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ABSTRACT 

The idea of extrapolation is to use the solution of previous unconstrained 

minimization or the barrier sub problem to fit a polynomial to the barrier 

trajectory, and then use this polynornial to predict the solution of the constrained 

minimization problem. 

This study designed extrapolation algorithm. BASIC computer program was 

developed and used to test the performance of the algorithm. 

The extrapolation technique helps interior penalty function by accelerating the 

rate of convergence to the optimum solution. 
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CHAPTER ONE 

THEORY OF CONSTRAINED OPTIMIZATION. 

1.1: INTRODUCTION. 

The optimist proclaims that we live in the best of all possible 

worlds; and the pessimist fears this is true. J.B. Cabell. 

All of us must make decisions in the course of our day-to- day events in 

order to accomplish certain tasks. Usually there are several, perhaps many, 

possible ways to accomplish these tasks, although some choices will generally be 

better than others. Consciously or unconsciously, we must therefore decide upon 

the best - or optimal- way to realize our objectives. 

Optimization is applied in virtually all areas of human endeavour, 

including engineering, system design, economiCS, power systems, water and 

land use, transportation systems, scheduling systems, resource allocation, 

personnel planning, portfolio selection, mining operations, blending of raw 

materials, structural design, and control systems. Optimizers or decision makers 

use optimization in the design of systems and processes, in the production of 

products and in the operation of systems. 

Techniques of optimization assume such varied forms that no one general 

description is possible. Thus this study intends to examine the extrapolation 

method in interior penalty function for solving constrained optimization 

problems. 
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With the advent of modern technology move and more emphasis has 

been placed on optimization of various types and special thinking has developed 

to the extent that it is meaningful to speak of a mathematical theory of 

optimization. Computer technology has been critically important in practical 

application, hence computational experimentation of extrapolation algorithm will 

feature in the course of this study. 

1.2: OPTIMIZATION AND ITS FRAMEWORK. 

The fundamental problem of optimization is to arrive at the best possible 

decision in any given set of circumstances. Of course, many situations arise 

where the 'best' is unattainable for one reason or the another; sometimes what 

is 'best' for one person is 'worse' for another; more often we are not at all sure 

what is meant by 'best'. The first step, therefore in a mathematical optimization 

problem is to choose some quantity, typically a function of several variables, to 

be maximized or minimized, subject possibly to one or more constraints. The 

commonest types of constraint are equalities and inequalities which must be 

satisfied by the variables of the problem, but many other types of constraint are 

possible; for example a solution in integers may be required. The next step is to 

choose a mathematical method to solve the optimization problem, such methods 

are usually called optimization techniques, or algorithms. 

The optimization problems that have been posed and solved in recent 

years have tended to become more and more elaborate, not to say abstract. 



The simply- stated problem of maximizing or minimizing a given function 

f several variables has attracted the attention of many mathematicians over the 

ast three decades or so. The direct search methods of solution which involve 

unction evaluations and comparisons only, are usually simpler, though less 

ccurate for the same computational effort, than the indirect or gradient 

ethods, which requires values of the function and its derivatives. Both types of 

method are still undergoing development, with the emphasis being on the 

search for efficient and reliable algorithms to deal with general non linear 

functions. 

1.3: CONSTRAINED OPTIMIZATION TECHNIQUES. 

Different techniques abound for the solution of a constrained optimization 

problem which can be stated in the standard form as: 

Find X such that 

F(X) ---+ Minimum 

and gj(X) ~ 0 j = 1,2, ... ,m 

1.3.1 

1.3.2 

These methods can be classified as classical and non-classical methods of 

solution. 

If the expression for the objective function and the constraints are fairly 

simple in terms of design variables, the classical methods of optimization can be 

used to solve the problem. To this, the Lagrange multiplier method is 

considered. 

(i) LAGRANGE MULTIPLIER METHOD. 



This classical technique was developed to derive the equations of 

constrained motion of particles, and has applied to solve optimization 

problem with only equality constraints. 

The derivation of the theory of this method is best illustrated by 

conSidering a two variable problem with a single constraint as shown 

below: 

1.3.3 

Assume that f, g E c' i.e. their first partial derivatives exist, and further assume 

that 

og(x* ) 

OX2 *- 0 

i.e., this partial derivative(the determinant of the Jacobian incase of more than 

one constraint) does not vanish at the optimum solution. Then by implicit 

function theorem; there exists an eps - neighbourhood of Xl * where it is possible 

to solve g(Xl,X2) - b = 0, explicitly for X2 to obtain the relationship 

1.3.4 

substituting for X2 in f(Xl ,X2) it follows that 

for 1.3.5 

If f takes on a relative minimum at x* for x satisfying g(Xl,X2) = b, it must be 

true that there exists a D such that 0 < D < eps and h(xl) < h(Xl*) for all Xl in 

+ 



his neighbourhood; in other words the function h(Xl ) has an unconstrained 

elative minimum at Xl*. For the function ~( Xt) the differentiation is obtained by 

applying the implicit function theorem and for the function h(x1) the rules for 

differentiating compound functions are applied. Hence the conditions for the 

minimum of h(Xl ) may be deduced as, 

dh af af a<p af af 
dXl = aX1 + aX2 aX1 = aX1 - aX2 =0 1.3.6 

= 

If a new variable).. is introduced to express the ratio, 

).. = 
1.3.7 

then (1.3.6) reduces to 

-).. =0 1.3.8 

and (1.3.7) may be re written 

-).. =0 1.3.9 

To these, append equality constraint of (1.3.3) 

1.3.10 

then the relationships (1.3.8), (1.3.9), (1.3.10) express the necessary (but not 

sufficient) condi~ions for obtaining the constrained minimum of the problem 

stated in (1.3.3). Note there are three equations (1.3.8), (1.3.9), (1.3.10) and 

there are three variables Xl, X2, ).. which take on the values Xl * , X2* , )..* at the 

optimum solution and also satisfy these equations. A less rigorous approach 
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l:ates that to obtain the optimum solution of (1.3.1) and (1.3.2), it suffices to 

troduce m language multipliers, A = (Al ' A2, .. . , Am) and investigate the 

;tationary pOints of the Lagrangean function, 

m 
C(x, A) = f(xl, X2, " ' 1 xn) ~ Afgi(X1, X2, "'1 xn) - bi) 1.3.11 

1=1 
[t is then a necessary condition that the optimum solution of (1.3.1) and (1.3.2) 

IS constrained in one of the stationary points of (1.3.11), and hence must satisfy 

the n + m equations obtained by taking n partial derivatives in 'A and setting 

these expression equal to zero, 

aF _ af m 
~ - L Ai = 0 

aXj aXj aXj 
i= l 

j = 1, 2, ... , m 

and 1.3.12 

Provided the rank of the Jacobian associated with the optimum solution is m, 

Le., 

r(Jx *) = m, it is possible to determine uniquely the optimum solution x* and the 

associated multiplier A * . 

Example 1.3.1 

(a) Minimize f(XI /X2) = 6 - 6Xl + 2X12 - 2XIX2 + 2x/ 

subject to 

Solution: 

To solve the problem set up the Lagrangean, (for a maximizing function) 

and take partial derivatives with respect to Xl,X21 " and set these to zero 



E2 

Xl + X2 - 2 = 0 

This set of equations may be solved to obtain the optimum solution, Xl = 3/2, X2 

= 1/2, 

}.. = 1 and f(x) = 112 the optimum value of the objective. The Lagrangean F(x, }..) 

has only one stationary point the necessary condition in (E2) for this convex 

problem is also sufficient to guarantee global optimality. 

(b) suppose a nuclear reactor is to have the shape of a cylinder of radius 

R and height H. Neutron diffusion theory tells that such reactor must 

have the following constraint 

g(R,H) = [2.40:~ 2 = conse 

We would like to minimize the volume of the reactor 

Solution: 

By using the equations above, the 

af + A og = 27rRH _ 2A( 2.4048J2 = 0 
oR oR R3 
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By multiplying eEl) by R/2 and eE2) by H we should obtain 

H = J2;R 
2.4048 

The non-classical methods can be classified into two broad categories, 

namely, the direct methods and indirect methods. 

The direct methods, in which the constraints are handled in an explicit 

manner include: 

(i) Heuristic Search methods - the complex method. 

The heuristic search methods are mostly intuitive and do not have much 

theoretical support. 

(ii) Constraint Approximation Methods. 

In these methods, the non linear objective function and the constraints are 

linearlized about some point and the approximating linear programming problem 

is solved by using linear programming techniques. 

The resulting optimum solution is then used to construct a new linear 

approximation which will again be solved by using LP techniques. This procedure 

is continued until the specified convergence criteria are satisfied. 

For example, 

Let the given problem be: 

Minimize f(xl,x2, ... ,xn) subject to 1.3.13 

The constraints gj{xl ,X2, ... ,Xn) ~ 0 j = 1,2, ... ,m 

Introduce a new variable, say Xn+l, and transform this problem into an 

equivalent form as: 
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subject to the constraints 

1.3.14 

In effect, by the addition of one variable and one constraint, we have converted 

the original problem with a non linear objective function, Eq(1.3.13), into a 

problem with a linear objective function, Eq(1.3.14). Thus, without loss of 

generality, we can assume that the given problem is: 

Find X which minimizes 
n 

feX) = (TX = 2 eXi 

;=1 
Subject to the constraints 

gj{X) :5 0 j = 1,2, ... ,m 

1.3.15 

The cutting plane algorithm can be stated by the following steps: 

(i) start with an initial point Xl and set the iteration number as 

i = 1. The point Xl need not be feasible. 

(ii) Linearize the constraint functions \jgj(X) about the point Xl as 

1.3.16 

(iii) Formulate the approximating linear programming problem as 

Minimize C~X subject to 
1.3.17 

(iv) Solve the corresponding L P problem to obtain the solution vector Xi+l 

(v) Evaluate the original constraints at Xi+l, 
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i.e. find gj{Xi+I), j = 1,2, ... ,m. 

if gj(Xi+l) ~ E for j = 1,2, ... ,m where E is a prescribed small positive 

tolerance, all original constraints can be assumed to have been satisfied. 

Hence stop procedure by taking 

If gj{Xi+l) > E for some values of j, find the most violated constraint as 

gk(Xi+l) = M~x [gj(Xi+I)] 
J 

Relinearize the constraint gk(X) ~ 0 about the point Xi+l as 

1.3.18 

and add this as the (m+ 1)th constraint to the previous L P problem. 

(vi) Set the new iteration number as i = i+ 1, the total number of 

constraints in the new approximating L P problem as m = m+ 1, and go to 

step (iv). 

Example 1.3.2: 

Minimize f(Xl,X2) = Xl - X2 subject to 

using the cutting plane method. Take the convergence limit in step (v) as E = 

0.02. 

Solution: 

STEPS 1,2,3,: Although we can start the solution from the initial point Xl to 
. 

avoid the possible unbound on Xl and X2 as -2 ~ Xl ~ 2 and -2 ~ X2 ~ 2 and 

solve the following LP problem: 

10 



inimize f = Xl - X2 subject to 

The solution of this problem can be obtained as 

X = U } with f(X) =-4 

STEP 4: Since we have solved 

)(;+1 = X2 = {-2
2 

} 

STEP 5: Since 91(X2) = 23 > £, we linearize 

91(X) about the point X2 as 

gl(X) ~ gl(X2) + Vg1(X2)T(X -X2) :::; 0 

As 

Qg11 91(X) =23, dXl X2 = 6X1 -

and 

By adding this constraint to the previous LP problem, the new LP problem 

becomes: 

Minimize f = Xl - X2 subject to 

-16xl + 8X2 - 25 :$ 0 

STEP 6: Set the iteration number as i !:: 2 and go to step 4. 

STEP 4: Solve the approximating LP problem in (E3) and obtain the solution 

11 



X3 = {;~05625} with f3 = f(X3) = -2.6526 

STEP 5: As gl (X3) ~ 6.19922 > £, we linearize 

gl(X3) ~ gl (X3) + \l gl(X3)T(X - X3) ~ ° 

and 2911 = 5.125 
ax! X3 

( E4) becomes 

29.
1

1 aXl X3 = -7.375 

gl (X) ~ -7.375xl + 5.125x2 - 8.19922 ~ ° 
This gives the new LP problem as : 

Minimize f = Xl - X2 subject to 

-7.37SXl + S.12SX2 - 8.19922 ~ ° 
STEP 6: Set the iteration number as i = 3 and go to step 4. 

E5 

STEP 4: Solve the approximating LP problem of ( Es) to obtain the solution 

{
O.27870 } 

X4 = 2.00000 and f4 = f(X4) = -1.72193 

This procedure is continued until the specified convergence criterion, gl(X) ~ E 

in step 5 is satisfied. 

The cutting plane method - constraint Approximation method is an efficient 

technique for solving convex programming problems with nearly linear objective 

and constraint functions. 
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Where as in most of the indirect method, the constrained minimization 

problem is solved as a sequence of unconstrained minimization problems. The 

following are the two basic types of indirect optimization methods: 

(i) Transformation of Variables. 

Some of the constrained optimization problems have their constraints 

expressed as simple and explicit function of the decision variables. In such 

cases, it may be possible to make a change of variable such that the constraints 

are automatically satisfied. Transformation of variables will be discussed in sec. 

1.5 

(ii) Penalty Function Methods. 

There are two types of penalty function methods - the interior penalty 

function method and the exterior penalty function method. In both types of 

methods, the constrained minimization problem is transformed into a 

sequence of unconstrained minimization problem. Penalty function method 

will be the main focus of chapter two of this work. 

1.4: CHARACTERISTICS OF CONSTRAINED PROBLEM. 

The presence of constraints in a nonlinear programming problem creates 

more problems while finding the minimum. Several situations can be 

identified depending on the effect of constraints on the objective function. 

The simplest' situation is when the constraints do not have any influence on 

the minimum point. 



If the constraints are also nonlinear, the minimum pOint X* can also nonlinear, 

the minimum point X* can be found by making use of the necessary and 

sufficient conditions: 

V' f Ix* = 0 1.4.1 

and 

JX* = ( a
2
f Jx* is positive definite 1.4.2 

OXj OXj 

Thus in order to use these conditions, one must know for sure, that the 

constraints are not going to have any effect on the minimum. Thus one has to 

passed with the general assumption that the constraints will have same 

influence on the optimum point. 

Another situation is one where the minimization problem has two or more 

local minima. If the objective function has two or more unconstrained local 

minima and if at least one of them is contained in the feasible region, the 

constrained problem would have at least two local minima. 

It can be sum up that, the minimum of a nonlinear programming problem 

will not be, in general, an extreme point of the feasible region and may have 

local minima even if the corresponding unconstrained problem is not having local 

minima. Furthermore, none of the local minima may correspond to the global 

minimum of the unconstrained problem. All these characteristics are direct 

consequences of the introduction of constraints. 
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1.5: TRANSFORMATION TECHNIQUES. 

(i) Change of variables 

If the constraints gj(X) are explicit functions of the variables xi and have 

certain simple forms, it may be possible to make a transformation of the 

independent variables such that the constraints are automatically satisfied. 

Thus it may be possible to convert a constrained optimization problem into 

an unconstrained one by making change of variables. One of the 

frequently encountered constraints, which can be satisfied in this way, is 

that when the variable is bounded below and above by certain constraints: 

1.5.1 

where Ii and Ui are respectively, the lower and the upper limits on Xi . 

These constraints can be satisfied by transforming the variable Xi as 

1.5.2 

where Yi is the new variable which can take any value. 

In the particular case when the variable Xi is restricted to lie in the 

interval (0,1), we can use any of the following transformations: 

Xi = sin2yi 

Xi = cos2yi 

eYi 
1.5.3 Xi = (eYi + e-yi) 

Xi = eY? 

(1 + V?) 

ts 



If the variable Xi is contained to take only positive values, the transformation has 

to be as follows: 

1.5.4 

On the other hand, if t e variable is restricted to take values lying only in 

between -1 and 1, the transformation is given by 

Xi = sin Yi 

Xj =cos Yi 1.5.5 

Xi = 2Yi 
1 + y/ 

Applying these transformation, then the unconstrained minimum of the objective 

function is sought with respect to the new variables Vi. 

The following points are to be noted in applying this transformation 

technique: 

(a) the constraints gj(X) have to be very simple function of Xi 

(b) for certain constraints it may not be possible to find the necessary 

transformation. 

(c) If it is not possible to eliminate all the constraints by making change of 

variables, it may be better not to use the transformation at all. The 

partial transformation may, sometimes produce a distorted objective 

function which might be more difficult to minimize than the original 

function. 
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Example 1.5.1 

Find the dimensions of a rectangular prism of parcel which has the 

largest volume when its length plus girth are limited to take the maximum 

values of 42 cm and 72 cm respectively. 

Solution: 

Let Xl, X2 and X3 denote the length, breadth and depth of the parcel 

respectively. 

The problem can be stated as follows: 

Maximize f(xl, X2 X3) = Xl X2 X3 

Subject to Xl + 2X2 + 2X3 ::; 72 

Xl ::; 42 

Xl ~ 0 

X2 ~ a 

x] ~ a 

by introducing the new variables Yl , Y2 and Y3 as 

, i.e. 

YI = Xl + 2Xl + 2X3 X3 = 1/2 (Y3 - Yl - 2 Y2) 

the constraints (EI ) to (El) can be expressed as 

11 



o ~ Yl~ 42 

o ~ Y2~ 36 Es 

where the upper bound on Y2 is obtained by setting Xl = X3 = 0 in (E3). As Xl 

and X2 are constrained to be positive, intuitively we feel that a negative value of 

X3 (negative volume) may not correspond to the maximum of f. hence we do dot 

consider (E6) in the subsequent computations. The constraints (Es) will 

automatically satisfied if we define the new variables Zl, Z2 and Z3 as 

If we use (E7) and (Eg), the original constrained optimization problem can be 

transformed into an equivalent unconstrained problem as: 

Maximize 

ElO 

To find the maximum of f, we use the necessary conditions: 

~ =(4536)(4) sin ZlCOS zlsin2 z2(6 sin2 
Z3 - 7 sin2 

Zl - 6 sin2 
Z2) = 0 Ell 

OZI 

~ =(4536)(2) sin2 Z1 sin Z2COS z2(12 sin2 Z3 - 7 sin2 Z1 - 24 sin2 
Z2) = 0 E12 

Uz) 

~ =(4536)(24) sin2 Z1 sin2 Z2 sin Z3 cos Z3 = 0 En 
GZ) 

Equation (E12) shows that sin Z1 = 0 or sin Z2 = 0 or sin Z3 = 0 
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or cos Z3 = O. However if sin Zl = 0 or sin Z2 = 0 is taken, we do not get any 

information about Z2 and Z3 from the other equations. Similarly, sin Z3 = 0 will 

lead to the trivial solution Zi = Z2 = 0 from (Ell) and (E12). Hence 

cos Z3 must be zero to make (E13) valid. This lead to sin2 
Z3 = 1, 

sin2 
Zi =4/7 and sin2 

Z2 = 1/3 . This solution can be verified to correspond to a 

relative maximum of f. using (Eg) and (E7), the solution of the problem, in terms 

of the original variables, can be obtained as: 

Xl* = length = 24cm, X2* = breadth = 12cm, X3* = depth = 12cm and 

fmax = maximum volume = 3456 cm3 

(ii) Elimination of variables. 

If an optimization problem in inequality constraints, all of them may not 

be active (Le. a constraint which is satisfied with equality sign). If it is known, in 

advance, which constraints are going to be active at the optimum pOint, we use 

those constraint equations to eliminate the variables from the problem. Thus if r 

« n) specific constraints are known to be active at the optimum point, can 

eliminate any r variables from the problem and obtain a new problem involving 

only n - r variables and m - r constraints. This problem will be, in general, much 

easier to solve compared to the original problem. 

The major drawback of this method is that it will be very difficult to know 

beforehand, which of the constraints are going to be active at the optimum 

point. Thus, in a general problem with m constraints, we need to check 

(a) the minimum of f(x) with no constraints (assuming that no constraint 

is active at the optimum point). 
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(b) The minimum of f(x) by taking one constraint at a time with equality 

sign (assuming that one constraint is active at the optimum point). 

(c) The minimum of f(x) by taking all possible combinations of constraints 

taken two at a time (assuming that two constraints are active at the 

optimum point) e.t.c. if any of these solutions satisfies the Kuhn -

Tucker necessary conditions, it is likely to be a local minimum of the 

original optimization problem. 

It can be seen that in the absence of a prior knowledge about which constraints 

are going to be active at the optimum pOint, the number of problems to be 

solved is given by 

1 
m(m - 1) m(m - 1)(m - 2 m n m 

+ m+ + + ... + = L 
2! 3! n! (m - n)! k =O k! (m - k) ! 

1.5.6 

For example, if the original optimization problem has 5 variables and 10 

constraints, the number of problems to be solved will be 638, which can be seen 

to be very large. 

However, in LP problems, it is known that exactly n - m variables will be zero at 

the optimum point. In such cases, we need to solve only 

( (n - ;)!m! J problems to identify the optimum solution. 

For example if m = 5 and n = 10, the number of problems to be solved will be 
. 

252, which is still a large number in terms of practical computations. Hence this 

approach is not feasible even for solving LP problems. 
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Example 1.5.2 

Find the dimension of the parcel described in example 1.5.1 if the constraint 

given is known to be active at the optimum point. 

Solution: 

The problem can be treated as follows: 

Maximize 

Xl + 2 X2 + 2 X3 = 72 

Xl ~ 42 

With the help of (E2), Xl can be expanded as 

and the objective function as 

(Ea) 

(E3) 

(E4) 

(Es) 

(E6) 

Now we maximize f(x2, X3) as an unconstrained problem and accept the solution 

if it satisfies the constraints (E3) to (E6) 

By solving the equations 

(Eg) 

and 

af ' 2 = 2(36 X2 - X2 - 2 X2 X3) = 0 
OX3 

(ElO) 
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at all times. It also has the reassuring feature that, should the algorithm be 

terminated prematurely, a feasible solution is always returned . 

The second class of penally function methods, the exterior penalty 

function methods, are characterized by their use of infeasible pOints. 

Before developing on the two classes of methods for the penalty function 

method, it is pertinent to consider briefly some properties of problem (2.1.1) and 

then introduce the Kuhn-Tucker first order necessary conditions for its solution. 

The feasible region of (2.1.1) will be written as 

x = { x:g(x) so} 2.1.3 

The interior of the feasible region will be written as 

Xl = { x:g(x) < 0 } 2.1.4 

We shall assume throughout that the problem functions are continuous and also, 

mainly for computational convenience, that they are differentiable. We shall also 

assume a local solution, X* I exists and that at least one constraint is active at X* 

(Le. J, the active constraint set at X* is non-empty). For problem (2.1.1), we 

write the Lagrangrian as 

m 
L(X,~) = F(X) - 2: ~i gi(X) 

i=1 

2.1.5 

and following similar arguments, we can establish the Kuhn-Tucker first - order 

necessary condition for X* to be a local minimum of (2.1.1) 

KUHN - TUCKER FIRST - ORDER CONDmONS 

If X* is a ' iocal solution of (2.1.1) and the constraints gi(X), i E J, satisfy 

"constraint qualification" then there exists ~* En such that 
m 

G(X*) - 2: ~i*ai(X*) = 0 2.1.6 
i=l 



CHAPTER TWO 

BASIC APPROACH IN THE PENAL TV FUNCTION METHOD. 

2.1 INTRODUmON: 

The penalty function method has been widely used to transform 

constrained optimization problems into a sequence of unconstrained optimization 

problem. Let the basic optimization problem be of the form: 

Find X which minimize ~X) } 

Subject to Gi(X) 5 0 I - 1, 2, ... , m 2.1.1 

This problem is converted into an unconstrained minimization problem by 

constructing a function of the form 
m 

$(X, rk) = F(X) + rk ~Pi [gi(X) J 2.1.2 

Where Gi is some function of the constraints gi and rk is a positive constant 

known as the penalty parameter. The second term on the right Side of (2.1.2) is 

called the penalty term. If the unconstrained minimization of the ~ - function is 

repeated for a sequence of values of the penalty parameter rk(k = 1,2, .. . ),the 

solution may be brought to converge to that of the original problem stated in 

(2.1.1). this is the reason why the penalty function method have also been 

referred to as Sequential Unconstrained Minimization Techniques commonly 

abbreviated to SUMT. Two major classes of such methods can be identified. The 

first, the interior penalty function method (also known as the barrier function 

methods), are characterized by their property of preserving constraint feasibility 



1\* 2: 0 i E J 2.1.7 

2.1.8 

where g(x) and ai(x), i = 1,2, ... ,m are the gradients of the problem functions. 

The importance of the Kuhn - Tucker conditions in relation to penalty 

function methods lies in the fact that they or at least expressions of the same 

form, appear naturally in the foundation of penalty function methods. The 

conditions under which the Kuhn - Tucker conditions holds also enable us to 

establish some very attractive and useful results concerning the methods. 

2.2: INTERIOR PENALTY FUNCrION METHOD. 

As indicated in the previous section, in the interior penalty function 

method, a new function ~(X, rk) is defined so that a barrier is constructed at the 

boundary of the feasible region X, and the solution X* I is approached from the 

interior of X(Le. Xl is non-empty) by modifying the barrier using the controlling 

parameter. 

Let us define G(g(x), rk) as 

m 
G(g(x), rk) = rk L G (gi(X)) 2.2.1 

i=l 
Where rk is a positive scalar and Gi(t) is defined continuously on the interval t > 

O. Let Gi(t) ~ 00 as t ~ 0+. For computational convenience we also assume Gi 

is differentiable. It is interesting to note that from a practical point of view the 

conditions imposed on G(t) are not of great importance provided one such 

function can be found. The conditions ' that must be considered important in 

25 



establishing the penalty function method are those that the problem function 

must satisfy. Te interior penalty function method is then 

m 
$ (X, rk) = F(X) + rk L G (gi(X)), rk> 0 2.2.2 

i=l 
$ (X, rk) is defined as Xl and $(X, rk) ~oo as gi(X) ~ 0 for any i. If gi(X*) = 0 

then 

x ~ X*, the growth of Gi (gi(X)) can be controlled or "cancelled" by decreasing 

Example 2.2.1 

(i) Inverse interior penalty function (Carroll, 1961) 

2.2.3 

(ii) Log Interior penalty function (Frish, 1955) 

2.2.4 

The behaviour of 2.2.2 can be interpreted in the following way. Assume 

Ga(X*) = 0 for some u. If rk is decreased, then Ga(ga(x)) can be increased 

without increasing 

$(X, rk). This implies that gu(x) can be decreased, so permitting X(rk) to 

approach X*. As a by-product of the convergence X(rk) ~ X*,we would also 

expect F(X(rk)) to decrease towards F(X*). This observation forms the basis of 

the computational procedure. 

Using (2.2.3), the $ - function defined originally by Carroll is 

. m 1 
$ (X, rk) = F(X) - rkL -() 2.2.5 

i=l gi x 

It can be seen that the value of the function ~ will always be greater than F 

since gi(X) is negative for all feasible pOints X. If any constraint gi(X) is satisfied 
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critically (with equality sign), the value of <t> tends to infinity. It is to be noted 

that the penalty term in (2.2.5) is not defined if X is infeasible. This introduces 

serious shortcoming while using (2.2.5). Since this equation does not allow any 

constraint to be violated, it requires a feasible starting point for the search 

towards the optimum point. Since the initial point as well as each of the 

subsequent points generated in this method is classified as an "interior penalty 

function" formulation. 

2.2.6 BASIC ALGORITHM 

The iteration procedure of this method can be summarized as follows. 

(i) start with an initial feasible point Xl satisfying all the constraints with 

strict inequality sign, that is gi(X) < 0 for i =1,2, ... ,m and initial value of n 

> O. 

Set k = 1. 

(ii) Minimize ~ (X, rk) by using any of the unconstrained minimization 

methods and obtain the solution Xk*' 

(iii) Test whether Xk* is the optimum solution of the original problem. If Xk* is 

found to be optimum, terminate the process. Otherwise, go to the next 

step. 

(iv) Find the value of the next penalty parameter, rk+l as 

rk+l = c rk where c < 1 

(v) Set the new value of k = k+ 1, take the new starting point as Xl = Xk* 

and go to step (ii) 
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These steps are shown in the form of a flowchart in fig 2.2.1 

Fig 2.2.1: 

Input an interior 
Feasible point Xl, r>O 
And c>O and < 1 

Set k = 1 

Find the unconstrained 
Minimum Xk * of <l>k 

Set k = k+l 

YES 

flowchart for the interior penalty function method. 
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(ii) Identify the constraint which is violated most at the pOint Xl, that is 

find the integer k such that 

gk(Xl ) = max ~i (Xl)) ~ 0 = m - r+ 1, m - r+2, ... , m 

2.3.2 

(iii) Now formulate a new optimization problem as : 

Find X which minimizes gk(X) subject to 

gi(X) ::; 0, 

and 

i = l,2,,,,m-r 

gi(X) - gk(X)::; 0, i = m-r+ 1, m-r+2, .. . , k-l, k-2, ... , m 

2.3.3 

(iv) Solve the optimization problem formulated in step (iii) by taking the 

point Xla, as the feasible starting pOint using the interior penalty 

function method. Note that this optimization method can be 

terminated whenever the value of the objective function Gk(X) drop 

below zero. Thus the solution obtained XM will satisfy at least one 

more constraint than did the original point Xl. 

(v) If all the constraints are satisfied at the point XM, set the new starting 

point as Xl = XM, and renumber the constraints such that the last 

constraints will be the unsatisfied ones (this value of r will be different 

from the previous value), and go to step (ii) 

This procedure is repeated until all the constraints are satisfied, and a 

point Xl = XM is obtained for which gi(Xl ) < 0 I = l,2, .. ,m 

If the constraints are consistent, it should be possible to obtain by 

applying the above .procedure, a point Xl that satisfies all the constraints. 
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2.3 INTERIOR PENALTY FUNCTION IMPLEMENTATION 

Although the algorithm is straight forward, there are a number of pOints 

to be considered in implementing this method. These are: 

(i) The starting feasible point Xl may not be readily available in some cases. 

(ii) A suitable value of the initial penalty parameter (rl) has to be found. 

(iii) A proper value has to be selected for the multiplication factor, c. 

(iv) Suitable convergence criteria have to be chosen to identify the optimum 

point. 

(vi) The constraints have to be normalized so that each one of them vary 

between -1 and 0 only. 

All these aspects are discussed in the following sub headings. 

(a) STARTING FEASIBLE POINT Xl 

There may be some situations where the feasible design points could not 

be found easily. In such cases, the required feasible starting points can be found 

by using the interior penalty function method itself as follows: 

(i) Choose an arbitrary point Xl and evaluate the constraints gi(X) at the 

point Xl- Since the point Xl is arbitrary, it may not satisfy all the 

constraints with strict inequality sign. If r out of a total of m 

constraints are violated, renumber the constraints such that the last r 

constraints will become the violated ones, that is, 

i = 1,2, ... , m- r 

and 2.3.1 

i = m- r+ 1, m- r+2, ... , m 

29 



However, there may exist situations in which the solution of the problem 

formulated in step (iii) gives the unconstrained or constrained local 

minimum of gk(X) that is positive. In such cases, one has to start afresh 

with a new point Xl from step(i) onwards. 

(b) INmAL VALUE OF THE PENALTY PARAMETER (rl ) 

Since the unconstrained minimization of ~ (X, rk) is to be carried out for a 

decreasing sequence of rk, it might appear that by choosing a very small 

value of rl, we can avoid excessive number of minimizations of the function 

<1>. But from computational point of view, it will be easier to minimize the 

unconstrained function ~ ~ (X, rk) if rk is large. However, the minimum of ~k, 

Xk *, will be farther away from the desired minimum X* if rk is large. Thus it 

requires an excessive number of unconstrained minimizations of ~ (X, rk) (for 

several values of rk) to reach the point X* if rlis selected to be very large. 

Thus a "moderate" value has to be chosen for the initial penalty parameter: 

(rl). In practice, a value of rl , which gives the value of 

~ (Xl, rl) approximately equal to 1.1 to 2.0 times the value of f(Xl ) has been 

found to be quite satisfactory in achieving quick convergence of the process. 

Thus, for any initial feasible starting point Xl, the value of rl can be taken as 

2.3.4 

. 
( c) SUBSEQUENT VALUES OF THE PENALTY PARAMETER. 

Once the Initial value of rk Is chosen, the subsequent values rk of have to 

be chosen such that 
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2.3.5 

For convenience, the value of rk are chosen according to the relation 

2.3.6 

where c < 1. The value of c can be taken as 0.1 or 0.2 or 0.5 etc. 

(c) CONVERGENCE CRITERIA. 

Since the unconstrained minimization of ~ (X, rk) has to be carried out for 

a decreasing sequence of values of , it is necessary to use proper 

convergence criteria to identify the optimum point and to avoid unnecessarily 

large number of unconstrained minimizations. The process can be terminated 

whenever the following conditions are satisfied. 

(i) The relative difference between the values of the objective function 

obtained at the end of any two consecutive unconstrained 

minimization falls below a small number £1 i. e. 

2.3.7 

(ii) The difference between the optimum pOints X*k and X*k-1 become very 

small. This can be judged in several ways. Some of them are given below: 

I (lV<)j I 5 £2 2.3.8 

where t:.X = X*k - X*k-1 and (t:.X)j the jth component of the vector t:.X. 

Max I (~)j I ~ £3 2.3.9 

flX = [ (flX)21 + (~)22 + ... +( flX)2 n]l/n ~ E4 2.3.10 

Note that the values of £1 to E4 have to be chosen depending on the 

characteristics of the problem at hand. 
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(e) NORMALIZATION OF CONSTRAINTS: 

It is advisable to normalize the constraints so that they vary between -1 and 

o as far as possible. For example, a structural optimization problem might be 

having constraints on deflection(o) and the stress( 0) as 

2.3.11 

C2(X) = o(x) - Omax ~ 0 2.3.12 

The normalization can be done as 

C'l(X) = ~l.w = ~ - 1 ~ 0 
Qom Dmax 

2.3.13 

And 

C'2(X) = ~ = 
o(x) 

- 1 ~ 0 
Omax Omax 

2.3.14 

The problem can still be solved effectively without normalizing the constraints 

by defining different penalty parameters for different constraints as: 
m 

<I>(X,rk) = f(X) - rk ~ Ri 2.3.15 
i = 1 Ci(x) 

Where Rl , Rl, ... ,Rm are selected such that the contributions of different C(X) to 

the 

~ - function will be approximately same as the initial point Xl. when the 

unconstrained minimization of $ (X,rk) is carried for a decreasing sequence of 

values of rk, the values of Rl , Rl, ... ,Rm will not be altered; however, they are 

expected to be effective in reducing the disparities between the contributions 

. 
of the various constraints to the 

$ - function. 

33 



Example 2.3.1 

Solution: 

To illustrate the interior penalty function method, we use calculus method for 

solving the unconstrained minimization problem in this case. Hence there is 

no need to have an initial feasible point Xl. the <p - function is 

[ 
I - I J 

<t>(X, r) = 1/3 (Xl + 1)3 + X2 - r - X I + 1 ~ 

To find the unconstrained minimum of <1>, we use the necessary conditions: 

r 
a <D = 1 - l-2 = 0 
ax, 

This equations gives 

and 

"'moln ( r) ={ 1/3 [ (rl12 + 1)112 + 1]3 + 1 } 'f' 2r 9. - lIr _( lIrJ'L + l/rL) ~. 

To obtain the solution of the original problem, we know that 
Lim 

fmin = r~O ~min ( r) 

X * - Lim 1 -
r~O 

x*_Lim 
2 - r~O X2*( r) 

The values of f, Xl * and X2* corresponding to a decreasing sequence of values 

of r are shown in the following table. 
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Values of r X1*( r) = Cr h + 1) '12 X2*(r) = r I/, Q>min ( r) 
1000 5.71164 31.62278 376.2636 
100 3.31662 10.0000 89.9772 
10 2.04017 3.16228 25.3048 
1 1.41421 1.00000 9.1046 
0.1 1.14727 0.31623 4.6117 
0.01 1.04881 0.10000 3.2716 
0.001 1.01569 0.03162 2.8569 
0.0001 1.00499 0.01000 2.7267 
0.00001 1.00158 0.00316 2.6856 
0.000001 1.00050 0.00100 2.6727 
Exact solution 0 1 0 8/3 
The interior penalty function method illustrated in the above table gives 

convergence as the parameter rk is decreased sequentially. The sequential 

process permits a graded approximation to be used in the analysis in the 

system. It can also be seen that k (iteration) did not exceed 10 before 

computer rounding error becomes significant. Furthermore, the value of the 

function ~ is greater than f since C(x) is negative for all feasible points X. 

2.4: INTERIOR PENALTY FUNCTION STRENGHTS. 

This section examines some properties of the basis algorithm which can 

be properties of any penalty function method. In general, the results can be 

considered as strengths of the methods. 

(a) INTERIOR PENALTY FUNCTION CONVERGENCE. 

It has been shown under mild topological conditions and for rk sufficiently 

small, that a sequence of minimizing points {Xk} , produced by the basis 

algorithm and corresponding to {rk}, exist and Xi(-) X* as k- ) co. Furthermore, it 

is easy to establish the following results which confirm the earlier observation 

concerning the behaviour of the interior penalty formulation (2.2.2) 



m 
(i) lim rk ~ Gj(Cj(Xk)) = 0 
k~ 00 i= l 

lim 
(ii) k4- 00 F(Xk) = F(X*) and{ F(Xk)} is monotonic decreasing. 

(iii) lim $ (Xk,rk) = F(X*) 
k4- 00 

(iv) {~ Gi(Cj(Xk))} is monotonic increasing. 
1=1 

To give some idea of the generality of the basic algorithm, topological 

conditions required amount to continuity of the problem functions and an 

assumption that X* is the closure of Xl. The condition implies that the interior 

penalty function approach will not converge to a local minima which are isolated 

points of the feasible region. In establishing convergence of the basic algorithm, 

we do not require assumptions as strong as Kuhn - Tucker constraint 

qualifications. Indeed, the interior penalty function method will converge to a 

local minimum at which the Kuhn - Tucker first order conditions fails to hold. 

The generality of these convergence results suggest that the basic algorithm has 

wide applicability. 

(b) AN ERROR ESTIMATE OR BOUND. 

Under stronger conditions on the problem functions it is possible to derive 

an estimate of 

(F(X( r » - F(X*). At X(r) we have 

b(X(r»~ .~ Aj(r)aj(x(r))+O(r) 
IEJ 
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where the O( r ) term represents tile contribution from inactive constraints. 

Taking the scalar product of Eq. (2.4.1) with (X( r ) - X*) and using the first -

order Taylor expansions about X*, we obtain 

L: 
F(X(r ) - F(X*) = iEl /q( r ) Ci(X( r )) + O( max[r II X( r) - X* 112] 2.4.2 

If the condition of strict complementary /1,)*> 0, iE J, holds, it is possible to show 

for the log interior penalty function that the first term on the right - hand side of 

(2.4.2) dominates and the order term can be ignored. When the active 

constraint set is unknown, the sum in (2.4.2) can be extended over all 

constraints. In this case we would expect 
m 
L: AI( r ) CI(X( r ) 
i=1 

to be bounded for the error F(X( r ) - F(X*). 

( c) ROBUSTNESS. 

Mifflin (1972) has established under much stronger conditions on the 

problem functions that the basic algorithm, using log interior penalty function, 

will converge even when 4>(X, rk) is "minimized" only to within a predetermined 

tolerance of 4>(X( r ), rk). the rate of convergence with respect to rk is, however, 

adversely affected by the magnitude of the tolerance. The importance of this 

result lies in the observation that in exact minimizations are an unavoidable 

consequence of any numerical implementation of the basic algorithm exhibits a 

certain robustness in overcoming this form of systematic error. 
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2.5 INTERIOR PENALTY FUNcrION WEAKNESS. 

In contrast to the desirable properties of interior function method 

discussed in section (2.4), it is also possible to identify a number of undesirable 

properties of this method. These weaknesses of the basic algorithm are of a 

computational in nature and are most serious when the controlling parameter is 

small. In this section, we shall consider some of such weakness. 

(a) REPEATED UNCONSTRAINED MINIMIZATIONS. 

The penalty function method requires repeated unconstrained 

minimization of <j>(X,rk) with no strong indication of how rk should be chosen. The 

choice of rl and the rate at which rk tends to zero can seriously affect the 

computational effort required to find the solution X*. we must therefore seek a 

compromise between the use of I few very difficult minimizations when rl< is 

chosen to converge rapidly and a large number of less difficult minimization 

when rk is chosen to converge slowly. 

(b) UNCONSTRAINED MINIMIZATION DIFFICULTIES. 

The direct application of a typical unconstrained minimization algorithm to 

minimize the penalty function is seldom satisfactory, especially when the 

controlling parameter becomes small and the minimizing point of the penalty 

function approaches the boundary of the feasible region. 

Three associated difficulties can be distinguished. 

(i) The unconstrained minimization algorithm, in general, assumes the 

objective function is defined on En which contains the minimum as an interior 

pOint. Although this is true of the interior penalty function, it is also true that 



X(rk) approaches the boundary of X as r decreases. This implies ttlat linear 

search procedures within the algorithm will need to be modified to accommodate 

attempts to evaluate ql(X, rk) at infeasible points. The simple expedient of 

setting the function value to "infinity" is unlikely to be sufficient of this value is 

then to determine an interpolating function to perform the linear search or if the 

function value is used to compute or update derivative information about $(X, rk) 

(ii) the linear search procedures incorporated in many unconstrained algorithms are 

usually performed by fitting quadratic or cubic - extrapolation and interpolation 

functions to function values and sometimes gradient values. It is impractical to 

expect such functions to model accurately the behaviour of the interior penalty 

function with its singularity at the boundary of the feasible region. 

(iii) A third difficulty in minimization $(X, rk) using a standard unconstrained 

minimization algorithm arises in the speCification of convergence criteria which 

are satisfactory for all values of the controlling parameter. As rk decreases the 

penalty function becomes extremely steep valleyed and in a very small 

neighbourhood of XC r ), the magnitude of the gradient <j>CX, rk) can take large 

values. In these circumstances, it is practically impossible to reduce the gradient 

magnitude numerically and this implies that the convergence criterion based 

solely on gradient magnitudes is unsuitable. Care must also be taken to avoid 

premature convergence resulting from the use of tests based on objective 

function improvement or step lengths in successive iterations of the 

unconstrained algorithm. 
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(c) ILL - CONDmONING OF THE HESSIAN MATRIX. 

A third weakness of the interior penalty function method is related to the 

ill - conditioned nature of its Hessian matrix. An analysis of the form of its 

Hessian (matrix of second partial derivatives) of the penalty function shows 

clearly that the matrix becomes increasingly ill - conditioned as r~ 00. This 

would lead us to expect that interior penalty methods would perform poorly -

yield in accurate result - as the solution is approached. 

2.6: EXTERIOR PENALlY FUNCITON METHOD. 

The exterior penalty function formulation, in contrast to the interior 

function formulation discussed in section 2.2 to 2.5, is defined to impose an 

increasing penalty on the objective function as constraint violation increases. 

The controlling parameter is effectively to increase the magnitude of the penalty. 

In the exterior penalty function method, the ~ - function is generally taken as 
m 

~(X, rk) = f(X) + rk L <gi(x»q 2.6.1 
i= l 

where rk is a positive penalty parameter, the exponent q is a non negative 

constant, and the bracket function <gi(X» Is defined as 

{

i(X) if gi(X) > ° constrained violated 
<gi(X» = max<gi(x) ,0> = 

if gi(X) ~ ° constrained is satisfied 
2.6.2 

Usually, the function ~(X, rk) possesses a minimum as a function of X in 

the infeasible region. The unconstrained minima X*k converge to the solution of 

the original problem as k~ 00 and rk~ 00. Thus the unconstrained minima 

40 



approach the feasible domain gradually and as k~ 00 , the X*k eventually lies in 

the feasible region. 

Example 2.6.1 

G = max [ 0, gi(X) ] 2.6.3 

and 

2.6.4 

2.6.5 ALGORITHM 

The exterior penalty function method can be stated by using the following 

steps. (i) Start from any design Xl and a suitable value of rl . set k = 1 

(ii) find the vector X*k that minimizes the function 
m 

¢(X, rk) = f(X) + rk L <gi(X»Q 
i= l 

(iii) Test whether the point X*k satisfies all the constraints. If X*k is feasible, 

it is the desired optimum and hence terminate the procedure 

otherwise go to step (iv) 

(iv) Choose the next value of the penalty parameter which satisfies the 

relation 

and set the new value of k as original k plus one and go to step (ii). 

Example 2.6.2: 

Minimize 
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Solution: 

To illustrate the exterior penalty function method, we solve the 

unconstrained minimization problem by using differential calculus method. As 

such, it is not necessary to have an initial trial point Xl. The ~ - function is 

The necessary conditions for the unconstrained minimum of~(X, r) are 

Q1 
aX I = (Xl + 1)2 - 2 rI max (0,1 - Xl)J = 0 

~ = 1 - 2 r[ max (0, - X2)] = 0 
Oxl 

These equations can be written as 

And 

Min [1,1 +2r X2] == 0 

In Eq. (El), if (Xl + 1)7 = Or Xl = -1 (This violates the first constraint) and if 

(Xl + 1) - 21'(1 - xt} = 0, Xl = -1 - r +--Jr2 + 4r 

In Eq.( E2), the only possibility is that 

1 + 2r X2 = 0 and hence 

Thus the solution of the unconstrained minimization problem is giving by 

X*l ( r) = - i - r + r(i + 4jr) '12 

And 

X*2 ( r ) = - 1/2r 
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From this, the solution of tile original constrained problem can be obtained as 

Xl* = lim Xl* ( r) = 1, X2* = lim X2* ( r) :::;: a 
r~oo r~oo 

and 

lim 
f min = r~oc> ~min ( r ) = 8/3 

The converge of the method, as r increases gradually, can be seen from the 

following table. 

Value of r Xl* X2* <Pmin ( r ) fmin( r ) 
0.001 -0.93775 -500.00000 -249.9962 -500.0000 
0.0.1 -0..80.970. -50.000.00. -24.9650. -49.9977 
0..1 -0.45969 -5.0.0.00 -2.2344 -4.9474 
1 0..2360.7 -0..50.0.0. 0..9631 0..1295 
10. 0..83216 -0..0.50.0.0. 2.30.68 2.0.0.0.1 
10.0 0.98039 -0.00500 2.6249 2.5840 
1000 0.99800 -0.00050 2.6624 2.6582 
10.0.0.0. 0. .99963 -0..0.0.0.0.5 2.6655 2.6652 
00 1 0. 8/3 8/3 

It can be seen from the table above that the unconstrained minima of ~ -

converge to the optimum X* as the parameter rk is increased sequentially. We 

can also observe that the sequential nature of the method allows a gradual or 

sequential approach to critically of the constraint. 

REMARK 1.6.6 

The interpretation of the behaviours of Exterior penalty function method 

as rk decreases is similar to that given for the barrier (Interior penalty) function. 

In particular, the basiC algorithm can again be applied and equivalent theoretical 

result can be established to ensure convergence. The only difference in the basic 

algorithm for exterior penalty function is that we no longer require a feasible 

initial point Xl in step (i). It is also possible to identify computational difficulties 

similar to those discussed for interior penalty function method in section 2.5. 
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Again these difficulties result from $(X, rk) forming an increasing steep- sided 

valley as the controlling parameter decreases. In particular, the Hessian matrix 

of the exterior penalty function (2.6.2) can be shown to be iII- conditioned as rk 

decreases. 

There are recent contributions in the field of penalty function methods for 

non linear programming which can be interpreted as attempts to overcome the 

computational difficulties associated with the basic penalty function methods as 

implemented in the basic ' algorithm. This study intends to examine the 

extrapolation procedures and show it attempts to improve the performance of 

the basic algorithm in the subsequent chapters. 
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CHAPTER THREE 

EXTRAPOLATION METHOD IN INTERIOR PENALTY METHOD 

3.1 INTRODUCTION 

In the interior penalty function method, the ~ - function is minimized sequentially 

for a decreasing sequence of values rl> r2> ... >rk to find the unconstrained 

minima X* l, X* , ... ,X*k respectively. Let the values of the objective function 

corresponding to X* 1, X*2, ... , X*k be f* 1, f *2, ... , fk respectively. It has been proved 

that the sequence X* l, X*l, ... , X*k converges to the minimum value f* of the 

original constrained problem stated in (2.1.1) as rk -7 O. After carrying out a 

certain number of unconstrained minimizations of ~, the results obtained thus far 

can be used to estimate the minimum of the original constrained problem by a 

method known as the extrapolation technique. Looking at the examples in 

chapter two, one might expect that when a set of local minima consists of one 

point a unique trajectory of unconstrained local minima exists converging to that 

point. Furthermore, one would hope that an examination of a few points on such 

a trajectory would give information about the final point, the local minimum to 

which it is converging. 

Thus the idea of extrapolation is to use the solutions of the previous 

interior penalty sub problems to fit a polynomial to the interior penalty trajectory. 

It is the intention of this chapter to consider the extrapolation of the 

design vector and the objective function. Furthermore, this chapter intends to 

4S 



explore the feasibility of extrapolation point and how extrapolation formulas can 

be used to accelerate convergence. 

Let X* be a local solution of (2.1.1); we define 

't = O( r ) if there exist some positive constant k so that 

Ihll s kr'if sufficiently small r > O. 

We also make use of the assumption that the functions f and g have three 

continuous derivatives. 

3.2 EXTRAPOLATION OF THE DESIGN VECfOR X 

Since different vectors X*i, i = 2, ... ,k are obtained as unconstrained minima of 

~(x, r) for any value of r, X*(r), can be approximated by a polynomial in r as: 

k-l 

X* (r) = " . ..2 k-l L... Aj (rY = Ao+rAl ,A2+ +r Ak-l 3.2.1 
1=0 

where Aj are n-component vectors. By substituting the known conditions 

X* (r=ri) = X*i i=1,2, ... ,k 3.2.2 

in (3.2.1), we can determine the vectors Aj j = O,1,2, .. . ,k-1 uniquely. Then 

x*(r), given by (3.2.1) will be a good approximation for the unconstrained 

minimum of ~(x, r) in the interval (O,rl). By setting r = 0 in (3.2.1) we can obtain 

an estimate to the true minimum X*, as 

X* = x*(r=O) = Ao 3.2.3 

It is to be noted that it is not necessary to approximate X*(r) by a (k-1)st order 

polynomial in r. Infact, any polynomial of order Is P s K-1 can be used to 

approximate X*(r). In such a case, we need only P+ 1 points out of 
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X*1,X*2, ... , X*K to completely define the polynomial. 

As a simplest case, let us consider approximating X*(r) by a first order 

polynomial (linear equation) in r as 

X*(r) = ~ + r Al 3.2.4 

To evaluate the vectors Ao and All we need the data of two unconstrained 

minima. If the extrapolation is being done at the end of Kth unconstrained 

minimization, we generally use the latest information to find the constant vectors 

Ao and AI. Let X*k-1 and Xk* be the unconstrained minima corresponding to rk-l 

respectively. Since 

rk = crk-l (c < 1), (3.2.4) gives 

x*(r=r k-l ) = Ao + r k-lAl = X* k-l 

These equations give 

Ao= 

and 

X\ - cX*u 
1 - c 

~-X\, 
Rk-I(l - c) 

} 3.2.5 

3.2.6 

From (3.2.4) and (3.2.6), the extrapolated value of the true minimum can be 

obtained as 

X* (r= 0) = ~ = 3.2.7 

The extrapolation.technique (3.2.1) has several advantages: 

a. It can be used to find a good estimate to the optimum of the original 

problem with the help of (3.2.1) 
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b. It can be used to provide an additional convergence criterion to 

terminate the minimization process. The point obtained at the end of Kth 

iteration, X*k, can be taken as the true minimum if the relation 

I X*k - X*(r=O) I ~ E 3.2.8 

is satisfied, where E is the vector of prescribed small quantities. 

c. This method, can be used as to estimate the next minimum of the 

<II - function after a number of minimizations have been completed. The 

estimate obtained form X* can also be used as a starting point for the 

(k+ l)st minimization of the <II - function. The estimate of the (k+ l)st 

minimum, based on the information collected from the previous k minima, is 

given by (3.2.1) as: 

If (3.2.4) and (3.2.6) are used, the estimate becomes 

3.2.10 

Sometimes the extrapolation made with the help of a (k-l)st order 

polynomial in rl/2 rater than in r are found to be better. Here the approximation is 

taken as 

X* (r) = 
k-l 

I Aj (r
1
h y = ~+rlh Al rA2+ ... + r<k-1)/2 Ak_1 

j==o 
3.2.11 

The vectors Ao, Al, •.. , A k-l are evaluated with the help of the unconstrained 

minima X*l, X*2' .. . ' X*k corresponding to rl, r2, ... , rk respectively. 
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By setting r= 0 (3.2.11) gives the estimate of X* as 

X* == X* (r=O) = Ao 

If only two terms are considered in (3.2.11), we have 

X* (r) = Ao + r'h At 

3.2.12 

3.2.13 

If X*k-l and X*k are the unconstrained minima of Ij> corresponding to rk-l and 

rk = crk-i, we obtain, using (3.2.13), 

Ao = X*.!< - C "'X*!cl I 
(1- c YZ) l 

. Ai = r¥!~li((~'C "') J 
Thus the estimates of X* and X*k+l can be found from (3.2.13) as 

X* ~ x* (r= 0) = Ao = 

and 

3.2.14 

3.2.15 

3.2.16 

By using the point obtained in either (3.2.15) and (3.2.16) a starting point for 

the (k+l)st minimization of ~ - function, the overall convergence of the process 

can be speeded up. 

3.3 EXTRAPOLATION OF THE OBJECTIVE FUNCTION, F 

It is possible to use extrapolation technique to estimate the optimum value of 

the original objective function, f*. For this, let f*1, f*2, ... , f*k. be the values of the 
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objective function corresponding to the vectors X*\ X* 2., ... , X*k. Since the points 

X*l, X*2., ... ,X*k have been found to be the unconstrained minima of the 

$ - function corresponding to rl, r2, .. , rk, respectively, the objective function, f* , 

can be assumed to be a function of r. By approximating f* by a (k-l)st order 

polynomial in k, we have 

k-l 

f* (r) = L aj (r)i = ao + alr + a2.r2+ ... + ak-lrk-l 
j=O 

3.3.4 

where the k constants aj, j = 0,1,2, ... , k-l can be evaluated by substituting the 

known conditions: 

Since (3.3.1) is a good approximation for the true f* in the interval (O,rl), we can 

obtain an estimate for the constrained minimum of f as 

f* ~ f*(r=O) = ao 3.3.3 

As a particular case, a linear approximation can be made for f* by using the last 

two data pOints. Thus if f* k-1 and f*k are the function values corresponding to 

rk-l and rk = c rk-l we have 

and 

These equation yieid 

ao = 

= 

f*k - Cf* k-t 
1 - ' C 

f* k-J - f*!s 
rk-1(1 - c) 

3.3.4 

3.3.5 

3.3.6 
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and 

f*( r ) = f*k - cf*k-l 
+ 1 - c 

r (f*k-l - f*0 
rk-l (1 - c) 

(3.3.7) gives an estimate of f* as 

f* ~ f* (r=O) = ao = 
f*k - cf*k-l 

1 - c 

3.3.7 

3.3.8 

Instead of (3.3.1), extrapolation are sometimes made by assuming a (k-1)st 

order polynomial in r ';; for f* (r) as 

3.3.9 

If we retain only two terms in C3.3.9), we obtain, as in the case of C3.2 .13), 

with 

ao 

and 

= f*k - c1h
f*k-l 

1 - C ti l 

f*k-l - f*k 
= '/2 - ( 1 - '/2 ) r k-l - C 

(3.3.10) gives the estimate of f* as 

f* ~ f* (r=O) = 

3.3.10 

3.3.11 

3.3.12 

3.3.13 

The extrapolated value as can be used to provide an additional convergence 

criterion for terminating the interior penalty function method. The criterion is that 

whenever the value of f*k obtained at the end of kth unconstrained minimization 

of ~ is sufficiently ,dose to the extrapolated valve as i.e when 

f*!s - ag 

f*k 
3.3.14 

where E is a specified smali quantity, the process can be terminated. 
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Example 3.3.1 

The following results are obtained during the minimization of 

- Xi ~ 0, i = 1,2,3 

using the interior penalty function method 

Value of rk Startingpoint for Unconstrained minimum f* k 
minimization of <l>k of <l>(X1, rk)=X* k 

[ O.lJ [0. 37898

U 
0.1 1.67965 5.70766 
3.0 2.34617 

1.0 X 10-1 [0.3789~ [0.10088 J 
1.67965 1.41945 2.73267 
2.34617 1.68302 

1.0 X 10-2 [0.10088 J [0.03066 J 
1.41945 1.41411 1.83012 
1.68302 1.49842 

1.0 X 10-3 [ 0.03066 J [0.009576J 
1.41411 1.41419 1.54560 
1.49842 1.44081 

Find the extrapolated values of X and f using the result of minimization of 

Solution: 

From the result above we have for rl = 1.0 

X* 1 = { ~:~;~~~} 
2.34617 

f*1 = 5.70766 

51. 



and for r2 = 0.1 c = 0.1 

= { 0.10088 '} 
1.41945 , f*2 = 2.73267 

1.68302 

If (3.2.13) is used to approximate X* (r), the extrapolated value of X* can be 

X* ~ Ao = X* ,!:z * 
k - ( X k-l 

1 
'/2 . 

-( = 1/0.6838 
0.10088 } { 0.37898 
1.41945 - 0.3162 1.67965 
1.68302 2.34617 

obtained from (3.2.15) as 

Similarly the use of a linear relation for fer) in terms of r '12 gives 

f* ~ f*k - C
1f
2f*k_l = 1/0.6838 [2.73267 - 0.3162(5.70766) J 

-1 - c 1f2 

= 1.3570 

If (3.2.4) is used for approximating x* (r), the extrapolated vector X* is given by 

(3.2.7) as 

X*;::; Ao = X\. - CX*k-l = 1/0.9 
l - c 

0.10088 
1.41945 
1.60933 

{ 

0.06998 } 
= 1.39053 

1.60933 

J 0.37898 
-0_ll1.67865 

2.34617 

Similarly th~ linear relationship f* (r) = ao + alr lead~ to 

f*~ ~'~ _~k-l = 1/0.9 [fJ.73-267 - O.1(5.707q6}) 

= 2.~1 



By comparing the present values with the true optimum results given in the 

above table, it can be found that the linear approximation in terms of r gave 

better result compared to the linear equation in r'h. Further, the design vector X* 

predicted by the linear equation in rlh can be seen to be infeasible wllereas the 

one predicted by the iinear equation in r can be seen to be feasible. 

3.4: FEASIBILITY OF EXTRAPOLATION POINT 

In spite of the above mentioned advantages, the extrapolation technique 

has a serious limitation. This is that the extrapolated points given by any of the 

Eq. (3.2.3), (3.2.5), (3.2.10), (3.2.15) and (3.2.16) may sometimes violate the 

constraints. Hence, we have to check any extrapolated point for feasibility before 

using it as a starting point for the next minimization of ~. 

Let X* k-l and X*k be the unconstrained minima corresponding to rk-l and rk 

respectively. In the following lemma, we show that for a binding constraint (if we 

ignore all but the dominant terms) 

~ gj(Xk+l) ~ gj (x) rk < 0 3.4.1 

where Xk+1 is the result of linear extrapolation at rk+l i.e. Xk+1 is the initial guess 

for the next unconstrained minimization. 

For a non bonding constraints 

3.4.2 

and so again, if we ignore all but dormant terms 

3.4.3 
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Thus, we can expect the extrapolated point to be feasible. 

Lemma 3.4.1 

Let gj(X) s 0 be a constraint that is binding at x* , then 

Suppose that giX) s 0 is binding at X* . 

Then since 

Xk+l = X + [k+l - r~ (Xk - Xk-l) 
rk - rk-l 

We obtain 

A Taylor series gives 

combining these formulas gives 

3.4.3 

gj(Xk+l) = gj(Xk) + r~+~ - r~ ( gj(Xk) - gj(Xk-l) J + 0(1 I Xk-l - Xk I I 2) 3.4.6 
rk rk-l 

From Langrange multiplier method, 

rk-l 
gj(Xk-1) = (/v * )j + O( rk-l) 

and 

rk _ (1 *). D() 
Qj(Xk) - ". J + rk 

where A, *> 0 is the Langrange multiplier for gj(X*) 

Then 

ss 

3.4.7 



Qkl 

+ O(rk-l) J 
combining this with the earlier result , we obtain 

we obtain 

[k+l - r )$ 

r k - r k-l 

[ 

fk+l- rk 
Qi(Xk+l) = Qi(Xk) 1 - n, - rk-; 

+ O(r2k - 1) 

3.5: ACCELERATION BY EX RAPOLATION 

3.4.8 

3.4.9 

3.4.10 

In this section, let the basic optimization problem be of the form 

Find X which minim:es f(X} subject to} 
9,(X) ~ 0 J - 1,2, ... ,m 3.5.1 

In the following discussion' the existence of Di (x(O)) and other appropriate 

conditions are assumed to hold. 
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Suppose tile q) - function has been uniquely minimized for r 1> ... > r p > 0 at 

X* l, ... . x* p . A polynomial in r that yields X*l, ... , x*p is given by a set of 

equations of the form 
p-l 

X* (rk) = X*k = I aJ (rk)j , k = 1, "' f P 
j=O 

where the aj are n - component vectors. 

The determinant of the matrix 

o 0 rl, ... ,rp 

R = 

p-l p-l 
r lr "'r r p 

(called the Vandermonde determinant) is equal to 

n 
. . (rj - rj) 
l<'-J 

3.5 .2 

and since rj -+ rj (i -+ j), R is non singular. Thus the vectors aj are uniquely 

determined by 3.5.2. Then 
p-l 
L aj ( r)j is an approximation of X*( r) in the interval [0, rlJ and 
j=O 

X* (O) = X* (a solution) is approximated by ao. That this approximation 

converges to a solution, and infact that the estimate improves with each 

minimum that is determined, is seen as foilows. 

USING TAYLOR SERIES: 

The exact Taylor series expansion of X* k in rk about 0 is 

p-l ' . . 
= L (rk)J D'x(O) + ck k = 1, ... , P 3.5.3 

j-O jl 
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where 

Bk = [rp)s J [dPX1( 111hl , ... , dPxDtnrhll 
p! drP drP j 0 ~ ruk ~ rk j = 1, ... , n 

Setting (3.5.2) and (3.5.3) equal, subtracting, and combining yields 

[e1, ... , e~ R-1 = A - [xeD), D1x(O) I ... , DP-1X(O)I, 
l' (p-l)0 

where A =(ao , ... , ap-l). Clearly, then the difference between ao and x* (O) is of 

the order of rlP, thus as r1~ 0, ao ~ x* (O). More important, the estimate using p 

minima are better than using (p-1) minima. When rk+1= rJc (c>l), the 

particular structure of these equations makes it possible to develop a simple 

iterative scheme for computing a series of estimates based on using a giving 

number of terms in the polynomial. Notice that the aj need not be computed to 

obtain these estimates. 

Let Xi,j, i= 1, ... ,p, j= O, ... ,i- l signify the jth order estimate of xeD) after 

i minima have been achieved, with the understanding that r1 is the initial value of 

r. note that the order corresponds to the index of aj in (3.5.2). 

Then it follows that 

-.£1 
Xi,O = X ( 1-1 i = 1, ... ,p 

and 3.5.4 

Then ao, the "best" estimate of X(O), is given by 

XeO) = Xp,p-l = ao 3.5.5 



he extrapolation formulas (3.5.4) can also be used to estimate tile next 

minimum of the ~ - function after a number of minima have been completed. 

For example, the (p+ l)st minimum, based on the information coilected from the 

previous p minima, is estimated by 

X - r ..Il] - + + - l-..I1Jj-1+ + (..IIJ P-l D+l,O - x l, CP . - ao .. . aJ-l CD ... ap- CD 3.5.6 

Although the { aJ l have not been computed explicitly, it is possible to make 

use of relations (3.5.4) and (3.5.5) and work backward to Xp+1, o. This is 

accompiished by setting i= p+ 1 in (3.5.4) and solving for Xp+1,j-l. This gives the 

recursive relation 

(cj - 1) X!2.±1J..-i"~ru:J, 
Xp+l ,j-l = Cj 3.5.7 

Noting that ao = Xp, p-l = Xp+1,p-l from (3.5.5) and using the values previously 
l 

obtained from (3.5.4), we can evaluate (3.5.7) for j = p-1, P -2 , ... ,1. The last 

computation will yield the required estimate Xp+1,o. 

The foliowing example shows how estimates can be used to accelerate 

convergence. 

Examples 3.5.1 

Minimize In Xl - X2 

Subject to 



Solution 

To illustrate the extrapolat ion technique, we use calculus method for solving the 

unconstrained minimization problem. I n table 3.5.1 and the data for the 

iterations. 

Table 3.5.1: Use of extrapolation of Accelerate convergence. 

ric. Estimates Estimates In Xl -X2 
Xkl (1) (2) (3) xkz (1) (2) (3) f(x) 

1.0 1.5527902 1.3328244 -0.8927710 

0.25 1.1593310 1.6412662 -1.493523 
1.021779 1.7442134 -1.7164252 

6.25 X 10-2 1.0398432 1.7111091 -1.6720392 
1.0000139 1.7343567 -1.7343428 
0.9981363 1.7336995 -1.7355649 

1.5625X10-2 1.0099207 1.7269415 -1.7170697 
0.9999465 1.322189 -1.7322724 
0.9999420 1.7320763 -1.7321343 
0.999706 1.7320505 -1.7320799 

3.960625 X 10-3 1.0024774 1.730819 -1.7283076 
0.99999630 1.7320620 -1.7320657 
0.99999960 1.7320515 -1.7320519 
1.0000005 1.7320511 -1.7320506 ----- ~ - -_.-

Theoretical soln .0 ';3 - ';3 
=1.7320505 = -1. 7320505 

The convergence of the estimates to the theoretical solution can be seen 

by reading down .the columns. The power of the extrapolation formulas can be 

summed up by noting that the third - order estimates using the last four minima 



(last line before theoretical solution) agree with the theoretical solution to seven 

places; whereas the minimum for r= 3.960625 x 10-3 agrees to only three places. 

REMARK 3.5.8 

This estimate can be used as the starting point for the (P+l)st minimization of 

the ~ - function. 

As more minima are achieved, the estimate eventually improves. This accelerates 

the entire process by substantially reducing the effort required to minimize the 

successive $ - functions. 

In practice, computer storage requirements and accuracy considerations 

such as round - off error (which becomes critical for higher order estimates) limit 

the number of estimates possible. However, it has been found that considerable 

computational advantage is gained even when only first and second - order 

estimates are made of a next ~ minimum and the optimum. 
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CHAPTER FOUR 

COMPUTATIONAL EXPERIMENTATION OF EXTRAPOLATION 

ALGORITHM. 

4.1: INTRODUCTION: 

A vital test and justification of any body of theory of how to solve 

problems is the feasibility of computational implementation and practical 

application. In this chapter the computational questions implicit in the theoretical 

development of extrapolation algorithms are discussed. 

The algorithm described will be described wiil be applicable to penalty 

function algorithm as discussed in chapter two. For definiteness it is assumed 

that the logarithmic penalty function is applied to the constraints where interior 

feasibility is required, and the quadratic less function as the exterior point 

penalty term. 

T e problem to be solved is 

Minimize f(X) 4.1.1 

Subject to gi(X) s 0 i = 1, 2, .... ,m 4.1.2 

The unconstrained function has the form 
III 

4.1.3 

it is also the intention of this chapter to examine computational experiments and 

analysis of error due to extrapolation. 
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4.2: COMPUTATIONAL ALGORITHM. 

The computational algorithm for extrapolation techniques is built on 

penalty function algorithm. The algorithm is summarized as follows: 

1. Determine the unconstrained Min of (p for the current value of rk and use 

it to obtain rk-l and « 1 where rk = ( rk-l. 

2. Estimate the solution of (4.1.1) using the extrapolation formula in (3.2.7) 

3. erminate the computation if the estimated solution is acceptable. 

Otherwise 

4. Select rk+l = C rk where c< 1 

5. Estimate the next unconstrained Min of the ~ - function using the 

extrapolation formula in (3.5.5) and go to step 2. 

These steps are shown in the form of a flowchart as in fig 4.2.1. 
-"~-----" -.-

START 

Find the unconstrained Min 
of ~ for the current value of rk 

Set c = ~ 
fk-I 

Obtain rk-l = l/c rk 

where c< 1 and obtain the 
unconstrained Min of at-=-r~k-±:..l'_--' 



Estimate the solution of 
problem 4.1.1 using (3.2.7) 

--:..-_---1 

YES ... 
~ ... 

Estimate the next 
unconstrained Min of ~ _ _ -1 

4.3: COMPUTATIONAL EXPERIMENTS. 

Example 4.3.1 

STOP 

The following results are obtained during the minimization of 

Subject to 

and Xi ;::: 0, i = 1,2,3 

using the exterior penalty function method 
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Value of ri Starting point for Unconstrained Min F(Xi*) = fi* 
minimization of (jl(X, rj) of (jl(X, rj) = ~* r·1 

} 

{ 0.8884 } 
1 0.1 0.7188 0.7072 

0.1 0.2760 
0.8884 1.3313 ., 

0.01 0.7188 0.7539 0.1564 
0.2760 0.3710 . 
1.3313 1.3478 

0.0001 0.7539 0.7720 0.1158 
0.3710 0.4293 

I 
Use extrapolation technique to predict the optimum solution using the following 

relations. 

(i) X(r) = Ao + r Ai; f( r ) = ao + r al 

(ii) XC r ) = Ao + r 'h Ai, f( r ) = ao + r 112 al 

Compare your result with the exact solution. 

X* = {;7~9} and fmin = 1/9 

4/9 

Solution: 

From the result above 

We have rl = 1.0 

{

0.8884 } 
Xl* = 0.7188 

0.2760 

And for r2 = 0.01, c= 0.01 

X2* = {~:~;!~ } , f2* = 0.1564 
0.3710 

(i) using the relation X(r) = Ao + r Ai leads to 
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X*::::: Ao = 

= 1/0.99 

Xl'" - eX, * 
1 - c 

{

1.3313 } 
0.7543 
0.3710 

{

1.3358 } 
= 0.7543 

0.3720 

{

O.8884 } 
- (0.01) 0.7188 

0.2760 

Similarly the use of a linear relationship 

f*( r ) = ao + air leads to 

f* -_ rJ* -cf * ~--l-
1 - c 

= 1/0.99 [ (0.1564) - (0.01)(0.7072) J 
= 0.1508 

(ii) The linear relationship X(r) = Ao + r Y2 Ai leads to 

X* ;::;: Ao = 
X * v' X '" 2 - C l ' 

1- c v, 

= 1/0.9 {Hm} 
= 

{

i .:lXOS I} 
0.7578 
0.381 6 

{

O.8884 } 
- 0.1 0.7188 

0.2760 

Similarly the use of a linear relation for f( r ) in terms of r 1;' gives 

f)* - c \:' f i< 
f* = I~-1 - c Y: 

= 1/0.9 0.1564 - 0.1 (0.7072) 

= 0.0952 
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Hy comparing the presenl values with lhe true (exact) solution in Example 

4.3.1/ it can be found that the linear approximation in terms r '12 gave a better 

resuits compared to the iinear equation in r. further, both the design vector X* 

predicted by the linear equations in rand r 112 are seen to be feasible. 

Exampie 4.3.2 

Find the extrapolated values of X and f in Example 2.3.1, using the results of 

Solution: 

From the results of Example 2.3.1, we have for r6 = 0.01 

X * - {1.0488J} . t' * - 29667 
6 - O. 1 0000 ' 16 - • 

And for r7 = 0.001, c = 0.1 

{ 
1.0 1569} 

X7*= 0.03162 ; f7*=2.761S 

If (3.2.4) is used to approximate X* ( r ), the extrapolated value of X* can be 

obtained from (3.2.7) as 

X* ~ A - Xl' c~!i: 
~ 0- 1-c 

= 1/0.9[{1.01569} 
0.03162 

= {1.0~20~} 
0.0~40_ 

- O.l{J .04881} J 
0.10000 

Similarly the linear relationship f* ( r ) = ao + alr leads to 

f* = F * - cfl.* -1--,,"-
1 - c 

=( 1/0.9 (2..7615) - 0.1(2..9667)J 

= 2.7387 
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If (3.2.13) is used for approximating X* ( r ), tile extrapolated value of X* can be 

obtain from (3.2.15) as 

X* ·;:,: Ao = 

=1/0.8638 [{l.01569} -0.31623 {l.04881}] 
0.03 j 62 O. j 0000 

= {1.00033 } 
-0.000004 

Similarly tile use of a linear relation for f ( r ) in terms of r '/1 gives 

12~LJI := 
I ·· "" Ie · 

=(1/0.6838 (2.7615) - 0.31623(2.9667) J 

=2.6665 

Comparing the present values with the exact solution given in Example 2.3.1, it 

can be found that the extrapolation using the linear relationship 

X*( r ) = Ao + rA! agree with the theoretical solution two places, whereas the 

minimum for r '12 gave a better results compared to the linear equation in r. 

Example 4.3.3 

fVJinimize 

feX) = -15xl - 27 X2 - 36 Xj - 18 x" - 12 Xs 

2 L 2 ) ') + 30 Xl +39 X2- +10 X3 +39 X4 + 30 Xs 

- 40 Xl X2 - 20 Xl X3 + 64 Xl X4 - 20 Xl Xs 

- 12 X2 X3 -62 X2 X4 + 64 X2 Xs -12 X3 X4 -20 X3 Xs - 40 X4 Xs 

subject to tile constraints 



2 X2 - 0.4 X4 - 2 Xs ~ 2 

2 X2 + 4 X4 + Xs <S; 4 

9 X2 + 2 X3 - X4 + 2.8 Xs < 4 

2 Xl + 4 X3 ~ 1 

Xl + X2 + X3 + X4 + Xs ~ 40 

Xl - X2 - X3 - X4 - Xs ~-1 

and - Xi <S; 0 i = 1 to 5 

The optimum solution of this problem is given by 

0.3 
0.33347 

X* = 
0.4 
0.42831 
0.2239 

and fmin = -32.34868 

Using extrapolation technique. 

Solution 

The starting point is taken as 

0 
0 

Xl = 0 with f(Xl) = 20.0 
0 
1 
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We use Newton's method of unconstrained minimization wit h c =rtJrk+l = 50. 

The results are summarize in the following table. 

Value of rk 
1.0 0.1762 0.2575 0.2888 0.5698 
2 x 10' 0.2684 0.3208 0.3743 0.4675 
4 X 10-<1 0.2954 0.3311 0.3961 0.4352 

USing the extrapolated technique at (HX,r2) and (p(X,r3) 

From the result above we have r2 = 0.02 

0.2684 
0.3208 
0.3743 
0.4675 
0.2677 

f2.* = -31.23 

And for r3 = 0.0004 c = 0.02 

0.2954 "I 
0.3311 l 
0.3961 J 
0.4352 

- 0.2327 

, 

The linear relationship X( r ) = Au + rAl leads to 

X7* - CX6* 

X* ~ Ao = I - c 

= 1/0.98 

= 

0.2960 
0.3313 
0.3965 
0.4245 
0.2320 

0.2954 
0.3311 
0.3961 
0.4352 
0.2327 

- 0.02 
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0.3208 
0.3743 
0.4675 
0.2677 

x s flx) 
o .4272 -26 

10 .2677 -31.23 
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Similarly the linear relationship f*( r ) = ao + alr leads to 

f* ~ 
FZ* - cr!.'~ 

1 - c = 1/0.98 [(-32.19 - 0.12(-31.23») 

= -32.20959 

the relationship X(r) = Ao + r 112 Al leads to 

X* ~ Ao = 

= 1/0.8586 

0.2999 
0.3328 

= 0.3997 
0.4299 
0.2269 

0.2954 
0.3311 
0.3961 
0.4352 
0.2327 

0.2684 
0.3208 

- 0.1414 0.3743 
0.4675 
0.2677 

similarly the use of a linear relation for fC r ) in terms of r '/2 gives 

f* = t-;* - c Y' f,* = 1/0.8586rC-32.19)-0.1414(-31.23)] 
1 _ c v2 ~ 

= -32.3481 

Looking at the approximated resuits and the optimum value, though the 

prediction using the linear relation in rand r 'h are feasible, the linear 

relationship in terms of r '/2 give a better approximation. The fer) in terms of 

r'h agrees with the theoretical result to five places while that in terms of r agree 

to only two places. 

From the above results, the convergence of the estimates to the 

theoretical solution can be seen. Thus the extrapolation technique accelerates 
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the entire process of minimization by substantially reducing the effort required to 

minimize the successive ~ - functions. 

4.4: ANALYSIS OF ERROR DUE TO EXTRAPOLATION 

From the previous sections, the power of extrapolation came to play 

where, it was seen that the prediction (approximation) agrees with the optimum 

or theoretical solution to a certain number of places. In this section, an attempt 

is made to examine the error(s) due to the use of extrapolation techniques. 

Let define the error due to extrapolation as the difference between the 

true minimum X* and the estimate (extrapolated value) X* (r=O) = Ao. in terms 

of the above notation this is given by 

X* - X* (r=O) = E 4.4.1 

Where E is the error due to extrapolation. If the objective function is used 

instead of the design vector, then we define the error due to extrapolation as the 

difference between optimum value of the original objective function f* and the 

estimate, f* (r=O) ao. 

i.e. f* - f* (r=O) = E 4.4.2 

attempt is made to analyse the error using the result~ of the examples in 

chapter three and section 4.3. The error is summarize in the table below. 
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Table 4.4.1: Error due to extrapolation. 

Example Error on the Design vector Error on the objective function 
3.5.1 2.5 x 10-3 3.7 X 10-3 

1.2 X 10-3 

3.5.1 { 2.5 x 10-
7 

} 1.0 X 10-7 

C3-order) 1.2 x 10-7 

4.3.1 f7 X1O-'} 1.5 x 10-2 

1 
2.0 X 10-2 

6.2 X 10-2 

l 4.3.2 { 3.3 x 10-4} 2. X 10-4 
4 X 10-5 

4.3.3 r 1 xlO-4 I 6 X 10-4 
7 x10-4 
3 x10-4 >-l1.5 xlO-3 

2.9 xlO-3 ./ 

From Example 3.5.1, the third - order estimate agree with the optimum 

value to seven places and the error due to extrapolation on the objective 

function is 1.0 x 10 7 . This is acceptable to converge to the true minimum. 

The other examples shows that the error is acceptable, although it will be 

minimize if t 1d or 3rd order is use in the estimate. Thus we can put it that 

extrapolation techniques accelerate rate of convergence to the optimum solution. 
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CHAPTER FIVE 

PERFORMANCE OF ALGORITHM AND CONCLUSION. 

5.1 INTRODUCTION: 

This study deals with the use of extrapolation method in solving a general 

nonlinear constrained optimization. As already stated the problem of interest is 

to find the n- vector X that minimize the scalar function 

f(X) = f(Xl, ... ,Xn) 5.1.1 

called the performance index, subject to the inequality constraints 

j = 1,2, ... ,m 5.1.2 

In this chapter we report the performance of the algorithm described in chapter 

four, compare the result and sum up the findings so far. 

5.2: PERFORMANCE OF EXTRAPOLATION ALGORITHM. 

Several Computer programs are available to solve constrained 

programming problem. 

The algorithm described in section 4.2 is coded using BASIC computer program 

and tested uSing problems of examples 4.2.1, 4.3.2, and 4.3.3. The computer 

program is in the Appendix. The output (results) are summarized in the table 

below 
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\ Problem X* ( r) X* ( r '12 ) F* ( r) F* ( r '12 ) 
4.3.1 1.3805} r,3358 } 0.1508 0.0952 

i 0.7578 0.7543 
0.3816 0.3720 

4.3.2 1.01201 } {1.0000373} 2.7387 2.6666 , 0.02402 -0.000004 
4.3.3 0.296Ol rQ.2998 "' -32.20959 -32.3481 

0.3313 [ 0.3328 
0.3965 >- 0.3997 r 
0.4345 0.4299 

'-- 0.232(y l.o.2269 

From the table above, Problem 4.3.1 results agree with those obtained in section 

4.3. by comparing the present value with the true optimum(solution), it can be 

found that the linear approximation in r'12 gives a better result compared to the 

linear equation in r. 

Comparing the present values of problem 4.3.2 with the exact solution, 

extrapolation using the linear relationship r, agrees with the theoretical solution 

to two places, whereas the minimum for r'12 agrees to four. 

Looking at the approximated results and the optimum value, though the 

prediction in rand r'12 are feasible, the linear relationship in terms of r1f2 gives a 

etter approximation. 

Thus the extrapolation technique is a very powerful computational tool 

hat accelerates the entire process of minimization by substituting reducing the 

effort required to minimize the successive $ - functions. 
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5.3: CONCLUSION 

From the foregoing study on the extrapolation method in constrained 

optimization, it has been proved that, under certain conditions, the difference 

between the true minimum X* and the estimate X* (r=O) = Ao will be of the 

order rlk. Thus as rl ~ 0 Ao ~ X*. moreover, if rl < 1, the estimates of X* 

obtained by using K minima, will be better than those using (k - 1) minima and 

so on. Hence, as more minima are achieved, the estimates can be used as the 

starting point for the (k + 1) st minimization of the <I> - function. This accelerates 

the entire process by substantially reducing the effort needed to minimize the 

successive <I> - functions. Sometimes, the extrapolations made with the help of 

(k-l) st order polynomial in r 1h rather than in r are found to be better. 

Furthermore, the extrapolated value ao can be used to provide an additional 

convergence criterion for terminating the interior penalty function method. 

The analysis of error due to extrapolation was also examined and 

although there was some slight deviation from the true optimum value, the use 

of extrapolation formulas accelerates convergence. 

From this study, one can conclude that the idea of extrapolation is to use 

the solution of previous unconstrained minimization or the barrier sob problem to 

fit to a polynomial to the barrier trajectory, and then use this polynomial to 

predict the solution of the constrained minimization problem. This extrapolation 

method accelerates the entire process by substantially reducing the effort 
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needed to minimize the successive <I> - function. Thus extrapolation method helps 

interior penalty function method. 

5.4 RECOMMENDATION 

This study uses a first order polynomial in r to approximate the design 

vector and objective functipn, while RadlO) observed that extrapolation with the 

help of even quadratic and cubic equations in r, generally yield good estimates. 

There is therefore need to examine the use of second or third order polynomial 

to ascertain rate of convergence. 

It was stated in section (2.Sc) that one of the weaknesses of the interior 

penalty function method is related to the ill- conditioned nature of its Hessian 

matrix, but if Newton method of unconstrained minimization is used, and initial 

guesses are obtained by extrapolation, then the potential deficiencies of interior 

penalty method will go away. 

The extrapolation method is a very powerful tool that can be used to 

estimate the minimum of the original constrained problem. Thus instead of the 

effort needed to minimize the successive <I> - function as in the interior penalty 

function method, extrapolation can be applied. 

The algorithm described in the previous chapters cannot be directly 

applied to solve problems with mixed equality and inequality constraints. Hence 

there is need to examine extrapolation method with mixed equality and 

inequality constraints in further research effort. 
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Furthermore, the use of extrapolation method in solving constrained 

parameter optimization problem remains one of intrinsic interest. 

Fiacco and McCormick(3) demonstrated that there is a trajectory of optimal 

pOints varying continuously as a function of r. thus it is worth considering 

trajectory analysis and extrapolation method in barrier function method. 
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APPENDIX 

8 1 



. . 
REM =============================================================== 

DECLARE SUB probl ( ) 

DF;:CLARE SUB prob2 ( ) 

DECDARE SUB prob3 ( ) 

DECLARE SUB bgrnd ( ) 

DECLARE SUB scrn ( ) 

DIM X(S) . Xx (5) . Xl (5) . X2 (5) • X3 (5) • X4 (5) , X5 (5) , X6 (5) , X7 (5) 
GOTO menu 
' ====================================== SIGNING OFF 
q: 
scrn 
LOCATE 12 , 10: PRINT " Program terminated by the user , Press any 
key.· .. " 
END · 

REM ==================================================== Program menu 
menu : 
scrn 
bgrnd 
COLOR 2 
LOCATE 4 , 27: PRINT " EXTRAPOLATION TECHNIQUE PROGRAM " 
LOCATE 6' , 27: PRINT " (Using Interior Penalty Function) " 

I 

LOCATE 8 , 37: PRINT " Program Menu " 
COLOR 10 
LOCATE 1 2 , · 30: PRI NT " 1" 
COLOR 15 
LOCATE 1 2 , 
COLOR 10 
LOCATE 14 , 
COLOR 1 5 
LOCATE 14 , 
COLOR 10 
LOCATE 1~, 

COLOR 15 
LOCATE 16, 
COLOR 10 
LOCATE 18,. 
COLOR 15 
LOCATE 18 , 
COLOR 2 
COLOR 11 

31: PRINT " 

30 : PRINT "2 " 

31 : PRINT " 

30 : PRINT "3 " 

31: PRINT " 

30: PRINT " 4 " 

31: PRINT " 

Problem 1 " 

Problem 2 " 

Problem 3 " 

Quit " 

LOCATE 27 , 
/ ) ." 

COLOR 14 

20: PRINT " Developed By: 

LOCATE 20 , 28: INPUT " Enter your choice . . . "; no % 
COLOR 15 
IF no % < 1 OR no ~ > 4 THEN 

MTECH/ 

LOCATE 21 , 25 : PRINT " Invalid choice [Enter 1,2 , 3 or 4). " 
FOR Y = 1 TO 1000 STEP . 01 :. NEXT : GOTO menu 

END IF 
IF no% 
IF no% 
IF no% 
IF no% 
GOTO men u 
END 

1 THEN 
2 tHEN 
3 THEN 
4 THEN 

prob1 
prob2 
prob3 
GOTO q 

REM -- -- - ~------------------- End of Program 



sus probl 

REM PROGRAM TO PREDICT THE OPTIMUM SOLUTION USING EXTRAPOLATION 
TECHNIQUE 

REM (INTERIOR PF.NALTY [vJETIIOD ) 

r"' I M ~ ( ~ ; , . X x ( ~) \ , ~< 1 (~) I rx _: .: r ) , ~ 2 ( S ;' 
HE!"! Xx == X* , Xl =, X:Z -, X l ~ Xl' , fl = F'1*, F? 
LET DATAl$ = " PROBl . DAT " 

LET RESl$ = " RESULl . OUT " 
CbS 
()PEN DATA 1$ f'()I~ 1 ",,'IJT 1\:; II 1 
OPEN HES 1 $ J·'OH OUT P(J'l' l\S II ~ 
IF' I::()J-' ( 1) T JII '~ ~I (;()'I'( I " 

J NI'l J'I' II I , I J 

t'OR ~ l '1'( ; 

1 N PUT til , Xl (i , ) 

NEXT i '" 
INPUT Hl , fl 
INPUT HI , r2 
FOR i 1; = 1 TO 3 

INPUT #1 , X2(i~) 

NEXT i ~, 

INPUT n 1 , f2 

5 CLOSE #1 
LET fmin = ] / 9 : c: = . 01 
REM USING THE RELATION X(r) : Ao + rAl 

REtv] X' - Ao ~' (X2' - CXl";/(l - C) 
fOR i ~, = 1 TO 3 

CX 1. (i ',', ) = -c ' Xl ( i :, ) 
NE XT j" 

fOR H = 1 TO 3 
Xx (i %) = CXl (i %) + X2 (i %) 

NEXT i~, 

FOH i '; = 1. 1'0 3 

NEXT i ', 
Xxii ) ~ Xx(i ", ) / (1 - CI 

PRl NT II ~ , " 1 ~ I~SIJI:I'~; ,I.'OH }'I<() I', I ,I':M J " 
I?HI NT 11 2 , ,, ---------------------

PRI NT 112 , " (i) X(r) = Ao + rAl; fir) 
PRINT # 2 , "X* " 

FOR i % = 1 TO 3 

NEXT i , 

PRINT USING " tlll.UiltI "; Xx(i '~ ) 

PRINT # 2 , USING " iI#. unu "; Xx (i'l; ) 

PHINT U~~ , If f}. " 

REM --- fOR LINEAR RELATIONSHIP 

R~M f*(r) = ao + a Ir leads to 
REM ' f* = (f2* - Cf l*)/(l-C) 

fx = (f2 - C * fl) / (1 - C) 

PRINT USING " ##.lIljJllt "; fx 
PRINT ff2 , USING " 1111.1/111111 "; (x : l)RJNT 11 2 , 

F'2* , f>~ f ' 

ao + ral " 

PRINT 11 2 , " (ii) X(r) = Ao + r(1I2)Al; fir) ao + r(l/ 2)al " 

PRI NT 1t 2 , " X* " 
(ii) 

FROM X(r)=Ao + rll/2) Al 
REM 
REM 
REM 
FOR 

X' - Ao = (X2* - CIlI?)' Xl*) /(l - r:(l/2)) 
i '" = I TO 3 

CXl(i'),,) = - C " ( . 5) * Xllj',, ) 
NEXT il, 
FOR i ~ = 1 TO 3 

Xx(i ". ) = CY.l(i'r.) t- X2(i'!. ) 



NEXT i % 
FOR i % = 1 TO 3 

Xx (i %) = Xx (i %) / (1 - C A (.5)) 
NEXT i % 
FOR i % = 1 TO 3 

NEXT i % 

PRINT USING " ## . ###11 " ; Xx(i %) 
PRINT #2 , USING "11# . 11111111 " ; Xx( i% ) 

PRINT 11 2 , " f* " 
REM FOR LINEAR RELATIONSIlIP. 
REM f*(r) in terms of r(1/2) 
R~M f* ~ (f2 ' - C1/2fl*)/(1-CI/2) 

fx = (f2 - C A . 5 * fl) 1 i1 - CA. 5) 
PRINT USING " ##.#U# "; fx 
PRINT #2 , USING " U.###41 "; fx 
CLOSE #2 
LOCATE 10, 20 : PRINT "COMPUTATION COMPLETED SUCCESSFULLY I I I " 

LOCATE 12 , 20: PRINT "Check file ' RESULl.OUT ' for details. " 
FOR Y = 1 TO 4000 STEP .01 : NEXT Y 

END SUB 

SUB 'prob2 
REM ·PROGRAM TO PREDICT THE OPTIMUM SOLUTION USING EXTRAPOLATION 
TECHNIQUE 
REM (INTERIOR PENALTY METHOD) 
REM Xx = X* , X6 = X6* , X7 = X7* , F6 = F6* , F7 
DIM X(5) , .Xx(5) , CX6(5) , X6(5), X7(5) 
LET DATA2$ = " PROB2.DAT " 
LET RES2$ = " RESUL2.0UT " 
CLS 
OPEN DATA2$ FOR INPUT AS III 
O~EN RES2$ FOR OUTPUT AS 02 
IF EOF(l) THEN GOTO 15 

INPUT j11 , r6 
FOR i % = 1 TO 2 

INPUT #1, X6(i %) 
NEXT i % 
INPUT # 1 , f6 
INPUT fl' l , r7 
FOR i % = 1 TO 2 

INPUT #1 , X7(i %) 
NEXT i % 
INPUT 1Il , f7 

15 CLOSE 1Il 
LET Fmin = 1 / 9: C = . 1 

F7 * , fx £* 

REM *****************······USING THE RELATION X(r) 
REM X* - Ao = (X7* - CX6*)/ (1- C) 

Ao + rAl 

FOR i % = 1 TO 2 
CX6(i %) = -C * X6(i%) 

NEXT i % 
FOR ,i% = 1 TO 2 

Xx(l %) = CX6(i %) + X7(i %) 
NEXT i % 
[OR i% = 1 TO 2 

Xx(i'i,) = Xx(i 't. ) 1 (1 - C) 

NEXT i % 
PRINT #2 , " RESULTS FOR PROBLEM 2 " 
PRINT #2 , " - --- -- - -- - - - - - - - -- - - - " 

PRINT #2 , " (i) X ( r ) = Ao + r AI ; f ( r ) ao + aIr " 
PRINT #2, "X* " 

FOR i % = 1 TO 2 



NEXT i % 

PRINT USING " ## . ###U "; Xx(i%) 
PRINT #2 , USING " ## . ##### "; Xx(i %) 

PRINT #2 , "f* " 

REM fOR LINEAR RELATIONSHIP 
REMf*(r) = ao + a Ir leads to 
REM ·f* = (f2* - Cf1*)/(l - C) 

fx = (£7 - C * f6) 1 (1 - C) 
PRINT USING " ##.#### " ; fx 
PRINT #2 , USING " itlj . #### " ; fx: PRINT Ij 2 , 

PRINT ff2, " (ii) X(r) = Ao + r(1/2)Al; fIr) 
PRINT ff2 , " X" " 

REM - -----------------------------,--- . (ii) 
REM FROM X(r)=Ao + r(1/2) Al 
R~M ·X* ~ Ao = (X7* - C(I/2) X6*)/(1 - C(1/2) ~ 
FOR ,i % = 1 TO 2 

CX6(i %) = -C " (.5) * X6(i%) 
NEXT i% 
fOR i% = 1 TO 2 

Xx(i %) = CX6(i %) + X7(i %) 
NEXT i % 
fOR i % = 1 TO 2 

Xx ( i %) '= Xx ( i % ) / (1 - C " . ( . 5) ) 
NEXT i% 
fORi% = 1 TO 2 

NEXT i % 

PRINT USING " ##.###### "; Xx(i %) 
PRINT #2 , USING " ## . Uit### "; Xx (i.%) 

PRINT #2 , "f* " 
REM FQR LINEAR RELATIONSHIP 
REM f*(r) in terms of r(1/2) 
REMf* ~ (f 2* - C6/2f6*)/(1 - C1/2) 

fx = (£7 - C " . 5 * f6) 1 (1 - C " .5) 
PRINT USING " #ff.UU " ; fx 
PRINT #2 , USING " itlt.#U# " ; fx 
CLOSE #2 

ao +a1r(1/ 2) " 

LOCATE 1 0 , 20: PRINT "COMPUTATION COMPLETED SUCCESSfULLY I I I" 

LOCATE 12 , 20: PRINT "Check file ' RESUL2.0UT ' for details. " 
FOR Y = 1 TO 4000 STEP .01 : NEXT Y 

END SUB 

SUB prob3 
REM PROGRAM TO PREDICT THE 'OPTIMUM SOLUTION USING EXTRAPOLATION 
TECHNIQUE 
REM (INTERIOR PENALTY METHOD) 
REM XX = X* , X2 = X2* , Xl = X1* , X3=X3* ' 
REM F1 = F1 * , F2 = F2* , F3= F3* , fx = f* 
DIM X (5) , Xx (5) , Xl (5) , CX2 (5) , X2 (5) , X3 (5) 
LET DATA3S = " PROB3 . DAT " 
LET RES3S '= " RESUL3,OUT " 
CLS 
OPEN DATA3S FOR INPUT AS #1 
OPEN RES3S FOR OUTPUT AS #2 
IF' E;Of(l) THEN GOTO 25 

FOR i % = 1 TO 5 
INPUT #1 , Xl (i%) 

NEXT i % 
I NPUT # I , fl 

I NPUT H , r2 



fOR . c 
l-? = 1 TO 'J 

HJPUT 111 , X2(i':i) 
ND(T i 
INPUT 111 , f2 

INPUT Ill, r3 
FOR i \,; = ] TO 5 

rNPUT If 1 , Xl (i ''') 

NE:XT i 
INPUT ff 1 , f3 

?') C I ,();, I,: 
" 1 

LI'.:'I' 1,'111 in - l/ , l!I H fi fl : (. , () ;, 

REM' ""* *k """ " '""" "','k " USINC 'J'III~ RELATION X(r) 
REM X* - Ao = (X3* - CX2*)/(1-C) 
FOR i% = 1 TO 5 

CX2(i %) = -C • X2(i ~ ) 
NEXT i 1, 
FOR i ~ = 1 TO ~ 

Xx (i i;) 

NEXT j f' 
FqR i% = 1 TO 5 

r:X 2 (i "') ~ Xl ( i '" ) 

Xx(i%) = Xx(i%) I (1 - C) . 
NEXT i % 

PRINT #2 , " RESULTS FOR PROBLt::M 3 " 
" PRINT 112 , ---------------------

PRINT #2 , " (i) The starting point 
PRINT 112 , "Xl " 

FOR i 'i; = 1 TO 5 
PRINT USING "# "; X~(i % ) 
PRINT jl2 , USING " ff " ; Xl ( i%) 

NEXT ' 0 1 (, 

PRINT 11 2 , : PRTNT 11 2 , " [ (xl) " 
PRINT USING " 11# II ' II " ; f1 
PRINT 112 , USING " 111111, II "; f1 : PRINT 

PRINT 11 7 , " (ii) X(r) ~ Ao -j r'Al ; 
PRINT 11 2 , "X* " 

FOR i% = 1 TO 5 
PRINT USING " It It ,jlJI JI II "; Xxii,!;) 
PRINT 112 , 

\ 
USING " II II , lilt II 11 "; Xx(i %) 

NEX'P i% 
PRINT #2 , " f* " 

REM fOR LINE:AR RELATIONSHI P 
REM f*(r) = ao + a1r leads to 
REM f* = (f3* - Cf2*)/(1-C) 

fx = (f] - C * f2) I (1 - C) 
PRINT USING " #11 ,111111##"; fx 
PRINT #2, USING " 1111 , #illtillt ";' fx : PRINT 112, 

is taken 

11 2 , 

fir) ao 

PRINT #2 , " (iii) X(r) = Ao + r(1/2)Al ; fir) 
PRINT "2 , "x" '" 

REM ----------- ---------------- ---- -- (ii) 
REM FROM X(r)=Ao + r(1/2) Al 
REM X* - Ao = (Xl' - C(l/?) X?*)/(1-C( 1/ 2 )) 
FOR i 'l. = 1 TO 'i 

CX2 (i \ - -C A ( , S) , X;':: (i 

NEXT i ' 
FOR i~, = 1 TO S 

Xx(i '!. ) = CX2(i':',) I X3(i'i, ) 

FOR i% = ITO 5 

Ao f- rA1 

as :" 

I alr " 

ao + r(1/2)al " 



NEXT i ,% 
Xx (i r. ) = Xx (i ': ) / (] - C A ( . 5)) 

FOR i ~ = 1 TO 5 
PRINT IISHJG " 1111.11111111 " ; Xx(i '4. ) 

NEXT i 'f. 
PRINT 11 2 , USING " ltll . #111111 "; 'Xx (H) 

REM '--- FOR LINEAR RELATIONSHIP 
REM f*(r) in terms of r(1/2) 
REM f* = (fJ* - C]/2f2 ')/(1-C (l!2)) 

fx = (fJ - C A . 5 k ( 2) / (1 - C A . 5) 
PRINT r)SING " 1111.11111111"; f;: 

PRINT 11 2 , USING " 1I11.ltlll!II "; J'x 
CLOSE 11 2 
LOCATE 10 , 20 : PRl NT " COMPI!TATJClN COMrr,ETED SUCCESS FULLY I I I " 

LOCATI:~ 1 2 , ;;> 0 : PRHJ'I' " C1 lc'ck ri l e ' HI-:SUJ,3 . 0LJ 'J" [or d e t ai l s ." 
rOR Y = 1 TO 4000 STEr . 0 1: Nr::XT Y 

END SUB 



RESULTS fOR PROBL~M 1 

(i) X(r) = Ao + rAl; f(r) ao + ra1 
X* 
1 . 3358 
0 . 7543 
0 . 3720 
f* 
0 . 1508 

(ij) X (r) 1\( , , r ( 1 / ;:> ) 1\ 1; r ( r ) - ;1 () , r ( 1 /? ) a 1 
/:1 

1 .' 38. O~) 
0 . 75)8 
0 . 3816 
U 
0 . 0952 



RESULTS FOR PROBLEM 2 

(i) X(r) = Ao + rAl; f(r) 
X* 

1 . 01201 
0 . 02402 

f* 
2 . 7387 

ao + ra1 

(ii) X (r) 
X' 

1.000313 
-0 . 000004 
f* 

An + r ( 11?) A 1 ; f (r) ao 1- r(1/2)al 

2 . 6666 



RESULTS fOR PRUf3LEM 3 
---------------------

(i) The starti.ng point 1S taken as : 
Xl 
o 
o 
o 
o 
I 

f(xl) 
20 .0 

( i i.) X (~) 
X' 

0.2960 
0 . 3313 
0 . 3965 
0.4345 
0 . 2320 

f* 
- 32 .20959 

I 

(iii:) X(r). 
X* 

0 . 2998 
0 . 3328 
0 . 3997 
0.4299 
0 . 2269 

f* 
- 32.3481 

1\0 I ,/\ 1; r ( ,.) 

Ao + r(1/2)A1 ; fIr) ao + r(1/2)al 


