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ABSTRACT 

The goal, the target, the objective, and indeed, the very essence of any 

Numerical method, is to replicate the Exact solution, or at the least pr9duce 

solutions that are very close to the exact solution. Hence, the closer such a 

solution is to the exact solution, the better the method. In the light of this, we 

develop in this work, a new six-stage Runge-Kutta method, of order five, for 

the solution of Initial Value Problems. The strength of the new scheme is 

that it gives solutions that are very close to the exact solutions, even closer 

than some popular existing methods which are known to be highly efficient. 

Some Initial Value Problems were solved using the new scheme and the 

results help to establish its very high degree of accuracy. 
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CHAPTER ONE 

GENERAL INTRODUCTION 

t. t INTRODUCTION 

Historically, differential equations have originated in chemist,ry, physics and engineering. 

More recently, they have also arisen in medicine, biology, anthropology, and the like. 

However, we are going to restrict ourselves to Ordinary Differential Equations (ODE), with 

special emphasis on Initial Value Problems (IVP) ; so called because the condition on the . 

solution of the differential equation, are all specified at the start of the trajectory i.e. they are 

initial conditions. 

Numerical solution of ODEs is the most important technique in continues time dynamics. 

Since most ODEs are not soluble analytically, numerical integration is the only way to obtain . . 

information about the trajectory. Many different methods have been proposed and used in .an 

attempt to solve accurately, various types of ODEs. However, there is a handful of methods 
I 

known and used universally (i.e. Runge-Kutta, Adam-Bashforth-Moulton and Backward 

Difference Formulae). All these, discretise the differential system,to produce a difference 
• 

equation or map. 

The methods, obtain different maps from the same equation, but they have the same aim; 1hat 

the dynamics of the maps, should cOffe'spond closely, to the dynamics of the differential 

equation. From the Runge-Kutta family of algorithms, come (arguably) the most well-known 

and used methods for numerical integration. 

1 
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As stated earlier, mathematical modeling of physical everyday problems in different fields of 

human endeavours, often results in differential equations. With a differential equation, we 

can associate initial conditions, boundary, or auxiliary conditions <:>n the unknown function 

and its derivatives. If these conditions are specified at a single value of the independent 

variable, they are referred to as initial ' conditions and the combination of the differential 

equation and an appropriate umber of interval conditions is called an Initial Value Problem, 

and these are the ones of particular interest to us in this work. 

In elementary treat!""ent of differential equations, it is assumed that the IVP has a unique 

solution that exist throughout the interval of interest and which can be obtained, by analytical 

tefhniques. However" many of the differential equations ,encountered in practice, cannot be 

solved explicitly, so we are led to methods for obtaining approximations to solutions. Such , 

solutions are usually callednumeric!ll solutions. In fmding numerical solutions to differential 

equations, the goal is to get a method, which will produce results that will (possibly) be the 

same as the exact solutio~. While this goal may ' not be easy to ~chieve, we aim for a 

numerical solution that is as close to the ,exact solution as possible. 

With the ad~ent of computers, numerical methods are now an increasingly attractive and 

"fficient way to obtain approximate solutions to differential equations that had hitherto 

roved difficult, even impossible to solve analytically. 

As was earlier noted, there exist a number of methods for solving differential equations this 

way. These methods can be broadly grouped ,as: one-step methods, and multi-step methods. 

2 



However, for this work, we are particularly interested in the class of methods first proposed 

by David Runge (1856-1927), a German mathe"matician and physicist, and further extended 

by anoth.er German mathematician called Wilhelm Kutta (1867-1944); a method commonly 

referred to as the Runge-Kutta methods. 

1.2 LITERATURE REVIEW 

The dynamics of the Runge-Kutta methods can be described as highly flexible. This is 

because the slightest change in any of the unknown parameters (br. cr, au), in course of 

formulating a Runge-Kutta scheme, would quite naturally result in a new scheme. 

As a general example, if we consider the general S-stage Runge-Kutta method, a change in 

any of the free parameters (the free parameters results from the difference between the 

number of equations and the number ~f unknowns, during the Taylor series expansion), for a 

method of a particular stage number, would give rise to a different scheme of the same stage, 

and possibly the same order. As a specific example, let S = 2, we would arrive at a set of 

three equations in four unknowns, and thus, there would exist one (free) parameter family of 

solutions (i.e. one degree of freedom). S!nce there exists an infmite number of values that this 

free parameter can assume, it implies that there is an infmite number of two-stage Runge-

tta methods of order two, that can be so derived by altering the free parameter. Lambert, 

73) 

.~ ; >' 
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The fundamental idea of the Runge-Kutta method is to avoid the computation of higher order 

derivatives that the Taylor method involves, when employed in obtaining solutions for Initial 

Value Problems (IVP). 

DA VID RUNG.~; JI895J, in his paper on the numerical solutions of differential equations, 

put for~ard a method for solving first order differential equations (specifically, IVP), that 

achieved a higher order than the Linear Multi-step Methods (LMM), by sacrifi~ng the 

linearity of the algorithm while preserving its one-step ~ature. His method involves' 

extending the approximations of the improved of the improved ~uler method further, so as to 

obtain a one-step method having a high~r order of accuracy. This is because one-step 

methods, have the advantage of permitting a change of mesh length at any step, since no 

starting process is required. Since the time of Runge, many researchers have taken advantage 

of the flexibility of the method to derive schemes either to improve accuracy or error control 

strategie~ . 

HE UN [1900], put forward the following third-order formula for a three-stage method · 

h 
Yn+1 - Yn ="4 (k, + 3kJ ) 

k, =/(xn,Yn) 

h h 
k2 =f(xn +-,Yn +-k,) 

3 3 

2h 2h 
kJ = f(xn +-,Yn +- k2 ) 

3 3 

4 
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He reckoned that Runge's ~ork could be further extended to mclude terms up to order h3 

previously ignored by Runge. 

We however observe that the computational advantage in choosing ~ = 0, in t~e above ' 

• 
method, is somewhat illusory since, although k2 does not appear in. the first equation of the 

scheme, it must nevertheless be calculated at each step, because we need k2 to obtain k3• 

WILHELM KUTTA [1901], extended the method of Runge further, to systems of 

equation:;. Thus, this method has come to be known as the Runge-Kutta method. Kutta's 

third order rule is given by 

.1 
I 
I 

According to Lambert [1973]; "it is the most popular third-ordl1f Runge-Kutta method, for 

desk computations· (largely because the coefficient 1 is preferable to'!, which appears ' 
2 3 

~equently in Heun's method)." . . 

rlERSON (1957), was the rust to propose the idea of deriving a special R-K method, which 

{ould admit an easily calculated error estimate, which does not depend on quantities 

alculated at previous steps. Merson's method is: 

5 



h 
Y,,+I - y" = -(k, + 4k4 + k s ) 

6 

k, = f(x",Yn) 

.. 

h h · 
k2 = f(xn +-,Yn +-k, ) 

3 3 
h . h 

k 3 = f[x n + -, y" + - (k I + k 2)] 
3 6 

h h 3 
k4 = f[x" +-,Yn +-k, +-hk3 ] 

2 8 8 

and it is defmed by the Butcher tableau below: 

0 
1 1 
- -

- 3 3 
1 1 1 
- ' - -
3 6 6 
1 1 3 

- -
2 8 8 

1 
1 

0 
-3 

2 
2 

! . o .0 
2 1 

6 3 6 

, ' . . 
" ; 

The above method, has order four and an estimate for the local truncation error given by: 

., ; ".' 

This method, has been widely used for non-linear problems, although the error estimate is 

valid only when the differential equation is linear in both x and y, that is of the form: 

Y' =ax+by+c 

erson' s idea~ is to derive R-K methods of order r and r+ 1, which share the same set of 

ectors{k;}. This process is known as embeddmg. 

With a slight modification to the Butcher tableau, embedded methods following Merson's 

dea can be represented in the following form: 

6 
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c A 

b 

E 

This notation is to be interpreted to mean that the method defm~d by c, A and bT has order r 

"T and the method defined by c, A, and b has order r+ 1. the difference between the values for 

Y n+t generated by these two methods, is then taken as an estimate for the local truncation 

error. 

The vector ET is bT _bT, so that the error estimate is gIven by h'LEik;, where 

ET = [E., E2 , ... Er]' The label (r, r+ 1), is usually attached to such an embedded metho~i. 

In the light of Butcher's theorem (that there is no five-stage method of order five), it becomes 

obvious that for a fourth order embedded method, a minimum of six stages will be needed. 

rhis explains why Merson's proposed error estimator could not be a valid one. Sinc~, this 

method, without the error estimator, is a five-stage method of order four and with the error . . 
estimator, it is a five-stage method of order five (which Butcher has since shown, to be 

impossible). 

7 
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Nevertheless, nothing should be taken away from Merson's method, (represented by the 

modified Butcher tableau below), for it did play an important role, in pointing the way to 

future developments. 

0 

1/3 1/3 

1/3 1/6 1/6 

.... ..: 
-;- ... 1/2 1/8 3/8 

1 1/2 0 -3/2 2 

1/6 0 0 2/3 1/6 

1/10 0 3/10 2/5 1/5 

-1/15 0 3/10 -4/15 1/30 

HAMMING [1962J, went a step further to derive and imple.ment a fourth-order Runge-Kutta 

scheme in solving differential equations. 

BUTCHER J.C. [1963, 1976]', in a long series of papers starting in the mid-sixties~ has 

developed various theories out of the Runge-Kutta method. Notable among his theories are; 
, 

I. An s-stage explicit R-K method, cannot have order greater than s, 

ll. There exists ne five-stage explicit R-K method of order five. 

4:e also established the order condition for all class ofRunge·Xutta method. 

is the representation of a Runge-Kutta scheme, in matrix notation; a form known as the 

Butcher Tableau. Recall the general s-stage Runge-Kutta method 

.f 

Yn+1 - Yn = h'Lb;k; 
;~I 

s 

k; =/(xn +c;h,Yn +h'L aijk j ),i=I,2,3, ... ,s 
;~J 

8 



.! , . , . 

Call the bis the weights, the CiS the abscissae, and the kjs the slopes. Butcher defmed the s -

dimensional vectors c and b and the . s x s matrix A, byc=[cl'c2, ... ,cs ]T, and 

b = [b l ,b2 ••• ,b .• f and. A = [a ij ]' Then method expressed conveniently as Butcher tableau 

c A c i all ' a l 2 au a I.. 

b c2 a 21 a 22 a23 a2s 

= 
c3 a 31 a32 a33 a 3 .• 

c, a"1 ([.\' 2 a .) a ... 
bl b2 b3 bs 

will assume 

,,-1 

c i = Iaij,i = 1,2, ... ,s 
j=1 

One important use, to which the Butcher tableau could be put, is in determining the type of 

the method (i.e. explicit, implicit, and semi-implicit). 

• If' A' is strictly lower triangular => explicit method; calculate ki explicitly, then k2' 

etc, up to ks; 

.If 3 a!1 :t:. 0, j>I => implicit method; 

Requires a system of s x s (non-linear) equations be solved per step. 

• If ai} = 0, j > i and 3 ail :t:. 0 => semi-implicit; 

Require s, scalar (non-linear) equations be solved per step. 

UTCHER J. C. [1964], derived an m-stage implicit Runge-Kulta method, making suitable . ' 
)oices of the m(m+l) free parameters which has the maximal attainable order 2m, for all m. 

9 
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1e demonstrated further, that the implicit Runge-Kutta methods are not attractive for general 

Jsage; because each integration step requires the so lution of a system of equations, that is in 

gener~l non-linear for the m-unknowns. 

SCRATON (1964) , derived a fourth-order estimate which admits an error which is valid for 

a non-linear differential equation, unlike Me~son' s. the method is as below: 

_ =h[~k +~k + 32 k +250 k ] 
Yn+1 YII 162 I 170 3 135 4 1377 s 

k, = f(x" 'YII) 
2h 211 

k2 = f(x" +g' YII -7- g k, ) 

h h h 
k3 = f(x lI +-'YII + - k, +-k2) 

3 12 4 
, 3h 3h 

k4 = l[x lI +-,y" + - (23k, - 81k2 +90k3)] 
4 , 128 ' 

9h ' 9'h 
ks = I[x" +- ,y" +--. (-345kJ +2025k2 - 1220k3 +544k4 )] 

10 10000 

He gave the estimate for the local truncation error as: 

T,,+J = hqr/s 

where 

=--=ik + 27 k ~~k 25 k 
q 18 I 170 3 15 4 + 153 '5 

19 27 57 4 
r= - k --k +- k --k 

24 J 8 2 20 3 15 4 

s=k4 -kJ 

hough, Scraton's estimate was more realistic than Merson's when applied to a general, 

l-linear differential equation, it has the d;sadvantage that it is not linear in the 'krs. As a 

10 
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result, it is applicable only to a single differential equation, and ?oes not extend to a system 

of equations. As !10ted by Lambert (1973); "in order to find a method which admits .an error 

estimate which is linear . in the kr, and thus holds for a general non-linear differential 

equation, or system of equations, it is necessary to make further sacrifices in the form of 

additional tunction evaluations." 

ENGLAND (1969], made the necessary sacrifices in the form of additional function 

evaluations, and thus, came up with the following fourth-order six~stage method: 

h 
y,,+, - y" =- [k, +4k3 +k4] 

6 
k, = f( x /l ,y,,) 

h h , 
k 2 =f(x" +"2 'y" +"2 k ,) 

h h 
k ) = f[x/l +"2'y" +4"(k, +k2)] 

k4 = [x" +h,y" -hk2 +2hk3)] 

2h h 
k s = f[x" +3.'y" + 27 (7k, +lOk2 +k4 )] 

h h 
k6 = f[x" +-, y" +-' - (28k, -125k2 + 546k3 +54k4 -378ks)] 

5 625 

He gave the associated estimate for the local truncation error as: 

PlUst be noted that, if the method is used without the error estimate, it is essentially a four-

Ige method. The modified Butcher tableau for the England ' s method is as below: 

II . 



0 

1/2 1/2 

1/2 1/4 1/4 

1 0 , -1 2 

1/3 7/27. 10/27 0 

1/5 28/625 - 1/5 546/625 -378/625 

1/6 0 1/6 0 0 

1/24 0 5/48 27/56 :125/336 

- 1/8 0 -1/6 27/56 125/336 

A feature of Erigland's method, is that (unlike Merson's method), the last two elements ofbT 

are zero, implying that if the error estimate is not required, then only four stages (the 

minimum possible for fourth-order) need be computed. The method, is thus, economical if 

only occasional estimation of the error is intended. 

SHAMPINE and ALLEN 119731, devcloped a subroutine for solving the fourth-order R-K 

method which was differentfi'om Ralston's fourth-order R-K method. 

HAIkER and WANNER [1981] , showed that R-K methods could be extended to orders 

five and six which have the properties of order, stability and efficiency of implementation to 

a high extent. These authors classified all algebraically stable methods of an arbitrary order 

and give various relationships between contractivity and order of implicit methods. 

- )NUMANYI, et al [1981), developed software for a method of finite approximations for the 

umerical solution of differential equation, which was based on the Tau method. According 

them, problems with complex initial boundary conditions or mixed conditions involving 

'ombinations of functions and derivatives values, can be dealt with by means of their 

12 
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program. Accordingly, encouraging rcsults have been obtained in the solutions of problems 

with regions of rapid variation,-oscillatory behaviolJl' and in the presence of stiffness. 

ONUMANYI and ORTIZ [1982] , presented a method known as Numerical Solutions of 

High Order Boundary Value Problems for ordinary differential equations with an estimation 

of error. According to the authors, results of r.emarkably high accuracy and. computational 

simplicity can be obtained by using Ortiz recursive formulation of Tau method. Besides, an 
, 

error estimate of the number presented can be produced at a low computational extra cost. 

ASCHER and BADER [19851, discussed the stability of collocation at Gaussian points. 
; 

Symmetric R-K schemes according to them are particularly useful for solving stiff tWo-point 

boundary value problems. They observed that unlike initial value ODEs, the J<:Icobian of a 

well-conditioned problem may have both eigen values with a large negative real part and 

eigen values with a large positive real part. Hence, invariance with respect to the direction of 

integration is a very desirable property; which symmetric schemes possess. 

' . 

GUPTA (1985], used the finite difference methods which combine features of both R-K 

process and Gap schemes to develop an adaptivity code for the solution of first order 

ifferential equations with two boundary conditions. He found an eighth-order, A-stable 

. ethod that has second, fourth, and sixth order A-stable methods embedded in it. He then 

ent on to describe a variable order, variable step difference solver using the embedded 

ethods. 

13 



BURRAGE (1987), examined the stability properties of some special class of multi-valued 

methods known as multi-step R-K methods. He further constructed some families of 

algebraically stable methods of arbitrarily high order for the solution of the first order initial 

value problems. In particular, Burrage has studied the order conditions of these methods, and 

has shown that one can always construct methods of order 2s+r-l, where 2s oenotes the 

highest order possible, and r-I, the number of free parameters existing in the methods. 

SANNUGI and EVANS [1988J, put forward a method, that surpassed that of England. They 

presented a modified version of the fourth-order Runge-Kutta formula, which required no 

extra function evaluati0n, yet provides estimation ofthe .local truncation error. The basic idea 

of the modification, follows trom the fact that numerical solutions of similar order can be 

obtained by using Arithmetic ·Mean (A. M) and the Geometric Mean (G. M) averaging of the 

functional values. The method is also suitable for the estimation of the local discretization 
\ . 

error of one step methods -known as embedding methods. Each step is integrated twice, using 

the pth -order and the (p+ l)'h -order methods, then the difference between the values obtained, 

give,S the estimate of the error. 

, 
DORMAND, et al [1989J, considered the applications of Runge-Kutta interpolation to 

global error estimation. They brought out some special formulae of orders two, four, and six 

and went on to show that a pseudo-problem, which is based on dense output values within 

anyone step and reliable global error estimates could be mesh-poInts, by using the special R-

K formulae. 

14 
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HUNDORFER and SHNEID (1989) , made a joint discovery of the fact that among the 

several stability and consistency concepts for R-I;< ,methods applied to stiff initial value 

problems (IVP), B-stability and B-consistency turned out to be equivalent for IVP with a 

one-sided Lipschitz constant K ~ O. They guarantee stability with respect to perturbations of 

the IVP for m~O. 

JAIN, et al (1989) , have shown that by using the well-known properties of the s-stage 

implicit R-K method for the first order differential equations, it is possible to obtain almost 

super stable method.s of arbitrary order, for the direct integration of the general second order 

IVP by increasing the number of stages s. the method, when used successfully, can solve 

singular perturbation problems for which of lOy andlor of lax are negative and large. 

JAZCILEVICH and TEWARSON [1989], constructed functions characterizing the 

stability of explicit boundary value R-K methods. The method is based on the generalization 

of the algebraic stability criterion and can also be used to design methods with better stability 

and the selection of mesh-points. The criterion obtained, was found useful. in the study study 

of explicit boundary value Runge-Kutta method. 

KEELING [1989], constructed an implicit Runge-Kutta method with a stability function 

having distinct real poles. Such methods offer a computational speed-up" when used on 

parallel machines (multiprocessor computers) with a modest number of processors. 

Sometimes, the method is called Multiple Implicit Runge-Kutta (MIRK) and hence due to the 

so-called order reduction phenomenon, the poles of the MIRK are required to be real. 

15 



He went further, t6 prove that the necessary condition for a q-stage real MIRK to be A-stable, 

with a· maximal order q+ 1, is that q must be either 1, 2, 3 or 5. he showed that for every 

positive integer q, there exists a q-stage, real MIRK which is strongly Ao-stable with order 

still q+ 1 and for every even q, there is a q-stable real MIRK which is L-stable with order q. 

MUIR; and BEAME (1989), introduced a method called "AN Error Expression for 

Reflected and Averaged Implicit Runge-Kutta method." This method is useful in the 

numerical solution.of initial value problems as well as the solutions of two-point boundary 

value prpblems. In ~act, the main result of this method relate the error . expression of an 

averaged method, to that of the method upon which it is bsed, since it is derived from another 

method by applying the results obtained, they showed that for each member of the class of' 

averaged methods, there exists an embedded lower order method, which can be uSfd for error 

estimations, in a fonilula-pair fashion . 

. BUTCHER and CASH (1990), derived ·a special class of implicit R-K methods for the. 

numeriCal solution of stiff IVP. They derived the ~ormulae from single implicit methods by 

adding one or more extra diagonally implicit stages. For the derivation, they considered 

singly implicit methods and in particular diagonally implicit methods. 

They established that each ~Iass of methods offers some advantages over other methods as 

well as some disadvantages. For diagonally implicit methods, their limitation of the stage­

order to 1, and the difficulty of finding high order for the methods as a whole, or of 

16 
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constructing realistic local error estimates, makes these methods unlikely candidates for 

incorporating into highly accurate and efficient software. 

CALVO,"et al [1990) , developed a new pair of embedded Runge-Kutta formulae of orders 

five and six. This method is derived from a family of Runge-Kutta methods depending on the 

t:;ight param~ters by using certain measures of accuracy and stability. 

When this method is compared with the other methods of the same order, greater accuracy is 

achieved, especially when used with an extra function evaluation per-step, a C I-continuous 

interpolant of order five can. be obtained. 

SOMMEIJER [19901, considered a method based on the simplest well known classical 

Runge-Kutta method. The main characteristic of the resulting scheme of this integration rule, . .' 

is that the computational complexity is hardly increased. This means that the first spatial 

operators are replaced by the finite difference or the finite element approximations that 

I 

termed the semi-discretization. Then the time-continuous system of the ordinary differential ! , i 
I 

equations, is integrated in time, by using the classical R-K method or by the forward Euler 

scheme. Following this technique, several choices have been made for the semi-discretization 

as well as for the time integration. 

SOWA (1990), in~estigated the linear stability properties of a R-K method for solving the 

compressible Navier-Stokes equations and was able to produce another method. His method , 

was based on the Fourier-transformation of the linearized spatial operation in which he fully 

considered unsplit spatial operator, resulting from a second order central difference 
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approximation of the spatial derivatives. He also compared the theoretical stability limit with 

that encountered in numerical simulations of an IVP, as well as with the practical stability 

limit is slightly more' restriGtive than the one theoretically derived. He made further attempts 

to obtain an analytical expressiun of the stability limit, which was not possible, due to the 

complexity of the eigen-values and the difficulty of solving the high degree polynomial 

equation for the time step. 

JULYAN and PIRO [1992J , investigated the dynamics of a continuous time ~ystem, 

described by an ordinary differential equation. They attempted to elucidate the dynamics of 

the Runge-Kutta methods, by the application of the techniques of dynamical systems theory 

to the maps produced in the numerical analysis. Their aim, was to investigate what pitfalls 
I 

there may be, in the integration of non-linear and chaotic systems. 

HALL, G. [1992J, was able to make a modification to the usual algorithm of codes for non-

stiff problems, which overcomes the difficulties usually experienced in the use of such codes. 

Usually, codes for non-stiff problems can exhibit unn~cessary roughness in the behavior of 

the step size, when stability, rather than accuracy, is the determining factor. This is 

inefficient, usually involving many rejected , steps. Hall's modification however, caused the 

step size, to behave smoothly, and the' new algorithm appears to be remarkably robust and 

provides the optimal use ofa given R-K formula. 

VAN DER HOUWEN and SOMMEIJER [1995J, in their work, titled, "Iteration of Runge-

Kutta Methods with Bloc.k Triangular lacobians." They considered iteration proc~ss~s for . , 

solving the implicit relations associated with implicit Runge-Kutta methods applied to stiff 

18 
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IVPs. The conventional approach, for solving the R-K equations .uses Newton iteration 

employing the full right-hand side Jacobian. They noted that for IVPs of large dimensions, 

this method is not attractive because of the high, cost involved in the LV-decomposition of 

the Jacobian of the R-K equations. ' They outlined an alternative approach which directly 

replaces the R-K Jacobian by a biock-diagonal or block-triangular matrix whose block 

themselves, are block triangular matr.ices. Such a grossly 'simplified' Newton iteration 

process, allows for a considerable amount of parallelism. They then aimed to investigate the 

effects on the convergence of block-triangular Jacobian approximations. 

ADEWALE [1998], derived a new five-stage explicit one-step R-K methodof order four for 

the numerical solution of IVPs. The new method aid computation through the use of whole 

numbers instead of fractions as observed in existing methods of this form. This is helpful, 

when the computations are performed manually, as it reduces the number of operations 

involved in the evaluation of the krs. He also provided a computer program, that uses the new 

scheme, t6 solve IVPs. The new method with its corresponding Butcher tableau is as below: 

' .' 

. h 
YII+) - YII = 12[2k) +8k3 +k4 +ks ] 

k) =!(XII'YII) 

' h h 
k2 = f(x" +- , y" + - k)) 

. 3 3 
h h 

k3 =f(x" +'2 k ),y" +'2k2) 

k4 = f[x" +h,y" +h(-3k) +5k2 -k3 )] 

ks = ![x lI + h, JIll + h(3k( - 3k3 + k4 )] 
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0 -( 
1/3 1/3 

1/2 0 1/2 
-3 5 -' I 

3 0 -3 1 

1/6 0 2/3 1/12 1/12 

GARBA and Y AKUBU [1999] , derived a new R-K formula of order five, which does not 

require the use of error control strategy, but has better approximations than some existing R-

K formulae. 

Earlier on, we did mention that when a Runge-Kutta method of desired order is derived, there 

are in general, a number of fi'ee parameters which cannot be used to increase the order, any 

further. lambert (1973), give a number of uses to which these free parameters could be put: 

(i) ~hese free parameters, could be chosen in such a way that the resulting method have 

simple coefficients, convenient for desktop computatio.ns, 

(ii) Perhaps, the most important tasks to which free parameters can be applied, is the 

reduction ofthe local truncation error, 

(iii) There are other ways in which we may attempt to use the free parameters in order to 

improve loca! accuracy, 

(iv) Another area where we can lQok for some advantage from a judicious choice of the 

free parameters, concerns the weak stability characteristics of R-K methods, 

particularly for stages' grater than four. 

With regards to explicit Runge.Kutta methods of order greater than four, Julyan and Piro 

-
(1992), identifies some unresolved issues: 

20 



'. 
.' .~ 
r-' t . r : '. 

j, 

(a) What is the minimum number of stages -necessary for an explicit method to attain 

order p? This 'is still an open problem. 

(b) Exactly how many stages are required to obtain a ninth-orde~ or tenth-orde~ explicit 

method? We only know that somewhere between twelve and seventeen stages will 

give us ninth-order explicit method, and somewhere between that number and 

seventeen stages will give us a tenth-order explicit method. 

(e) Nothing is known for explicit methods of order higher than ten. 

We must note that for explicit Runge-Kutta methods of order five, it is quite obvious that the 

minimum number of stages necessary, is six. This will become clearer, when we consider the 

following general results, as put forward by Butcher (1963, 1976): 

(i) An explicit q-stage method, cannot have order greater than q; for q ~ 4, 

(ii) There is no five-stage explicit Runge-Kutta method of order five. 

From the above, our assertion follows quite naturally. 

A number of computer software have been developed for a system of differential equations 

using the Runge-Kutta method. 

For example, the C-XSC program was developed for a system of differential equations to be 

solved by the Runge-Kutta method. The C-XSC program is very similar to the mathematical 

otation. Dynamic vectors are used to make the program independent of the size of the 

'ystem of differential equations to be solved. 
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RKSUITE is an excellent collection of codes based on Runge-Kutta V1ethods for the 

numerical solution of an lVP for the first order system of ordinary differential equations. It 

supersedes some very widely used codes, namely RKF45 code and its descendent DDERKF 

. , 

in the SLATEC library and D02P AF and associated codes in the NAG Fortran library. 
, " 

RKSUlTE is written in standard Fortran 77 and is distributed in source form. RKSUITE 

implemen$s three Runge-Kutta pairs: (2,3), (4,5), and (7,8). The (4,50 pair, for example, uses 

both a 4th and a 5th order approximation to estimate the error in the 4th formula; using 

extrapolation, it then produces a fonm.ila of order five. Similarly, the (2,3) pair produces a 

. formula of order three, and the (7,8) pair, a formula of .order eight. 
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RKSUITE is an excellent collection of codes based on Runge-Kutta methods for the 

numerical solution of an IVP for the first order system of ordinary differential equations. It 

supersedes some very widely used codes, namely RKF45 code and its descendent DDERKF 

in the SLATEC library and D02PAF and associated codes in the NAG Fortran library. 

RKSUITE is written in standard Fortran 77 and is distributed in' sour~e form. RKSUITE 

implements three Runge-Kutta pairs: (2,3), (4,5), and (7,8). The (4,50 pair, for example, uses 

both a 4th and a 5th order approximation to estimate the error in the 4th formula; using 

extrapolation, it then produces a formula of order five . Similarly, the (2,3) pair produces a 

formula of order three, and the (7,8) pair, a formula of order eight. 

, . 

\ . 
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1.3 DEFINITIONS 

Differential Equations: 

A differential equation is an equation involving an unknown function and one or 

. !.' 

more of its derivatives. It is a relationship between an independent variable x, a 
I 

dependent variable y, and one or more differential coefficients ofy with respect to x. 

dy 
E.g. - = 2x + y. 

dx 

Order of a Differential Equation: 

. The order of,!', differential equation is given by the order of the highest derivative 

. involved in the equation. For example du = F(t)G(t) is of the first order. 
. dl ' 

Ordinary Differential Equations (ODE): 

An ODE, is an equation that contains an independent variable x, an unknown function 

. , 
y(x) and certain derivatives of y such as y'(x),y"(x), .. ·, y" (x). For example, 

y' = x+2y, is an ODE. In general, any equation of the form: 

F(x, y', y",''',y'') = 0 

is an ODE of order n, n>O. 

Linear Equations: 

An equation of order n is said to be linear if it has the special form: 

Go (x)y" ~ al (x)yn-I + ... + d"_1 (x)y' + a" (x)y = I(x) (L1) 

where the ai(x) are arbitrary functions. of x only. Also, we note that in this form, the 

unknown function y and all its derivatives appear linearly. 

xplicit Runge-Kutta (R-K) Methods: 

Given that in a R-K mettlOQ of order s; 
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k; =f(x" +c;h,y" +hLa"k,),i=I(I)s 

Ifwe have that aij '= 0, whenever j~i , I = 1(I)s, then each ki is given explicitly in 

terms of previously computed kjs, j '= 1 (1 )i-l, and the method is then an explicit or 

classical R-K method. 

Semi-implicit R-K Methods: 

If on the other hand (from above), we have that aU = ° for j>i, then the method is a 

semi-implicit R-K method. 

Implicit R-K Methods: 

If we have a situation where au -:F- ° fur .i > i , then the R-K method is an implicit 

method and each ki is not given in terms of previously computed kj, j= 1 (1 )i-l. Rather 

a system of non-linear equations results. 

Local Truncation Error (Ite): 

The local truncation error (lte) t l1+1 of the one-step scheme is given by 

where y(x) is the true solution to th~ IVP. 

The local truncation error simply put, is the amount by which the true solution of the 

IVP fails to satisfy the first order difference equation~ under the simplying assumption 

that the previous solutions are exact (i.e. Yn = y(xn». 
Initial Value Problems (lVPs): 

If wit~ a difference equation, we specify conditions at a single value of the 

independent variable, these conditions are referred to as initial conditions. The 
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combinatibn of the differential equation and an appropriate number of initial 

condition~ is called an Initial.Value Problem (lVP). E.g. y' = 2x + y; yeO) = 1. 

.1 
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CHAPTER TWO 

NUMERICAL SOLUTJON METHODS 

.. . :.,. .. 

We recall ·the first order differential equation 

(i) 

over sonle interval [a ,b) , where a < 00, b < 00 

YI Yz Yn 

I II .1 I I 
a = 0 XI X;z b = xn 

The usual numerical method for solving (i) are referred to as discrete variable methods, 

because they discretise the interval [a,b] into subintervals and then generate a sequence of 

approximate solutions for y(x) i.e. YI , Y2 , Y3 . • ·. at points XI , XZ , X3 , . ... No attempt is made 

to approximate the exact solution, y(x), over a continuous range ofthe ·independent variable 

x. 

App~rently, only a small class of differential equations possess analytical solutions y(x), 

~xpressible in terins of known tabulated transcendental functions that satisfy the differential 

equation, as well as the initial conditions. Kamke, (1943). As an illustration, consider the 

well-known Van der Pol oscillator 

y" + ,u(1- y 2 )y' +,.iy == O; y (a) ,y'(a) given (if) 

for some real positive numbers ,u and,.i ; This problem was first formulated by B. Van def 

Pol in 1926, The difTcrential equation (ii), has attracted a lot of research attention both in 
• " • I ' 

onlinear mechanics and in control theory. To date, this problem has no solution in terms of 
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known tabulated transcendental function. Even when the analytical solutions to certain 

differential equations are available, their numerical evaluation may be quite intractable. 

So, for such differential equations that are not soluble analytically, numerical integration is 

the only way to obtain information about the trajectory. As stated in section 1, there are many 

different methods·diat have been proposed and used in an attempt to solve accurately, various 

types of ODEs. Such methods, are known as numerical methods and they can be broadly 

grouped into two, viz: 

(a) One-step Methods, and 

(b) Multi-step Methods. 

2.1 One-step Methods 

A dift;erential equation has no "memory". That is the values of y(x) for x before Xn, do not 

directly affect the values of y(x)for x after Xn. Some numerical methods have memory, and 

some do not. The class of methods known as one-step methods, have no memory; given Yn, 

there is a recipe for Yn+J' that depends only on information at Xn, n = 1,2, ... ,k. 

So for one-step methods, (or single-step methods) only the information from one previous 

point (mesh point), is used to compute the successive point. For example, only the initial 

point (Xc , Yo) is used to compute (XI, YI), whiie (XI, YI) is used to compute (X2 , Y2), and so 

on. One-step methods are self-starting, and permit a change of step-length, in the course of 

computation. A general one-step method can then be written in the form 

(iii) 
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where ¢ is the increment function that characterizes the one-step method, h is the steplenght. 

The goal would be to obtain algorithms for which the true solution, y(x) 

almost satisfies (iii) i.e. 

y(Xn+l ) = y(xn) + h¢(xn' y(x,,» + hT" (iv) 

with Tn "small". The quantity hT, is called the local (tnmcation) error . 
. #' .. , 

2.1.1 Taylor series Method 

Taylor series method is a straight forward adaptation of classic calculus to develop the 

solution as an infinite series. The catch is that a computer usually cannot be programmed to 

construct the terms and one does not know how many terms should be used. 

Perhaps the simplest one-step methods of order p are based on Taylor series expansion (e.g. 

Euler, Runge-Kutta) of the solution y(x). If y(P+I) (x) is continuous on [a,b], then Taylor's 

formula gives 

where Xn ::; rpn ::; xn+1 

The continuity of y(P+I) (x) implies that it is bounded on [a,b] 

and so, 

'h(P+') 
yCP+I)(rp ) =o(h P+1

) = ho(hP) 
n (p+l)! , 

Using the fact that y' = f(x, y) , (v) can be written in the form 
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· hP- 1 , 
y(xn+l ) = y(xn)+h[f(xn) + ... f(P-I) (xn ,y(xn ))-]+ho(hP) 

p! . 
(vi) 

where the total derivatives of f are defined recursively by 

f'(x,y) = fxCx,y) + f y(x,y), 

fk (x, y) = f}lc-J) (x, y) + f i lc-J) (x, y)f(x, y); k = 2,3",' 

Comparison of (iv) with (vi), shows that to obtain a method of order p, we can let 

(vii) 

This choice leads to a family of methods known as the Taylor series methods, given in the 

following algorithm. 

Taylor-series Algorithm 

To obtain an approximate solution of order 'p to the IVP (i) on [a,b], we will need to let 

h = (b - a) / n and generate the sequence 

(viii) 

Xn+1 = xn + h, n = 0,1,2,"', k-l 

where Xo = a, and Yo = A 

We can easily observe from (viii) that the Taylor series method of order p = 1, is in fact the 

Euler's method: 

Yn+1 : Yn +hf(Xn,Yn)} 

xn+1 - Xn +h 
(ix) 

Taylor series can be quite effective if the total derivatives of f are not too difficult to 

evaluate. 
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Software packages, are available that perform exact differentiation, facilitating their use (e.g. 

ADIFOR, MAPLE, MATHEMATICA, etc). However, most of today's software packages 

for solving· IVPs, such as (i), do not employ Taylor series methods: 

As stated earlier in this section, Taylor series method is the foundation for some of the 

simplest and appealingly effective one-step methods, notably of these is the Runge-Kutta 

methods. 

2.1.2 Runge- Kutta Methods 

The Runge-Kutta or R-k methods, are extensions of the basic idea of Euler's method using 

approximations which agree with more terms of the Taylor series. The Basic steplenght is h 

as with Euler's-method, but some iiltermediate points are also computed and the slopes at 

these points, are used to improve the Qverall change between Xn and Xn + h ~ xn+I ' Start from 

(xn,yn), take one step of Euler's Rule of length c2h and evaluate the derivative vector at the 

point so r~ached; the result is k2. We now have two samples for the derivative, kJ and k2, a 

weighted mean ofkJ and k2 is used as the initial slope in another Euler step (from (xn,yn)) of 

length c3h, the derivative at the point so reached is then evaluated; the result is k3. Continuing 

in this manner, we obtain a set kj, I = 1, 2, ... , s of samples of the derivatives. The [mal step 

of 

(Yn+1 = Yn + h Ib;k; ) is yet another Euler step from (xn,Yn) to (Xn+J,yn+l), using as initial 
;=1 

slope a weighted mean of the samples kl' k2, ... , ks. Thus an explicit Runge-Kutta method 

sends out feelers into the solution space, to gather samples of the derivative, before deciding 

. which direction to take an Euler step. 
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Runge-Kutta methods are designed to approximate Taylor series methods, but have the 

advantage of not requiring explicit evaluations of the derivatives of i{x,y). The basic idea, is 

to use a linear combination of values ofi{x,y) to approximate y(x). This linear combination is 

matched up as closely as possible with a Taylor series for y(x) to obtain methods of the 

highest possible order p. 

So an S-stage Runge-Kutta process can thus be viewed as an extension of the Taylor 

expansion scheme whereby the evaluation of the frrst and higher order derivatives, of i{x,y) 

is replaced by S function evaluations within every interval of integration [xn• Xn+l]. The R-K 

scheme is basically a substitution method of the form 

(x) 

with the increment function ¢RK given as a weighted mean ofthe slopes at specific points. 

The number of coefficients for each class of R-K method can be ascertained, as shown 

below: 

. =-' .~; 
NUMBER OF 

TYPE COEFFICIENTS 

Explicit s(s+1 )/2 

Semi-

implicit 5(5+3)/2 

Implicit s(s+1) 
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As discussed in section 1.2, various R-k schemes have been proposed. However, according to 

ambert (1991) the four-stage classical R-K scheme of order four, has proven to be the most 

popular of them all. Therefore, it is only fitting that we illustrate the use ofR-K methods, by 

using the classical scheme, to solve the differential equation 

y' = x + y; yeO) = 1 

ith steplenght h = 0.1 and xn+1 = x" + h 

he classical four-stage scheme is given as 

'here 

)r n = 0, x = 0.1 

th 
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k, =f(xo,Yo)=O+l=l 

k2 = f(x o +1/2h,yo +1/2hk,) 

= f(0.05,1.05) 

= 0.05 + 1.05 

:. k 2 = 1.1 

k3 = f(xo + 1/2h, Yo + 1/2h k2 ) 

= f(0.05 ,1.055) 

= 0.05 + 1.055 

:.k3 =1.105 

k4 = f(xo +h,yo +hk3) 

= f(O .I,I.11 055) 

= 0.1 + 1: 1105 .,' ., 

:. k4 = 1.2105 

1 0.1 ( Y) = + - 1+2.2+2.21+1.2105) 
6 . 

= 1.110341667 

n= 1, x = 0.2 

with 

k) =f(xpY)) 

= 1(0.1,1.110341667) 

= 1.210341667 

. 1 
k2 = f(x) + - h, YI + 0.05kl ) 

2 
= f(0.1 + 0.05,1.110341667 + 0.05(1.21 0341667)] 

= 1.32085875 

33 



1 
k3 = f(x, +-h,y, 0.05k2 ) 

2 
= 1[0.1 + 0.05,1.11034166 + 0.05(1.32085875)] 

= 1.326384605 

k4 = f(x, + h,y, +hkJ) 

:. k4 = 1.442980128 

=> Y2 = 1.242805142 

k, = f(X2'Y2) 

= f(0.2,1.242805142) 

= 0.2 + 1.242805142 

= 1.442805142}" 

," 1 
k2 = f(x, +-h,y, +0.05k,) 

2 
= 1.564945399 

1 " 
k3 =f(x, +-h,y, +0.05k2) 

2 
= 1.571052412 

k~ = f(x2 + 0.1, y, + 0.1k3) 

:. k4 = 1.699910383 

=> Y3 = 1.3997J6995 

n= 3, x= 0.3 

k, =f(x3'YJ) 

= 1.699716995 

I 

k2 = f(x3 +0.lh'Y3 +O.lk,) 

= 1.784702844 
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k3 = l(x3 + O.lh, Y3 + O.lk2 ) 

= 1.838952137 

k4 ='(X3 +h'Y3 +hJj) 

= 1.983612208 

:.Y4 =1.581894314 

Solving the differential equation analytically we obtain 

:. YE(O.I) = 1.1103418 

YE (0.2) = 1.2428055 

Y E (0.3) = 1.3997176 

Y E (0.4) = 1.5836494 

2.2 Multi-step Methods 

The numerical methods for the solution of the drn:erential equation 

(xi) 

are called multi-step methods, if the value ofy(x) at x = Xn+1 uses the values of the dependent 

variable and its derivatives at more than one grid or mesh point. Suppose the approximate 

values of y and Y' = I(x,y) at the points Xm = Xo + mh, m = 1, 2, .. . ,n. We denote the 

approximate values ofthese points by 

Y(Xm) = Ym' I(xm ,y(xm» = 1m; m = 0,1, ... , n 

Thus the general multi-step or k-step method for the solution of the IVP may be written as 

where h is the constant step size and a .. a2 , ··· , ale are real given constants. If ¢ IS 

independent of Yn+1 then the general multi-step method, is called an explicit, open, or 
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predictor method; otherwise an implicit, closed or corrector method. The k-l values 

YI'Y2 ' ··'Yk-1 required to start the computation are obtained, usiqg the single-step methods. 

The special cases of,the linear multi-step method are used for solving the IVP . 
. ,' .' ~. " 

Explicit Multi-step Methods 

Explicit multi-step methods, are obtained by integrating the differential equation 

Y' = I(x"y) 

between the limits xn_j and xn+1 , to get 

.%" +1 

y(xn+I)=y(x,,_j)+ ff(x,y)dx (xiii) 

This is then integrated by approximating f(x, y) by a polynomial which interpolates f{x, y) at 

k points x" , x,,_I'··· ,xn-hl. The Newton backward formula of degree (k-l) could be used for 

this purpose. This will give us 

k- I 

y(xn+l ) = y(x,,~) + h I y~)vm In + TkU) 
m=O 

r,u' ~ hh' f( -I)' (: U )i"'(IP)dU 

where: 

r~' = }_I)m(:U}u 

Ifwe ignore the remaind'er term TkU) in (xiv) we get 

k - I 

h" (J)V m
/, Yn+1 =Yn-j + L..JYm n 

m=O 

(xiv) 

(xv) 

(xvi) 

If the difference vm In re expressed in terms of the fUnction values 1m' from the deflnition 

of the backwards difference operator V, we fmd 
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predictor method; otherwise an implicit, closed or corrector method. The k-l values 

y" Y2 ' ···' Yk-I required to start the computation are obtained, using the single-step methods. 

The special cases ofthe linear multi-step method are used for solving the IVP. 

Explicit Multi-step Methods 

Explicit multi-step methods, are obtained by integrating the differential equation 

y' = I(x,y) 

between the limits xn_j and xn+1 , to get 

..In +1 

y(xn+l ) = y(xn_j )+ J/(x,y)dx (xiii) 

This' is then integrated by approximating f(x, y) by a polynomial which interpolates f{x, y) at 

k points X n , xn-l'···' Xn- k+I. The Newton backward formula of degree (k-l) could be used for 

this purpose. This will give us 

k- I 

y(xn+l ) = y(xn_ j) + h L y !,j)V m In + Tk(J) (xiv) 
m=O 

(xv) 

If we ignore the remainder term TF) in (xiv) we get 

k- I 
h" (J)V m r Yn+1 =Yn-j + L.JYm in (xvi) 

m=O 

If the difference V m In re expressed in terms of the function values 1m' from the defmition 

of the backwards difference operator V , we fmd 

.. ; ... , 
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m _ "" p(m) V In - .LJ(-I) P In-p (xvii) 

By substituting (xviD into (xvi) and regrouping, we obtain 

k-l 
- "" 0(J) Yn+l - Yn-j +h.LJ r m In-m (xviii) , 

m=O 

A number of interesting formulae can be obtained for various integer values of k in (xvi), 

which is the generai 'explicit multi-step method. 

Implicit MUlti-step Methods 

As we pointed out previously, explicit methods involve expressing Y:+l m terms of 

previously calculated ordinates and slopes. Implicit multi-step ' methods on the other hand, 

involves the unknown slope Y:+l on the right hand side, and are obtained by replacing 

I(x,y) in (xiii) by a polynomial which interpolates I(x, y) at xn,xn-p "',xn-k+l for an 

integer k > O. The Newton backwru:d difference formula which interpolates at these k + 1 

points in terms of u = (x - x,,)/ h , when substituted into (xiii) yields 

k 

( ) - ( ) h"" (J)n m I' TOU) Y Xn+l - Y Xn-1 -t .LJ 0" m v J n+l + k+l (xix) 
m=O 

T 'U) = hk+2 r (_1)1+1 (1- u 11'(1+1) ( )du 
k+l ! j k + 1 J qJ 

where: 

u!:' =J (_I)'(~-U}U 
(xx) 

Ifwe ignore Tko~:) in (xix), we get 

, k 

- ' h"" (J )V
m I' Yn+l -Yn-j + L.JO"m In+1 (xxi) 

m=O 

where 
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a~j) = 1 + j 

of> = - ~ (1 + j) 2 

ay> = __ 1 (1+ j)2(l-2j) 
12 

ay> = - 2
1
4 (1 + j)2 (1- j)2 

a~j) =-7~0 (1+ j)\19-38j+27f -6/) 

a~j) = __ '-1-(1+ j)2(27-54j+45f -16/ +2/) 
1440 

Ifwe replace the difference operator Vm 
fn+1 in ~erms of the function values, we obtain 

k 

Y - Y .. + h"" a tu>1, 
n+1 - n-j ~ m n- m+1 (xxii) 

m; O 

From (xxi) or (xxii), it is possible to obtain a number of multi-step formulae for various 

integer values of j. It is obvious fro~ (xix) that the implicit multi-step methods are of one 

order higher than the corresponding explicit multi-step methods with the same number of 

ordinates and slopes. 

2.2.1 Adam-Bashforth Formulae (j = 0) 

As observed in section 2.2, a number of interesting explicit formulae can be obtained for 

various integer values of k. One of such formula is the J\dam-Bashforth formula, wl)ich 

results from equation (xvi) for j = 0; 

k- I 
. . h"" (o>Vml, 

Yn+l ·? 'Yn- j + ~Ym n (xxiii) 
m; O 

Calculating a few of y!j) from (xv), we obtain 
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Yci j ) = 11u = 1 + j; yci°) = 1 

YIU) = 1 j udu = 1/2(i - j)(l + j) ; rl(O) = 1/2 

r~j) = tl/2u(u+l)du::!/12(5-3j2 +2j3);riO) =5/12 

rY) = 1}/6U(u + 1)(u + 2)du = 1/24 (3-j)(3+ j- f + /);r~O) =3/8 

y!j) = f.~(u+l)(u+2)(u+3)du=_I_(251-90f +110/ -45/ +6/) -yeo) = 251 
J 24 720 . , 4 720 

C) 1 1 I . 
r/ = -u(u+l)(u+2)(u+3)(u+4)du=--(5- j)(95+19j-25f +35/ -14j 4 +2/)-

jI20 1440 . , 
,(0) _ 475 

rs - 1440 

Replacing the coefficients r~O) by their values in (xxiii), we get 

h[j, I 7, 5 2 3 3 251 4 475 S 
Y"+I =y" + "+-VJ ,, +-V I,,-V I" +-V I" +--V I" +---] 

2 12 8 720 1440 

The coefficients r :(ll-) from (xxii) are given below: . , 

k ·(0) 
Yo 

·(0) 
YI 

·(0) 
Y2 y;(or ·(0) 

Y4 
·(0) 

Ys 
1 1 

,·' ; '3 ' ' 

1 i 2 - i. 2 2 

3 
23 16 5 
12 12 12 .... 

4 
55 59 37 9 
- -- - --
24 24 24 24 

5 
1901 2774 2616 1274 251 

--- ---
720 720 720 720 720 

6 
4277 7923 9982 7298 2877 475 

--- --- ---
1440 1440 1440 1440 1440 1440 

It is obvious from that with k computed values, we obtain Adam-Bashforth formulae of order 

k, since the truncati~n error is of the form ch k
+
l , where c is independent ofh_ 

To illustrate how the Adam-Bashforth formulae are used, we shall solve the IVP below: 
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Y' = x + Y, yeO) = 1, wi~h h = 0.1 

using the fifth order Adam-Bashforth method. The fifth order Adam-Bashforth method is 

given by: 

The values for Yt' Y2' Y3 and Y 4 are obtained using the Taylor series method of order five 

h
' h2 

" h3 
III h4 Iv j,s v 

Yn+t = Yn + lY +- Yn +-Yn +-Y n +-·-Y n 
2 II 6 24 120 

where 

Y: = Xn + Yn 

Y; =1+ Y: =l+xn + Yn 
III " 1 ' Yn =Yn = +xn +Yn 
iv ", 1 yn=Yn=+xn+Yn 
v iv 1 yn=Y n= +xn+Yn 

hence, we have 

. h 2 h3 h4 h S 

Yn+t ;, Yn +h(xn + Y,;)+(I+xn + Yn)[-+-+-+-],n = 0,1,2,3 
> 2 6 24 120 

n=O 

0.01 0.001 0.0001 0.00001 
Yt=Yo+h(xo+Yo)+(l+xo+Yo)[-2-+-6-+ 24 + 120 ] 

0.01 0.001 0.0001 0.00001) 
. ;:::1+0.1+2(-+~+ + . 

2 6 24 120 
:. Yt = 1.1103418 => Y; = xt + Yt = 0.1 +1.1103418 = 1.2103418 == f. 

n=l 
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.~. :.-" .' ; .' 

h( ) (1 )[
0.01 0.001 0.0001 0.00001 

Y2 =y, + x, +y, + +X, +y, -+--+ + ] 
2 6 24 120 

= 1.1103418 +0.1(1.21 03418) + 2.21 03418(0.0051709167) 

:. Y2 = 1.2428055 => Y; = x2 + Y2 = 0.2 + 1.2428055 = 1.4428055 == 12 

n=2 

h( ) (1 )[
0.01 0.001 0.0001 0.00001] 

Y3=Y2+ X2+Y2+ +X2+Y2 -+-, -+ +---
2 6 24 , 120 

= 1.2428055 + 0.1(1.4428055) + 1.2428055(0.0051709167) 

:. Y3 = 1.3997176 => Y; = X3 + Y3 = 0.3 + 1.3997176 = 1.6997176 == 13 

n=3 

_ h( ) (1 )[0.01 0.001 0.0001 0.00001] 
Y4 - Y3 + X3 + Y3 + +X3 + Y3 -2-+-6-+ 24 + 120 

= 1.3997176 + 0.16997176 + 0.03196 

:. Y4 = 1.5836494 => y~ = x4 + Y4 = 0.4+ 1.5836494 = 1.9836494 == 14 

Thus the starting values are: 

y, = 1.1103418; It = 1.2103418 

Y2 = 1.2428055; 12 = 1.4428055 

Y3 = 1.3997176 ; 13 = 1.6997176 

Y 4 ~ 1.5836494 ; [4-'= 1.9836494 

Now, we will use these starting values in the Adam-Bashforth formula above; 

For Q. = 4 
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'~t . 

y, =Y4 + 7~O[1901/ .. -2774/3 +2616/2 -12741. +251/ 0 ] 

01 . 
= 1.5836494 + 7~0 [1901(1. 9836494) - 2774(1.6997176) + 2616(1.4428055) 

- 1274(1.21034 J 8) + 251(1)J 
= 1.5836494+0.2137923 

:'Y5 =1.7974417~ Y~ =X5 + Y5 =0.5+1.7974417=2.2974417=15 

For n= 5 

h 
Y6 = Y5 + 720 [1901/5 -2774/4 + 261613 --1274/2 + 2511.] 

= 1.7974417 +~[1901(2.297447)-2774(1.9836494) + 2616(1.6997176) 
720 

-1274(1.4428055) + 251(1.2103418)] 

:. Y6 = 2.0442356 ~ Y~ = X6 + Y6 = 0.6+ 2.0442356 = 2.6442356 = 16 

n=6 
h 

Y7 =Y6 + 720[190]/6 -277415 +2616/4 - 1274/3 +25112] 

. = 2.0442356+ 0.1'[1901(2.6442356)-2774(2.2974412)+ 2616(1.9836494) 
720 

-1274(1.6997176) + 251(1.4428055)] 

:. Y7= 2.3275055 ~ Y; = x7 .{. Y7 = 0.7 + 2.3275055 = 3.0275022 = 17 

n=7 
h 

Ys =Y7 + 720[1901/7 -2774/6 +26]615 -1274/4 +25113] 

= 2.3275055 +~[1901(3.0275022)- 2774(2.6442356)+ 2616(2.2974417) 
, 720 

-1274(1.9836494)+251(1.4428055n 

:. Y8 = 2.6 21209 ~ Y; = Xs + Ys = 0.8+2.6421209 = 3.4421209 = Is 

As pointed out in scot ion 2, there are two types of multi-step methods; Explicit multi-step 

methods, and Implicit multi-step methods. Adam-Bashforth formula is an example of an 
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explicit multi-step method, with j = O. We will now consider the Adam-Moulton formula, 

which is an example of implicit multi-step methods, with j = O. 

2.2.2 Adam-Moulton Formula (j = 0) 

Ifwe substitute j = 0 into Equation (xxi) we obtain 

. h[ ( "; '. 1 2 1 3 19 4 27 s 
Yn+1 = Yn + !n+1 -2 Vln+1 -12 V In+1 - 24 V In+1 - 720 V In+1 -1440 V In+tl 

The coefficients 0':(0) in Equation (xxii) are given below: 

k 0'(0) 
0 

0'(0) 
1 

0'(0) 
2 

(1"(0) 
3 

(1"(0) 
4 

0-(0) 
S 

0 , 1 

1 
1 1 

-
2 2 

2 
5 8 1 

- - --
12 12 12 

3 
9 19 5 1 --
24 24 24 '. 24 

4 
251 646 264 106 19 
720 720 720 720 720 
475 1427 798 482 173 27 

5 --- -- ---
1440 1440 1440 1440 1440 1440 

We will illustrate the use of this formula, by solving the IVP below: 

Y' = x + y, y(O) = 1, with h = 0.1 

The formula is as below 

h . 
Yn+1 = Yn + 24 [9In+1 + 191n+1 -5In_1 + In-2]; Note: In+1 = Y:+I 

We note that Y n+l is contained in both sides of the equation above. In other words the 

unknown Y n+I' cannot be calculated directly, since it is contaiJ;J.ed within In+1 (i.e. ¢ is 
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dependent onYn+I)' Help is required and to this, we engage the services of the predictor-

corrector method. The Adam-Bashforth method 

is used as a predictor, while the Adam-Moulton Method given above is used as the corrector. 

Both methods will now be used to solve the above IVP . . ":.. . 

Using the classical four-stage Runge-Kutta method, we g~t the starting values as: 

YI = 1.110342; It = Y; = 1.210342 

Y2 = 1.242806 ; 12 = Y; = 1.442806 

Y3 = 1.399718; 13 = Y; = 1.699718 

To determine Y4 we will use the predictor. 

Atn=3 

:. Y4 = 1.583641292; 14 = y~ = (983641292 

We will now make use of the corrector 

h 
Y4 = Y3 +-[9/4 +19/3 -512 + ft]; 

24 
:. Y4 = 1.58365019; 14 = 1.98365019 

Atn=4 

h . . 
Y4 =Y3 +-[55/3 -59/2 + 37ft -9/0 ] 

24 . 

Ys = 1.797443843; 1s = 2.297434117 
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A 

~ Y5 =1.797443843;15 =2.297434117 

:. Y 5 = 1. 797443843 ; 

By similar computations, we get 

Y6 = 2.0442397 

Y7 = 2.3275082 

Y8 = 2.6510854 

As we stated earlier, Linear Multi-step Methods (LMM) sacrifice the one-step nature ofthe 
. . 

algorithm, but retain linearity with the advantage that it is easy to estimate errors, but 

difficult to change steplenght. On the other hand, R-K methods appears to have gone in the 

opposite direction; sacrificing linearity while retaining the one-step nature of the algorithm; 

with the advantage of easy change of steplenght, but difficulty in error estimation. 

. So, we are left with an ironical situation: with LMMs it is easy to ascertain when a change in 

.. steplenght ir required, but difficult to change steplenght. While with Runge-Kutta methods, it 

is hard to determine 'when a change in steplenght is required, but easy to change the 

steplenght Another disadvant£\ge of LMMs is that they are not self starting. They rely on 

one-step methods to obtain initial values to begin the computation. 

A major advantage of multi-step methods over R-K methods, is that for the R-K methods 

many function evaluations are required in taking one step (six in the case of a six-stage 

method). On the other hand using the Adam-Moulton method as an example, the predictor 

requires only the evaluations of In and the use of the corrector requires the additional 
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evaluation of fn+' for e~ch iteration perfonned. There is obviously, a reduction of 

computational time. 
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CHAPTER THREE 

DERIVATION OF A NEW SIX-STAGE RUNGE-KUTTA SCHEME 

An explicit s-stage Runge-Kutta (R-K) method for the numerical integration of a dynamical system 

dlJ . 
'; = f(x,y) (i) 

.. , . ' 
with step size h, is a map (where f and yare vectors) 

(x,y) ~ (x+ h,y+ h* b[l] * k[l] + ... + h * b[s] * k[s]) (ii) 

with "intermediate stages" k[I], ... k[s], given by 

k[l] = f(x,y), 

k[2] = f(x + c[2] * h, y + h * a[2,1] * k[I]), 
(iii) 

k[s] = f(x + c[s*] * h,y + h * a[s,l] * k[l] + '" + h * a[s,s -1 * k[s -I]) 

Various numerical schemes arises from different choices of the Butcher parameters: the (sxs)'-matrix 

a[i,j], the weights b=[b[I] ... b[s]], and the abscissae c=[O, c[2], ... ,c[s]]. 

3.1 The Philosophy Be~ind R-K Methods 

Recall the, IVP . , 
.Y~· "·" 

y' = f(x,y), y(a)=a (iv) 

of all computational methods for the numerical solution of this problem, the easiest to implement is 

Euler's rule 

Yn+1 = Yn +hf(xn,Yn) 

== Yn +hfn 

} 
(v) 

It is explicit and being a one-step method, it requires no additional starting va~ues (i.e. it is seIf-

starting) and readily permits a change of step length during the computation. Its low order of accuracy 

of course makes it of limited practical value. Linear Multi-step Methods (LMM) achieve higher orders, 
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by sacrificing the ·:one-step nature of the algorithm, while retaining linearity with respe~t to 

j n+ j' fn+ j" j = 0,1,"', k. However, it is possible to achieve an even higher order, by sacrificing linearity 

but preserving the one-step nature of the algorithm. This in essence, is the philosophy behind the 

methods frrst proposed by David Runge and subsequently expanded by Wilhelm Kutta, and Heun. 

Runge-Kutta methods thus, retain the advantages of one-step methods and may be regarded as a 

particular case ofthe general explicit one-step method 

(vi) 

Simply put, R-K methods are designed to approximate Taylor's series methods, but have the advantage 

of not requiring explicit evaluations of the derivatives of f{x,y), where x often represents time (t). the 

basic idea is to use a linear combination of values off{x,y) to approximate y(x). this linear combination 

is matched up as closely as possible with a Taylor series for y(x) to obtain methods of the highest 

possible order q. 

We note that an s-stage R-K method involves s function evaluations per step. Each of the functions 

kr(x,y;h), r= 1, 2 '''. , s, may be interpreted as an approximation to the derivative y'(x), andJ..he 

.f 

function ¢(x,y;h) as a weighted mean ofthese approximations. Consistency demands that Ib r = 1. 
r=1 
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If we can choose values for the constants br, Cr, ars, such that the expansion of the function 

¢(x, y;h) as 
s 

¢(x, y; h) = I b,kn 
'" ' =1 

kl =!(x, y), 

, - I 

k, = !(x+c,h,y+hIars k . .), r = 2,3, ··· , R 
s=1 

, - I 

c, = I a rs , r = 2,3, . .. , S 
s= 1 

in powers ofh differs from the expansion of the function ¢r (x, y ; h) given by 

where 

h hP- 1 

¢r (x,y;h) == !(x, y)+-!'(x,y)+···+_!(P-I)(X,y) 
2! p! 

/~~ p- I h' (,) x -I( 1)1 (" , y,,) 
, =0 r + . 

, d q 

/(q) (x, y) =- /(x, y),q = 1,2,···,(p-l) 
dx q 

(vii) 

(viii) 

only in the pth and higher powers of h, then the method clearly has order p. In (viii), we are assuming 

. that y(x) E CP[a,b]; that is y(x) possesses p continuous derivatives for x E [a,b]. 

There is a good deal of tedious manipulations involved in deriving Runge-Kutta methods of higher 

orders. The process for deriving a given R-K scheme, can be summarised into the following three 

steps: 

Step1: 

Obtain the Taylor series expansion of k, (the slopes) defined by 
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, 

where 

s 

kr = f(zr'Yn +h"Lotjk), 
) =1 

about the point (Xn,yn) in the solution space. 

Step 2: 

s 

(ix) 

Insert these expansions and cr(cr = "L0tJ,r = 1(l)s) into the expression for t.be general s-stage R-K 
)=1 

method, given as 

Step 3: 

s 

¢RK = "L' b)k),s~1 
)=1 

(x) 

Compare the coefficients in powers of h for bo.th the increment function ¢RK of the Runge-Kutta 

method given by (x) above and the increinent function ¢T for the Taylor expansion method specified 

by (viii). 

The totality of the unknown coefficients {b), C r , 0 tj ,j = l(ls)} normally exceeds the number of 

equations, so some can be chosen ~o as to attain some desired goals. Some of these goals are: 

(i) to minimize a bound ofthe local truncation error (lte) (Raltson 1962), 
: 

(ii) to maximiz<; the attainable order of the scheme (King, 1966, achieved this for the differential 

systems Y' -:::i(x», 

(iii) to optimize the interval of absolute stability (Lawson 1966, 1967b), 

(iv) to reduce storage requirements (Gill 1951, Conte and Reeves, 1956, Blum 1962, and Fyfe 
• 1 

1966,) and 
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(v) to achieve methods that uses whole numbers for comp,utation instead of fractions as with other 

methods (Adewale, 1998). 

3.2 TAYLOR SERIES EXPANSION 

The general6-stage e}{plicit Runge-Kutta method for the solution ofthe Initial Value Problem (IVP) 
. .-

(1) 

is defmed by 

y"~)-y,, = h<t>(x, y; h) 

where 

6 

<t>(X,y;h) = Lbrkr 
;= ) 

(2) 

where 

k) = f(y.:",y,,) 

k2 = f(x" +c2h,y" + ha2I k) , 

k3 =f(x" +c3h+ y" +h(a3Ikl+a32k2» ' 

k4 ::f(x" +c4h,y" +h(a4I k) +a42 k2 +a43 k3», (3) 

ks = f(x" +csh,y" +h(as,k) +as2 k2 +a53 k3 +as4 k4», 
k6 = f{x~ +csh,y" +h(a6)k) +a62 k2 +a63 k3 +a64 k4 +a6s kS»· 

and 

c2 = a2l 
C3 = a31 +a32 
C4 = a4l +a42 +a43 (4) 

• 
Cs =as) +aS2 +aS3 +aS4 
C6 =a61 +a62 -ta63 +a64 +a6S 

Equation (4) can be re-written as: 
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a21 = C2 

a31 = c3 -a32 
a4, = c4 -(a42 + a43 ) (5) 

as, =cs -(aS2 +aS3 +aS4 ) 

a6, =c6 -(a62 +a63 +a64 +a6S ) 

By substituting Equation (5) into Equation (3), we 

k, = f(x.",Yn) = f 
k2 = f(xn +c2h,Yn +a2,hkl ) 

k3 = f(x~ +c3h,Yn +h[(c3 -a3:z)k, +a32 k2] 

k4 = f(xn +c4h,Yn +h[(c4 -(a42 +a43 »k, +a42 k2 +a43 k3)] 
(6) 

ks = f(x tt +csh,Yn -hh[(cs -:(aS2 +aS3 +as4 »k, +as2 k2 +as3k3 +as4 k4)] 

k6 = f(xn +c6h,Yn +h[(cs -(a62 +a63 +a64 +a6s »kt +a62 k2 +a63 k3 +a64 k4 +a6s kS)] 

Call the kr 'sthe slopes, br' s the weights, and cr' s the abscissae, r=1(1)6 

We proceed, to expand each kr in Equation (6) in tum, by Taylor's theorem: 

f(x+m,y+n) = f(x,y)+Df(x,y)+!D 2 f(x,y)+~D3 f(x,y)+ ... +~Dn f(x,y) 
". 2 3! n! 

where D is the differential operator, defmed as: 

ma na 
D=-+~·· and ax By 

ma na ( I
n 

D" f(x,y) = -+- f(x,y) 
ax By 

=> Df = mfx + nfy 

D2 f =(ma + na)2 f(x,y) 
. Ox~" 

~.K 

~(;: + :X(;: + :)t(X,Yl] 
:. D'J -(: + :}m/" +nJ,l - m'Ju +2mnJ", +n'J" 

D3J~(;: + :)(D'f) 
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, . 

=m3f:ax +3m 2nfxxy +3mn2fxyy +n3fyyy 

D'f=(: + :}D3f) 
= m4 f:axx +4m3nf XXX)! +4m 2n2 j xxyy +4mn3 f;yyy + n4 f yyyy 

Therefore, 

k. = f(xn,Yn) 

k2 = f(xn + c2h + Yn + hc2k.)' 

The Taylor series expansion of k2 about the point (x"' y,,) in the solution space yields: 

k2 =J +c2hfx +c2hk.fy +!.(c/ h 2 fxx + 2c/ h 2k.fxy + (c 2hk.)2 fyy) +!.«c2h)3 f xxx 
2 6 

, 2 2 3 1 4 
+3«c2h) (c 2h)k.)fxxy +3c2h(c2hk.) fxyy +(c2hk.) l yyy )+-«c2h) 1= 

24 

+ 4(c2h)4 k.f:axy + 4(c2h)2 (c2hk.)2 fxxyy + 4c2h(c2hk.)3 f~yyy + (c2hk.)4 f yyyy) + o(hS) 

with all the terms evaluated at ( x n , Y n ) 

Replacing k. with f, we now have: 

1 2 2 2 2 (f h:' 2 f;f 1 h 3 I ' k2 = f +c2hfx +c2hffy +-(c2 h Ixx +2c2 h jj xy +(c2 ) yy)+-«c2 ):ax 
2 6 

+3«c2h)3)ffxxy ~3(C2h)3 12 Ixyy +(c2h.)3 1 3 fyyyl.+ 2~ «c2h)4 l:axx 

+ 4(c2 h)4 ff:axy + 4(c2h)4 12 luyy + 4(c2h)4 1 3 Ixyyy + (c2h)4 141 yyyy) + o(hS) 

Collecting like terms together, we obtain 

:.k2 =j +c2h(fx + ffy)+!(c2h)2(fxx +2ffxy + f2fyy)+!(c 2h)3(f:ax +3ffxxy +3f2fxyy + f3fyyy) 
2 ' 6 ' , 

+_1 (c2h)4 (f:axx + 4ff:axy + 4f2 f xxyy +4f3 fxyyy + f4 f yyyy) + o(hs) 
24 

Setting 

F= ffx + ffy 
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(8) 

From Equation (8) 

Now from Equation (3), 
• .;I~"::." . 

By expanding k3 in Taylor series about the point (xn' Y n) in the solution space, and substituting f for 

k), yields . 

. . 1 2 • . 
k3 =1 +c3hlx +h((cs -a32 )1 +a32 k2)ly +-((c3h) I xx +2(c3h)(h(c3 -a32 )1 +a32 k2)lxy 

2 

, 2 1 3 2 . + (h(c3 -a32 )1 +a32 k2) l yy )+-((c3h) lux +3(c3h) (h((c3 -a32 )1 +a32 k2»lxxy 
6 · . 

+ 3(c3h)(h((c3 -a32 )1 + a32 k2 »2 Ixyy + (h((c3 -a3~)1 + a32k2 »3 I yyy ) + 2
1
4 ((c3h)4 I xxxx) 

+ 4(c3h)3 (h((c3 -q32)1 +o32 k2»luxy +4(c3h)2(h((c3 -a32 )1 +a32 k2»2 Ixxyy 

+ 4(c3h)(h((c3 -a32 )1 + a32 k2 »3 Ixyyy + (h((c3 - a32 )1 + a32 k2»4 I yyyy ) + o(hs) 

with all the terms evaluated at (X n , Y n ) • 

By collecting like powers ofh together, we obtain 
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k3 = 1+ h(e3lx + ((e3 -a32 )1 + aJ2 k2 )Iy) +.! h2 (e; Ixx 2e3 ((e3 -aJ2 )1 + a32 k2 )Ixy 
2 

+ ((eJ -aJl)1 +a32 k2)2 lyy)-+.!:...hJ(eilxxx +3eJ((e3 -a32 )1 +a32 k2)lxxy 
6 

+ 3e3((e3 -a32 )1 +a32 k2)2 IX)')' + ((e3 -a32 )1 +a32 k2)3 Iyyy) 

+_1 h\e~ I %XXX + 4ei ((e3 - a32 )1 + a32k2 )Ixyyy + 4eJ ((e3 - a32 )1 + a32 k2)2 Ixxyy 
24 

+ 4e3 ((e3 -a32 )1 + a32 k2)3 I xyyy + ((e3 -a32 )1 + a32 k2)4 I yyyy) +O(h5) 
, 

Substituting for k2 in k3 we now have: 

1 2 1 3 
kJ = ~ +h(eJ: + ((eJ -aJ2 )1 + a32 (I +~2hF+2(e2h) G+6(e2h) H))ly)) 

+.!h2(e;lxx 2e3 ((e3 - a32 )1 + a32 (1 + e2hF +.! (e2h)2 G))/xy + ((e3 - a32 )1 
2 2 

+ 3e3 ((eJ -aJ2 )1 + aJ2 (I + e2hF))2 IX)')' + ((eJ -a32 )1 + a32 (I +e2hF))J I yyy ) 

+_1 h4 (ej I %XXX + 4ci ((e3 -a32 )/ +a32 /)/ xyyy + 4e; ((e3 -a32 )/ + a32 /)2 / XX)')' 

24 
+ 4e3 ((eJ -a32 )1 + a32 /)3 /Xyyy + ((c3 - a32 )1 + a32 /)4 I yyyy) + O(h5) 

On expanding, we get 
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k3 = I +hc3lx +hc3ffy -ha32 ffy +ha32 ffy +h2c2a32Fly +~h3c;a32Gly +~h4cia32Hly +~(hC3/ In 
. 26 2 

+(hC3)2 ffxy -h2c3a32 ffxy +h2c3a32 ffxy +h3c2c3a 32 Flxy +~h4c;c3a32Glxy +~h2(C31 -a32 1 
2 2 

I 122 2 1 3 132 
+a32 +hc2a 32 F+-h c2a32 G) I yy +- (hc3) Ixxx +-h C3 (c31 -a32 1 + a32 1 +hc2a 32 F)/ny 

262 
, 13 2 13 3 +- h C3 (c31 -a32 1 + a32 1 + hC2 a32 F) Ixyy +-h (c31 -a321 +a32 1 + hc2a 32 F) I yyy 

2 ,,'., 6 

1 4 143 142 2 
+-(hc3) I xxxx +-h C3 (c31 -a32 1 +a32 /)1 xxxy +-h C3 (c31 -a32 1 +a32 /) Ixxyy 

24 6 . 6 

+ ~ h 4c3(c31 -a32 1 + a32 /)3 Ixyyy + 2
1
4 h4(c3 1 - a32 1 +a32 /)fyyyy +O(h5) 

2 132 143 1 2 
k3 = I + hC3 (Ix + ffy)+h C2a 32 Fly +-h c2a32Gly +-h c2a32 Hly + - (hc3) Ixx 

2 6 2 . 

2 3 1 4 2 1 2 2 '2 2 2 
+(hcJ ffxy +h C2C3an FIxy +2h C2C3Q32 Glxy + 2 h (c31 +2hc2c3a 32 FI +h c2c3a32G/)lyy 

1 3 133 142 1322 
+-(hc3) I xxx +- h C3ffxxy +-h C2C3 a 32 Flxxy +-h C3 (c31 + 2hc2c3a32 FI)1 xyy 

6 2 ' 2 2 , 

1 3 3 3 2 2 1 4 1 4 4ff 1 4 4/2f +-h (c31 +3hc2C3 a32FI )1 yyy +-(hc3) I xxxx +-h C3 'J XXX)' +-h C3 xxyy 
6 24 6 6 

+!h4c 4/ 3f +_1 h4c4/4'1 +o(hS) 
6 3 xyyy 24 3 yyyy 

2 1 3 2 1 4 3 if 1 h 2 f ff 1 2/) k3 =1+hc3F+h C2a32 Fly +-h c2a32 Gly +-h c2a 32 H. y +-( C3) (xx+ 2 'Jxy + yy 
) 262 

+h3c2C3a32Flxy + ~ h 4c;c3a32 Glxy + ~ h2(2hc2c3a32Ff +h2c;c3a32G/)lyy 

+~(hC3)3 (I xxx + 3ffxxy + 3/2 I xyy + 1 3 I yyy ) +~ h4 C2C;a32 Flxxy + h 4c2c;a32 Fffxyy 
6 2 
1 1 

+-h4c2c;a32FI2 I yyy +_(hC3)4 (I xxxx +4ff XXX)' + 4/2 Ixxyy +4/3 Ixyyy + 14 I yyyy )+o(h
5

) 
2 24 

From Equation (8), we now have 
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Collecting like powers ofh together, we arrive at 

Next, we have; 

• 
When we expand Kt in Taylor series about the point (x"' Y n) in the solution space, ~? replace kJ wi~h 

f, we obtain: 

k4 = I +hc4lx +h((c4 -(a42 +a43 »1 +a42 k2 +a43 k3)ly +~[(hC4)2 In +2(hc4)h((c4 -(a42 +~43)1 , 2 

, 2 2fyy 1 3f +a42 k2 +a43 k3)/xy +h ((c4 -(a42 +a43 ))/ +a42 k2 +a43 k3) ]+-[(hc4) xxx 
6 , 

+3(hc4)2h((c4 -(a42 +a43 »1 +a42 k2 +a43 k3)lxxy +3(hc4)h 2((C4 -(a42 +a43 »)1 +a42 k2 

+ a43 k3)2 Ixyy + h3 ((c4 - (a 42 -~ a43 »1 + a42 k2 + a43 k3)3 I yyy]+ 2~ [(hC4)4 / X.t.U 

+ 4(hc4)3 ~«(C.4 -(a42 + a43 »1 + a42 k2 + a43 k3)1 xxxy +4(hc4)2 h2 ((C 4 -(a42 +a43 »/ , 
+a42 k2 +a43 k3)2 Ixxyy +4(hc4)h3((C4 -(a42 +a43 »1 +a42 k2 +a43 k3)3 /xyyy 

+h4((C4 -(a42 +a43 »1 +a42 k2 +a43k3)4 I yyyy ]+o(h S
) 

all the terms being evaluated at (X n , Y n ) • 

Substituting k2 and k3 into 14 we ,have 
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k4 = 1 +hc4lx -+- hfc4f'-a 42 1 -a43 1 + a42 (I +c2hF +!.. (c 2 h)2G +!..(c2 h)3 H 
, 2 6 

(I h h2 ;'1" 1 2 2 1 3 2 3 3 I 

+a43 + c3F+ c1 a32 FJ y +2,h c3G+2,h c2an Gly +h c1c3a32 Flxy +h c2c3a32Fffyy 

+!..h3Ci~)]ly +!..(hC4)2 fv: +h2c4[c41 -a42 1 - a43 1 +a4;(1 +c2hF+!..(c2h)2G) 
6 2 . 2 

Ih 2 ;'1" 12 2 12 
+ a43 ( + c3F + h c2a32 FJ y +"2 h c3 G)]lxy +"2 h [c41 -a42f -a43 1 

+ a42 (I +c2hF +!(c2h)2 G)+ a43 (I + hc3F +h2c2aj2Fly +!h2c;G)]2 I yy +!(hC4)3 1 xxx 

226 
1 2 

+ 2 (hc 4) h[ c 41 - a 421 - a 431 + a 42 (I + C 2 hF) + a 43 (I + hc 3 F)]I xxy 

+!..(hC4)2 h2[c41 -a42 1 - a431 + a42 (I +c2hF)+a43 (I +hc3F)]2 Ixyy 
2 . 

1 3 3 + - h [C 41 - a 421 - a 431 + a 42 (I + C 2 hF) + a 43 (I + hc 3 F)] 1 yyy 
6 
1 4 1 3 . 

+ 24 (hc4) l:axx +"6(hc4) h[c41 -a4t l -a43 1 +a42 1 +a43 /]lxxxy 

1 22 1 2 1 3 +- (hc4) h [c41 -a42 -a43 1 +a42 1 +a43 /] I xxyy +- (hc4)h [c41 -a42 1 -a43 1 
6 6 

1 3 14 . 4 5 
+a42 +a43 /] 1 ~ +-h [c41 -a42 1 - a43 1 +a421 +a43 /] I"""" +o(h ) 

-UJ 24 ' . . ~JU 
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From equation (8) and gathering all like powers of h together: 
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" 

Expanding ks in Taylor series as before, and putting f for kJ yields; 

ks = 1+ hCslx + h[(cs - (aS2 + aS3 + aS4 »1 + aS2 k2 + a S3 k3 + aS4 k4 ]Iy 

1 h 2 + 2[( CS) In +2(hcs)h«cs -(aS2 :-aS3 +as4»/+aS2k2 +as3 k3 +a54 k4)lxy 

2 2 1 3 +h «CS -(aS2 +aS3 +as4 »1 +aS2 k2 +aS3 k3 +aS4 k4) Iw]+-[(hcS) 
. 6 

+3(hcs)2h«cs -(aS2 +aS3 +Qs4»1 +as2 k2 +as3 k3 +as4 k4)lxxy 

+3(hcs)h2«cs -(aS2 +aS3 +as4»/+aS2k2 +as3 k3 +as4 k4)2/xw 

+h3«C~ -(aS2 +aS3 +as4 »1 +as2 k2 +a~3k3 +as4 k4)3 1m] 

1 4 3 
+ -[(hcs) I xxxx + 4(hcs) h«cs - (aS2 + aS3 + aS4 »1 + as2 k2 + as3 k3 + a54 k4)1 xxxy 

24 
+ 4<hcs)2 h 2 «CS - (aS2 + aS3 + aS4 »1 + as2 k2 + as3 k3 + a54 k4)2 I XX}')' 

+ 4(hcs )h
3 «cs - (aS2 + aS3 + aS4 »1 + as2 k2 + as3 k3 + as4 k4)3 Ixm 

+h4«CS -(aS2 +aS3 +as4 »1 +as2 k2 +as3k3 + as4 k4)1>m ] + o(hS) 

when we substitute for k2' k3, and ~ into ks we would have 
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, 1 2 1 3 
kS = I +hcsfc +h[(csi -as2 1 -aSJI -as4 1 +aS2 (I +c2hF +-(c2h) G+-(c2h) H) 

2 6 
122 2 ' 132 3 ;'1' 3 ;'fj +as3 (/+hc3F+-h c3G+h c2a32 Fly +-h c2aJ2 Gly +h c2c3aJ2 FJxy ++h c2c3a32 FJJyy 

_ 2 2 

1 J 3 F 1 2 2 2 ' ;'1' 2 ;'1' 1 3 3 l' 1 2 !I' + - h c J H + a S4 (I + hc 4 + - h c 4 G + h c 2 a 42 FJ y + h c 3 a 43 FJ y + - h c 4 H + - h c 2 a 42 GJ y 
6 2 6 2 

3 ./' ., 2 1 3 2 J 3 3 
+h c2a32a4JFly +-h cJa4J Gly +h c2c4a42 Flxy +h cJc4a43 Flxy +h c2c4a42 Fjfyy 

2 
"3 1 2 

+h cJc4a43Fjfyy»J/y + "2[(hcs) In +2(hcS)h«csl -as2 1 -as31 -aS4 ! 

+ aS2 (I +c2hF +.!..(c2h)2 G) + aS3 (I +hc3F +.!..h2c;G +'h2c2a32Fly) 
, 2 2 , 

+aS4 (I + hc4F + ~ h2ciG + h2c2a42Fly + h2c3a43Fly»lxy. 

2 1 2 1 2 2 +h (CS -as2 1 -aSJI -as41 +aS2 (I +c2hF +-(c2h) G)+aS3 (I +hc3F +-h C3 G 
2 2 

+ h2c2aJ2Fly) +aS4 (I +hc4F +li,2cJG + h2c2a42 Fly +h 2c3a4J Fly»2 l yy J 
2 

1 ' 3 2 
+-[(hcS) lux +3(hcS) h(cS -as2 1 -as3 1 -as4 1 +as2 (1 +c2hF)+aS3 (1 +hc3F) 

6 
+a54 (1 +hc4F»/llY +3(hcs)h2(cS -as21 -as3 1 -as4 1 +as2 (1 +c2hF) 

+as3 (1 + hc3F)+aS4 (I +hc4F»2 Ixyy +h3(CS -aS2! -as31 - a54 1 +as2 (1 +c2hF) 

3 1 4 3 I I +aS3 (I + hc3F) +aS4 (I +hc4F» I yyy J+-[(hcs) 1= +4(hcS) h«cS -aS2 -aS3 24 
-a54 1 +as2 1 +asJI +as4 /)1 XXX}' +4(hcs)2 h2 «CS -as2 1 -as3 1 -as4 1 + as2 1 +asJI +a54 /)2 Inyy I 

+ 4(hcs)h3 «CS -as21 -as3 1 -as4 1 +as2 1 + as3 1 +as4 /)3 I xyyy 

+h4,«cS -asrl -as3 1 - as4 1 +as2 1 +as31 +as4 f)1 yyyy]+o(h
S
) 

On evaluating ks further, we obtain 

, 1 2 2 1 3 3 h 1 h2 2 G ks = I +hcsix + h[(csi + hc2aS2 F +"2h c2aS2G+6h c2aS2 H + c3aS3 F +"2 c3aS3 

+ h?c2a32 aS3 Fly + ~ h3c;a32aS3G/y +h3c2c3a32aS3Flxy + +h3c2c3a32aS3 Fjfyy 

1 3 3 ' 1 h2 2 G h2 F,;'I' h2 F,;'I' 1 h3 3 H +-h c3aS3H+hc4aS4F+- c4a54 + c2a42aS4 Jy+ c3a4JaS4 Jy+- c4a54 
6 2 6 

+!hJcia42aS4Gly +h3c2ana43aS4FI: +!h3cia43a54Gly + h3c2c4a42a54Flxy 
2 2 

+ h3c3c4a43aS4Flxy + h3c2c4a42a54Fjfyy + h3c3c4a43as4Fjfyy )]ly + ~ [(hCS)2 III + 2(~cs)h(csl 
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122 122 2 1 22 . 
+c2haS2 F+-c2h aS2G+hc3aS3F+-h c3an G+h C2a32aS3Ffy +hc4aS4 F+-h c4aS4 G 

2 . 2 2 

+ h2c2a42aS4Ffy + h2 c3a43aS4 Ffy)fxy + h 2 (cs + c2aS2 hF +i (c 2h)2 aS2 G + hc3aS3 F 

+~h2c;Ga53 + h2c2a3~aS3Ffy + hc4aS4 F +~ h 2c; a54 G + h2 c2 a42 aS4 Ffy' + h2 c3a43aS4Ffy)2 fyy] 
2 2 
1 3 . 2 2 . 

+-[(hcS) fxxx +3(hcS) h(cS +C2aS2hF+hc3aS3F+hc4a54F)fxxy +3(hcS)h (CS +c2aS2 hF 
6 _ . 

+ he 3 a S3 F + hc 4 a 54 F) 2 f xyy + h 3 (c 5 + c 2 a 52 hF + hc 3 a S3 F + hc 4 a S4 F) 3 f yyy ] 

+_1 [(hCS)4fxxxx +4h4c;fxxxy +4h 4c;fxxyy +4h4c;fxyyy +h4c;fyyyy ]+o(h5) 
24 

1 22 - 133 1'22 
ks = f +hc5f" +h[(c5f +hc2aS2 F +-h c2 aS2 G+-h c2aS2 H +hc3aS3 F +-h c3aS3 G 

. 2 6 2 , 

+ h2c2a32aS3Ffy +~ h3c; a32a53Gfy + h3c2c3a32a53Ff xy + +h3c2c3a32a53Fff yy 
2 . 

1 3 3 1 2 2 2 ' 2 1 3 3 
+-h c3aS3H+hc4aS4F+-h c4aS4 G+h c2a42aS4Ffy +h c3a43aS4Ffy +-h c4a54 H 

6 2 . 6 

132 3 2 132 3 +ih c2a42aS4Gfy +h c2a32a43aS4Ffy +"2h C3a43aS4Gfy +h C2C4a42aS4Ffxy 

+h3c3c4043aS4Ff xy + h3 c2C4a42GS4Fff yy + h3 c3c4a43aS4Fff yy )]fy +~[(hCS)2 fn + 2(hcs )h(c5f 
2 

I 2 2 '1 2 2 2 ;y' h 1 h2 2 +c2haS2 F +-c2h aS2 G+ hc3aS3 F +-h c3aS3 G + h c2a32aS3F) y + c4aS4 F +- c4aS4 G 
222 

} ... : 

+ h2c2a42as4;jy + h2c3a43aS4Ffy)f xy + h 2 (cs + c2a52 hF +i (c2h)2 aS2 G + hc3an F 

+! h2c;GaS3 + h2c2a32aS3Ffy + hc4aS4 F + ~ h 2c; aS4 G + h2 c2a42aS4Ffy + h2c3a43aS4Ffy)2 f yy ] 
2 2 

+ ~[(hCS)3 f xxx + 3(hcs)2 h(cs + c2aS2 hF + hc3a53 F + hc4aS4 F)f xxy + 3(hcs )h
2 (c5 + c2aS2 hF I 

6 . . 

+ hc 3 a S3 F + hc 4 a S4 F) 2 f xyy + h3 (c 5 + c 2 a 52 hF + hc 3 a 53 F + hc 4 a 54 F} 
3 
f yyy ] 

I . 
+_(hC5)4[fxxxx +4fxxxy +4fxxyy +4fxyyy + fyyyy]+o(h s) 

24 
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k 
' 2 132 143 2 

5 = / +hcs(fx + /.fy)+h c2aS2 F/y +-h c2aS2G/y +-h c2aS2 H/y +h c3aS3 F/y 
2 6 

+ h3c2a32aS3F/y2 + !....h3ciaS3G/y + !....h4c;a32aS3G/y2 + h4c'}P3a32aS3Flxy/y 
22 , -

4 1 4 3 2 1 3 2' 
+ h c2c3a32as3F/.fy/yy + -h c3aS3 H/y + h c4a54F/y + -h c4 a54G/y 

6 ' 2 

+ +h3c2a42aS4F/y2 + +h3c3a43aS4F/) + !....h4c;aS4 H/y + !h4c;a42aS4G/) 
6 2 

+ !....h4c;a43a54G/y2 + h4c2a32a43aS4F/: + h4c2c4a42a54Ffxy/y + h4c3c4a43aS4F/xy/y 2 ' -

+ h4c2c4a42aS4Fffy/yy + h4c3c4a43aS4Fffy/yy + !....(hcs)2 /xx + (hcs)2./lxy + h3c2cSaS2Ffxy 
2 ' 

142 3 ' 4 142 
+ -h C2cSaS2G/xy + h C3CSaS3 F/xy + h C2CSa32aS3F/xyh + -h c3 cSaS3G/xy 

2 , , 2 

+ h3c4cSaS4F/xy + !h4cicsa54G/xy + h4c2cSa42aS4F/xy/ y + h4c3cSa43aS4F/xy/y 
2 

1 22 3 142 3 4 
+ 2 (hcs) /yy + h c2cSaS2Fffyy + 2,h c2cSaS2Gffyy + h c3cSaS3Fffyy + h c2cSa32as3F/.fy/yy 

+ h3c4cSaS4Fffyy + h4c2cSa42a54F/.fy/yy + h4c3cSa43a54F/.fy/yy + !""h4c;cSaS3Gffyy 
2 
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I 

From Equation (8) and further grouping like powers of h together we get 
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i ~ :. . 

rrj 1 2 2 +c2cSa32aS3 +c2cSa42aS4 +CjCSa43aS4)Fjjy yy +-G/xy(c2CSaS2 +c3cSaS3 2 

+c;cSaS4 ) +!Gffyy (c;cSaS2 + c;cSaS3 + c;cSaS4 ) 
, 2 

+ ~ F/xxy(c2c;aS2 +c3c;aS3 +c4c;aS4)+(c2c;aS~ +c3c;aS3 +c4c;aS4 )Fffxyy 

+1... F/2 / yyy (c2c; aS2 +c3c; aS3 +c4c;aS4 ) + c2a32a43aS4 F/}] +o(hs) 
2 ' 

(12) 

By expanding ~ as before and substituting f for kJ we have 

k6 =/+hc6/ x +h«c6 -(a62 +a63 +a64 +a6S»/+a62k2 +a63 k3 +a64 k4 +a6s kS)/y 

1 2 2 ' 

:2(hc6) /n +h C6«C6 -(a62 +a63 +a64 + a6S »! + a62 k2 +a63 k3 +a64 k4 +a6s ks)/xy 

1 'h 2 / 2 1 3 +- «c6 -(a62 +a63 +a64 +a6S » +a62 k i +a63 k3 +a64 k4 +a6s kS) /yy +-(hc6) /:o:x 
2 ' 6 

132 
+2h C6«C6 -(a62 +a63 +a64 +a6S »/ +a62 k2 +a63 k3 +a64 k4 +a6s kS)/XXY 

1 3 ' ' - . ; 2 

+-h C6«C6 -(a62 +a63 +a64 + a6S »/+a62 k2 +a63 k3 +a64 k4 +a6s kS) /xyy 
2 

1 3 ' 3 1 4f -
+ -h «c6 - (a62 + a63 + a64 + a6S »/ + a62 k2 + a63 k3 + a64 k4 + a6skS) / yyy + -(hc6) = 

6 . 24 

+!h4C~«C6 -(a62 + a63+ a64 +a6S»/+a62k2 +a63 k3 +a64 k4 +a6s kS)/:O:XY 
6 

+.!.. h4 c: «c6 - (a62 + a63 + a64 + a6S »/ + a62 k2 + a63k3 + a64k4 + a6s kS)2 /nyy 
6 

+ !h4 c6 «c6 - (a62 + a63 + a64 + a6S »/ + Q62 k2 + a63 k3 + a64 k4 + a6s kS)3 / xyyy 
6 . 

+ 214 h4 «c6 - (a62 + a63 + a64 +. 'a6S'»/ + a62 k2 + a63 k3 + a64 k4 + a6s kS)4 / yyyy + o(hs) 

with all the terms evaluated at (x n , Y n ) 

Substituting for k), k2' k3, ~, and ks into ~: 
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. . 1 2 1 3 . 
k6 =f +hc6lx +h[(c6 -(a62 +a63 +a64 +a6s »1 +a62 (I +c2hF+-(c2h) G+-(c2h) H) 

. · 26 
1 2~ 2 132 3 3 + a63 (I +hc3F+-h c3G+h c2a32 Fly +-h c2a32 Gly +h c2c3a32 Flxy ++h c2c3a32 F./fyy 
2 2 

- 1 h3 3 I h 1 h2 2 h 2 -;1" h2 -;1" 1 3 3 1 3 2 ~I" + - C 3 H) + a 64 ( + C 4 F + - C 4 G + C 2 a 42 FJ y + C 3 a 43 FJ y + - h c 4 H + - h c 2 a 42 G.J y 
6 . 2 6 2 · 

, -+h3c2a32a43FI) +'!h3c;a43 Gly +h3c2c4a42Flxy +h3c3c4a43Flxy +h3c2c4a42F./fyy 
_.':'~ 2 

. 3 ' 2 1 22 2 2 2 
+h c.3C4a4JF./fyy)+a6S(1 +hcsF+h 2 h csG+h c2aS2 Fly +h c3as3 Fly +h c4as4 Fly 

1 3 3 1 3 2 1 ) 2 1 h3 2 h3 2 3 2 +-h cSH +-h c2as2 Gly +-h C3 as3 Gly +- c4as4 Gly + c2a32aS3Fly +h c2a42as4Fly 
6 2 2 2 

+ h3 c3a43aS4Fly2 + h3c2cSaS2Flxy + h3c3cSaS3Flxy + h3c4cSaS4Flxy + h3c2csas2F./fyy 

+h3c3csas3F./fyy +h3c4csas4F./fyy )]ly + ~ (hC6)2 Ixx +h2C6[(~6 -(a62 +a63 +a64 +a~s»1 
, 1 2 1 22 2 

+a62 (I +c2hF+-(c2h) G)+a63 (1 +hc3F+-h c3G+h c2a32 Fly) 
2 2 

+ a64 (I + hc4F +.!h2c;G + h2c2a42 Fly +h2c3a43Fly)+ a6S (I +hcsF +h2 .!h2c;G + h2c2aS2Fly 
2 , 2 

2 2 1 2 
+h C3aS3 Fly +h c4aS4Ffy)]lxy + 2 h [(c6 -(a62 +a63 +a64 +a6s »1 

, --

I ' 2 I 1 2 2 h2 -;1" 1 h + a62 (I +c2hF +-(c2h) G) +a63 ( + hc3F +- h C3 G+ c2a32 FJ y) +a64 ( + c4F + 
22 · 

.!h2c;G+h2c2a42Fly +h2c3a43Fly)+a6s(1 +hcsF+h2 ~ h2c;G+h2c2as2Fly +h2c3as3Fly 
2 , , . 

2 2 1 3 1 h 3 2 ( »1 +h c4aS4 Fly)] Iyy +'6(hc6) Ixxx +"2 C6[(C6 - a62 +a63 +a64 +a6S 

+a62 (I +c2hF)+a63 (I + hC3F~+a64 (I +hc4F) +a65 (I +hcSF)]1 xxy 

1 '. 
+-h3c6[(C6 -(a62 +a63 +a64 +a6S »1 +a62 (I +c2hF)+a63 (I +hc3F)+ a64 (I + hc4F) 

1 

+a6s (1 +hcsF)f Ixyy +.!h3[(C6 -(a62 +a63 +a64 +a6s »1 +a62 (I +c2hF) + a63 (/+hc3F) 
6 

+a64 (1 +hc4F)+a~s(1 +hcsF)]3 I yyy +_1 (hC6)4 Ixxxx +!h4C~[(C6 -(a62 +a63 +a64 +a6s »1 +a62 
. 24 6 -

+a6;1 +a64 1 +a6s l]1 xxxy + ~ h4c; «c6 -(a62 +a63 +a64 +a6s»1 + a62 1 +a63 1 +a64 1 +a6s l)2 ! XX) 

+.!.h 4c6«C6 -(a62 +a63 +a64 +a6s »1 +a62 1 +a63 1 +a64 1 +a6s l)3 Ixyyy 
6 , , 

+_1 h4«C6 -(a62 +a63 +a64 +a6s »1 +a62 1 +a63 1 +a64 1 +'a6s f)4 1 yyyy +o(hs) 
24 ' ' 
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-" 

k Ihl ' I · I 1 22 1 33 (, = + C (, x + h[ C 6 - a 62 - a 6.1 I - a (,4 I - a 65 + a 62 I + C 2 a 62 hF + "2 C 2 h a 62 G + 6 C 2 h a 62 H 

I h I h2 2 2 7'1' 1 3 2 3 
+Q63 + C3Q63 F+ "2 C.1 G63 G+h C2Qn Q6J r Jy +"2 h C2 G63 Q32 G!y +h' c2C3a63 Qn Flxy 

3. 1 .13 1 22 2 2 
+h C2C3Q32 Q63 F.f(v)! +6h C3Q63 H +QM/ +hC4 QM F+"2~ C4QMG + h C2Q42QMFly +h C3Q43QMFly 

1 3 J 1 J , 2 ' J 2 ] 3 2 3 
+- h C4QMH +- h C2Q42QMGf v +h C2 QJ2 Q43QMFIv +- h C3Q43Q64 Gly +h C2C4Q42Q64 Flxy 6 2 . . 2 

+>h 3C3C4Q43Q64 Flxy + h3C2C4Q42 Q64 Fff)'Y +h 3C3C4Q43QMFffyy +Q65 1 +hc5a65 F+ ~ h 2c; a65G - . 

h2 . ~I" h 2 -;'1' 2 1 3 3 1 3 2 
+ c2Q52 a 65 FJ y + c3Q53 a65 FJ y +h c4a54 a65 Ffy +- h c5a65H +- h c2Q52a65Gly 

6 2 

+1. h3 c; Q53Q65 Gly +1. h 3 C; Q54 Q65 Gly + h3 c2a32 a 53 Q65 FI: + h3 C2Q42a54 a65Fly2 
2 2 . 

+ h3C3Q43Q54 Q65 FI); + h J
C2C5Q52 a65 Fir)' + h3 C3C5Q53 Q65 Flxy -+ h3 C4C5Q54 a65 Flty . 

~ 

+ h3c2C5a52Q65 Fffyy + h3 C3C5G53 G65 Fff;-y + h 3 C4C5Q54 Q65 Fffyy ]/; +1. (hc6 ) 2 l :u + h 2CdC6 - G62 1 
2 

. 1 22 1 22 
-Q63 1 -Q641 -Q65 1 :-Q62 1 +hC2Q62 F+ "2 C2h G62 G+G6JI +hC3Q63F+2,h C3Q63G 

+h 2c2a32 a63 Fly +Q64 1 + hC4
Q64 F +~h 2 C; G64 G + h 2C2a42G64 Fly +h 2c3a 43 G64 Fly + a65 1 +hC5G65 F 

2 

+ h 2 ~ h 2 'C; a 65 G + h 2 C 2 a 52 a 65 FI). + h 2 C 3 a 53 a 65 FI v + h 2 C 4 a 54 a 65 FJ), ]Ixv + ~ h 2 [c 6 - U 62 I - a 63 I , 2 . . 2 

1 22 1 22 2 
-aMI -ct65I +a62 1 +hC2G62 F+ - c2h a62 G+a6.1 1 +hc3a63F+-h c3a63G+h c2a32a63Fly 

2 2 

+ Q641 + h~4a64 F +1. h 2c;a64 G + h 2c2Q42 a64 Fly + h 2C3G43Q64 Fly + a651 + hC5Q6SF 
, 2 

+ h 2 1. h 2c; a65 G + h 2 C2Q52 a65 Ffy + h 2c3G53 a 65 Fly + h 2c4a54G65Fly ]2 I yy +1. (hC6)3 I xxx 
2 6 

+±h3C~ [C6 -a62 1 -a6J I - aMI -a65 1 +a62 1 +c2a62 hF+Q63 1 +hc3a63 F+a64 1 

+hc4a64F+Q651 +hCSQ65F]/uy + ~ h3
c6[C6 -Q621 -a63f- a641 -a651 +a62 1 +hC2

Q62 F 

2 1 J I I +a63 1 +hc3a63 F+Q64 1 +hc4 Q(,4 F +a65 1 +hC5Q65 F] I x)!y +- h [(c6 -a62 - Q63 
6 

-a64 1 -a651 + a621 +C2Q62hF +a63 1 + hc3a63 F +a64 1 +hc4a64 F + a65 1 + hc5a65 F]3 I yyy 

+ 2
1
4 (hc 6 ) 4 I xxxx + i h 4 C ~ [ C 6 - a 62 I - a 63 I - a 64 I - a 65 I + a 62 I + a 63 I + a 64 I + a (>5 I]I xxxy 

+1.h4ci [c6 -a62 I - a63 1 -a64 I - a65 I +a62 I +q63 I +a64 1 +a65I]2 l :uyy 
6 
1 . 

+ 6' h 4 C 6 [c 6 - a 62 I - a 63 I - a 64 I - a 65 I + ~"I + a 63 I + a 64 I + a65 I] 3 f ryyy 



, , 

1 22 , 1 .13 1 22 , 
k6 = f +hC6f. +h[c6f +C2a02hF +2.c2h a62G +6C2h 062 H + hC3063 F +2. h C3063G 

+ h2c2a32063Ff;. + ± h
3 ci 063a32Gf;, + h

3 
C2CP63032 Ffry + h

3 
C2 CP32 063 FjfYJ' + ~ h3 

C;063 H 

1 2 - 2 2 2 1 33 132 
+ hC4064 F + - h C4064G + h C2042064Ffv + h C30'1J064F!,y + - h C4064H +- h C2042064 GJ,y 

2 . 6 2 

+ hJC2 0.120'BOC..J/,~ + ~ hJc~a~p(.,.cJj; . + hJC2C.1 (I'\201o<lF:frr + h3cJC40 .. p(,4F:r~r + h3C2C40420("JJJ,)' 

+ h3C3C4043064Fffyy + hCS06S F + ~ h2
c;06SG + h2C20S206SFfy + h2C30S306SFfy + h2C40S406SFfy 

< 2 
133 132 1 32 , 1 32 , 3 2 

+ - h cs06s H +- h C20S206SGI;, + - h C30S306SG/." +- h C40S406SG/y + h C20J20S306sFfy 
6 2 2 . 2 

+ hJC20420S406SFf) + h3c3043aS406SFfy2 + h3C2CSOS206SF/ry + h3C3CSOS306SFfJ<)' 

,. h3c4cSoS4a6SFfJ<)' + h'c2cSas206sFjf,y + hJc3CS05)a6SFffyy + h3c4cS054a6sFffyy ]fy 

1 h )2j, h2 ' f h I 2h b G h I hi 2 h2 ~I' + 2. (C6 '~. + C6[ Cc, + C2Q62 F + 2. C2' {J62 + c3a63 F + 2. . C3063G + . c2032a63FJ y 

h F Ih' 2 2 G h2 ,,-; I 2 J~ h F h2 1 h2 2 G + C4064 + - C4 a64 + c2042a(,4ij y + 1 C304P64 J v + cSa6S + - Cs a65 , 2 , . 2 

2 ' 2 2 12 122 
+ h C2aS2a6SFfy + h C3aS3a6SFf" + h C4aS406SFfy]f.}. + - h [C6/ + hc2a62 F + - C2 h a62G + hc3a63 F 

, . ' ' 2 2 

122 2 12 2 2 2 
+2. h c3 a6JG + h C2aJ2 (1C..1F:f" + hc"a(", F +2. h c4aM G +h C2a420MFfy +h cP4Ja(,4F/V + hCSa6SF 

I 2 2 2 2 2 2 j, . I 3j, + - h CS06SG + h C20S2a6SFf'l + h C)OS3a6SFfv + h C40S406SFf,,] IV +-(hc6) xu 
2 . ' ". 6 
I 3 2 I 3 ' +- h C6 [c6f + C2062hF + hC3063 F + hC40MF + hCS06S F]hry + - h C6[c6f + hc2a62 F + hc3a63F 
2 2 

+ hC4064 F + hCS065Ff f.y), + ~ h3[( c6f + C2062hF + hC3063 F + hC4064 F + hCS065 F]3 f yyy 

I 4 I 4 4 I 4 4 2 I 4 4f3j, I h4 4f4j, (hS) +-(hc6) fxxxx+ - h c6ff:u.ry,+ - h c6f Jr:ny + - h C6 X}"'+- C6 ,m.y +o 
24 6 6 ' . 6 24 
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k6 = 1+ h;6(h + fly ) + 112r(C2062 + C~06J + C40(,4 + C50 (5 )FI.,] + h 3
[±(Ci 0 62 + C;063 + C;064 + C;065)Gly 

+ (C203 2063 + C20 4P64 + C30 430 M + C2052065 + C3053065 + C4054065 )FI/ 

+ (C2C60 62 + C3C60 63 + C4C60 64 + c5c6065 )Ff~I' + ( C2C(,062 + C3C60 63 + C4C60 64 + C5C6065)Ffly:y] 

h4[ 1 ( 2 2 2 ,2 2 2 :r2 1 J 3 + "2 C2 0 6J On + C20 42Q64 + C3 °4]°64 + C2052065 + C3053065 + C4054065)GJ y + 6 (C20 62 + C3 0 63 

+ C;064 + C;065)Hf)' + (C2C3032063 + C2C4Q420 64 + C3C40 4P64 + C2C5052065 + C3C5053065 + C4C5054065 

+ C2C~032063 + C2C6042064 + C3C60 4P64 + Cl'60 520 65 + C3C6053065 + c4c6054065)Ff.)'ly 

+ (C2Cj 0 J20 63 + C2C404 2064 + C3C40 4P 64 + C2C5052065 + C3C50 5P65 + C4C5054065 

+ C2C60J2063 + C2C6042064 + C3C604 3064 + C2C6052065 + C3C60 5P65 + C4C6054065)Fflyi;y 

+ (C2032043064 +C20 )20 530 65 +C20420 540 65 +C3043054065)FI; +±(CiC60 62 +CiC60 63 +C~C6064 +C;C60 65 )Glxy 

I ( 2 2 2 2 )G:/T I (2 2 2 2) /I' + - C2C60 62 + C3C60 63 + C4C60 64 + C5C60 65 'JJ yy + - C2C6 0 62 + C3C6 0 63 + C4C6 0 64 + C5C60 65 FJ XI)' 

2 2 

+ (C2C; 0 62 + C3C~063 + C4C~06~ + h4C5C~065 )FffT.lY + ±(C2C~062 + C3C~063 + C4C~064 + C5C~065)FI21 yyy J 

, 1 I 
+ "2 (hC6 )2(Irx +2'ffxy + 12~) +6(l1c6 )3(1 xxx + 3flxxy + 3/

2
f.yy + 1 3

1 yyy ) 

I (I )4 ( /' 4 ,I ''/' ' 4 4/" / ' 4}' J r 14 r. ) (I 5) + 24 lC6 " m.r + C6 J" TX,~r + C6 , -, H I)' + J .r.l~Y + ' )JJ), + 0 1 

k6 = f +hc6(fx + ffyl+h2[(c2a62 +c3a63 +c4a64 +C5a65)Ffy ]+h3'[~ (c;a 62 +c;a63 +c;a64 +c;a65 )Gfy 

+ (c2a32 a63 + c2a 42 a64 + c3a43a64 + c2 a52 a65 + c 3a53 a65 + C4 a54 a65 )F// 

+ (c 2c6a62 +c3c6a63 +c4c6a64 +c5c6a65)F/xy +(c2c6a62 +c3c6a63 +c4c6a 64 +c5c6a65 )FffY,Y ] 

h4 [1 ( 2 2 2 2 2 2 )G!I' 2 1 ( 3 3 + 2 c2a63a32 +c2a42 a64 +c3a43 a64 +c2a52a65 +c3a53a65 +c4a54a65 ')r +6 c2a62 +c3a63 
, 

+ c~ a64 + c~ a65 )H/y + (c2c3a32 a63 + C 2 C4 a 42a64 + C3C4 a43a64 + c2c5a52a65 + c3c5a53a65 + C 4 c5a54 a65 

+ c2c6a32a63 + c2c6a42 aM + C,lC('04J a64 + C 2c6a52 a65 + c3c6a53 a65 + c4 c6a54 a65 )Ff.yf y 

+ ( c 2 C 3 a 32 a 63 + c 2 C 4 a 42 a 64 + C.l C 4 a 4) a 64 + C 2 C 5 a 52 a 65 + C) C 5 a 53 a 65 + C 4 C 5 a 54 a 65 

+ c2c6a32 a63 + C 2c6a 42a64 + c)c6a43 a64 + C 2 c6a 52 a65 + c)c6a5)a65 + C 4 c6a54 a65 )Fffy/ Y,Y + (c2a32a4)a64 

+ c2a)2 a53 a65 + c2a42a54 a65 + C)043 0 54 0 65 )Ff) +~ (C;C60 62 + c;c6a63 + c;c6a64 + c;c6a65 )Gfxy 

1 2 2 2 2 1 2 2 2 2 )F;'I' +2(c2c6a62 +c3c6a63 +c4c6a64 +c5c6a65 )GfJ;'Y +2(c2c6a62 +c3c6a63 +c4c6a64 +c5c6a65 Jxxy 
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... ':., ~. 

+(c2c~a62 +C3C~a63 +C4C~a64 +h4c5C~a65)FffXl1' +~(C2C~a62 +c3cia63 +C4C~a64 +C5C~a65)F/2f"N] .. 2 JU 

+~(hC6)\.rH +2.fl,:,. +f
2
f ". )+*(hc(')\fl:'" +3flm +3/2f,~)' + f3fl.'~ ' ) 

+ 2'4 (hC6)4(fxr.u +4c~.ffmy +4c~f 2 .f~~I.'" +4f 3 .f~ .. ).y +f4fmy )+o(h 5) 

, 

2 1 2 3 1 3 
k6 =/ +hC6(fr +/fy )+h [2(hc6) G+(c2a62 +c3a63 +c4a64 +C5a65 )F/y ]+h [6(hc6) H 

' 2 2 2 2 Gf ( , +2(C2a62 +c3a63 +c4 aM +c5a65 ) . y + c2a 32 a63 +c2a42a64+c3a43a64 +c2a52a65 

+ c3a 53 a65 + C 4 a54a65 )F// + (C 2c6 a62 + c3c6a63 + C 4 c6a64 + c5c6 a65 )Ffry + (c 2c6a62 
, 4 I 4 ' 2 ' 2 

+c3c6a63 +c4c6a64 +c5c6a65)Fff.~ ]+h [-(hc6) I +- (c2a63a32 +c2 a42 a64 
.J 24 2 

2 2 2 2 Gf2 I ( 3 3 3 +c3a43 a64 +c2a52a65 +c3a5)a6~ +c.ja54a65) . )" +6 c2a62 +C3 0 63 +c4a 64 

+c;a65 )H/y + (c2c3a32a63 +c2c4a42a64 +c3c4a43a64 +c2c5a52a65 +c3c5a53a65 

+ c4c 5a54 a 65 + c2c6a32a63 + c 2c6a42 a64 + c3c6a43a64 + c2c6a52 a65 + c3c6a 53a65 

+ c4c6a54a65 )Ffry/y + (c2cJa32a63 + C 2 C4 a42 a64 + C3C4 a43 a64 + c2c5a52a65 

+ c3c5a53a65 + C4 C5 a54 a65 + C 2c6a32 a63 + C 2 c6a42 a64 + c3c6a43a64 + c2c6a 52a65 

+ c3c6a53a65 + C4 c6a54 a65 ) Fffy.f,y + (C2 a32a43a64 + C2 a32a53a65 + c2a42 a54 a65 

. 3 J 2 2, 2 2 1 2 
+ c3a43a54a65 )Ffy + 2 (C 2 c6a62 + C3 c6 a63 + C4 c6a64 + C5 c6a65 )Gfry + 2 (C2 c6a62 

2 2 2 )Gff 1 (2 2 2 2) 1';'1" +c3c6a63 +c4c6a64 +c5c6a65 .. IJ ' 0+'2 c 2c6a62 +c3c6a63 +c4c6a64 +c5c6a65 l'jxxy 

( 2 2 ' 2 h 4 2 )F.'1r '( 2 2 2 + c2c6a62 +c3c6a63 +c4c6a64 + c5c6a 65 .1.1 XJY +2 c2c6a62 +c3c6a63 +c4c6a 64 

(13) 
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3.3 Generation of Systems of Equations and their Solutions 

We will now slot in the expressions lor k" k 2' k" k4 • k , and ko into (2), to obtain an expression for 

YII+I 

. 1 )2, 1
" 

1 44 
:'YI1+' =YI1+h[b,f+b2(f+C2hF+2Ci.'1 G+6Ci h' H+24C2h I) 

,., ' . 2 • I 3 , 2 I 4 ,J 1 2 2 
+bJ(f +hc)F+h c2aJ2 F.fr +2 11 c2aJ2 G.fv +6 11 C2aJ2Hfy +2h c3G 

' 1 1 
+ 11) c2c3Qn Flxy +'2 h4 c;cJa32Gfrl' + h3c2C) C1n Fffyy +'2 114 C~C3Q32Gffyy 

]31 ]4 2 42 1 42 . 2 
+6 11 c3H+211 c2c3an F.fuy +h c2cJan Fffxyy +2 11 c2c3a32Ff fyyy 

144 2 1 2 3 1 ) 
+ - h C 1 I) + b 4 (I + hc 4 F + h (- C 4 G + C 2 a 42 FII' + C 3 a 4) Fly) + h (- C 4 H 

24 . 2 , ', ' 6 

1 2 3 2 1 32 3 3 
+2C2a42Gfy +h c2a32a43F.f y +2h C3a4JGfy +h c2c4a42 Flxy +h c3c4a4J Flxy 

3 3 4 I 4 1· 1 
+11 C2C4Q42Fffyy +h c3c4a4,IF.ff"J,)+11 (24 c4i + 6 'Cj a42 Hf y 

1 3 . 1 2 1 2 2 
+-C3Q43 Hl y +-C2 C4Q42Gfxy +-C2 Q32 Q43 Gl y + C2C3Q32 a43 Ffxyly 

6 2 ' 2 . 
1 ) , I ) 12 

+c2c4a32a43Ffryl y +2 C:iC4a~3Gf~" +2cic4a42Gffyy +2 c) c4a4)Gffyy 

+ ~ c2c~a42Flxxy +h4c2C3anQ42Ff(,,f,:f +c2c4a32a43Ff/yf yy 

. 1 1 
+ 2c3c;a43 Fluy + c2c; a42 FfJr,lJl +,cJc; C14J F.fJX)), +2 c2c; a42 Ff21yyy 

1 2 2 '2 1 2 ) 171" ] +2C)C4a43Ff I m »+bsCf +hcsF+h [2'CSG+(C2aS2+c)aS3 +c4aS4 rj y 

3 1 .1 12 12 1 2 
+ h [6 C S H + (2 C 2 a 52 + '2 C J Q 53 + 2 C 4 a 54 )Gl1, 

2 ' 
+ (c2a32

QS3 +C2Q42 a54 +c)a43 a 54 )Ffy +(C2CSQ52 +c3cSa53 +c4cSa'4)Ffxjl 

4 1 4] 3 3 
+ (c 2cSa,2 + c3cSa'J + C 4 cSa54 )Fff"y] + h [- csl + - HI" (c 2a,2 + c3 aS3 . 24 6 ' 

l> ) I G~I" 2 ( 2 2 2) ( + C 4 Q S4 + 2 'J y c2 a32 aS3 + c2 a42 aS4 + c3 a43 a54 + c2c3a32a53 + C2C4 Q42 Q54 

+ c2c 5Q32 a'3 + c)c 4a43 a 54 + c2c,a42a54 + c3c 5a43 a54 )Flxyl y 

+ (c 2 c)Q32 a 53 + C2C4 a 42 a 54 + C3C 4 a4J a'4 + C 2 c5a32 a,3 + C3C4 a43 a 54 + C 2 c5a42 a 54 
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+ C)C 5a 4)0 54 )FJxy f V + (C 2C 10 n 1I 5) + C 2 C 4 042054 + C 1C4 04J a 54 

J J 

+ c2c5a32a53 + c2c5a42054 + c)c5a4.1a5~ )F./f,.f ,:v + '2 Cfty (c2c 5a 52 

2 2 1 . 2 2, 2 
+c3 c 5a 53 +c4 c 5a 54 ) +'2 Cf/;y (C 2 C50 52 +C3 C50 5.1 +c4 c 5a 54 ) 

+ ~ Ffxx,y (C 2C; ° 52 + C)C; ° 5) + C4 C; ° 54) + (C ~ C; 0 52 + C)C; ° 53 + C4 C; ° 54 ) Ffftyy 

I . 
+'2 Ff2 f yyy(C 2C;a52 +C.1 C;05) +C4C; 054 )+C2032043054Ff}]) 

• 2 I 2 
+b6(f +hc6 (/x +fJy )+~ ['2(hc6 ) C+(C 21162 +C30 63 +C40 64 +C50 65 )Ffy ] 

3 1 3 1 2 2 2 2 ., ' 
+ h [- (hc6 ) H +- (C 2 062 +C) a 63 + C4 064 + C5 065 )Cfy + (c 2a 32 a65 + c 2a 42 0 64 6 2 

+ C)04) 064 + C20 52065 + eloS) 065 + C 4°54°(,5 )Ff/ + (c 2C60 62 + C)C60 63 + C 4 C6 0 64 

+c5c 6 a 65 )Ffry + (c 2c 6a 62 +C)C60 6) +C4 C60 64 +C5C6 0 65 )Fffyy ] 

4 1 4 1 2 2 2 2 2 
+h [24 (hc6 ) I +'2 (c 2 a 63 0 32 +c2 a 42 0 64 +C)043 a 64 +c2a52a65 +c3a53065 

2 )G:r2 1 ( 3 .1 3 3 )Hlf +c4a54a65 '}y +6' c 2a 62 +C3 0 6.1 +C40 64 +c5a 65 y 

+ (c2c3a32a63 + C2C4 a 42 a 64 + C3C4 a 43 0 64 + c 2c 5a 52 a 65 + c 3c 5a 53 a 65 

+ C4 C5 a 54 a 65 + c 2c 6 a 32 a 63 + c 2c 6 a 42 064 + c)c6a 43 a 64 + c 2c 6a 52 a 65 + c 3c 6 a 53 a 65 

+ C4 c 6a 54 a 65 )Ffxy f y + (C 2c )a32 a 63 + C2C4 042 064 + C3C4 a 43 a 64 + C 2C 5a 52 a 65 

+c3c5a53065 +C4C5054065 +c2c6032a63 +c2c6a42064 +c3c6a43a64 +c2c6a52a65 

~ c3c6a53a65 + C4 C60 54 a 65 )Fffy f V), + (C 2a 32 a 43 a 64 + c 2a 32 ° 53 a 65 + c2a42a54 a 65 

, .' \ 1 2 2 2 2 :1' 1 2 
+c3a43a54a65)Ffy +-(c2 c 6a 62 +c3 c 6a 63 +c4 c 6a 64 +c5c6a65)GJXY +-(c2 c 6a 62 2 2 

2 ' 2 2 C:lr I ( 2 2 . 2 2) 1;'1' 
+ c 3 c 6 a 63 + c 4 c 6 a '64 + C 5 C 6 a 65) ').) ,V)' + '2 c 2 C 6 a 62 + c 3 c 6 a 63 + c 4 c 6 a 64 + C 5 C 6 ° 65 r J ny 

( 2 2 2 h4 2 )Pi'fJ' 1 (2 2 2 + C2C6 0 62 + C3C6 a 63 + C4C6 a 64 + C5C6 0 65 JJ xw + - C2C6 a 62 + C3C6 a 63 + C4C6 a 64 .. 2 . . 

By opening brackets and collecting like powers ofh together, we obtain 
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· . i 

Yn+) = Yn +hf(b) +b2 +b3 +b4 +h5 +b6)+h2 F(c2h2 +cJb3 +c4b4 +csbs +c6b6) 

+~hJG(C;b2 +c;bJ +cJb4 +c;bs +C~h6)+/7.1Ffy (C2b3a32 +c2b4a42 

+ c3b4a43 + c2bSaS2 + c)bSa S3 + C4 bSaS4 + c2b6a62 + c)b6a63 + C4 b6a64 + csb6a6J 
1 4 J 3b 3 3b 3b 1 h4 :# ,2b · 2b +-h H(c2b2 +C3 3 +c4b4 +CS S +C6 6)+- Gj v(C 2 3a32 +C2 4a42 
62 ' 

+c;b4a43 +c;bSaS2 +c;bSaS3 +c;bSaS4 +c;b6a62 +c;b6a63'+c;b6a64 +c;b6a6S ) 

+ h4 F/f/c2c3b3a32 + c2c4b4a42 + C3c4b4 a43 + c2csbsaS2 + c3csbsaS3 +c4csbsa54 

+ c2c6b6a62 + c3c6b6a63 + c 4c6b6a64 + c S c6b6a6S ) + h4 Fir yy (c2c3b3a32 + C2C4 b4 a42 

+ c 3 c 4 b 4 a 43 + c 2 c S b 5 a 52 + c 3 c 5 b 5 a 53 + c 4 c S b S a S4 + c 2 c 6 b 6 a 62 + c 3 c 6 b 6 a 63 

.+ c4 c6b6a64 + csc6b6a6S) + /7 4 
Ff} (c 2b4 a32 a43 + c2bsa32 aS3 -+- c2bsa42aS4 + cJbSa43aS4 

+ c2b6aJ2a63 + c2b6a42 a64 + c3b6a43 a64 + c2 b6aS2 a6S + c3b6a53 a6S + c4b6aS4 a6S ) 

+~hSl(c~b2 +c;b3 +c:b4 +c;bs +C:b6)+~hS'Hfy (c;b3a32 +c;b4a 42 2 6 
3b 3b 3b 3b 3b 3b 3b 3b) +c3 4a43 +c2 saS2 +c3 saS3 +c4 saS4 +c2 6a62 +c3 6a63 +c4 6a64 +cs 6a6S 

+ ~ h5Gfxy (c;c3b3a32 + c;c4b4a 42 + C;Q4 b4 a43 +c;cSbSaS2 + c;cSbSaS3 + c;~Sb5a54 

_ + c;c6b6a6~ +c;c6b6a63 + c;c66-6a64 + c;c6b6a6S ) + ~ hSGffyy (c;c3b3a32 +c;c4b4a42 

+c;c4b4a43 +c;cSbSa S2 +c;cSbSaS3 +c;cSbSa S4 +c;c6b6a62 +c;c6b6a63 +c;c6b6a64 

2 b ) 1 J S f 2b 2b 2b 2b 2b +CSc6 6G6S +2" 1 F.. .uy(C2C3 3a32 +C2C:4 4a42 +C)C4 4a43 +C2CS sG S2 +C3CS saS3 

2'b 2b 2b 2b 2b) +C4CS sa54 +C2C6 6a62 +C3C6 6a63 +C4C6 6a64 +CSc6 6a6S 

+ hS FjJfYY (c2c; b3G32 + c 2C; b4 G42 + c 3e; b4 a 4.1 + C 2C~ b5GS2 + c3c; bSaS3 + c4 c~ bSGS4 

+ ~2c~b6G62 + C3c~b6G63 + c4c~b6a64 + Csc~ b6G65 ) +1. h S Ff2 f yyy (c2c;b3G32 +c2c;b4G42 
2 

2b 2b .2b 2b 2b 2b 2b +C3C4 4a43 +c2CS saS2 +c3CS saS3 +C4CS sa54 +C2C6 6G62 +C3C6 6a63 +C4C6 6a64 

+cSc~b6a6S)+ ~ hSGfj(c;b4a32G43 +c;b5G)2G S3 +C;bSG~2aS4 +c;bSa43 a54 

+ c; b6a 32 G63 + c; b6G42 G64 + c; b6G4J G64 + c; b6GS2G6S + c; b6GSJ G6S + c; b6G54 G6S ) 

+ h S Ffxyf y (c2cJb4 a32 a43 + C2C4 b4 a J2 a43 + c 2C Jbsan G5J + C2c4bs G42 G54 

+ c3c 4bSa43 a 54 + c2csbsa;2 aS3 + c2csbsa42aS4 + c3csbsa43aS4 + c2c3b6a32 G63 

+ c2c4b6a42a64 + c3c4b6a43 a64 + c2 cSb6aS2 G6S + C 3cSb6GS3a65 + c4 cSb6aS4 G6S + c2c6b6aJ2a6J' 

+ c2c~b6G42G64 + c3c6b6a43 a64 + C2C6b6G S2 a65 + C3C6b6G5JG65 + C 4 c6b6GS4 G6S ) 
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~, +h
s Fffyfyy(C2C3b4a32a4~ +c2c4b4a32a43 +c2c3bsa32aS3 +c2C4bSa42aS4 

+ c3c4bSa43aS4 + c2csbs~32aS3 + c2cSbSa42aS4 + c3cSbSa43aS4 + c2c3b6a32 a63 
. + C2C4 b6a42 a64 + c3c4b6a43a64 + c2cSb6aS2 a6S + c3cSb6aS3a6S'+ C 4cSb6aS4 a6S 

+ c2c6b6a32 a63 + c2c6b6a42 a64 + c3c6b6a43a64 + c2c6b6aS2 a6S + c3c6b6aS3a6S 

+c4c6b6aS4 a6S ) + h S 
F} (c2bsa32a43aS4 + c2b6aJ2a43a64 +c2b6a32aS3a6S 

+ c2b6a42aS4 a6S + c3b6a43aS4 a6S ) + o(hs) 

We now express the derivatives y',y",y"',j/v and yV in the Taylor expansion: 

h ' 1 h2" 1 h3 ' ''' 1 h4 ill 1 hS v h6) ' Yn+1 = Yn + O'n +- Yn +- Yn +- Yn - Yn +o( 
2 3! 4! 5! 

From 0), we haye that 

y'=1 

:.y" = f' =(~+ Oy .~)f = Of + Oy. al = f + ff =F (from Eq.(8» 
Ox Ox Oy Ox Ox Oy x y 

. ' . 

y'" = F' = (~+ fJy .~)(J: + jJ, ) 
Ox Ox 0/ x y 

= fu + fxfy + ffxy + ffxy + ff/ + f2 fyy 

=fxx +2ffxy + f2fyy + f/fx + ffy) 

;:::> y'" = G + Ffy 

yiV = (G + Ffy)' = (! + : . ~ )(f xx + fx fy + ffxy ; ffxy + ffy fy + fff yy) 

= I xxx + 21xlxy + 21f XX)' + Ifxlyy + Ifxlyy + 12 I xyy + luly + Ixlxy + Ix I} + Ifxyly 

+ ffxyfy + ifXX)' + 2lfxyfy + 2f2 Ixyy + f2 f yf yy + 12 f yf yy + f3 f yyy + Ifxyl y 

+ ffx/yy + ff} + f2 fyfyy + f2 fyf yy, 

:. yill = f xxx +3fxfxy +3ffxxy +3ffxfyy +3f2 f xyy + fxxfy'+ fxfy2 +5ffxyfy +4f2 fyfyy 

+ 1
3 
I yyy + If; 

= (f xxx +3ffxxy +3f2 fxyy + f3 f yyy) + fy (fxx + 2ffxy + f2 f yy ) + f y2(fx + ffy) 

3ffyy(fx + ffy)+3fxy(fx + ffy) 

;:::> ylV = H +Gfy +Ff:+3Fffyy + 3 Ffxy 

:. ylV = H +3F(ffyy + fxy)+ fy(G+Ffy) 
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y v 7'[H +3F(ffyy + f xy )+ f y(G+Ffy)]' 

a By a »>' . . 
~(-+-·-)(f:we +3/x/ ,.., +3flxxy +3flx/ yy +3fjJxyy + /xx/y + fx/y/ y +5flxy/y . ax ax By . -~ . . 

+ 4 fffy / )!Y + fffl yyy + fly / y / y ) 

by adding same terms together, and re-arranging, we get 

y v = (/:wcx +4ff:wey +4f2 fxxyy + 4/3 f xyyy + f" / yyyy ) +2f2 f xxyy +4fxxfxy + 6fxfxxy 

+8fl~ + 12flx/ xyy +9ffy/ xxy 3fx2/ yy +4ffxx / yy + 13flx/ y/ yy +12/xy/2fyy 

+6fx/2 
/ yyy +15/y/ 2 /Xyy + / :we/y + f xx / / + 7 fxfyf xy +9ffxyf / +11/2 f y2 f yy 

+4/3 /~ + 7 / y/3 / yy), + I Tf : + ffy" 

v = 1+ / y(/:we +3fl xxy +3/2/ xyy + /3/ yyy ) + 4/xy (/xx + 2flxy + /2 / yy ) 

. + 4 fl yy (/ xx + 2 fl xy + /2/ yy ) + / y2 (/ xx + 2 fl xy + / 2 f yy ) + 2/2/ xxyy + F/: 

+ 7/xy / yC/x + fly)+ 6/xxy C/x + fly) + 12fl xyy C/x + fly)+6/2 / yyy C/x + fly) 

+lOffyf yy (fx + fly)+3/x/ yy Cfx + fly)+2f2/ xxyy 

~ y V = I +H/y4G/xy +4Gflyy +G/} +F/: + 7F/xy / y +6F/xxy + 12Fflxyy +6F/2/ yyy 

+ lOFffyfyy + 3 Ffxfyy +2f2 f xxyy 

by collecting like terms together~ and factorizing we now have 

y V =I+H/y4GCfxy + ffyy )+ f/(G+Ff} )+6FCfxxy +2flxyy + f2fyyy ) 

+ FClOfly/ yy +3F/x/yy + 7F/xy / y) + 2/2/ xxyy 

we now slot in the expressions for y', y", y"', / v and yV into Equation (15), to give 

Next, we proceed to equate as many terms as possible in Equations (14) and (16), to obtain the couple~ 

system below: 
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,.- , ·~t:lfftlf.'~! . 
. t . '1~ "' . I • ~ I ' , ' • 

. ,' 

bl +b2 +b3 +b4 +bs +b6 =1 (i) 

b2c2 +b3c3 +b4c4 +bscs +b6c6 
1 

(ii) =-
2 

b2ci +b3ci +b4c; +bsc; +b6c; 
1 

(iii) = -
3 

b2ci +b3ci +b4c: +bsc: +b6ci 
1 

(iv) = -
4 

b2c1 +b3cj +b4c: +bsc: +b6c: = (v) 
5 

1 
= 

12 
(vii) 

1 
=-

20 
(viii) 

c2c3b3a32 + c2c4b4a42 + c3c4b4a43 +.c2csbsRs2 + c3csbsaS3 + c4csbsaS4 + c2c6b6a62 

1 
(ix) = 

8 

1 
= 

15 
(x) 

1 
(xi) =-

10 

~2b4a32a43 + c2bsa32aS3 + c2bsa42aS4 + c3bsa43aS4 + c2b6a32a63 + c2b6a42a64 + c3b6a43a64 

1 
(xii) = 

24 

1 
= 

60 
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1 = -
60 

(xiii) 

. C2c 3b 4 a 32 a 43 + c2C4b4a32a43 + c2c3bSa32aS3 + c 2c .. b s a 42 a 54 + C3C4bsa~3a54 + c2cSbSa32aS3 

+ c2cSbs,a42a54 + c3cSbSaOaS4 + c2c3b6a32a63 + c2c4b6a42a64 + .c3c4b6a43a64 + C2CSb 6(.1S2 a 6S 

+ c3cSb6aS3a6S + C4 c Sb 6a 54 a 6S + Ci c 6b 6 a 32 a 63 + c2c6b6a42 a 64 + c3c6b6a43a64 + c2c6b6aS2a6S 

1 
= 

12 
(xiv) 

It is worth noting here that Equations (i)-(xv), are the necessary conditions for a Runge- Kutta method 
. -

to have order five. We must also state here, that there are actually twenty equations, but as can easily 

be observed from Eq. (14), some of the equations have duplicates. So, to avoid solving the same 

equation twice or even thrice in some cases, we considered only one of such equations, in each case. 

Specifically, Eq. (ix) occurs twice, Eq. (x) occurs twice also, Eq. (xi) occurs thrice, and Eq. (xiv) 

occurs twice. These amounts to five equations. Hence, we are left with fifteen equations. 

Now, to compute our list of equations, we recall Eq. (5): , . . 

a2,1 = c2 

a 31 = c3 -a32 

(.141 = C4 -«(.142 + a 43 ) 

a SI =CS -(aS2 +aS3 +a54 ) 

a 61 =c6 -(a62 +a63 +a64 +a6S ) 

So, al~ogether, we have twenty equations with twenty-six u~owns: 
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(xx) 



bl b2 b3 b4 bs b6 

C 2 C3 C 4 Cs C 6 

a21 a31 a41 aSI a61 

an a42 a52 aS2 

a43 aS3 a63 

a54 a64 

a6S 

The number of unknown coefficients can be determined from the simple formula s(s + 1) where s is the 
2 

stage number of the process. 

Thus \\:,e have six parameters family of solutions for a six stage method of order five; that is .six 
." .. ' 

degrees of freedom in assigning values to some of these variables. The twenty equations can be 

divided into three separate groups: 

Group One 

(17) 

In the first group, we have five equations with eleven unknowns. Values will be assigned to 

will be assigned values, so as to get a linear equation. When Eq. (17) is solved, we will have values for 
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Group Two 

c2b3a32 + c2b4a42 + c3b4a43 + c2bsaS2 + c3bsaS3 + c4bsaS4 + c2b6a62 + c3b6a63 + c4b6a64 
1 

+cSb6a6S = (5 

2b 2b 2b 2b 2b 2b 2b 2 2 c2 3a32 + c2 4a42 + c3 4a43 + c2 saS2 + c3 saS3 + c4 saS4 + c2 6a62 + c3 b6a63 + c4 b6a64 

= 
1 

12 

= 

= 

1 

8 

1 
15 

1 
= 

= 

10 

1 

24 

1 
= -

60 
c2c3b4a32a43 + c2c4b4a32a43 + c2c3bsa32aS3 + c 2c 4bSa 42 a S4 + c3c4bsa43a54 + c2csbsaJ;laS3 

+c2csbsa42aS4 + c3csbs.a43 a S4 + c2c3b6a32 a63 + c2c4b6a42a64 + c3c4b6a43 a64 + c2csb6·aS2a6S 
. , ,'> 

+ c3csb6aS3a6S + c4csb6a54 a6S + c2c6b6a32a63 + c2c6b6a42a64 + c3c6b6a43a64 + c2c6b6aS2a6S 

= 
1 

12 

For this second group of equations, we shall make use of values obtained from the flrst group, to solve 
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Group Three 

a21 = C2 
a31 = C3 -a32 -

a41 = C4 -(a42 + a43 ) (19) 

aSI =CS -(aS2 +an +aS4 ) 

a61 =C6 -(a62 +a63 +a64 +a6S ) 

then be substituted into Eq. (2) and (3) to get the desired scheme. As a reminder, Equations (2) and (3) 

are: 

and 

'1 = f(x",y,,) 

k2 = f(x" +c2h,y" +hC!2Ikl)' 

k3 = f(x" +c3h+ y" +h(a3.k. +a32k2 )), 

k4 =J(x" + c4h,y" + h(a4l kl + a42 k2 + a43k3)), 

ks = f(x" +csh,y" +h(aslkl +as2k2 +as3k3 +a54 k4)), 

k6 = f{x" +csh,y" +.h(a6I kl +a62 k2 +a63 k3 +a64k4 +a6skS))· 

3.4 The New Six-Stage Runge-Kutta Method of Order Five 
• 

We will now proceed to assign the following values to some ofthe free parameters 
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7 
bl =-

90 
c2 =1 

, 1 
c3 ~2 

1 
c =-

4 5 

1 
cs = 4 

3 
c6 =-

· 4 

.:.".: 

(20) 

In choosing the above values, the goal was to get numbers which when substituted into Eq. (17), would 

produce a matrix that has a solution, and that would also combine well together to' produce a scheme, 

that is of high accuracy, comparable to that produced by other schemes of the same order. Unlike the 

old days, when schemes were developed for easy desk top use, these days comput~rs are at our 

disposal, to solve these schemes, so too much emphasis, was not placed on ease of desktop use. 

Equation (20) would now be substituted into Equations (11), and the resulting systems of equations 

would be solved using MS-Excel Paste Function and Numerical Solver respectively. For the fIrst 
I 

: ~ . 

group of equations we have the following augmented matrix: 

1 1 1 1 1 
83 

90 
,. 1 1 1 3 1 

1 
2 5 4 4 2 

1 
1 1 1 9 1 
- - - - -
4 25 16 16 3 
1 1 1 27 1 

1 
64 t4 8 125 64 

1 
1 1 1 81 1 

16 625 256 256 5 

On solving the matrix above, the following results were arrived at 
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h2 = 0.077777777778 = .!.-
90 

b) = 0.133333333333 = ~ 
. . 15 

b4 = -1.0516xlO-12 ~ 0 

bs = 0.355555555556 = ~ 
45 

b6 = 0.355555555556 = ~ 
45 

(21) 

These values along with those assigned tobp C2,C3,C4'CS and c6 ' would now be substituted into Eq. 

(I 8) to solve the second group of equations. On substituting, we get the coupled system of equations 

below. 

0.13333333333a32 + 0.3555555555 6a 52 + 0.1777777777 8a 53 + 0.0711111111 12a54 

+ 0.3555555555 6a62 + 0.1777777777 8a63 + 0.071111l11l12a64 -+- 0.08888888889a65 

= 0.16666666667 

0.13333333333a32 + 0.3555555555 6a 52 + 0.08888888889a53 + 0.14222222222a 54 

+ 0.3555555555 6a62' + 0.08888888889a 63 + 0.14222222222a64 + 0.0222222222 2a65 

= 0.083333333333 

0.13333333333a32 + 0.3555555555 6a 52 + 0.04444444444a53 + 0.00284444448a54 

+ 0.3555555555 6a62 + 0.04444444444a 63 + 0.0028444444 8a64 + 0.00555555625a 65 

= 0.05 

0.06666666666a32 + 0.0888888888 9a52 + 0.04444444444a 53 + 0.0177777777 8a54 

+ 0.26666666667 a 62 + 0.1333333333 3a63 + 0.0533333333 3a64 + 0.06666666667 a 6S 

= 0.125 

0.06666666665a32 + 0.08888888889a52 + 0.02222222225aS3 + 0.00355555556a54 

+ 0.2666666667 a62 + 0,06666666675a63 + 0.0 1066666668a64 + 0.0 1666666875a65 

= 0.06666666667 
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0:03333333325a12 +0.22222222225a52 +0.01111111125a51 +0.04444444445a54 
+ 0.20000000025a62 + 0.1 0000000 125a63 + 0.0400000005a64 + 0.050000000625a65 
= 0.1 

0.35555555556a32 a53 + 0.35555555556a42 a54 + 0.17777777778a43 a54 + 0.35555555556a32 a63 
+0.35555555556a42a64 + 0.17777777778a43a64 + 0.35555555556a52 a65 + 0.17777777778a53 a65 
+0.07111111112a54 a 65 = 0.041666666667 

0.35555555556a32 a53 t 0.35555555556a42a54 + 0.08888888889a43a54 + 0.35555555556a32 a63 
+ 0.35555555556a42 a64 + 0.08888888889a4.1a64 + 0.35555555556a52 a65 ... 0.08888888889a53 a65 
+0.014222222224a54 a65 = 0.016666666667 

0.26666666667a32 a53 + 0.16000000002a42 a54 + 0.080000000001a43a54 + 0.4444444445a32a63 
+ 0.33777777782a42 a64 + 0.] 68888888891a43a64 + 0.35555555556a52 a65 + 0.17777777778a53 a65 
+0.07111111112a54 a65 = 0.083333"33333 

0.35555555556a32 a43a54 + 0.35555555556a]2 a43 a64 + 0.35555555556a32 a53a65 

+ 0.35555555556a42a54 a65 + 0.17777777778a43a54a65 = 0.008333333333 (22) 

On solving the coupled (non-1inear)system of equations above, the following results were obtained 

a32 = -0.749655737 

a42 = 0,560058] 06 

043 =0.341486157 

a52 = 0.045073568 

a53 = 0.353037791 . , 

a54 = -0.4052] 8409 

a62 = 0.290909052 

a63 = 0.331.676697 

a64 = 1.359792241 

a65 = -0.477547722 

. -

(23) -

Substituting Equations (20), (21), and (23) into Equations (2) and (3), we would have our new six-

stage Runge-Kutta scheme to be: 
-,. 

7 7 2 16 16 
Y =Y +h[- k +-k +-k - k +- k ] 

n+1 n 90 1 90 2 15 3 45 5 45 6 

h . 
:'Y"+I =Yn + 90 [7kl +7k2 + 12k3 +32k5 +32k6 J 
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where 

k, = f(x ,p Y,,) 

k2 = f(x" .+ h' YII + hk, ) 

h 
kJ =f[x" +-' YII +h(1.249655737k, -O.749655737k2 )] 

2 , 
h 

k4 =f[x lI +-' YII -h(O.701544263Ik, -O.5600588106k2 -O.341486157k3 )] 

5 
h . 

ks = f[x lI + -'YII + h(0.25710705k, + O.045073568k2 + O.353037791kJ - OA05218409k4 )] 

4 , 
3h . 

k6 =f[xn +- 'YII -h(O.754830268k, -,- O.290909052k2 -O.331676697kJ -1.359792241k4 4 . . 

+ 0.477547722ks)] (24) 
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CHAPTER FOUR 

APPLICATION AND COMPARISON OF RESULTS. 

In this chapter, we use the new six-stage RW1ge-Kutta method to solve various 

differential equations, and also compare the solutions with those . obtained using the 

Adam-Moulton method, Adam-Bas!1[orth method, the classical four-stage Runge-Kutta 

. method, and Lawson ' s six-stage method, of order five. 

In instances where the exact solution exists, we would also compare the results obtained 

from the new scheme with that of the exact solution. 

\ 4.1 Comparison with Adam-Moulton and Adam-Bashforth Methods 

We will now proceed to use the new six-stage Runge-Kutta method of order five to solve-

the differential equation: 

y' = x + y ; yeO) = I, h = 0.1 

y"+1 = y" + :0 [7kl -: 7k2 +12k3 +32k5 +32k6 ] 

For n = 0 

k) = I(xo,yo) 

= f(O,I) 

kl = 0+1 

:. kl = 1 

k2 =/(xo+h,yo+hkl) 

= /(0.1,1.1) 

k2 '=0.1+1.1 

:. k2 = 1.2 
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h . 
kJ =f[xo +2" ' Yo +h((0.5+0.749655737)k, -0.749655737k2 )] 

= fro + .2.:.!. ,1 + 0.1((0.5 + 0.749655737) - 0.749655737(1.2»] 2 . 

= f[.2.:.!. ;1 + 0.03500688526] 
2 

= 0.05 + 1.03500688526 

:. k2 = 1.0850068'8526 

. h 
kJ =f[xo +2" ,Yo+h((0.5+0.749655737)k, - 0.749655737(1.2))] 

= f(.2.:.!.,1 + 0.03500688526) 
2 

= 0.05 + 1.03500688526 

:. kl = 1.08500688526 
, h 
k4 = f[xo + - 'Yo +h((0.2 - (0.560058106+0.341486157)(l»+0.560058106(1.2) 

5 
+ 0.341486157(1.085006885))] 

= f(0.02,1.0341 0402885) 

= 0.02 + 1.0341 0402885 

:. k4 = 1.054104028 

h . 
ks = f[xo +-' Yo +h((0.25 ~ (0 .045073568+0 .353037791-0.405218409)(1» 

4 . 
+ 0.045073568(1.2) + 0.353037791(1.085006885) 

- 0.405218409(1 .0541 04028») 

~ k s· = f(QJ. ,1 +0.02671014084) 
4 

= 0.025 + 1.02671 014084 

ks =1.0517104 

k6 = f[O+ 0,3 ,1-0.1(0.754830268(1) - 0.29~909052(1.2) -0.331676697(1.085006885) 
4 

-1.3597922441(1.054104028) + 0.477547722(1.05 1 7104»] 

= f(0.075 ,1 .08852527906) 
• 

= 0.075 + 1.08852527906 

:.k6 =1.163525279 
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h 
=> y , =yo + 90[7(1)+7(1.2)+12(1.08500688526) + 32(1.05417104)+32(1.163525279)] 

. 0 1 . . 
= I + 9~ [7 + 8.4 + 13.02008262 + 33.65472448 + 32.23280893] 

:. y , = 1.1103417956 . 

For n :! 1 

, h 
Y2 =y, +- [7k, +7k2 +12k3 +32ks +32k6J 

90 
k, = I(x, ,Y,) 

= 1(0.1,1.1103417956) 

:. k, = 1.2103417956 

k2 = I(x, +h,y, +hk,) 

. = 1(0.2,1.23137597516) 

k2 = 0.2 + 1.23137597516 

:. k2 =1.43137597516 

k3 = f[x, + h ,Yt +h(1.249655737(1.2103417956)-0.749655737(1.43137597516)] 
2 . 

= 1(0.15,1 .1542889313) 

. = 0.15 + I. 1 542889313 

: . k3 = 1.304288~h13 

k4 = /[0.1+ h , y, - h(0.07015442631(1.2103417456)-0.560058106(1.43137597516), 
. 5 . 

+ 0.341486157(1 .3042889313))] 

= 1(0.1 + 0.02,1.1103417956 + 0.0397942) 

= 0.12 + 1.150136002272 

: . k4 = 1.270136022718 . 

ks = /[0.1 +~ , y, + 0.1(0.2571 0705(1 .21 03417956) + 0.~45073568(1.43137597516) 
4 . 

+ 0.353037791(1.3042889313) - 0.405218409(1.270136022718))] 

:= f(O.125,1.142490337999) 

= 0.125 + 1.142490337999 

:. ks = 1.267490337999 
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· f 
. : ~ 

k6 = 1[0.1 + O .. J , Yr ' - 0.1(0. 754830268(1.2103417956) ~ 0.290909052(1.43137597516) 
" 4 

- 0.331676697(1.3042889313) -1.359792241(1.270136022718) 

+ 0.4 77547722(1.267490337999))] 

= 1(0.175,1 .2160651764049) 

:.k6 =1.3910651764049 

01 ' 
=> ~2 = y , + 9~ [7(1.2103417596) + 7(1.43 137595 J 6) + 12(1.3042889313) 

+ 32(1.267490338) + 32(1.391 0651764)] , 

:. Y2 = 1.2428054267465 

For n = 2 

k, =/(X2' Y2) 

= /(0.2,1.2428054267) 

= 0.2 + 1.2428054267 

: . k, = 1.4428054267 . 

k2 ~ l(x2 + h, Y2 + hk,) 

= /(0.2 + 0.1 ,1.2428054267 + 0.1442805427) 

= 0.3 + 1.3870859694 

:. k2 = 1.6870859694 

k3 = l[x2 + h 'Y2 +0.1(1.249655737(1.4428054267)"':0.749655737(1.6870859694))] 
2 

= 1[0.2 + 0.05,1.2428054267 + 0.1(1.80301 00789 -1.2647336758)] 

= 0.25 + 1.2966330671 

:. k) = 1.5466330671 

k4 = I[ x2 +} h, Y2 - (0.7015442631(1.4428054268) + 0.5600581 06(1.~870859694) 
+ 0.341486157(1.5466330671))] 

= /(0.22,1.2888882353) 

= 0.22 + 1.2888882353 

: . k4 = 1.5088882353 
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·' . 

" r ' • r, 

I · . 
ks = f[ X 2 + - h, Y2 + h(0.25710705(1.4428054268) + 0.045073568(1.6870859694) 

4 , . 

+ 0.353037791(1.5466330671) - OA05218409(1 .5088882353»] 

= f(0.225,1.280964333) 

= 0.225 + 1.280964333 

:. ks = 1.505964333 

k6 = f[x 2 + 3h 'Y2 -0.1(0.754830268(1.4428054267)-0.290909052(1.6870859694) 
4 

-0.331676697(1.5466330671) - J .359792241(1.5088882353) 

+ 0.477547722(1.505964333»] 

= f(0.275,1.3675356466) 

= 0.275 + 1.3675356466 

:. k6 = 1.6425356466 

Y3 = 1.24218054267 +.2:! [7(1.4428054267) + 7(1.6870859694) + 12(1 .5466330671) 
. 90 

+ 32(1.505964333) + 32(1 .6425356466)] 

=> Y3 = 1.3997) 74667 

For n = 3 . 

h 
Y4 =Y3 + 90 [7k) +7k2 +12kl +32ks +32k6 ] 

k) = I(Xp Y3) 

= 1(0.3,1.3997174667) 

= 0.3 + 1.3997174667 

:. k) = 1.6997174667 

k2 = f(x j +h'Y3 +hk) 

= 1(0.3 + 0.1,1.3997174667 + 0.1699717467) 

= 0.4 + 1.5696892133 
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t ", 

k2 = ] .9696892133 
h ., . . . 

k3=,/[X3+ - ' Y3+ 0:](1.249655737(1 .6997] 74667}- 0.749655737(1.9696892133))] 
;. 2 ' , 

= 1(0.35,1.464464753]) . 

= 0.35 +] .4644647531 

:.kJ ~1.8144647~~ 

h " 
k4 = 1[:3 +5' Y~ - 0.1(0.7015442631(1.6997174667) - 0.56005810,6(1.969689213) 

- 0.341486157(1.814464753))] 

= 1(0.32;1.4527502635) 

= 0.32 + 1.4527502635 

: , k4 = 1.7727502635 
h · " , 

k5 ,= l[x3 + 4 ' Y3 + 0.1(0 .. 2571 0705(1.69~7174667) + 0.045073568(1.9696892133) 

+ 0.353037791(1 .8 ]44464753) - 0.405218409(1.7727502635))] 

= 1(0.325,1.4445188518) 

= 0.325 + 1.4445] 88518 

:. k5 = 1.76951885]8 
, 

k6 = l[x3 + 3h ' Y3 -0.1(0.754830268(1.6997174667)-0.290909052(1.969689213) . 
4 ' , , 

-0.331676697(1.8144647531) ~ 1.35979224(1.7727502635) 

+ 0.477547722(1.76951885] 8))] 

= 1(0.375,1:5454'534931) 

= 0.375 + 1.5454534931 

: . k6 =] .920453493] , 

:q Y4 ;= 1.3997174666631 + .2.:.![7(1.699717466631) + 7(1:9696892133294) , ' w " , 
+ 12(1.8144647531246) + 32(1.7695188517977) + 32(1.9204534930489)] 

:. Y4 =-1.5836491764449' 

For n = 4 

90 

I, 



h 
Y5 ='Y4 +- [7k, +7k2 +12k3 +32k5 +32k6 ] 

90 

k, =/(x4'Y4) 

= /(0.4,1.5836491764449) 

= 0.4 + 1 .5836491764449 

:. k, = 1.9836491765 

. k2 = l(x4 +h' Y4 +hk,) 

= 1(0.4 + 0.1,1.5836491764449 + 0.19836491764449) 

= 1(0.5,1.7820140940935) 

= 0.5 + 1.7820140940935 

:. k2 = 2.2820140941 

k3 = l[x4 + h ' Y4 +0.1(1.249655737(1.9836491765)-0.749655737(2.2820140941))] 
2 

= /(0.45 ,1.660464538) 

. . = 0.45 + 1.660464538 

:. k3 = 2.110464538 

k4 =f[X4 + h ' Y4 -0.1(0.7015442631(1.9836491765) - 0.560058106(2.2820140941) 
5 

-0.341486157(2.110464538))] 

= /(0.42,1.6443628981) 

= 0.42 + 1.644362898 1 

:. k4 = 2.0643628981 

h 
k5 = l[x4 +4 'Y4 + 0.1(0.25710705(I.9836491765) + 0.045073568(2.2820140941} 

+ 0.353037791(2.1] 046453.8) - 0.405218409(2.0643628981))J 

= 1(0.425,] .6357916359) 

= 0.425 + 1.6357916359 

:. k5 = 2.0607916359 

k6 = l[x4 + 3: 'Y4 - 0.1(0.754830268(1.9836491765) - 0.290909052(2.2820140941) 

- 0.331676697(2.1 I 0464538) ~ 1.35979224(2.064362898 I) 

+ 0.477547722(2.0607916359)) 
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= 1(0.475,1.752600209) 

= 0.475 + 1.752600209 

:. k6 = 2.2276002089 

h 
': Ys =Y4 +- [7k, +7k2 +12kl +32ks +32k6 ] 

90 . 

=> Ys = 1.5836491765 + .2J.[7(I.9836491765) + 7(2.2820140941) + 12(2.11 0464538) 
90 

+ 32(2.0607916359) + 32(2.2276002089)J 

:. Y5 = 1.79744224 . . 
By similar computations we obtain 

Y6 = 2.0442372 

Y7 = 2.3275049 

Yg = 2.6510812 

scheme, with those obtained for the Adam-Moulton and Adam-Bashforth methods; (see 

sections 2.2.1 and 2.2.2). 

~Ve will now compare the various results below 

Adam-Moulton Adam-Bashforth New Scheme Exact 

0.0 1.0 1.0 , 1.0 1.0 

0.4 1.7974438 1.7974422 1.7974422 1.7974425 

0.5 2.0442397 2.0442356 2.0442372 2.0442376 

) 6 2.3275082 2.3275022 2.3275049 2.3275054 

-:510854 2.6510804 2.6510812 2.6510819 
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Absolute Errors 

x Adam-Moulton Adam-Bas 1 forth Ncw~Scheme 

0.0 0.0 0.0 0.0 

0.4 1.30E-06 8.00E-07 3.00E-07 

0.5 2.10E-06 2.00E-06 4.00E-07 

0.6 2.80E-06 3.20E-06 5.00E-07 

0.7 3.50E-06 1.50E-06 7.00E-07 

It is quite evident from above, that the new scheme is by far more accurate than the 

Adam-Moulton method, and even the Adam-Bashforth method of same order. This is not 

surprising, for accuracy is the intended tali et of the new scheme. 

So, whenever there is a requirement for high degree of accuracy, the new scheme would 

be better, both in terms of accuracy, and e' se of use. 

2 Comparison with the Classical Four-Stage Runge-Kutta Method. 

A comparison will now be made between the result obtained by the new six-stage Runge­

Kutta method for YI' Y2' Y3' Y4 and Y5' a 1d those obtained using the classical four-stage 

Runge-Kutta method of order four (see see. 2.1.2). 

The classical Runge-Kutta method was used to solve the IVP 

Y' = x + y, yeO) = 1, h = 0.1 
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A comparison of both methods is shown be'low 

x • Classical R-K Method New Scheme Exact 

0.0 1.0 1.0 1.0 

0.1 1.1103417 1.1103418 1.1103418 

0.2 1.2428051 1.242805437 1.2428055 

0.3 1.3997169 1.3997 J 75 1.3997176 

0.4 J .5818943 1.5836492 1.5836494 

Absolute Errors 

x Classical R-K Method New-Scheme 

0.0 0.0 0.0 

0.1 1.00E-07 O.OOE+OO 

0.2 4.00E-07 1.00E-07 

0.3 7.00E-07 1.00E-07 

).4 I. 76E-03 2.00E-07 

It is again quite glaring, that the new six-stage R-K scheme performs better than the 

classical Runge-Kutta method. However, this is also not surprising, since the classical 

Runge-Kutta scheme is of order four, while the new six-stage scheme, is of order five. 

4.3 Comparison with Lawson's Six-Stage Method of order five 

Lawson's six-stage Runge-Kutta method of order five is given as: 
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h . 
y,,+, =y" +- [7k, +32k2 +12k1 +32k, +7k6J 90 .-

where 

k, = l(x,,, y,,) 

h h 
k2 = l(x" +2 'Y" +2 k ,) 

3 I 
k3 =l[x" +'4 h,y" +gh(k, +k2)] 

I I 
k4 = f(x" +- h,y" +- hk1 ) 

2 2 ' 
1 3 

ks = f[x" +-h,y" +-h(-k2 +2k3 +3k 4 )1 
4 16 

I 
k6 = f[x l1 +h'YI1 +-:;h(k, +4k2 +6kJ - 12k4 +8ks)] 

The new six-stage R-K scheme, also of order five, is given by: 

k, = f(x l1 'YI1) 

k2 =f(xl1 +h'YI1 +hk,) 

h -
le3 = f[x

l1 
+- '-YI1 +h(1.249655737k, -0.749655737k 2 )] 

2 
h 

,=f[xl1 +-'YI1 -h(0.701544263tk, -0.5600588106k2 -0.3.41486157k3 )] 

5 

h 
ks = f[x l1 +-'YI1 +h(0.25710705k, +0.045073568k2 +0.353037791k3 -0.405218409k4)] 

4 
3h 

k6 = f[x l1 +4'Y" -h(0.754830268k, -0.290909052k2 -0.331676697k3 -1.359792241k4 

+ 0.477547722k5 )] 

To compare both methods given above, we shall apply each, to solve our following 

problems, i.e. 

(i) y'=x+y,y(O)=l,h=O.t 
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(ii) y' = 2y+ X 2 ,yeO) = l,h = 0.1 

MS-Excel was used to solve the above problems, employing both schemes 

and the results can be seen below. 

For the first problem, both schemes had errors but as can be seen, th new scheme was by 

far more accurate than Lawson 's method in solving this problem. For the second 

problem, both schemes recorded a much higher degree of errors, but once again, the new 

scheme proved to be by far more accurate than Lawson's scheme. It must be noted that 

Lawson's scheme performed quite poorly in handling this problem. 

Also, it is obser~ed that the error appears to grow with each step, for both schemes. This 

propagation of error, is one of the disadvantages of the Runge-Kutta process; errors are 

not so easy to watch. So, this behavior of the errors is to be expected. It is also observed 

that the error propagation for the new scheme is fa~ lower than that of Lawson's scheme. 
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PROBLEM: y' = x + y ; y(O) = 1 ; h = 0.1 

EXACT YE(x) = 2ex 
- x - 1 

LAWSON'S 
LAWSON'S NEW SCHEME SCHEME 

X NEW SCHEME SCHEME EXACT ERROR ERROR 

0.0 1 .000000000 1 .000000000 1.000000000 0.000000000 0.000000000 

0.1 1.110341796 1.110365767 1.110341836 4.0E-08 2.3931 E-05 

0.2 1.242805427 1.242858412 1.242805516 8.9E-08 5.2896E-05 

0.3 1.399717467 1.399805304 1.399717615 1.48E-07" 8.7689E-05 

0.4 1.583649177 1.583778611 1.583649395 0.000000218 0.000129216 

0.5 1.79744224 1.797621049 1.797442541 3.01 E:O.7 0.000178508 

0.6 2.044237201 2.04447434 2.044237601 4E-07 0.000236739 

0.7 2.327504899 2.32781066 2.327505415 5.16E-07 0.000305245 

0.8 2.651081205 2.651467399 2.651081857 6.52E-07 0.000385542 

0.9 3.019205412 3.019685576 3·919206222 8.1 E-07 0.000479354 

1.0 3.436562662 3.437152291 3.436563657 9.95E-07 0.000588634 

1.1 3.908330838 3.909047647 3.908332048 1.21 e-:06 0.000715599 

1.2 4.440232387 4.441096606 4.440233845 1.4586-06 0.000862761 

1.3 5.038591.589 5.039626297 5.038593335 1.746E-06 0.001032962 

1.4 5.710397855 5.711629355 5.710399934 2.079E-06 . 0.001229421 

1.5 6.463375679 . 6.46483392 6.463378141 2.4626>-06 0.001455779 

1.6 7.306061947 7.307781002 7.306064849 2.902E-06 0.001716153 

1.7 8.247891376 8.249909977 8.247894784 3.408E-06 0.002015193 

1.8 9.299290941 9.301653083 9.299294929 3.988E-06 0.002358154 

1.9 10.47178423 10.4 7 453985 1Q.471788885 4.655E-06 0.00-2750964 

2.0 11 .77810678 11 .78H1252 11 .7781122 5.418E-06 0.003200318 

2.1 13.23233354 13.2'3605359 13.232339825 6.285E-06 0.003713763 

'")" 14.85001972 14.85432681 14.850027 7.279E-06 0.004299811 

16.6483565 16.65333296 16.64836491 8.41E-06 0.004968054 

18.64634306 18.65208206 18.646352761 9.701E-06 0.0057293 

20.86497675 20.87158364 20.864987921 1.1171E-05 0.006595719 

23.32746323 23.33505708 23 .32747607 1.284E-05 0.007581013 

26.05944871 26.06816405 26.05946345 1.474E-05 0.008700604 

29.08927665 29.09926539 29089293542 1.6892E-05 0.009971844 

32.4482714 32.45970499 32.448290739 1.9339E-05 0.011414246 

36.17105174 36.1841236 36.171073846 2.2106E-05 0.013049753 

40.29587732 40.31080559 40.295902562 2.5242E-05 0.014903028 

44.8650316 44.88206218 44.865060394 2.8794E-05 0.017001787 

49.92524502 49.94465501 49.925277841 3.2821E-05 0.019377169 

55.52816272 55.55026424 55.528200094 3.7374E-05 0.02206414q 
., 

61 .7308614 61 .7560059 61 .730903916 4.2516E-05 0.025101983 

68.59642056 68.62500365 68 .596468886 4.8326E-05 0.028534763 

J.7 76.1'9455383 76.22702068 76.194608719 5.4889E-05 0.032411959 

3.8 84.60230668 84.63915807 84.602368985 6.2305E-05 0.036789082 

3.9 93.90482754 93.94662661 93.904898209 7.0669E-05 0.041728402 

4.0 104.19622 104.2435998 104.196300060 8.006E-OS 0.047299763 

4.1 115.5804845 115.6446749 115.580575190 9.069E-05 0.064099755 

4.2 128.1725594 128.2554663 128.172662080 0.00010268 0.082804232 

4.3 142.0994712 142.1926971 142.099587390 0.0001,1619 0.093109688 

4.4 157.5016059 157.6064043 157.501737330 0.00013143 0.104666923 

4.5 174.534114 174.6518879 174.534262600 0.0001486 0.117625282 



PROBLEM: y' = 2y + X2 ; y(O) = 1 ; h = 0.1 

EXACT Y E(X) = S/4e2x 
- ( x i '2 + x/2 + 1/4 ) 

LAWSON'S 

LAWSON'S NEW SCHEME SCHEME , 

X NEW SCHEME SCHEME EXACT ERROR ERROR 

0.0 1.000000000 1 .000000000 1.000000000 0.000000000 0.000000000 

0.1 1.22·1752187 1.221857630 1.221753448 1.261 E-06 0.000104182 

0.2 1.494777731 1.495040791 1.494780872 3.141 E-06 0.000259919 

0.3 1.832642647 1.833133435 1.83264855 5.903E-06 0.000484885 

0.4 2.251916487 2.252728436 2.251926161 9.674E-06 0.000802275 

0.5 2.772837326 2.774094083 2.772852286 1.496E-05 0.001241797 

0.6 3.42012398 3.421988207 3.420146153 0.00002217 0.001842054 

D.7 . 4.223968049 4.226652638 4.223999999 3.195E-05 0.002652639 

0.8 5.221245600 5.225027941 5.22129053 0.000044930 0.003737411 

0.9 6.456997116 6.462237227 6.457059331 6.2215E-05 0.005177896 

1.0 7.986235113 7.993398631 7.986320124 8.5011 E-05 0.007078507 

1.1 9.876151962 9.885839265 9.87626687- 0.000114908 0.009572395 

1.2 12.208816527 12.22179958 12.20897048 0.000153953 0.012829099 

1.3 15.08445785 15.101736747 15.08467254 0.000214695 0.017064207 

1.4 18.62553803 18.648359775 18.62580846 0.000270432 0.022551315 

1.5 22 .98156585 23.011558408 22.98192115 0.000355305 0.029637258 

1.6 28.335198178 28.374423818 28.33566275 0.000464572 0.038761068 

1.7 34.909520206 34.960602905 34.91012506 0.000604854 0.050477845 

1.8 42.977008509 43.043281624 42.97779305 0.000784541 0.065488574 

1 .9 52.870466399 52 .956158164 52.87148062 0.001014221 0.084677544 

"2 .0 64.996380348 65.106846750 64.99768754 0.001307192 0.10915921 

2.1 79.851233556 79.993250462 79.85299138 . 0.001757824 0.140259082 

::> :2 98.041431361 98.223560729 98.04358583 0.002154469 0.179974899 

120.307638171 120.540686822 120.3103946 0.002756429 0.230292222 

147.554502626 147.852096615 147.5580219 0.003519274 0.294074715 

180.886963957 181 .266267250 180.8914489 0.004484943 0.37481835 

221 .654596630 222.137209825 221 .6603023 0.005705670 0.476907525 

')71.505772961 272.118856553 271 .5130203 0.007247339 0.605836253 

'2.453817416 333.231494987 332.4630093 0.009191884 0.768485687 

6.957807576 407.942917798 406.9694499 0.011642324 0.973467898 

98.021264558 499.267547691 498.0359919 0.014727342 1.231555791 

609.312693644 610.887519048 609.3313014 0.018607756 1.556217648 

. 745.312812794 747.300579841 745.3362973 0.023484506 1.964282541 

911.494377774 914.000754656 911>.5239866 0.029608826 2.476768056 

114.541820841 1117.699025595 111'4.579115 0.037294159 3.119910595 . 
62.619517777 1366.592895252 1362.666448 0.046930223 3.926447252 

5.699449630 1670.695659405 1665.758455 0.059005370 .4.937204405' 

'. 961409307 2042.238615478 2036.035537 0.074127693 6.203078478 

.281814479 2496.162362450 2488.374869 0.093054521 7.78749345 

130744429 3050.716926471 3040.947472 0.116727571 9.769454471 

1161770 3728.194817697 3715.947484 0.146322230 1~.2473337 

-9584960 4555.826463360 4540.482884 0.183299040 15.34357936 

,3957081 5566.873984328 5547.663435 0.229477919 19.21054933 

1370421 6801 .967224936 6777.929489 0.2.87118579 24.03773594 

972716 8310.735872911 8280.675008 0.359035284 30.06086491 

187310 10153.802709752 10116.22991 0.448722690 37.57279975 



CHAPTER FIVE 

ERROR ESTIMATION 

5.1 Error Estimation 

One major flaw in the Runge-Kutta methods is that it is quite difficult and complicated to . 
watch errors. According to Lambert [1973] , "bolmds for the local truncation error, do not 

form a suitable basis for monitoring the local truncation error, with a view to constructing 

a step-control policy similar to that developed for Predictor-Corrector methods. What is 

needed, in place of a bound, is a readily computable esti,rnate ofthe local truncation error, 

similar to that obtained by Milne ' s device for predictor-corrector pairs." 

The estimate used for the new scheme, arIses from an application of the process of 

deferred approach to the limit, i.e. Richardson extr~polation. This involves solving the 

problem twice using step sizes hand 2h. 

:ler the localizing assumption that no previous errors have been made, we may write: 

,X/HI) - YII+I = r/+I = rp(XII 'Y(XII ))h 1'+1 + 0(11 1'+2 ) (i) 

where p is the order of the Runge-Kutta method (i.e. p=5 in this case), rp(xlI ,y(xlI))hP
+
1 is 

Jrincipal local truncation error. Next, we will compute Y:+I ' a second approximation 

+1)' obtained by applying the same method at XII_I with steplenght 2h. Under the 

~lizing assumpt~on, it follows that: 
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and on expanding tp(xlI_" Y(xlI_1» about (XII,Y(XII )), 

Y(X/I+1)- //1+1 =tp(x/I,y(x/I»(2h)f'+' +O(hf'+2 ) 

On subtracting (i) from (ii), we obtain 

(ii) 

Therefore, the principal local truncation error which is taken as an estimate for the local 

truncation error may be written as: 

tp(XII ,y(xlI »h f1+1 = T,I+I = (y(xlI+I ) - /11+1)/(21'+1 -1) 

=> T
II
+1 = (y(xlI+1 ) - Y " H I) /(2/1+1 - J) 

(iii) 

(iv) 

Equation (iv), is a means of obtaining 'quick estimates of the error involved 111 

computations using the new scheme, without having to obtain the exact solution first. 

Thus, to obtain an error estimate we will compute over two successive steps using 

steplenght h (at Xn i.e. Yn+l) and then recomputed over the double step using steplenght 2h 

(at Xn-I i.e. Y':+I)' 

The difference between the values for y so obtained, divided by 63 (obtained by 

substituting p = 5 in Eq. (iv)), is then an estimate of the local truncation error. 

We will illustrate this, by solving the differential equations: 

(i). y' = x + y;y(O) = 1 

(ii) Y' = -Y; yeO) = 1 

at stepJenghts h = 0.1 , and h = 0.2 

(i) y'=x+y;y(O) = l 
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at h = 0.1 , and h = 0.2 

The approximate solutions are as shown below. 

h 

0.1 

0.2 

PROBLEM 1 : y'=x + y ; y(O)=l;h=O.l 

x EXACT: YE = 2e . - x-I 

X NEW SCEME 

0.1 1. 110341796 

0.2 1.242805427 

0.3 1.399717467 

0.4 1.583649177 

0.5 1.79744224 

0.6 2.044237201 

0.7 2.327504899 

0.8 2.651081205 

0.9 3.0]9205412 

1.0 3.436562662 

0.2 1..242803057 

0.4 1.583643388 

0.6 2.044226595 

0.8 2.651063934 

1.0 3.436536293 

EXACT 

1.110341836 

1.2428055 I 6 

1.399717615 

1.583649395 

1.797442541 

2.044237601 

2.327505415 

2.651081186 

3.019206222 

3.436563657 

1.2428055 I 6 

1.583649395 

2.044237601 

2.651081857 

3.436563657 
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ACTUAL ERl~.oR 

4.00E-08 

8.90E-08 

1.48E-07 

2.18E-07 

3.01E-07 

4.00E-07 

5.16E-07 

6.52E-07 

8.10E-07 

9.95E-07 

2.46E-06 

6.01E-06 

1.10E-05 

1.79E-05 

2.74E-05 



Once agam, we cannot over emphasize the accuracy of the new scheme, as can be 

obser't'ed from the table above, with none of the errors being greater than 10 -7
• This 

shows that the new scheme gives approximations that nearly exact. 

From problem (i), as can be seen from above, we compute an approximate solution to the 

problem, using the new scheme, we also computed the exact solution, and hence, the 

actual error. This is rather tasking. So, as we have repeatedly stated, the purpose for this 

section, is to obtain a means by which an estimate for the error, can be conveniently 

computed, ~ithout having to go through the rigors of computing the exact solution. 

N~xt, we will make use of equation (iv) to obtain error estimates that do not depend on 

the exact solutions. 

Recall Equation (iv) 

T"+I ~ (Y"+I - Y '''+1) /(2 p+1 -1) 

where: Y"+l is the approximate solutions at h = 0.1 

y'//+I is the approximate solutions at h = 0.2 

p is the order of our method i.e. p = 5 

hence, equation (iv) becomes 

Tn+1 = (y n+1 - Y' 11+1 ) / 63 

At x = 0.2 

At x = 0.4 

Tn+1 = (1.242805427 -1.242803057) / 63 

=3.7619E-08 

T,,+I = (1 .583649177 - 1.583643388) / 63 

=9.189E-08 
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At x = 0.6 

At x = 0.8 

At x = 1.0 

T,'+I = (2.044237201- 2.044226595) 163 

= 1.684£ - 07 

T,,+, = (2.651081205 - 2.651 063934) 163 

=2.74£- 07 

T,'+I = (2.651081205 - 2.651 063934) 163 

=4.186£-07 

We will now compare ollr error estimates, with the actual errors previously computed 

above, to see if our estimates are viable or not. 

Problem 1 : y' = x + y; yeO) = 1, h = 0.1, h = 0.2 

x Actual Error Error Estimate 

0.2 8.90E-08 3.76E-08 

0.4 2.1SE-07 9.l9E-OS 

0.6 4.00E-07 1.68E-07 

0.8 6.S2E-07 2.74E-07 

1.0 9.95E-07 4. 19E-07 

From the above, we can see that the order of our estimates compare favourably with that 

of the actual erf()f.s, being of the same orders of between 10-7 and 10-8
• Therefore, we 

can conclude that we do not ned to compute the exact solution before we can compute 

errors, our error estimator (Eq. (v» is capable of giving us a workable idea of the nature 

and order of the errors. 
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One important observation from the results above, is that the actual errors appear to 

increase with an increase in steplenght. So, we can safely say that by reducing the 

steplenght h, accuracy can be increased. 

5.3 SUMMARY AND CONCLUSION 

In thi~ work, we have been able to develop a new six-stage classical (explicit) Runge-

Kutta classical Runge-Kutta method of maximum order i.e. of order five. 

We have also demonstrated the efficacy of the new scheme, by engaging it in solving a 

number of differential equations (i.e. IVPs), and the new scheme has been seen to be 

quite efficient and highly accurate. 

An error estimate was also derived for the new scheme using Richardson extrapolation 

with which one can obtain an error estimate [or the scheme, without having to obtain the 

exact solution first. 

As we have observed previously, having used the new scheme to solve various IVPs, and 

comparing its results with other methods (namely Adam-Bashforth, Adam-Moulton, 

Classical four-stage R-K method, and Lawson six-stage R-K method). Our goal of an 

exceptionally accurate scheme has been achieved. Also we can therefore conclude that 

the new scheme satisfies our goal of deriving a scheme that attains the maximum possible 

order for a six-stage R-K method. 
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5.4 RECOMMENDATIONS 

Althou,gh the new scheme was successfully derived and tested, it is by no means perfect. 

For 0110, it can still be improved upon so as to give even better estimates to numerical 

solutions of IVPs. Also, the new scheme as it is now, may not b~ easy to manipulate 

manually because of its decimal coefficients in the k,. 

Though. an error estimate has been derived for the new scheme, it is not built into the 

scheme. So, the new scheme could be improved upon so as to have a better error handling 

capability. 

1t must have been observed, that the derivation of higher-order R-K methods (i.e. orders 

greater than four) using the technique employed in this work. is a process involving a 

large amount of tedious algebraic manipUlation which is both time consuming and error 

prone. it i'~ recommended that future research in this area shoul9 make use of Computer 

Algehro, this would solve the latter problem, but not the fonner, as finding higher-order 

methods involves solving larger and larger coupled systems of polynomial equations. 

The best way, to avoid this problem of tedious algebraic manipulations, is to make lise of 

a very elegant theory developed by Butcher (1987. 2003, also Lambert (1991 », which 

enabJes one to easily establish the conditions for a R-K method. either explicit or implicit. 

to have a given order. This theory is based on the algebraic concept of rooted trees. 
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