444444a,, +0.00284444448a,, +0.0055555562 5a,
=0.05

0.0666666666 6a,, +0.08888888889a., +0.04444444444a,, +0.01777777778as,
+0.26666666667a,, +0.1333333333 3a,, +0.05333333333a,, +0.0666666666 7,
=0.125

0.06666666665a,, +0.088888888894a,, +0.02222222225a,, +0.00355555556a,
+0.2666666667a,, +0.06666666675a,, +0.01066666668a, +0.01666666875a,,
= 0.06666666667
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0.03333333325a,, +0.22222222225a,, +0.01111111125a,, +0.044444444454,

+0.20000000025a, +0.10000000125a, +0.0400000005a,, +0.050000000625a,;
=0.1 : '
0.35555555556a,a., +0.35555555556a,,a,, +0.17777777778a ,a,, +0.35555555556a,, a,,
+0.35555555556a,,a,, +0.17777777778a,,a,, +0.35555555556a,,a, +0.17777777778a,a,
+0.07111111112ay,a,, = 0.041666666667

0.35555555556a,a, +0.35555555556a,,a., +0.08888888889a,,a,, +0.35555555556a,a,,
+0.35555555556a,,a,, +0.08888888889a,,a,, +0.35555555556a,,a,, +0.088888888894.,a,,
+0.014222222224a,,a,, = 0.016666666667

0.26666666667a,,a, +0.16000000002a,, a,, +0.080000000001a,,a,, +0.4444444445a,,a,,
+0.33777777782a,,a,, +0.168888888891a,,a,, +0.35555555556a,,a,, +0.17777777778a,a,;
+0.07111111112a,,a,, = 0.08333333333

0.35555555556a,,a,,a, +0.35555555556a,,a ,a,, +0.35555555556a,a,,a
+0.35555555556a,,a,,a, +0.17777777778a ;a5,a,, = 0.008333333333 (22)

On solving the coupled (non-linear)system of equations above, the following results were obtained

a,, =—0.749655737
a,, =0.560058106
a, =0.341486157
a,, = 0.045073568
a,, =0.353037791
~0.405218409
a,, = 0.290909052
a, = 0331676697
ay, =1.359792241
Ay =—0.477547722

r (23)

Ay,

Substituting Equations (20), (21), and (23) into Equations (2) and (3), we would have our new six-

stage Runge-Kutta scheme to be:

7 i 2 16 16
= W—k +—k, +—k,—k. +—k
Y1 =Yn t [90 179072 15 45 T 45 6)

Ve =V +—9%[7k, +7k, +12k, +32k, +32k,]
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where =

2 kl V=f(xn9yn) .
k2 =f(x:i'+hayn +hkl)

k, = flx, 4}12'-, ¥, +h(1.249655737k, —0.749655737k, )]
k= flx, + g ¥, — h(0.701544263 1k, - 0.5600588106k, — 0.341486157k,)]

k, = flx, +§, v, +h(0.25710705k, + 0.045073568k, +0.353037791k, — 0.405218409%, )]

ko = flx, + 20y — h(0.754830268k, —0.290909052k, — 0.331676697k, ~ 1.359792241k,
4 | ,
+0.477547722k,)] i N v

84




CHAPTER FOUR

APPLICATION AND COMPARISON OF RESULTS.

In this chapter, we use the new six-stagc Runge-Kutta method to solve various
differential equations, and also compare the solutions with those obtained using the
Adam-Moulton method, Adam-Bashforth method, the classical four-stage Runge-Kutta
method, and Lawson’s six-stage method, of order five.

In instances where the exact solution exists, we would also compare the results obtained

from the new scheme with that of the exact solution.

4.1 Comparison with Adam-Moulton and Adam-Bashforth Methods

We will now proceed to use the new six-stage Runge-Kutta method of order five to solve:

the differential equation:

y'=x+y;3(0)=1,h=0.1
Ynit = Va +%[7k| + 7k, +12k, +32k; +32k, ]

Forn=0

ky = f(x4,)0)
= f(0,1)

k, =0+1

k=1

k, = f(x, +h,y, +hk,)

= £(0.1,1.1)
k,=0.1+1.1
ok, =12
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k, = flx, +g, Vo +h((0.5+0.749655737)k, —0.749655737k, )]

= f10 +92'—1,1 +0.1((0.5+0.749655737) — 0.749655737(1.2))]

= f[%'1 1+ 0.03500688526]

- =0.05+1.03500688526
-k, =1.08500688526

k; = flx, +‘gs}’o>+h((0-5+0-749655737)k| -0.749655737(1.2))]

=f (92'i ,140.03500688526)

=0.05+1.03500688526
~ ky =1.08500688526

k, = fIx, +g, o +h((0.2—(0.560058106 +0.341486157)(1)) + 0.560058106(1.2)

+0.341486157(1.085006885))]
= £(0.02,1.03410402885)
=0.02+1.03410402885
sk, =1.054104028

ks = flx, +§, Yo +h((0.25-(0.045073568 +0.353037791—0.405218409)(1))

+0.045073568(1.2) +0.353037791(1.085006885)
—0.405218409(1.054104028)]

=k, = f(%l,1+0.02671014084)

5

=0.025+1.02671014084
ks =1.0517104

ke = f10+ 0—431 J—=0.1(0.754830268(1) — 0.290909052(1.2) - 0.331676697(1.085006885)

—1.3597922441(1.054104028) + 0.477547722(1.0517104))]
= £(0.075,1.08852527906)
= 0.075+1.08852527906
ok =1.163525279
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h
=DV =Y +§6[7(1)+ 7(1.2) +12(1.08500688526) + 32(1.05417104) + 32(1.163525279)]

=1+ %01[7 +8.4+13.02008262 +33.65472448 + 32.23280893]
-y, =1.1103417956

Forn=1

Y uly +—9%[7k, + 7k, +12k, +32k, +32k, ]

k| =f(xl’yl)
= f(0.1,1.1103417956)
sk, =1.2103417956

ky = f(x, +h,y, +hk))

= £(0.2,1.23137597516)
k, =0.2+1.23137597516
~ k, =1.43137597516

k, = flx, +—:—,y, +h(1.249655737(1.2103417956) - 0.749655737(1.43137597516)]

= £(0.15,1.1542889313)
+=0.15+1.1542889313
s ky =1.3042889313

k, = f[0.1+§,y| —h(0.07015442631(1.2103417456) —0.560058106(1.43137597516)

+0.341486157(1.3042889313))]
= £(0.1+0.02,1.1103417956 + 0.0397942)

=0.12+1.150136002272
Sk, =1.270136022718

ks =f[0.l+§,yI +0.1(0.25710705(1.2103417956) + 0.045073568(1.43137597516)

+0.353037791(1.3042889313) — 0.405218409(1.270136022718))]
= £(0.125,1.142490337999)
=0.125+1.142490337999
- ks =1.267490337999

87



S

0. '
kg =f[0.1+—4—3',y, —0.1(0.754830268(1.2103417956) - 0.290909052(1.43137597516)

—0.331676697(1.3042889313) — 1.359792241(1.270136022718)
+0.477547722(1.267490337999))]
= £(0.175,1.2160651764049)
-k, =1.3910651764049

155 o
=¥, =¥, +%[7(l.21034l7596)+7(l.43l37595I6)+12(1.30428893l3) ‘

+32(1.267490338) +32(1.3910651764)]
~. y, =1.2428054267465

Forn=2

Yi=Y, +£[7kI + 7k, +12k; +32k, + 32k ]

kl S f(xz sV )
= £(0.2,1.2428054267)
=0.2+1.2428054267

ok, =1.4428054267

ky =f(x, +h,y, +hk,)
= £(0.2+0.1,1.2428054267 + 0.1442805427)
=0.3+1.3870859694 '

-k, =1.6870859694

k, = flx, +§,y2 +0.1(1.249655737(1.4428054267) - 0.749655737(1.6870859694)) ]

= f10.2+0.05,1.2428054267 + 0. 1(1.8030100789 —1.2647336758)]
=0.25+1.2966330671
Sk, =1.54663300671

k, = flx, +§h, v, —(0.7015442631(1.4428054268) +0.560058106(1.6870859694)

+0.341486157(1.5466330671))]
= £(0.22,1.2888882353)
—0.22+1.2888882353
-k, =1.5088882353
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k= ﬂxz +—]—h v, +h(0. 2571‘0705(1 4428054268) +0.045073568(1.6870859694)

+0. 353037791(1 5466330671)~0.40521 8409(1 5088882353))]
= £(0.225,1.280964333)
=0.225+1.280964333

-k, =1.505964333

k, = flx, +—3::£, V) —0.1(0.754830268(1.4428054267)—0.290909052(1.68;70859694)

—0.331676697(1.5466330671) - 1.359792241(1.5088882353)
+0.477547722(1.505964333))]
= £(0.275,1.3675356466)
=0.275+1.3675356466
- kg =1.6425356466

y, =1.24218054267 + ;6 [7(1 .4428054267) + 7(1.6870859694) +12(1.5466330671)

+32(1.505964333) + 32(1.6425356466)]
=y, =1.3997174667 '

Forn=3

= [7k +7hk, +12k, +32k, +32k, ]

k,=f (xsr.}’:s
= £(0.3,1.3997174667)
=0.3+1.3997174667

-k, =1.6997174667

k,=f(x;+h,y, +hk)
= £(0.3+0.1,1.3997174667 +0. 1699717467)
=0.4+1.5696892133
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k, =1.9696892133

sk =flx ~l—g,y3 +0.1(1 .249655737(1 .6997174667) —0.749655737(1 .9696892133))]

= £(0.35,1.4644647531)
=0.35+1.4644647531
-k, =1.814464753

k, = flx, +§.y_, —0.1(0.7015442631(1.6997174667) — 0.560058 106(1.969689213)

~0.341486157(1.814464753))]
= £(0.32,1.4527502635)
=0.32+1.4527502635

Sk, =1.7727502635

ks = fIx, +§, y, +0.1(0.25710705(1.6997174667) + 0.045073568(1.9696892133)
+0.353037791(1.8144464753) — 0.405218409(1.7727502635))]

= £(0.325,1.4445188518)
=0.325+1.4445188518
Sk =1.7695188518

ko= fx, +§4]1,y3 —0.1(0.754830268(1.6997174667) — 0.290909052(1.969689213)

~0.331676697(1.8144647531) —1.35979224(1.7727502635)
+0.477547722(1.7695188518))]
= £(0.375,1.5454534931)
=0.375+1.545453493 1
- kg =1.920453493 1

=y, = 1.3997174666631+E[7(1.69971746663 1) +7(1.9696892133294)
. 90 : :

+12(1.8144647531246) +32(1.7695188517977) + 32(1.9204534930489)]
Sy, ='1.5836491764449

Forn=4
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Vs =, +—9%[7kI + 7k, +12k, +32k, +32k,]

k] = f(x4 » Va4 )
= £(0.4,1.5836491764449)
=0.4+1.5836491764449

-k, =1.9836491765
k, = f(x, +h,y, +hk,)
= £(0.4+0.1,1.5836491764449 + 0.19836491764449)
= £(0.5,1.7820140940935)
= 0.5+1.7820140940935
-k, =2.2820140941

k, = flx, +§,y4 +0.1(1.249655737(1.9836491765) — 0.749655737(2.2820140941))]

= £(0.45,1.660464538)
" =0.45+1.660464538
=~ ky =2.110464538

k, = fix, +§,y4 —0.1(0.7015442631(1.9836491765) — 0.560058106(2.2820140941)

~0.341486157(2.110464538))]
= £(0.42,1.6443628981)
= 0.42+1.6443628981
-k, =2.0643628981

k = fIx, +§, y, +0.1(0.25710705(1.9836491765) + 0.045073568(2.2820140941)

+0.353037791(2.110464538) - 0.405218409(2.0643628981))]
= £(0.425,1.6357916359)
=0.425+1.6357916359
Sk =2.0607916359

kg = fIx, + %,n —0.1(0.754830268(1.9836491765) — 0.290909052(2.2820140941)

~0.331676697(2.110464538) —1.35979224(2.0643628981)
+0.477547722(2.0607916359))
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= £(0.475,1.752600209)
=0.475+1.752600209
~o kg =2.2276002089

Y=Y, +—9’-’6[7k, + Tk, +12k, + 32k, +32k, ]
Sy, = 1'.58364917654-%;)—1[7(1 9836491765)+7(2.2820140941) +12(2.110464538)

+32(2.0607916359) + 32(2.2276002089)]
. ys =1.79744224 |

By similar computations we obtain

Yy =2.0442372
y,=23275049
Vg =2.6510812

We now compute the result obtained for y,,y,,y;,v,,¥s, Vs, ¥, and y, by the new

scheme, with those obtained for the Adam-Moulton and Adam-Bashforth methods, (see

sections 2.2.1 and 2.2.2).

e will now compare the various results below

'Adam-Moulton Adam-Bashforth New Scheme  Exact
0.0 1.0 10 1.0 1.0

1 .797443.8’ ; 1.7974422 1.7974422 1.7974425
2..044239;1 - 2.0442356 2.0442372  2.0442376
2.3275082 23275022 23275049 23275054

2.6510804 2.6510812 2.6510819
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forth  New-Scheme
' 0.0
3.00E-07
4.00E-07
5.00E-07

7.00E-07

new scheme is by far more accurate than the
m-Bashforth method of same order. This is not

get of the new scheme.

igh degree of accuracy, the new scheme would

ase of use.

our-Stage Runge-Kutta Method.

he result obtained by the new six-stage Runge-
d those obtained using the classical four-stage

205

cd to solve the IVP
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X
0.0
0.1
0.2
0.3

0.4

0.1

0.2

0.3

4.3

0.0

Classical R-K Method

1.0

1.1103417
1.2428051
1.3997169

1.5818943

A comparison of both methods is shown below

New Scheme
1.0
1.1103418
1.242805437
1.3997175

1.5836492

Absolute'Errors

Classical R-K Method

0.0

1.00E-07
4.00E-07
7.00E-07

1.76E-03

New-Scheme
0.0

0.00E+00
1.00E-07
1.00E-07

2.00E-07

94

Exact

1.0
1.1103418
1.2428055
1.3997176

1.5836494

t is again quite glaring, that the new six-stage R-K scheme performs better than the
classical Runge-Kutta method. However, this is also not surprising, since the classical

Runge-Kutta scheme is of order four, while the new six-stage scheme, is of order five.

Comparison with Lawson’s Six-Stage Method of order five

Lawson’s six¥stage Runge-Kutta method of order five is given as:




A +9—}:)[7kI +32k, +12k, +32k, +7k,]

where

. kl=f(xn’yn)
h h
ky=f(x, +=.y, +—k
2 f(xn 2 y 2 l)

k3 =f[x,, +%h,y" +%h(k| +kz)]

| o
4 f(xn 2 yn+2 3)

ks = flx, +%h,y,, +i%h(_k2 +2k, +3k,)]

ks = flx, +h,p, +%h(kI +4k, + 6k, —12k, +8k;)]
The new six-stage R-K scheme, also of order five, is given by:

T +—9%[71;,_+ Tk, +12k, + 32k, + 32k, |

kl =f‘(xn’yn),

k, = f(x, +h,y, +hk,)

, =[x, + g ¥, +h(1.249655737k, — 0.749655737k, )]

= flx, +g, y, —h(0.701544263 1k, —0.5600588106k, —0.341486157k,)]

k, = flx, +§, ¥, +h(0.25710705k, +0.045073568k,, +0.353037791k, —0.405218409%, )]

ks = flx, +3—4h—, ¥, —h(0.754830268k, —0.290909052k, —0.331676697k, —1.359792241k,

+0.477547722k,)]

To compare both methods given above, we shall apply each, to solve our following
- problems, i.e.

(i) Y =x+y,y(0)=1,h=0.1
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() Ty =2p+xip(0)=1,h=0.1
MS-Excel ’was used to solve the above problems, employing both schemes
and the resulfs can be seen below.
For the ﬁrst problem, both schemes had errors but as can be seen, th new scheme was b}"
far more accurate than Lawson’s methz)d in- solving this problem. For the secon&
problem, both schemes recorded a much highé; degreé of errors, buf once again, the new :
scheme proved to be by far mo;e accurate than Lawson’s scheme. It must be noted that

Lawson’s scheme performed quite pobrly in handling this problem.

Also, it is obserxed' that the error appears to grow with cach step, for both schemes. This
propagation of error, is one of the dis‘advantages: of the Runge-Kutta process; errors are
not so easy to watch. So, this behavior of the errors is to be expected. It is also observed

that the error propagation for the new scheme is far lower than that of Lawson’s scheme.
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X

0.0
5 0.1
0.2
0.3
0.4
05
06
0.7
0.8
09
1.0
1.1
12
13
14
15
16
17
18
1.9
20
5

U o

Vs.7
38
' 39
4.0
4.1
4.2
43
44
45

PROBLEM: y' =
EXACT

NEW SCHEME

1.000000000
1.110341796
1.242805427
1.399717467
1.683649177

1.79744224
2.044237201
2.327504899
2.651081205
3.019205412
3.436562662
3.908330838
4.440232387
5.038591589
5.710397855
6.463375679
7.306061947
8.247891376
9.299290941
10.47178423
11.77810678
13.23233354
14.85001972

16.6483565
18.64634306
20.86497675
23.32746323
26.05944871

29.08927665

32.4482714

| 36.17105174

40.29587732
448650316
49.92524502

' 5552816272 -

61.7308614
68.59642056
76.19455383
84.60230668
93.90482754

104.19622
115.5804845
128.1725594
142.0994712
157.5016059

174.534114

LAWSON'S

SCHEME

1.000000000
1.110365767
1.242858412
1.399805304
1.583778611
1.797621049

2.04447434

2.32781066
2651467399
3.019685576
3.437152291
3.909047647
4.441096606
5.039626297
5.711629355

6.46483392
7.307781002
8.249909977
9.301653083
10.47453985
11.78131252
13.23605359
1485432681
16.65333296
18.65208206
20.87158364
23.33505708
26.06816405
29.09926539
32.45970499

36.1841236
40.31080559
44.88206218
49.94465501
55.55026424

61.7560059
68.62500365
76.22702068
84.63915807
93,94662661
104.2435998
115.6446749

EXACT

1.000000000
1.110341836
1.242805516
1.399717615
1.583649395
1.797442541
2.044237601
2327505415
2651081857
3.019206222
3.436563657
3.908332048
4440233845
5.038593335
5710399934
6.463378141
7.306064849
8.247894784
9.299294929
1.471788885
11.7781122
13.232339825
14.850027
16.64836491
18.646352761
20.864987921
23.32747607
26.05946345
29.089293542
32.448290739
36.171073846

40.295902562

44.865060394
49.925277841
55.528200094
61.730903916
68.596468886
76.194608719
84.602368985
93.904898209

104.196300060
115.580575190

128.2554663 128.172662080
142.1926971 142.099587390
157.6064043 157.501737330
174.6518879 174.534262600

NEW SCHEME

ERROR

0.000000000
4.0E-08
8.9E-08

1.48E-07

0.000000218

3.01E-07
4E-07
5.16E-07
6.52E-07
8.1E-07
9.95E-07
1.21E-06
1.458E-06
1.746E-06
2.079E-06
2.462B-06
2.902E-06
3.408E-06
3.988E-06
4.655E-06
5.418E-06
6.285E-06
7.279E-06
8.41E-06
9.701E-06
1.1171E-05
1.284E-05
1.474E-05
1.6892E-05
1.9339E-05
2.2106E-05
2.5242E-05
2.8794E-05
3.2821E-05
3.7374E-05
4.2516E-05
4.8326E-05
5.4889E-05
6.2305E-05
7.0669E-05
8.006E-05
9.069E-05
0.00010268
0.00011619
0.00013143
0.0001486

LAWSON'S
SCHEME
ERROR

0.000000000
2.3931E-05
5.2896E-05
8.7689E-05

0.000129216

0.000178508

0.000236739

0.000305245

0.000385542

0.000479354

0.000588634

0.000715599

0.000862761

0.001032962

0.001229421

0.001455779

0.001716153

0.002015193

0.002358154

0.002750964

0.003200318

0.003713763

0.004299811

0.004968054

0.0057293

0.006595719

0.007581013

0.008700604

0.009971844

0.011414246

0.013049753

0.014903028

0.017001787

0.019377169

0.022064145

0.025101983

0.028534763

0.032411959

0.036789082

0.041728402

0.047299763

0.064099755

0.082804232

0.093109688

0.104666923

0.117625282



X

0.0
10.1
0.2
0.3
0.4
0.5
0.6
1.7
0.8
0.9
1.0
1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
22

PROBLEM :
EXACT

NEW SCHEME

1.000000000
1.221752187
1.494777731
1.832642647
2.251916487
2.772837326
3.42012398
4.223968049
5.221245600
6.456997116
7.986235113
9.876151962
12.208816527
15.08445785
18.62553803
22.98156585
28.335198178
34.909520206
42.977008509
52.870466399
64.996380348
79.851233556
98.041431361
120.307638171
147.554502626
180.886963957
221.654596630
271.505772961
22453817416
116.957807576
98021264558
| 609.312693644
. 745.312812794
911.494377774
114.541820841
62.619517777
5699449630
1961409307
281814479
330744429
11161770
19584960
}3957081
2370421
972716
187310

LAWSON'S
SCHEME

1.000000000
1.221857630
1.495040791
1.833133435
2.252728436
2.774094083
3.421988207
4.226652638
5.225027941
6.462237227
7.993398631
9.885839265
12.22179958
15.101736747
18.648359775
23.011558408
28.374423818
34.960602905
43.043281624
52.956158164
65.106846750
79.993250462
98.223560729
120.540686822
147.852096615
181.266267250
222.137209825
272.118856553
333.231494987
407.942917798
499.267547691
610.887519048
747.300579841
914.000754656
1117.699025595
1366.592895252
1670.695659405
2042.238615478
2496.162362450
3050.716926471
3728.194817697
4555.826463360
5566.873984328
6801.967224936
8310.735872911
10153.802709752

y' =2y+ x*; y(0) =1; h=01
Ye(x) = 5/4e% - (xU2+ x/2 +1/4)

EXACT

1.000000000
1.221753448
1.494780872

1.83264855
2.251926161
2772852286
3.420146153
4.223999999

5.22129053
6.457059331
7.986320124

9.87626687
12.20897048
15.08467254
18.62580846
22.98192115
28.33566275
34.91012506
4297779305
52.87148062
64.99768754
79.85299138
98.04358583
120.3103946
147 5580219
180.8914489
221.6603023
271.5130203
332.4630093
406.9694499
498.0359919
609.3313014
745.3362973
911.5239866
1114.579115
1362.666448
1665.758455
2036.035537
2488.374869
3040.947472
3715.947484
4540.482884
5547.663435
6777.929489
8280.675008
10116.22991

NEW SCHEME

ERROR

0.000000000
1.261E-06
3.141E-06
5.903E-06
9.674E-06
1.496E-05

0.00002217
3.195E-06

0.000044930

6.2215E-05
8.5011E-05

0.000114908

0.000153953

0.000214695

0.000270432

0.000355305

0.000464572

0.000604854

0.000784541

0.001014221

0.001307192

0.001757824

0.002154469

0.002756429

0.003519274

0.004484943

0.005705670

0.007247339

0.009191884

0.011642324

0.014727342

0.018607756

0.023484506

0.029608826

0.037294159

0.046930223

0.059005370

0.074127693

0.093054521

0.116727571

0.146322230

0.183299040

0.229477919

0.287118579

0.359035284

0.448722690

LAWSON'S
SCHEME
ERROR

0.000000000
0.000104182
0.000259919
0.000484885
0.000802275
0.001241797
0.001842054
0.002652639
0.003737411
0.005177896
0.007078507
0.009572395
0.012829099
0.017064207
0.022551315
0.029637258
0.038761068
0.050477845
0.065488574
0.084677544
0.10915921
0.140259082
0.179974899
0.230292222
0.294074715
0.37481835
0.476907525
0.605836253
0.768485687
0.973467898
1.231555791
1.5656217648
1.964282541
2.476768056
3.119910595
3.926447252
4.937204405
6.203078478
7.78749345
9.769454471
12.2473337
15.34357936
19.21054933
24.03773594
30.06086491
37.57279975



CHAPTER FIVE

ERROR ESTIMATION

3

5.1 Error Estimation

3

One major flaw in the Runge—Kut.ta methods is that‘ it is quite difficult and complicated to
watch errors. Acco'rding to Lambert [1973], “bounds for the local truncation error, do not
form a suitable basns for monitoring the lbcal truncation error, with a view to constructing
a step—c(;nfml policy similar to that developed for Predictor-Corrector methods. What is
needed, in place of a bound, is a readily computable estimate of the local truncation error,

similar to that obtained by Milne’s device for predictor-corrector pairs.”

The estimate used for the new scheme, arises from an application of the process of
deferred approach to the limit, i.e. Richardson extrapolation. This involves solving the

problem twice using step sizes h and 2h.

er the localizing assumption that no previous errors have been made, we may write:
%1s)= Fres = Towy = 0, Y05, D 4 0(h™*) ' 0

where p is the order of the Runge-Kutta method (i.c. p=5 in this case), ¢(x,,y(x,))h""" is
| ﬁhcipal local truncation error. Next, we will compute y,.,, a second approximation
n)s of)tained by applying the same method at x,_, with steplenght 2h. Under the

lizing assumption, it follows that:

y."‘" o ¢(xn-l ’ y(xn—l))(zh) 1 " 0(hp+2 )
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a'rld on expanding ¢(x"—| ’y(x"—| )) abOUt (x"’y(x" )) b

y(xn+l ) —y‘”"" = w(xn s y(xn ))(Zh) "4 O(h i ) : (ll)
On subtracting (i) from (ii), we obtain

Y(Xp) =y wn = 2" =Dg(x,,, y(x, A" +o(h"?)
- Therefore, the principal local truncation error which is taken as an estimate for the local

truncation error may be written as:

@, YN =T, = ((x,,) =y )27 =1) (iii)
=T =((x,0)= Y m) 127 =1) (iv)

Equation (iv), is a means of obtaining quick estimates of the error involved in

computations using the new scheme, without having to obtain the exact solution first.

Thus, to obtain an error estimate we will compute over two successive steps using

steplenght h (at x, i.e. y,+1) and then recomputed over the double step using steplenght 2h

(at o1 0. V0, ).

‘The difference between the values for y so obtained, divided by 63 (obtained by

substituting p = 5 in Eq. (iv)), is then an estimate of the local truncation error.

We will illustrate this, by solving the differential equations:
(), y=x+yy0)=] |

(i) ¥ =-yir-1

at steple,nghts h=0.1,and h=10.2

@i  Y=x+y0)=1
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ath=0.1,and h=0.2

The approximate solutions are as shown below.

PROBLEM 1 : y'=x +y ; y(0)=1;h=0.1

EXACT : Yg =2¢"-x-1

h X NEW SCEME EXACT ACTUAL ERROR

0l 0.1 1.110341796 1.110341836 . 4.00E-08
0.2 1.242805427 1.242805516 8.9OE-08
0.3 1.399717467 1.399717615 1.48E-07
0.4 1.583649177 1.583649395 2.18E-07
0.5 1.79744224 1.797442541 3.01E-07
0.6 2.044237201 2.044237601 4.00E-07
0.7 2.327504899 2.327505415 '5. 16E-07
0.8 2.651081205 2.651081186 6.52E-07
0.9 3.019205412 3.019206222 | 8.10E-07
1.0 3.436562662 3.436563657 9.95E-07

02 02 1.242803057 1.242805516 2.46E-06
0.4 1.583643388 1.583649395 6.01E-06

: 0.6 2.044226595 2.044237601 1.10E-05 |

0‘.8 2.651063934 2.651081857 1.79E-05
1.0 3.436536293 3.436563657 2.74E-05
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Once again, we cannot over emphasize the accuracy of the new scheme, as can be

observed from the table above, with none of the errors being greater than10~". This

shows that the new scheme gives approximations that nearly exact.

From problem (i), as can be seen from above, we compute an approximate solution to the
problem, using the new scheme, we also computed the exact solution, and hence, the
actual error. This is rather tasking. So, as we have repeatedly stated, the purpose for this
section, is to obtain a means by which an estimate for the error, can be conveniently

computed, without having to go through the rigors of computing the exact solution.

Next, we will make use of equation (iv) to obtain error estimates that do not depend on
the exact‘solutids»n:-s:
Recall Equation (iv)

Ty = G =¥ ) 27 =1) BN

where: y, ., is the approximate solutions at h = 0.1

¥ a1 is the approximate solutions at h = 0.2

p is the order of our method i.e. p=5

hence, equation (iv) becomes

Tn+l = (ynﬂ _y"’” )/63 (V)
L T, = (1242805427 1.242803057) /63

o =3.7619E-08
o ad T, =(1.583649177 —1.583643388) /63

X =40,

=9.189F - 08
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T, =(2.044237201-2.044226595)/ 63

Atx=0.6
=1.684£-07
it T, =(2.651081205-2.651063934)/ 63
 =2.74E-07
T, =(2.651081205—2.651063934)/ 63

o AR b
Fiie =4.186FE-07

We will now compare our error estimates, with the actual errors previously computed

above, to see if our estimadtes are viable or not.

Problem 1:y'=x+y;y(0)=1,h=0.1, h=0.2

R Actual Error Error Estimate
0.2 8.90E-08 3.76E-08
04 2.18E-07 9.19E-08
0.6 4.00E-07 1.68E-07
0.8 6.52E-07 2.74E-07

1.0 - 9.95E-07 4.19E-07

From the above; we can see that the order of our estimates compare favourably with that

of the actual errors, being of the same orders of between10™" and 107 . Therefore, we

- can conclude that we do not ned to compute the exact solution before we can compute

errors, our error estimator (Eq. (v)) is capa'fble of giving us a workable idea of the nature

and ordér of the errors.
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One important observation from the results above, is that the actual errors appear to
increase with an increase in steplenght. So, we can safely say that by reducing the

steplenght h, accuracy can be increased.

3.3 SUMMARY AND CONCLUSION
In this work, we have been able to develop a new six-stage classical (explicit) Runge-

Kutta classical Runge-Kutta method of maximum order i.e. of order five.

We have also demonstrated the efficacy of the new scheme, by engaging it in solving a

number of differential equations (i.e. IVPs), and the new scheme has been seen to be

quite efficient and highly accurate.

An error estimate was also derived for the new scheme using Richardson extrapolation
with which one can obtain an error estimate for the scheme, without having to obtain the

exact solution ﬁrgt.

As we have observed previously, having used the new scheme to solve various IVPs, and
comparing its results with other methods (namely Adam-Bashforth, Adam-Moulton,
Classical four-stage R-K method, and Lawson six-stage R-K method). Our goal of an

exceptionally accurate scheme has been achieved. Also we can therefore conclude that
the new scheme satisfies our goal of deriving a scheme that attains the maximum possible

order for a six-stage R-K method.
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54  RECOMMENDATIONS

Although the new scheme was successfully derived and tested, it is by no means perfect.
For one. it can still be improved upon so as to give even better estimates to numerical
solutions of IVPs. Also, the new scheme as. it is now, may not be easy to manipulate

manually because of its decimal coefficients in the & .

Though. an error estimate has been derived for the new scheme, it is not built into the

scheme. So, the new scheme could be improved upon so as to have a better error handling

capability.

It must have been observed, that the derivation of higher-order R-K methods (i.e. orders
greater than four) using the technique employed in this work, is a process.involving a
large amount of tedli“ous algebraic manipulation which is both time consuming and error
prone. It is recpmmended that future research in this area should make use of Computer
Algebra, this would solve the latter problem, but not the former, as finding higher-order

methods involves solving larger and larger coupled systems of pblynomial equations.

The best way, to avoid this problem of tedious algebraic manipulations, is to make use of
a very elegant theory developed by Butcher (1987. 2003, also Lambert (1991)), which
“enables one to easily establish the conditions for a R-K method. either explicit or implicit.

to have a given order. This theory is based on the algebraic concept of rooted trees.
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