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ABSTRACT 

In calculus we learned how to obtain the minimulll and the max imum or a function by 

setting ils derivalivc equal 10 zero. lJnlortunatcly. minimization or maximization 

~l)plilllil.alillll) prllhklllS l..'ll(lllllllered ill illduslry an: 1101 Ihal silllple. Usually. 

optimization slwulJ lakc plal:e whilc satisfying a numbl.!r of <.:Onstraints imposed on the 

systcm. In C:1Sl.!S where tllc conslrainls and 11ll: runction to be optimizl:d arl: expressed 

allalylil:ally, Ihl: I ,angragian 1l1l.!thod or Ulldl:tl:rl11illl.!d l11ultiplil.!rs call bl: USl:d to obtain 

tile optimum solution. 

Linear programming methods developed In the 1950's can be very clTectivc in 

cases where both the constraints and the rUIll.:tion to be optim ized are I i ncar. Variation of 

linear programming methods are also available for cases whl.!re the function to be 

optimized is quadratic (quadratic programming) and for cases where the non-linear 

constraints or objective or both can be expressed as piecewise linl:ar runctions (Separable 

programilling) and also lor the caSl:S where the non-linear objective is ratio of two linear 

runci ions can be expressed as a I incar model (fnKtional programm i ng). 

IX 



CHAPTER ONE 

1.0 INTRODUCTION TO OPTIMIZATION THEORY 

Optimization is concerned with achieving the best outcome of a gIven operation while 

satisfying certain restrictions. I-Iuman beings, guided and influenced by their natural 

surroundings, almost instinctively perform all functions in a manner that economizes energy 

or minimize discomfort and pain. The motivation is to exploit the available limited resources 

I 
in a manner that maximizes output or profit. The early inventions of the lever or pulley 

mechanisms arc clear manifestation of man's desire to maximize mechanical efficiency . 

. Physicist, Chemists, Mathematicians, Engineers, Economists, Operations researchers, 

Managers and practicing computer Scientists are often interested in achieving optimal 

solutions to their problems. These problems may be to determine designs, programs, 

trajectories, allocation of resource~ , approximations of fuctions. Frequently, different designs 

or programs, all satisfying the conditions arising from the actual situation are compared, and 

once is chosen that also as the best in terms of an optimality criterion. Optimization 

techniques, if properly applied , will automatically examine different designs or plans and. 

select an optimum. 

Exillllple 1.1 

Consider the following optimization problem (model). 

A chemical company must send 10001113 of chlorine gas to its research laboratory in another 
I 

state because the gas is extremely dangerous, a special hermetically sealed rectangular railroad 

car must be built for transporting it. The material from which the top and the bottom must be 

constructed costs $2000 per square meter, while the siding costs half as much, however, only 

501i12 of siding can be obtained. Moreover, the maximum height of the car permitted by 

tunnels and other overhead clearances is 3m. Regardless of the car's dimensions each round 



trip to the laboratory will cost $8000. Assuming 110 time limit on the overall procedure, wha 

dimensions minimizes the total cost of constructing the car ancl delivering the gas. 

Let d. wand h be the car's length, width and height. 

The objl:ctive is to minimizl: oVl:rall cost; 

Wherl: the three terms are contributed by transportation cost. top and bottom material. an 

siding. respeclin:ly. Thc cOllslraints 1lll:lltiolH.:d in the problem arl: 

2dh + 2wh::; 50 

and h ::; 3 

Also I1lHl-negativity restriction 

D. h. \-\.' ~ 0 

How can such problems be solved in general? 

1.1 Mathematical Models 

1.1 .1 Charackristics and types of Models 

Mathematical progralllming problem 

Tlh..' pnlhkm nr llplimil.ing a nlllllcrieal rllnelinn llr one or mon: variables when theyar 

ClH1Slrail1l:d III SlHllL' lllallllL'r is calkd a mathelllatical progralllilling pmblcm. speeilieally. th 

purpose of such a problem is to determinc the value orn variabks XI. X2 . .. .. XII that optimiz 

the function . 

Z = f(XI, X2 ..... XII) ................ ....... ......... 1.1.1 

Subject to the constraints 

,,('" x"') I < - > I bl' e '''1, 2,·· ·," 11 \- - -J , i = 1,2 .... ,m .... . ................. .. 1.1.2 

lL is usually assumed that the value of the n variables cannol be ncgative numerically. Th 

non-nl!gativity restriction 011 the variabks nwy be stated as 

Xi ~ o . .i = 1.2 ..... n .......... . ...... ......... . I . I.~ 



Also, it is usually desired to determine the optimal value (minimum or maximw11) of the 

function z in 1.1.1 , which is called the objective function. 

The formulation pf business and economic questions as mathematical programming problems 

has' resulted in the successful resoll1tion of many complex real-world optimization situations. 

Most of the applications of mathematical programming to business and economics involve the 

maximization of revenues or profits and the minimization of costs. 

1.1.2 Modcl Classification 

A real-world optimization problcm may be classified in five ways. 

(I) The functional relationshi pin thc problcm may be known (deterministic) or uncertain 

(probabilistic) . 

(2) the function r (XI, X2, , ,, ,xn) and gi (XI , X2, " " xn), i = 1,2, ... ,m in l.l.1 and 1.1.2 may be 

linear in x I, X2 , ... ,xn; at least one function in the set may be non-linear. 

(3) The functions may be continuously differentiable (Smooth) or non-differentiable (non-

smooth). 

(4) The variable x I, X2 , .. . ,x" in the mathcmatical programming pro.blem may be continuous or 

may be restricted to integer valucs. 

(5) The optimization may take pl<1cc at a fixed point in time (static) or during an interval of 
, 

time (dynamic). 

Most mathematical programming models are deterministic; given XI, X2, ... ,Xn, the values 

of f l ,g2, g2, ... ,gm are uniquely determined, most of the current application of mathematical 

programming to business and economic problems assume that all model functions are linear. 

There is a very simple reason for this. The simple methods, derived by Dantzig in 1947 

(1963), is extremely efficient procedure for solving linear programming problems. When this 

method is programmed on a computer it is possible to solve linear problems involving 

hundreds of variables and thousands of constants. If one or more of the functions is non-linear, 

the problem is always more difficult to solve than linear ones. Thus, even though the real-



world problem may be complex and inherently highly non-linear, successful modeling of it 

may be possible by using many variables and constraints in a linear formulation. 

Most algorithms devised to solve mathematical programming problems require that the . , 

functions in the model be continuOlisly, di fferentiable ; thus all functions typically must be 

smooth. 

1.1:3 Specific models of interest. 

The best known mathematical programming model is linear programming model. All 

functions in 1.1 and 1.2 are linear in the variables XI , X2, .. " XII , the model may be written as 

n 

Z = r(xi ,X2 ....... · ...... xn) = I rj(Xj) 
j = I . .................... ..... 1.1.4 

subject to 

11 

gi( XI, X2, ............. xn) = I gijXj 

j =1 { ~ = ~ } bi i = 1,2, ..... , m 

xj ~ O,.j = 1,2, .. . ,n .. ..... . . ......... ... 1.1.6 

Where the fs , bi ' S and aij ' s are known constants. 

The linear programming model has been successfully used to solve a variety of business, 

economic and scientific problems. 

If in the model , 

Optimize Z = f(x I, X2, ., . ,xn) 

Subject to gi (XI , X2, ... ,x lI) { ~= ~}bi i = 1,2, ..... , m 

Xj ~ O, j = 1,2, .. . ,n 

At least one function in the set f, gl ,g2 .. .. , gill is non-linear, it is called a non-linear 

programming model. We observed that a non-linear problem is generally much more difficult 

to solve than a linear one. Many algorithms have been developed to alleniate this, among 

4 



which are the followings, separable, programl11l11g, fractional programnllng algorithms, 

Langragian multiplier's technique e.l.c. 

A special case of the general nonlinear programming model which has received a great 

deal of attention. is the quadratic programming model in both chapters 2 and 3. In this model, 

lh~ \ll'.i~Llin.' t'1IIlLli\1I1 is quadratic ill :\1. :\2 . . . ":\11 alld th~ l:tlllstraints an: linl.!ar. Spl.!cilically 

thl.! mlllki is 

Il Il 

Optimize Z = I 1'-x' + '"' J J ~ gij Xi Xj . . . . . . . . . . . . . . . . . . . .. I. I. 7 

j =1 j =1 

/I 

Subject to Ih"x, ~ bj i=I,2, .... ..... ,m ........... 1.1.8 
/=1 

Xj20, j = 1,2, ... ,11 ..... .. ............. 1.1.9 

Where the tj's, gij's and hij 's are known constraints. 

1.3 Standard Formulation. 

The notation adopted 111 the work for variables, objective function and constraints IS 

summarized ill thL' rnllmving li.ml1l1iation 0(' the optimization problem . 

......... . ...... .. .... .... . I . ~ . I 

i = 1.2, .... m ........ .. ... 1.2.2 

k = 1.2,. .. ,n 1.2.3 . 

Xj 2 ° j = 1.2 ..... n ..... . .......... . ....... . ... .. 1.2.4 

where x denotes a vector of variable in the components Xi. i = 1.2, ... ,n. an optimization 

problem is said to be linear when both the objective function and the constraints are linear 

runctions or the variables Xi i.e. they can be expressed in the rorm 
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Linear optimization problems are solved by a branch of mathematical programming called 

linear programming. The optimization problem is said to be non-linear if either the objective 

function or the constraints are non-linear fraction of the variables. 

1.2.1 Formulating an optimization pl'oblem 

An optimization problem is an exercise in mathematical modeling that require great eare 

in setting up the model. Four steps are involved: 

(I) Decide the exact objective to be optimized. Many different objectives are possible. 

(2) Set up the objective function using as many variables as are required. Try for accuracy 

rather than compactness. Make sure that all the terms have the same dimensional units. 

(3) Set up all the restraints and relationships between the variables. 

(4) Ifpossible, reduce the objective function in step (2) to independent variables. Step (2) may 

contain both dependent and independent variables. 

(5) The objective function is now ready for solution. If it contains independent variables only, 

the differential can be set equal to zero to optimize the expression, or alternatively, 

tabulation can be made. If the objective function contains dependent variables in addition 

to independent variables, a Lagrange expression can be tried. If this fails , the objective 

function and its constraints (restraints) must be optimized, using the skill and ingenuity of 

the separable fractional Quadratic programmers e.t.c. 

As an illustration of the above, consider the Example 1.2 

Example 1.2 

A cheese shop has 20Kg of a seasonal fruit mix and 60Kg of an expensive cheese with which 

it will make two cheese spreads, deluxe and rectangular, that are popular during Clu'istmas 

week. Each pound of the deluxe spread consists of O.2Kg of the fruit mix and O.8Kg of the 

expensive cheese, while each pound of the regular spread consists of O.2Kg of the fruit mix, 

O.3Kg of the expensive cheese, and O.5Kg of a filler cheese which is cheap and in plentiful 

6 



supply. From past pncll1g policies, the shop has found that the demand for each spread 

depends on its price as follows: 

0 1= 190 - 2SPI and O2 = 2S0 - SOP2 

Where D dcnotes demand (in Kilograms). P (knotes pm.:\.! (in dollars per Kg), and the 

Sllbs~.'ri pIS I ;lIld ~ rl'fl'r III Illl' dl'lll:\l' respl'di\'l'Iy . Illl\\' lllallY Kgs of' prices should thl.: cheese 

shop prepare. alld what prieL's slllluid it establish. if' it wishl.:s to Illuximizl.: illCOll11.: and be left 

\"ith Ill) invcntory of' I.:ithcr spread at the end of Christmas week? 

Solution 

Mathematical equivalent of the example. 

Let XI kgs of deluxe spread and X2 kgs of regular spread be made. If all the products can be 

sold, the objective is to 

....... . .. ... .......... ... .. 1.2 .S 

Now. all produ<.:l will incked be sold (and none will be left over in inventory) if production 

does not exceed demand, i.e., ifxl~ DI and X2~ 0 2This gives the constraints. 

XI + 2SPI~ 190 and X2 + SOP2 ~ 250 .......................... 1.2.6 

From the :w:1ilahility or rruit mix. 

and ti'Oll1 the availability or expensive cheese, 

0.8xl + 0.3X2 ~ 60 

1.2.7 

There is no constraint on the I'iller cheese, since the shop has as much as it needs. Finally, 

neither production nor price can be negative; so lour hidden constraints are XI 2:: 0 , X2 2:: O. PI 

2:: 0 and P2 2:: O. Combining these conditions with 1.2.S through 1.2.8 we obtain the 

mathl.:matical programming probkm as follows : 

Maximize Z = PIXI +p~x~ 

Subject to: 0.2xl + 0.2X2 ~ 20 
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0.8xl + 0.3X2 ~ 60 

XI +25P I ~ 190 

X2 + 50P2 ~ 250 

With all variabks non-negative. 

................. 1.2.9 

SYSll..'lll (I.~.l)) is ;1 qU;ldr;lliL pnlgrallllllillg probklll ill thL variabks XI. X2. PI and P2. It 

Lall 11L' silliplili, . .'d ir \\'L' lIolL" 11 ... 1 IlH' allY li.\cd posili ve .\1 alld .\ ~ the objective function 

incn.:ases as either PI or 1'2 lllust be such that the constraints 1.2.6 become equations, where PI 

and P2 may be eliminated from tbe objective function . We tben have a quadratic function in XI 

and X2. 

Maximize Z = (7.6 - 0.04xl)xl + (5 - 0.02X2)X2 

Subject to : 0.2xl + 0.2X2 ~ 20 

0.8xl + 0.3X2 ~ 60 

with XI and X2 non-negative. 

1.3 Non-linear Programming. 

. ... .. . . ... ... ........ 1.2.10 

In this work. emphasis is placed on nonlinear programming than linear programming due to 

the fact that the work centered on Non-linear separable and fractional programming on 

chapters two and three respectively. Although the simplex method was later utilized in tinding 

solutions to botb the piecewise linear approximation model in chapter two and the equivalent 

linear model of tbe fractional programming in chapter tbree. 

The introduction of nonlinear functions in the mathematical programming problem usuall) 

insures more difficulty in solving the problem than if all functions are linear. The primal') 

difficulty introduced by the nonlinear runctions in the potential existence of relative or loca 

minimal or maximal of the objecti ve function. 
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.. , 

. , 

The existence of local optima arises due to the nonlinearity of the objective function f(x), the 

nonlinearity of one or .more constraint functions gi(x),or a combination effect of the 

nonlinearity in f(x) and in one or more of the constraints functions. 

1.3.1 Types OrNonlincar Objcctive fo'unctions. 

l .. '.~ ,,\ :\ Nlllllin~.'ar FUIlClillil III OIlC Variable. 

That is, optimizing a nonlincar objective runetion or a single variable. Note that many of the 

techniques lor solving several-variable nonlinear optimization problems actually employ 

singlc~ variable optimization in one of thc steps. To begin. it is convenient to postulate 

"maximization" as the sense of optimization throughout the following discussion. [ If the real 

"problem is to minimize an objective function J{x), then can reformulate the method so as to 

maximize - l{x).] 

It is assumed that the functions considered possessed continuous first and second 

derivatives and partial derivative everywhere. 

Consider a function of a single variable, such as that shown figure 1.3 . I.A necessary condition 

for a particular solution, x = x· to be either a minimum or maximum is that 

. . 
dt(x)/dx = 0 at x = x ... . ...... . ... . . . .. . .. \. 3. 1 

rhus ill ligurl.' 1.3. 1. lhL'rc arc li'"L' SlllulillllS satislYillg lhL'SL' cOllditions. To obtain more 

information about these live so called critical points. it is necessary to examine the second 

derivative. Thus. if 

1 . J • d t(x)/ux-> 0 at x = x .. .... ........ . .. .. . ....... . 1.3 .2 
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f(x) Global Maxillluill 

I.lll: .. 1 "I ininllllll 
IlIlkclionl'oinl 

Glub,.tl l'vlinillllllll 

x 
Fig. 1.3.1 A function having several maxima and minma. 

Then x * must be at least ~ local minimum (i.e. l{x *) .::;; f(x) for all x sun-iciently close to x * ). So 

x * must be is a local minimum if f(x) is strictly convex with neighbourhood of x *. Similarly, a 

sufficient condition for x * to be a local maximum (given that it satisfies the necessary 

condition) is that f(x) is strictly concave with a neighbourhood of x * (that is, the second 

derivative is negative at x). If the second derivative is zero, the point may not even be an 

int-lection point and it is necessary to examine higher derivatives. 

Tll lin~i a gillbal minimum ti .e. a solution x' such that t(x ' ) .::;; t(x) for all x) it is necessary 

to compare the local minima and identify the one that yields the smallest value of t(x). If this 

value is less than that f(x) as x - -00 and as x - +00 (or at the endpoints of the function, if it 

is only defined over a finite interval) then this point is a global minimum. 

However, it I{x) is known to be either a convex or concave function, in particular, if f(x) is 

a convex function, then any solution x * , such that 

df(x)/dx = 0 at x = x * 

is known automatically to be a global minimum. In other words this condition is not only a 

necessary but a sunicient condition l'or a global minimum of a convex function. If this 
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function is strictly convex. then this solution must be the only global minimum. Similarly, if 

t{x) is a concave function, then having 

dl{x)/dx = 0 at x = x· 

becomes both necessary and suClicient condition for x· to be a global maximul11 . 

.. .......... .... ....... 1.3 .3 t <..'011 vex flillelioll) 

A function is ullimodal whenever it is concaVl!. that is. if l'or any x I and X2 in I. where x I < :\2, 

and for all p. 0 ~ p ~ 1. I(x) satislil!s 

P[(XI) + (1 - p)1{x2) ~ t{PXI + (1 - P)X2) ................ 1.3.4 (Concave function.) 

1.5.1 B A Nonlinear Function Of Several Unconstrained Variables. 

That is, maximizing a nonlinear function of several unconstrail1l:d variables. TI1l.:re are two 

motivating reasons for studying this problem. Firstly, an analysis or the lllultidil11l!nsional, 

unconstrained. nonlinear maximization problem sets the stage far the analyses of constrained 

1110dds. The algorithmic difticulties to be overcome here an; also present in the constraim:d 

cases. Secondly. a constrained problem can often be solved by lirst converting it to an 

I(xi. X2 .. .. . xl1 ) is slllooth and possesses a Jinite 

max i mllm yaille . occurring at the lini te values (x I *, X2·. ' .. XII *). Abbreviati ng a se t of value [-'or 

(XI. X2 ..... Xn ), by the symbol x. and the expression I{xi. X2, .. ,.xn) by thc symbol I{x). these 

assumptions can be stated more precisdy as : 

(i) For all values of x, l{x) is uniquely dclined and finite. 

(ii) For all values of x. every partial derivative i!/, / ax I is uniqucly delined, finite and 

continuous. and hence I~x) is continuous 
(iii) I~x) possesses a tinite maximum 1'* 

(iv) For any possible va lue of 11x), say f there exists an associated /'inite number Mr such 

that every Ixil ~ Mr if fex) ~ r. 

Applying differential calculus, we can state the (allowing. 
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Ncccssary condition lor maximum. Givcn assumptions (i) through (iii), thc function rex) has a 

maximum at x· only if q((x) I ax I = 0 lor j = 1,2 .... , n. 

The validity of the result is easy to scc. Suppose there is a variable xJ such that 

tlj"(y * ) / ?y , > 0 . TllL'n I~x) can be increased by increasing XI " by a small amOLlnt. 

I.Iml1lll11. But unfortunately. without imposing further rcstrictions on the shape of l{x), the 

. * lIecessary condition is not sunicient 11.)(· a llli.lxlllHll11: x may not maximize I(x) \vhen all 

q{(x *) I ax, = o. the illustration inligure 1.3.2 shows why. The derivative q{ lox I = O. 

at points a,b,c,d,e as well as at g which gives the only global maximum. 

f{x) 

a b c cI (1 
eo 

Figure 1.3.2 Example with Multiple Local Optima. 

h X 

Aftcr idcntifying the critical points that satisfy the condition 0 l{xl,x2, .... xll / a Xi = 0 at 

(XI,X2, ... ,XII ) = (XI · ,X2*, ... ,xn*) forj = 1,2, ... ,n, each such point would then be c1assitied as a 

local minimum or maximum if the I'um:tion is strictly convex or strictly concave 

respectively. within a neighbourhood or the point. The global minimum and maximum would 

be found by comparing the relative minima and maxima and then checking the value of the 

function as some of the variables approach -00 or +00. 
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However, if the function is known to be convex or concave, then a critical point mllst be a 

global minimum or a global maximum respectively. 

Algorithmic Description. 

Many of the computational kchnique ft)r maximizing f{x) can be expressed in a standanJized 

Sk'p I. Sdect an arbitrary initial trial pllint x". 

Step 2. 'I\:rminatc thc iterations if a Ii' a Xj = 0, far .i = 1.1. ... ,n at the initial point xl.;. 

Otherwise, dekrmine va lucs y/' . f'or.i = 1.2, .... n, and cllntinue on stl:p 3. 

Steps 3 calculatl: a new trial poinl. 

. k + 1 = . k + , k f' " - I ') .., x, x, ), 01.1 - ,_.J ..... n . . . ........... . . .. . .. . .. ..... .. 1.3.5 

1.;+1 I.; Return to step 2. where x replace x . 

For most nonlinear objective functions, the iterative process never obtains an xl.; such that all 

Wl8x, =0. 

You can tell by inspecting l{x) that the unique optima solution is XI" =3, XI " = 2, yielding l{x") 

= n. Isince f"x) is a quadratic fUllction. the optimal x can be calculated directly 1'1'0111 the 

necessary CLlnditions ¢( I ex, = O. for j = 1.2 .... ,n. 

Nevertheless, the quadratic example serves to exhibit the main ideas or the algorithm.] The 

contour levels off(XI,X2) are ellipses starting with 

1.3 .6 

Step 2 Indicates further improvement is possible. 

In preparation for choosing the dimensions d , and el2. draw the tangent line to the contour Jtx) 

() . b I . at x . given y t 1e equation 

........ ...... .......... 1.3.7 
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For XIO = X20 = 0, (3) yields 

6xI + 16x2 = 0 or X2 = -3x.I/8 

the value of Jtx) = -25 

lorolo= 1 LIno(bo = 213 

Th~' alg~lrilhllli~' will ~~1I1IiIl1ll: III illlprlln: Ih~ yallll:s llrXI and X~. alsu that ural ana (h. 

1.3. I C !\ Nlllllill~'ar FUIl~tioll or S~wral Constrain~d Variabks 

ThaI is. llplillli/.ing a nlllllin~ar rundion wilh nonlinear constraints. The aim here is to solve 

uptillliL.ation prubkllls cuntaining 1l1.1Illin~ar constraillts. Fur the sake ur ddinilcncss, suppuse 

the model is stated as 

1.3.8 

1.3.9 

x.i~ 0 j = 1,2, .. ,n .... ........... .. 1.3.10 

(1.3.8) and (1.3.9) above can be viewed as a canonical statement ofa nonlinear programming 

problem (NPP). Here, the constraints function gl (x) Lind objective function I{x) arc to be 

postulated upon as 101l0ws: 

Ddinitioll 1.3 .1 

F~'asibk Regillll. 

The assumptions on each nonlinear function gi(X) are given in terms or its shape ana 

smoothncss characteristics. To set the stage, a rcal value functions g(x) is defined to be convex 

it~ tor any two points x "* y, and for all p, o~ p ~ I, 

pg (XI,X2 ..... Xn) + (1-p)g(YI.Y2, ... Yn) ~ g(pxl +(I-p)yl ..... pxn + (I-P)Yn) Convex 

.................................. 1.3.11 

and strictly convex if there is a strictly inequality (» Jor O<p<1 (Note that if - g(x) is concave, 

then g(x) is given). 

A related characteristics of a convex function is that for any two points x and y. 
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11 3a (x) 
g(y) > g(x) + I ~ _ (YJ - X j ) Convex ...... . . . ....... . ..... 1.3.12 

j= 1 X J 

gi(X) in 1.3.9 satisfy the lollowing shape and smoothness assumptions. 

Iklillitioll I . .l . ~ 

Objective FUIH.:tion: the I"unction 1(:\) is also hypothesized to satisl"y certain shape and 

smoothness assumptions (i) through (i v) 

(i) I(x) is single-valued and finite lor each x satisfying the constraints 1.3.9 

(ii) Every partial tlcrivative a I(x)/ a x, is a single-valued finite and continuous at cach :\ 

satisfying the constraint 1.3.9 

(iii) rex) possesses a linite maximum I'" over all values ofx satisfying the constraints 1.3.9 

(iv) J(x) is concave over all values of x satisfying the constraints 1.3.9 

It is the purpose of this chapter to develop the basic theory upon which mdhods devised to 

solve the nonlinear programming problem are typically based. Among the topics 

(\)nsidcrcd ;Irl.' t he deli nil ions I) I" 10(;11 ;lnd global opl i mao tIll' necessary amI Sli nieicnt 

conditions fur identifying an uptillliLing puinl. Lind the mathematical constraints 

introduced into this identilication process by nonlinearity. 

The final section contains some applications of this material to nonlinear 

programming example problems. 

1.4 Local and Global Optima 

The conccpt of local and global optima plays an extrcmely important role in nonlinear 

programmll1g. 
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Definition 1.4.1 Global Maximum (Unconstrained Problem): The unconstrained function 

f(x) is said to take on its global maximum at the point x· if J-{x) S; t{x ·) for all x over which 

the function I{x) is deli ned. 

Definition 1.4.2 Local Maxil11ul11_(Unconstrained Problem). The unconstrained function 

1(\) is said ill takc ,lll a I'H:almaximum at thc point XU if constants to: and D. ° < E < 8. exist 

such Ihal Ilu' all x salisfyillg () ..... Ix -- xUI '- I:. f(x) ~ I{.\''). whL'I\': I(x) is ddilled lor all points 

ill somc ()-ncighbourhoood of xu. 

Figure 1.4.1 illustrates a lucal and glubalmaximum lor a ullivariate functiun . Nutice from 

definition 1.4.1 and 1.4.2 that a global maximum is also a local maximum. A familiar 

theorem 11'0111 differential calculus is now introduced. which states the necessary 

conditions lor G point XO to be a local (or global) maximum. 

, 

Figure 1.4.1 lllustration of local optima. 

Theorem 1.4. I If f(x) assumes a relative (local) maximum at xo, then XO must be a solulion 

to the set of n equations 

8f(x)/ 8xj = 0, j = 1.2 .. .. , 11 
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Proof: 

Suppose that 11x) assumes a local maximum at xu, then from the definition of a 

local maximum, an E > ° must exist such that for all points x in a 8-neighbourhood of xu, 

I{x) ~ nxl'). In particular. considcr a point in thc 8-ncighbourhood of XO of the form x = XU 

/ hl.'J whl.'rl.' l.'J = 10.0 .... .. n.l.o ... ... 01 with th~ I plac~d in th~ jth position or ej and 0 < /h/ < 

l: . Th~n 

.. . .. . ........ .. .. . .. . . .. . . ....... 1.4. 1 

For all h,O< Ihl < E. Dividing (1.4 .1) by h results in the expressions 

ll{xO +hcj) - l{xo)J /h ~ 0 ir h > 0 .i = 1,2 . . . . . n 1.4.2 

[f(xO +hcj) - t{xo)]/ h ~ 0 ifh < 0 .i = 1.2, .... 11 ............. 1.4.3 

on taking the limit of (1.4.2) and (1.4.3) as h ---.0, it follows from the definition of a 

partial deri vati ve that 

a {-(XO)/ a Xj ~ ° for h ~ 0, h<O 

Thus 

.I I.~ .. .. 11 . . . . . . . . . . . . . . . . . . . . .. 1. of. of 

The condition in (1.4.4) can be conveniently displayed in vector notation in terms of the 

gradient vector oU{x). 

Definition 1.4.3. The Gradient Vector 

The gradient vector of I{x) = !1X/,X2 •.. . xn), denoted by Vt1x), is the n x I column vector 

whose components are ill the first-order partial derivatives of l-{x). 

"f(x) = (al(x) .. al(x)]T 
ax ax I /I 

.................... .. 1.4.5 

The condition in 1.4.4 stated in vector form is Vf(xo) = ° 
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If a point XO satisfies 1.4.4, it might not be a maximum point. Theorem 1.4.1 provides only the 

necessary condition for xO to be a maximizing point. In the univariate case 1.4.4 may be satisfied 

at a minimizing point. a maximizing point, or a point of in1"lection as illustrated in figure 1.4.2. in 

the n-l1lultidimensional case where as illustrated in figurc 1.4.2. in the n-l11ultidimcnsional case 

\\'1,,:1\.,:\1 - 1:\1':\>''':\111. thc ;llIalllgy tll thl.' 1II1i,'ariak' casc is a nw:\illlizing point. minimizing 

pIlillt Ill' saddk' Pllilll. :\ saddk poillt is the Illullidilllcnsional analogy to the inlkdion point in the 

lIni,'ariate easc. J\ saddle pllinl lor lite bivariate case lx 1 = (:\I.:\2)J is illustrated ill ligun: 1.4.3. 

The sunicient .wndition l'or xi) to be a maximizing point call be expressed as a propcrty of the 

Hessian matrix of tlx). 

Maximizing point 

J{x) 

Innection Point 

Figure 1.4.2 Possible Solution points 10 dl{x)/dxj = 0 

Definition 1.4.4. The Hessian Matrix. 

x 

The Hessian matrix of t{x) = r (x I ,X2, .. ,XII), dl!noted by H(x), is the n x n matrix whose elements 

arc second order partial derivatives of t{x): 

IS 



a2 f(x) a2 f(x) a2 f(x) 

ax , 2 aX ,ax2 aX 2 
I 

a 2 f(x) a 2 f(x) a2 f(x) 

ax ax aX2 
2 ax2ax" I 2 

H(x) = 
.. . . . . ........... 1.4.6 

(~f(.r) tf' f(x} 

8x,,8x, 8x,,8x2 

, 
8x,,-

Theorem 1.4.2. A sui1icient condition for I(x) = 1{xl,x2, ... ,xn) to have a local maximum at the 

point XO where V'f(xo) = 0 is thattht: Hessian matrix I-I(x) be negative delinitc i.e, for any yl = 

(YI .Y2 .... ,)'n), except Y = 0, yl I-I(x)y < 0 

Proof: 

This theorem can be proved by applying Taylor's theorem to the function I{x) . Taylor' s theorem 

states that for any two points XI and X2 = XI+ h. there exists a scalar 0, 0 ~ 0 ~ 1. such that 

. ..... . .......... . ...... . .. 1.4.7 

Applying (IA. 7) to I~x). whe;'e x I = XO and X2 = XO + h, produces the expression 

" \' II) 0 SlllLe , 1(,:\ = . 

or 

I{:\U + h)- nxll) = 0.5h l l-I[Oxo + (\ - 0)(xo + h)] 1-1 ........ .. ......... 1.4.8 

If'the right-hand side of 1A.8 is negative for all h in a (y' -neighbourhood of xO. by 

- . . ° I 1 . . '( ° I 1'( 0) 0 '1' I' . 1 dd lnltlon 1A.2 . x must be a oca maXimum, slllce I x + 1) - X ~ I t liS IS tle casco 

The second partial derivati~es a 2t{X°)l a Xi a Xj will have the samc sign as 
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a 2118xo + (I - 8)(xu +h)]/ a Xi a Xj provided that the point Oxo + (1-8)(x
o + h) is in a 

suitable 8-ncighbourhood ofxo . Thus the right hand siue or IA.8 is ncgative only ir 

1~IH(x()) < 0; i.c. the Hessian matrix evaluateu at xl) , I-I(x\ must be negative definite to 

inSlIl"\.: lhal XO is a maximizing point. 

Figure 1.4.3. Two Dimensional Saddle Points. 

We can now state anu prove necessary and suriicient conditions, for every local minimum 

of a function to be global minimum we start with the following sufJicient conuitions. 

Theorem 1 A . ~ 

Ld r be a real function on C c RII and let a = /(x). x I:: C. Suppose that ()" (Ca) is lower 

-
semi-continuous (Isc) at a .. If x is a local minimum of f, then it is also a global minimum 

offonC. 

-
Suppose that the hypothesis hold and x is not a global minimum of ron c. I-lcnce there 

exist a point x I:: C such lhat 

-
J( x )<J( x) .. . .......... . . ...... .. ... 1.4.0 

Define the sequence r a i} by 

ai=[llil1x)+(l - I/i)11~)]' i=1,2, .... . . . . .. .. .... . .. 1.4.10 
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Clearly, lim (a i) = f(x) = a ................ . ... 1.4.1 I 
i~oo 

-
and x E S(f~ a.). From 1.4.9,1.4.10 and 1.4.11 , it follows that 

ffX' ) ::; a i 
::; f( ~) , i = 1.2, ..... . .......... . .............. 1.4.12 

j - " i). I '") ~1Il~ .\" L S( I. a . I = ._ .... . . 

Sill~~' StL (x) is asslIllll:d It) lk' ls~ al a .. Ihere ~':\ists a naturalnul1lb~r K and a sequem;c 

;:\ I: • wl1wrgi ng tn .\". sue h that :\ I I: S(I: a l
) for i = K.K + l.. ' " I knce 

flXI) ::; a l i = K. K + l. .......................... 1.4.13 

and by 1.4.9 

I~XI) < I~x) i = K. K+I .. .... ............... .... ...... 1.4.14 

since [Xi]-. ~, for a sufficient small o' > 0 there exists a natural number K" such that 

Xl E C n N,,( x). i = K(i. K(i + L. ....... which, by the hypothesis, will also satisfy 

J{Xi) ~ f( ~). i = K,), K,) + L. .......... 1.4.15 . contradicting 1.4.14 

Corollary 1.4.4 

Let f be a real function on C c RIl. If S(1:a) is Isc on Gr. then every local minimum of r is 

We now prove a converse result of theorem IA.3 

Theorem IA.5 

Let f be a real funetion on C c RIl and let a. I: Gr. Then S( r. u.) is Isc at air any of the 

following assumptions hold. 

(i) Every x E C satisfying j~x) = a. is a global minimum of f on C. 

(ii) None ol'the points x I: C satisl)' ing 1"(:\) = a. is a local minimum or r. 

Suppose that the hypothesis hold and S(C a) is not Isc at a .. Then there exists an open set 
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A C RII such that 

A n S(f~ a.):;t ~ 1.4.16 

ami for every 0 > 0 there exists an a(o) £ N" (a .) n Gr such that 

. .. .. . .... .... .. . .. ..... ... ... . 1 . ..f . 17 

Tlh:rd"nrc " oc can Ii Ild a scq lIcnce : a I l c (, r cl1nvngi ng to Ct. slich that 

\ ' S' I) - I-. ° - I ') : I I • (I. ( X - (I" I - ._ • ..... . .. .... ...... ... . I .·-L X 

It lullows that a l 
< Z;. lur all i. otlh.:rwisL' ifu.~ ~ Ct. luI' SOIllL' k, thL'1l S(L ~.) c S(l: u.h), and. by 

I A.16; WL' get a contradiction to I A.II): lur L'vcry ~ !.: A n S(C Ct.) it 1'01 lows that ~ {l S(C a l
) 

for very i ; and since (a') ~ a., we have n ~ ) = ~ .. Moreover, for every x £ A. 

-
I{x) ~ Ct. = t{x). 

- -
Since A is an open set, it follows that x must be a local minimum of r, and clearly, x is not a 

global minimum or f of C. This result contradicts the hypotheses. 

Corollary 1.4.6 

Let r bL' a rL'al function on C £ RII. If every local minimum or r is a global minimum or I' on C, 

Finally. as an immediate result of corollaries 1 A.4 and 1.4.6 we obtain: 

Corollary 1 A. 7 

Let f bL' a rL'<.t1 function on C c RII . EVL'ry local minimum 01" I" is a globalminil11l1l11 01" I" on C il" and 

onl y ifS(Cu) is 1st: on Gr. 

As an illustration consider example 1.3 

Example 1.3 
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.' 

af(x) 

ax, 

Vf(x) = 
af(x) 

aX; 

Th~ ~lll1dilil)11 Vt(:-.) == () g~l1~rall.·s a SYSII:III nf' Ihr~~ lil1~ar ~qualiul1s in thnx unknowns. Thl! 

I · I ' ., sn ullon 10 I liS syskm IS x == l x ,.X2.X3J = l2.4,0 J. 

Th~ I kssian lIIatrix II(x) is now dd~rlllim:d. 

Thus Ihe Hessian matrix evaluated at XO = [2,4,0] is 

~2 )[ :: 1 = -8(Y,)' - 6 (y,l' - 2(y,)' 

Which is clearly less than zero for any y' = lY"Y2,YJ]; y :;:. 0. 

Thus XO = [2,4,0] is a maximizing point. 

Definition 1.4.5 Global Maximum (Constrained Problem). 

a2
f(x) = 0 

ax, ox] 

3
2 
f(x) =-2 

~ ax, -
.> 

The function Itx) is said to takl! on its global maximum at the point x* if t{x) ~ I{x*) for all x 

(including x *) that belong to the feasible set of points x, where the set X represents the constraint 

region. 



I 
I· 

I. 
" ,:,- ,' . ' 

In the. equality-constrained problem, for example, x belongs to X if x satisfies gi(X) = bi, 

i = 1,2, ... ,m. 

Detinition 1.4.6 Local Maximum (Constrained Problems). 

The function t~x) is said to take on a localmaxil11um at XU ifxo belongs to X and there exists an 

I . .:' I.agrangian l'vlllil i pi i~rs and I:q lIal i ly-<. \)nslrai ncd Pmbkms. 

l3dor~ invcstigating thc g~nci'alnon-lincar programming givcn 1.3 . ~ - 1.3.10. it is necessary to 

lirst introduce the method of Langrangian multipliers for solving the equality-constrained 

mathematical programming problem. The problem is specified as 

........ .. .. .. ..... \.5.1 

.... . .. ..... . . .. . .. \.5.2 

i = 1,2,3 ... ,m. 

The Langragian function corresponding to 1.5 .1 and 1.5.2 is 

Il 

.i =1 . .. ....... . ...... . \.5.3 

ti'om Theorem 1.4.1, 

aL(x,A) = alex) _ fA;. ag;(x) = 0 
ax j ax j j = I aXj 

.. . .... .. .. .. . . ... ... . .. . 1.5 .4 

8L(x, A) =b. -g .(x)=O 
a I I 

X 
.I 

i = 1,2, ... ,m ....... . ... . ... ..... ..... 1.5.5 

For the general nonlinear programming problem, it will now be shown why a solution / to (1 .5.4) 

and (1.5.5), which is a local maximum of L(X,A) in (\.5.3), is also a localmaxil1lum for \.5.1 and 

1.5.2. 
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• 

I To determine this result, tirst assume that n = 2 and m = ) so that the () .5.1) and () .5.2) problem 

IS 

I 1.5.6 

...... ... .............. .... 1.5.7 

! ~nl1S (11'.\, Stl that .\~ = ~),(.\,). Th~ tht.:orem tht.:n guarantt.:t.:s that q),(.\,) is difkrcntiabk. Thc I "hi eel ivc limel i"n can he wri lIen u,ing oj> I (,) '" a univariale function in, I and Ihe ( I .5.6) and 

(1.5. 7) problem is equivalent to the unconstrained problem. 

The necessary condition lor XI" to be a local optimum or 11xl , ~I(X,» is 

But recall lj'OI11 differential calculus that the total deri vative d/dxl or l1xl,.\2) can be written as 

.. . ..... .. .......... . .... . ... .... 1.5.S 

But.\2 = ~I(XI). If q>l(xl) is substituted tor X2 in (1.5.8) ancl the total derivative clUdx, is evaluated 

................. . ....... 1.5.9 

dg,(x"x2 ) = ag,(x"x2 ) + ag,(x"x2 ) d¢,(x,) =0 

dx, ax, ax".!. dx, 
. . . ............... 1.5.10 

25 



where ~I(XI) has been substituled for X2 in the iasllenn. From (1 .5.10) 

- ag, (X" X2) 

aX I. 
.... .......... ....... 1.5.11 

Now subsLiLlItl.! Lhl.: righL hand side oJ't1.5.11) lor d~l(xd/dxl in (1.5.9) where d~l(xl)/dxl is 

I.:vaillah:d aL (:'1.:1°.:'1.:2°). Thl.!n 

() (J-

ag, (XI 'X2 ) 

() 0 ag, (XI ,X2 ) ...... 1.5.12 

(J () a/(x, 'X2 ) 

ax , 

() () 

~f(x, 'X 2 ) 

aX2 

ax, 
=0 

aX2 -

and define AI as 

.-- () (I 

a/(x, ,X2 ) 

ax, 
~= 0- (I =0 

8g1 (X I '.\"2 ) 

OX, 
-

Then 1.5.12 can be wrillcn as 

.................. 1.5 .13 

Directly from the de1inition AI it follows that 

..... ..... .......... 1.5.14 

Additionally, (Xlo, x/) must satisfy 
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Therefore, by using the implicit function theor~m, it is possible to write the necessary conditions 

for determining a local maximum to (1.5 .6) and (1.5.7) in the form (1.5.13) - (1.5.14) 

Now consider the Langragian function corresponding to (1.5.6) and (1.5.7). 

lh~ n~~~ssar)' ~llllditillns 1~1I · till' maximizing L(x. A) arl'. li·om Till'OI"cm 1.4.1 . 

.. .. ....... .. .. 1.5.16 

........ .. ... .. .. .. .. 1.5.17 

. ........... . . ... . . ......... 1.5.18 

The necessary conditions for a point XO to maximize L(x, A), given by (1.5.16) - (1.5.18), are 

necessary condi tiuns for the eq uality-constrained problem in (1.5.6) and ( I .5. 7). 

It is possible to extcnd the above argument from m = 2 case to the general 11 - variate ease to show 

that the neccssary cunditions tu maximize the Lagrangian functiun L(x, A) in (1.5.2) an: 

equivaknt to the necessary conditions to maximize Itx) in the equality constraincd problcm 

t 1.5. 1 ) ;lnd ( 1.5.2). 

1.6 Kuhn Tucker Conditions. 

In 1951 Kuhn and Tucker l1951] developed neccssary and sufficient solutions for optimal 

solutions to the gcncralmathematical programming problem. The Kuhn Tucker conditions 

provided a hame work liOln which numerous computational method have been developed tor 

solving certain types of the nonlinear programming problem. A thorough treatment of the 

conditions is therdore essential bdore chapters two and three. Furthermore, the Kuhn-Tucker 

conditions provide considerable height into the nature of the nonlinear problem. 

In developing the necessary conditions, the nonlinear programming problem in (1.3.8) and (1.3.9) 

is n:cast in the lor111 
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Maximize z = f(x) .. . . . .... ....... .. ....... . 1.6.1 

i = 1,2, .. . ,r 

i = r + 1, . .. ,s 

gi(x) = bi i =s + 1, ... ;m 

x~o 

. .. . ... . . . .. . ... 1.6.2 

Normally, equality constraints will not often occur in mathematical programming problems. The 

inclusion of equality constraints does perhaps surprisingly introduce further difficulties in the 

solving of this problem, adding r slack variables Xli , i = 1,2, ... r 

And s suplus variables Xli , i = r + 1, ... ,S the above problem may be rewritten as 

Maximize Z = f(x) 

Subject to gi(X) + Xli = bi i = 1,2, . .. ,r 

i = r + 1, . .. ,s 

i =s+ \ , ... ,m 

.. ........... .. .. 1.6.3 

By applying Lagrangian function technique to this problem. We have for this problem the 

Lagrangian function as : 

i = 1 i = r+ 1 i =S+1 

1.6.4 

Where Ai, i = 1,2, .. . ,111, are the Lagragian multipliers associated with the constraints in 1.6.3. 

By differentiating L(x, A) with respect to A and X (including Xli) and setting these differentials 

equal to zero, a set of necessary conditions for optimizing the unconstrained function L(x, A) 

results; they are 
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alex 11) af(x) 11/ ago (x ) 
-'-= -~l1i" =0· a a ~ a J = 1,2, .... ,11 

'X j 'X j i=1 'X j 
... .. .... .. .. ... ... 1.6.5 

aL(x, 11) = b - (T (x)-x = 0 .ax ,0, /I , 
i = 1,2, . . . ....... . . ,1' . .... .. . . . .... ... .... 1.6.6 

(~Ll.\'. A) I ' 
--- == ) - (r I .r) +.\' = 0 1 J ,,0., 1\ /1 

(,../\., 
i = I' + I. .... s .. . ... . .......... .. .. 1.6.7 

cL(x,A) = b - (T (x) = 0 ax ,'-~, , 
i = s+ 1. ... . m .............. ..... 1.6.8 

aLex, A) = -A,. = 0 
3X'i / i = 1,2, ... , 1' .. . .... .. .... . .. .... .. .. ...... 1.6.9 

3L(x,A) = +A. = 0 
aX'i / i = 1,2, ... ,s . . ... .... . .. ......... 1.6.1 0 

Thus i r Xli > 0 for i = 1.2 •.... s, thcn Ai = 0, i = 1,2, . .. ,so Uy 1.6.9 and I .6.10 it also follows that at 

tht: optimizing point x*li , A\ = 0, 

1.6.1 Thl' 1.t1!lran!lian Snllllin.n 11ll'llwd inHlln's 11K' Illllo\\ing slL'ps : 

\ 1) Find the ~onstrailled maximum of l~x). Frt:qut:ntly, by inspe~ting the function. it is apparcnt 

that the UI1~onstraincd maximum will not be feasible, so that this step may be deleted. If this 

solution is feasible. it will bc thc globalmaximulll, and thcrc is no nct:d to proct:t:d to the next 

step . 

. (2) Solve the Lagrangian run~tion based only on the m-s equality constrai nts gi(X) = bl, 
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i = s + I,,, .,111. If this solution satisfies the remaining constraints, it will be global maximum of 

J~x) and lhe process may be stoppeu. 

(3) Add one of the inequality.constraints to the Lagragian function in (2) treating it as ifit were 

active. Solw this Lagrangian system. If the solution satisJies the rcmaining s-I constraints. stop. 

nth~l'\\is~ dl"llP thl.' (urr~nt ilh;quality (lHlstrainL add anlllh~r. and r~peal the process. If all s 

ilK'quality cllnslrainls 1~liltll yil.'ld a I~asibk snlutilln when tn:all:u individually as cquality 

constraints proceed to (4). 

(4) Repeat the proccss by now aujoining pairs ot'inequality constraints to the Lagrangian function 

in (2), training thclll as active constraints. Continue until a lCasible solution to the s-2 remaining 

constraints is encountered or all C/ = S!/2!(S-2)! pairs have been exhausted. If the latter occurs 

proceed to (5). 

(5) Continue the process taking all C/ combinations for a = 3,4, . . . ,5 until a feasible solution is 

encountered. 

Two example pl:oblems presented illustrate the Lagrangian algorithm and the application of the 

Kuhn-Tucker conditions 

Example 1.4 

rh~ pl\lbkm is 

Maximize z = [(XI.X2) = -(XI _11)2 - 4(X2 _6)2 

Subject to 2x I + X2 S I g 

XI +2X2 s 16 

XI ,X2;;:: 0 

From the graphic representation of the problem given III figure 1.6.1 , it is apparent that the 

solution occurs at intersection or the two lines 2xI + X2 =18 and XI +2X2 = 16. The Lagrangian 

algorithm will now be applied to verify this conjecture and to illustrate the technique. 

Stcpl: 
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The unconstrained global maximum from inspection if t{XI,X2) occurs at (11,6), which clearly is 

not teasible. 

Step2: 

From the Lagrangian runctiOl~ lIsing the constraint XI +2X2 = 16 . 

.... .. ....................... 1.6.11 

The solution to 1.6.11 is XI = 7.5, X2 = 4.25, AI = 7, and A2 = O. since the point (7.5, 4.25) is not 

teasible. the process continues. 

Step 3: 

Form the lagrangian function using the constraints 2xI + Xl = 18 

. .. .... . ......... .. ... . .. .. 1.6.12 

The solution to (1.6.12) is XI = 6.3 , X2 = 5.4, AI = 0 and A2 = 4.8. 

Since (6.3. 5.4) also is not feasible, the process continues. 
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, . \ 

Step 4: . 
Form the Lagrangian function using both constraints x I + 2X2 = 16 and 2x I + X2 = 18 . 

.. .. ...... ..... ............ 1.6.13 

DL\(X,A) 
, = 16 - X ' - 2x = 0 
8A I 2 

I 

The solution to 1.6.13 is XI = 6.67, X2 = 4.67, 11. 1= 4.2 and 11.2 = 2.33. The point (6.77, 4.67) is the 

intersection of the two lines and hence is feasible. Therefore, the global maximum occurs at the 

point x· = (6.67, 4.67) and I~x*) is -25.82. 

Since the constraint space is convex and J~x I ,X2) is a concave function, the Kuhn-Tucker 
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Figure 1.6.1. Graphic solution to example 1.2. 

Example 1.5 

The problem is 

Subject to XI + X2 ~ 4 

9 10 12 

33 

14 

Contour ofZ 
(Z = -16) 

16 



4 

--.-

, . 2 + v 2 = .1 
·'1 ·'2 't 

2 

rigure 1.6.2. Graphic soluti on to e:\L1ll1ple 1.5. 

.., 
J 

The Lagrangian method will be used to solw this problcm also; 

Stepl : 

4 

CONTOl lR OF 
Z(Z = -I) 

Till' uneonslra i ned 111:1:\ il11UIll I'rol11 i Ilspedion I~:\ 1.:\2) occurs at (4.4). wh ich is not lCasi blc. 

Form the Lagrangian function using the constraint XI + X2 = 4 

oL1 (.\'·)..) • J 0 ---= -2(xl - 4) - /1.1 = 
aX I 

........ . ..... .. . . .... .... . 1.6. 14 
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The solution to 1.6.14 is XI = X2 = 2, AI = 4, and A 2 = O. Since (2, 2) is not feasible, the process 

continues. 

Step3 

J70rm the Lagrangian function lIsing the constraint Xl
2 + x/ = 4. 

. . ....... . ..... ... ... ... ... 1.6.15 
8L, (X,A) . . . 

- = -2(Xl - 4) - 2X,A, = 0 
8x

2 
- - -

The solution to 1.6.15 is XI = X2 = (2)112, AI = 0, and A 2 = 1.83, since ((2)1 /2, (2)1 /2) is feasible, the 

Summary 

This chaptcr discussed generally the nonlincar programming (function) for both singk variabk 

and the sewral variables. Also. the chapter was able to treat some conditions that give the local or 

stated in the chapter. 
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2.0 OPTIMIZATION PROBLEMS WITH SEPARABLE OBJECTIVE. 

2.1 INTRODUCTION 

An approximate solution method known as separable programming is presented for the problem. 

Maximize 

11 

Z = 1\:'\) = I f/Xj) 

i =1 .... ........ ........ .. ... 2.1.1 

Sub.i~l:t to 

n 

gj = I gjiXj) 

i =\ 

i = 1,2,3, ... ,111 ...... .. 2.1.2 

j = 1,2,3, ... ,n .. ...... . 2.1.3 

This model required that m + I functions Z, gl, g2 .. . , gill are separable in the n variables 

XI.X2, ... ,Xn ., if the problem does not satisfy the separability requirement. It may be possible, 

through the transformation of variable, to recast the problem so that it does. 

To illustrate the basil: mel:hanism upon whidl the approximation procedure is based, consider for 

~:\al11pk lh~ lI11i\"arial~ t"lIlKtinll fl:'\) = S + -h - :'\ ~. \\·hidl is plotted ill figure 2.2.1. By l:onneding 

lines at points on ttx) at equal intervals of one unit of length on the x-axis beginning at origin. It is 

possible to approximate fCx) reasonably well in a piecewise linear fashion. Denote the interval 

remarking points on the x-axis by X~. k = 0.1 ,2 .. .. ,5 and f(xk) by fk . It is now possible to write 

down the approximating piecewise linear function, denoted by r(x ' ), for each of the five straight 

lines over the range () $ x $ 5 in figure 2.1 

2.1.1 Detinition Of Separable Programming Problem 
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When the nonlinear objective or constraint(s) or both can be expressed as piecewise linear 

functions it is then said to be a separable programming problem 

2.2 Transformation of nonlinear programming Problem (N LPP) to separable programming 

problem (SPP). 

. .... ........ ....... 2.2.1 

k = 0, 1,2,3,4 

For example, the line segnu.:nt connecting the point (O,S) with (I , II) is given by 

rex) = 8 + [( II - 8)/( I - O)](x - 0) = 3x + S 

Also. the line segment connecting the point (I , II) with (2,12) is given by 

I(x) = II + [(12 -11)/(2-I)J(x-l) = x + 10 e.Lc. 

It is possible to use J{x) to approximate approximate l{x) at some point x. say between the kth and 

kth + 1 points on the x-axis. By defining a constant A that must satisfy 0 ::; A ::; I, 

...... . ... .... ........... 2.2.2 

Solving 2.2.2 for x - Xk gives x - Xk = A(Xk + 1 - Xk); and upon substituting this into 2.2.1 , 

) ) .., . .. . . . ......... . ...... . . . .. . _._.J 

or 

= A Ii + I + (I - A) Ii. 

In 2.2.2 let A = Ak+1 and (I -A) = Ak , thus 

where x is between Xk and Xk+l, it is possible to determine unique values for Ak and Ak+1 such that 

. .......... .. .......... 2.2.4 

. .. ......... . .... ... ... 2.2.5 

where 
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+ AHI = 1 ...... . ............... 2.2.6 

.................... . .. 2.27 

u. tration 2.1 

S an illustration 0 I" usi ng the above I"ormula. suppose that it is desi red in the example to provide 

Il(l' ) /4 lil's bl'l\\'l'l'lI :\1 "" I !lI1d :\2 == 2. Sill(l' 1"1 = II :llld 12 == 12. it follows from 2.2.5 that 1{5/4) 

314)11 + lll4)12 = 11.25 where 1(514) = 11.44. 

2.1 General Piecewisl: Linear Approximation Technique l~ or Univariate Function 

he above formulae can be generated by allowing r segments (not necessarily or equal length) 

ver the range of x; Specified by 0::; x ::; b where b is an upper bound on x; for any x, 0 ::; x ::; b. 

:t 

x = I AkXk 

k =0 

I Ak= I 

....... .. . . .... .. . .... . ... . .. 2.2.8 

..... .. ........... .. ... ... .. 2.2.9 

k =0 . . . . .... .. .. . ..... .. . . . . ..... 2.2.10 

k = 0.1,2, .. . ,r . .. . .. . 2.2. 11 

ith the additional condition that no more than two of Ak shall be positive, and if two are positive, 

hey must be adjacent. 
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fix) 

12 

10 

4 

2 

2 3 4 5 6 x 

Figure 2.2.1 Illustration or a piecewise linear approximation of a Curvilinear. 

2.2.2 The General Piecewise Linear Approximation Technique ror n Variables Functions. 

The general piecewise linear approximation technique described above for a univariate function 

may be extended in a straightforward manner to functions of n variables if the functions are 

The results given in 2.4.1 - 2.4.4 may be applied to each of the functions fl(x) and f2(X2), the 

1"1 

fl(xl) = I" I(X!) = L Akl (k I 

k = 0 
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6(X2) = f'2(X2) = I Ak2fk2 

k =0 

r1 r, 

where XI = I Akl Xkl 

lllil.:l.: tilat it is pllssibk tnusc a dit'krentnuillber ot'illtervals on XI and X2 axes: rl might not 

The general piecewise linear approximation rules may now be stated for a separable n-variate 

function f (x I ,X2, .... xII ); 

r ' .1 

x' = .I I AkjXkj j = 1,2, ... ,n 

k =0 

j = 1,2, ... ,n 

k =0 

r 1 

I )' h.j = I 

k =0 j = 1,2, ... ,n 

j = 1,2, .. . , n 

k = 0,1,2, .. . , 1~i 

...... 2.2.1 

.... .... ... 2.2.2 

.... .... ........... 2.2.3 

... ..... .. ..... .. 2.2.4 

And lor any given j, no more than two Akj may be positive. and if exactly two are positive, 

they must be adjacent. In 2.2.2 Ikj = lixk) ' 
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These results may be applied directly to the functions (i and gij in 2.1.1 and 2.1.2, 

generating the followi'ng approximating functions; 
r · .I 

riXj) = L Ak/kj j = J ,2, .... 11 

k =0 

1'1 

{I.lt:'.i) = L Al..jgl..ij i = 1.~ ..... 111 

1... =0 

j = I.~ ..... n 

Whcrc 2 . ~.3. 2.2.4 and thc adjaccncy cundition arc satisficd . Thc uriginal problem in 2.1.1 

to 2.1.3 may now bc rcplaccd with thc following approximating problem: 

11 

Maximize z = rex) = . L 

Subject to 

1'1 

11 r .I 

.i =1 k =0 

II 
.i =1 k =(J 

~ Aki = 
~ = (1 

A"i~ o. j = 1.2 ..... 11 : 

........ ...... ....... . . . . ... 2.2.5 

i = 1,2, ..... ,m ............. 2.2.6 

.i = I.~ . .. .. 11 .......... 2.2.7 

k = 0.1,2 .. .. ,1) ............ 2.2.8 

And the condition that for any given j , 110 more than two !Io kj may be positive; if exactly 

two are positive. they must be adjacent. 

If it were not for this condition, 2.2.5 - 2.2.8 would delineate a linear programming 

problem in the Aki. However, the simplex algorithm may be applied if the basis entry is 

restricted so that not mure than two positive Aki arc allowl,;cllor any j ; if exactly two Aki . . 
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occur for some j , they must be adjacent. Once a solution in the Akj has been determined in 

the fashion , 2.2.1 may be used to convert them to xi values. 

2.3 Optimization Algorithm for Separable Objective. 

Here, separable programming is utilized to solve optimization problem. A continuous 

nonlinear separable function is considered, approximated by a piecewise linear function, 

and then solve the final problem by the simplex algorithm. This is essentially what the 

following algorithm docs. 

Step I: Express the functions involved in the problem as separate functions. 

Step II: Partition the domain of ~ach variable into a number of segments. 

Step Ill: Evaluate the separate functions at the end point of segment. 

. Step IV: Generate a linear programming problem in the Ajl.: with suitable constraints on the 

Ail.:. 

Step V: Solve for the A.il.: 

Step VI: Solve l'or the original variables. 

Exampk 2.2 For illustration purpose consider the problem 

Maximize Z = f(XI,X2) = 3xI + 2X2 

'Subject to g(XI ,X2) = 4Xl2 + x/ ~ 16 

X),X2 ~ 0 

. The problem is illustrated in figure in figure 2.3.1. From this figure it is apparent that by 

selecting 0 ~ XI ~ 2 and 0 ~ X2 ~ 4, the feasible region will be considered. Suppose now 

that rl = 2 and r2 = 4 'are selected. 

4 

2 

OL-----II-----;--+---~ 

2 3 
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Figure 2.3. I Illustration of a nonlinear function. 

Step I: Express the fum;tions as separable functions 

This can be done very easi ly by utilizing 2.2.9. Since it can be easi ly determined that the 

functions are indeed separable in our illustrative example this is the case, and so 

It:\ 1.:\.') -= 1'1 (:\ I) 1 r.:l:\~) \\11l.'1\: 

Note. howcyer. that thc first constraint is also a separable function and we must also 

operate 011 i l. 

Since equation 2.2.2 is gt!neral we can say, for all constraints, that 

i = 1,2, ... , III 

In this case we have only the one constrainllo concern ourselves with and we havc 

gl(XI,X2) = gll(xl) + gI2(X2) 

where gll(xl) = 4x2 , gn(X2) = x/ 

Figure 2.3.2 Tabular Format lor Evaluating Functions. 
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Using the above format, a table oLitli ne /or illustrative problem is to be construct below. And the 

table is to be tilled. At k = 0, XII;, = X I 0 and this brings the lower ranoe of oLir domain of interests . , b , 

obvioLisly x 10 = O. furthermore. at k = \ , X 1.1 = \ (frol11 step 2 above) and x 1.2 = 2. The col Limn for 

:-; 11. :1nd :-; ~ k should lw c()mpictl'd h~ l( )rc startil1g with that of'colul1ll1 lor I'I(Xlk). 

Fr\)111 step I ;lhll\'l' 

I'll :\ I I.) ,- .1:\ II. 

And at k = 0 X 1.1 '= 0 

Thus fl (x IIJ = 0 k=O 

Similarly fl(xll;,) = 3 k=\ 

The evaluation of the separate functi ons as required by this step of the algorithm should be 

completed before the next step. 

r; 
k XII;, X21;, gll(xll;, ) 

0 

\ 

2 

j ... 
.J 

-t 

Figure 2.3.3 Table Outline tor illLls trative problem 
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o o o o o o o 

4 .... 
.) 2 

II 
·2 ") 2 16 4 6 4 

.., .., 
,_1 . 1 9 6 

/.1 ~ 

•. _._. ____ . ______ ...-.-.-J 

Maximizl: 

.i = L 4 ; k = 0.1,2.3.4 

This can be written as follows 

J. - I ..,. I' - I ') ~ . 1 - .,_," - ,_,-,,,"t. 

This can be put in the Tabular rorm as sec,( below 
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Initial Tableau (Fig. 2.3.5) 

Cost coeff: 0 
.., 

6 0 2 4 6 8 0 Basic Index ,) 

, Variable: AIO All AI2 A20 A21 A22 A23 A24 A Variable b 

--- - - - --
0 4 16 0 4 9 16 A 16 

() tJ () () () () AIU 
0 (l () I I I I I () A20 
._- I 
0 .. 

Cl () ') 4 
--

1.'.1 - ~I . , - (, X 0 0 

From the simplex criterion 1'01' basis entry variable A24 is selected to enter. However, A20 is already 

in the basis so that A24 cannot' enter (two AS in the set can be in a basis only if they arc sdjacent) 

unkss A20 departs. The simplex procedure 1'01' basis departure (16116, I/O, III) indicates that either 

I ... or 1"'20 can be eliminated. Therel'ore, A2-l is allowed to enter the basis and A20 departs. 

The solution to the Initial Tableau is A = 16, AIO = I and A20 = I with A24 entering the new basis 

and A20 exiting the lirst tableau is given in ligure 2.3.6 

Figure 2.3.6 

Cost codT: 0 
., 

6 0 2 4 6 8 0 Basic Index ,) 

- - - --- -
\'ariabk: A It) All AI2 A20 A21 A22 A~-, A2-l A Variable b 

0 4 16 -16 -15 -12 -7 0 I A 0 

I I I 0 0 0 0 0 0 AIO I 

0 0 0 I I I I I 0 A24 
1 

Cj - Zj : 0 
.., 

6 -8 -6 -4 -2 0 0 -8 ,) 

The solution to the first tableau is A = 0 , AIO = I and A24 = I. AI2 should enter next, but this is 

impossible for or it enters. A would depart. leaving AIO in the basis not adjacent to A12. The 

next best contender is All. If All enters A. departs leaving two adjacent AS in the first set in 
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the basis, namely AIO and A". Thus All enters the basis, and the slack variable A departs. 

The second tableau is given in j'igure 2.3.7 
i 

Figure 2.3.7 

Cost coeff: 0 
.., 

6 0 2 4 6 8 0 Basic Index .J 

-.- -- --- -------- - -
V;lri;lbk: AIO All AI~ A~(I A~I A~~ A" -.' A.2.J A. Variabk b 

0 1 4 -4 -15/4 
.., 

-714 0 1/4 All 0 -.J 

1 0 
., 

4 15/4 
.., 

7/4 0 -\ /4 A.I () 1 -.J .J 

0 0 0 \ 1 \ 1 1 0 A24 
1 

c.i - Zj : 0 ,0 -6 4 21/4 5 \3/4 0 -3/4 -8 

The solution to the second Tableau is A.II = 0, AIU = \ and A.24 = \. According to the simplex 

criterion A.21 should enter the basis next, but this is not possible since A,O would have to depart, 

leaving two non adjacent AS i.e. A21 and A24 in the basis. Therefore the only A that can enter is A.23 

with the A.lUdeparting. The third Tableau is given in figure 2.3.8 

Figure 2.3.8 (Third Tableau) 

Cost coeff: 0 
.., 

6 0 2 4 6 8 0 Basic Index 
.J 

------ . - - .-.-- ---- ._--_._---
\'ariabk: A It) All ), I~ A~(I A~I A~2 A" A2.J A Variable b 

~ .' 

0 \ 1 0 0 0 0 0 0 A. II 1 

4/7 0 -'\2/7 16/7 \5/7 12/7 1 0 -\/7 A23 4/7 

-4/7 0 12/70 -9/7 -8/7 -5/7 0 \ 1/7 A.24 
3/7 

c -z · .I J. -\3/7 0 -24/7 -24/7 -\2/7 -4/7 0 0 -2/7 -69/7 

The solution to the third Tableau is A.II = \, A.23 = 4/7 and A24 = 3/7. Upon checking the simplex 

criterion, it is found that this solution is optimal. From (2.4.\) it follows that 

X2' = (0)A.20 + (1 )A21 + (2)A.22 + (3 )A.23 + (4 )A.24 = 24/7 or 3.43 
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and fi·om step I V above r* = 3( I) + 6(4/7) + 8(3/7) = 9.86 

And the original problem yields 3(1) + 2(3.43) = 9.86 

Example 2.2. This example is an improved fashion of the same example considered above. Using 

just 5 segments lur \1 variable as against 3 scgmcnts uscu lur the Example 2.1. 

"- :'\ I ~ :\ ~ ~ gll(:'\ld gl~(:'\~~) 1'1 (x I~) Ii (x2d 

0 0 0 0 0 0 0 

1 .5 1 1 1 1.5 2 

2 1 2 4 4 ~ 4 J 

3 1.5 
.., 

9 9 4.5 6 J 

4 2 4 16 16 6 8 

Figure 2.3.9 The completed Evaluation Table. 

Step IV Generate a linear programming problem in the Ajk . The 2.2 .2 is utilized here and this is to 

be combined with the evaluation in figure 2.3.4, the illustrative problem now becomes 

4 4 

Maximize f(XI,X2) = I Alkflk + I A2kf2k .. .... . . .... .. ... . 2 .3.1 

k =0 k =0 

.. . .. . . . . .... . . . .... . . 2.3.2 

k =0 k = 0 

The approximating linear programming problem (LPP) becomes 

Maximize z = f = 

. . ..... . ... ... .. . ... 2.3.3 
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. ....... . . ... .. 2.3.4 

" I AI -k = AIO + All + AIJ + AU + AI4 = I . .................... 2.3.5 
~ =0 

I.. =0 .. . . .. .. ... .. . ... 2.3.6 

Definition 2.3.1 Property or Adjacent weight (A 's) 

Given that all the constraints are linear, if f(x) in 2.1.1 is to be maximized, and (j(Xj) is a 

concave function, then every optimal solution to the approximate model based on 2.4.1 - 2.4.4 

contains only one AI.; , or at 1110st, two adjacent weight AI.; and AI.;+I at positive levels. The same 

solution property holds if rex) is to be minimized and l:ieXj) is convex. 

Now, for ease in utilizing. the optimization algorithm is subsequent steps the above adjacency 

property Illllst be observed. that is no morc other than two or theA 's_associated with XI and X2 

are greater than zero. and i r two A 's_associated with a variable are greater than zero, then the 

I ;l~l IhallllllSl.' l\\\l A 's_ musl lk' adjacelll J)l)inIS has not been slated mathematically as a 

constraints. However, it must be remembered always that we have such a constraint as we 

move from one table to another. It should be noted that the Linear Programming problem 

(LPP) depends on three constraints and ten variables. 

Step V Solve lor the Ajl.; 

This is a tanniliar ground' and by introducing a slack variableA. the tirst constraint can be 

written as equality. Artificial variable may also be introduced to the second and third 

constraints and proceed to use the simplex algorithm to solve the piecewise linear 

approximation if the basis entry restriction is satislied. 
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The approximating LPP can now be rewritten as follows 

al1d/. - r = 

This can bl: put in thl: tabular form as shown bdow: 

Figure 2.3.5 (Initial Tableau) 

Cost codI 0 1.5 .., 4.5 6 0 2 4 6 g 0 Basic Index J 

Variable: AIO All AI2 AIJ AI 4 A20 A2I An A23 A24 A Variable b 

0 1 4 9 16 0 1 4 9 16 1 A 16 

I I I I 1 0 0 0 0 0 0 AIO 1 

0 0 0 0 0 I I 1 1 1 0 A20 1 

Cj - Zj 0 1.5 
.., 4.5 6 0 2 4 6 8 0 0 J 

Frum the simpkx critl:rion for basis entry variable A24 is selected to enter. However, A20 is already 

in the basis so that A24cannot enter (two A'S in the set can be in a basis only if they are adjacent) 

unless A20 departs. The simplex procl:durc for basis departure (16/16, 1/0,1/1) indicates that either 

A or A20 can be eliminated. Therei'orl:, A24 is allowl:d to l:nter the basis and A20 dl:parts. 

The solution to the initials tableau is A = 16. AIO = A20 = 1 with A24 entering the new basis and A20 

exiting. The 1 s l Tableau is given in figure 2.3.11 
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Figure 2.3.11 (l sl tableau) 

Cost coeff: 0 1.5 3 4.5 G 0 2 4 G 8 0 Basic Index 

Variable: AID All AI2 AIJ AI4 A20 A21 A22 A23 A24 A Variable b 

0 1 4 9 16 -16 -15 -12 -7 0 1 A 0 

1 1 1 1 1 0 0 0 0 0 0 AIO 1 

0 0 0 0 0 I I 1 1 1 0 A24 1 

Cj - Zj : 0 1.5 3 4.5 6 -8 -6 -4 -2 0- 0 -8 

The solution to the first Tableau is A = 0, AIO = A24 =1. AI4 should enter next, but this is 

impossible for if it enters, A would depart, leaving AIO in the basis not adjacent to A24. Also 

A13, AI2 would leave two non-adjacent A s in the basis. The next best contender is All. If 

All enters A departs leaving two adjacent A s in the first set in the basis, namely AIO and 

All . Thus All enter the basis, and the slack variable A departs. The second Tableau is given 

in figure 2.3.12 

Figure 2.3.12 (Second tableau) 

Cost coeff: 0 1.5 3 4.5 6 0 2 4 6 8 0 Basic Index 

Variable : AIO All AI2 AIJ AI4 A20 A21 A22 A2J A24 A Variable b 

0 I 4 9 16 -16 -IS -12 -7 0 1 All 0 

1 0 -3 -8 -15 16 IS 12 7 0 -1 AIO 1 

0 0 0 0 0 I I 1 1 1 0 A24 1 

Cj - Zj : 0 0 -3 -9 -18 16 16.5 14 8.5 0 -1.5 -8 

The solution to the second Tableau is All = 0, AIO = 0, A24 = 1. 

A21 or A22 should not enter the basis, they are not adjacent to A24 . The best contender is A23. that is 
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A20 would leave the basis and A23 will enter the basis in the figure 2.3.13 

Figure 2.3.13 (Third Tableau) 

Cost coeff: 0 1.5 3 4.5 6 0 2 4 6 8 0 

Variable: AID All AI2 AI3 j" 14 A20 A2I A22 A23 A24 A 

I I I I I, 0 0 0 0 0 0 

117 0 -317 -817 -1517 1617 1517 1217 1 0 -117 

-117 0 317 817 1517 -917 -817 -517 0 1 117 

Cj - Zj : -17/14 0 -9114 517 3114 -2417 -1217 -417 0 0 -217 

The solution to the third Tableau is AII=I, A23 = 117 and A24 = 617. 

Basic Index 

Variable b 

All 0 

A23 117 

A24 617 

-129/14 

AI3 should enter the basis, then A24 would leave the basis leaving two non adjacent AS in 

.the basis i.e. All and AI3 . the next best contender is A12. All would leave the basis and AI2 

would enter in the figure 2.3 . 14 

Figure·2.3.14 (Fourth Tableau) 

Cost coeff: 0 1.5 3 4.5 6 0 2 4 6 8 0 Basic Index 

Variable: AID All AI2 AI3 AI4 A20 A2I A22 A23 A24 A Variable b 

1 1 1 I j 0 0 0 0 0 0 AI2 1 

417 317 o -517 -1217 1617 1517 1217 1 0 -117 A23 417 

-417 -317 0 517 1217 -917 -817 -517 0 1 117 A24 317 

Cj -Zj: -13114 -9114 0 1114 -3114 -2417 -1217 -417 0 0 -217 -138/14 

The solution to the rourth Tableau is AI2 = 1 , A23 = 417 and A24 = 317. AI3 should enter next, A24 

would leave the basis for AI3 to enter the basis in the figure 2.3.15 (Fifth Tableau) 
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Figure 2.3.15 (Fifth Tableau) 

Cost coeff: 0 1.5 3 4.5 6 0 2 4 6 S 0 Basic Index 

Variable: AIO All AI2 AIJ AI4 A20 A21 A22 A23 A24 A Variable B 

9/5 8/5 1 0 -7/5 9/5 8/5 1 0 -7/5 -1/5 AI2 2/5 

0 0 0 0 0 1 1 1 1 1 0 A2J 1 

-4/5 -3/5 0 1 12/5 -1)/5 -~/5 -1 0 7/5 1/5 A24 3/5 

CI - Z,r -9/5 -liS 0 o -V5 -33/ 10 -R/5 -1/2 o - 1/ 10 -3/1 0 -693/70 

The solution to the fifth tableau is AI2 = 2/5, AI3 = 3/5 and A23 = I. Upon checking the simplex 

criterion, it is found that this solution is optimal. From 2.2.1 it follows that 

XI " = (O)AIO + .5AII + AI2 + 1.5AI3 + 2AI4 = (~} + I.{~) = 1.3 

• 
X2 = (0)A20+ A21 + A22.2+ A23 .3+ 4A24 = 3(1) = 3 

And from Step IV above r* = 3(2/5) + 4.5(3/5) + 6(1) = 9.9 

The original problem yields 3xI + 2X2 = 9.9 

Comparing this optimal value with the other one before it . we are able to see that the more the 

Th~ ~xact optimal solution to the above problem can be found using the Lagrangian multipliers 

method. 

2.4 By Lagrangian method 

(I) Form the lagrangian function 

L(x.A) = 3xI + 2X2 + A(16 - 4Xl2 -x/) 

II aL(x.A.) =3-8-1xl =0 
aX I 

x = 3/SA 

... .. . ......... 2.4.1 

........ ......... ......... . ........ 2.4.2 
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aL(x.A) 
---=2-2Ax) =0 

aX2 -

I
. aL(x.A) 1 

a ::;0. = 16 - 4xI - x , = 0 
aA '-

, , 
-- } ·h l •· , :-" 2- - I (J 

SllhSlillll~ Ill!' :2.-L2 and 2.4.3 in 2.4.4; 

(36 + 64)/64 A. 2 = 16 

:.A.=±5116 

• so. XI = 3/8(5/16) = 1.2 

Also, X2 · = 1/(5116) = 3.2 

The function yields 3x, + 2X2 = 10. 

. .......... . ... .. .... . . . . . . 2.4.3 

....... . .............. 2.4.4 

.. .. .. ... . . .. . ... . .... 2.4.5 

. . .. ................. 2.4.6 

... .......... .. .... . 2.4.7 

... ... ............. 2.4.8 

This value is the exact value of the problem, which is also the optimal value. This shows that the 

first solution to the approximating problem is fairly good in this case. 

The following should be noted when dealing with the approximate model i.e if every (i(Xj) is 

global optimal solution for the model. But if these conditions arc not satisfied. then by modifying 

the simplex method. we can obtain at least a local optimum for the approximate model. 

Nonlinear Objective with Nonlinear Constraints 

. More examples considered as follows 

Example 2.4 

Solve the problem. 

M 
.. 2 

aXllTIlZe x I - X I + X2 

Subject to XI + X/ s; 4, XI,X2 ;::: 0 

Solution: 
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Step I 

Step II 

f(XI,X2) = fl(xl) + Ji(X2) where 

where fl(xl) = X12_ XI , fi(X2) = X2 

gi= gil(XI) + gi2(>d + .. . + gin(Xn) 

g.ll~I.~2) g.lll~l) f g.d~2) 

wher(' g.11(:\I) = :\1 . g.d:\2) =:\/ 

i = 1.2, ... , III 

from the original problt:m wc see that both x I and X2 must be greater than zero. 

The first constraint indicates that XI :$; 4 and X2 :$; 2. (The variable does not necessarily need to 

have the same domain). In our own case, let us partition the domain of each variable into four 

segments, thus we will have Jive grid points. 

Step III 

At k = 1. Xlk = XII = I c.Le. 

k=O XIO=O 

Similarly, fl(Xlk)= 0 k = I 

Use the table below to evaluate the separate functions. 
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Figure 2.3.16 

k Xlk X2k gll(Xlk) gdX2k) 

0 0 0 0 0 

.5 .25 

" " -
, :; 1.5 3 1.15 , 

-t 4 ') 4 4 -
_. ---- .. - - - .--. _. ,-

The completcd Evaluation Table. 

Step IV 

The original problcm can now be written as follows 

4 4 

Maximize f(XI,X2) ~ I. Alkflk + I. A2kf2k 

k =11 k =11 

k =0 

4 

L AI -k = Aill + -11. 11 + AI~ + AI] + 11.14 = I 
k =0 

4 

k =0 

I. A2k = A.20 + A.21 + A.22 + A.2J + A.24 = I 
k =0 

A jk J' = 1,2 " k 0 1 2 ..., 4 = , , ,J, 
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Step V 

By intt:oducing a slack variable s, we can write the first constraint as an equality. Proceed by 

applying Simplex method to solve the piecewise linear functions as follows; 

Basis AIO All AI2 AIJ AI4 A20 A21 A22 A23 A24 S b 

S 0 I 2 3 .4 0 .25 I 2.25 4 I 4 

AIO I I 1 I 1 0 0 0 0 0 0 1 

A20 0 0 0 0 0 I 1 1 I 1 0 1 

0 0 2 6 12 0 .5 1 1.5 2 0 0 

lnitial.tableau (figure 2.3.17) 

By letting AI4 enter the basis AI4 will replace S while AIO and A20 remain the basis. Clearly AIO and 

AI4 are not adjacent points and this is a situation we can not tolerate. Alternatively, we allow AI4 to 

replace A 10, in that case we would have s, AI4 and A20 in our basis , a perfect condition as shown in 

the next table. 

First tableau (Figure 2.3.18) 

Basis AIO All AI2 AI3 AI4 A20 A2I A22 A23 A24 S b 

S -4 -3 -2 -1 0 0 .25 1 2.25 4 1 0 

AI4 1 1 1 1 1 0 0 0 0 0 0 1 

A20 0 0 0 0 0 1 1 1 I 1 0 1 

-12 -12 -10 -6 .0 0 .5 1 1.5 2 0 -12 

Improved solution. 

The first tableau yields the solution AI4 = 1, A20 = 1, all other variables = O. Either A24, A23, A22 

orA21 would make bi negative or the adjacency condition would not be met, if any other variable 
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enters. We haw therefore found the optimal solution to our linear piecewise approximation. It 

now only remains to translate our solution into terms of the original variables XI and X2 . 

Step VI 

-1 . L :\1 = A II.. XII.. = (0)(0) + (0)( I) + (0)(2) + (0)(3) + (I )(4) = 4 

I.. =0 

and 

• I :\2 - A~I..:\21.. - (1)(0) I (0)( .5 ) I (0)(1) 1(0)(1.5) I (0)(2) · 0 

k =u 

And the evaluation of tht! objective function yields 

Another case of nonlinear separable objective is treated as follows. 

Example 2.6 Nonlinear Objective with Linear Constraints 

Solve the following problem by separable programming 

Subject to XI + X2 ;:: 4 

If our answer is XI = I, X2 = 3, J{XI,X2) =-3, how do we account for the fa<.:lthat we obtained an 

exact answer by an approximation method? 

Solution. 

Step I 
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Slep II 

~ X, = 0 or I 

if X, = I , then X2 = 3 by the constraint. 

Slep III 

k X,k X2k g,l(x",J g, 2(X2i-;} 1', (X2k) [2(X2k) 

0 0 0 0 0 0 0 

I .25 I .25 I 3116 -I 

2 .5 2 .5 2 114 -2 

... I ... I ... 0 ... 
J J J -J 

Slep IV 

Generalion of LPP for the piecewise approximation 

Maximize f= Minimize -[= . 

Subject to 
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gl = OAIO + 114 A I I 1/2AI2 + AI) + OA20 + A2I + 2A22 + 3A23 ~ 4 

AIO+ All + AI 2 AI3 = I 

A20+ A21 + A22 + An = I 

This can be rewritten as follows 

- p= OAIO - 3116AII - 114 A I 2 + (O)Al.l +' OA2o + A21 + 2A22 + 3A23 

gl' - Sl + S2 = OAI O + 1I4AII 1/2AI2 + AI) + OA2o + A2I + 2A22 + 3An - Sl + S2 = 4 

AID + All + AI 2 AI) = I 

A20 + A2I + A22 + An = I 

~here ?I and S2 are suplus and artificial variables respectively 

Step V 

To solve for Ail.: , we use the Simplex method and adjacency conditions are satisfied. 

Figure 2.3 .20 

Basis AIO All AI2 AIJ A20 A2I An An SI S2 

S2 0 .25 .5 1 0 1 2 3 -1 1 

AI D I 1 1 1 0 0 0 0 0 0 

A20 0 0 0 0 1 1 1 1 0 0 

0 -3116 -1/4 0 0 1 2 3 0 M 

b 

4 

1 

1 

0 

A12would enter the basis and AIO would leave, -1/4 is the most negative and this guess the pivot 

because we are minimizing. 
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Figure 2.3.21 

Basis AIO All AI2 AIJ A20 A21 A22 A23 SI S2 B 

S2 -0.5 -.25 0 \/2 0 1 2 3 -1 1 7/2 

AI2 1 1 1 1 0 0 0 0 0 0 1 

A20 0 0 0 0 \ \ \ 1 0 0 1 

\/4 \/\6 0 114 0 1 2 3 0 M 114 

Basis b 

-0.5 -.25 0 1/2 -3 -2 -1 o . -1 1/2 

o o o o o o 1 

o o 0 o o o 
~ 

\/4 1116 0 1/4 -3 -2 -1 0 0 M -11/4 

( Figure 2.3.22) 

S2 = Y2 , AI2 = V-t = \ , A23 = 1 

Basis AIO All AI2 AI3 A20 A21 A22 A23 SI S2 b 

AI3 -\ -0.5 0 1 -6 -4 -2 0 -2 2 1 

AI2 2 3/2 \ 0 6 4 2 0 2 -2 0 

A23 0 0 0 0 1 1 1 1 0 0 1 

118 -1/16 0 0 -3/2 -I -1 /2 0 Y2 -1/2 -3 

Figure 2.3.23 

The solution is AIJ = \ , AI2 = 0, A23 = \ 
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Basis AIO All AI2 AI3 A20 A21 A22 A23 SI S2 b 

AI3 1 1 I 1 0 0 0 0 0 0 I 

SI I 3/4 1/2 0 
.., 

2 I 0 1 -I 0 J 

II..' ; 0 0 0 0 1 1 I 1 0 0 I 

-_. __ . --.- --.-- - -
-3 /~ -7/ 1 (1 -1 /-+ () ~ ., 

-1 /-+ 0 0 0 -.l - .., 
- -J 

.- - - ____ _ • ___ 0 __ - . 
'11 

... ., "' ., 

Th~ solution has r~al:h~d its optimal valu~. Th~ solution to th~ table as All = 1. An = 1 and slack - -. 

variable, S I = O. 

Step vI 

Solve for the original problem 

• 
X I = 0 + 0 + 0 + (0)(1 ) = I 

• X2 = 0 + 0 + 0 - (3)( I) = 3. so the original objective yields -3. 

As a rurther illustration, consider ~xample 2.7 

Example 2 .. 7 

. .. ............ (I) 

.. .. ...... . .. .. (2) 

Th~ terms in flx) have b~en grouped in (I) to display the function's separable character, each 

component function in parenthesis is concave. Let the grids l'or x I and X2 be (0,.4,.7, I) and l'or X3 

b~ (0.1, \.5.2 ,3); let 

To get the domain OfXI,X2 and x), we tind the lSI derivatives of them. 
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Figure 2.3.25 

k Xlk X2k X3k gil gl2 gl3 fl f2 f3 

0 0 0 0 0 0 0 0 0 0 

.4 .4 .4 .8 1.92 1.28 1.667 

2 .7 .7 1.5 .7 1.4 1.5 2.73 1.82 2.25 

3 2 1· 2 2 3 2 2.667 

4 0 0 3 0 0 3 0 0 3 

XI = (O)AIO +.4AII + .7A12 + AI3 + OAI4 

Now the problem can be written as follows 

Subject to 

By simplex criterion, we add slack variable A to the g i.e g + A = 16 

J J 4 

:' I Alk = I I A2k = I - I AJk = I -

Also k =0 k = 0 k =0 
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Figure 2.3.26 

Basis AIO AI I AI2 AI3 A20 A21 A22 A23 AJO AJ I AJ2 AJJ AJ4 A b 

A 0-4 -7 I 0 -8 1.4 2 0 I 1.5 2 3 I 4 

I I 0 ' 0 0 0 0 0 0 0 0 0 1 

o o 0 0 I I I I 0 0 0 0 0 0 1 

o o 0 0 0 0 0 0 I 1 1 1 1 0 1 

o 1.92 2.73 3 0 1.28 1.82 2 0 1.6667 2.25 2.6667 3 0 0 

By sinlplex critcl 'ion, either AI2 or AJ4 , so that either AIO or AJO will departs but let AIJ enters AIO 

. departs as shown below in Initial Tableau . 

First Tableau (Fig 1.2.3.27) 

Basis AIO AI I AI2 AI3 A20 A21 A22 A23 A30 AJ I AJ2 AJJ A34 A b 

A -I -.6 -.3 0 0 .8 1.4 2 0 1 1.5 2 3 1 3 . 
1 1 0 0 0 0 0 0 0 0 0 0 1 

o o 0 0 1 1 1 1 0 0 0 0 0 0 1 

o o 0 0 0 0 0 0 1 I 1 1 1 0 1 

-3 -1.0 8 -.27 0 0 1.28 1.82 2 0 1.6667 2.25 2.6667 3 0 -3 

The solution to tl 1e first Tableau is A = 3, AI3 = 1, A20 = 1, A30 = 1 and AJ4 enters the basis, so that 

the A30 departs th e basis as shown in second Tableau. 
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Basis AIO All AI2 AIJ A20 A2J An A23 A30 A31 A32 A33 A34 A b 

A -1 -.6 -.3 0 0 .. 8 1.4 2 -3 -2 -1.5 -1 0 1 0 

AIJ 0 0 0 0 0 0 0 0 0 0 1 

A20 
0 0 0 0 0 0 0 0 0 0 1 

A34 
0 0 0 0 0 0 0 0 0 1 

-3 -1.08 -.27 0 0 1.28 1.82 2 -3 1.3333 -.75 -.3333 0 0 -6 

Second Tableau ( 2.3.28) 

The solution to the basis nor the A = 0 , AIJ = I, A20 = I; and A2J cannot enter the basis nor the A22 

b.ecause both are not adjacent to A20. Therefore A21 enters the basis, so that the A will leave the 

basis as shown in the Third Tableau. 

Third Tableau (2.3 .29) 

Basis AIO All AJ2 AIJ A20 A21 An A2J A30 A31 A32 A33 A34 A b 

A2J 10/8 -3/4 -3/8 0 0 714 5/2 -15/4 -5/2 -15/8 -10/8 0 1018 0 

AIJ 0 0 0 0 0 0 0 0 0 0 1 

A20 
5/4 3/4 3/8 0 0 -3/4 -3/2 15/4 512 15/8 514 0 -5/4 

A34 
0 0 0 0 0 0 0 0 1 0 1 

-1.4 -.12 .21 0 0 0 -0.42 -1 .2 1.8 1.8667 1.65 1.2667 0 -1.6 -6 

The solution to the Third Tableau is AIJ = 1, A20 = 1, A2J = 0, A34 = 1. A31 or A30 or A32 would no 

enter the basis because adjacently condition did not hold. But A33 will enter the basis and A20 

leaves the basis as shown in the Fourth Tableau as shown. 
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Fourth Tableau(2.3.3 0) 

AI2 AI3 A20 A21 A22 A23 A30 A31 A32 A33 A34 A b 

0 0 1 I 1 1 0 0 0 0 0 0 1 

1 1 0 O· 0 0 0 0 0 0 0 0 1 

3/5 3 110 0 4/5 0 -3/5 -6/5 3 2 3/2 1 0 -1 4/5 

-1 -3/5-3 110 o -4/5 0 3/5 6/5 -2 -1 -112 0 1 1 1/5 

-2.67 -.88 -. 17 0-1.07 0 0.34 0.32 -2.0 -.67 -.25 0 0 -.33 -7.01336 

The solution to the F ourth Table is AI3 = \, A21 = \ , A33 = 4/5 and A34 = 115. A34 will depart the 

basis and A22 enters t he basis as shown in the fifth Tableau. 

Fillh Tnbleau(2.3.31 ) 

AI2 AI3 A20 A2I A22 A23 A30 A31 A32 A33 A34 A b 

A2I . 5/3 \/2 0 7/3 \ 0 -1 10/3 5/3 5/6 0 -5/3 -5/3 2/3 

\ 1 0 0 0 0 0 0 0 0 0 0 1 

o o 0 0 0 0 0 0 1 1 1 1 1 0 1 

-5/3 -I \/2 o -4/3 0 1 2 -\ 0/3 -5/3 -5/6 0 5/3 5/3 113 

-2.1 -.54 0 o -1 .44672 0 0 -0.36 -.8667 -.1 0.333 0 -.5667 -.9 -7.1267 

, 

The solution to the fifth Tableau is A2I = 2/3 , A22 = 113 . AI3 = 1 and A33 = 1. A21 departs the basis 

and A32 enters the ba sis as shown in the sixth Tableua 
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Sixth Tableau(2.3.32) 

Basis 1.,10 All 1.,12 1.,13 1.,20 1.,21 1.,22 1.,23 1.,30 1.,31 A" .>- 1.,33 1.,34 A b 

1.,32 2 6/5 3/5 0 14/5 6/5 0 -6/5 4 2 0 -2 -2 4/5 

Au 0 0 0 0 0 0 0 0 0 0 

A" .'.' ') -6/5 -315 () -I ~/5 -6/5 615 .., ., 
- 0 -J -I 0 J 2 liS 

A22 () () () () 0 0 0 0 0 0 
- - - - - - - -

_'1 ') .... - -.5X -.02 () .- 1.56 -.04 () -0.32 -.99 -.166 0 0 -.50 -.S334 -7.15334 

The optimal solution is 1.,13 = 1,1.,22 = 1,1.,32 = 4/5 = 0.8 and 1.,33 = l iS = 0.2 with objective function 

value 7.15334. This corresponds to XI" = I, X2" =.7 and X3" = 1.6 with a value 7.1667. 

The exact Solution. 

Subject to XI + 2X2 + X3 ~ 4 & all Xj ~ 0 

Lagrange 's function 

("'1/ . • 
-- = (l - (lX1 - A = II 
Q \'I 

........................... t:) 

.... . .. ..... ..... .... . ..... (3) 

DL 2 
-=2--x, -,.1,=0 a ., .' 

-".1 J 

.. .. ........................ (4) 

aL 
- =4-x, -2x, -X 1 =0 aA. _ . . . ......... .... ...... ... . . ... (5) 

from : A = 6 - 6x I .. ....................... (6) 

Substitute 6 into 3 & 4: 12xI + 4X2 = 8 .............. . (7) 
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from 5 X I + 2X2 + x) = 4 

Using the Gauss-Jordan Elimination n1ethod: 

o 0 

o 0 

I -2 -I 

: . X I = 7/8 ,X2 = 5/8 and x) = 15/8 

Also A = 6 - 6(7/8) = );4 

: . Exact optimal solution is 7.25 . 

7 

8 

5 

8 

-25 

8 

o 0 

o 0 

001 

7 

8 

5 

8 

15 

8 

............... (8) 

Further Example On Non-Separable Problem.(Objective function with cross product term) 

M . . 4 2 4 2 aXlmlze XI + XIX2 + X2 

Subject to 3XI + X2 ~ 4 

Step I 

Convert the objective function into separable functions as follows. 
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2 ' 2 2 2 4x( + 4(xJ - X4 ) + X2 where 

would be added as new constants. 

The original problem can be written as follows 

Maximize 4X(2 + 4(x/ - x/) + x/ 

Subject to 3x( + X2 ~ 4 

Solve for Xj using the separable programming technique 

Construct the evaluation table for the A.jk 
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k XI\; X:2\; XJ\; X-l\; gil gil g21 gn g31 g32 g41 g42 fl Ii 13 t~ 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

I .5 .5 I 0 1.5 .5 2 1.5 I 0 I 0 I .25 I 0 

2 I I 2 0 
.., 

I 4 
.., 2 0 2 0 4 I 4 0 -' -' 

This ~all b~ wrillt:1l ill Ih~ rOrln b~llJ\v: 

2 :2 :2 :2 

L /\. Ik = I L A2k = L A3k = I L A4k = I 
k = 0 k = 0 k = 0 k = 0 

To solve for the Ail; . use the ordinary Simplex method so as Lo solv~ for XI,X2.X] and X4 in the 

original problem. 
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(Initial Tableau) 
j 

Basis AIO All AI2 A20 A2I A22 A30 A31 A32 A40 A.j I 11.42 SI S2 S3 S4 b 

J 
SI 0 1.5 

.., 
0 .) I 0 0 0 0 0 0 I 0 0 0 4 .1 

S ~ () ') -l 0 1.5 3 0 0 0 0 0 0 0 I 0 0 7 -

S3 () 0 () () 0 0 0 I ') 0 0 0 0 0 I 0 2 -

S~ 0 0 {) 0 0 0 () I ') 0 0 0 0 {) 0 I 2 -

/\.111 I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 I 

A20 0 0 0 I I I 0 0 0 0 0 0 0 0 0 0 I 

)\.J() 0 0 0 0 0 0 I 1 1 0 0 0 0 0 0 0 1 

/1.40 
0 0 0 0 0 0 0 0 I I I 0 0 0 0 0 I 

0 1 4 0 0.25 1 0 I 4 0 0 0 0 0 MM 0 

Wh~re SI and S2 represent slack values. S3 and S.j represent artificial vanablcs. Either the A,32 or 

1.,2 would enter the basis. Let Ivn enters the basis then 11.30 woulcllcave the basis. 
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:asis AIO All AI2 A20 A21 A22 "-30 A31 A32 A40 A41 A42 SI S2 S3 S4 b 

SI 0 1.5 3 0 .5 0 0 0 0 0 0 1 0 0 0 4 

S2 0 2 4 0 1.5 3 0 0 0 0 0 0 0 0 0 7 

S3 0 0 0 0 0 0 -4 -3 0 0 0 0 0 0 0 0 

S4 0 0 0 0 0 0 -4 -3 0 0 0 0 0 0 0 0 

AIO 0 0 0 0 0 0 0 0 0 0 0 0 0 

A20 0 0 0 0 0 0 0 0 0 0 0 0 0 

A32 0 0 0 0 0 O. 0 0 0 0 0 0 0 

A40 
0 0 0 0 0 0 0 0 0 0 0 0 0 

o 4 0 0.25 -4 -3 0 0 o 0 0 0 MM -4 

The solution to the tableau is AIO = A20 = A32 = A40 = 1, SI = 4, S2 = 7, S3 = S4 = O. 

Here A using simplex Criterion, AI2 would enter the basis, AIO would leave the basis as shown 

below. 
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Second Tableau 

13asis 11. '0 All 11.'2 11.20 11.21 11.22 11..'0 AJI AJ2 11..10 A.jl 11..'2 S, S2 S .1 S.I b 

S, 
.., 

1.5 () 0 .5 I 0 0 0 0 0 0 I 0 0 0 I -.J 

s ~ -4 '"l 0 () 1.5 
.., 

0 0 0 0 0 0 0 I 0 0 " -- -' .J 

S3 II II II II II II --t -.' n () () 0 () 0 I 0 0 

S., II II () II II () --t 
, 

() () () () () () () () () -.' 

11.' 2 I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 I 

i\.20 0 0 () I I I 0 () 0 0 0 0 () 0 0 0 I 

AJ2 0 0 0 0 0 0 I I I 0 0 0 0 0 0 0 I 

/\..j0 
0 0 0 0 0 0 0 0 0 I I I 0 0 0 0 I 

-4 " 0 0 0.25 1 -4 
.., 

0 0 0 0 0 0 MM -s -.J -.J 

ThL: so lution to the Tableau is /\. 12 = 11.20 = 11.32 = 11._10 = I. S, = I , S2 = 3, S, = S.I = O. 

Hcre by using Simplex mcthod 11.22 would have entered while 11.20 depart the basis in the next 
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(Third Table au) 

Basis AIU All AI2 A21) A21 An A30 A31 A32 A4U A41 /1.42 SI S2 S3 S4 b 

SI 
.., 

-J -1.5 0 -I -.5 0 0 0 0 0 0 0 I 0 0 0 0 

S2 -4 -2 0 
.., 

-1.5 () 0 O. 0 0 0 0 0 1 0 0 0 - .) 

S.: (l (l (l (l (l II --l -3 II II 0 0 0 0 I 0 0 

S.j 0 0 0 0 0 0 -4 
., 

0 0 0 0 0 0 0 1 0 -J 

AI~ 1 1 0 () () () 0 () 0 0 0 0 0 0 0 1 

/1.20 0 0 0 1 1 I 0 0 0 0 0 0 0 0 0 0 I 

An 0 0 0 0 0 0 1 I I 0 0 0 0 0 0 0 I 

A.jO 0 0 0 0 0 0 0 0 () 1 \ I 0 0 0 0 I 

0 -\ -.75 0 -4 
.., 

0 0 0 0 0 0 MM -9 -J -4 -3 

The solution t ·0 the Tableau is A2U = An = A32 = A4U = S I = S2 = S3 = S4 = O. Also the optimal value 

for the objecti ve function is 9. XI,X2,X3 and X4 can be found using AS. 

/"kIXkl =OAlo+.5AII+ AI2 = (0)(0)+(.5)(0)+(1)(1)= I, 

k =0 

-

LA 2k X2k = OA20+.5A2I + An = (0)(0) + (.5)(0) + (1)(1) = I, 

k = u 

2 

X3·= L A3 

k =u 

kX3k = OA30 + A31 + 2A32 = (0)(0) + (l )(0) + 2(0) = 2, 
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2 

and X4* = L A4kX!k = OA40+ OA41 + OA42 = (0)(1) + (0)(0) + (0)(0) = O. 

k =0 

• •• • 
XI = l,x2 = I, X3 = 2 and X4 = 0 

To solve for the original problem let look for XI.X2,XJ and X4 and substitute for these in the original 

2.5 COllwrsioll or NOll-Separability Programming Problems To Separable Programming 

Problems. 

A function would not be separable, if it involves one of the following: 

(I) Cross product terms 

(2) Exponential function . 

2.5 .1 Non - separabi lity due to Cross Product 

Suprisingly, many nOl~linear expression can be put into separable form by introducing 

additional variables and constraints. 

Suppose the model contains in the objective function or constraints (or both) the product of two 

expressions: 

..................... 2.5 .1 

A simple example is XI.X2. As the Jirst step in obtaining separability. substitute the single 

variable w whenever 2.5 .1 appears. 

Secondly, introduce two more variables y and z, and relate them by adding the pair of new 

constraints. 

.. ...... 2.5.2 

Thirdly, to complete the procedure, impose the separable type constraint 'relating w to y and z: 
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..................... 2.5.3 

The constraints 2.5.2 and 2.5.3 arc added to the model if2 .5.1 is simply XIX2 the transformation 

n:quin:s Ihn.'l.' addili~)nal \ 'ariabks and XIX~ would be 10 lake its log. Il)("(lling 

.. . .. . ... .. . .. . .. . . . .. . ...... 2.5.4 

whel\: w = XIX2. Then XIX2 wlluld be replaced by \V and 2.5.4 would be added to the constraint set 

This method adds only one variable. 

To illustrate the above, convert each problem below into a separable form. 

Example 2.3 

(I) Maximize 4xI + 2X2 - XIX2 

Subject to 

every Xj ~ 0 
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Solution 

Separable form 

So the original problem ean now be wrilten as 

Maximize 4xI + 2X2 - x/ - x/ 

-Subjecl to -XI - x/ ~ -5 

Here, we added two variables XJ and x" and equal number of constraints to the model. 

The original problem becomes: 

Maximize w + h + y 

Subject to XI
2 + XI - 2y ~ 0 

2xl + 3X2 + 6h ~ 12 

X/ + 4k ~ 5 

Take log ofw = XIX2, h = X2X3 and k = XIX3 & Y = XIX2X3 and add them to the constraints set in 

the above: 
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Log w = logx I + logx2 

log k = log x I + log X2 

log y = log XI + log X2 +Iog XJ 

w,h,k.y > 0 

The above optimization problem can be stated better as follows: 

Maximize w + h + y 

Subject to XI 2 + XI - 2y ::; 0 

2x/ + 3X2 + 6h::; 12 

Log w = logxl + logx2 

Log h = logx2 + logxJ 

log k =: log XI + log X2 

log y = log XI + log x2log Xj 

every Xj 2: 0 ; h > 0, k > 0, w > 0 and y > 0 

Note that we added four new variables and equal number of constraints to the model. 

2.5 .2 Exponential Function. 
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A second illustration, suppose the model contains the expression of the form: 

where h(x"x2, ... ,Xn) > 0 for all possible Xj . Here the function eW is substituted for 2.5.6 and the 

Ill'\\' (nilstrailll. 

....................... 2.5.6 

is add~d to th~ 1110dd. Although 2.5.6 is itsd r not s~parable, it can b~ treated by the approach used 

to separat~ th~ ~xpr~ssion in 2.5.5 (where g = In h) 

To illustrate the above, convert the maximization problem into a separable form. 

Example 2.4 

Solution. 

Separable form of the above is as follows: 

Let 

\\. = X 1 x ~ . h = XI - x~ . k = :\ 1 X.:'X.;X.I ..\: 1 = X) X.1 

Also let ~p = [Z(x)J h 

P - h In Z = 0 where q = In Z 

: . p - hq = 0 -)- P = hq 

log p = log h + log q 

Take log of the following and add them to the set of constraints i.e 

log w = log XI + log X2 

log k = 10gxI + log X2 + logx3 + log X4 
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log Z = log XJ - logx4 

log P = log h + log q 

log r = p 1n e + log y 

ancl also log y = log 5 + log(2 + w + X2) 

The original problem can be rewrilten in separable form as follows: 

Maximize r 

Subject to k ~ 1 G 

log w = log x I + log X2 

log k ~ logx I + log X2 + 10gxJ + log X4 

log Z = log X3 - logx4 

log P = log h + log q 

log r = p 1n e + log y 

log y = log 5 + log(2 + w +. X2) 

Also h > 0, k > 0, w > 0, q > 0, p >0 , r > 0, y > 0, z > 0, k > 0 

We ad~led eight new variables and 6 IH':W constraints to the modcl. 

2.6 Computation of Nonlinear Programming Model. 

As we have seen, converting a nonlinear programming moclel into an approximate with 

separable functions increases the size of the model in two ways: 

Firstly, the separability transformation introduces new constraints and variables. 

Secondly the subsequent linearization expands the number of constraints and variables even 

further. 
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If the original problcm contains only a fcw nOlllincaritics, this approach is quitc workable; 

othcrwise the algorithm may not work. 

If the objective and constraint functions utilize thc propcrty of adjacent weights, AS , then 

we can employ thc ordinary simplex algorithm, which is an availablc tool. The modified method 

that forccs this property is not widely available. 

2.7 Rcmarks 

In applying thc mcthod to an actual problem, we must of course, consider the selection of 

the grid for each approximation. Broadly stated, the goal is to select the grids/segments that yield 

a nearly optimal solution [or the original problem. 

Summary 

This chapter treated the following with examples, transformation of nonlinear 

programming problem to separate programming problem, optimization Algorithm for separable 

objective and conversion ofNonsepm!ability programming problem to separable programming 

problems. 
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3.0 OPTIMIZATION MODELS WITH RATIONAL OBJECTIVE 

3.1 INTRODUCTION 

Ratio of Linear Forms. Supposc thc objcctive function to be maximized is 

11 

co+ " C'x' L.,; .1 ' .1 

i =1 
C (x) = ----"----

11 

fo + L fjxj 

j =1 .. . ... .................... 3.1.1 

Somctimes thc model is reffercd to as fractional programming and occasionally as hyperbolic 

.programming. To avoid having to consider a host of possibilitics in thc exposition assulllc that the 

Xj arc so constraincd that the dcnominator in 3.1.1 is strictly positive for all fcasiblc values of Xj , 

and that thc maximum of C(x) is finitc. 

3.1.1 Dcfinition. fractional Programming Problem 

When thc nonlinear (fractional) objcctive can bc expressed as a linear [unction, it is then said to 

be a Rational Programming Problcm . 

3.2 CONVERSION OF I';'RACTIONAL PROGRAMMING INTO ALINEAR MODEL. 

3.2.1 CONSTRAINED / UNCONSTRAINED PROBLEM 

Supposc thc objective function to be maximizcd is 3.1 .1 abovc. 

To convert the problcm to a lincar model, define the variable r as 

( 

11 J-I 
r = f~ + L I~i Xj 

J = 1 

And hence 3.1 . 1 can be wri Hcn as 

11 

Cor + L Cjxjr 

j =) 

................. .. 3.1.2 

.............. .. . .... .... 3.1.3 

By assumption, r > 0 for all feasible values of Xj . Next make a change of variables. 
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...................................... 3.1.4 

Then the transformed model becomes 

Maximize 

11 

cor+ L c 'y' .I .I ................ .... . .............. .. 3.1.5 

i = 1 

\\'h~I\:. a~~\lrdillg In 3.1.2 Ih~ I' alld Y.I IIlllsl satisfy the lillear cOllstraint 

n 

1'1;) + L Ij Yj = I 

j =1 ................................. 3.1.6 

and l' > O. Note that the change of variables 3.1.4 must be performed in any other constraints on xJ 

. For example. if any additional conditions are linear 

n 

I aijXj = bi 

.i =1 for i = 1,2,3, ... ,m ............................. 3.1.7 

The transformed constrants are found by multiplying each relatioin in 3.1.7 by 1', yielding 

n 

L (ajjYj) - bjr = 0 : 

.i =1 
fix i -= 1.~.3 ... .. 1Il .... .. ...... .. ................. 3.1.8 

To illustrate the abovc. convert the probicm below into an equivaicnt lincar modcl. 

Example 3.1 

M 
.. -3+2XI+ 4X2- 5X3 

ax Inllze 

Subject to : 
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Solution 

The equivalent linear Illodel is as fiJllows: 

Then the objective becomes 

Maximize -3r + 2rxi + 4rx2 - Srx3 

Subjcc't to rx I - rX 2 ~ 0 

7rx I + 9rx2 + I Orx3 ~ 30r 

rx I = ~ 0, rX2 = ~ 0, 1'X3 = ~ 0 

By assumption r ~ 0 

Also we change Xj to Yj as follows i.c. 

Yj = rXj j = 1,2,3 

So, the above optimization problem can be written in linear form as follows: 

Maximize -3r + 2YI + 4Y2 - SY3 

Subject to YI - Y2 ~ 0 

YI = ~ 0, Y2 = ~ r, Y = ~ 0 

3.3 OPTIM IZATION ALGORITIIM FOR RATIONAL OBJ ECTIVE 

I-Jere, fractional programming is utilized to solve an optimization problem. A continuous 

nonlinear fractional function is considered, approximated by the Simplex algorithm. That is . 
essentially what the following algorithm does. 

Step I . 

Express the functions ( i.e nUlllerator / denominator and constraints) involved in the problem as 

separate functions. 

Step II 

Define r as the reciprocal of the denominator of the objective such that r> O. 
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Step III 

Multiply the function in the numerator of the objective and the constraint(s) by r and change rXj to 

Yj· 

Step IV 

li~'ll~ml~ all ~lJlIi\'aklll lill~ar or 1111111in~ar programming probh.:m in the Yj ;j = 1,2, ... ,m with 

slIitabh.: constrainls on I' and Yi . 

Step V 

Generate a linear programming problein in the Ajl; with suitable constraints on the Ajl; ( if step IV 

invoves the nonlinear function(s)) 

Step VI 

Solve for the Ajl; 

StepVII 

Solve for the Yj 

Step VIII 

Solve for the original variables 

3.4 ALTERNATIVE OPTIMIZATION ALGORiTHM FOR RATIONAL OBJECTIVE 

Here, the fractional model is split into the function in the numerator and the function in the 

denominator combines with constraints. 

StepI 

Expres.s the functions involved in the problem as separate functions. 

Step II 

Solve for the function in the nun1erator / constraints using Simplex method. 

Step III 

Solve for the function in the denominator / constraints using Simplex method. 
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Step IV 

Apply separable programming algorithm to either II or III (or both) when it consists of nonlinear 

functions. 

StepV 

Sl~'p VI 

Solw for the variables 

Note that the values orthe variables are suppose to be the same for both thc Step II and III. 

Example 3.2 

For illustrative purposes let us solve the problem 

Subject to 

XI + X2
2 ~ 4 

SlL'p I 

x +2 I 

Express lhe fUl1l:tion as separate fUIH.:tiollS. 

This can easily be done as follows: 

Numerator 

Denominator 

For constraints 

Step II Detine r as the reciprocal of the objective function. 

From the objective function, let the reciprocal of given denominator of the fractional model be r. 

i.e r= I/(xi +2) 
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Step Jll 

Multiply the function in the numerator of the objective and the constraint(s) by r and change rXj to 

Yj . 

I·kn: the numerator is multiply by r2 and also the constraints 

J\ 1st) 

This can be written as 

Maximize rc(y) = yl2 -1)'1 + rY2 

Subject to rYI + Y/ ::; 4/ 

YI , Y2 2 0 

Step IV 

Generate a linear programming problem in the Ajk with suitable constraints on the Ajk 

Since the objective and the constraints involves nonlinear then the tabular tormat would be 

utilized as tollows; 

k YII.. Y21.. gll(YII..) gdY2k) rl(Yld li(Y2k) 

o 0 0 0 0 0 0 

r .5r r2 .25 r2 0 .5 r2 

2 2r r 2 r2 r2 2 r2 r2 

3r 1.5r 3 r2 2.25 r2 6 r2 1.5 r2 .., 
-' 

4 4r 2r 
J 

4c 4 r2 12 r2 2 r2 

The equivalent linear model is : 
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, ~ = AIO + All + All + AIJ + AI4 = I 
k =0 

A2k = Al0 + All + A2l + A2J + A 14 = 1 

, I 

St~p VI Solv A '" e Il)r tll~ J 

Well tilized the simplex algorithm here to solve lor lht! AS just likt! wt!'ve dont! with tht! 

example in tl 1e chapkr contains separable modd. 

Fig 3.3.1 (lni tial tableau) 

Basis A 10 All 1...12 AI] 1...14 A2() 1...21 1...22 1~23 1...24 SI b 

S 0 rL 2 rL 3 rL 4 rL 0 .25 rL rL 2.25 rL 4 rL 0 4 

1 1 1 1 1 0 0 0 0 0 0 1 

0 0 0 0 0 I 1 1 1 I 0 I 

0 0 2 rL G r2 12 rL 0 .5 r2 rL 1.5 rL 2 rL 0 0 

Sillc~ r :> O. I:! r2 is till' Illl)sl positiw ~Iltr)' ill th~ last row and should therefore k:ad LIS to 

the pivot. so AI4 ~ntcrs and Al,u departs [ since 4/4r2 is greater than the ratio III in the second row] 

Fig 3.3.2 (Fir st Tableau) 

Basis A 10 All 1...12 1... 13 1...14 1...20 1...21 1...22 1...23 1...24 SI b 

S 4 rL -3rL -2 rL _rL 0 0 .25 rL rL 2.25 rL 4 r.L 1 4 - 4 rL 

1 ) 1 ) 1 0 0 0 0 0 0 ) 

0 0 0 0 0 ) ) 1 ) ) 0 1 

12 r.l -) 2 r.l -I 0 r.l -6 rL 0 0 .5 r.l rL ) .5rL 2 rL 0 -12 rL 
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Since the value of r has been determined using Lagrangian method to be 1/6, the objective 

function is 12 1"2/1" i.c. 12.-. 

'The value of the objective function is therefore 12(1/6) = 2. 

From the last tableau above S = 4 - 4r2 , AI4 = I and A20 = I. 

Step V and VI: 

: . YI = OAIO + rAil + 2rA12 3rA13 + 4rAI4 

= 0 + 0 + 0 + 0 + 41"( 1 ) = 41" 

Y2 = OA20 + .5 rA21 + rA22 + 1.5 rA23 + 2rA24 

= O( I ) + 0 + 0 + 0 + 0 = 0 

By Step lll, YI = rXI then 4r = IXI then XI= 4 

then 0 = rX2 then X2= 0 

: . the original problem becomes (42 - 4 + 0)/(4 + 2) = 12/6 = 2 

Alsor= I/(xl +2) = 1/(4+2)= 1/6 

Example 3.3 
As an illustration, consider last example for Alternative Algorithm. 

Step I 

Maximize XI 2 - XI + X2 N umerator/Constraints 

Subject to XI + X22 ~ 4 

- 2 4 - XI + X2 ~ 
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Step II 

k Xlk X2k gll(Xlk) gdX2k) f l(X2d 

o 0 0 0 0 0 

.5 I .25 0 

1 .... 1 ') -

1.5 "' 2.25 6 .) "' "' .' .) 

') 
<+ 4 12 

--

Figure 3.4.1 

:.f= OA IU + AII(O) + 2AI2 + 6A13 + 12AI4 + OA 20 + A11 (O.5) + A12 + 1.5An + 2A14 

g'= OA lu + All + 4AI2 + 3·A 13 + 4AI4 + OA 10 + A11 ·(·25) + An + ~ . 25A23 + 4A1-1 ~ 4 

-I 

L AI . ~ = A 

k =0 

10 + All + 1..12 + AIJ + 1..1-1 = I 

o + A2 I + /\122 + "-23 + "-24 = I 
h. =() 

Ajk Z 0, j = 1 ,2; k = 0,1,2,3.4 

Fig 3.4.2 (first tableau) 

Basis AIO All AI2 ALl AI4 

0 I 2 .... 4 J s 

1 1 1 1 1 

0 0 0 0 0 

0 0 2 6 12 

A20 A21 An An A24 S 

0 .25 1 2.25 4 I 

0 0 0 0 0 0 

1 1 1 1 1 0 

0 .5 1 1.5 2 0 

YO 

-~-. 

f2(X2k) 

0 

.5 

I 

1.5 

2 

b 

4 

1 

1 

0 



AI4 will enter and AIO will depart, the slack variable will not depart since the AI4 and AIO are not 

two adjacent AS. 

AIO = I, A20 = 1 & S =4. 

Fit! 3.4.3 {laSI la bk;lll) 

Uasis A Il) All Ai2 Au AI4 A20 All An An A24 S b 

S -4 ... -2 -1 0 0 .25 I 2.25 4 I 0 -J 

AI4 I I I I I 0 0 0 0 0 0 I 

A20 0 0 0 0 0 I I I I 1 0 I 

-2 -12 -10 -6 0 0 .5 1 1.5 2 0 -12 

If A24 replaces A2o; it will definitely make the S = bl = - 4 which violates the constraints since no bi 

may ever be negative. Also A21 , An, A23 will also makes the bi. 

: . S = 0, AI4 = I, A211 = I , [* = 12 

Sh:p V 

:\1' = II + 0 + 0 + II + 4 {I) = 4 

• 
X2 = 0 + 0 + 0 + 0 + 0 = 0 

Evaluation of the objective function yields 

. 2 . , - 1 ') XI - X2 + X2 - -

Repeating Step I for the denominator/Constraint 

Maximize XI + 2 

Subject to XI + x/ ~ 4 
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= XI + 2 + 0 

S(~P III 

k 

o o o o o 2 

.5 .25 3 

2 2 2 4 

.., 
J 

.., 
J 3 1.5 2.25 5 

4 4 2 4 4 6 

Figure 3.4.4 

Appmximak rUlldillllS . 

4 

L Aj . ~ = I j = 1,2 
k =U 

Ajk ~ 0, j = 1,2; k = 0,1 ,2,3,4 
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Basis 1..10 All 1..12 1..13 1..14 1..20 1..21 1..22 1..23 1..24 S b 

0 2 
.., 4 0 .25 2.25 4 4 

S .) 

1..10 
0 0 0 0 0 0 

A20 0 0 0 0 0 0 

---- - - - 0 0 .., ... 4 :) () () 0 0 0 0 , 

Figur~ ~.-J..:) 

1..14 enters while the 1..10 departs, since I~IO & 1..14 are not two adjacent I~S. 

Basis 1..10 I~II 1..12 1..13 1..14 1..20 1..21 1..22 1..23 1~24 S b 

S -4 
.., 

-2 -I 0 0 .25 2.25 4 0 -.) 

1..14 0 0 0 0 0 0 

1..20 0 0 0 0 0 0 

-4 
.., -2 -1 0 0 0 0 0 0 0 -6 -.) 

Figure 3.4.6 

The prncl'dlln.' as reached its terminal stagL'. no more positive L'ntrics in the last row. 

: .1..14 = 1,1..20 = I & S = 0 .iu~t like that of the numerator (or formal operation) 

Step V 

XI- = 4(1) = 4 

• 
X2 = 0(1) = 0 

Objective function yields XI + 2 = 4 + 2 = 6 

Now evaluation of the original problem yields 
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Note that this method yields the exact value of the problem. 

3.5 DETERMINATION OF THE EXACT OPTIMAL VALUES 

Application of Lagrangian l11i.lltiplicrs to the Ij'actional programming problem yields the following 

As an itluslralilHl. ~lll\sid~'r ~'xalllpk 3..+ 

Example 3.4 

1 1 1 

L= y,~ - ry, + 1')'2+ A( 4r~ - ry, - Yl~) 

8L - = ::!y, - I' - I'll. = 0 
Oy, 

oL 2 2 - = 4r - ry, - Y2 = 0 
OA 

i.e. y, = (I' + I'A)I~ 

. 2 2 I.e. ry, + Y2 = 41' 

Substitute (3.5.1) & (3.5.2) in (3.5.3): 

1'(1' + rA)/2 + (r/2A/ = 41'2 

..................... 3.5.1 

........................ . 3.5.2 

········ . .. . ..... . .. .. .. 3.5.3 

......................... 3.5.4 

y, = 7.9898r12 = 3.99491' 

Y2 = 1'/13.9796 

Now, we determines y" Y2 & I' 

Since y, = rx, i.e 3.99491' = rx, 

: . x, = 3.9949 

Also, Y2 = rX2 i.e 0/07151' = 1'X2 

X2 = .0715 

The objective function yields (3.99492 - 3.9949 + 0.0715)/(3.9949 + 2) = 2.007678 
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Error = Exact vallie - approximate vallie 

= 2.0000 - 2.007678 = -0.007678 

XI (Error) = 4 - 3.9949 = .0051 

X2 (Error) = 0 - 0.0715 = - 0.00715 

and d~I1l)l1linaIOr / cl)Jlslrainl(s). 

Consid~r ~xampk 3.5 for i lIuslraliol1. 

Example 3.5 

Maximize XI
2 

- XI + X2 

Subject to XI + x/ ::; 4 

aL 
- = 2XI - X - A = 0 
ax, ..... . ............... 3.5.5 

..... ............ . ....... 3.5.6 

. . .. . .. . ....... ......... 3.5.7 

From (3.5.5); x I = (A + 1)/2 ...... . . . ............... 3.5.~ 

From (3.5.6) X2 = 1I2A . . ......... .. . ... ...... ... 3.5.9 

Substitute (3.5.8) & (3.5.9) in (3.5.7); 

(A + 1)/2 + 1I4A2 = 4 i.e " 
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By Newton - Raphson method 

[(A)=2A3 -14A2 + 1 =0 

df(A)/dA = 61..2 
- 281.. 

= 6.989795918 

= 3.9949 

X2 = 1 / [2(6.989795918)] 

= 0.071532846 = 0.0715 

where 1..0 = 7 

: Objective function yields XI
2 

- XI + X2 = 12.03584459 with error of - 0.03584459. 

Also for the denominator it goes like this 

Maximize x I + X2 

Subject to XI + xl ~ 4 

L= XI + 2+ A( 4 - XI - x/) .......... .. .... ........ .... 3.5 .10 

8L 
I-A=O --1..=1 ..................... 3.5.11 

8L 
-=0 
8X2 .................... .. 3.5.12 

.................. . 3.5.13 

: . Substitute for (3.5.11) in (3 .5.10): 

L= x I + 2+ 1(4 - X I - xl) 
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Differentiate L now W.r.t. X2 , we have: 

8L - = -2X2=0 i.e. X2=0 

8X2 

Substitute for X2 = 0 in (3.5.13) , we have: 

XI + 02 = 4 

i.l'. :\1 ::; of 

: . Th~ original problem yidds 

= 2.005974098 

Just the error of 0.005974098, which is minimal in nature. 

Note that for both numerator (objective function) and denominator (objective function) the values 

of XI and X2 are constants. But the values of the A differs. 

3.6 Nonlinear Objective (Ratio of two linear functions) with linear constraints . 

Consider the following illustrative example. 

Exampk 3.6 

3X 1 + x~ + 2 

. XI + X: + I 

~lIbjl'~1 Ill:\.1 + ::\.:::, -' 

XI Z I. X2Z 0 

Solution. It is obvious that all the functions involved are separable. step I holds. 

Step II 

where I' > 0 
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Step III 

Maximize C(x) = 3r XI + r X2 + 2r 

Subjcct to rXI + 2r X2 ~ 3r 

3rxi + rX2~ 4r 

r x I ~ r, rX2 ~ 0 

Step 1lI 

This can bc rewritten as : 

Maximize C(y) = 3YI +Y2 + 2r 

Subject to YI + 2Y2 ~ 3r 

3YI + Y2 ~ 4r 

YI ~ r, Y2 ~ 0 

where YI = rXI and Y2 = rX2 

Step VII solve for Yj using ordinary Simplex method 

Fig 3.6.1 

Basis YI Y2 

SI 1 2 

S2 3 1 

S4 1 0 

-3 -I 

Let S I and S2 be slack variables 

S) and S4 are Artificial variables 

SI S2 

1 0 

0 1 

0 0 

0 0 
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S) S4 b 

0 0 3r 

0 0 4r 

-1 1 r 

0 M 2r 



Fgure 3.6.2 

Basis YI Y2 SI S2 S3 S4 b 

SI 0 2 1 0 1 -1 2r 

S2 0 \ 0 \ 3 -3 r 

YI 1 0 0 0 -\ 1 r 

0 -\ 0 0 -3 M+3 5r 

-
The solution YI = r, Y2 = 0 = S3 = S4 , SI = 2r , S2 = r 

This can be improved further by considering most negative entry in the last row: 

Figure 3.6.3 

Basis YI Y2 SI S2 S3 S4 b 

SI 0 0 I -2 -5 5 0 

Y2 0 1 0 I 3 -3 r 

YI 1 0 0 0 -I 1 r 

0 0 0 I 0 M 6r 

The solution to the table is YI = r, Y2 = r; SI = S2 = SJ = S4 = 0 while C(y) = 6r 

i.e XI = I 

Y2 = lX2 = r i.e X2 = 1 

But from the step II 

:.r+r+r=1 i.e 3 r = 1 == r = 1/3 

or r = 1/(xl + X2 + 1) yields 11(1 + 1 +1) = 113 

So C(y) =6r = 6(1/3) = 2 

Also, the original problem yields (3xl + X2 + 2)/(xl + X2 + 1) 

= (3 + 1 + 2)/(1 + 1 + 1) = 6/3 = 2 
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Now. using the Alt~rnativ~ Algorithm. w~ hav~ the rollowing: 

Example 3.7 

Numerator / Constraints 

Maximize 3x, + X2 + 2 

This .can be solved using ordinary simplex method as follows : 

Figure 3.6.4 

Basis x, X2 S, S2 S3 S4 b 

S, I 2 I 0 0 0 3 

S2 
.., 

I 0 I 0 0 4 -' 

S4 I 0 0 0 -I 1 I 

-3 -I 0 0 0 M 2 

Figure 3.6.5 

Basis X, Xl S, S2 S .\ S., b 

S, 0 ') 1 0 1 -I 2 -

S2 0 I 0 I 
.., .., 

I -' -J 

S4 I 0 0 0 -I I I 

0 -1 0 0 -3 M+3 5 

The solutIOn IS C(x) = 5, XI = I, X2 = 0, SI = 2 , S2 = S3 = 0 
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SI Sz S, S.j b 
Basis XI Xz .' 

SI 0 0 I - '"> -:' :' 0 

0 \ " " I Sz 0 \ J - J 

S.j I 0 0 0 -\ 1 I 

--- - -- ---- -----
tv( 6 () () () I () 

'----

Thl.: solution is ZI(X) = 6. XI = I. X2 = I. SI = 0 = S, = SJ = S.j = o. 

So the original problem yields 3x I + X2 + 2 = 3 + I + 2 = 6 

Denominator ICollstraints 

Maximize x I + X2 + 1 

Subject to XI + 2X2 S 3 

This can be solved using ordinary Simplex method just like we did above for the numerator / 

constraints problem. Now, we adopt the simplex criterion as follows: 

Basis XI :\ ~ SI S~ S.l S.I b 

1---- ----_ .. - ----- - -

SI I ") I 0 0 0 
., 

- J 

S2 
., 

\ 0 I 0 0 -+ J 

S" I 0 0 0 -I I I 

-1 -1 0 0 0 M 1 

Fi gure 3.6.7 
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] 
f: 

Basis XI X2 SI S2 S3 S4 b :~ 

:~] 
2 \ 0 \ -I 2 ? 
1 0 1 3 -3 1 

:1' 
'; 

,. 

0 0 0 -I 1 1 

o -\ 0 0 -I M+ 1 2 

Figure 3 .. 6.8 

Basis XI X2 SI S2 S3 S4 b 

SI 0 0 1 -2 -5 5 0 

X2 0 I 0 1 3 -3 1 . 
Xl 0 0 0 -I 1 1 

0 0 0 1 2 M -2 3 

Figure 3.6.9 

The solution to tl le last tableau is Z2(X) = 3, XI = 1, X2 = 1 SI = S2 = S3 = S4 = O. 

The original obje ctive yields XI + X2 + \ = 1 + I + 1 = 3 

Therefore the ori ginal problem C(x) = ZI(x)/Z2(x) 

= (3xl + X2 + 1) 1 (XI + X2 + 1) = 6/3 =2. 

One more examp Ie considered. Here the objective function comprises of the quadratic function in 

the numerator wi lilc the denominator of the fractional (objective) function is linear in nature. 

Example 3.8 

Maximize (4X1 2 + 4XIX2 + X22)/(2xl + X2) 

Subject to 3x 1+ X2:::; 4 

3X2 :::; 7 

XI , X 22:0 
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Step 1 

Convert the objective (Numerator) function to separable function as follows: 

4 . 2 4 2 2 . 2 
XI + (X3 - x.t ) + X2 

would be added as new constraints. 

The original problem can be written as follows: 

Subject to 3xI + X2:<::; 4 

Step II 

where r > 0 

Skp III 

Multiply the numerator and the constraints by r, as follows 

3rx l+rx2:<::;4r 

4rxl+rx2:<::;7r 
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where YI = rXI , Y2 = rX2 , Y3 = rX3 , Y4 = rX4 

Then the problem can now be rewritten as follows: 

4 2 4 2 2 YI + Y3 - 4Y4 + Y2 

)" ~ O. Y2 ~ 0 . YJ ~ O. Y-l ~ 0 . 

S ince YI~ r, Y2 ~ r solving simultaneously constraints (I) and (2) we have 

2 YI = 2r for b3 

2 Y2 = 21' for b4 

S tep IV 

S olve for Yj using the separable programming technique we construct the evaluation table for "'.Ik 

k Ylk Y2k Y3\.. Y4k gil gl 2 g21 g22 g31 g32 g41 g42 1'1 f2 [3 t4 

0 0 0 0 0 0 0 0 0 0 0 () 0 0 () 0 0 

5 .5 .5 I 0 1.5 .5 2 1.5 I 0 1 0 1 .25 1 0 

1 1 2 0 .... 1 4 .... 2 0 2 0 4 I 4 0 .) .) 

Figure 3.6.9 

This can be written in the form below: 

subject to 
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2 2 

I Alk = I : I 
k = 0 k =0 

2 

A2k = I L 
k = 0 

AJk = I 

2 

I A4k = I 
k = 0 

To solve for the Ajk , use the ordinary Simplex method so as to solve for XI,X2,X3 and X4 in the 

original problem. 

Fig. 3.6.10 (Initial Tableau) 

Basis AIO All AI 2 A20 A21 An A30 A31 A32 A40 A41 A42 SI S2 S3 S4 b(r) 

SI ' 0 1.5 3 0 .5 I 0 0 0 0 0 0 1 0 0 0 4 

S2 0 2 4 0 1.5 3 0 0 0 0 0 0 0 1 0 0 7 

S3 0 0 0 0 0 0 0 1 2 0 0 0 0 0 1 0 2 

S4 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1 2 

AIO 1 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

A20 0 0 0 I I I 0 0 0 0 0 0 0 0 0 0 1 

A30 0 0 0 0 0 0 1 I I 0 0 0 0 0 0 0 1 

1...40 
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 

0 1 4 0 0.25 I 0 1 4 0 0 0 0 0 MM 0 

Where S I and S2 represent slack varial?!es , S3 and S4 represents artificial vanables. Either the A32 

or AI2 would enter the basis, let A32 enters the basis .Then the A30 would leave the basis. 
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Figure 3.6.11 (First tableau) 

Basis AIO All AI2 A20 A2I An A30 A31 A32 A40 A41 A42 SI S2 S3 S4 b(r) 

SI 0 1.5 3 0 .5 I 0 0 0 0 0 0 1 0 0 0 4 

S2 0 2 4 0 1.5 3 0 0 0 0 0 0 0 1 0 0 7 

S3 0 0 0 0 0 0 -4 -3 0 0 0 0 0 0 1 0 0 

S4 0 0 0 0 0 0 -4 -3 0 0 0 0 0 0 0 1 0 

AIO 1 1 I 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

A20 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 

A32 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 

A40 
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 

0 1 4 0 0.25 I -4 -3 0 0 0 0 0 o MM -4r 

The solution to the tableau is AIO = A20 = A32 = A40 = 1, SI = 4, S2 = 7, S3 = S4 = O. 

Here by using simplex Criterion, AI~ would enter the basis, AIO would leave the basis as shown in 

the next table (figure 3.21) 

106 



Second Tableau (3.6.12) 

Basis AIO All AI2 A20 A2I An . A30 A31 A32 A40 A41 A42 SI S2 S3 S4 b(r) 

SI -3 -1.5 0 0 .5 I 0 0 0 0 0 0 1 0 0 0 1 

S2 -4 -2 0 0 1.5 3 . 0 0 0 0 0 0 0 1 0 0 3 

S3 0 0 0 0 0 0 -4 -3 0 0 0 0 0 0 1 0 0 

S4 0 0 0 0 0 0 -4 -3 0 0 0 0 0 0 0 0 0 

AI2 I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

A20 0 0 0 I I I ,0 0 0 0 0 0 0 0 0 0 1 

A32 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 

A40 
0 0 0 0 0 o· 0 0 0 1 1 1 0 0 0 0 1 

-4 -3 0 0 0.25 I -4 -3 0 0 0 0 0 o M M -8r 

The solution to the Tableau is AI2 = A20 = A32 = A40 = 1. S I = 1 , S2 = 3, S3 = S4 = O. 

Here by using Simplex method A22 would have enter while A20 departs the basis in the next tableau 

as follows. 
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Figure 3.6.13 (third tableau) . 

Basis AIO All AI2 A2U A21 A22 A3U A31 A32 A4U A41 A42 SI S2 S3 S4 b(r) 

SI ... -1.5 0 -1 -.5 0 0 0 0 0 0 0 0 0 0 0 
-,) 

S~ -4 -2 0 
.., -1.5 0 0 0 0 0 0 0 0 0 0 0 -,) 

S3 II () l) () () () -~ 
~ () 0 0 0 0 0 0 0 -.1 

S.j 0 0 0 0 0 () -~ 
~ 0 () () 0 0 0 0 0 - .1 

AI2 () () 0 0 0 0 0 0 0 0 0 0 0 

An () 0 0 0 0 0 0 0 0 0 0 0 0 

A32 0 0 0 0 ' 0 0 0 0 0 0 0 0 0 

A4U 
0 0 0 0 0 0 0 0 0 0 0 0 0 

-4 -3 0 -1 -.75 0 -4 -3 0 0 o 0 0 0 M M -9r 

The solution to the Tableau is AI2 = A22 = A32 = A40 = r 

SI = S2 = SJ = S.j = O. Also the optimul value lor the objective function is 9r2. let lim! YI,Y2,Y3 

alld Y-l lIsi lit! AS . 

Step VII , 

* YI = L Akl Ykl r = OAHl + .5AII + AI2 = (0)(0) + (.5)(0) + (1)(I)r = r . 

k =0 

2 

Y2 * = L A2kY2k r. = OA20 + .5A21 + A22 = (0)(0) + (.5)(0) + (1)( l)r = r. 

k = 0 

2 

Y3* = L A3kY3k r = OA3U+ A31 + 211.32 = (0)(0) + (1)(0) + 2(1)r = 2r. 

k =0 
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2 

and Y4· = L A,4kY4k r = 0A,40+ 0A,41 + 0A,42 = (0)(1) + (0)(0) + 0(0) = 0 

k =0 

• •• • : . YI = r . Y2 = r. YJ = 2r and Y4 = 0 

SI~'P \ III 

Tll snlw Illr Ih~ nriginal prnbkill. kl Innk Illr XI • X2. X.\ and X.I and slIbstitlltc rur these in the 

original probkm 

Since y = rx · .I, .I j = 1.2,3.4, 

then y I = rx I = r 
. . 
I.e XI = 1, 

Y2 = rX2 = r I.C X2 
• = I, 

Y3 = rx) = 2r • =2, I.e x) 

Y4 = 1"X4 = 0 • =0 I.e X4 

So the original problem yields 

[4( 1) + 4( I )( 1) + J2]/[2( 1) + 1] = 9/3 = 3 

i3ut th~ optimal solution from the tabkall is rz = 9r2 wherc r = 1I(2x I + X2) = 1I(2( J ) + I) = 113 

Note that the objective functi?n z was multiplied by r, so that the ii·action at the right hand side 

also becomes 

2 

Cur2 + L CjXjr
2 

j =1 

rz= L 

where Co = O. Therefore we have a situation where 

.i =1 . In the above exam pic rz = 9/ . so that z = 9r where r = 1/3 , then 

z· = 9(1/3) = 3. 
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It was observed tht the objective function could be factorized to 2xI + X2 which can be combine 

with the given constraints and solved ordinarily by Simplex method to get the same answer as 

that of the above. Consider the solution to the above problem using ordinary Simplex method; 

Example 3.9 

Maximize z = 2x, + X2 

Subject to 3x, + X2 ~ 4 

4x, + JX2 ~ 7 

This can be transformed as follows, using Simplex criterion. 

3xI + X2 + S, = 4 

4x, + 3X2 + S2 = 7 where SI & S2 are slack variables. 

z - 2x I - X2 + OS, + OS2 = 0 

Now, 

Initial tableau 

Basis x, X2· S, S2 

S, 3 1 1 0 

S2 4 3 0 1 
, 

-2 -1 0 0 

Figure 3.23 
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First Tableau 

Basis 

o 

I· igur~ 3.24 

1 

o 

113 

5/3 

-1/3 

1/3 

-4/3 

213 

o 

I 

o 

b 

4/3 

5/3 

813 

The solution to the lirst tableau is XI =4/3. S2 = 513 , SI = X2 = 0 and Z = 813 . Then the X2 will 

enter the basis, while the S2 departs the basis as follows: 

Basis XI x:! SI S2 b 

XI 1 0 3/5 -115 1 

X2 0 1 -4/5 315 1 

o o 2/5 lIS 9/3 

Second tableau. 

So. the solution to the last tableau is XI = X2 = I, SI = S2 = 0 and Z = 9/3 = 3 which is the optimal 

YLiluc L)fthc ubjcctiYC fUllctiull :2XI + x:! \\"h~r~ XI = I: X2 = I ar~ uptimal value fur variables XI and 

By comparing the example 3.8 and 3.9, we observed that the objective function in each case is 9/3 

= 3 while XI = 1 and X2 = I in the two examples. 

Remarks. 

We observed that the idea of separable programming works for the rational objective and the idea 

of combining numerator and denominator with the constraints, su that the results or the latter 

divide by the results of the formal also works. 
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4.0 COMPUTATIONAL ALGORITHM FOR SEPARABLE OBJECTIVE 

4.1 PSEUDOCODE 

Pseudocode for Separable Objective 

Step I: INPUT OBJECTIVE FUNCTION f(x) AND CONSTRAINTS gi , i = 1,2, ... ,111. 

Step II: DETERMINE THE DOMAINS OF THE VARIABLES, Xi, i = 1,2, ... ,11 

Step III: IF FUNCTIONS ARE SEPARABLE, THEN PARTITION THE DOMAIN OF THE 

VARIABLES INTO NUMBERS OF SEGMENTS, OTHERWISE EXPRESS THE FUNCTIONS 

AS SEPARATE FUNCTIONS. 

Step IV : EVALUATE SEPARATE I· UNCTIONS AT ENDPOINTS OF EACH SEGMENT. 

Step V: GEN ERATE LINEAR PROGRAMMING PROBLEM IN Ajk, Ajk 2 0 

Step VI: SOLVE FOR A.ik USING MODIFIED SIMPLEX METHOD. 

Step VII: SOLVE FOR Xi, i = 1,2, ... ,1). 

Step VJII :PRINT rex) , Xi , i = 1,2, ... ,n. 

112 



4.2 FLOWCHART 

COMPUTATIONAL ANALYSIS 
Application of Separable Algorithm 
Flow Chart [or Separable Objective 

START 

Enter Objective fn rex) 
& Constraints 

Determine the domain of 
variables, Xi, i = 1,2, ... ,n 

Is Problem 
nonseparable 

? 

no 

Partition domain of 
variables in to number of 
segments 

Evaluate separate fn at end­
points of each segment. 

113 

yes 

Express the fns as Separate 
functions. 



Generate Linear 
Programm i ng Pmb lem III 

Ajb Ajk;;::: 0 

Solve for A.lk lIsing 
modi lied Simplex method 

Solve for Xi. i = 1,2, ... ,n 

Print f(x) , Xi. i = 1,2, ... ,n 

STOP 

114 



4.3 OUTPUT OF THE SEPARABLE OBJ ECTIVE CODE 

Ii. Separable Objective - [Step I] ~ , ' ' 

Objective Function 

Constraint Ix1.3 

x1·3 
x2·4 

IX1 "5+x2 

Clear 

GO 
~ . 

".Separable Objective - [Step 11] , .,.f. '~."" .... ~". ,". ':4,.':':; ,., ': 
• : •• , • r f \ \ J 

Number of Segments I 2 r. R.ange 

Enter the domain for each v<1riable r Values 

xl 0 3 . 
x2 0 4 . , I 

t 
I 

Previous Next 

.~ 

~~-.----. -~--~~r~~ 
.' Separable ObJectfve '~ [Step III) ; 

, 
,. l" - - ,~~--.. - ... ~-r ---7 -
k Yolk )( 2k r1[xlk] f2(x2k) g11 g12 g21 g22 
0 0 0 0 0 0 0 0 0 

I 1 1.5 2 7,59375 2 1,5 2E -OS 1.5E-08 2 
2 3 4 243 4 3 4E -08 3£-08 4 

I' 
I . J 

I 

Previous 

I 
Next 

--
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!-10 Lll L1~ _L 20 L21 

5 1 0 ------,-:-!J ---3 0 0 0 , 0 

0 0 0 0 2 • 0 1 4 
S2 
Ll O n n I) 0 0 , 
L 2 11 1/ n " 1 1 0 0 1 

0 l59375 2 4 '3 U 2 \1 0 0 

Pleviov,; 

·~---~J~t~-
- -- - ----- - -110 111 112 L20 L21 L22 51 52 Right 5ide 

51 .J ·15 0 0 0 0 1 0 0 
52 0 0 0 ·4 ·2 0 0 1 0 
112 1 1 1 0 0 0 0 0 1 
L22 0 0 0 1 1 1 0 0 1 

·2~3 ·235.4063 0 ·4 ·2 0 0 0 ·247 

____ . ~r_~~ous _ _ .1 Iter llte 

. ---_. 
~:Separabtl! ObJetll~ • [formS) .. ; [g~L81 

- ---_ . 
v~j;- v.;i~;-- .-.- -----.---.- -------
Ml 3 
x2 4 
f ·247 

".Separable Objective - [step I] . . ~"".,. , " ' .. ",.!. ": 

o biective Function 13:-:1 +2x2 

/r ...... ··Add· .. ··· .. ··,) 
_ , ....... ................ .... ..... J_ 

Constraint 

4x1 "'2+><2"'2-16 Clear J 

GO 
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•. Separable Objectlye - [Step U] ,"< '" ,,' '." .,,,;~ \ "1l,' ....... 'f.; 
• .' ''''.' , I'} 1· !. 

N umber of S egrnents I 4 r. . Range 

Enter the domain for each variable r Values 

xl o 2 
x2 o 4 

Previous Next 

k x1k x 2k 11 (x1 k) 12(x2k) g11 g12 
0 0 0 0 0 a 0 
1 0.5 1 1.5 2 1 1 
2 1 2 3 4 4 4 
3 1.5 3 4.5 6 9 9 
4 2 4 6 8 16 16 

. 

I 
, 

I Previous Next 

L11 112 113 U4 L20 L21 L22 L23 L24 . 51 Rigli 5ide ; 
1 4 9 16 0 1 4 9 16 1 16 i 

1 1 1 1 0 0 0 0 0 0 1 I , 
0 0 0 0 1 1 1 1 1 0 11 

1.5 3 4.5 6 0 2 4 6 8 0 0 ; 
I 

! 
\' 

)U$ I Iterate 
~-----' 

. ""~ I .' " ;' 

i' 1: 
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t ··tI • 
? !! 1 

.11 112 L13 L14 L20 L21 L22 L23 L24 S1 
1 4 9 16 ·16 ·15 ·12 ·7 0 
1 1 1 1 0 0 0 0 0 
0 0 0 0 1 1 1 1 1 

1.5 3 4.5 6 ·8 ·6 ·4 ·2 0 

1 
< J 

': . Re$~ts . .' 1-I 

. " 

.11 112 L24 S1 
4 16 ·15 ·12 ·7 0 

0 ·3 ·8 ·15 16 15 12 7 0 
0 0 0 0 1 1 1 1 
0 ·3 ·9 ·18 16 16.5 14 8.5 0 

.11 L12 L13 L14 L20 L21 L22 L23 L24 51 
1 1 0.9999396 1 1 52557E ·07 768372E ·07 192093E·07 0 o 4 70348E ·08 
o ·0.4285714 ·1 .142857 ·2.142857 2285714 2.142857 1.714286 1 o ·0.1428571 
o 0.4285714 1.142857 2.142857 ·1.285714 ·1.142857 ·0.7142857 0 , 0.1428571 
o 0.6428572 0.7142861 0,2142851 ·3. 428572 ·1.714285 ·0.5714287 0 o ·0.2857142 

...w;t 

:J 
, .... _ ..... _ ....................... , 

)US I Iterate i 
• ••• ~.M ... ..... ~ •• , ~ • • _.~ • •• •••••••• "H • •• •• 

Res~t$ .: j 
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L11 L12 L13 L14 L20 
1 1 0.9999996 1 152557E ·07 

0.4285714 o ·0.7142859 ·1.714285 2285715 
·04285714 0 0.7142859 1.714285 ·1.285715 
·0..6428572 0. 142919E ·0.2 ·0..4285724 ·3.428573 

.11 L12 L13 L14 L20. 
1.6 1 0. ·1.399998 1.8 

i54454E·0.9 0. 0. 933737E ·08 0. 99m99 
·0..5999998 0. 1 2.39999'3 ·1.8 
·0..5999997 0. 0. ·0..60.00023 ·3.3 

L21 L22 L23 
768372E·07 192093E·07 

2.142857 1.714286 
·1.142857 ·0..7142858 
·1.714285 ·0.5714288 

L21 L22 L23 
1.599998 0..9999996 

0..99'39999 0..9999999 
·1 .599999 ·0..9999993 
·1599998 ·0. 4999996 

L24 51 
0. o 470.348E ·OB 
1 o ·0.1428572 
0. 1 0..1428572 
0. 0. ·0.2857142 

L24 51 
0. ·1.399999 ·0..1999999 
1 1 277248E·09 
0. 1.4 0..2 
0. .0.. HXXXl0.9 ·0..3 

Ricilt 5ide · ! j 

0.5714~ I 
0..4285714 ! 
·9.857143 I , 

I 

ResUt$ ~. J 

RiglI5ide 
0.400(004 

1 
0..5999998 
·9.90.00)1 

Reds . 

Iii.Separable Objective - [FormS) . . ..,; '~. ~,':.,~' .. "~'''' .. :'<:, 

Variable Value 
x1 1.3 
x2 3 

-9.900001 
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".Separable Objective - [Step I] .... , ' ,:.-; 

Objective Function 16x1-3x1 "2+4x2-2x2"2+2x3-0.3333333x3"'2 

I ( .. · .... Ad.·(j··· .. · .... il 
..... . ...... . . ..0 ... .. . . . . ....... ... .1, 

Constraint IXl +2:-:2+x3-4 

x1 +2x2+x3-4 Clear I 

GO 

•. 5eparableObjective-[5tepll) . ',' . ~:~' : ... ".:\",~, .. ::,.; "~'/;'~ 

Number of Segments I 4 r Range 

Enter the domain for each variable r. Values 

)(1 o 0.4 0.7 o 
)(2 o 0.4 0.7 o 
)(3 o 1.5 2 3 

Previous Next 
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.21 L22 L23 L24 L30 L31 L32 L33 L34 
0.8 1.4 2 0 0 1 1.5 2 

0 0 0 0 0 0 0 0 
1 , 1 1 0 0 0 0 
0 0 0 0 1 1 , 1 

' .28 182 2 0 0 1.666667 2.25 2.666667 

)U$ I Iterate 
~----' 

blectlve • [Form4] ' 1.;1 .). ' ... ~~nl·\l,,! •. ·.,.til I).. t to ~'i! 

L21 L22 L23 L24 L30 L31 L32 L33 L34 
0.8 1.4 2 0 ·3 ·2 ·1.5 ·1 

0 0 0 0 0 0 0 0 
1 1 1 1 0 0 0 0 
0 0 0 0 1 1 1 1 

1.28 1.82 2 0 ·3 ·1 .333333 ·0.7500002 ·0.3333335 
'.1.. 

~.. 'I f' .• __ .•.. __ .... _ ..... .... , I 
~ L ...... ...... '!.:r.a.': ........ .... J 

• I 

.21 L22 L23 L24 L30 L31 L32 L33 L34 
08 1.4 2 0 ·3 ·2 ·1.5 ., 

0 0 0 0 0 0 0 0 
1 1 1 1 0 0 0 0 
0 0 0 0 1 1 1 1 

1.28 1.82 2 0 ·3 ·1.333333 ·0.7500002 ·0.3333335 

~ .. 'I r···_··· .. ····_··· .. ··· .. · .. ··,1 
~ L ............ ~':r~ .. ': .......... .J 
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S1 
3 
0 
0 , 
3 

51 
0 
0 
0 
1 
0 

SI 
0 , 
0 0 
0 0 
1 0 
0 0 

Riglt Side ' ,11 
, 4 '! 

,j 

0 1 "1 
0 I :' 
0 , . 
0 0 ! 

,,'r i 
~ . 

. ...iJj 
I 

Resuks . t I 

Right 5ide I~ 

1 1 V 
0 11 if 
0 1 
0 1 1 

0 ·3 .-
.. ; ~ .. 

ReSUb
i

/ . 

Right Side 
0 
1 
1 
1 
·6 

Resuks 

, 
" 

'" 

t 

I····; .-~ 



bjedlve [Form"] , , • t.tf' r~" 

21 L22 L23 L24 L30 L31 L32 L33 L34 
1 1,75 2,5 0 ,J75 ·2,5 ·1.875 ·1,25 
0. 0. 0 0 0 0 0 0 
0 ,0,75 .1.:, 1 J75 2,5 1.875 1.25 

; 51 Rigli 5ide I '1 
0. 1.25 o. . 
0. 0. 1 I 
o ·1.25 1 I 

0 0 0 0 1 1 1 1 1 0. 1 I 
0. ·0..42 ,1.2 0. 1.8 1.866666 U5 1.266666 

21 L22 L23 L24 L30 L31 L32 L33 L34 51 Right Side Ii: ,p 

1 1 0.9999993 1 0 0 0 0 0 0 11 ~:." 
0 0. 0. 0 0. 0. 0. 0. 0 0 1 : 
0 ·0.6 ·1.2 0.8 3 2 1.5 1 0. ·1 O.S 1, 

0 0.6 1.2 ·0.8 ·2 ·1 ·0.5 0 1 1 0..2 
'], 

0 0.3399999 0.3199998 ·1.013333 ·2 ·0.6666664 ·0..2499999 0 o .Q.3333335 ·7,013333 
,., 

__ R_eS_ul_tS_...I1 : J 

.21 . L22 L23 L24 L3o. L31 L32 L33 
1 0. ·1 2.333333 3333333 1.666667 0.8333333 
0 0. 0. 0. 0. 0. 0. 
0. 0. 0. ?.78155E ·08 0.9339339 
0. 1 2 ·1.333333 ·3333333 ·1.666667 ·0.8333333 
0. o ·0..3599999 ·0..5600001 ·0 8666667 999998E·o.2 333332£·0.2 

;M_i 

.J!j .' 

".. II r .. -.. ---· -.. ·--.. ·--· .. · .... · .. -.. ~ I 

~ l .......... _ .. I.~:~~!~ ....... .j 
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bjective - [Form4] ."." ,\~Jl :.' . ~'l9 •. : , , 

"" 
.21 L22 L23 L24 L30 L31 L32 L33 L34 $1 . A' htSide' it Ig . 

1.2 0 ·1.2 2.8 4 2 , 0 ·2 ·2 0.80000)1 ,I 

0 0 0 0 0 0 0 0 0 0 1 
·1.2 0 1.2 ·2.8 ·3 ·1 0 1 3 2 0.1999999 It: 

1 1 1 1 0 0 0 0 0 0 11 ~; 
399999£·02 o ·0.319999~ ·0.6533334 ·1 ·0.1666666 0 o ·0.4999998 ·0.8333333 .7.1533331 ~ 

,'" :" . : ~ ." ~ 

" 
. ·,'1, 

-... Ill -

. Re$uk~ -;1 
iii.Separable Objective - [FormS] . . 

Variable Value ....;....;:..;..;.c;::..:::...:..;,,----; 

x1 , 
>:2 0 .7 
x3 1 .6 

·7.153333 
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4.4 GRAPHICAL SOLUTIONS 

In one of the examples above we considered the function 

over the region 

We can draw the points under consideration using a parametric surface plot. First define a set of 

x1 and x2 values which range over the criticl;ll region 

N:= 100 i := 0 .. N j := 0 .. N 

j (. 211:) Xi . j := N . COS I ' N y .. := - . Sill 1 ' -j .(.211:) 
I.J N N 

and then compute the ·corresponding z values ' 

The corresponding plot looks like 

o 

·1 
·1 ·:1l,.l..\:=O."i--:'::::1}--j3,.-5--- 1_ 

(X,Y,Z),(X,Y,Z.O),(X(N) ,y(N) ,Z(N) ) 
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In one of the examples above we considered the function 

over the region 

2 2 
4· xI + x2 ~ 16 

We can draw the points under consideration using a parametric surface plot. First define a set of x 1 

and x2 values which range over the critical region 

N:= 30 i:= 0 .. N j:= 0 .. N 

.i (. 2rr ) Xi·j := N ·cOS I ' N 
j ( 2rr ) Yi . j := N ' sin i · N 

and then compute the corresponding z values 

The corresponding plot looks like 

2 

o 

·2 

------I­

(X,Y , Z). ( X, Y ,Z· O), ( X (N) , Y (N) ,Z (N) ) 

125 



In one of the examples above we considered the function 

over the region 

We can draw the points under consideration using a parametric surface plot. First define a set of x 1 

and x2 values which range over the critical region 

N:= 100 i := 0 .. N j:= 0 .. N 

X. := - . cos 1 ' -j ( . 2IT ) 
I.J N N 

i . (. 2IT) Yi •j := ~ . S ill I ' N 

and then compute the corresponding z values 

The corresponding plot looks like 

·1 
·1 

1 

) ( X (N) , Y (N) ,z' (N) ) (X, Y ,Z) , ( X, Y ,Z . 0 , , 
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In one of the examples above we considered the function x) := 1.6 

over the region 

We can draw the points under consideration using a parametric surface plot. First define a set of 

x10 x2and x3 values which range over the critical region 

N:= 100 i:= 0 .. N j:= 0 .. N 

j ( . 2n) Xi,j:= N ' cOS I ' N 
j . (. 2n) Yi,j := N . Sill I ' N 

and then compute the corresponding z values 

The corresponding plot looks like 

(X. Y . Z) • ( X. Y , Z . 0). ( X (N) • Y (N) • Z (N) ) 
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5.0 COMPUTATIONAL ALGORITHM FOR RATIONAL OBJECTIVE 

5.1 ALGORITHM/OUTPUT OF RATIONAL OBJECTIVE USING MATHCAD 

5.2.1 Example 5.1 

Given 

. ( 3.99 ) Maxil11iz~f,xl , x, ) = 
- 0.101 

We can draw the points under consideration using a parametric 
surface plot. First define a ·set of x 1 and x2 values which range 
over the critical region 

N:= 100 i:= 0 .. N j:= 0 .. N 

j (. 27t) 
Xj,j := N . cos I ' N i . ( . 27t) 

Y j • j := ~ . Sill I' N 

and then compute the corresponding z values 
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5.2.2 Example 5.2 

JXI + x2 -I- 2 
f~XI ,x2):=--­

xI + x2 + I 

Given 

X2 ~ 0 

. ( I.JOJJ) Maximiz{r,XI ,~) = 

3xI + x2 + 2 
rfx x)·=---
'\ I' 2' xI + x2 + I 

We can draw the points under consideration using a parametric surface plot. First define a set of 

Xl and x2 values which range over the critical region 

N := 100 i := 0 .. N j:= 0 .. N 

j (. 2n) Xi . j := N' cos ,. N y .. := - . Sill , . -j . (. 2n) 
I.J N N 

and then compute the corresponding z values 
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5.2 GRAPHICAL SGLUTIONS 

o 

.1 ... 1lD....i:,~~~=-~ __ O~ ___ I_ 

( X, Y, Z), ( X, Y, Z . 0) , (x (N) 

Output of Example 5. I 

·1 

,Y (N) ,Z (N) ) 

Output of Example 5.2 
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REMARK (PART OF CH.V) 

Two different methods are considered in this case, the first one is the direct utilization of the 

rational programming to solvl! problems in chapll!r V and the method workl!d perfectly for them. 

Whik anothl!r method considerl!d for the case of spliUing fractional objective function into 

num~ratl)r functiull ClHllbin~d witll cunstraints and till! lknominatur function combined with 

wllstraints and till! latter divid~ tile formal in order to get the vallie uf ralional function. 

5.3 ANALYSIS OF RESULT. RECOMMENDATION AND CONCLUSION 

5.3.1 ANALYSIS 

The first, second and fourth chapters discussed and practicalised idea of separable Algorithm, 

and also introduced theory on separable objective. While the two remaining chapters, that is 

chapter three and five discussed and practicalised idea of Rational Algorithm and they also 

introduced theory on rational"objective. We are able to solve the rational objective using powerful 

mathematical software package, Mathcad. It solves the problem with ease and can be viewed from 

any regIOn. 

:' . ~ . 2 RFC'OrvIMFNI)i\TION 

Th~ CL)d~ in chapt~r V can sllcc~ssi\'cly soh '~ th~ NonlilH:ar (Separabk) programmll1g 

problem most especially problems with power of 2(i.e Quadratic in nature) while that of power 

greater than 2 are not exhaustive in practice or considered. This work can be considered for day­

to-day activities in industries, home management, and factory production e.Lc. 
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5.3.3 CONCLUSION. 

From the foregoing analysis, it is cleared that the more the numbers of variables, 

constraints and cross product terms, the more the computation time, utilization of computer space 

and the iterations. The goal of adopting the separable method is to select the grids that yield a 

Ih.'arly lllllilllal Sllllllillll Ill!' IIlL' llrigillal prllbklll. The nlllre the grids {or segments) considered in 

the cases llf llLlIh tile sL'parabk alld the raliullal objectives, the Illure we tend to close towards 

exact values of the objecti w functions. That is to say that the method gives fairly good 

approximation. A linear function is bOlh concave and convex, therdore a basic solution that is 

locally optimal must be globally optimal. 

One drawback of approximating function by pIeceWIse linear function as described in 

chapter two that achieving a close approximation requires a large number line segments 

(variables), whereas such a fine grid for gridpoints (breakpoints) is needed only in the immediate 

neighbourhood of an optimal solution. Therefore, morc sophisticated approaches that LIse a 

succession of two-segment piecewise linear functions have been developed in chapter IV to obtain 

successively closer approxim.ations within this immediate neighbourhood. This kind of approach 

tends to be both faster and morc accurate in closely approximating an optimal solution. 
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APPENDIX (SEPARABLE CODE) 

'Module 1 
Public LambdaO As Single '20 array rows=n, cols=S, h=m+n+ I ==>(m=no of constraints, 1 for f, 
n [or no vars) _ 
r,c,h. h=O f; h= I to m constraints; h=m to m+n sum of lamda for each of 11 vars 
Public Base VariabicsO As Variable 'vector size=m+n 
Public ConstantO As Single 'vector size=m+n+ I 

Public xO As Single 'matrix nxS 
Public gO As Single 'matrix mxnxS 
Public [0 As Single 'matrix nXS 

Public S As Integer 'no of segments, k=O to s 
Public n As Integer 'no of variables 
Public m As Integer 'no o[ constraints' 
Public k As Integer 'current segment no 
Dim theRow(3) As Single 

Dim Entering As Variable 
Dim Leaving As Variable 
Dim pr As Integer, pc As Integer 

Public Function PivotColumn(Order As Integer) As Integer 
Dim TempO As Integer 
ReDim Temp(n * (S + I» 
Dim Store As Intcger 
For i = I To n * (S + I) 

Temp(i) = i 
Next i 
For i = 1 To n * (S + 1) 

For j = I To n * (S + 1) 
If Lambda(Convcrt(Tcmp(i), S + I ).Row, Convcrt(Temp(i), S + 1).Col, 4) > 

Lambda(Convert(Tcmp(j), S + I ).Row, Convert(Temp(j), S + I ).Col, 4) Then 
Store = Temp(j) 
Temp(j) = Temp(i) 
Temp(i) = Store 

End If 
Nextj 

Next i 
PivotColumn = Temp(Order) 
End Function 

Public Function PivotRow(PivotCol As Integer) As Integer 
Dim rows(3) As Intcger, savcd As Integer 
If LambJa(Convert(PivotCol, S + I).Row, Convert(PivotCol, S + 1).Col, 1) <> 0 Then theRow(l) 
= Constant(l) / Lambda(Convert(Pivo.tCol, S + 1).Row, Convert(PivotCol, S + I).Col , 1) Else 
theRow( 1 ) = 9999999999999# 
If Lambda(Convert(PivotCol, S + 1 ).Row, Convert(PivotCol, S + I).Col, 2) <> 0 Then theRow(2) 
= Constant(2) / Lambda(Convert(PivotCol, S + 1 ).Row, Convert(PivotCol, S + 1 ).Col, 2) Else 
thcRow(2) = 9999999999999# 
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If Lambda(Convert(PivotCol, S + I) .Row, Convert(PivotCol, S + 1).Col, 3) <> 0 Then theRow(3) 
= Constant(3) / Lambda(C0I:lvert(PivotCol, S + ] ).Row, Convert(PivotCol, S + I).Col, 3) Else 
theRow(3) = 9999999999999# 
rows(l) = 1: rows(2) = 2: rows(3) = 3 
For i = 1 To 3 

For j = 1 To 3 
IftheRow(rows(i)) < theRow(rowsU)) Then 

saved = rows(i) 
rows(i) = rowsU) 
.rowsU) = saved 

End If 
Nextj 

Next i 
IftheRow(rows(l)) = theRow(rows(2)) Then 

IfBaseVariables(rows(l)).Row = Convert(PivotCol , S + I).Row Then 
PivotRow = rows(]) 

Else 
PivotRow = rows(2) 

End If 
Else 

PivotRow = rows(l) 
End If . 
End Function 

Sub InitO 
Dim i As Integer, j As Integer, k As Integer 

ReDim Lambda(n, S, 4) 

For i = 1 To n 
For k = 0 To S 

Lambda(i, k, 1) = g(1, i, k) 
Nextk 

Next i 

For j = 1 To n 
For k = 0 To S 

LambdaQ, k, 4) = fQ, k) 
Next k 

Nextj 

For j = . ] To n 
For k = 0 To S 

Ifj = 1 Then LambdaQ, k, 2) = I Else LambdaQ, k, 2) = 0 
Next k 

Nextj ' 

For j = 1 To n 
For k= 0 To S 

Ifj = 2 Then LambdaQ; k, 3) = I Else LambdaQ, k, 3) = 0 
Next k 
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Nextj 

Lambda(O, 0, I) = I 
Lambda(O, 0, 2) = 0 
Lambda(O, 0, 3) = 0 
Lambda(O, 0, 4) = 0 

ReDim BaseVariables(m + n) 
BaseVariables(1 ).Col = 0 
BaseVariables(I).Row = 0 
BaseVariables(2).Row = I 
BaseVariables(2).Col = 0 
BaseVariables(3).Row = 2 
BaseVariables(3).Col = 0 

ReDim Constant(m + n + I) 
Constant( 1) = Forml .Constraints( 1 ).RightSide 
Constant(2) = I 
Constant(3) = 1 
Constant( 4) = 0 

End Sub 

Public Function Convert(Number As Integer, Base As Integer) As Variable 
Convert.Col = Number Mod Base - 1 
Convert.Row = (Number \ Base) Mod'Base + 1 
If Convert.Col < 0 Then 

Convert.Col = Convert.Col + Base 
Convert.Row = Convert.Row - 1 

End If 
End Function 

Public Sub lterateO 
Dim i As Integer 
Dim el1teringRow As Integer 
i = 1 
Do 

pc = PivotColumn(i) 
pr = PivotRow(pc) 
enteringRow = Convert(pc, S + 1 ).Row 
If BaseVariables(l).Row = enteringRow And pr <> I Then 

problemvar = I 
Eiself Base Variables(2) . Row = enteringRow And pr <> 2 Then 

problemvar = 2 
Elself BaseVariablcs(3).Row = enteringRow And pr <> 3 Then 

prublemvar = 3 
Else ' 

problemvar = 0 
End If 
Ifproblemvar <> 0 And Abs(BaseVariables(problemvar) .Col- Convert(pc, S + I).Col) <> 1 

Then 
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i=i+I 
Else 

Leaving.Row = BaseVariables(pr).Row 
Leaving.Col = 13aseYariables(pr).Col 

BaseVariables(pr).Col = Convert(pc, S + I ).Col 
Base Variables(pr).Row = Convcrt(pc, S + I). Row 

Entering.Row = BaseYariables(pr).Row 
Entering.Col = BaseYariables(pr).Col 
Elementary RowOps 
Exit Do 

End If 
Loop 
End Sub 
Sub ElementaryRowOpsO 
Dim i As Integer, Row As Integer 
'.PivotRow/2 
For i = 0 To n * (S + I) 

Lambda(Convert(i , S + I ).Row, Convert(i , S + 1 ).Col , pr) = _ 
Lambda(Convcrt(i , S + I ).Row, Convert(i , S + I ) .Col , pr) I PivotNumber 

Next i 
Constant(pr) = Constant(pr) I PivotNumber 

'row=row-row(pr)*pivotrow 
For Row = I T04 

I f Row <> pr Then 
Constant(Row) = _ 
-Lal11bda(Convert(pc, S + I ).Row, Convert(pc, S + 1 ).Col , Row) * _ 
Constant(pr) + _ 
Constant(Row) 
For i = 0 To n * (S + I) 

Lambda(Convert(i , S + I ).Row, Convcrt(i , S + I ).Col , Row) = _ 
-Lambda(Convert(pc, S + I ).Row, Convert(pc, S + I).CoI, Row) * _ 
Lambda(Convert(i , S + I ).Row, COl1vert(i , S + 1 ).Col , pr) + _ 

"Lal11bda(Convert(i , S + I ).Row, Convert(i , S + I ).Col , Row) 
Next i 

End If 
Next Row 
End Sub 
Function PivotNumberO As Single 
PivotNumber = Lambda(Convert(pc, S + 1 ) .Row, Conveli(pc, S + 1 ).Col, pr) 
End Function 
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'Class Module SubExp 
Public Value As String 
Public Function VarO As String 
If InStr(Valuc, "X") = 0 Thcn 

Var= 1111 

Else 
Var = Mid(Value, InStr(Value, "X"), InStr(Value + """, """) - InStr(Value, "X"» 

End If 
End Function 
Public Function ExponentO As Single 
Dim i As Intcgcr 
i = InStr(Value, """) 
If i = 0 Then 

Exponent = 1 
Else 

Exponcnt = Right(Valllc, Lcn(Valllc) - i) 
End If 
End Function 
Public Function MultiplierO As Singl~ 
If Var <> Empty Then 

Multiplier = Val(Left(Value, InStr(Value, "X") - 1» 
If Not IsNumeric(Left(Value, InStr(Value, "X") - I» Then 

If Left(Value, InStr(Valuc, "X") - 1) = "_" Then 
Multiplier = -1 

Else 
Multiplier = I 

End If 
End If 

Elself InStr(Value, """) <> 0 Then 
Multiplier = Left(Value, InStr(Valuc, """» 

Else 
Multiplier = Value 

End If 
End Function 
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'Class Module Expression 
Public Value As String 
Public Function Evaluate(Bindings As Collection) As Single 
Dim subs As Collection 
Dim E As SubExp, B As Binding 
Set subs = Split("+-") 
For Each E In subs 

For Each B In Bindings 
If InStr(E.Value, B.Var) > 0 Thel) 

Exit For 
End If 

Next B 
Evaluate = Evaluate + Eval(E, B.Value) 

Next E 
End FUllction 
Public Function Split(Tokens As String) As Collection 
Dim noToks As Integer, i As Integer, Pos As Integer 
Dim SubExpl As SubExp 
Dim Exp As String 
Exp = Value 
no T oks = Len(T okens) 
Dim ToksO As String 
ReDim Toks(noToks) 
For i = 1 To noToks 

Toks(i) = Mid(Tokens, i, 1) 
Next i 
Set Split = New Collection 
Pos = FindToken(Toks, noToks, Exp) 
While Pos <> 0 

Set SubExp I = New SubExp 
SubExp I.Value = Left(Exp, Pos - 1) 
Exp = Righl(Exp, Len(Exp) - Pos + 1) 
Split.Add SubExp 1 
Pos = FindToken(Toks, noToks, Exp) 

Wend 
Set SubExp 1 = New SubExp 
SubExpl.Value = Exp . 
Split.Add SubExp I 
End Function 

Private Function FindToken(TO As String, no As Integer, Exp As String) 
Dim f As Integer 
FindToken = InStr(2, Exp, T(1)) 
For i = 1 To IlO 

r -= IilSlr(2, Exp, T(i)) 
If FindToken = 0 Then FindToken = f 
Iff< FindToken And f<> 0 Then FindToken = f 

Next i 
End Function 
Private Function Eval(E As SubExp, V As Single) As Single 
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Eval = E.Multiplier * V /\ E.Exponent 
End Function 
Public Function RightSideO As Single 
Dim Temp As Collection, SubE As SubExp 
Set Temp = Split("+-") 
For Each SubE In Temp 

IfSubE.Var = Empty Then 
RightSide = -SubE.Multiplier 
Exit For 

End If 
Next SubE 
End Function 
'Class Module Binding 
Public Var As String 
Public Value As Single 

Attribute VB_Name = ISeparateFullctions" 
'Step I 
OptiOl1' Explicit 
Public fO As Expression' n 
Public gO As Expression 'mxn 

Public Sub StartO 
Dim Temp As Collection 
Dim Temp2 As SubExp 
Dim newExp As Expression 
Dim j As Integer, i As Integer 
ReDim f(l To 10) 
With Forml 

Set Temp = .Objective.Split("+-") 
Du 

j = j + I 
Set Temp2 = Temp.ltem(l) 
Dim sc As SubExp 
Set se = Ncw SubExp 
Set newExp = New Expression 
For Each se In Temp 

. If se.Var = Temp2.Var Then newExp.Value = newExp.Value + se.Value 
Next se 
i = 1 
Do While i <= Temp.Count 

If Temp.ltem(i).Var ~ Temp2.Var Then 
Temp.Remove i 
i = 0 

EndJf 
i = i + 1 

Loop 
If j / 10# = IntU / 10) Then ReDim Preserve f( 1 To j + 10) 
Set fO) = newExp 

Loop Until Tcmp.Collnt = 0 
End With 
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n = j 'no of variables 
End Sub 
Public Sub Dofor(gm As Integer, Exp 'As Expression) 
Dim Temp As Collcction 
Dim Temp2 As SubExp 
Dim newExp As Expression 
Dim j As Integer, i As Integer 
With Forml 

Set Temp = Exp.Split("+-") 
Do 

.i = j + 1 
Set Temp2 = Temp.Item( I) 
Dim se As SubExp 
Set se = New SubExp 
Set ncwExp = Ncw Exprcssion 
For Each sc In Tcmp . 

If se.Var = Tcmp2.Var Then ncwExp.Valuc = newExp.Value + se.Value 
Next sc 
i = I 
Do Whilc i <= Tcmp.Count 

IfTemp.ltcm(i).Var = Tcmp2.Var Then 
Temp.Remove i 
i = 0 

'End If 
i = i + I 

Loop 
Set g(gm, j) = newExp 

Loop Until Temp.Count = 0 
End With 
End Sub 

'Form Module Step II 
Private Sub Command I ClickO 
FormI.Show 
Form I.SetFocus 
Unload Me 

End Sub 

Private Sub Command2 _ ClickO 
linearization.S = Val(Textl.Text) 
Form3.Show 
End Sub 

Private Sub Form_LoadO 
Dim Temp As Collection, i As Intcgcr 
Dim temp2 As Collection 
Set temp2 = New Collectiol1 
For i = 1 To n 

Set Temp = SeparateFunctions.f(i).Split("+-") 
temp2.Add Temp.ltem(l) 

Next i 
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Grid.rows = n + I 
Grid.Col = 0 
foori = I To n 

Grid.Row= i 
Grid.Text = temp2(i).Var 

Next i 
End Sub 

Privatc Sub grid_KcyDown(KcyCodc As Integcr, Shift As Intcger) 
Select Case KeyCode 
Case 46: Grid.Text = Empty 
Case 8: Grid.Text = Empty 
'Case Else: MsgBox Str(KeyCodc) 
End Select 
End Sub 

Private Sub Grid_KeyPress(KcyAscii As Integer) 
If Grid.Row <> 0 And Grid.Col <> 0 Then 

Grid.Text = Grid.Text + <;=hr(KeyAscii) 
End If 
End Sub 

'Form Module Step III 
Private Sub Form_ LoadO 
Dim i As Integer, j As Integer, Start Val As Single, Interval As Single 
Dim k As Integcr 
ReDim linearization.x(n, S) 
ReDim linearization.f(n, S) 
ReDim linearization.g(m, n, S) 
'x 
For i = I To n 

foorm2.Grid .Row = i 
Form2.Grid .Col = I 
StartVal = Val(Form2.Grid.Text) 
Form2.Grid.Col = 2 
Interval = (Val(Form2.Grid.Text) - StartVal) / S 
Forj = 0 To S 

linearization.x(i, j) = StartVal 
StartVal = StartVal + Interval 

Nextj 
Next i 
'f 
Dim Binds As Collection, Bind As Binding 
Set Bind = New Binding 
Set Binds = New Collection 
Binds.Add Bind 
For i =· 1 To n 

Form2.Grid.Row = i 
Form2.Grid.Col = 0 
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Binds.Item(1).Var = Form2.Grid.Text 
For j = 0 To S 

Binds.Item(1). Value = linearization.x(i, j) 
linearization.f(i, j) = SeparateFunctions.f(i).Evalllate(Binds) 

Nextj 
Next i ' 
'g 
For i = 1 To m 

For j = 1 To n 
Form2.Grid.Row = j 
Form2.Grid.Col = 0 
Binds.Item(1).Var = Form2.Grid.Text 
For k = 0 To S 

Binds.Item(1).Value = linearization.xU, k) 
linearization.g(i, j , k) = SeparateFunctions.g(i , j) .Evalllate(Binds) 

Next k 
Nextj 

Next i . 

Grid.Cols = 2 * n + m * n + 1 
Grid.rows = S + 2 
'show table 
Grid.Row = 0: Grid.Col = 0: Grid.Text = "k" 
For i = 0 To S 

Grid.Row = i + 1 
Grid.Text = Str(i) 

Next i 

For i = 1 To n 
Grid.Col = i: Grid.Row = 0: Griel.Text = "x" + Str(i ) + "k" 
For j = 0 To S 

Grid.Row = j + 1 
Grid.Text = linearization.x(i, j) 

Nextj 
Next i 

For i =.1 To n 
Grid.Col = n + i: Grid.Row = 0: Grid.Text = "r' + LTrim(Str(i» + "(x" + L Trim(Str(i» + "k)" 
For j = 0 To S 

Grid.Row = j + 1 
Grid.Text = linearization.f(i, j) 

Nextj 
Next i 

For i = 1 To m 
For j = 1 To n 

Grid.Col = 2 * n + (i - 1) * n + j 
Grid.Row = 0: Grid.Text = "g" + LTrim(Str(i» + LTrim(StrU» 
For k = 0 To S 

Grid.Row = k + 1 
Grid.Text = linearization.g(i , j, k) 
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Next k 
Nextj 

Next i 

End Sub 

Private' Sub NextCommand_ ClickO · 

Form4.Show 
Form4.SetFocus 
End Sub 
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'Form Module IV 
Private Sub Commandl_ClickO 
Form3.Show 
FOl'ln3.SetI·oclIs 
Unload Me 
End Sub 

Private Sub Conllnand2_ ClickO 
Iterate 
Form Load 
End Sub 

Private Sub Form_lnitializeO 
lnit 
End Sub 

Private Sub Form_LoadO 
Dim i As Integer, j As Integer, k As Integer 
Grid.rows = 5 
Grid.Cols = n * (S + I) + 3 
Grid.Row= 0 
Grid.Col = 0 
For i = 1 To n 

Forj = 0 To S 
Grid.Col = Grid.Col + I 
Grid .Text = "L" & LTrim(Str(i)) & L Trim(StrU)) 

Nextj 
Next i 
Fori=lTon*(S+I) 

For j = 1 To 4 
Grid.Row = j 
Grid.Col = i 
Grid.Text = Lambda(Convert(i , S + 1 ).Row, Convert(i, S + I ).CoI, j) 

Nextj 
Next i 
Grid .Col = n * (S + 1) + I 

'slack var 
Grid.Row = 0 
Grid.Text = "LOO" 
For i = I To 4 

Grid.Row= i 
Grid·.Text = Lambda(O, 0, i) 

Next i 

'objedive 
For i = I To n * (S + 1) 

Grid.Row = 4 

Grid.Col = i 
Grid.Text = Lambda(Convert(i, S + I).Row, Convert(i, S + I).Col, 4) 
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Next i 
'base vars 
Grid.Col = 0 
Grid.Row = I : Grid.Text = "L" & LTrim(Str(linearization.BaseVariables(I).Row)) & 
L Trim(Str(linearization.Base Variables( I ).Col)) 
Grid.Row = 2: Grid.Text = "L" & LTrim(Str(linearization.BaseVariables(2).Row)) & 
L Trim(Str(l incarization. Base V ariablcs(2).Col)) 
Grid .Row = 3: Grid.Text = ':L" & LTrim(Str(linearization.BaseVariables(3).Row)) & 
L Trim(Str(linearization.Basc Variables(3).Col)) 

'constants 
Grid .Col = n * (S + I) + 2 
Grid.Row = 0: Grid.Text = "Right Side" 
Grid.Row = I: Grid.Text = Constant( I) 
Grid.Row = 2: Grid.Text = Constant(2) 
Grid .Row = 3: Grid.Text = Constant(3) 
Grid.Row = 4 : Grid .Text = Constant(4) 
End Sub 
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Public Objective As Expression 
Public Constraints As Collection 

Private Sub AddColllllland_ ClickO 
Dim E.As Exprcssion 
Set E = New Expression 
E.Value = Text2.Text 
Constraints.Add E 
Listl .AddItclll Tcxt2.Text 
End Sub 

Private Sub Command 1_ ClickO 
Dim i As Integer, TempExp.As Exprcssion 
Objective.Value = Textl.Text 
Start 
m = Listl.ListCount 
Set TempExp = New Expression 
ReDim SeparateFunctions.g(l To m + 1, 1 To n + 1) 
For i = 1 To m 

TempExp.Value = List 1. List(i - \) 
Dofor i, TcmpExp 

Next i 
Form2.Show 
End Sub 

Private Sub Form LoadO 
Set Objective = New Expression 
Set Constraints = New Collection 
End Sub 
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