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ABSTRACT

In calculus we learned how to obtain the minimum and the maximum of a function by
setting its derivative equal to zero. Unfortunately. minimization or maximization
(Optimization)  problems  cncountered inindustry  are not that  simple.  Usually,
optimization should take place while satisfying a number ol constraints imposed on the
system. Incases where the constraints and the [unction to be optimized are expressed
analytically, the Langragian method of undcl'crmincd multipliers can be used o obtain
the optimum solution.

Linear programming methods developed in the 1950°s can be very effective in
cases where both the constraints and the function to be optimized are lincar. Variation of
linear programming methods are also available for cases where the function to be
optimized is quadratic (quadratic programming) and for cases where the non-linear
constraints or objective or both can be expressed as piccewise lincar functions (Separable
programming) and also for the cases where the non-linear objective is ratio of two lincar

[unctions can be expressed as a linear model (fractional programming).




CHAPTER ONE
1.0 INTRODUCTION TO OPTIMIZATION THEORY

Optimization is concerned with achieving the best outcome of a given operation while
satisfying certain restrictions. Human beings, guided and influenced by their natural
surroundings, almost instinctively perform all functions in a manner that economizes energy
or minimize discomfort and pain. The motivation is to exploit the available limited resources
in a manner that maximizes output or profit. The carly inventions of the lever or pulley
mechanisms are clear manifestation of man’s desire to maximize mechanical efficiency.

-Physicist, Chemists, Mathematicians, Engineers, Economists, Operations researchers,
Managers and practicing computer Scientists are often interested in achieving optimal
solutions to their problems. These problems may be to determine designs, programs,
trajectories, allocation of resources, approximations of fuctions. Frequently, different designs
or programs, all satisfying the conditions arising from the actual situation are compared, and
once is chosen that also as the best in terms of an optimality criterion. Optimization
techniques, if properly applied, will automatically examine different designs or plans and
select an optimum.
Example 1.1
Consider the following optimization problem (model).
A chemical company must send l'OOOm3 of chlorine gas to its research laboratory in another
state because the gas is extremely dangerous, a special hermetically sealed rectangular railroad
car must be built for transporting it. The material from which the top and the bottom must be
constructed costs $2000 per square meter, while the siding costs half as much, however, only
50m’ of siding can be obtained. Moreover, the maximum height of the car permitted by

tunnels and other overhead clearances is 3m. Regardless of the car’s dimensions each round



trip to the laboratory will cost $8000. Assuming no time limit on the overall procedure, wha
dimensions minimizes the total cost of constructing the car and delivering the gas.
Let d..'w and h be the car’s length, width and height.

The objective is to minimize overall cost;

Lo miniize S000CT000. dwh) + 2dw2000) 1 2dh + 2wh(1000).

Where the three terms are contributed by transportation cost. top and bottom material, an
siding. respectively. The constraints mentioned in the problem are
2dh +2wh <50

andh< 3

Also non-negativity restriction

D.h.w=o

How can such problems be solved in general?

1.1 Mathematical Models

1.1.1 Characlteristics and types of Models

Mathematical programming problem

The prbhlcm ol optimizing a numerical [unction of one or more variables when they ar

constrained m some manner is called a mathematical programming problem. specifically. th
purpose of such a problem is to determine the value of n variables Xy, Xa. ....x,, that optimiz
the function.

T U Dy a4 brkidiomnnns o0+ poronlihig o 5 1.1.1

Subject to the constraints

BX1 X3y v e XadS=2YD1, 1= L 20l ciiininnnvis s v 1.1.2
It is usually assumed that the value of the n variables cannot be negative numerically. Th

non-negativity restriction on the variables may be stated as



Also, it is usually desired to determine the optimal value (minimum or maximum) of the
function z in 1.1.1, which is called the objective function.

The formulation pf business and economic questions as mathematical programming problems
has resulted in the successful resolution of many complex real-world optimization situations.
Most of the applications of mathematical programming to business and economics involve the
maximization of revenues or profits and the minimization of costs.

1.1.2 Model Classification

A real-world optimization problem may be classified in five ways.

(1) The functional relationship in the problem may be known (deterministic) or uncertain
(probabilistic).

(2) the function f (xy, X2, ...,Xy and gi (x;, X2, woXn), 1= 1,2,...min 1.1.1 and 1.1.2 may be
linéar in Xp, X2, ...,Xp, at least one function in the set may be non-linear.

(3) The functions may be continuously differentiable (Smooth) or non-differentiable (non-
sm.oolh).

(4) The variable xi, xz, ....X, in the mathematical programming problem may be continuous or
may be restricted to integer values.

(5) The optimization may take place at a fixed point in time (static) or during an interval of
time (dynamic).

Most mathematical programming models are deterministic; given Xy, X, ...,X,, the values
of f.,gz, 22,....gm are uniquely determined, most of the current application of mathematical
programming to business and economic problems assume that all model functions are linear.
The.:re is a very simple reason for this. The simple methods, derived by Dantzig in 1947
(1963), is extremely efficient procedure for solving linear programming problems. When this
method is programmed on a computer it is possible to solve linear problems involving
hundreds of variables and thousands of constants. If one or more of the functions is non-linear,

the problem is always more difficult to solve than linear ones. Thus, even though the real-

L



world problem may be complex and inherently highly non-linear, successful modeling of it
may be possible by using many variables ;lnd constraints in a lincar formulation.

Most algorithms devised to sol_ve 'mathematical programming problems require that the
functions in the model be continuously, differentiable; thus all functions typically must be
smooth.

1.1:3 Specific models of interest.

The best known mathematical programming model is linear programming model. All

furictions in 1.1 and 1.2 are linear in the variables xy, X2, ...,X, the model may be written as

i 0 R sversinnens X} = Z fj("j)

PREN. LT T Ly kaiien o s msanse v smsiies 1.1.4

Where the f’s, b;’s and aij’s are known constants.
The linear programming model has been successfully used to solve a variety of business,
economic and scientific problems.
If in the model,
Optimize Z = f(x1, X2, -...Xa)
Subject to gi (X, X2, -...Xn) {<=2}b; 1i=1.2,.....,m
LED =120
At least one function in the set f, g,g>...., gm is non-linear, it is called a non-linear
programming model. We observed that a non-linear problem is generally much more difficult

to solve than a linear one. Many algorithms have been developed to alleniate this, among




which are the followings, separable, programming, fractional programming algorithms,
Langragian‘ multiplier’s technique e.t.c.

A special case of the general nonlinear programming model which has received a great
deal of attention. is the quadratic programming model in both chapters 2 and 3. In this model,
the objective function is quadratic in Xj. Xo. ...\, and the constraints are lincar. Specilically

the model is

n n
Optimize Z = Z [ixj+ Z RS cxcsnasopramsssiysss 117
j = J =
Subjectto > A, x, <b i=12....... e 118
/=1
B Y= L2l v Lt abvssieresemsnsiente 1.1.9

Where the {js. gij’s and hij’s are known constraints.
1.3 Standard Formulation.
The notation adopted in the work for variables, objective function and constraints is

summarized in the following formulation of the optimization problem.

-Oplimitc R L e R S PR L S E2:0
Subject to gi(xj. Xa. ....Xp) < bi g B S T 1.2.2
€i (X1, X2y -.5Xn) = by . g R R S AT 1.2.3,
- T R T v AL T L R 1.2.4

where x denotes a vector of variable in the components x;. i = 1.2.....n. an optimization
problem is said to be lincar when both the objective function and the constraints are linear
functions of the variables x; i.c. they can be expressed in the form

fix)=fix;+ ixy + ... fgxp = f'x




Linear optimization problems are solved by a branch of mathematical programming called
lincar programming. The optimization problem is said to be non-linear if either the objective
fun.ction or the constraints are non-linear fraction of the variables.

1.2.1 Formulating an optimization problem
An optimization problem is an exercise in mathematical modeling that require great care

in setting up the model. Four steps are involved:

(1) Decide the exact objective to be optimized. Many different objectives are possible.

(2) Set up the objective function using as many variables as are required. Try for accuracy
rather than compactness. Make sure that all the terms have the same dimensional units.

'(3) Set up all the restraints and relationships between the variables.

(4) If possible, reduce the objective function in step (2) to independent variables. Step (2) may
contain both dependent and independent variables.

(5) The objective function is now ready for solution. If it contains independent variables only,
the differential can be set equal to zero to optimize the expression, or alternatively,
tabulation can be made. If the objective function contains depenc_ient variables in addition
to independent variables, a La;,;range expression can be tried. If this fails, the objective
function and its constraints (restraints) must be optimized, using the skill and ingenuity of
the separable, [ractional Quadratic programmers c.t.c.

As an illustration of the above, consider the Example 1.2

Exgmple 2

A cheese shop has 20Kg of a seasonal fruit mix and 60Kg of an expensive cheese with which

it will make two cheese spreads, deluxe and rectangular, that are popular during Christmas

week. Each pound of the deluxe spread consists of 0.2Kg of the fruit mix and 0.8Kg of the

expensive cheese, while each poun.d of the rcgular spread consists of 0.2Kg of the fruit mix,

0.3Kg of the expensive cheese, and 0.5Kg of a filler cheese which is cheap and in plentiful



supply. From past pricing policies, the shop has found that the demand for each spread
depends on its price as follows:

D= 190 - 25P; and D, = 250 - 50P,

Where D denotes demand (in Kilograms). P denotes price (in dollars per Kg), and the
Subscripts Iand 2 refer to the deluxe respeetively. How many Kgs ol prices should the cheese
shop prepare, and what prices should it establish, if it wishes o maximize income and be left
with no inventory of cither spread at the end of Christmas week?

Solution

Mathematical equivalent of the example.

Let x; kgs of deluxe spread and x; kgs of regular spread be made. If all the products can be
sold, the objective is to

Maximize Z=Pixi + PaoXa  coiiiiiiiiiiiiiniiiiaiinans 1.2.5

Now. all product will indeed be sold (and none will be left over in inventory) if production
does not exceed demand, 'i.c., if x;< Dy and x, < D, This gives the constraints.

TP 190 and BB OP; S 250 .oivnivrrnsssssarmermrns 1.2.6

From the :‘wailahility of fruit mix.

Ry T R G I o " e i d v saiemei s § § ywmis .27
‘and from the availability of expensive cheese,

0.8x; + 0.3x; < 60

There is no constraint on the filler cheese, since the shop has as much as it needs. Finally.
ncithef production nor price can be negative; so four hidden constraints are x; 2 0, x; 2 0. P
> 0 and P, = 0. Combining these conditions with 1.2.5 through 1.2.8 we obtain the
mathematical programming problem as follows:

Maximize Z = P x; +Pax;

Subject to: 0.2x; +0.2x, <20




0.8x; +0.3x2<60
X +25P; <190
%ot SOP3 S 20 . iicnssmsmnusmense 1.2.9

With all variables non-negative.

Svstem (1.2.9) is a quadratic programming problem in the variables x;, x; . Py and Py. It
can be simplified i we note that for any fixed positive x; and x> the objective function
increases as cither Pyoor P> must be such that the constraints 1.2.6 become equations, where P,
and P; may be climinated from the objective function. We then have a quadratic function in x;
and x;.

Maximize Z = (7.6 — 0.04x,)x; + (5 — 0.02x2)x,
Subject to : 0.2x; + 0.2x, < 20
0.8x; + 0.3x, <60

with x; and x; non-negative.

1.3 Non-lincar Programming.
lp this work. emphasis is placed on nonlincar programming than linear programming due to
the fact that the work centered on Non-linear separable and fractional programming on
chapters two and three respectively. Although the simplex method was later utilized in finding
solutions to both the piecewise linear approximation model in chapter two and the equivalen
linear model of the fractional programming in chapter three.

The introduction of nonlinear functions in the mathematical programming problem usuall
insures more difficulty in solving the problem than if all functions are linear. The prima

difficulty introduced by the nonlinear functions in the potential existence of relative or loc

minimal or maximal of the objective function.



The existence ol local optima arisces due to the nonlinearity ol the objective function [(x), the
nonlinearity of one or more constraint functions gi(x).or a combination effect of the
nonlinearity in {(x) and in one or more of the constraints functions.

1.3.1 Types OF Nonlincar Objective Functions.

I..\.i"\ A Nonlincar Function In One Variable.

That is, optimizing a nonlincar objective function ol a single variable. Note that many of the
techniques for solving several-variable nonlincar optimization problems actually employ
single-variable optimization in one ol the slcps.. To begin. it is convenient o postulate
“maximization™ as the sense of optimization throughout the following discussion. [ If the real
‘problem is to minimize an objective function (x), then can reformulate the method so as to
maximize —{(x).]

It is assumed that the functions considered possessed continuous first and second

derivatives and partial derivative everywhere.

Consider a function of a single variable, such as that shown figure 1.3.1.A necessary condition
for a particular solution, x = x' to be either a minimum or maximum is that

dfix)/dx=0 atx= G ARG A3 B AL AT e g’ [ 9 |

Fhus in ligure 13010 there are live solutions satislying these conditions. To obtain more
information about these live so called critical points, it is necessary to examine the second
~derivative. Thus. if

x> 0atx =x o B et 1.3.2




f(x)

Global Maximum

Local Maximum

Local Minimum
Inflection Point

Global Minimum

A 4

Fig. 1.3.1 A function having several maxima and minma.

Then x" must be at least a local minimum (i.e. f(x") < f(x) for all x sulficiently close to X ). So
x" must be is a local minimum if f(x) is strictly convex with neighbourhood of x”*. Similarly. a
sufficient condition for x" to be a local maximum (given that it satisfies the necessary
condition) is that f(x) is strictly concave with a neighbourhood of X' (that is, the second
derivative is negative at x). If the second derivative is zero, the point may not even be an
inflection point and it is necessary (o examine higher derivatives.

To find a global minimum (i.c. a solution x such that f(x‘) < I(x) for all x) it is necessary
to compare the local minima and identify the one that yields the smallest value of f(x). If this
value is less than that f(x) as x — -0 and as x — +oo (or at the endpoints of the function, if it
is only defined over a finite interval) then this point is a global minimum.

However, it {(x) is known 16 be either a convex or concave function, in particular, if f(x) is
a convex function, then any solution X", such that
df(x)/dx =0 at x =x’
ié known automatically to be a global minimum. In other words this condition is not only a

necessary but a sufficient condition for a global minimum of a convex function. If this




function is strictly convex. then this solution must be the only global minimum. Similarly, if
f(x) is a concave function, then having

diix)/dx=0atx=x"

becomes both necessary and sufficient condition for x” to be a global maximum.

I tor any xpand xyin 1 -0l 0] where xp < N and for all p, 0= p = 1. [(x) satislics

PEND) E PN PNy FCpINa) e, | . 1.3.3 (Convex lunction)

A [unction is unimodal whenever it is concave, that is. il for any xp and x; in [, where x; < xa,
and for all p, 0 < p < 1. [{x) satislies

plix) + (1 =p)f(x2) < f(px; + (1 =p)X2)  vevvvnrnrnnnnnn. 1.3.4 (Concave function.)

1.5.1B A Nonlinear Function Of Several Unconstrained Variables.

That is, maximizing a nonlinear function of several unconstrained variables. There are two
motivating reasons for studying this problem. Firstly, an analysis of the multidimensional,
unconstrained. nonlinear maximization problem sets the stage for the analyses of constrained
~models. The algorithmic difficulties to be overcome here are also present in the constrained
cases. Secondly. a constrained problem can often be solved by [irst converting it to an
unconstrained problem. We postulate that (X1 XoeeoiXy) 18 smooth and possesses a linite
maximum valuc . occurring at the finite values (.\l', x;'. ...x.,'). Abbreviating a set of value for
| (X1+ X2.....Xy ). by the symbol x, and the expression f(xj, Xa.....X,) by the symbol f(x). these
assumptions can be stated more precisely as :

(1) For all values of x, {(x) is uniquely defined and finite.

(i) For all values of x. every partial derivative Jf /0x, is uniquely delined, finite and

continuous, and hence {(x) is continuous
(i) f(x) possesses a finite maximum |

(iv)  For any possible value of f(x), say f. there exists an associated finite number My such
that every |xj| < Myif f(x) > I,

Applying differential calculus, we can state the following.

11




Necessary condition for maximum. Given assumptions (i) through (iii), the function [(x) has a
maximum at x'only if of(x)/ox, =0 forj=12....n.

The validity of the result is casy to sce. Suppose there is a variable x; such that
o)/ Av, >0. Then [(x) can be increased by increasing .\'j‘ by a small amount.
Analogously. il" f(x)/Av, <0. . then [(x) can be increased by decreasing x_,' by a small
amount. But unfortunately. without imposing further restrictions on the shape of f(x), the
néccssury condition is not sullicient for a maximum: x* may not maximize I(x) when all
of(x")/ ox, =0.the illus'lration in figure 1.3.2 shows why. The derivative df /ox, = 0.
at points a,b,c.d.e as well as at g which gives the only global maximum.

A

f(x)

v

g h X

Figure 1.3.2 Example with Multiple Local Optima.

After identifying the critical points that satisfy the condition 0 [(X;.X2.....Xs/ 0Xj = 0 at
£X1.X050 X} = (X l',xzt,...,x,,’) for j = 1,2....,n, cach such point would then be classitied as a
local minimum or maximum il the function is strictly convex or strictly concave
respectively.within a neighbourhood of the point. The global minilﬁum and maximum would
be found by comparing the relative minima and maxima and then checking the value of the

function as some of the variables approach - or +o.




However, if the function is known to be convex or concave. then a critical point must be a
global minimum or a global maximum respectively.
Algorithmic Description. .
Many of the computational technique for maximizing [(x) can be expressed in a standardized
format.
Step 1. Select an arbitrary initial trial point x".
- Step 2. Terminate the iterations ift 01/0x; = 0, for j = 1.2....n at the initial point X,
Otherwise, determine values yj". for ) = 1.2.....n, and continue on step 3.
Steps 3 caleulate a new trial point.

D e T BT T B RS 1.3.5

M1 replace x*.

Return to step 2. where x
For most nonlincar objective functions, the iterative process never obtains an x* such that all
of lox, =0.

Suppose you want to maximize [(x;.xz) = i3y « 4(xa K
You can tell by inspecting [(x) that the unique optima solution is X =3, x, "= 2. yielding f(x")
=(. |j'sincc IX) is a quadratic function. the optimal x can be calculated directly from the
necessary conditions ¢f /éx, =0. forj=1.2.....n.
Nevertheless, the quadratic example serves to exhibit the main ideas of the algorithm.] The
contour levels of f(x;.,x,) are ellipses starting with
Step 1, let X" = x2"= 0. and hencee 1(x") = -25. since
of lox,. =-2(x;—3)and 0f/0x2=-8(X2-2)  .coiiiiiiiiiiii 1.3.6
Step 2 Indicates [urther improvement is possible.
In preparation for choosing the dimensions d; and d,. draw the tangent line to the contour [(x)
at x". given by the equation

of (X|-X|0)/ g% + af (XZ-XZU)/ PR ll . e asesss vt 1.3.7




For x," = x;" = 0. (3) yields

6x;+ 16x2 =0 or x; = -3x,/8

the value of f(x) =-25

fordi’ =1 and d2"=2/3

The algorithmic will continue to improve the values of x; and xo. also that of d; and d;.
1.3.1C A Nonlincar Function Of Several Constrained Variables

That is. optimizing a nonlincar l[unction with nonlinear constraints. The aim here is to solve
optimization problems containing nonlinear constraints. FFor the sake ol definiteness, suppose
the model is stated as

Maximize £ (X):X2y-«esX¥n) ¢ cconersusssssnsnossassns 1.3.8

Subject to gi(x1.X2,....xp) £0, i=1.2,....m ... 1.3.9

X220 | Bl B 1.3.10

(1.3.8) and (1.3.9) above can be viewed as a canonical statement of a nonlinear programming
problem (NPP). Here, the constraints function g; (x) and objective function [(x) are to be
postulated upon as follows:

Definition 1.3.1

Feasible Region.
The assumptions on cach nonlinear function gi(x) are given in terms of its shape and
smoothness characteristics. To set the stage, a real value functions g(x) is defined to be convex

if, for any two points x # y, and for all p, 0<p <1,

pe (X1.X2....Xn) T (1-p)a(y1.¥2....¥n) = g(pxi H(1-p)yi.....pXa + (1-p)yn) Convex

- and strictly convex if there is a strictly inequality (>) for 0<p<Il (Note that if —g(x) is concave,
then g(x) is given).

A related characteristics of a convex function is that for any two points x and y.




ag( )
xj) CONVEX vevscnesssonmsnonsssns 1.3.12

g(y)>g(x)+ Z

gi(x) in 1.3.9 satisfy the following shape and smoothness assumptions.
(1) Each gi(x) is uniquely delined. finite and convex for all values of (X),X5.....Xp)
(2) Each gz Ay, s continuous Tor all X satislying the constraints in 1.3.9.

Delinition [.3.2

Objective Function: the function [(x) is also hypothesized to satisty certain shape and
smoothness assumptions (i) through (iv)
(1) f(x) is single-valued and finite for cach x satislying the constraints 1.3.9
(i) Every partial derivative 0 [(x)/ dx; is a single-valued finite and continuous at cach x
satisfying the constraint 1.3.9
(ii1)  f(x) possesses a ﬂnite maximum  over all values of x satisfying the constraints 1.3.9
(iv)  [(x) is concave over all values of x satisfying the constraints 1.3.9
It is the purpose of this chapter to develop the basic theory upon which methods devised to
solve the nonlinear programming problem are typically based. Among the topics
considered are the definitions of local and global optima. the necessary and sulTicient
conditions lor identilying an optimizing point, and the mathematical constraints
introduced into this identification process by nonlinearity.
The linal section contains some applications of this material to nonlinear
programming example problems.
1.4 Local and Global Optima

The concept of local and global optima plays an extremely important role in nonlinear

programming.




Definition 1.4.1 Global Maximum (Unconstrained Problem): The unconstrained function
f(x) is said to take on its global maximum at the point X if f(x) < f(x") for all x over which

the function [(x) is defined.

Definition 1.4.2 Local Maximum_(Unconstrained Problem). The unconstrained function

1(x) is said 1o take on a local maximum at the point x" il constants € and 8, 0 < & < J, exist
such that for all x satislying 0 <x - x| < &, [(x) = ((x"). where [(x) is defined for all points
in some 8-neighbourhoood ol x". :

l"igurc 1.4.1 illustrates a local and global maximum [or a univariate function . Notice [rom
definition 1.4.1 and 1.4.2 that a global maximum is also a local maximum. A familiar
theorem from differential calculus is now introduced, which states the hecessary

Ay . " i 0 »
conditions for a point X' to be a local (or global) maximum.

4 X))

X2

( X |09 lel)

(x)'%2)

l.(‘\|...\3‘)

é 2iN)=b,

23(x)=b;

v

X2
Figure 1.4.1 lllustration of local optima.
Theorem 1.4.1 If f(x) assumes a relative (local) maximum at x°, then x” must be a solution

to the set of n equations

efixy 0x%=10, j=12,...0




- Proof:

Suppose that {{x) assumes a local maximum at x", then from the definition of a

local maximum, an € > 0 must exist such that for all points x in a 3-neighbourhood of X,
f(x) < [(x"). In particular. consider a point in the 8-neighbourhood of x" of the form x = x"
the, where ¢, = l().().....;().l.()......()l with the | placed in the jth position of ¢j and 0 < |h| <
¢ . Then
(x"+hey) < 1(x") j - Fisinll. « snassratubominpssisanant rods ot 1.4.1
FFor a!l h,0< |h| < €. Dividing (1.4.1) by h results in the expressions
! +he) = f(x)] W <0ifh>0 j=12..m ... 1.4.2

[fx? +he) - fxHVh20ifh<0 j=12,...n = Leevevanens 14.3
on taking the limit of (1.4.2) and (1.4.3) as h—»0, it follows from the definition of a
partial derivative that
Af(x"y ax;<0 forh—0, h>0
af(x"y ax;20 forh—0, h<0
Thus
AN Ay, o 1813 . | sowmwrsalasgai L4
The condition in (1.4.4) can be conveniently displayed in vector notation in terms of the

gradient vector of f(x).

Definition 1.4.3. The Gradient Vector

The gradient vector of [(x) = [(X},X2....Xy). denoted by VI(x), is the n x 1 column vector

whose components are in the first-order partial derivatives of [(x).

o) af(x)]’

n

" The condition in 1.4.4 stated in vector form is Vix") =0




If a point x" satisfies 1.4.4, it might not be a maximum point. Theorem 1.4.1 provides only the
necessary condition for x" to be a maximizing point. In the univariate case 1.4.4 may be satisfied
at a minimizing point, a maximizing point, 6r a point of inflection as illustrated in figure 1.4.2. in
the n-multidimensional case where as illustrated in figure 1.4.2. in the n-multidimensional case
where x' = [n e ] the analogy o the univariate case is a maximizing point. minimizing
point or saddle point. A saddle point is the multidimensional analogy to the inflection point in the
univariate case. A saddle point for the bivariate case |x' = (x1.x2)] is illustrated in ligure 1.4.3.
The sufficient condition for x" to be maximizing point can be expressed as a property of the
Hessian matrix of f(x).

Maximizing point

fix) ¢

Inflection Point

Minimizing point.

\/

Figure 1.4.2 Possible Solution points to df{(x)/dx; =0

Definition 1.4.4. The Hessian Matrix.

The Hessian matrix of f(x) = [ (X}.Xz....Xy). denoted by H(x), is the n x n matrix whose elements

are second order partial derivatives of [(x):




Bt Bl c I i i )
ax,’ Ox,0x, axlz

' f(x) 9f(x) S
ox,0x,  ox, B,
Hx)=| - e A TR 1.4.6

A f(x) 3Tf() o" fi{x)
| ox,0x, Ox,0x, B

n _

Theorem 1.4.2. A suflicient condition for [(x) = [(X}.X2,....X,) to have a local maximum at the
point x” where V{(x’) = 0 is that the Hessian matrix H(x) be negative definite i.c, for any y'=
: (V1:Y2.+--5¥n), €XCEpt y =0, yl H(x)y <0

Proof:

This theorem can be proved by applying Taylor’s theorem to the function f(x) . Taylor’s theorem
states that for any two points X; and X2 = x;+ h. there exists a scalar 0, 0 <0 < 1, such that
f(x2) = f{x1) + V' (x)h + 0.5h H[Ox; + (1-0)x2]h oo 1.4.7
Applying (1.4.7) to f(x). where x; =x" and x, = x" + h, produces the expression
(x" + hy = 1(x") + VI'")h + 0.5h ' H[Ox" + (1 - 0)(x" + h)|h
Sinee VIx") = 0.
f(x" + h) = f(x") + 0.5h"H[Ox" + (1 - O)(x" + h)|H
or
f(x" + h)- f(x") = 0.5h' H[Ox" + (1 - O)x" + )JH oo, 1.4.8
If the right-hand side of 1.4.8 is negative for all hin a ¢ -neighbourhood of x", by
definition 1.4.2 . x" must be a local maximum, since f(x" + h) — [(x") < 0 il this is the case.

The second partial derivatives 0 (") ox;0 xj will have the same sign as




o 1ox" + (-i -0)(x" +h))/ 9x;0 X;j provided that the point 0x" + (1-0)(x" + h) is ina
suitable 8-ncighbourhood of x” . Thus thé right hahd side ol 1.4.8 is ncgative only il
A'H(x") < 0: i.e. the Hessian matrix evaluated at x" . H(x"). must be negative definite to
insure that x” is a maximizing point.

l(N1.X2) ‘T

v

X

X2

Figure 1.4.3. Two Dimensional Saddle Points.

We can now state and prove necessary and sullicient conditions, for every local minimum
of a function to be global minimum we start with the following sufficient conditions.
Theorem 1.4.3

Let [ be a real function on C < R"and let a = /(x). x & C. Suppose that & (L) is lower

semi-continuous (Isc) at @.. If x is a local minimum of f, then it is also a global minimum

of fonC.

Proof:

Suppose that the hypothesis hold and x isnota global minimum of ['on C. Hence there
exist a point x & C such thal-

REPWMEY 00 UL L sl 1.4.9
Define the sequence {o'} by

o =[1AF)+ (1= DX, =120 s e, 1.4.10




Clearly, lim (ai) Sl 4 5 L S 1.4.11

i—>®w

and ¥ € S(f, @.). From 1.4.9, 1.4.10 and 1.4.11, it follows that

IR ) AR R b B L cwenen e aviiissbes 1.4.12
and ¥ eS(Lah)i=12...... Henee (o'} < Gy
! Sinee S(IL o) is assumed to be Ise at .. there exists a natural number K and a sequence

iN'1 L converging o x.such that X' & S(E o) for i = K.K+1..... Hence

Sy o i e L < [P O A S . ALl 1413
and by 1.4.9
B 2 Re) IR R 7 0 o L e S 1.4.14

since {x'}™> x. for a sulficient small & > 0 there exists a natural number K such that
] x'eCnN Ns(x). i =Ks Ks + 1......... which, by the hypothesis, will also satisfy
Bz f2) i=Ka Ko+ 1eininn v 1.4.15 . contradicting 1.4.14

Corollary 1.4.4
Let fbe a real function on C ¢ R™. If S(f,a) is Isc on Gy then every local minimum of [is
also a global minimum of fon C.

We now prove a converse result of theorem 1.4.3

Theorem 1.4.5

Let [be a real function on C < R" and let @. & Gi. Then S(IL w) is Isc at a il any ol the
following assumptions hold,

(1) Every x € C satisfying f(x) = a.isa global minimum of fon C.

(11) None of the points x € C satislying [(x) = a. is a local minimum of I,

Proof:

Suppose that the hypothesis hold and S(f. @) is not Isc at a.. Then there exists an open set

21




A < R" such that

BWVSIE @I RS . cvvsesiessesieeeseneessnes 1.4.16

and for every 6 > 0 there exists an a(d) € N (E.) N Gy such that

T S T R S T R e S 1.4.17

Therefore we can find a sequence (o'} © Gyeonverging o a. such that

WORER Y =80 =12, T i 1.4.8

It follows that ' < . for all i, otherwise il o > a. for some K, then S(IL a) < S(IL u). and, by
1.4.16; we get a contradiction (o 1.4.18: for every xtAN S(IL 5.) it follows that x ¢ S(I, ai)
) fér vefy i ; and since (o'} — E we have f(x) = a.. Moreover, for every X € A.

lf(x) > a. = f(x).

Since A is an open set, it follows lh.at x must be a local minimum of [, and clearly, x isnota
global minimum of f of C. This result contradicts the hypotheses.

Corollary 1.4.6

Let 'be a real function on C ¢ R". If every local minimum of [is a global minimum of fon C,
lrhcn S ) s Ise on Gy

Finally. as an immediate result of corollaries 1.4.4 and 1.4.6 we obtain:

Corollary 1.4.7

Let I'be a real function on C < R". Every local minimum of ['is a global minimum of 'on C il and
only if S(F.a) is Isc on Gy.

As an illustration consider example 1.3

Example 1.3

f(x) = f(x),X2,X3) = 16X, + 24x5 — 4%,% - 3x2" — x3°




(9 (%))
S hr” ‘
6f(;c) —-8x, +16 0
Vf(x)= . |7 70X +241=10
2
g |\ TRl
\ O,

The condition VI{x) = 0 generates a system of three lincar equations in three unknowns. The
solution to this system is x' = [Xi1.X2.X3] = [2.4.0].

The Hessian matrix T(x) is now determined.

&fn) O f(™) o *f(x) _,
ox,’ 6x,6x2_ Ox,0x,

) _ A O’ __,
ox,’ O, Ox, ox,”

Thus the Hessian matrix evaluated at x” = [2.4,0] is

-8 0 0
H(x*) =| o -6 o
0 0 -2

~ The scalar quantity y H(x")y is

-8 0 0 Y
()’n)’::)':&) 0 6 0 Y2 =—8(YI)2‘6(Y2)2‘2(Y3)2
Y3

Which is clearly less than zero for any y* = [y.y2.y3]; y # 0.
Thus x” = [2,4,0] is a maximizing point.
Deﬁnition 1.4.5 Global Maximum (Constrained Problem).
The function f(x) is said to take on its global maximum at the point x il [(x) < [(x") for all x
v (including x") that belong to the feasible set of points x, where the set X represents the constraint

region.




In the equality-constrained problem, for example, x belongs to X if x satisfies gi(x) = b;,

i ® 1,2.....m.

Definition 1.4.6 Local Maximum (Constrained Problems).

The function f(x) is said to take on a local maximum at x” if x° belongs to X and there exists an

- ) . o W . ~ ~ -
¢~ 0 such that for every x = 2" that belongs o X and is in an & - neighbourhood of X" . [(x) < ((x").

1.5 Lagrangian Multipliers and Equality-Constrained Problems.

- Before investigating the general non-lincar programming given 1.3.8 — 1.3.10, it is nccessary o

first introduce the method of Langrangian multipliers for solving the equality-constrained

mathematical programming problem. The problem is specified as

Mieitnee e ) = WX gda) - i L T mseesesiemes oobe 1.5.1
Subjectto gi(x) = giX1 X2, Xa) =Bl . sccesseesene 1.5.2
1=1,23....m.

~The Langragian function corresponding to 1.5.1 and 1.5.2 is

n

L(x,2) = f(x) + Z A br-g(x) |

ML e R RERRE L L hsaekskten 1.5.3

39 ~ & * * * * * o3 % = h "
The necessary condition for a point [X A ] = [NjXae X A Ay A | o maximize L(X. A) are.

~from Theorem 1.4.1,

OL(x,A) 6f(x) Z i ag,(x) Rh

......................... 1.54
ax, ; X,
M=b,-—g,-(x)=0 10 B O A 155
6xj !

For the general nonlinear programming problem, it will now be shown why a solution x to (1.5.4)

and (1.5.5), which is a local maximum of L(x.A) in (1.5.3), is also a local maximum for 1.5.1 and

7




To determine this result, first assume that n =2 and m = 1 so that the (1.5.1) and (1.5.2) problem

1S
PRI B R RXa) s v N R 5 N ceere s b e vees s hiomin s e 1.5.6
L B R 1:5.7

Al the cnndiliuns ol the implicit function theorem are satisfied, it must be possible to write x; in
terms o Xy so that Xa = ¢y(x) . The theorem then guarantees that ¢1(xy) is dilferentiable. The
objective function can be written using tﬁ.(x) as a univariate function in x; and the (1.5.6) and
(1.5.7) problem is equivalent to the unconstrained problem.

Maximize z = f]x;, ¢1(x)]

The necessary condition for x;" to be a local optimum of {(x;. ¢;(x,)) is

ot x)]
ox,

But recall from differential calculus that the total derivative d/dx; of [(x;.x2) can be written as

AL A0 Y, + AU I S 1.5.8
; J.\', ‘\‘-"1 (\‘.\': (l\'I

But xa = ¢y(xy) . If 'd).(x.) is substituted for xa in (1.5.8) and the total derivative df/dx, is evaluated

1] 0
at(xXy x2 ).+

R g T M 0
dfinor ) W ) o s ) dh) o o 1.5.9
dx, Ox, ox, dx,

since g;(x),X2) = by

dg,(x,.x,) o 0g,(x,,X,) + 0g,(x),x,) dg,(x,) =0
dx, ax| axz dxl

25




where ¢1(x;) has been substituted for x; in the last term. From (1.5.10)

o agl (xl ’ xz )
dg(x,) _ ox,
dx, oA e A R 1.5.11
- , OX 4 |

Now substitute the right hand side of (1.5.11) tor d(x;)/dx; in (1.5.9) where d¢)(x;)/dx, is

~evaluated at (x;".x,"). Then

fe 0 0]
5 og,(x, ,x, )
0 0 0 0
af(xl ' Xy )_af(xl s X ) a"‘7| ~0
1] 0
ox, ox, dg,(x,",x, ) S N b
5 Ox, 4
and define ), as
af(x,",xz“)
h=|—2 -0
¢ (¥, X,y )
SN
Then 1.5.12 can be written as
[0’ %) oxi]-Mlogix’x oxi=0 1.5.13
Directly from the definition A; it follows that
[Ofx "% %3] —M[Ogi(x "XV 9x2=0 1.5.14

Additionally, (x,". x,") must satisfy

2= (X1.x2) = by




‘Therefore, by using the implicit function theorem, it is possible to write the necessary conditions

for determining a local maximum to (1.5.6) and (1.5.7) in the form (1.5.13) — (1.5.14)

Now consider the Langragian function corresponding to (1.5.6) and (1.5.7).
LANA) = L(N1.Xo A) = [(Ng.X0) F A [by = 2i(x1.x0)]

The necessary conditions for the maximizing L(x. A) arc. from Theorem 1.4.1,

OL(AY Ox; = Ofixixa) Oxi - Md(iXa) 8X1=0 1.5.16
OL(XAY 0%y = f(x1x2)/ Ox2-Mdgi(X1X2) % =0 e, 1.5.17
AL(x, A)

T=b,—g,(x,,x2)=0 ............................ 1.5.18

The necessary conditions for a point x to maximize L(x. &), given by (1.5.16) — (1.5.18), are
necessary conditions for the equality-constrained problem in (1.5;6) and (1.5.7).

It is possible to extend the above argument from m = 2 case to the general n — variate casé to show
that the necessary conditions .lo maximize the Lagrangian [unction L(x, A) in (1.5.2) are
equivalent to the necessary conditions to maximize [(x) in the equality conslraim;d problem

(LA Dyand (1.2

1.6 Kuhn Tucker Conditions.

In 1951 Kuhn and Tucker [1951] developed necessary and sufficient solutions for optimal
solutions to the general mathematical programming problem. The Kuhn Tucker conditions

provided a frame work [rom which numerous computational method have been developed for

solving certain types of the nonlinear programming problem. A thorough treatment of the

conditions is therefore essential before chapters two and three. Furthermore, the Kuhn-Tucker
conditions provide considerable height into the nature of the nonlinear problem.
In developing the necessary conditions, the nonlinear programming problem in (1.3.8) and (1.3.9)

is recast in the form




Maximize z=f(X) © = 000 e 1.6.1

Subject to gi(x) < b; i=1.2,.4f
gi(x) 2 b; i=r+1,..s
gi(x)=b; i=s+1,...m
x=0

................ 1.6.2

Normally, equality constraints will not often occur in mathematical programming problems. The
inclusion of equality constraints does perhaps surprisingly introduce fﬁrther difficulties in the
solving of this problem, adding r slack variables x;, i = 1,2,.A. B
And s suplus variables x;;, i =r+ 1,...,s the above problem may be rewritten as
Maximize Z = f(x)
Subject to gi(x) + X = b; i=1.2,..r

gi(x) - xi=b; =4 158

gix) =b i=s+1,....m

TR so o 1.6.3

where [X1,X2]" = [ X1,X20-+ s Xn3Xu1,X02s- -5 Xis]
By applying Lagrangian function technique to this problem. We have for this problem the
Lagrangian function as: |

) =t s X L rie o ) ¢ alb-p-wd+ Y, Abi-a®]

1) i =r+1 i =s+1

.................. 1.6.4
Where 'A.i ,i=1,2,...,m, are the Lagragian multipliers associated with the constraints in 1.6.3.
By differentiating L(x, &) with respect to A and x (including x,;) and setting these differentials
equal t;) zero, a set of necessary conditions for optimizing the unconstrained function L(x, )

results; they are




oL(x,A) _of (x) < - 0g,(x)
Ry Z,:'l ox

/ J

J

AL(x,A)
on

¥

=b-g,(x)-x,=0

CL(x.A)
a4,

=l - g (X)ex, =0 CErEL LS
CL(x, A)

04,

1

=bi "g,(X):O

i=s+l,....m

OL(x,A)
T e =12,

OL(x,A)
gy i=1,2,.,..8

=0 j=12....0

................... 1.6.5

................... 1.6.8

..................... 1.6.10

CThusif x>0 fori=1.2.....s.then 4, =0,i=12,....s. By 1.6.9 and 1.6.10 it also follows that at

the optimizing point x4 , A, =0,

Since if xy > 0, then A= 0.

1.6.1 The Lagrangian Solution method involves the following steps:

(1) Find the constrained maximum of {(x). Frequently, by inspecting the function, it is apparent

~ that the Unconstrained maximum will not be feasible, so that this step may be deleted. If this

solution is feasible, it will be the global maximum, and there is no need to proceed to the next

step.

- (2) Solve the Lagrangian function based only on the m-s equality constraints gi(x) = b,




i=s+ 17...,rf1. If this solution satisfies the remaining constraints, it will be global maximum of
f(x) and .ihc process may be stopped.
(3) Add one of the inequality constraints to the Lagragian function in (2) treating it as if it were
- active. Solve this Lagrahgian system. If the solution satisfies the remaining s-1 constraints, stop.
; ()l!lcr\\'isc drop the current inequality constraint, add another, and repeat the process. If all s
inequality constraints fail to yield a feasible solution when treated individually as equality
constraints proceed to (4).
(4) Repeat the process by now adjoining pairs of incquality constraints to the Lagrangian function
in (2), training them as active constraints. Continue until a feasible solution to the s-2 remaining
constraints is encountered or all Cy*= S!/2!(S-2)! pairs have been exhausted. If the latter occurs
proceed to (5).
(5) Continue the process taking all C,” combinations for a = 3.4,....5 until a feasible solution is
encountered.
| Two examplé problems presented illustrate the Lagrangian algorithm and the application of the
- Kuhn-Tucker conditions
Examplel .4

The problem is
Maximize z = f(x1.x2) = -(x; -11)* = 4(x; -6)’
Subject to 2x; +x, < 18

X1+2X2< 16

X;,x220
From the graphic representation of the problem given in figure 1.6.1, it is apparent that the
solution occurs at intersection of the two lines 2x; + x =18 and x; +2x3 = 16. The Lagrangian

* algorithm will now be applied to verify this conjecture and to illustrate the technique.

Stepl:




The unconstrained global maximum from inspection if’ f(x;,x) occurs at (11,6), which clearly is

‘not feasible.
Step2:
From the Lagrangian function using the constraint x; +2x; = 16.

LagxA) - - (N~ 1 ”: o - (\): l A|U() = N[ ~2x2)

Bl (X.A) ;
. '(;\.' =25, = 1= 4, =0
k(XA '
s ot il LT
ax.z
M:l6—xl_2x2_—_0
o, - L

The solution to 1.6.11 is x; = 7.5, X2 =4.25, &, = 7, and X, = 0. sincce the point (7.5, 4.25) is not
feasible. the process continues.
Step 3:
Form the lagrangian function using the constraints 2x; + x, = 18
LaXA) == (N1 = 11)7 = 4(x2-0)" + Az 18 = 2x; -X2)

} a;z (x.4)

| ==2(x, -11)=-24,=0
{ & (x, ) 1
- OL,(x,A)
————=-8(x,=0)=As =0 |, 1:6:12
axz ('2 . ) 3
M=18—2x,—x2=0
o, SO

The solution to (1.6.12) is x; = 6.3, x2=5.4, A, =0and A, =4.8.

Since (6.3, 5.4) also is not feasible, the process continues.
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Step 4:
_ Form the Lagrangian function using both constraints x; + 2x» = 16 and 2x; + x, = 18.

La(x,A) = - () — 11)? = 4(x2-6)> + L1(16 — X, -2x2) +A2 (18 — 2X; — X2)

-ai‘}(_‘_i{l =My~ D=4 =24, %0 |
Qe o,
< alga.d
| 13(‘ RN SELTREE R o R 1.6.13
A% 3
oLy, »
o,
£ L TR L PR
aiz ' o

The solution to 1.6.13 is x; = 6.67, X, =4.67, ;= 4.2 and A, = 2.33. The point (6.77, 4.67) is the
intersection of the two lines a.nd hence is feasible. Therefore, the global maximum occurs at the
point x" = (6.67, 4.67) and (x") is -25.82.

- Since the constraint space is convex and (x;,X;) is a concave function, the Kuhn-Tucker

~conditions are also sullicient so that (0.67. 4.07) is the global maximizing point of [(X}.X2).




X2

18 .—

¢ FOR Contour of Z

2x;+x2=18
(Z=-16
124 )

10 —

X1 +2x,=16

Figure 1.6.1. Graphic solution to exan}ple .
Example 1.5

The problem is

Maximize Z = f(x1,x2) = - (xi — 4)* — (x> — 4)?

Subject to x; +x, <4

X|2+X22 =4

X1,X2=0




X2
4
CONTOUR OIF
Z(7.=-1)
2
1
X2

Figure 1.6.2. Graphic solution to example 1.5.

The Lagrangian method will be used to solve this problem also;

Stepl:

The u‘ncnnslmincd maximum [rom inspection [(x;.x,) occurs at (4.4). which is not [casible.
Step 2

Form the Lagrangian function using the conslreihu X1+ Xy = 4

Li(x.A) = - (X1 — 4) = (xo-4)* + My(4 = x) -x2)

A o —g—1 =0
0x,

M=—-~°-(-\‘:—4)—/1.=0 ........................... 1.6.14
C,

) =4-x —x =6
a,l‘ | 2 o




The solutién to 1.6.14isx;=x;=2, A =4,and A, = 0.‘ Since (2, 2) is not feasible, the process
continues.

Step3

Fo'r'm the Ldgrangian function using the constraint x,> + x,° = 4.

I e VI A B O ) P R E SR VRN

oL A) Skl

—5“.—— =-2(x, =) = 2x,4, =0

dblx A ' ' .

G S AR R M B 1 16,15
Ox,
o1, | 2

Tﬁe solution to 1.6.15 is x; = x3 = (2)"2, 4, = 0, and A, = 1.83, since ((2)"%(2)"?) is feasible, the
maximum is f(2)"2.2)"?).

Surﬁmary_

This chapter discusscd écncrally the nonlinear programming (function) for both single variable
and the several variulblcs. Also. the chapter was able to treat some conditions that give the local or

global optimum. Some of the theorems that deal with the local and global optima conditions were

stated in the chapter.




2.0 OPTIMIZATION PROBLEMS WITH SEPARABLE OBJECTIVE.
2.1 INTRODUCTION
An approximate solution method known as separable programming is presented for the problem.

“Maximize

Lz tiix) = Z fj(xj)

i B PR RTRRTRRPPs 211

Subjecet to

4= Z i)

e (S=20b;
22 S R P ) 2.1.2
FORERS el - T akiesieas 2.1.3

This model required that m + 1 fun;:tions Z, 21, & ..., gm are separable in the n variables
X1.X2,...,Xp -, if the problem does not satisfy the separability requirement. It may be possible,
through the transformation of variable, to recast the problem so that it does.

To illustrate the basic mechanism upon which the approximation procedure is based, consider for
example the ilxli\'al'iaxlc function (x) = 8 + 4x — x™. which is plotted in figure 2.2.1. By connecting
lines z;t points on f(x) at equal intervals of one unit of length on the x-axis beginning at origin. It is
~ possible to approximate f(x) reasonably well in a piecewise linear fashion. Denote the interval
remarking pb_ints on the x-axis by xi. k =0,1.2,....5 and f(x,) by fi . It is now possible to write
down the approximating piecewise linear function, denoted by 7(x"), for each of the five straight

lines over the range 0 £ x <5 in figure 2.1

2.1.1 Definition Of Separable Programming Problem




Wheﬁ ihe nonlinear objective or constraint(s) or both can be expressed as piecewise linear
funcﬁons it is then said to be a separable programming problem
2.2 Transformation of nonlinear programming Problem (NLPP) to separable programming
problem (SPP).
Recalling that the equation for a straight line can be expressed as [(xX7) =y =mx + ¢
» =l e i~ GRRHMRRA=20). comemrersnmman 2.2.1
k=0,12,34

- For example, the line segment connecting the point (0;8) with (1,11) is given by
Fx)=8+[(11 —-' 8)/(1-0))(x-0)=3x+8
Al.so..lh'c line segment connecting the point (1,11) with (2,12) is given by
f(x)=11+[(12-11)/2-D))(x-1)=x+ 10 e.Lc.
It is possible to use [(x) to approximate approximate {{(x) at some point X, say between the kth and
kth + 1 points on the x-axié. fo defining a constant A that must satisfy 0 <A < 1,
%=t i+ (L A D R LR It A 393
Solving 2.2.2 for x — xi gives X — Xk = A(Xk + 1 — Xk); and upon substituting this into 2.2.1,
(X)) =tk + (T4 1= BOAXR = NSOV (X1 = X8

SR EMag=B) - - 0 e sesmsie s 223

~or

= A+ + (1 - My
In2.2.2 let A = Ayspand (1 -1) = Ay, thus
X = A Xk + Ak 1Xk+1
where x is between xi and Xy, it i; possible to determine unique values for Ay and Ag+ such that
X = Mk Xk + Mt 1Xk+1 T e 224

PO)=Mfi+ Aifier e 225

where




\
?
SRR 5 T e TR 226

P S —— 2.27
u%tration 2.1

s an illustration of using the above formula, suppose that it is desired in the example to provide

L appronimate ~\'uluc ol 1(N) when x = 5/4 From 2.2.4 and 2.2.0 it [ollows that A = Ya and A, = Y4
nee /4 lies between xp = 1 and x> = 2. Since = 1and = 12,1t follows from 2.2.5 that ({(5/4)
ST+ (1/4)12 = 11.25 where [(5/4) = 1 1.44.

2.1 General Piecewise Linear Approximation Technique For Univariate Function

he above formulae can be geherated by allowing r segments (not necessarily of equal length)

ver the range of x; Specified by 0 <x <b where b is an upper bound on x; for any x, 0 < x < b.

it

r
X = Z Ak Xk
k =0 .

............................. 2238
r
f(x)= Z A fi = P R— 2.2.9
h =0
r

IR

T R Gl o i A S AR 2.2.10
P AR T (e IO O e N ——— 2.2.11

jith the additional condition that no more than two of Ay shall be positive, and if two are positive,

1ey must be adjacent.
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Figure 2.2.1 TIllustration of a pieccewise lincar approximation of a Curvilincar.
2.2.2 The General Piecewise Linear Approximation Technique for n Variables Functions.
The general piecewise lincar approximation technique described above for a univariate function
may be extended in a straightforward manner to functions of n variables if the functions are
separable. For example. suppose
1(x1%) = (%1 = 2)" + (xa - 4)°
Since f(x;.Xx2) = fi(x)) + [(x2) where
fi(x1) = (x1 = 2)7and f(x2) = (x2-4)”

The results given in 2.4.1 — 2.4.4 may be applied to each of the functions fj(x) and f5(x,), the

fl(X|.) =g x)= Z Akifk

k =0




ry
G =P = Y Mafio

k =0

where x; = Z AKINK and X = Z Ak2Ni2
k=0

=0

The functibn f(x;.x2) above may now be approximated by [ (x)) + [5(x2).

Notice that it is possible to use a different number of intervals on x; and x> axes: r; might not
cqual 1.

The general piecewise linear épproximation rules may now be stated for a separable n-variate

function f (X1.X2.....Xn);

i
Xj= Z i j=12...n spisidt]
k =0
%
N T e L TN 222
k =0

FRbZ .8 . whosin ey 223

.......... venenn 224
And for any given j. no more than two Ay may be positive. and if exactly two are positive,

they must be adjacent. In 2.2.2 [y = f(xy).



These results may be applied directly to the functions fjand gj;in 2.1.1 and 2.1.2,

generating the following approximating functions;
r.

i
fi(x) = Z )\'kjfkj j=12,....n
k =0
g
L) = Z ALjghij i=12...m
kL =a

§=1.2.....n
Where 2.2.3. 2.2.4 and the adjacency condition are satislicd. The original problem in 2.1.1

o 2.1.3 may now be replaced with the following approximating problem:

n I’j
Maximize z=f(x) =" Z Z ij 1 NS s vl L 225
=1 k=0
n I '
Subject to Z Z Mjgij {<=2}bi i=12,....m ... 226
‘ i=1 k=0 -

"
Z A =1

= ' 35 L2 R 1 |
M0, by I..Z..... i REO IRl | L R R sk ehi 2.2.8
And the condition that for any given j, no more than two Ay; may be positive; if exactly
two are positive, they must be adjacent.

If it were not for this condition, 2.2.5 — 2.2.8 would delineate a linear programming

problem in the A; However, the simplex algorithm may be applied if the basis entry is

restricted so that not more than two positive Ay are allowed for any j; if exactly two Ay;




X3 A

occur for some j, they must be adjacent. Once a solution in the A has been determined in
the fashion, 2.2.1 may be used to convert them to x; values.
.2.3 Optimization Algorithm for Separable Objective.

Here, separable programming is utilized to solve optimization problem. A continuous
nonlincar scparable funclion is considered, approximated by a piecewise linear function,
and then solve the final problem by the simplex algorithm. This is essentially what the
following algorithm docs.

Step I: Express the functions involved in the problem as separate functions.
Step II: Partition the domain of gach variable into a number of segments.

Step I1I: Evaluate the separate functions at the end point of segment.

ot 4-9“" ¥

_Step IV: Generate a lincar programming problem in the Aj; with suitable constraints on the
Aik.
Step V: Solve for the A
Step VI: Solve for the original .variables.
Example 2.2 For iIle(ration purpose consider the problem
Maximize Z = {(x;,X2) = 3x; + 2x,
‘Subject to g(x1,X2) = 4x2+x2 <16
X1,X220
"The problem is illustrated in figure in figure 2.3.1. From this figure it is apparent that by
selecting 0 < x; <2 and 0 < x; <4, the feasible region will be considered. Suppose now

thatr;=2and =4 are selected.




Figure 2.3.1 Illustration of a nonlinear function.
Step I: Express the functions as separable functions
This can bé done very easily by utilizing 2.2.9. Since it can be easily determined that the
functions are indeed separable in our illustrative example this is the case, and so
TN D) = 1) (Ns) where
OGN = 3 ) 2\,
Note. however. that the first constraint is also a separable function and we must also
operate on it.
Since equation 2.2.2 is general we can say, for all constraints, that
8= gin(Xp) + gia(x2) + ..+ gin(Xn) i=12,....m
In this case we have only the one constraint to concern ourselves with and we have
gix1:x2) = gu(x1) + gia(x2)

where gi1(x1) = 4x, gia(x2) = x2°

IkXoke-Xok DXk B(X2K). . fa(Xak)  griXi)gi2(Xoky-in(Xak) — -oe.n. St (X1k)Zm2(X2k)- - . Bmn(Xnk)

Figure 2.3.2 Tabular Format for Evaluating Functions.




Using the above format. a table outline for illustrative problem is to be construct below. And the
table is to be filled. Atk = 0, X1k = X1 and, this brings the lower range of our domain of interests,
'obvi'ously X10= 0. Furthermore. at k = 1, x;; = 1 (from step 2 above) and x> = 2. The column for
Xix and xa should be completed before starting with that of column for fy(x).

IFrom step 1 above

ITENTO RS AN

Andatk=0 X1 =0

Thus fi(x1x) =0 k=0

Similarly fi(xi)=3 k=1

The evaluation of the separate functions as required by this step of the algorithm should be

completed before the next step.

k Xk X2k gi(xik) 212(X2x) fi(xix) £ (x2x)

Figure 2.3.3 Table Outline for illustrative problem




0 0 0 0 0 0
1 I 4 | 3 2
2 2 16 4 6 4
3 9 6
4 1o N

- Step 1V generate LPP in the Ay, with suitable constraints on the Ay,

Maximize

| £= 000+ 3011+ 6hiz + Ohag+ 20 + 4hz + 6oy + 81y

!- j'sub_iect 10 g1 =0+ 494X+ 16412+ 0hy + A2y +4h22 + 9oz + 16424 <10
|

i

Aot At A=
|
|

Ao+ A+ An +Antain=1

iz 0 j=1,4:k=0.1,234

This can be written as follows

Z—1=0hjg+ 3k + Ohp2 + 0hao+ 2h2) + A2+ OA23 + 8Any

g4 A= 0hge At 100 + 0o + Ay + 4k + 920 + 162 + X =10
MotApntinp=1

Moot Ao+ Ap + Aot A=

da=>0 ' j= L2 k=1234.

This can be put in the Tabular form as seerf below




Initial Tableau (Fig. 2.3.5)

Cost coeff: 0 5 6 0 2 4 6 8 0 Basic | Index
Variable: Ao A A2 Ao A An An Ay A Variable b
oA I L4 8 TR A 16
| | | 0 0 0 0 0 0 Mo I
0 .0 0 I a1 | | 0 A2
-z 0 3 0 0 Xl DT 8 0 (')

From the simplex criterion for basis entry variable L4 is selected to enter. However, A is alrcady

in the basis so that A,4 cannot enter (two As in the set can be in a basis only if they are sdjacent)

unless Az departs. The simplex procedure for basis departure (16/16, 1/0, 1/1) indicates that either

X or dyg can be eliminated. Therefore, X, is allowed to enter the basis and A, departs.

The solution to the Initial Tableau is & = 16, A9 = 1 and A = 1 with Ay, entering the new basis

and Ay exiting the first tableau is given in figure 2.3.6

Figure 2.3.6

Cost coefT: 0 3 6 0 2 4 6 8 0 Basic | Index
\fari;mc: oo Ay ks dowiiks . ki Am Am A Mariable | b
0 g 18 el TSN 7 0 I ) 0
| 1 I 0 0 0 0 0 0 Ao I
0 0 g5 (I I 0 A 1
-2 gy 6 WG 4 2 0 0 -8

The solution to the first tableau is A =0, Lo = | and Aoy =1. A7 should enter next, but this is

impossible for of it enters, A would depart. leaving A in the basis not adjacent to A ;. The

next best contender is Ay . If Aj; enters A departs leaving two adjacent As in the first set in




the basis, namely Ao and A,;. Thus A enters the basis, and the slack variable A departs.

- The second tableau is given in figure 2.3.7

Fi'gure 2.3.7
Cqsl coefT: 0 3 6 0 2 4 6 8 0 Basic | Index
Variable: Xips hai o s - e ihsy . Az - At . . - NVadble' | b
0 ) s S L T - ) 1/4 Mi 0
I 0 -3 4 154 3 74 0 -1/4 Ao I
0 0 goe ] -1 ] I 0 A2
21/4 5 13/4 0 -3/4 -18

o=z G 0 -6 4

The solution to the second Tableau is A1) = 0, A19= 1 and A4 = 1. According to the simplex

criterion Ay, should enter the basis next, but this is not possible since Ajp would have to depart,

~ leaving two non adjacent A s i .e. Ay and Ayq in the basis. Therefore the only A that can enter is A3

with the Ajodeparting. The third Tableau is given in figure 2.3.8

Figure 2.3.8 (Third Tableau)

Cost coeff: 0 3 6 0 2 4 6 8 0 Basic | Index

T T T . kb tAe | b h.. Yadeble | b
0 1 I 0 0 0 0 0 0 Al 1
a7 0 127 A5 1 1 0 -177 A23 411
477 0 12770 -9/7 -8/7 -5/ O I Vi A2 i
S13/7 0 24/7 2417 -1217-417 0 0 -2/7 -69/7

Cj =4

The solution to the third Tableau is A = 1. A3 =4/7 and A4 = 3/7. Upon checking the simplex

criterion, it is found that this solution is optimal. From (2.4.1) it follows that
xi" = (0) Ao H(DAn + @2 =1

X2 = (0)ha0+ (1)A21 + (2)A22 + (3)Aa3 + (4)hay = 24/7 or 3.43

47




and from step [V above {* = 3(1) + 6(4/7) + 8(3/7) = 9.86
And the original problem yields 3(1) +2(3.43) = 9.86
Example 2.2. This cxémple is an improved fashion of the same example considered above. Using

~just 5 segments for Xy variable as against 3 scgments used for the Example 2.1.

. ET Non 2 I.(Nll\)‘ 2ra(x2n) fi(xin) 5 (x2x)
0 0 0 0 0 0 0
1 % 1 1 | 1.5 2
2 | ' 2 4 4 3 4
3 B 3 - 9 9 4.5 6
-+ 2 4 16 16 6 8

Figure 2.3.9 The completed Evaluation Table.
Step 1V Generate a linear programming problem in the Aj. The 2.2.2 is utilized here and this is to

be combined with the evaluation in figure 2.3.4, the illustrative problem now becomes

4 4
Maximize f (x,x2) = Z Ak + Z Rl . - s srsseteess 2.3.1

k =0 k =0

=04, + 1.34,, 434, + 4345 + 04, + 04, + 24, +44,, +04,; +84,,

4 4
Subject to g (x1.x2) = Z Akgik+ Z Rabllil = vemewesrsexicentnn 2.3.2

k =0 k =0

= 0Oho+ Ay +4h+9h 3+ 16A, + dlzg, + Aoy + Aoy d+ 9ha3 + 16Ay
The approximating linear programming problem (LPP) becomes
Maximize z = f=

OMhjo+ Ay 1.5+ 3R 2+ 4503+ 6A 14+ 0hyy + Ay 24+ Aynd + 6Ay5 + 8oy

.................... 233




SUbject to g’ = OA“) g5 }\.” 4+ 4;\.12 + 9}»” i 167\.]4 + 0)\.20‘" ;"ZI + Azz + 9}\'23 A |6A.24 <16

............... 234
4
Z }.,H;=}.|0+}‘”+A|2+A|3+kl4= e o e A 2.3.5
Kk =0
( 4
Z A=A, +A, + A, + A, + 4, =1
i e SEae T 05 5 - e s P 2.3.6

Definition 2.3.1 Property Of Adjacent weight (A’s)

Given that all the constraints are linear, if f(x) in 2.1.1 is to be maximized, and fj(x;) is a
concave function, then every optimal solution to the approximate model based on 2.4.1 —2.4.4
;:ontains only one Ay, or at most, two adjacent weight Ay and Ay at positive levels. The same
solution property holds if f{x) is to be minimized and fi(x;) is convex.

Now, for ease in utilizing.the optimization algorithm is subsequent steps the above adjacency
property must be observed. that is no more other than two of theA’s_associated with x; and x;
are greater than zero, and il two A’s_associated with a variable are greater than zero, then the
tact that those two A's_must be adjacent points has not been stated mathematically as a
constraints. However, it must be remembered always that we have such a constraint as we
move from one table to another. It should be noted that the Lincar Programming problem
(LPP) depends on three constraints and ten variables.

Step V Solve for the A

This is a farmiliar ground and by introducing a slack variableX., the first constraint can be
written as equality. Artificial variable may also be introduced to the second and third

constraints and proceed to use the simplex algorithm to solve the piecewise linear

approximation if the basis entry restriction is satisfied.




The approximating LPP c;ln now be rewritten as follows

grtA= O0hj+ Ay +ahn+9h 3+ 16h 1+ 0hag+ Aoy + Aoy + Ay + 16Xy + A = 16
Mo+ A+ A+ A5+ A=

A+ A+ A+ Ag+Ay =1

and z-I'=

0}\.“) + A‘“ 1.5+ 3}\': + 4.5}\.” o (’A'M o 0}\.20"' A._-“ 2 A.zz.4+ 6A’23 + 8).24 —Z=0
This can be put in the tabular form as shown below:

Figure 2.3.5 (Initial Tableau)

Cost coelT: 0 1.5 . 3 ~ &y =D 2 4 6 8 0 Basic Index

Variable: }\.w kn Mz A.|3 K|4 7\.20 7\.2| Kzz 123 }\.24 A Variable b

TR R I 4 9 16 1 % 16

I P B £ 0O 0 0 0 0 Mo I

VRPN U e 1 1 10 kg !

-5 0. 1.5 3 48NN 2 4. 6 8 0 0

From the simplex criterion for basis entry variable A4 is selected to enter. However, Ao is already

in the basis so that A4 cannot enter (two A’s in the set can be in a basis only if they are adjacent)
) unless Ay departs. The simplex procedure for basis departure (16/16, 1/0,1/1) indicates that either
| A or Ay can be climinated. Therefore, Azq is allowed to enter the basis and A departs.

| The solution to the initials tableau is A= 16 . L1y = A= | with Ay entering the new basis and Ay

exiting. The 1™ Tableau is given in figure 2.3.1 |




Figure 2.3.11 (1" tableau)

Cost coefT: 0 LS 3. 854 . 6aall 2 4 6 8 0 Basic Index

Variable: Mo }\.|| ).12 }\.|3 7\,|4 Xzo }\.2| lzz 7\,23 X24 A Variable b

0 ho g R L1 7 0] A 0
1 I a0 o0 0 0 -0 Ao 1
0 0e DeloRRRI Nl 1 1 1L A !
4% R W R R o e S S e 3

The solution to the first Tableau is A = 0; A1o= A2 =1. 14 should enter next, but this is
impossible for if it enters, A would depar(, leaving g in the basis not adjacent to Ay4 Also
Ai3, A2 would leave two non-adjacent A s in the basis. The next best contender is Ay If
.7»11 enters A departs leaving two adjacent A s in the first set in the basis, namely Ao and

‘A1 Thus A1) enter the basis, and the slack variable A departs. The second Tableau is given
in figure 2.3.12

Figure 2.3.12 (Second tableau)

Cost coeff: 0 155" -3 S o Jae i) 2 4 6 8 0 Basic Index

Variable: )\.lo 7&.” 7».|2 XU lu Xzo lu lzz Xz_; X24 A Variable b

0 UASRTSEEES s -12 <7 0 1} A 0
ML TR DRI Ao 1
g @G el 1 1 k10 Hooh !
-z -4 . S92 16 165 14 85 0 <15 -3

The solution to the second Tableau is A, =0, L10=0, A= 1.

A21 or Ay should not enter the basis, they are not adjacent to A4 . The best contender is Ay3. that is




A2 would leave the basis and A3 will enter the basis in the figure 2.3.13

Figure 2.3.13 (Third Tableau)

Cost coeff: 0 1%5. 3 4.5 G ) 2 4 6 8 0 Basic Index

Variable: Mo l“ 7L|2 7\.|3 XM Xzo X2| }\.22 123 124 A Variable b

U NS 0 0 0 B At 0

17 0 -3/7 -8/7-15/716/7 15/7 12/7 1 0 -1/7 Ay 177

-1/7 0 3/7 8/715/7-9/7 -8/7 -5/7 0 1 1/7 A2 6/7
¢ -2 -17/14 0 -9/14 5/73/14 24/7-12/7-4/7 0 0 -2/7 -129/14

The solution to the third Tableau is A;=1, Ay3=1/7 and A4 = 6/7.
A13 should enter the basis, then A4 would leave the basis leaving two non adjacent As in
-the basis i.e. A;; and A3 . the next best contender is A} . A;; would leave the basis and A ;>

would enter in the figure 2.3.14

Figure2.3.14 (Fourth Tableau)

Tl 0  I5 3 45 & 42 4 € B 0 B Index

Variable: Mo 7\.“ )»|2 M; A.M Xzo Xz| 7\.22 1.23 }\.24 A Variable b

1 SR N e e T R 0 0 0 ™ 1
4/7 3/7 0 -5/7-12/716/7 15/7 12/7 1 0 -1/7 Aas 4/7
A1 31 o SmAinenren s 0 1 17 das 37

Cj—Zj;. -13/14 -9/14 0 1/14 -3/14 -24/7 -12/7-4/70 0  -2/7 -138/14

The solution to the fourth Tableau is A2 = 1, Ay3=4/7 and A4 = 3/7. A3 should enter next, Ay

would leave the basis for A3 to enter the basis in the figure 2.3.15 (Fifth Tableau)




E igure 2.3.15 (Fifth Tableau)

[Costcoeff. 0 15 3 45 6 0 2 4 6 8 0 Basic Index

Variable: Mo ;\.u Mz 7»,|3 )-M )»20 7\.21 )\.22 Xz;; 7\.14 )\‘. Variable B

95 85 1 0 -7/5 95 85 1 0 -75 -1/5 Ap 2/5

00 0 0 0 1 I [ 0 Ay I

<5 35 0 1125 295 8/5 -1 0 S U5 Aw 3/5
€7 . 95-35 0 03/5:-33A0 -85 <il2 0 -1/10 3D -693/70

The solution to the fifth tableau is Aj2=2/5, Ay3=3/5 and A3 = 1. Upon checking the simplex

criterion, it is found that this solution is optimal. From 2.2.1 it follows that

X]‘ = (0))\,")-}- _52,“ + A.|2+ |.5A|3+ ZA'M = (%)l + |{-§) =13

X2 = (0)Asg+ Aoy + Ayn 24+ Aa3.3+4Ayy =3(1) =3

And from Step 1V above = 3(2/5) + 4.5(3/5) + 6(1) = 9.9

The original problem yields 3x; +2x; = 9.9

Comparing this optimal value with the other one before it . we are able to see that the more the
seaments considered. the better the piccewise lincar approximation procedure(or value).

~ The exact optimal solution to the above problem can be found using the Lagrangian multiplielfs
method.

2.4 By Lagrangian method

(1) Form the lagrangian function

LXA) =3% + 2%+ M16-4x2 %% . 24.1

OL(x.A)

-

=3 -84y, =0

Sy SE s S R . 2.4.2




S AGD
ox,

=2-2Mx,=0

=y X3 = G- ™ P e e R L St 243

s0. a"g"”l) =16-4x, -y, =0

=45t dnd=0 . 2.4.4
Substitute for 2.4.2 and 2.4.3 in 2.4.4;
i VT, L R R 1 it 5 ST s o 24.5

(36 + 64)/642% = 16

PR - c - T TR e T e 2.4.6
0. % SHESHE =12 T L e iesesises 2.4.7
Rlso s = MBI =32 7 o 0 T et e 2.4.8

The function yields 3x; + 2xz.= 10.
This value is the exact value of the problem, which is also the optimal value. This shows that the
- first solution to the approximating problem is fairly good in this case.

. The following should be noted when dealing with the approximate model i.e if every fj(x;) is
concave, and ifevery gy (\,) is convex, then a solution obtained by the simplex method will be a
global optimal solution for the model . But if these conditions are not satisfied, then by moditying
&e simpléx method, we can obtain at least a local optimum for the approximate model.
Nonlinear Objective with Nonlinear Constraints
‘More examples considered as follows

Exa@plé 2.4

Solve the problem.

Maximize x;> — x; + X2

~ Subjectto x; +x°<4,  x;,x220

' Solution:




- Stepl
f(x1.x2) = f1(x)) + [3(x2) where
where fi(x1) = x;*=x; ., fa(x2) = X2
2i= gu(x1) + gia(x2) + ...+ Zin(Xn) i=12....,m
LUNEND) 2N EgaNe)
where g11(X) =X . 2p(xe) = xo2
. Step 11

From the original problem we see that both x; and x; must be greater than zero.

The first constraint indicates that x; < 4 and x; < 2. (The variable does not necessarily need to
have the same domain). In our own case, let us partition the domain of each variable into four

segments, thus we will have five grid points.
Step 111

Atk=0.x=x10=0
Atk=1l.x=x1=1c.lc.

Also i(xip) = X||\: <Xk

k=0 X|o=0

Thus fi(x1x) =0 k=0

Similarly, fj(x;x) =0 k=1

Use the table below to evaluate the separate functions.




Figure 2.3.16

T BT X2k gn(xi) g12(X2x) fi(xa0) f2(xax)
0 0 0 0 0 0 0
o 5 1 25 0 5

2 2 | 2 | 2 |

3 3 1.5 3 2.25 6 1.5
4 4 2 4 4 12 2

The completed Evaluation Table.
Step 1V

The original problem can now be written as follows

4 4
Maximize f (x1,x2) = Z Mkfi + Z STREN
k =0 Kk =0

=0k Ag(0) + 2R g2 6A 15+ 12,4+ 0hag + Ay (0.5) + Ay + 1.5y + 2Ry

4 4
Subject 0 gy (XiX2) = Z Rikgik+ Z Aakgak

k =0 k =0
0o+ Ay 2ha+ 3A 3+ AN+ 0hgg + Ay (25) + A + 225N, + 4Ahyy £ 4

I
Z M=o+ A+ A+ A+ A=

Kk =0

4
Z Ak = Agg + Ay + Ay + Ay + 45, =1
k =0

Mk =125 k=0,1.2,34




Step V

By intfoducing a slack variable s, we can write the first constraint as an equality. Proceed by

applying Simplex method to solve the piecewise linear functions as follows;

Basis Mo A Az Az Mg Ao A An Az A S b
S 0 1 2 ¥ g 4 SRS W % L 1 4
Ao 1 1 1 1 B 0 0 0 0 0 1
o SR N My L RN IR S B 0 1

0 0 28 42 0 - e [N . 2 0 0

Initial tableau (figure 2.3.17)

By letting A.j4 enter the basis A4 will replace S while A1 and A9 remain the basis. Clearly A;oand
Aiaare not adjacent points and this is a situation we can not tolerate. Alternatively, we allow A4 to

replace Ao, in that case we would have s, A4 and Ay in our basis , a perfect condition as shown in

the next table.

First tableau (Figure 2.3.18)

Basis Ao A Az Az A Ao A A A Au S b
5 g B R MR S ) R 23 1 225" 4 1 0
Mg 1 1 e a8 0 0 0 0 0 0 1
A2 0 e 90 1 1. 1 1 ] 0 1
4 B R (G R i A | D 1 1.3 2 0 -12

Improved solution.

The first tableau yields the solution A4 =1, Ay = 1, all other variables = 0. Either A4, A23, Xzz

or),; would make b; negative or the adjacency condition would not be met, if any other variable
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enters. We have therefore found the optimal solution to our lincar piccewise approximation. It

now only remains to translate our solution into terms of the original variables x; and x,.
- Step VI
4
NS DL AN = O)0)+ (0K + (OXD)+ (O)3) + (1)) = 4

k =0

and

-
D R (O) TO)GS) T OXD) HOXLS) | OX2) - 0
k =0 '
And the evaluation of the objective function yields
2 7
X" =-x1+x2=12
~ Another case of nonlinear separable objective is treated as follows.
Example 2.6 Nonlinear Objective with Linear Constraints
Solve the following problem by separable programming
Maximize \| e

Subject tox;+x224

X;.Xx220
If ouf answer is X = 1, Xy = 3, [(x1,Xx2) = -3, how do we account for the fact that we obtained an
exact answer by an approximation method?
“Solution.
- Step

f(x1:X2) = fi(x1) + fa(x2) where

where fi(x;) = Xi- X|_2 . B(x2) =-x;




g1= gn(x) + gia(x2)
where g11(X1) = X; . g12(X2) = X2
Step 11
Determination ol'dunmin-s ol the variables
x.-—x|2=_0 = X (l=-x1)=0
= x;=0orl

if x; =1, then x; = 3 by the constraint.

Step 111
k Xk X2k gn(xix) g12(X2x) f1(x2x) f(xax)
T - 0 0 0 0 0
1 25 1 : 23 1 3/16 -1
- B 2 5 2 1/4 -2
3 1 3 1 3 0 -3

|

Complete evaluation table (Figure 2.5.19)

Step IV
Generation of LPP for the piccewise approximation

Maximize f= Minimize -f= "

O% ok TI6K i+ ~ 1k + 100ha % Dae Digg & D+ Ss

Subject to




g1=0Ajo+ 1740y 172015 + Aj3 +0hyo + Ay + 2h2 + 303 24

Ao+ A:Il +Ahiz A3 =1 |

Ao+ Au+An +Ay=1

This can be rewritten as follows

- P=0Xg - 3/16M; - 1/4X12 + (0)A 13 + 0hg0+ Ay + 2h25 + 3hp3
grr—s1+s53=0hjo+ 1/4011 172012 +Ai3 + 0y + Ay + 2002 + 3Ap3—5, +5; =4
Ao+ 7~.||+7t|2 Aiz =1

Ao+ A2+ A + Ay =1

where s and s, are suplus and artificial variables respectively

Step V

To solve for Ajx, we use the Simplex method and adjacency conditions are satisfied.

Figure 2.3.20

Basis Mo A A2 Az A A An An S S b

S, S & 1 0 1 2 3 -1 1 4

X o R, S g 0 0 0 o 0 0 1

Ao o b 10 1 D 1
0 -3/16-1/4 0 0 1 2 3 0 M 0

Aizwould enter the basis and Ao would leave, -1/4 is the most negative and this guess the pivot

because we are minimizing.




Figure 2.3.21

The solutionis A;3=1,A12=0,A3 =1

| Basis Ao A An An S Sz ‘B
S, 05 -25 0 172 0 | 2 3 -1 1 7/2
T ST D e T O T T R S I
e R B - et I 0 0 1

174 1716 0 1/4 0 1 2 3 0 M 1/4
The solutionis Aj2=1.A3=1 & S, =7/2
Basis Ao A A2 M3z Ao Aa An Ap St S b
Sx -0.5 -25 0 12 -3 22 -1 0 -1 1 172
r O 1 1 1 1 0 0 0 0 0 0 1
s 0 0 0 0 1 1 1 1 0 0 1
1/4 11/16 o 14 -3 -2 -1 0 0 M -11/4
( Figure 2.3.22)
=¥, Ap=%=1,An3=1
Basis Mo A A2 Azt Ao A An An St S b
Ts IR e R e W R e 1
i 23R 146 6 4 2 0 2 -2 0
e . i g ! S gl .9 1 1 1 1 0 0 1
1/8 -1/16 0 0 -32 -1 -12 0 Yoo <112 -3
Figure 2.3.23




Ay An Ay S S, b
i I g0 .0 "0 Y 1
18 I 12 0 s SRt A 0 R | 0
. | g AR SR | I gt [ 0 0 I
S8 76 14 0 o A IR T 0 0 0 =3

Figure 2.3.24

The solution has reached its optimal value. The solution to the table as A13= 1. A3 = | and slack
' variable, S;=0.
Step VI
- Solve for the original problem
204040+ ©O)(1)=1
X2 =0+ 0+0—(3)(1)= 3, so the original objective yiclds -3.
Asa furlher illustration, consider example 2.7

Example 2..7

Maximize [( 6x; — 3%, + (4x; - 2x2%) + (2x3 — l/3(x;2)] ............... (1)
Sibjectto. s F2xg+masdallg2000 0 e (2)

The terms in f(x) have been grouped in (1) to display the function’s separable character, each
~ component function in parenthesis is concave. Let the grids for x; and x; be (0..4,.7.1) and for x3

be (0,1,1.5,2,3); let -

To get the domain of x;.x2 and X, we find the 1* derivatives of them.




Figure 2.3.25

k X1k Xk X3k g g g1 fi f ;3

0 0 0 0 0 0 0 0 0 0

1 4 4 1 4 8 1 1.92 1.28 1.667
2 ot of 1 ¥ | 1.4 1.5 2.13 1.82 2.25
3 1 | 2 I i 2 3 2 2.667
4 0 0 3 1) 0 3 0 0 3

x1= (0o +4hi + . Thiz + Az + 0l

3;2 = (0)Aa0+ 4hgy + . Thy + Ag3 + OAag

X3 = 0);30 + A3 + 1.5A32 + 2A33 3A34

Now the problem can be written as follows

Maximize £= (0)A1o+1.92%;) + 2.73h12 + 3013+ (0)A0+ 1.28X5 + 1.82A2; + 2Ap3+ OA30 +
1.667A3) + 2.25032 + 2.66TA33 +3h3y

Subject to »

g= (0)_}.|o+.47\.|| + .Mz + A3+ (0)Ago+ .8Xy) + 1.4hg; + 2053+ OA3p + A3y + 1.5A3; +2A33 < 4

By simplex criterion, we add slack variable L to thegieg+A=16

3

553 4
:Z Aig = 1 :Z Kok =1 :Z Kk = 1
k =0

Also k =0 : k =0




Figure 2.3.26

Basis | Aip A A2 Az Ao Au Ax A Az Az Am A Az A b
A [ I | T -0 0 oedade 2 O 1 15 2 3 1 4
L1t LA D 0.0 0.6 0 ¢ 1
A2
0 0 0" 0 1 1 | 1 0 0 0 0 0 0 1
Bl g g B ot Tl . 1. 1 1 1. sl 0 1
0 192 7299 3 g IR N8 2 0 1.66672.252.6667 3 0 0

By simiplex criterion, either Ay, or A3 , so that either Ay or A39 will departs but let A3 enters Ajg

departs as shown below in Initial Tableau.

First Tableau (Fig.2.3.27)

Basis | Ao An A2 Mz A Aw A A Ao Aa A A A A b

A R MR e i L | R ¢ N g 1 15-2 : S 3

i 1 1 1 | | .8 . 0 o o o o0 0 0 1

BT g g 0o el 1 0 0 0.0 0 0 1

Ao 0 0 0 0 0 0 0 0 1 | 1 1 1 © 1
3 -108 -27 0 0 128 1.82 2 0 1.66672252.6667 3 O -3

The solution to the first Tableau is A = 3, A3 = 1, Ay = 1, A30 = 1 and A34 enters the basis, so that

the A39 departs the basis as shown in second Tableau.




Basis [ Ajp A Az M3 Ao Au A Az Az As Az Asz Az A b
% -1 <0 =3 00 2 S Y (e 3 -2 <15 -1 0 1 0
b Lo 0 P SRSy, 00 0 058D 1
A2 '

0 0 50 1 1 1 1 0 0 0 0 0. i 1
Aad 0 0 0:< 0 0 0 0 0 1 | 1 1 1 0 1

3 -1.08 -27 0 O 2882527 <3 1.3333 .75 =3333:0: 0 -6
Second Tableau ( 2.3.28)

The solution to the basis nor the A =0, A3 =1, Ay = 1; and A3 cannot enter the basis nor the Ay,

because both are not adjacent to Ay. Therefore Xy enters the basis , so that the A will leave the
basis as shown in the Third Tableau. '

Third Tableau (2.3.29)

Basis Ao A A A Ao A A Az A Ay Ay Az Ax A b

A2 10/8 -3/4-38 0 0 1 74 52 -15/4 -5/2-15/8-10/8 0 10/8 0

g o S i 1'% #® 6 o 0 0 @ @ 0 0 1

A

- $/4. 34 38 01 0 34 32 15M4 5121508 54 0 -5l4 1

A3 e il v 11 1Rl g =) 1
14 -12 21 0 0 0 -042-12 1.8 1.8667 1.651.2667 0 -1.6 6

The solution to the Third Tableau is L;3 =1, Az = 1, A3; = 0, A34 = 1. A3y or A3g or A3z would no
enter the basis because adjacently condition did not hold. But 433 will enter the basis and Ay

leaves the basis as shown in the Fourth Tableau as shown.




Fourth Tableau(2.3.30)

Basis [ Ao A A2 Az A Aa Az A Az Az Az Az As A b

B g T 0 0 0 0 0 0 i
A3 1 1 1 1520 0 0 0 0 0 0 0 0 0 1
A2

Ba3iS 340 0 45 -0 =38 615 3 2 32 1 0 -1 4/5

A SRS AN 645 00 5 6l 2 <1 <126 1 1 1/5

-2.67-88 -.17 0-1.07 0 034 032 -2.0 -67-25 0 0 -33 |-7.01336

The solution to the Fourth Table is 113 = 1, Ay = 1, A33 = 4/5 and A34 = 1/5. A34 will depart the

basis and A,; enters the basis as shown in the fifth Tableau.

Fifth Tableau(2.3.31)

Basis | Ajp An Az Az Ao Au A A Az As A Az As A b

T T S PR 8 ST 0 -1 10/3 5/3 5/6:-0 <513 =513 2/3

B R TS e o 0 0 0 @0 0 1
A23

g e B0 0 0 1 "1 11 10 1
Mol 53 0 a2 043 0 1 2 -1053 -53-56 0 53 53 173

2.1 -54 0 0 -144672 0 0 -0.36 -.8667 -.1 0.333 0 -5667 -9 |-7.1267

A

The solution to the fifth Tableau is Ay, =2/3 , A= 1/3 . A;3 =1 and A33= 1. Ay, departs the basis

and A3; enters the basis as shown in the sixth Tableua




Sixth Tableau(2.3.32)

Basis | A A A2 A3z Ao Ax Ax Ay Az As An Az A A b
p O i | 6/5 3/5 0 14/5 6/5 0 -6/5 4 2 1 0 -2 -2 4/5
T R TR R e ) S I SR N N TR I
Az . J
2 -6/ -3/5 0 -14/5 -6/5 0 06/5 3 -1 0 | 3 2 1/5
A (VIO SIS | R | IR It | I 0O 0 0 0 0 0 |
22 -58 -02 0 -1.56 -.04 0 -0.32 -99 -.166 0 0 -.50 -.8334(-7.15334

- The optimal solution is A;3= 1, Ap»= 1, A3, =4/5 = 0.8 and A33 = 1/5 = 0.2 with objective function

value 7.15334. This corresponds to x;” = 1, X2 =.7 and x3" = 1.6 with a value 7.1667.

The exact Solution.

Maximize [fi(x)) + [2(x2) + f3(x3) = (6x; — 3x1%) + (4x; — 2x3%) + (2x3 = (1/3)x3)]

Subject to x; +2x; +x3<4 & all x; =20

Lagrange’s function

L(x).X2.X3,A ) = 0X; - 3X|2 +4X; — 2X22 +2X3 — (1/3)X32 + A4 — X — 2X2—X3)

A .
=p-ox, —A=0

5 LW P P P
°3 ;

2

—a—L—=2—2—x1——l=0

£ A :
a—L=4—x,—2x,—x‘=0

oA 5 -
from: A =06-06x
Substitute 6 into 3 & 4 : 12x; +4x, =8

.......................

.......................

.........................

.........................

...........

vt 12




18y —2y =12 . - s (8)

from 5 Xi+2x;+x3=4
12X| -—4X2 =8
18%; - 2x3 =12

Using the Gauss-Jordan Elimination niethod:

e B |20 I 2 1 4
3 -1 0 2 310 2 3 =10 2
9 O <t 6 ) == 10 2 90/ = 16 0 0 14
( 7 ) 3
1.0 0 = (xooz
8 8
PR Tl 2
16 0 0 14 3 &197%
=00 2 —25 15
I =2 -1 — 061 =
g W TS T s 8 /J =\ 8 J '

1. X1 =7/8 xa=5/8 and x3 = 15/8
Also A =6—6(7/8) =%

: . Exact optimal solution is 7.25.

Further Example On Non-Separable Problem.(Objective function with cross product term)

Maxim'ize 4x,2 + 4x,x; + X3°
Subjectto 3x;+x; < 4
4x; +3x,<7
X1Xx2 >0
Step [ '

Convert the objective function into separable functions as follows.




4x, + 4x;x; + X,” becomes
4x,’ + 4(x;2 —x4%) + X2 where

where x; = 1/2(x3 + X4)
X2 = 1/2(x3 — X4)
LAxxp = 4():32 - X42)
would be added as new constants.
The original problem can be written as follows
Méximize 4x,% + 4(X32 - x42) +xy°
Subjec't to3x;+x; < 4

4x) +3x, <7

2 =X3+Xq

2)(2 =X3 = Xq
x120. x320 X320 X420
Solve for x;j using the separable programming technique

Construct the evaluation table for the Ajx




k Xik Xak X3k Xk 20 £12 229 22 81 g2 g g O Hh K f

This can be written in the form below:
Ma.xxilllizc 2= (DA A +4h 2 + 250+ Axn + 0Az0 + Az + Asa + Ago + Ag2
81= 0 HLSA + 3hiz + 0hog + 0.5h0 + Aoy <4
. gz =00 +2h 1 +4h;2 + 0hyg + 1.50y + 3hy <7
85 = O30 + A3p + 2032 + Ohgp + Ohyy + Ohyp =2
» 4= 0030 + A3y + 2432 + Ohgg + Ohgy + Ohgp =2
Z Ak =1 :Z lzk-;l Z Ak =1 Z Ay = 1
k =0 k =0 . &= L k=0
To solve for the Aj, . use the ordinary Simplex method so as to‘ solve for x,x2.x3and x4 in the

original problem.
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(Initial Tableau)

| asis | Ao A A2 Ao A Az Az Aa Az Ao Ag A Si S» Sz Sy b
| G R B | & 18 0 0 O O 0 1 0 0 0 4
o 1 NI 4 0 1.5 3 0 0 0 0 O - 00d9 0 7
b1 ;0 0 0 0 0 0 | 2 ¢ D U 06 D1 0 2
& 0 -0 0 0 0 0 | - ¢ 9 6 9.8 ] 2
Ao ol | Y | 0 0 U 9. U -0 0 D00 1
b0 0. 1 1000 0.0 00080 1
SR OE 0 00 @11 1 00 000 1
o 00 0 0 0 0 0 | | ' 0 -0-9 08 1
1 &7 - gasa 0 1 4 0 .0 0 008N 0

Where S and S; represent slack values, S3 and S, represent artificial variables. Either the A3, or

712 would enter the basis. Let 230 enters the basis then A3 would leave the basis.
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asis | Ao A Az Ao Ax A Ao Ay A Ado A A2 Si Sz S3 Sy b
Sy g i S R e B 0o 0 O o0 o1 0 0 O -
S, i SN R TR | R e B 0 O 0 0 001 0 o0 7
S 9. .00 @ 0 0 4 -3 0 0O 0 00 01 O 0
S 0 00 0 0 0 -4 =30 @ 0 90y ] 0
ol ¥ 170 0 SR 0 0 0 8,000 0 1
£ L0001 1 _TgEawo0 0 0 0000 0 1
X g 0 0 9 0. i 1 1 0O 0 0 0.0 00 1
M? R ke RS 0 8 s 1 1 8.8 09 1
.0 1 4 0. .90925 1 4 3 0 0 O 0 0 0 MM -4

The solution to the tableauis Ajg= Ay =A32=A4=1,S,=4,S5,=7,S3=S8;=0.

Here A using simplex Criterion, A1 would enter the basis, A9 would leave the basis as shown

below.




Second Tableau

Basis Mo A A2 A An A Az An An A Ag Az Sp S Sy Sy b
S =3 1 00 e ST 0 0 0 I B S T T 1
.Sz <4 2 0 0 l‘.5 3 0 0 0O 0 0 0 1 0 0 3
S “ o SR IR R IR i S S B (B SR i (N A M 0
18, ST O IRNY ) B R it RO I B | R 0
%ia FE. 10 00 0 e B 00 6 D Eshg b 1
B D00 LS 0 0 0 0 08 DA D !
£ o R0t 0 el 1 0 0 0 TR0 0 1
K >0 e | SR 0 0 0. -0 0 1 I 0B -0:9 0 1
30 82 L4 3 0 0 0 9 0.0 MM -8

The solution to the Tableau is Lp=Ap =4 =Ap= 1. §;=1,5=3,5:=8,=0.
Here by using Simplex method x> would have entered while A5 depart the basis in the next

tableau as tollows,




(Third Tableau)

Basis Lo Xy Mz Aw An A Rt dar Az Ko Al A2 S1 S; S3 08y b

B e D el S 8.0 .0 0 0 0100 015
& g N 35 aapT 0. 0 0.0 0016 0] 0
Si (TR 0.7 ik 0 0 -4 -3 0 O 0 0 0 01 0 0
SN Y 0 .3 0 0 0 U0 00 | 0
b T 00 0.0 0 G 0.0 .0 0 0 |
At L e e e N B R R N RN 1
T o s R R S R IR B R N 1

4 3 0 -1 -75 0 -4 3 0 O 0 O O OMM -9

The solution to the Tableau is A0 = A23=A32 =A490=S; = S = S3 =S54 = 0. Also the optimal value

for the objective function is 9. X;.X2,X3 and x4 can be found using As.

X = 2, ARIXKE = 0%+ .5h1+ Az = (0)(0) + (:5)(0) + (1)(1) =1,

k =0

Xy = Z AakXak = 0hzo+.5h21+ Az = (0)(0) + (.5)(0) + (1)(1) =1,

k =0

X3 = Z AKXk = 0hz0+ Aar +2h32 = (0)(0) + (1)(0) +2(0) =2,

k =0




2
and %= Mk = Okt Oay +0hy = (O)(1) + (OX0) + (0)0) =0,
k =0

Ny = l,xz'= I,x3"=2 andx; =0 .

To solve for the original problem ‘let look for xj.x2,x3 and x4 and substitute for these in the original
Problem.

So the original pmlilcm dxg® + dxxo o+ .\'32 yiclds 9.

2.5 Conversion ol'le-quarabilily Programming Problems To Separable Programming
Problems.

A function would not be separable, if it involves one of the following:

(1) Cross product terms
- (2) Exponential function
2.5.1 Non — separability due to Cross Product

Suprisingly, many nonlinear expression can be put into separable form by introducing

additional variables and constraints.

Suppose the model contains in the objective function or constraints (or both) the product of two

expressions:

b ST T e S e S R N g

A simple example is X;.X3. As the first step in obtaining separability, substitute the single

variable w whenever 2.5.1 appears.

Secondly, introduce two more variables y and z, and relate them by adding the pair of new

constraints.
f(x) X2....xa) = (y + 2) = 0 and g(x; X2,...Xa) - (y—-2)=0 ... 2.5.2

Thirdly, to complete the procedure, impose the separable type constraint relating w to y and z:




w—(y’-2)=0 B e e L e L 2.5.3
This ensures that w = (X} ,X2,...,Xn)-£(X| ,X2,...,Xn)

- The constraints 2.5.2 and 2.5.3 are added to the model if 2.5.1 is simply x;x; the transformation

rcqui'rcs three additional variables and x;x; would be to take its log. lorming
Log w = I(igxi BARRRy - U UTEIREERE L e R e s Sk 2.54
where w = X xa. Then xx; would be replaced by w and 2.5.4 would be added to the constraint set
This Amethod adds only one variable.
To illustrate the above, convert cach problem below into a separable form.
Example 2.3
(1) Maximize 4x; + 2x; — XXz
Subject tq X +x7 25

NN s 4

X1,X22 0

(2) maximize X Xz + XaX3+ X|X2X3
Subject to X, + x| — 2X;Xx3 <0

2%7% + 3xy + 6Xx3 < 12

X32 +4x1x3<5

every Xj =0




Solution
Separable form
(1) Let x3=1/3 (x; + x2) and x4 = Ya(X; —X3)
SO X)Xz = X3% — X4
So the original problem can now be written as
Maximize 4x) + 2X3 — X3* — X4
‘Subject to -x; - X3’ £ -5
X3P -x2<4, x3=1/2 (x1 +x2) 5 xq4="4(x; —Xx3)
x120,x,20, x3=1/2(xy +xz)20a.nd ; Xa=Y(x1—xX2)20
Here, we added two variables x3 and x4 and equal number of constraints to the model.
(2) Letw=xyx2,h= xaxzand k =xx;3 & Y = X1X2X3
The original problem becomes:
Maximize w+h+y
Subject to x;* + x; —2y < 0
2x2° + 3x, + 6h < 12
X2 +4k <5

Take log of w = x;x2, h = x;x3 and k = x;x3 & y = X;x2x3 and add them to the constraints set in

the above:




Log w = logx, + logx,
Log h = logx, + logx;
log k = log x; + log x;
log y = log x; + log x; +log x;
also x1,x2,x3 20
w,hk.y >0
The above optimization problem can be stated better as follows:
Maximize w+h+y
Subjeci tox2+x,-2y<0
2x," + 3%, + 6h < 12
X2 +4k <5
Log w = logx, + logx,
Log h = logx, + logxs
log k = log x; + log x»
‘ log y = log x; + log x; log x3
everyXj20;h>0,k>0, w>0andy>0
Note that we added four new variables and equal number of constraints to the model.

2.5.2 Exponential Function.




A second illustration, suppose the model contains the expression of the form:

))f(x.xo %)

(h(xl . N
where h(x,Xa,....X,) > 0 for all possible x; . Here the function " is substituted for 2.5.6 and the
new constraint.

W DX X)) IR 5X) S0 0 7 L e ssasaanne 2.5.6

is added to the model. Although 2.5.6 13 itsell’ not separable, it can be treated by the approach used
to scparate the expression in 2.5.5 (where g = In h)

To illustrate the above, convert the maximization problem into a separable form.

Example 2.4

Maximize 5( 2 + x;x2 + x2)(x3/x4)™ %

Subjectto x;Xax3x4 < 16

Solution.
Separable form of the above is as follows:
: Let
w=xXiNeh=x =X k=xmonay & Z =X/
Also let ¢” = [Z(x)]"
P-hlInZ=0 where q= Ini
:.p—hq=0 5> P=hq
log p=logh+logq
Alsor=ye’, y=5(2+xix2 +x3)
Take log of the following and add them to the set of constraints i.e
W =XX2, K = X|X2X3X4, Z =X3/X4, P=hq, r=ye"
log w=log x; +log xz

log k = logx; + log x; + logx; + log x4




log Z = log x3 - logx,

log P=log h+log q
logr=plnec+logy

and also log y = log 5 + log(2 + w +X3)
The original problem can be rewritlcn.in separable form as follows:
Maximize r

Subjccg tok<16

log w=log x; +log x;

log k = logx; + log x; + logxs + log x4

.log Z =log x3- logxy

log P=logh+logq
logr=plne+logy

logy=log5 +log(2 +w+x;)

Alsoll50,k>0, w>0,-q>0,p>0,r>0,y>0,z>0,k>0
We added cight new variables and 6 new constraints to the model.
2.6 Computation of Nonlinear Programming Model.

As we have seen, converting a nonlinear programming model into an approximate with

separable functions increases the size of the model in two ways:
Firstly, the separability transformation introduces new constraints and variables.

Secondly the subsequent linearization expands the number of constraints and variables even

further.




If the original problem contains only a few nonlinearitics, this approach is quite workable;

otherwise the algorithm may not work.

If the objective and constraint functions utilize the property of adjacent weights, As , then

we can employ the ordinary simplex algorithm, which is an available tool. The modified method

that forces this property is not widely available.
2.7 Remarks

In applying the method to an actual problem, we must of course, consider the selection of
the grid for each approximation. Broadly stated, the goal is to select the grids/segments that yicld

a nearly optimal solution for the original problem.
Summary

This chapter treated the following with examples, transformation of nonlinear
pfogramming problem to separate programming problem, optimization Algorithm for separable
objective and conversion of Nonseparability programming problem to separable programming

problems.




3.0 OPTIMIZATION MODELS WITH RATIONAL OBJECTIVE
3.1 INTRODUCTION
Ratio of Linear Forms. Suppose the objective fﬁnction to be maximized is

n

' Co + Z CjX;j

C(x) = e
n
G Y
J=t e e 3.1.1

Sometimes the model is reffered to as fractional programming and occasionally as hyperbolic
programming. To avoid having to consider a host of possibilities in the exposition assume that the
Xj are so constrained that the denominator in 3.1.1 is strictly positive for all feasible values of x; ,
and that the maximum of C(x) is finite.
3.1.1 Definition. Fractional Programming Problem
When the nonlinear (fractional) objective can be expressed as a linear function, it is then said to
be a Rational Programming Problem.
3.2 CONVERSION OF FRACTIONAL PROGRAMMING INTO A LINEAR MODEL.
3.2.1 CONSTRAINED / UNCONSTRAINED PROBLEM
Suppose the objective [unction to be maximized is 3.1.1 above.

To convert the problem to a linear model, define the variable r as

-1
n
I'= f(‘,+z ijj

= L emsismesimiie 3.1.2

And hence 3.1.1 can be written as

n
Cor+ Z Cjxjr

e R — 3.1.3

By assumption, r > 0 for all feasible values of xj Next make a change of variables.

32




BRI el T T L i L sakmtinemes s haaedtiy s Bt 3.1.4

Then the transformed model becomes

) n
Maximize ¢,r+ Z CiYj - maskisssereseivameninsresnsprnnnsess 3.1.5
i =1
where, according to 3.1.2 the rand y, must satisly the lincar constraint
n
rfy + Z fyj=1
e A NSNS S DI, SR SRRt )6 £ o S 3.1.6

and r > 0. Note that the change of variables 3.1.4 must be performed in any other constraints on x;
. For example, if any additional conditions are lincar

Z ajjxj = b

J =t W 1 R - R 1) | 3.1.7

The transformed constrants are found by multiplying each relatioin in 3.1.7 by r, yielding

D (aiy) ~bir=o:

f.J

Y et et I SN,y | (S (U0 L SR I 3.1.8

To illustrate the above, convert the problem below into an equivalent lincar model.

Example 3.1
o =34+ 2X; + 4X, — 5X
Maximize : : Mot
6+ 3x' - X
Subject to :
X1 X220

7x;+ 9%, + 10x3< 30

X2, x21 X320




Solution

The equivalent lincar model is as follows:

Let r=1/(6 + 3x; — X2) | :

Then the objective becomes

Maximize -3r + 2rx; +4rx; — 5rx3

Subject to rx; —rx; > 0

7rx) + 9rxy + 10rx3 < 30r

x| =20,I’Xz=20,r){3=26

By assumption r > 0

Also we change x; to y; as follows i.c.

Y= =123

So, the. above optimization problem can be written in linear form as follows:

Maximize -3r + 2y, + 4y, — Sy;

Subjecttoy; -y, 20

Tyy + 9y2 +10y3 < 30r

y1=20, y=2r, y=20

3.3 OPTIMIZATION ALGORITHM i-‘OR RATIONAL OBIJECTIVE

Here, fractional programming is utilized to solve an optimization problem. A continuous
nonlinear fractional function is consi('i_ered, approximated by the Simplex algorithm. That is
essentially what the following algorithm does.

Step I,

Express the functions ( i.e numerator / denominator and constraints) involved in the problem as
separate functions.

Step 11

Define r as the reciprocal of the denominator of the objective such that r > 0.
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Step 111

Multiply the function in the numerator of the objective and the constraint(s) by r and change Ix; to
Yi- .

Step IV

Gcncru.(c an equivalent linear or nonlincar programming problem in the Yisj=12,...,m with
suitable cc;nslrain.ls onrandy;.

Step V

Generate a linear programming problem in the Ajx with suitable constraints on the A (if step IV
invoves the nonlinear function(s))

Step VI

Solve for the Ak

StepVI'I

Solve for the y;

Step VIII

Solve for the original variables

3.4 ALTERNATIVE OPTlMlZATlOf\I ALGORITHM FOR RATIONAL OBJECTIVE

- Here, the fractional model is split into the function in the numerator and the function in the
denominator combines with constraints.

Stepl

Express the functions involved in the problem as separate functions.

Step 11

Solve for the function in the numerator / constraints using Simplex method.

Step 11

Solve for the function in the denominator / constraints using Simplex method.




Step IV

Apply séparable programming algorithm to either II or I1I (or both) when it consists of nonlinear
functions.

StepV

- Divide the result of step 1 by that of the Step 111,

‘Slcp Vi

Solve for the variables

Note that the values of the variables are suppose to be the same for both the Step II and I11.
Example 3.2 ' |

For illustrative purposes let us solve the problem

bl
5 X =X +Xx
Maximize =—=1 "2

x +2
Subject to
2
X +x°<4
X1.Xx220
Step |
~ Express the function as separate [unctions.

- This can easily be done as follows:

fi =%~ % . =% Numerator
hi(x))=x,+2 Denominator
For constraints

gn (x) =X & gi2 (x2) =x2”
Step 11 Define r as the reciprocal of the objective function.

From the objective function, let the reciprocal of given denominator of the fractional model be r.

e r=1/(x;+2)




Step 11
Multiply the function in the numerator of the objective and the constraint(s) by r and change rx; to
5 |
Here the numerator is multiply by r? and also the constraints
)= exd-rfx e
Also RS r x:l < 4

X220
This can be written as
Maximize re(y) = y.2 —ry; +1Yys
Subject to ry; +y,* < 4r’

Yi,y220

Step IV
Generate a linear programming problem in the Aj; with suitable constraints on the Aj

Since the objective and the constraints involves nonlinear then the tabular format would be

utilized as follows;

K Vik Va Cogn(yw) 2i2(yax) i(yix) f2(y2x)
0 0 e 0 0 0 0

1 r Sr i’ 251 0 57
- S r 27 r 27 r?

3 3r 1.5¢ 3 2251 61" 157
4 4r 2r 41 41 1212 21

The equivalent linear model is :
gi= OApo + l'zln it 21‘2M2 +3l’2)\.|3+ 4(’2;\44 + 0Ay + .251‘27\.2| + 1'2}\.22 + 41'27\,24 +S=4

£ = 0A1o + OA1) +2r%A12 + 68413 + 120714 + Ohgg + .51%Ag) + PAaz + 151703 + 2r%A2,




4
Z Ma=ho+ A+ An+ A3+ Ay=1
k =0

4
z Aok =2y + 4y + 4y '_'"123""{:4 =1

also, k=0

Step VI Solve for the Ak

We utilized the simplex algorithm here to solve for the As just like we've done with the

example in the chapter contains separable model.

Fig 3.3.1 (Initial tableau)

Basis Ao A A2 A3 A A A Axn A A S
S 0 r 2. 3r 4r 0 257 ¥ 2257 4F O 4
Mo 1 1 | 1 | 0 0 0 0 0 0 1
A2
0 0 0 0 0 | 1 1 1 | 0 1
0 ) ooy 12 0 S5 r. LS 2F 0 0

o 3% o . =
Since r> 0. 12 17 is the most positive entry in the last row and should therefore lead us to

the pivol. so Ay enters and Ao departs | since 4/417 is greater than the ratio 1/1 in the second row]

Fig 3.3.2 (First Tableau)

Basis Ao An Az Az A A A A Az A S b
S e A 9 25 ¢ 225¢ 4¢ ) 4-4r
A 1 1 1 1 10 0 0 0 0 0 1
A20
| N 0 0 0 1 1 ] | 1 0 1
127 <127 410 6 0 0 S5r¢ ¢ 15 2 0 -12¢*




Since the value of r has been determined using Lagrangian method to be 1/6, the objective

function is 12 r’/r i.c. 12r.
“The value of the objective function is therefore 12(1/6) = 2.
From the last tablcau above S = 4 - 4r* ,Aia=1and Ay =1.

Step V and VI:

oy =0hjo + Ay + 2rh g 3rhy3 + 4k
=0+0+0+0+4r(l1)=4r

. ¥2= O0Ayo + .5rhy; + rhyy + 1.5rAg3 + 21y
=0(1)+0+0+0+0=0

By Step III, y; = rx; then 4r = rx, then x;= 4

y2 =1X3 then 0=rx, thenx;=0
- . the original problem becomes 4> -4+0)/(4+2)=12/6=2

Alsor=1/(x; +2) =1/(4+2)=1/6

Example 3.3

As an illustration, consider last example for Alternative Algorithm.

Step |

Maximize x,” - X; + X, Numerator/Constraints

Subject to x; + x,” < 4

X1,X220

f(x1,x2) = fi(xi) + B(x2)
= )(|2 -X) +X3
gi(x1,x2) = gn(xi) + gia(x2)

=X|+X22S4




Step 11

k X1k X2k gn(xix) gia(xx) fi(x2x) fa(xa)
0 0 T 0 0 0

1 1 k.| 1 W 4 0 5|

b = | - | 2 1

3 3 1.5 3 2.25 0 1.5
4 4 > 4 4 12 2

~ Figure 3.4.1

= OA g+ A(0) + 2A 1+ 6A 3+ 12X 4+ 0Agy + Ag(0.5) + Aga + 1.5A5; + 2A,

g = OMjo+ Ay + 4X 12+ 3h 3+ dh 14 + 0hag + Aay (:25) + Aag + 2.25h03 + 4hsy < 4

4
Z AMa=do+ A+ hp+ A+ 2=1
k =0

4
z Mk =M+ Ay + M+ Moz + Ay = |

k=0

Akzo, j=12; k=0,1234

Fig 3.4.2 (first tableau)

Basis Ao A A2 A 3714 Ao An Axn Ay Ay S b
N 0 | 2 3 4 0 25 1 225 4 | 4
Ao 1 1 1 1 1 0 0 0 0 0 0 1

A2




A4 will enter and A,y will depart, the slack variable will not depart since the A4 and A9 are not

two adjacent As.
7L|o= I,A.zo= 1&S=4.

Fig 3.4.3 (last tableau)

Basis K My Aiz Az Mg A An An Az Axn S b
S -3 RS0 25 1 225 4 1 0
A ol S b b B o8B 0 I
A20 R R R el I R 0 I

AT T R T R TR R 1 15 2 0 -12

If a4 replaces Ayg; it will definitely make the S = by = - 4 which violates the constraints since no b;

may ever be negative. Also Az, A2, Az3 will also makes the b;
:.8=0,Au=1,00=1,f=12

Step V

NT=0+0+0+0+4 (D=4

X =0+0+0+0+0=0
Evaluation of the objective function yields
X=X +x2= 12

Repeating Step | for the denominator/Constraint
Maximize x; + 2
Subject to x; + x,” < 4

X1 .x220




h(x1,x2) = hy(x;) + ha(x2)
= X|» + 2 + 0

gi(x1.X2) = gni(xi) + gi2(x2)

= Nijo+ .\:" > 4

Step 111

k ik X2k ' gn(xik) 812(X2x) [1(x2x)
0 0 0 0 0 2

1 1 5 1 25 3

s e I 2 I 5 g

3 3 l:5 3 2.25- - B
4 4 2 4 4 6

Figure 3.4.4

Approximate [unctions.
D= 2X 00t 3A bkt 3A 1 oAy
g = OAjo+ Ay + 212 3h 3+ 4h g + 0y + 250 + A +2.2503 +4hy + S =4

4

DAzl j=12

k =0

k0, j=12; k=0,1.234




Basis Mo An A2 A A Az Aa Az A A S
S 0 1 2 =R RN o 25 | 1 225 4 1
Ao | 1 1 | G e Sl 0 0o 0 0 0
A20 0 0 0 0 0 1 1 1 | \ 0
2 3 4 5 o 0 0 0o 0 0 0

Figure 3.4.5

Aaenters while the Ay departs , since L9 & A4 are not two adjacent As.

Basis Mo An Az Az Aa A A A Az Ay S
S A-3 S0 0 2% 1L 225 .4 1
A4 1 1 odeinl O 0 0 0 0 0
A20 0 0. 0-8- 0 1 1 1 | | 0
4 -3 -2 -1 0 0 0 0 0 0 0
Figure 3.4.6

The procedure as reached its terminal stage. no more positive entries in the last row.

\

Sohe= 1Ay =1 & S =0 just like that of the numerator (or formal operation)

Step V
xi"=4(l)=4
X =0(1)=0

Objective function yields x; +2=4+2=0
Now evaluation of the original problem yields

(X2 =xi + x)/(x; +2)=12/6=2




r_.,.
M that this method yields the exact value of the problem.
3.5 DETERMINATION OF THE EXACT OPTIMAL VALUES
Application of Lagrangian multipliers to the [ractional programming problem yields the following
As an illustration, consider example 3.4

Example 3.4

L=y1* - ty; + rys+ A4 =1y, — yr?)
oL

E =2y, —-r—=ri=0 T8 et L .8 - W 351

AL |

— P (2y2)}» FO L8 YaSHIA e it 3.5.2
2

oL

a = 4= y - Yzz =0 MET Y A i bl 353

Substitute (3.5.1) & (3.5.2) in (3.5.3):
r(r+ A2 + (r/20)" = 4

L R R T 3.54
By Newton — Raphson method

Y1 = 7.98981/2 = 3.9949;

y2 =1/13.9796

Now, we determines y;.y; & r

Since y; = rx; i.¢ 3.9949r = rx,

L. X1 =3.9949

Also, y, =rxyi.e 0/0715r =rx,

X =.0715

The objective function yields (3.9949 — 3.9949 + 0.071 5)/(3.9949 +2) =2.007678




- Error = Exact value — approximate value |
=2.0000 —2.007678 = -0.007678
xi (Error) = 4 - 3.9949 = .0051
X2 (Error) =0-0.0715 = - 0.00715
To determine the exact optimal values using Lagrangian method. The numerator / constraint(s)
and denominator / conslmim(_s).
Consider example 3.5 for illustration.

LExample 3.5
Maximize x> = x| + X
Subject to x; + sz <4
X;.X220
L=x,2 - x| + X2+ A4 — X = X2°)
| [P I S . 3.5.5

e I LI e, SRR ) 3.5.6

-ql-i-x+x2—4
iz Pt

........................ 3.3.7
From G5k =0+ IN2 . . snsessssssesesssvesnns 3.5.8
From (3.5.6) xa = 1/2\ e et e S S S 3.5.9

Substitute (3.5.8) & (3.5.9) in (3.5.7);
A+ D2+ /40 =4 ie 4

2142 +1=0




By NeWto'n - Raphéon method

fa)=207- 1402 +1=0

df(L)/dA = 607 — 281

D A= A= f )/ () where 19 =7
M= 7= 2D = 1D 1 o) -28))
=0.989793918

X = [0.989795918 + 1]/2

=3.9949

x2=1/[2(6.989795918)]

=0.071532846 =0.0715

: Objective function yields x;* — x; + X, = 12.03584459 with error of — 0.03584459.

Also for the denominator it goes like this
Maximize x; + X3

Subject to x; + X’ <4

Xy X320

T DY o S i SR e e PR S NA 3.5.10
oL

N e X S S g ] s D L bvea s 3.5.11
X,

oL
— =0
A OO 3.5.12

@—x+x2-4
a)‘_— 1 2

................... 335.13

.. Substitute for (3.5.11) in (3.5.10):

L=x; + 2+ 1(4 = x| - x3?)




T

Differentiate L now w.r.L. X2 , we have:

—a£=—2x2=0 ie. x2=0

0x,
Substitute for x, = 0 in (3.5.13), we have :
xi+0°=4
oxp =4

So. objective [unction yiplds xi+2=0

;. The original problem yiclds

(1P - X1 +2)/(x1 +2)=12.03584459 / 6

= 2.005974098

Just the error of 0.005974098, which is minimal in nature.

Note that for both numerator (objective function) and denominator (objective function) the values
of x; and x; are constants. But the \)alues of the A differs.

3.6 Nonlinear Objective (Ratio of two linear functions) with linear constraints.

Consider the following illustrative example.

Example 3.6
i 3+ Xo+ 2
Maximize = ——————
MENt |

Subject o N +2N0s 3

3X|+X3 <4

Solution . It is obvious that all the functions involved are separable. step I holds.
Step 11
Letr=1/(x; +x2+ 1)

where r> 0
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- |

Step 111
Maximize C(x) = 3r x; +rxa +2r
Subjectto  rx; +2rx; < 3r

3rx; +rxp<4r

rx;2r,rxp =20

Step 111
This can be rewritten as :
Maximize C(y) =3y, +y, +2r
Subject to y; + 2y, < 3r
Jyi+y:2<dr
yi2r, y220
where y, = .rx; and y, =rx;

Step VII solve for y; using ordinary Simplex method

Fig 3.6.1
Basis Yi y2 S S Ss S4 b
S, I 2 1 0 0 0 3r
s 3 1 0 ! 0 0 ar
5 1 0 0o 0 e 1 r
3 & 0 0 0 M 2r

Let S; and S; be slack variables

S3 and Sy are Artificial variables
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Fgure 3.6.2
Basis yi y2 S S, S3 S4 b
S 0 2 B 0 1 -1 2r
Sz 0 1 1 1 3 -3 r
i 1 0 0 0 -1 1 r

0 -1 0 0 -3 M+ 3 5r

The solutiony; =1,y =0=S3=8;.S,=2r,S5;=r

This can be improved further by considering most negative entry in the last row:

Figure 3.6.3
Easis yi y2 Sy S, S; Sa : b
S 0 | 0 5 e -5 5 0
y2 0 1 0 | 3 -3 r
1y 1 0 0 0 -1 1 r
0 0 0 1 0 M 6r

The solution to the table is y; =1, y2 =1; S} = S; = S3 = S4 = 0 while C(y) = 6r

Ifyi=rx;=r e x;=1

Y2=IX2 =71 ie x2=1

'But from the step I1

yitya+r =1

Tk bred iedr=1==r=1/3

orr= 1./(x| +x;+1) yields 1/(1+1+1)=1/3

So C(y) =6r =6(1/3) =2

Also, the original problem yields (3x; + x2 + 2)/(x; + x2 + 1)

=B+1+2[(1+1+1)=6/3=2




Now. using the Alternative Algorithm, we have the following:

Example 3.7

Numerator / Constraints
Maximize 3x; +xa+ 2
Subject o xp +2xas 3

ixptxa =4

This can be solved using ordinary simplex method as follows:

Figure 3.6.4
Basis X| X2 S S, S3 Sa b
Sy 1 Z 1 0 0 0
S; 3 1 0 1 0 0
S4 1 0 0 0 -1 1
3 o 0 0 0 M
Figure 3.60.5
Basis X1 ) Sy S S Sy b
S 0 2 1 0 1 -1
Sz 0 1 0 1 3 -3
Sy 1 0 s ) 0 -1 1
0 -1 0 0 -3 M+3

The solution is C(x)=5,x;=1,x,=0,8,=2,S,=S;=0
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Basis X| X2 Sy S, S;3 Sa ﬂ
S, 0 0 I 2 3 5 0
S 0 1 0 1 3 -3 1
S I o 0 0 l | 1
o o 0 0 | 0 M 6

Figure 3.0.0
The solution is 2i(x) =6, x; = L.x=1,51=0=5, =83 =854=0.
So the original problem yields 3x; +x, +2=3+1+2=06
Denominator )Constraints
Maximize x; + X2+ 1
Subjeét to x;+2x2<3
3x +x2<4
xiel, 20
This can be solved using ordinary Simplex method just like we did above for the numerator /

constraints problem. Now, we adopt the simplex criterion as follows:

Basis N Xo S S, Sy Sy b
T 2 | 0 0 0 3
S 3 | 0 l 0 0 4
S, I 0.chts B 0 B | |
-1 B 0 0 0 M 1

| Figure 3.6.7
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Basis X1 X2 S| Sz S3 S4 b

Sy 0 2 | 0 1 -1 2
S 0 1 '} o . 1 3 -3 1
X| 1 0 0> 0 -1 1 1
0 -1 0 0 -1 M+1 2
Figure 3..6.8
Basis X X2 S S, S3 S4 | b
S 0 0 T -5 | 5 0
X2 0 1 i 1 3 3 1
x| 1 0 g -1 1 1
0 " 0 [ 2 M:2. |3
Figure 3.6.9

The solution to the last tableau is z(x) = 3,x=1,x=18,=5,=8;=84=0.
The ori.ginal objective yields x; +xp + I =1+1+1=3
Therefore the original problem C(x) = Z(x)/Z(x)
=03x;+x2+ 1)/ (x) +x2+1)=6/3 =2.

- One more example considered. Here the objective function comprises of the quadratic function in
the numerator while the denominator (;f the fractional (objective) function is linear in nature.
Example 3.8
Maximﬁze (4x;% + 4x,x; + x22)/(2x) + X3)
Subjectto  3x; +x,<4

4x,+3x, <7

X1,x220




Step 1

Convert the objective (Numerator) function to separable function as follows:
4x,2 + 4x;x2 + x,° becomes
4x2 + 437 - xd) + X2
where Ny Ya(Na b ag)
X2 = Ya(N3 - \y)

o= (Nt - XJI)V
would be added as new constraints.
The original problem can be written as follows:
Maximize [4x|2 +4(x;% - X42) + x22] /(2x) —X2)
Subject to 3x; +x2<4

4x)+3x <7

X1 =Na by

2X2 = X3 - X4
X120,x220,x320,x420
Step 1l
Let r= 1/(2x; + X2)

wherer> 0

Step 1
- Multiply the numerator and the constraints by r, as follows
rz(x) = 41'2x|2 + 4r2$(ixz g rzxz2 e 4r2x|2 +4r? (x;;2 - x42) + rzxz2
JIrx;+rxy<dr
4rx;+rx;<7r
rXx; +r Xq = 21X

IX3— IXg = 2IX;
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X)Xy, IX3, X320

where y, =1X;,y2 =Xy, y3 =1X3, y4 = X4

Then the problexﬁ can now be rewritten as follows:
4y, i 4yl +y)?

vitysdr

4y +3y; h 7r

Y3tya=2y

Yi=¥i=2y;

vi20.y220,y;20.y,20 "

Since y <1, y2<r solving simultancously constraints (1) and (2) we have
2y, =2r for b;

2y, =2r for by

Step IV

Solve for y;j using the separable programming technique we construct the evaluation table for A

K | yw yx ys Y& 8 812 81 €2 81 g2 g g2 H K K 6
0 0 0 0 510 Orsfinie 0 -0 0 0 0 0 0 0 0 0
S s =) | 0= 1S sean ) 1.5 1 0 | 0 1 25 1 0
1 1 | 2 o3 | Ens ! 3 2 0 2 0 4 | 4 0
 Figure 3.6.9

This can be written in the form below:

Maximize rz = (0)Ajo+A 1 + 4A 12 +.25h; + Az + 0A30 + Az) + 4A32 + 0hgg + Ohyy + OAga
‘subject to
g1 = (O)A o +1.5A1 + 32 + OAzp + 0.505 + Ay <dr

2= 0010 +2A 1 + 4N 12 + 0Ay0 + 1.5+ 3hn <T7r
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23 = 039 + A3y + 243, + OAgo + OAgy + OAyp = 2r

g4 = 0A30 + A3y + 2432 + OAgo + OAqy + Ohgy = 2r

7]

2 2
:Z Ak=1 :Z Ak =1 2 Aag= 1 22: Ay =1
; k =0 ’k'=o , k=0

k=0

To solve for the Aj . use the ordinary Simplex method so as to solve for x;,X3,X3 and X4 in the
original problem.

Fig. 3.6.10 (Initial Tableau)

Basis | Lo A Az Ao Aar Az Ao Ay A Ao Aai A2 Si S2 Sy Sy b(r)
Sy B e e TR | P SRR BEAR ==y, 0 09195000 4
S, e SR Tl | S P S T 0 g 8 00 Fe. 0 7
Ss B B mEed 9 0. 0 6001 0 [ -2
Sa il S () 0 0 0' 0 1 2 g 0 6 0 @ 0 1 2
Ao BN | 1 (1 S 0" 8 g 0. 0 0 6.8 480 1
bl i 1 e 0 6 0 06D o 1
e R | S | 0-‘ 0 R 1 1 0 0 0‘ 00 0 O 1
e R ISR | SR g "8 A | 1 1 1 0 0 0 00O 1

1 e | "N BNt . R 0 1 4 0 o 0 0 OMM 0

Where S; and S; represent slack variables , S3 and Sy represents artificial variables. Either the A3,

or Ai» would enter the basis, let A3, enters the basis .Then the A3 would leave the basis.




i

Figure 3.6.11 (First tableau)

Basis | Xi0 A A2 A A Az Az Ay A Ao Aai A St S2 S3 Sy b(r)
Sy gds 3.9 b R o 0 0 0 0 010 0 0 4
S, PO 4.8 1.5 3554 0 0 G- 0.  9dvE" 0 7
§ 0 0 0 0. 0 WH.3 0 0 0 0001 0 0
Sq o adh | ¢ SR ¢ e e =3, 0 0 0 0850 01 0
Ao : gt | i SRS 0 0 g 0 9 0 00 0 0 0 1
A2 [ RS 1 1 b -0 .. 0. 494 0 9 9. 8009 1
¥ L ohge A R SO | 7 R | 1 1 0O 0 0 0 0 0 O 1
14;) - TR S R g 4 =9 0 1 I L.0@ 00 1

0 1 4 0025 -1 4 3 0 0 0O 0 0 0 MM -4r

The solution to the tableau is Ljg =20 =A32=2A0=1,5,=4,5,=7,53 =54 =0.

Here by using simplex Criterion, A;> would enter the basis, Ao would leave the basis as shown in

the next table (figure 3.21)




Second Tableau (3.6.12)

Basis | Ao A A2 Ao Az Az Aso Aa An Aao Aar A2 Sy S2 Sz Sq b(r)
S DT e ¢ o ohemes0 0 0 0 L0900 1
S; 4 2t sry RS0 0 0.0 00 3
5 10 0 6 o prtG e G 0 0 0001 0 0
Sq BI0.0 0 WTRPEET e 0 o 0w o 0
e N e AR 0 .0 0 00 .0 00 1
oo T i 0 0 0 b 0o 1
o e SRR 1 0 0 0050 0 0 1
N.o g0 6.0 ‘B U 6 0 1 1 1 0000 1

A3 0 0 005 ] 4% 0 0 0 0 0 OMM | -

The so!ution to the Tableau is A2 = X0 = A3 =Ago = 1. $i1=1,8,=3,83=54= 0.
Here by using Simplex method A2, would have enter while Ay departs the basis in the next tableau

as follows.
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Figure 3.6.13 (third tableau) -

Basis | Ao A A Aw Au Az Ao Aun An A A A2 St 2 83 Sa b(r)
Sy 3 <15 0 -1 -5 0 0 6 0 0 979010 0-0 0
S 4 2 0 -3 -15 0 0 0 6 0 0.0 0.1 0.0 0
Si .50 0 0 0 0 -4 -3 0 0 0 06 0 1% 0
b 0.-0 O 0 0 0 -4 30 O 0 4.0 0 8-} 0
A2 B | 0 0 0 0 0 0 0 900 0.0 0.8 1
A2 0 0 0 1 1 1 0 0 0 O 0 0 0 0 0 0 1
2 0O 0 o0 .0 0 AR | 1 1 0O 0 0 0 40U 0.0 1
R 0. % 0 @ ) I 0 0 0 1 1 1 B S0sie 1

A3 0 0 B0 4 3 00 0.0 0 oMM

The solution to the Tableauis A=A =A3=Agp =T
Si=8= S;=8;=0. Also the opli#uul value for the objective lunction is 9%, let find Y1.Y2.Y3
and vy using As.
Step VIl’
= D Maykar =0kt Skt Az = (0)0)+ (5)O) + (I)(Dr=r.

k =0

y) = Z Aakyakr = 0hzo+ .5A21 + Axz = (0)(0) + (.5)(0) + (I)(1)r =r,

k =0

y3 =Z AskYskT = 0Az0+ A3 + 2R3 = (0)(0) + (1)(0) + 2(1)r = 2r,

k =0
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' |

andys'= D, Mkyr = Okt O + Oz =(OXD) + (0X0)+ 00) =0

k =0

:.y.‘.=r.y2'=r.y3'=2rand y4'=0
Step VI

To solve for the original problem, Icl‘ look for x; . Xo. X3 and x4 and substitute for these in the
original problcni

Since Yi, = I j=1234,
theny,=rx;=r ie¢ x.‘ =1,
y=rma=r ie x3 =1, .
Y3=x3=2r i.e X5 =32,

ya=rxs=0 ie x4 =0

So the original problem yields

(@xi7 +4x1%2 + X)) / (2% + x2) =

[4(1) +4(1)(1) + 1PY[2(1) + 1]=9/3=3

But the optimal solution from the tableau is rz = 9r* where r = 1/(2x, + x) = 1/(2(1) + 1) = 1/3

So the optimal value ol the objective function is 9(1/3) =3

Note that the objective function z was multiplied by r, so that the fraction at the right hand side

also becomes

2
Cor2 + Z Cijrz

i =l where Cy = 0. Therefore we have a situation where
7= Z r Cjx;
= . In the above example 1z = 9% . so that z = 9r where r= 1/3 | then
z' =9(1/3)=3.
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It was observed tht the objective function could be factorized to 2x | + X3 which can be combine
with the given constraints and solved ordinarily by Simplex method to get the same answer as
that of the above. Consider the solution to the above problem using ordinary Simplex method;
Example 3.9
Maximize Z2=2x1 ¥ X2
Subjectto  3x; +x3<4
4x,+3x, £7
X1,X220
This can be transformed as follows, using Simple)f criterion.
3'x| ;I-x2+S| =4
4x; +3x,+ S, =7 where S| & S; are slack variables.
z2-2x1—-X2+0S;+0S;=0
Now,

Initial tableau

Basis X Xy Sy S, b

S 3 1 1 0 4

S, 4 3 0 | 7
] -1 0 0 0

Figure 3.23




- First Tableau

Basis X) X2 S, S, b
X 1 1/3 1/3 0 4/3
S, 0 5/3 -4/3 1 5/3

0 -1/3 A3 0 8/3
Figure 3.24

The solution to the [irst tableau is x; =4/3, S, = 5/3,S,=x, =0 and Z = 8/3 . Then the X2 will

enter the basis, while the S, departs the basis as follows:

Basis Xi X2 S S, b
x| 1 0 3/5 2175 1
SR Rl 1 -4/5 3/5 |

0 0 2/5 /5 93
Second tableau.

So. the solution to the last tableau is x; =x; =1, S, =S8;=0and Z = 9/3 = 3 which is the optimal
value of the objective function 2x; + x> where X; = 12 X = | are optimal value lor variables x; and
X3 .

By comparing the example 3.8 and 3.9, we observed that the objective function in each case is 9/3
=3 while x; =1 and x; = 1 in the two examples.

Remarks.

We observed that the idea of separable programming works for the rational objective and the idea

of combining numerator and denominator with the constraints, so that the results of the latter

divide by the results of the formal also works.




4.0 COMPUTATIONAL ALGORITHM FOR SEPARABLE OBJECTIVE

4.1 PSEUDOCODE

Pseudocode for Separable Objective

Step I : INPUT OBJECTIVE FUNCTION f(x) AND CONSTRAINTS g;,i=1,2,...,m.

Step IT: DETERMINE THE DOMAINS OF THE VARIABLES, xi, i=1,2,...,n

Step III: IF FUNCTIONS ARE SEPARABLE, THEN PARTITION THE DOMAIN OF THE
VARIABLES INTO NUMBERS OF SEGMENTS, OTHERWISE EXPRESS THE FUNCTIONS
AS SEPARATE FUNCTIONS.

Step 1V: EVALUATE SEPARATE FUNCTIONS AT ENDPOINTS OF EACH SEGMENT.
étep V: GENERATE LINEAR PROGRAMMING PROBLEM IN Ajk , Ajx =0

Step VI: SOLVE FOR Aj USING MODIFIED SIMPLEX METHOD.

Step VII: SOLVE FOR x;,1=1,2,...,n.

Step VIII:PRINT f(x) , xi, i = 1,2,...,n.




42 FLOWCHART

COMPUTATIONAL ANALYSIS
Application of Separable Algorithm
Flow Chart for Separable Objective

START

Enter Objective fin f(x)
& Constraints
g, i=1L2,...n

y.

Determine the domain of
variables, x; , i=1,2,...,n

Is Problem

nonseparable
f)

no y

yes

A 4

Express the fns as Separate
functions.

A

Partition domain of
variables in to number of
segments

Evaluate separate fn at end-
points of each segment.




Generate Linear
Programming Problem in

Ajrs Mg 20

A

Solve for A, using
modified Simplex method

=2 e

-

Solve for x;

.

\Prim f(x), %; = 1,2,....n \




|

4.3 OUTPUT OF THE SEPARABLE OBJECTIVE CODE

Objective Function

k. Separable Objective - [Step I]

Constraint

[ 5wz
x1-3 Add
x1-3 Clear
we-4
GO

8. Separable Objective - [Step 11]

Number of Segments l

Enter the domain for each variable

2 {¢* Range

" Values

%1

(]

%2

=3 =

£

Previous

Next

e o e =

B! Separable Objective - [Step 111 -

==

K Wik [x2k  |npak) |2ek)
0 0 0 0 0 0 0 0 0
1 1.5 2 7.53375 2 1.5 2E-08 1.5€-08 2
2 3 4 243 4 3 4E-08 3E-08 4
Previous i Next
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/

w Shparable Objactiva;: [FormA]

L10 T 5 | (155 L20 i g L S ) s2 Right Side
| {51 (1] 1.5 3 0 0 0 1 0 3
S2 0 3] 0l 0 2 4 0 1 4
i [T 1 1 1 0 0 0 0 0 1
L20 0 0 1] 1 1 1 0 0 1
| 0 759375 243 [0} 2 a 0 0 0
[
!
1
|
1 Pravious l lterate

W Separable Objective - [Form4]

| [t [ e 51 L2 L20 L21 L22 S1 52 Right Side
51 3 5| - 0 0 0 0 1 0 0
52 0 0 0 ] 2 0 0 1 0
L12 3 1 1 0 0 0 0 0 1
[ L22 0 0 0 1 1 1 0 0 1
i -243]  -235.4063 0 ] 2 0 0 0 247
i
! Previous l lerate
B e e o e
3 ; | 1 | (7
UEERE R
| [Vaiiable |Value | <
x1 3
%2 4
f 247

W Separable Objective - [Step I]

Objective Function 13-,:1 +2%2
Constraint d%1 " 24527216 { .......... PR 3
4x172+x2°2-16 Clear
GO
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Number of Segments

W Separable Objective - [Step 1]

l

Enter the domain for each variable

{*" Range

" Values

%1

%2

Previous

Next

4

Dbjective - [Formd4]

. Separable Objective - [Step 111] gl Tioin e
k x 1k x 2k f1(=1k) f2(x2k) all gl2

0 0 0 0 0 0 0

1 05 1 15 2 1 1

2 1 2 3 4 4 4

3 o 3 45 6 9 9

4 2 4 6 8 6 16

Previous Next

18]

m

L12

L13

L14

L20

L21

L22

L4

51

Right Side

-

16

o] —|—

WD | —| &=

DO~

ol=lol—

el Bt A=A R

N = DO

OO

ODIODIO | —
-—
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Pbjective - [Formd]

_=18lx|

L13

L14

L21

51

Right Side -

wlo|—|a
glo|l—|lw

=21 e I=1 1)

l—=lolu

ho= 1 Rt L= [—]

OIOICO|—
O | O

llerale

Dbjective - [Form4]

o oz Jus  Jud Jioe o i 22 3 [oe e Right Side ||
RN i E 16 16 15 12 7 0 1 o
0 3 B 15 16 15 12 7 0 1 1!
0 0 0 0 1 1 [ 1 1 0 |
0 3 3 18 1B 165 14 5 o 15 Bl
i
I)ls

Results
Dbjective - [Form4] it i -IEL)Q
I [ I (N T [ I TN v T (P T Righ(Side ||
1 1] 09393938 1| 152557E 07 768372€ 07 1920936 07 0 04703aBECR| 1|
0] -04285714] 1.142857 2142857 2285714] 2142857] 1.714266 1 0] -0.1426571] 01428571,
0] 04285714 _1.142857| 2.142857] 1.285714] 1142857 -0.7142657 0 1] 0.1428571]_08571423)
0] 06428572 07142861 02142851 -3428572| 1714285 05714287 0 0] 02857142 9.214286]

us

lterate
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Objective - [Form4] .:..Iﬂ-)-q
L1 L12 L3 L14 L2 L2t L22 LA L24 s1 Right Side |

1 1| 0.9333336 1] 152557€-07) 768372E-07| 192033€ 07 0 0] 470348E-08 1 i
0.4285714 0 07142859 -1.714285| 2285715] 2.142857| 1.714286 1 0] -0.1428572| 0.5714286
04285714 0] 07142853 1714285] 1.285715] -1.142857| 07142858 0 1] 0.1428572] 04285714
06428572 0]142919€-02] 04285724] -3428573] -1.714285[ 05714288 0 0] 02857142] 9857143
= ‘"m‘e y

Dbjective - [Formd] @%;{3 R i

1 L12 L13 L14 L20 L21 L22 123 L24 S1 Right Side
16 1 0] -1.339333 1.8 1533998 09933336 0 -1.393939{ -0.1993933| 0.4000004

354454€-09 0 0[833737E-08] 09339399 09333999 0.9333393 1 1| 277248E-03 1

-0.5939993 0 1] 2399993 -1.8| -1533399| -0.9333393 0 14 02| 05999338

-0 5333397 0 0| -0.6000023 -33| -1539998| -0.499333%6 0] -0.1000008 03| -9.900001

WN.Separable Objective - [Form5]

Variable Value

w1 7 R |
%2 3
f -3.900001

119



. Separable Objective - [Step I]

Objective Function |§n -3x172+4x2-2x2"2+2x%3-0.3333333x3"2

Constraint w1 +2%2+%3-4

1+ % 0ew 34 Clear

GO

. Separable Objective - [Step II]

Number of Segments | 4 " Range

Enter the domain for each variable @ Values

x1 0 04 0.7 1 0

%2 0 0.4 0.7 1 0

%3 0 1 1.5 2 3
Previous g Next

k x 1k x 2k % 3k f1(x1k) f2(x2k) f3[{x3k) gl gl2 gl3

0 0 0 0 0 0 0 0 0 0

1 04 0.4 1 1.92 1.28] 1666667 0.4 08 1]

2 0.7 07 15 273 1.82 2.25 0.7 14 1.5

3 1 1 2 3 2| 2666667 1 2 2

4 0 0 i 0 0 3 0 0 3
Previous Next
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Dbjective - [Form4]

221 |L22 L23 L24 L30 L31 L32 5
08| 14 2 0 0 1 15 2 3 1 4
0 0 0 0 0 0 0 0 0 0 1
1 1 1 1 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 1 0 1
1.28 1.82 2 0 0] 1.666667 2.25| 2666667 3 0 0
I3

s Iterate ' Resuls |

Dbjective - [Form4]

L21 L22 L23 L24 L30 L3 L32 L33 L34 51 Right Side

08 1.4 2 0 -3 2 15 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1
1 1 1 1 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 1 0 1
1.28 1.82 2 0 -3| -1.333333| -0.7500002] -0.3333335 0 0 3

e 12
= Aﬁ;e K
Dbjective - [Form4] po oA B e S R .18]x]
21 L22 L23 L24. L30 L31 L32 L33 L34 51 Right Side
08 14 2 0 -3 -2 15 -1 0 1 0
0 0 0 0 0 0 0 0 0 0 1
1 1 1 1 0 0 ] 0 0 0 1
0 0 0 0 1 1 1 1 1 0 1
1.28 1.82 2 0 3| -1.333333] -0.7500002 -0.3333335 0 0 B
L’ ¥

ws | neae Resuls l
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Dbjective - [Form4]

21 L22 L23 L31
1 1.75 0 25 -1.875
0 0 0 0 0
0 0.75 1 25 1.875
0 0 0 1 1
0 042 0 1866666 1.65

Dbjective - [Formd] .

21 L22 L23 L3t
1 1| 09933993 0 0 0 0
0 0 0 0 0 0
0 06 2 15 1 4
0 06 - 1 05 0 1
0] 0.3393333| 03199333 +2| 0.6666664| 0.2433393 0

s lerate

L3

1.666667

0.8333333

0

0

1

1

-1.666667

-0.8333333

9993996E-02

333332E-02

Dbjective - [Form4]
2 JL22 L23
ih 0

0 0

0 0

0 1

0 0] -0.35933
4 e "e'ate
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Pbjective - [Form4]

T [ N [ N [ TN [ N (T [ [ N (i 5 RightSide |
12 B ] 2 1 0 2 2| 0.8000001] -
D 0 0 D 0 0 D D 0 D 1
12 Y N 3 1 0 1 3 2| 015939
1 1 ] 1 0 0 0 0 0 0 |
TR 02 0] 0.3133939] 06533334 1] 01666566 0 0] 0.4595996] 08333333 716%3%]
—Ir
I | Resuls I

RN Separable Objective - [Form5]

Variable Value

| 1
%2 B AT
"3 1.6
f -7.153333
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4.4 GRAPHICAL SOLUTIONS

In one of the examples above we considered the function

f(xl»xz) = xls + X

over the region

x <3 X <4 x 20 X 20

We can draw the points under consideration using a parametric surface plot. First define a set of

x4 and x, values which range over the critical region

N:= 100 i=0.N  j:=0.N

and then compute the.corresponding z values
z;,;=1Xi,;.Yi,j)

The corresponding plot looks like

lx,v.2),x,v,2-0),(x ® y® 70 )




In one of the examples above we considered the function

(xx) =3 %+ 2%
over the region
4-x’+x% <16 X 20 : %20
We can draw the points under consideration using a parametric surface plot. First define a set of X4

and x, values which range over the critical region

and then compute the corresponding z values
Zi.j = f(Xi.j,Yi'j)

The corresponding plot looks like

.y 2 v.z o (x ® y® 50




In one of the examples above we considered the function
b
I(thz) = X|h =X+ X

over the region

4
X+ X <4 X|20 .\220

We can draw the points under consideration using a parametric surface plot. First define a set of x

and x, values which range over the critical region

N := 100 i:=0.N Ji=0.. N

and then compute the corresponding z values

Z,'_, = r( x|,,|'Y|-.i)

The corresponding plot looks like

) -

(X,Y,Z),(X,\,,Z' 0),(X (N> ,Y <N> ,Z (N) )
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In one of the examples above we considered the function X := 1.6
f(x,%) = (6 e xzz) +'(4- TR xzz) + (2 - x5 — 0.33333333 x,z)
over the region
N+2-%+%<4 x20 -x20 X 20

We can draw the points under consideration using a parametric surface plot. First define a set of

X4, Xpand x, values which range over the critical region

N:= 100 tz=10:0N 1=00N

and then compute the corresponding z values
Zi,j=1(Xi jYi,j)

The corresponding plot looks like

lx.v.2),(x.v,2.0,(x ¥ y® z®)




5.0 COMPUTATIONAL ALGORITHM FOR RATIONAL OBJECTIVE
5.1 ALGORITHM/OUTPUT OF RATIONAL OBJECTIVE USING MATHCAD

5.2.1 Example 5.1

=X+ X

2
X)
‘(XI’XZ) s X, + 2

Given
X + xzz <4
X éO
X220

Maximié(f,x.,xz) =( e )

0.101

=i Xy Xy

2 .
X
f(x, ,xz) = —;;2— l(x, ,xz) =2

We can draw the points under consideration using a parametric
surface plot. First define a set of x and x, values which range
over the critical region

4

N:= 100 i:=0..N j=0.. N

Xi‘j:=—r‘% -cos(i-%[) Yi. :=ﬁ-sin(i--2£)

and then compute the corresponding z values

z; = 1{(Xi.;,¥i 3)




5.2.2 Example 5.2

3x|+x2+2

LT

x|:=l Xp =

Given
x|.+2-x2S3
3-x|+x254
xzzo

: 1.333 ;

Maximiz¢f,x;,%) = .

axumz( X "2) ( 0 ) f("l"‘2)=2

3x|+x2+2

' f(xl ,xz) =

X|+X2+|

We can draw the points under consideration using a parametric surface plot. First define a set of

x4 and x, values which range over the critical region

N:=100  i:=0.N  j=0.N

and then compute the corresponding z values

z ;=X j»Yi.j)
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5.2 GRAPHICAL SOLUTIONS

(X,Y,Z),(X,Y,Z-O),(X Ny N

Output of Example 5.1

0.5

(X,Y,Z),(X,Y,Z~0),(X Ny W )

Output of Example 5.2
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REMARK (PART OF CH.V)

Two different methods are considered in this case, the first one is the direct utilization of the
rational programming to solve problems in chapter V and the method worked perfectly for them.
While another method considered for the case of splitting [ractional objective function into
numerator function combined with constraints and the denominator [unction combined with

constraints and the latter divide the formal in order to get the value of rational function.

5.3 ANALYSIS OF RESULT. RECOMMENDATION AND CONCLUSION
5.3.1 ANALYSIS

The first, second and fourth chapters discussed and practicalised idea of separable Algorithm,
and also introduced theory on separable objective. While the two remaining chapters, that is
chapter three and five discussed and practicalised idea of Rational Algorithm and they also
introduced theory on rational objective. We are able to solve the rational objective using powerful
mathematical software package, Mathcad. It solves the problem with ease and can be viewed from
any region.
5.3.2 RECOMMENDATION

The code i chapter Vocan successively solve the Nonlincar (Scparable) programming
problem most especially problems with power of 2(i.e Quadratic in nature) while that of power
greater than 2 are not exhaustive in practice or considered. This work can be considered for day-

to-day activities in industries, home management, and factory production e.t.c.



| i

~ 5.3.3 CONCLUSION.

From the foregoing analysis, it is cleared that the more the numbers of variables,
constraints and cross product terms, the more the computation time, utilization of computer space
and the iterations. The goal ol adopting the separable method is to select the grids that yield a
nearly optimal solution tor the original problem. The more the grids (or segments) considered in
the cases of both the separable and the rational objectives, the more we tend to close towards
exact values of the pbjccliyc functions. That is to say that the method gives fairly good
approximation. A linear function is both concave and convex, therefore a basic solution that is
locally optimal must be globally optimal.

One drawback of approxithating function by piecewise linear function as described in
chapter two that achieving a close approximation requires a large number line segments
(variables), whereas such a fine grid for gridpoints (bréakpoints) is needed only in the immediate
neighbourhood of an optimal solution. Therefore, more sophisticated approaches that use a
succession of two-segment piecewise linear functions have been developed in chapter IV to obtain
successively closer approximations within this immediate neighbourhood. This kind of approach

tends to be both faster and more accurate in closely approximating an optimal solution.




APPENDIX (SEPARABLE CODE)

‘Module 1

Public Lambda() As Single 2D array rows=n, cols=S, h=m+n+1 ==>(m=no of constraints, 1 for f,
n for no vars) _

r,c,h. h=0 f; h=1 to m constraints; h=m to m+n sum of lamda for each of n vars

Public BaseVariables() As Variable 'vector size=m+n

Public Constant() As Single 'vector size=m+n+1

Public x() As Single 'matrix nxS
Public g() As Single 'matrix mxnxS
Public f() As Single 'matrix nXS

Public S As Integer 'no of segments, k=0 to s
Public n As Integer 'no of variables

Public m As Integer 'no of constraints*
Public k As Integer 'current segment no

Dim theRow(3) As Single

Dim Entering As Variable
Dim Leaving As Variable
Dim pr As Integer, pc As Integer

Public Function PivotColumn(Order As Integer) As Integer
Dim Temp() As Integer
ReDim Temp(n * (S + 1))
Dim Store As Integer
Fori=1Ton*(S+1)
Temp(i) =1
Next i
Fori=1Ton*(S+1)
Forj=1Ton*(S+1)
If Lambda(Convert(Temp(i), S + 1).Row, Convert(Temp(i), S + 1).Col, 4) >
Lambda(Convert(Temp(j), S + 1).Row, Convert(Temp(j), S + 1).Col, 4) Then
Store = Temp(j)
Temp(j) = Temp(i)
‘Temp(i) = Store
End If
Next j
Next i
PivotColumn = Temp(Order)
End Function

Public Function PivotRow(PivotCol As Integer) As Integer

Dim rows(3) As Integer, saved As Integer

If Lambda(Convert(PivotCol, S + 1).Row, Convert(PivotCol, S + 1).Col, 1) <> 0 Then theRow(1)
= Constant(1) / Lambda(Convert(PivotCol, S + 1).Row, Convert(PivotCol, S + 1).Col, 1) Else
theRow(1) = 9999999999999#

If Lambda(Convert(PivotCol, S + 1).Row, Convert(PivotCol, S + 1).Col, 2) <> 0 Then theRow(2)
= Constant(2) / Lambda(Convert(PivotCol, S + 1).Row, Convert(PivotCol, S + 1).Col, 2) Else
theRow(2) = 9999999999999#
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If Lambda(Convert(PivotCol, S + 1).Row, Convert(PivotCol, S + 1).Col, 3) < 0 Then theRow(3)
= Constant(3) / Lambda(Convert(PivotCol, S + 1).Row, Convert(PivotCol, S + 1).Col, 3) Else
theRow(3) = 9999999999999#
rows(1) = 1: rows(2) = 2: rows(3) =3
Fori=1To3 .
Forj=1To3
If theRow(rows(i)) < theRow(rows(j)) Then
saved = rows(i)
rows(i) = rows(j)
rows(j) = saved
End If
Next j
Next i
If theRow(rows(1)) = theRow(rows(2)) Then
If BaseVariables(rows(1)).Row = Convert(PivotCol, S + 1).Row Then
PivotRow = rows(1)
Else
PivotRow = rows(2)
End If
Else
PivotRow = rows(1)
End If
End Function

Sub Init()
Dim i As Integer, j As Integer, k As Integer

ReDim Lambda(n, S, 4)

Fori=1Ton
Fork=0To S
Lambda(i, k, 1) = g(1, 1, k)
Next k
Next i

Forj=1Ton
Fork=0To S
Lambda(j, k, 4) = {(j, k)
Next k
Next j

Forj=1Ton
Fork=0To S
If j = 1 Then Lambda(j, k, 2) = 1 Else Lambda(j, k, 2) = 0
Next k
Next j -

Forj=1Ton
Fork=0To S
If j =2 Then Lambda(j; k, 3) = 1 Else Lambda(j, k, 3) = 0
Next k '
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Next j

Lambda(0, 0, 1)
Lambda(0, 0, 2)
Lambda(0, 0, 3)
Lambda(0, 0, 4)

e Al
LS D =

ReDim BaseVariables(m + n)
BaseVariables(1).Col =0
BaseVariables(1).Row =0
BaseVariables(2).Row = 1
BaseVariables(2).Col = 0
BaseVariables(3).Row = 2
BascVariables(3).Col =0

ReDim Constant(m +n + 1) _
Constant(1) = Form1.Constraints(1).RightSide
Constant(2) = 1

Constant(3) = 1

Constant(4) =0

End Sub

Public Function Convert(Number As Integer, Base As Integer) As Variable
Convert.Col = Number Mod Base - 1
Convert.Row = (Number \ Base) Mod Base + 1
If Convert.Col <0 Then
Convert.Col = Convert.Col + Base
Convert.Row = Convert.Row - |
End If
End Function

Public Sub Iterate()
Dim i As Integer
Dim enteringRow As Integer
i=1
Do
pe = PivotColumn(i)
pr = PivotRow(pc)
enteringRow = Convert(pc, S + 1).Row
If BaseVariables(1).Row = enteringRow And pr <> 1 Then
problemvar = 1
Elself BaseVariables(2).Row = enteringRow And pr <> 2 Then
problemvar = 2
Elself BaseVariables(3).Row = enteringRow And pr <> 3 Then
problemvar =3

Else’
problemvar = 0
End If ,
If problemvar <> 0 And Abs(BaseVariables(problemvar).Col - Convert(pc, S + 1).Col) < 1
Then
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i=i+l

Else
Leaving.Row = BaseVariables(pr).Row
Leaving.Col = BaseVariables(pr).Col

BaseVariables(pr).Col = Convert(pc, S + 1).Col
BaseVariables(pr).Row = Convért(pe, S + 1).Row

Entering.Row = BaseVariables(pr).Row
Entering.Col = BaseVariables(pr).Col
ElementaryRowOps
Exit Do
End If
Loop
End Sub
Sub ElementaryRowOps()
Dim i As Integer, Row As Integer
'PivotRow/2
Fori=0Ton*(S+1)
Lambda(Convert(i, S + 1).Row, Convert(i, S + 1).Col, pr) = _
Lambda(Convert(i, S + 1).Row, Convert(i, S + 1).Col, pr) / PivotNumber
Next i
Constant(pr) = Constant(pr) / PivotNumber

'Tow=row-row(pr)*pivotrow
For Row=1To 4
If Row <> pr Then
Constant(Row) = _
-Lambda(Convert(pc, S + 1).Row, Convert(pc, S + 1).Col, Row) * _
Constant(pr) + _
Constant(Row)
Fori=0Ton*(S+1)
Lambda(Convert(i, S + 1).Row, Convert(i, S + 1).Col, Row) = _
-Lambda(Convert(pc, S + 1).Row, Convert(pc, S + 1).Col, Row) * _
Lambda(Convert(i, S + 1).Row, Convert(i, S + 1).Col, pr) + _
‘Lambda(Convert(i, S + 1).Row, Convert(i, S + 1).Col, Row)
Next i
End If
Next Row
End Sub
Function PivotNumber() As Single
PivotNumber = Lambda(Convert(pc, S + 1).Row, Convert(pc, S + 1).Col, pr)
End Function




‘Class Module SubExp
Public Value As String
Public Function Var() As String
If InStr(Value, "x") = 0 Then
var = nn
Else
Var = Mid(Value, InStr(Value, "x"), InStr(Value + "A", "A") - InStr(Value, "x"))
End If
End Function
Public Function Exponent() As Singlc
Dim i As Integer
i = InStr(Value, ""\")
Ifi =0 Then
Exponent = 1
Else
Exponent = Right(Value, Len(Value) - i)
End If ’ ‘
End Function
Public Function Multiplier() As Single
If Var < Empty Then
Multiplier = Val(Left(Value, InStr(Value, "x") - 1))
If Not IsNumeric(Left(Value, InStr(Value, "x") - 1)) Then
If Left(Value, InStr(Value, "x") - 1) ="-" Then
Multiplier = -1
Else
Multiplier = 1
End If
End If
Elself InStr(Value, "*") <> 0 Then
Multiplier = Left(Value, InStr(Value, "*"))
Else
Multiplier = Value
End If
End Function

137




‘Class Module Expression
Public Value As String
Public Function Evaluate(Bindings As Collection) As Single
Dim subs As Collection
Dim E As SubExp, B As Binding
Set subs = Split("+-")
For Each E In subs

For Each B In Bindings

If InStr(E.Value, B.Var) > 0 Then

Exit For
End If

Next B

Evaluate = Evaluate + Eval(E, B.Value)
Next E
End Function
Public Function Split(Tokens As String) As Collection
Dim noToks As Integer, i As Integer, Pos As Integer
Dim SubExpl As SubExp :
Dim Exp As String
Exp = Value
noToks = Len(Tokens)
Dim Toks() As String
ReDim Toks(noToks)
Fori=1 To noToks

Toks(i) = Mid(Tokens, i, 1)
Next i
Set Split = New Collection
Pos = FindToken(Toks, noToks, Exp)
While Pos < 0

Set SubExpl = New SubExp

SubExpl.Value = Left(Exp, Pos - 1)

Exp = Right(Exp, Len(Exp) - Pos + 1)

Split.Add SubExpl

Pos = FindToken(Toks, noToks, Exp)
Wend
Set SubExpl = New SubExp
SubExp1.Value = Exp :
Split. Add SubExpl
End Function

Private Function FindToken(T() As String, no As Integer, Exp As String)
Dim f As Integer
FindToken = InStr(2, Exp, T(1))
Fori=1Tono
= InStr(2, Exp, T(i))
If FindToken = 0 Then FindToken = f
If f < FindToken And f <> 0 Then FindToken = f
Nexti .
End Function
Private Function Eval(E As SubExp, V As Single) As Single
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Eval = E.Multiplier * V ”* E.Exponent

End Function

Public Function RightSide() As Single

Dim Temp As Collection, SubE As SubExp

Set Temp = Split("+-")

For Each SubE In Temp

If SubE.Var = Empty Then
RightSide = -SubE.Multiplier
Exit For
End If

Next SubE
~ End Function

‘Class Module Binding

Public Var As String

Public Valuc As Single

Attribute VB_Name = "SeparateFunctions”
'Step |
Option’ Explicit
Public f() As Expression ' n
Public g() As Expression 'mxn

Public Sub Start()
Dim Temp As Collection
Dim Temp2 As SubExp
Dim newExp As Expression
Dim j As Integer, i As Integer
ReDim f(1 To 10)
With Form1
Set Temp = .Objective. Spllt("+ ")
Do
i S5
Set Temp2 = Temp.Item(1)
Dim se As SubExp
Set se = New SubExp
Set newExp = New Expression
For Each se In Temp
If se.Var = Temp2.Var Then newExp.Value = newExp.Value + se.Value
Next se
i=1
Do While i <= Temp.Count
If Temp.Item(i). Var = Temp2.Var Then
Temp.Remove i
i=0
End If
i=i+l
Loop
Ifj / 10# = Int(j / 10) Then ReDim Preserve f(1 To j + 10)
Set {(j) = newExp
Loop Until Temp.Count =0
End With




n =] 'no of variables
End Sub
Public Sub Dofor(gm As Integer, Exp As Expression)
Dim Temp As Collection
Dim Temp2 As SubExp
Dim newExp As Expression
Dim j As Integer, i As Integer
With Forml
Set Temp = Exp.Split("+-")
Do
I=#l
Set Temp2 = Temp.Item(1)
Dim se As SubExp
Set se = New SubExp
Set newExp = New Expression
For Each sc In Temp * '
If se.Var = Temp2.Var Then newExp. Value = newkExp.Value + se.Value
Next se .
i=1
Do While i <= Temp.Count
If Temp.Item(i).Var = Temp2.Var Then
Temp.Remove i

i=0

‘End If

i=f4]
Loop

Set g(gm, j) = newExp
Loop Until Temp.Count = 0
End With ‘
End Sub

‘Form Module Step 11

Private Sub Command]1_Click()
Form1.Show .
Form1.SetFocus

Unload Me

End Sub

Private Sub Command2_Click()
linearization.S = Val(Text1.Text)
Form3.Show

End Sub

Private Sub Form_Load()

Dim Temp As Collection, i As Integer

Dim temp2 As Collection

Set temp2 = New Collection

Fori=1Ton
Set Temp = SeparateFunctions.{{(i). Splu("+ -")
temp2.Add Temp.Item(1)

Next i




Grid.rows =n + 1
Grid.Col =0
Fori=1Ton
Grid.Row =1
Grid.Text = temp2(i).Var
Next i
End Sub

Private Sub grid_KeyDown(KeyCode As Integer, Shift As Integer)
Select Case KeyCode

Casc 46: Grid.Text = Empty

Case 8: Grid.Text = Empty

'Case Else: MsgBox Str(KeyCode)

End Select

End Sub

Private Sub Grid_KeyPress(KeyAscii As Integer)

If Grid.Row <> 0 And Grid.Col <> 0 Then
Grid.Text = Grid. Text + Chr(KeyAscii)

End If

End Sub

‘Form Module Step I11
Private Sub Form_Load()
Dim i As Integer, j As Integer, StartVal As Single, Interval As Single
Dim k As Integer
ReDim linearization.x(n, S)
ReDim linearization.f(n, S)
ReDim linearization.g(m, n, S)
Fori=1Ton
Form2.Grid.Row =i
Form2.Grid.Col = 1
StartVal = Val(Form2.Grid.Text)
Form2.Grid.Col =2 :
Interval = (Val(Form2.Grid.Text) - StartVal) / S
Forj=0ToS '
linearization.x(i, j) = StartVal
StartVal = StartVal + Interval
Next j
Next i
.'f :
Dim Binds As Collection, Bind As Binding
Set Bind = New Binding
Set Binds = New Collection
Binds.Add Bind
Fori=1Ton
Form2.Grid.Row = i
Form2.Grid.Col =0




Binds.Item(1).Var = Form2.Grid.Text
Forj=0To S
Binds.Item(1).Value = linearization.x(i, j)
linearization.f(i, j) = SeparateFunctions.f{(i). Evaluate(Binds)
Next j
Nexti
2
Fori=1Tom
Forj=1Ton
Form2.Grid.Row =
Form2.Grid.Col =0
Binds.Item(1).Var = Form2.Grid.Text
Fork=0To S
Binds.Item(1).Value = linearization.x(j, k)
linearization.g(i, j, k) = SeparateFunctions.g(i, j).Evaluate(Binds)
Next k
Next j
Nexti

Grid.Cols=2*n+m*n+1

Grid.rows =S + 2
'show table
Grid.Row = 0: Grid.Col = 0: Grid.Text = "k"
Fori=0To S
Grid.Row=1i+1
Grid.Text = Str(i)
Next i

Fori=1Ton
Grid.Col = i: Grid.Row = 0: Grid.Text = "x" + Str(i) + "k"
Forj=0To S
Grid.Row=j + 1
Grid.Text = linearization.x(i, j)
Next j
Next i

Fori=1Ton
Grid.Col = n + i: Grid.Row = 0: Grid.Text ="M + LTrim(Str(i)) + "(x" + LTrim(Str(i)) + "k)"
Forj=0To S
Grid.Row=j + 1
Grid.Text = linearization.f(i, j)
Next j
Next i

Fori=1Tom
Forj=1Ton
Grid.Col=2*n+(i-1)*n+]j
Grid.Row = 0: Grid.Text ="g" + LTrim(Str(i)) + LTrim(Str(j))
Fork=0To S
Grid.Row =k + 1
Grid.Text = linearization.g(i, j, k)
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Next k
Next j
Next i

End Sub

Private Sub NextCommand_Click()”
Form4.Show

Form4.SetFocus

End Sub
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‘Form Module IV

Private Sub Command!1_Click()
Form3.Show

Form3.SetFocus

End Sub

Private Sub Command2_Click()
Iterate

Form_Load

End Sub

Private Sub Form_Initialize()
Init
End Sub

Private Sub Form_Load()
Dim i As Integer, j As Integer, k As Integer
Grid.rows =5 ;
Grid.Cols=n*(S+1)+3
Grid.Row =0
Grid.Col =0
Fori=1Ton
Forj=0To S
Grid.Col = Grid.Col + 1
Grid.Text ="L" & LTrim(Str(i)) & LTrim(Str(j))
Next j
Next i
Fori=1Ton*(S+1) |
Forj=1To4
Grid.Row =
Grid.Col =1
Grid.Text = Lambda(Convert(i, S + 1).Row, Convert(i, S + 1).Col, j)
Next j
Next i
Grid.Col=n*(S+1)+1

'slack var
Grid.Row =0
Grid.Text ="L00"
Fori=1To4

Grid.Row =i

Grid.Text = Lambda(0, 0, 1)
Next i

- 'objective
Fori=1Ton*(S+1)
Grid.Row =4

Grid.Col =i
Grid.Text = Lambda(Convert(i, S + 1).Row, Convert(i, S + 1).Col, 4)
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- 'base vars

Grid.Col =0

Grid.Row = 1: Grid.Text ="L" & LTrim(Str(linearization.BascVariables(1).Row)) &
LTrim(Str(linearization.Base Variables(1).Col))

Grid.Row = 2: Grid.Text = "L" & LTrim(Str(linearization.BaseVariables(2).Row)) &
LTrim(Str(lincarization.Base Variables(2).Col))

Grid.Row = 3: Grid.Text = "L" & L'Trim(Str(linearization.BaseVariables(3).Row)) &
LTrim(Str(lincarization.Basc Variables(3).Col))

}NGXH :

‘constants

Grid.Col=n*(S+1)+2

Grid.Row = 0: Grid.Text = "Right Side"
Grid.Row = 1: Grid.Text = Constant(1)
Grid.Row = 2: Grid.Text = Constant(2)
Grid.Row = 3: Grid.Text = Constant(3)
Grid.Row = 4: Grid.Text = Constant(4)
End Sub




Public Objective As Expression
Public Constraints As Collection

Private Sub AddCommand_Click()
Dim E As Expression

Set E = New Expression

E.Value = Text2.Text
Constraints.Add E

Listl.AddItem Text2.Text

End Sub

Private Sub Command1_Click()

Dim i As Integer, TempExp.As Expression

Objective.Value = Textl.Text

Start

m = Listl.ListCount

Set TempExp = New Expression

ReDim SeparateFunctions.g(l Tom+ 1,1 Ton+ 1)

Fori=1Tom
TempExp.Value = Listl.List(i - 1)
Dofor i, TempExp

Next i

Form2.Show

End Sub

Private Sub Form_Load()

Set Objective = New Expression
Set Constraints = New Collection
End Sub .
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