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ABSTRACT 

This work is an investigation into how images can be generated on the 

one hand and image analysis on the other. The science of generating 

images helps us to understand the mathematical principles behind the 

formation of natural structures. More importantly, the same theory has 

enabled us to solve problems in a vast number of fields such as 

economics, geology, physics, meteorology, etc. Image analyses were 

carried out. using the tools of mathematical morphology. Erosion and 

dilation of images were investigated and it was shown that all other 

,morphological operations are only a combination of erosion and 

dilation. 
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CHAPTER ONE 

INTRODUCTION 

1.1 The Science of Fractals and the Rebirth of Experimental 
mathematics 

Much scientific research of the past has analyzed human-made 

machines and the physical laws that govern their operations. The 

success of science relies on the predictability of the underlying 

experiments. Euclidean geometry - based on lines, circles, etc. is the 

tool used to describe spatial relations, while differential equations are 

essential in the study of motion and growth. However, natural shapes 

such as mountains, clouds or trees do not fit well into this framework. 

The understanding of these phenomena has undergone a fundamental 

change from the last two decades of the 20th century. Fractal 

geometry as conceived by Mandelbrot [1978-79] provides 

mathematical model for nature. One of Mandelbrot's key observations 

has been that these forms possess remarkable statistical invariance 

under magnification [Peitgen, 1993]. This may be qualified by a fractal 

dimension, a number that agrees with our intuitive understanding of 

dimension which may not necessarily be an integer. These ideas may 

also be applied to time-variant processes. 

Another important discovery has been that even in very simple non­

linear dynamical systems, such as the double pendulum, long-term 

predictions are not possible despite exact knowledge of the underlying 

equations. Such systems exhibit behavioral patterns that we conceive 

only as erratic or chaotic despite their very simple and deterministic 

generating mechanisms. Arbitrarily small perturbations of solutions are 

blown up by such systems until such solutions have lost all correlation 

with the original ones. This phenomenon has been termed "sensitive 

.. '. . ~ 
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dependence on initial condition" and is the trademark of what is now 

known as chaos theory [Peitgen, 1996]. There is a strong connection 

between chaos and fractal geometry, namely, as one follows the 

evolution of states of a chaotic non-linear system, it typically leaves a 

trace in its embedding space which has a very complex geometric 

structure. This trace is a fractal [Mandelbrot, 1982]. 

But what makes the science of fractals and chaos so interesting is 

that, this fairly new area of research has created pictures of such 

power and singularity that a collection of them, for example, has 

proven to be one of the most successful world-wide series of 

exhibitions ever sponsored by the Goethe Institute. Since 1985 the 

exhibition has traveled to more than 100 cities in more than 30 

different countries, attracting more than 140,000 visitors in London 

alone [Peitgen and Saupe, 1996]. More important, however, is the fact 

that chaos theory and fractal geometry have corrected our outmoded 

conception of the world. 

The magnificent success in the fields of natural sciences and 

technology had, for many years fed the illusion that the world on the 

whole functioned like the clockwork mechanism, whose laws were 

known. It was believed, the evolution or development of things could -

at least in principle be ever more accurately predicted. Captivated by 

the breathtaking advances in the promises of greater command of 

information, many have put increasing hope in the machine. · One 

conclusion that can be drawn from the new theories, which are 

admittedly still young, is that stricter determinism and apparently 

accidental development are not mutually exclUSive, but rather their 

coexistence is more the rule in nature. Chaos theory and fractal 

2 
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geometry address this issue. In this sense, fractal geometry is first 

and foremost a new 'language' used to describe complex forms of the 

'traditional language' of the Euclidean geometry are basic visible forms 

such as lines, circles and spheres, those of the new language do not 

lend themselves to direct observations. They are namely, algorithms, . . . .".' 

which can be transformed into shapes and structures only with tti'~~~i~}~~~!t.j~:· 
help of computers. In addition, the supply of these · algorithmic 

elements is inexhaustively large; and they are capable of providing us 

with a powerful descriptive tool. Once this new language has been 

mastered, we can describe the form of a cloud as easily and as 

precisely as an architect can describe a house using the language of 

traditional geometry. 

The correlation of chaos and geometry is anything but coincidental. 

Rather, it is a witness to their deep kinship. This kinship as we see 

later is best described in the Mandelbrot set, a mathematical object 

discovered by Benoit Mandelbrot in 1980. It has been described by 

some as the most complex, and possibly the most beautiful object 

ever seen in mathematics. Its most fascinating characteristics 

however, have only just recently been discovered, namely; that it can 

be interpreted as an illustrated encyclopedia of an infinite number of 

algorithms. It is a fantastically and efficiently organized storehouse of 

images, and as such it is the example per excellence of order in chaos. 

Fractals and modern chaos theory are linked by the fact that many of 

the contemporary pace-setting discoveries in their fields were only 

possible using computers. From the perception of our inherited 

understanding of mathematics, this is a challenge which is felt by 

some to be powerful renewal and liberation and by others a 

denigration. In essence, chaos theory and fractal geometry change 
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radically our understanding of equilibria - and therefore of harmony 

and order - in nature as well as in other contexts and offer a new 

holistiC and integrated model which can encompass an edge of the true 

complexity of nature for the first time. It is highly probable that the 

new methods and terminologies will allow us, for example, a much~;~; :. ; > .. ' ··\:·;'t~::~>} . 
. ' ~~;;l:; :: :' ~\ . : ,~~!,: ':': ." .. 

more adequate understanding of ecology and climatic development, .~:·}?:':;~:. :;. ~ .' :,< 
and thus they could contribute to our more effectively tackling gigantic 

problems. 

Fractal geometry and chaos are often associated with experimental 

mathematics. Experimental mathematics does not imply an attempted 

invasion of pure mathematics by applied mathematics. Applied 

mathematics has always been permeated with sCience, hence with 

experiment. This feature greatly contributed to its being thoroughly 

unpopular with those believing that applied mathematics is bad 

mathematics. But experimental mathematics means something 

different: it means injecting experiment back into core parts of 

mathematics that need not - at least at present have any contact with 

science. Its most striking impact may be that it underlines the reality 

of an essential distinction between mathematical fact and 

mathematical proof. Many times mathematicians insist on defining 

their fields narrowly, as beginning with proofs and gives short shrift 

facts accustomed to seeing new mathematical fact almost exclusively 

suggested by the proofs of old mathematical facts. But history reveals 

that in the past, the development of mathematics has relied upon 

many other sources, both of observation and of experimentation. 

Today's experimental mathematics does not even spurn the kind of 

observation that has been characteristic of the least sophisticated 
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among the empirical sciences, but primarily relies upon active 

experimentation. 

New methods of searching for new facts provide mathematics with a 

powerful front end of unexpected character, one that involves more . :' '': .: .. . .. 

than just the proverbial pencil and paper. Thus pictures have alreadY :': ~:f,;.:~\~,·::::: : :. : : .· 
. -' . . .-'" ... ,', .' . 

demonstrated their astonishing power to help in early stages of both 

mathematical proofs and phys.ical theory. As this help expands, it may 

well lead to a new equilibrium and the changes in the prevailing styles 

completed mathematical proof and of completed physical theory. In 

other words, we may be witnessing the re-emergence of a new active 

doublet of experimental and/or theoretical study. As seen in physics, 

experimental and theoretical physics seldom live in perfect harmony, 

but they know they must not only coexist but actually listen to each 

other and otherwise interact. Few in either party want to annihilate the 

other. In mathematiCS, the situation is very different. There has been 

a long history of conflict. The computer is a new tool that has come 

into being and it has brought two gifts to science. Its first gift is vastly 

enhanced calculations, which will not concern us in this work. The 

second gift is graphiCS, which tells an altogether different story and 

has brought a profound qualitative change, hence a fair amount of 

upheaval. Computer graphics allow us the privilege and the delight of 

taking up theories in physics and mathematics and of proving that if 

they are suitably transformed, these very same theories are enriched 

in their own mathematical or physical terms. And they also generate 

patterns that readily pass for forgeries of life, nature, and even art, in 

their unfathomable complication. 
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1.2 Chaos 

For many, chaos theory already belongs to the greatest achievement 

in the natural sciences. Indeed, it can be claimed that very few 

developments in the natural science have awakened so much public,:;,;:':,,: . ;, , ~~ ::~ 

interest. The main maxim of science is its ability to relate cause and,- :~-,'~,':;,:'·;.'~,,! ;:~, 
effect. On the basis of laws of gravitation, for example, astronomic~ ·I .'; .. ~::t;: ? "':~·:;'< ~:>':' 
events such as eclipses and the appearance of comets can be 

predicted thousands of years in advance. Other natural phenomena, 

however, appear to be much more difficult to predict. Although the 

movements of the atmosphere, for example, obey the laws of physics 

as much as the movements of the planets do, weather prediction is 

still rather problematiC. We speak of the unpredictable aspects of 

weather just as if we were talking about rolling dice or letting an air 

balloon loose to observe its erratic path as the relation between cause 

and effect, such phenomena are said to have random elements. Yet 

there was little reason to doubt that precise predictability could in 

principle be achieved. It was assumed that it was only necessary to 

gather and process greater quantities of more precise information 

(e.g. through the use of denser networks of weather stations and more 

powerful computers dedicated solely to weather analysis). Some of the 

first conclusions of chaos ' theory however, have recently altered the 

viewpoint. Simple deterministic systems with only a few elements (e.g. 

the quadratic iterator) can generate random behaviour, and that 

randomness is fundamental, gathering more information does not 

make it disappear. This fundamental randomness has come to be 

called chaos. An apparent paradox is that chaos is deterministic and 

generated by fixed rules which do not themselves involve any 

elements of change. In principle, the future is completely determined 

by the past, but in practice, small uncertainties much like minute 
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errors of measurement which enter into calculations, are amplified, 

with the effect that even though the behaviour is predictable in the 

short-term, it is unpredictable over the long run. The discovery of such 

behaviour is one of the most important achievements of chaos theory. 

Another is the methodologies which have been designed for a precise 

scientific valuation of the presence of chaotic behaviour in · ·: ·~·i:'~;':i i;Y~{~1h~::;~;:\~ 
-' .' ·,:·t.~ ;: i::l ~: .~ .~: t :-::~ .. ~: 

mathematical models as well as in real phenomena. Using these 

methodologies, it is now possible, in principle to estimate the 

'predictability horizon' of a system. This is the mathematical, physical 

or time parameter limit within predictability is ideally possible and 

beyond which we will never be able to predict with certainty. It has 

been established, for example, that the predictability horizon in 

weather forecasting is not more than about two or three weeks 

[Peitgen, Jurgen and Saupe, 1996]. this means that no matter how 

many more weather stations are included in the observation, no 

matter how much more accurately weather data are collected and 

analyzed, we will never be able to predict the weather with any degree 

of numerical accuracy beyond this horizon of time [Brigg, 1992]. 

For the era of determinism, which was mathematically grounded in 

calculus, the 'Laplace demon' became the symbol. If we could imagine 

a consciousness great enough to know the exact locations and 

velocities of all Qbjects in the universe at the present instant, as well 

as the forces, then there could be no errors from this consciousness. It 

could calculate anything about the past or the future from the laws of 

cause and effect. In its core, the deterministic credo means that the 

universe is comparable to the ordered running of a tremendously 

precise clock in which the present state of things is, on the other hand 

the cause of its future state. Present, past . and future are bound 
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, 
together by the causal relationships; and according to the views of the 

determinist, the problem of an exact prognosis is only a matter of the 

difficulty or recording all the relevant data. The deterministic credo 

was characteristic of the Newtonian era, which for the natural sciences 

came to an end at the latest through the insights of Weiner Heisenberg . . , :J. '-: - '\ .' \ .. :. '; 

in 1927 proclamation of his uncertainty principle, but for other·:. ·:\~/t<_::.<·· "'·> 
", ~ 0'" ,,' • ~ ~ " . ' 

sciences it is still considered valid. Classical determinism in its fearful · ·· . 

strictness had to be given up - a turning point of enormous 

importance. 

Indeed, the history of numerical weather prediction illustrates better 

than anything else the undiminished belief in a deterministic world, for 

in reality Heisenberg's uncertainty principle did not all mean the end of 

determinism, it only modified it. The most carefully conducted 

experiment is after all, newer completely isolated from the influences 

of the surrounding world, and the state of a system is never precisely 

known at any pOint in time. The absolute mathematical precision which 

Laplace presupposed is not physically realizable; minute imprecision is, 

as a matter of principle, always present. What scientists actually 

believed was this: from approximately the same causes follow 

approximately the same effects in nature as well as in any good 

experiment. And this is indeed often the case, especially over short 

time spans. If these were not so, we would not be able to ascertain 

natural laws, nor could we build any functioning machines. But this 

apparently very plausible assumptions is not universally true, it does 

not do justice to the typical course of natural processes over long 

Ii periods of time. Around 1960", Lorenz discovered this deficiency in the 

models used for numerical weather prediction and it was he who 

coined the term "butterfly effect" [Peitgen, 1993]. 

8 



Thus, Heisenberg's response to deterministic thinking was also 

incomplete. He concluded that the strong causality principle is wrong 

because its presumptions are enormous. Lorenz has now shown that ,. 

the conclusions are also wrong. Natural laws, and for that matter '.<:;:;~:,).: ';~ , .. :.~. . : .. . , ': '. '~:~~.' . -; ;"\.:. 

determinism, do not exclude the possibility of chaos. In other words; ' H " · . , 

determinism and predictability are not equivalent. And what is even a 

more surprising finding of recent chaos theory has been the discovery 

that these effects are observable in many systems which are much 

simpler than the 'weather'. In fact, this can be observed in very simple 

feedback systems, even as simple as the quadratic iterator 

x ~ ax(l-x) (the Logistic equation). 

Moreover, chaos and order (i.e. causality principle) can be observed in 

juxtaposing within the same system. There may be a linear 

progression of errors characterizing a deterministic system which is 

governed by the causality principle, while (in the same system) there 

can also be an experimental progression of errors (i.e. the butterfly 

effect) indicating that the causality principle breaks down. In other 

words, one of the lessons coming out of chaos theory is that the 

validity of the causality is narrowed by the uncertainty principle from 

one end as well as by the intrinsic instability properties of the 

underlying natural laws from the other end. 

Chaos describes a situation where typical solutions (or orbits) of a 

differential equation (or typical evolutions of some other models 

describing deterministic evolution) do not converge to a stationary or 

periodic function (of time) but continue to exhibit a seemingly 
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unpredictable behaviour. The dynamical system (or models) describing 

deterministic evolution considered are differential equations 

x = F(x) with X E X, X a differentiable manifold and F: X -) T(x) a vector 

field on X, and differentiable mapping ¢: X -) X which mayor may 

not be invertible. For a given initial state Xo E X the corresponding . ' . ". "" 
• I . :~" -: .~:: • : ". A· :.~; 

evolution is the solution x(/) of the differential equation with x(O) = Xo or 

in the case of a mapping, the function N -) X given by n H ¢" (xo)' The 

last case is the discrete-time situation, the first case that of continuous 

time. Even if the evolution can be defined for negative time, only the 

part with positive time is considered. Also, only bounded evolutions 

are considered here i.e. x(t), X II with t ~ 0, respectively n ~ 0 , whose 

closure as a subset of X is compact. It is assumed that there is a 

metric defined on X. One says that such a dynamical system is chaotic 

if there is a subset X c X which has positive measure (for every 

measure in the Lebesgue measure class) which is invariant in the 

sense that every evolution starting in X stays in X and such that the 

evolutions in X have the following properties 

1.2.1 Quasi-Periodic Evolution 

No evolution starting in X is periodic or quasi-periodic. An evolution 

x(t) is quasi-periodic if it can be written as x(t) = F(OJ ,' " OJ 2' 2 ' ... , OJ" I,,) with 

OJ"OJ 2 ,OJ 3 , . .. ,OJ" independent over the rationals and F periodic with period 

1 in all its variables, an evolution Xn is quasi-periodic if it can be written 

as XIII = F(OJ,n, OJ 2n, ... ,OJmn)with 1"OJ 2 ,OJ3 , ... ,OJ m independent over the 

rationals and F periodic with period 1 in all its variables. No evolution 

in X tends to a periodic or quasi-periodic evolution as time tends to 

infinity. 

10 
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1.2.2 Sensitive Dependence on Initial Conditions 

(Sensitive dependence on initial conditions) there is some positive 

constant A such that for each Xo E X and each £ > 0, there is some Yo in 

an £ -neighbourhood of x, such that for some positive time the 

evolution starting in Xo and Yo are more than A apart. These conditions 

are probably not independent. The first two conditions . may be a 

consequence of the third condition. The third condition implies. some 

unpredictability. Even if we know the initial state with arbitrary (but · 

finite) precision, there is some moment in the future at which the state 

cannot be predicted within a distance A from the information about the 

initial state. The main examples of chaotic dynamical systems (and 

dynamical systems which are supposed to be chaotic) are discussed 

below: 

1.2.3 The Logistic Family 

This is a one-parameter family [Peitgen and Saupe, 1998] of one­

dimension mappingsLo (x)=I-ax 2
, it has been proved that for a large 

set (of positive Lebesgue measure) of values. of the parametera I this 

mapping defines a chaotic dynamical system. These mappings were 

introduced to describe pop.ulation dynamics under certain conditions. 

1.2.4 The Henon Family 

This is a 2-parameter family of two-dimensional invertible mappings 

Ho.
b
(x,y)=(1- !(X2 +y,bx}b,tOin this example, there is only numerical 

evidence that Ha•h defines, for many parameter values and h, a 

chaotic dynamical system. 

11 
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1.2.5 The Lorenz Family 

This is a three parameter family of differential equations in ~ .1 

X = CT{y - X) 
Y = rx- y-xz 

z = xy-bz 

There is a well-developed theory concerning this system. Still there is ., . _ . 
: ;.~~;. ~ ":r : . '" ..... : .:..t:. ~ 

no complete proof that for any parametric values, this system is · .' :: '. > ,:~ 

chaotic. This chaoticity is strongly suggested by numerical results 

combined with geometric arguments: what is lacking is a tedious 

numerical verification. This equation was proposed in connection with 

convection problems. 

1.2.6 General Axiom A Attractors 

This is a class of abstract dynamical systems which are chaotic. 

Among the chaotic dynamical systems they are the most 'regular' 

and also they are the ones which are most mathematically 

understood. Finally in a number of physical and chemical 

experiments, in particular related with weak turbulence and open 

chemical reactions, far from equilibrium, the experimental data 

indicate that one should explain these experiments in terms of 

chaotic dynamical systems. The literature has not yet standardized 

with respect to definition of chaotic maps. 

1.3 Image Processing 

Digital image processing involves the manipulation and interpretation 

of digital images with the aid of a computer. Digital image processing 

is an extremely broad subject and it often involves procedures which 

can be mathematically complex. Here we attempt to only introduce the 

subject matter until later in this work when the subject of erosion and 

dilation of images will be adequately handled. The central idea behind 

12 



digital image processing is quite simple. The digital image is fed into 

the computer, one pixel at a time. The computer is programmed to 

insert these data into main equation, or a series of equations, and 

then store the results of the computation for each pixel. These results 

from a new digital image that may be displayed or recorded in pictorial 
.~. . 

'.:,-
" " 

format or may itself be further manipulated by additional programs. · · '~;~i ' .,.,.: ",,: . :c· 
I' • : '". 

The possible forms of digital manipulations are literally infinite. 

However, virtually all these procedures may be categorized into one 

(or more) of the following. 

1.3.1 Image Rectification and Restoration 

These operations are designed to correct distorted or degraded image 

data to create a more faithful representation of the original scene. This 

typically involves the initial processing of raw image data to correct for 

geometric distortions, and to eliminate any noise present in the data. 

Thus, the nature of any particular image restoration process is highly 

dependent upon the characteristics of the sensor used to acquire the 

image data. Image rectification and restoration procedures are often 

termed preprocessing operations because they normally precede 

further manipulation and analysis of the image data to extract specific 

information. 

1.3.2 Image Enhancement 

These procedures are applied to image data in order to more 

effectively display or record the data for subsequent visual 

interpretation. Normally, image enhancement involves techniques for 

increasing the visual distinction between features in a scene. The 

objective is to create "new" images from the original image data in 

order to increase the amount of information which can be visually 

13 



interpreted from the data. The enhanced image can be displayed 

interactively 011 a monitor or they can be recorded in a hand copy 

format, either in black and white or in colour. There are no simple 

rules for producing the single "best" image for a particular application. 

Often several enhancements made from the same "raw" image are 

necessary. 

1.3.3 Image classification 

The objective of these operations is to replace visual analysis of the 

image data with quantitative techniques for automating the 

identification of features in a scene. This normally involves the analysis 

of multispectral image data and the application of statistically based 

decision rules for determining the object's identity of each pixel in an 

image. When these decisions rules are based solely on the spectral 

radiances observed in the data, we refer to the classification ' process 

as spectral pattern recognition. In contrast, the decision rules may be 

base don the geometrical shapes, sizes, and [patterns present in the 

image data. These procedures fall into the domain of spatial pattern 

recognition. In either case, the intention of the classification process is 

to categorize all pixels in a digital image into one of several themes. 

1.3.4 Data Merging 

These procedures are used to combine image data for a given object 

with other acquired data sets for the same object. These data sets 

might simply consist of image data generated on other data by the 

same sensor. Frequently, the intent of the data merging is to combine 

acquired data with other sources of information. 
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1.4 Mathematical Concepts in Image Processing and Fractals 

1.4.1 Fractals 

Fractals were originally defined by B.B. Mandelbrot as point sets with 

non-integer dimension in the sense of Hausdorff-Besicovitch. Classical 

examples are the triadic Cantor set and the non-differentiable curve 

obtained by von Koch. Typically, a fractal is self-similar (i.e. every 

small looks like the larger whole) in a deterministic or stochastic way. 

D. Sullivan introduced the concept of quasi-self-similarity. A quasi­

isometry is defined by a function f acting on a metric space M with a 

1 
metric satisfying k d(x, y) < d(f(x), fey») < kd(x, y) 

fo, all x,y E M 

A set F is called quasi-self similar if there exists a k and '0 such that 

multiplication by ~of FnDr(x) maps into F by a quasi-isometry for all , 
, <'0 and all x E F (here Dr (x) is the open ball centered at x of radius 

, ). 

Accordingly, a fractal may be defined as a quasi-self-similar set. In 

some important cases, the similarity transformations with two or more 

generators. The Julia set of an analytic function fez) is such a fractal. 

The inverses of f being the generators of the corresponding semi­

group. The variety of ways, but generally accepted definitions are still 

lacking. In one such a generalization, the fractal dimension is only a 

local property. Multifractal measures are related to a distribution on a 

geometric support which would be a fractal set in the ordinary sense. 

The field of fractals is rapidly expanding, in particular their applications 

in statistical physics, natural sciences and computer graphics e.g. the 

use fractals in image processing may give a considerable compression 
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of relevant data. Many 'objects' in nature such as coastlines, zeolites, 

patterns of dielectric discharge, Anderson wave functions, dendritic 

growth and viscous fingers can well be described by deterministic or 

stochastic (multi-) fractal structures. [Feder, 1996] 

1.4.2 Image Processing (Concepts) 

In order for any digital computer processing to be carried out on an 

image, it must first be stored within the computer in a suitable form 

that can be manipulated by the computer program. The most practical 

way of doing this is to divide the image up into a collection of discrete 

(usually small) cells, which are known as pixels (picture elements). 

Most commonly, the image is divided into a rectangular grid of pixels, 

so that each pixel is itself a small rectangle. Once this has been done, 

each pixel is given a pixel value that represents the colour of that 

pixel. It is assumed that the whole pixel is the same colour, and so 

any colour variation that did not exist within the area of the pixel 

before the image was discretized is lost. However, if the area of each 

pixel is very small, then the discrete nature of the image is often not 

visible to the human eye. Other pixel shapes and formation can be 

used, most notably the hexagonal grid in which each pixel is a small 

hexagon. This has the same advantage in image processing, including 

the fact that pixel connectivity is less ambiguously defined that with a 

square grid, but hexagonal grids are not widely used. Part of the 

reason is that many object capture systems (e.g. digital cameras and 

scanners), intrinsically discretize the captured image into a rectangular 

grid in the first instance. 

The discretization of images into pixels of a rectangular form make 

them susceptible to treatments of linear algebra and calculus. The 
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image pixels form an array and thus a matrix 1; . has a specific binary 
.J 

value that describes its colour and other attributes. Computer 

programs written to process images take advantage of the array form 

to process one pixel at a time until the job is done. An image that we 

look at is given in its standard Euclidean basis. The change in the 

image occurs when we try to find a new basis where different features . ·:_~~~':;i~J; . 
(shapes, edges, noise) are represented as basis vectors. 

So by looking at an image in its standard basis, we cause changes to 

the original image. Calculus is useful in image processing because 

transforms such as the Fourier transforms and some of its sister 

transforms are used as filters. Filtering usually take place in the 

frequency domain so an image can be described in terms of 

frequencies (i.e. colours) as 

a. Low frequencies - background, overall shape 

b. High frequencies - details, edges, noise, etc. 

From (a) and (b) above, we can see that image representation is also 

. a waveform of the form say A cos 2:ift. When the waveform A cos 27ifi is 

fed into a linear time-invariant filter(e.g. electrical filter), the output is 

also harmonic but has in general a different amplitude and phase; let 

it be B cos(2:ift + ¢). Then thye filter is completely specified by a certain 

frequency-dependent complex quantity T(f) , whose amplitude is given 

by o/;t and whose phase is ¢; 

Thus T(f) = Be;; 
A 

We refer to T(f) as the transfer factor, transfer function, system 

function, or frequency response of the filter. 
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1.4.3 Enhancement (Enhance Features) 

Enhancement makes images or signal "look" better. The tool for 

enhancement is the spatial (i.e. more than one dimension) filters. 

Since an image is usually two-dimensional (although three dimension 

images are now possible), a two dimension Fourier or wavelet 

transform are used to enhance the features of an image. 

1.4.4 Warping 

Warping an image puts the image on an elastic mesh which is 

stretched. Here the use of partial differential equations becomes 

imperative. This done by formulating POEs that describe the mesh 

(array) deformations. Multi-grid POE solvers are useful tools for mesh 

deformation. 

18 
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2.1 Introduction 

CHAPTER TWO 

LITERATURE REVIEW 

Mandelbrot is often characterized as the father of fractal geometry. 

Some people, however, remark that many of the fractals and their 

description goes back to classical mathematics and mathematicians of . ' ~.> . ? :: .. :. 

the past like Gregor Cantor (1872), Giuseppe Pe~no (1890), David 

Hilbert (1891), Helve von Koch (1904), Waclaw Sierpinski (1916), 

Gaston Julia (1918), or Felix Hausdorff(1919), to name just a few. It is 

true that the creation of these mathematicians played a key role in 

Mandelbrot's concept of a new geometry. But, at the same time, they 

did not think of their creations as conceptual steps towards a new 

perception or a new geometry of nature. Rather, what we know so well 

as die cantor set, the Koch curve, the Peano curve, the Hilbert curve 

and the Sierpinski gasket were regarded as exceptional objects, as 

counter examples, as 'mathematical monsters'. Maybe this is bit 

overemphasized. Indeed, many of the early fractals arose in the 

attempt to fully explore the mathematical content and the limits of 

fundamentals notions (e.g. 'continuous' or 'curve'). The Cantor set, the 

Sierpinski carpet and the Menger sponge stand out in particular 

because of their deep roots and essential role in the development of 

early topology. 

But even in mathematical circles their profound meaning had . been 

somewhat forgotten, and they were as shapes, intended to 

demonstrate the deviation from the familiar rather than typify the 

normal. Then Mandelbrot demonstrated that these early mathematical 

fractals in fact have many features in common with shapes found in 

nature. In other words, we should say that Mandelbrot turned the 
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manifold mathematical interpretation and value of these fantastic 

inventions upside down. But In fact, he did more. The best way to 

describe his contribution is to say that, indeed, some characters, such 

as the Cantor set, were already there. But he went on to develop a 

language into which the characters could be embedded. In other 

words, he noticed that the seemingly exceptional is more like the rule "" 

and then develop a systematic language with words and sentences and 

grammar. According to Mandelbrot himself, he did not follow a grand 

plan when carrying out the program; but rather summarized in a way, 

his complex - one is tempted to say nomadic - scientific experience in 

mathematics, linguistics, economics, physics, rt:ledical sciences and 

communications networks, to mention a few areas where he was 

active. 

Before we begin a discussion of classical fractals, we introduce the 

concept of self-similarity. It Is the underlying theme in all fractals, 

more pronounced in some of them and variations in others. In a way 

the word self-similarity needs no explanation and at this point we 

merely give an example of a natural structure with that property, a 

cauliflower. 

Fig 2.01 The cauliflower 



Figure 2.1,' The self-similarity of an ordinary cauliflower is demonstrated by 
dissection and two successive enlargements (bottom). The small pieces look similar 
to the whole cauliflower head. [Peitegen and Saupe, 1998J 

It is not a classical mathematical fractal, but here the meaning of self­

similarity is readily revealed without any mathematics. The cauliflower 

head contains branches or parts, which when removed and compared 

with the whole are very mu~h the same, only smaller. These clusters 

again can be decomposed into smaller clusters, which again look very 

similar to the whole as to the first generation branches. This self­

similarity carries through for about three or four stages. After that the 

structures are too small for further dissection in mathematical 

idealization, the self-similarity property of a fractal may be continued 

through infinitely many stages. This leads to new concepts such as 

fractal dimension which are useful for natural structures that do not 

have this infinte detail. 

21 



2.2 Self-Similarity in the Decimal System 

Although the notion of self-similarity is only 20 years old there are 

many historical constructions which make substantial use of its core 

idea. Probably the oldest and most important construction in that 

regard is the decimal system. It is impossible to estimate where . '. 

mathematics and the natural sciences would be without this ingenious : :;-";\: ­

invention. We a re so used to the decimal system that we take it for 

granted, however, it evolved after a long scientific and cultural 

struggle and it is very closely related to the material from which 

fractals are made. It is also the prerequisite of the metric (measuring) 

system (for length, area, volume, weights, etc). Let us look at a metric 

stick, which carries markers for decimeters (ten make a metre), and 

millimeters (ten make a centimeter), a thousand make a metre). In a 

sense, a decimetre together with its markers looks like a metre with its 

markers, however, scaled down by a factor of 10. This is not an 

accident. It is in strict correspondence with the decimal system. When 

we say 357mm, for example, we mean 3 decimetres, 5 centimetres, 

and 7 millimeters. On other words, the position of the figure 

determines their place value, exactly as in the decimal number 

system. One metre has a thousand millimeters to it and when we have 

to locate position 357, we go to the 3 decimetre-tick mark, from there 

to 5 centimetre tick mark, and from there to the 7 millimetre tick 

mark. Most people take this elegant process for granted but somebody 

who has to convert miles, yards and inches can really appreciate the 

beauty of this system. 
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Fig 2.2 The branches of the decimal tree leading to 357 are highlighted 

Actually finding a position on the metre stick corresponds to a walk on 

the branches of tree, the decimal number tree. The structure of the 

tree expresses the self-similarity of the decimal system very strongly. 

2.3 The Cantor Set 

Cantor (1845-1918) was a German mathematician at the University 

of Halle where he carried out his fundamental work in the foundations 

of mathematics, which we now call set theory. The Cantor set was 

first published in 1883 and emerged as an example of certain 

exceptional sets. It is probably fair to say that in the zoo of 

mathematical monsters - or early fractals - the Cantor set was by 

far the most important, though it is less visually appealing and more 

distant to an immediate natural interpretation than in some of the 

others. It is now understood that the Cantor set plays a role in many 

branches of mathematics, and in fact, in a very deep sense in chaotic 

dynamical system, and in somehow hidden as the essential skeleton 

or model behind many other fractals (for example Julia sets). 

The basic cantor set is an infinite set pOints in the unit interval [0.1]. 

That is, it can be interpreted as a set of certain numbers, 

12127812 .. 
as for example, 0,1,-,-,-,-,-,- ,-,-, ... plotting this and all 

3 3 9 9 9 9 27 27 

other points (assuming we could know where they were) would not 

make much of a picture at all. 

23 



Rather than plotting just points, we plot horizontal lines whose base 

pOints are exactly at all the difficult point belonging to the Cantor set. 

By so doing we are able to see the distribution of these pOints better. 

, 
2.3.1 Construction of the Cantor Set .: .: .. : " .... ,. 

Start with the interval [0,1]. Now take away the open interval [~ , %J i.e. 

remove the middle third from [O,l]but not the numbers j and %. This 

leaves two i nterva Is [0, ~ J and [%,1 J of length ~ each a nd com plete a 

basic construction step. Now we look at the rema i n i ng i nterva I [ 0, i J 

and [~ ,1Jand remove their middle thirds which yields intervals of 

length ~. Continue on in this way. In other words, there is a feedback 
9 

process in which a sequence of (closed) intervals in generated - one 

after the first step, two after the second, four after the third step, 

eight after the fourth step, etc. (i.e 2n intervals of length _1 after the 
3t1 

nih step. 

.-- - - .- - - -- - .... --- - --, 
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• ~ I 
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Figure 2.3: The Cantor set represented by vertical lines whose bas pOints are exactly 
at all the different pOints belonging to the set. 
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Figure 2.4: Some initial steps of the construction 

Therefore, the Cantor set is the set of pOints which remain if we carry 

out the mentioned steps infinitely often. How is infinitely often 

explained? A pOintx, is in the Cantor set if we can guarantee that no 

matter how often we carry out the removal process, the point x will 

. 1 2 12781 2 
not be taken out. Obviously 0,1,- ,- ,- ,- ,- ,- ,- ,-, ... are examples 

3 3 9 9 9 9 27 27 

of such pOints because they are the end pOints of the interval which 

are created in the steps; and therefore must remain All these pOints 

have one thing in common, namely, they are related to the power of 

3 - or rather, to .!.. Triadic numbers are numbers which are 
3 

represented with respect to base 3. 

r"'- --- .. 

in \ 

I 

. 1 

------:.j~ 

J 

";() j " L~~ !: . . ",: :c.:; 2 '; "'. 2Z 
" ' " ......... 

. '. "'. 

Figure 2.5: A three-branch tree visualizes the triadic expansion of n(.Jmbers on the 
unit interval. 

A three-branched tree visualizes the triadic expansion of numbers from 

the limit interval. The first main branch covers all numbers between ° 
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and ~. Following down the branches all the way to the interval and 
3 

keeping note of the labels 0, 1 and 2 for choosing the left, middle or 

right branches will produce a triadic expansion of the number in the 

interval which is approached in this process. 

Now we can completely describe the Cantor set by representing the:'.:'::::(?·>"'< 

numbers from [0,1] in their triadic expansion i.e. we switch to the 

expansion of x with respect to the base 3, as in equation 2.1 

3- 1 3-2 3-3 3-4 x=a l , +a2 ' +a) · +a4 ' + .. , (2. 1) 

Thus here, the x =ap a2 ,a3 , .. ,are numbers from {0,1,2,} . Let us write 

some pOints of Cantor set as triadic numbers ~ = 0.1 in the triadic 
3 

2 
system, and"9 = 0.02. In general, we can characterize any pOint of the 

Cantor set in the following way. 

liThe Cantor set C is the set of points in [O,IJ for which there is a 

triadic expansion that does not contain the digit 1". 

In the above examples, 3. and 3. are pOints in the Cantor set 
3 9 

according to this statement, since their triadic expansion 0.2 and 0.02 

do not contain the digit' 1'. However the two examples ~ and ~ seem 
3 9 

to contradict this rule, their expansions 0.1 and 0.01 clearly show digit 

'1 '. 

2.4 The Sierpinski Gasket and Carpet 

Our next classical fractal is about 40 years younger than the cantor 

set. It was introduced by the great Polish mathematician Waclaw 

26 



Sierpinski (1882-1969) in 1916. Sierpinski was a professor at Lvov, a 

city founded in 1256. The basic geometric construction of the 

Sierpinski gasket goes as follows. We begin with a triangle in the plane 

and then apply a repetitive scheme of operations to it. Pick the 

midpoints of its three sides. Together with the old vertices of the 

original triangle, these midpoints define for congruent triangles of · 

which we drop the centre one. This completes the basic construction 

step. 

-----------

Figure 2.6: The basic construction steps of the Sierpinski gasket 

2.4.1 The Sierpinski Carpet 

Sierpinski has added another object to the gallery of classical fractals, 

the Sierpinski carpet. We begin with a square in the plane. Subdivide 

it into nine little congruent squares of which we drop the centre one 

and so on. The resulting object which remains if one carries out this 

process infinitely often can be seen as a generalization of the centre 

set (in 2 dimensions). Indeed if we look at the intersection of a line 

which goes through the centre we observe precisely the construction 

of the Cantor set. 
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Figure 2.7: The basic construction steps of the Sierpinski carpet 

2.5 Koch Curves 

Helve von Koch was a Swedish mathematician who in 1904, introduced 

what is now called the Koch curve. Fitting together three suitably 

rotated copies of the Koch curve produces a figure which for obvious 

reasons is called a Koch curve. 
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Figure 2.8: F.xcerpts from von Koch's original 1906 article 

Little is known about von Koch, whose mathematical contributions 

were certainly not on the same category as those of the stars like 

Cantor, Peano, Hilbert, . Sierpinski or Hausdorff. Here the Koch 

construction must have its way because it leads to many interesting 

generalizations. The koch curve is a difficult to understand as the 

cantor set or the Sierpinski gasket. However, the problems with it are 

of a difficult nature. First of all as the name implies, it is a curve, but 

this is not immediately clear from the construction. Secondly, the 

curve contains no straight lines or segments which are smooth in the 

sense that we could see them as a carefully bent line. Rather, this 

curve has much of the complexity, folds within folds within folds and 

so on. 
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Figure 2.9: The outline of the Koch snowflake (also known as the Koch Island) 

Figure 2.10: Some natural lakes 

2.S.1 Construction of the Koch curve 

We begin with a straight line. Partition it into three equal ' parts, then 

replace the middle third by an equilateral triangle and take away its 

base. This completes the basic construction step. A reduction of this 

frame, made in four parts, will be reused in the following stages. It is 

called the generator. Thus, we now repeat each of the resulting line 

segments, partitioning them, into three equal parts, and so on. 

4 - ' c 
~ "" 

-"{fd-.4. 

-see;: 0 

Figure 2.11: Stages in the construction of the Koch curve 
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Actually, Koch wanted to provide another example for discovery first 

made by the German mathematician Karl WeistraB, who in 1872 had 

precipitated a minor crisis in mathematics. He had described a curve 

that could not be differentiated, i.e. a curve which does not admit a 

tangent at any of its pOints. The ability to differentiate (i.e . calculate 

the shape of a curve from point to point) invented by Newton and 

Leibniz. If a curve has a corner, then there is a problem. There is no 

way to fit a unique tangent. The Koch curve is an example of a curve 

which in a sense is made out of corners everywhere i.e. there is no 

way to fit a tangent to any of its points. 

2.5.2 Generalized Koch Constructions 

It is almost obvious how one can generalize the Koch construction to 

obtain a whole universe of self-similar structures. Such a Koch 

construction is defined by an initiator, which may be a collection of 

line segments, and a generator, which is a polygonal line composed 

of a number of connected line segments. Beginning with the initiator, 

one replaces each line segment by a properly scaled down copy of 

the generator curve. Here it is necessary to carefully match end 

pOints of the line segment and the generator. This procedure is 

repeated ad infinitum, of course, one stops, as soon as the length of 

the largest line segment in the graph is below the graphic device. 

Whether or not the Koch curve yields a conveying sequence of 

images or even curves depends on the choice of the initiator and 

generator. 
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2.5.3 Length of the Koch Curve 

At each stage in the original Koch curve, we obtain a curve. At the 

first, we are left with a curve which is made up of 4 line segments of 

the same length, after the second step we have 4x4, and then 4 x 4 x 

4 lie segments after the third step, and so on. Of the original line had 

length L, then after the first step a line has length ~ x ~ after the 
3 

second step, we have L x ~2 ' then L x ~, and so on. Since each of the 
3 3-

steps produces a curve of line segments, there is no problem in 

measuring their respective lengths. After the first step it is 4 x L x ~ , 
- 3 

then 42 x L x ~, and so on. After thek 1h step, it iS4k x L x -;-. We 
3 3 

observe that from step to step the length of the curve grows by a 

factor of ~ . This presents some problems. First of all, the Koch curve 
3 

is the object which one obtains if one repeats the construction steps 

infinitely often. But what does this mean? Next even if we could 

answer this question, why is it a curve which comes out? Or why is it 

that the curves in each step do not intersect themselves. 

Figure 2.12: Construction process of the Koch curve 

32 



In figure (2.12), we see two curves which we can hardly distinguish. 

But they are different. The top one shows the result of the construction 

after 5 steps, while the other curve shows the result after 20 steps. In 

other words, since the length of the individual line segment is ~ I 
3 

where k is the number of steps, it is clear that any of the changes in "- ( 

the construction are soon below visibility unless one works under a 

microscope. Thus, for practical purposes, one is tempted to be 

satisfied with a display of something like the lOf" step, or whatever is 

appropriate to fool the eye. But such an object is not the Koch curve. 

It would have a finite length and would still show its straight line 

construction segments under sufficient magnification. 

2.6 Space-Filling Curves 

Talking about dimensions in an intuitive way, we perceive lines to be 

typical for one-dimensional objects and planes as typical for two­

dimensional objects. In 1890 Giuseppe Peano (1858-1932) and 

immediately after that in 1891, David Hilbert (1862-1943), discussed 

curves which live in a plane and which dramatically demonstrate that 

our na'ive idea about curves is very limited. They discussed curves 

which "fill" a plane, i.e. given some patch of the plane, there is a curve 

which meets every pOint in that patch. 

33 



--._._--r:--
- -.-.- .--.. ---- rr--;=-'-- -

~' .. . 
, ' 

s, 0' ~~ 

Figure 2.13: Construction of a plane-filling curve with initiator and generator 

Figure (2.13) indicates that first steps of the iterative construction of 

Peano's original curve. In nature the organization of space-filling 

structures is one of the fundamental building blocks of living beings. 

An organ must be supplied with necessary supporting substances such 

as water and oxygen. In many cases these substances will be 

transported through vessel system that must reach every point in the 

volume of the organ. For example, the kidney houses three interwoven 

tree-like vessel systems, the arterial, the veins, and the urinary 

systems. Fractals solve the problem of how to organize such a 

complicated structure in an efficient way. Of course, this was not what 

Peano and Hilbert were interested in over 100 years ago. It is only 

now after Mandelbrot's work, that the omnipresence of fractals has 

become apparent. 

The Peano curve is obtained by anther version of the Koch curve 

construction. We begin with a single line segment, the initiator, and 

then substitute the segment as shown in figure 2.13. Apparently, the 

generator has two points of self-intersection. More precisely, the curve 

touches itself at two pOints. Observe that this generator curve fits 

nicely into a square whose pOints will be reached by the Peano curve. 
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Take each straight line piece of the curve in the first stage and replace 

it by the properly scaled down generator. Obviously the scaling factor 

is 3. This constitutes stage 2. There are a total of 32 self-intersecting 

pOints in the curve. Now we repeat, i.e. in each step, line segments 

are scaled down by a factor of 3. Thus, in the k'h step, a line segment 

has a length ~, which is a very rapidly declining number. Since each 
3 

line segment is replaced nine line segments of one-third 
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Figure 2.14: First page of Hilbert's original; paper 1890 

The length of the previous line segments, we can easily calculate the 

length of the curves in each step. Assume that the length of the 

original line segment constituting the initiator was 1, then we obtain in 

1 1 
stage 1:9x-=3 , and stage 21:9x9x-2 =9. Expressed as a general 

3 3 
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rule, in each step of the construction, the resulting curve increases in 

length by a factor of 3. In stage k, the length is 3k 
•• 

2.7 Self-Similarity 

The Peano curve construction, though as easy or as difficult, as the 

construction of the Koch curve, bears within it several difficulties 

which did not occur or were hidden in the latter construction. 
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Figure 2.1:5: Second page of Hilbert's paper 1890 

For example, take the intrinsic concept of self-similarity. For the 

construction of the Koch curve, it seemed that we could say that the 

final curve has similarity with each of the preceding steps. Of you look 

at the Peano curve in the same intuitive way, each of the steps has 

similarity with the preceding steps; but if you look at the final curve, 

essentially we see a filled out square which does not look at all similar 

to the early steps of the construction. In other words, either the Peano 
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curve is not self-similar, or we have to be much more careful in 

describing what self-similar means. 
,'-- -- - j-' -_ .... __ . - ---- ---_. 
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Figure 2.16: Peano curve of four different stages traced out 

In conclusion, we have shown that a notion of self-similarity in a strict 

sense requires a discussion of the object which finally results from the 

construction of the underlying feedback system. One must carefully 

distinguish between a finite construction stage and the fractal itself. 

But if that is so, then how can we discuss the forms and patterns we 

see in nature, as for example the cauliflower, from that point of view? 

The cauliflower shows the same forms - clusters are composed of 

smaller clusters of essentially the same form - over a range of several, 

say five or six, magnification scales. This suggests that the cauliflower 

should be discussed in the framework of fractal geometry very much 

like our plates are suitably discussed within the framework of 

Euclidean geometry. But a plant is not a perfect sphere and the 

cauliflower is not perfectly self-similar. First, there are imperfections in 

self-similarity: a little cluster is not an exact scaled version of a larger 

cluster. But more importantly, the range of magnification within which 

we see similar forms is finite. Therefore, fractals can only be used as 
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models for natural shapes, and one must be always be aware of the 

limitations. 

2.8 Fractals and the Problem of Dimension 

The invention of space-filling curves was a major event in the 

development of the concept of dimension. They questioned the . ... 

intuitive perception of curves as one- dimensional objects, because 

they filled the plane (i.e. an object which is intuitively perceived as 

two-dimensional). Talking about fractals, we usually think of the 

fractal dimension, Hausdorff dimension or box counting dimension 

whose original concepts reside in the early development of topology. 

Topology is a branch of mathematics which has essentially been 
th 

developed in the 20 century. It deals with the question of form and 

shape from a qualitative point of view. Two of the basic notions are 

dimension and homeomorphism. Topology deals with the shapes that 

can be pulled and distorted in a space that behaves like a rubber. 
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Figure 2.17: A circle can be continuously deformed into a triangle 

In topology, straight lines can be bent into curves and circles can be 

pinched into triangles or pulled out as squares. For example, from the 
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point of view topology, a straight line and the Koch curve cannot be 

distinguished. Or the coast of a Koch island is the same as a circle. Or 

a plain sheet is equivalent to one which is infinitely crumpled. 

However, not everything is topologically changeable. Intersection of 

lines, for example remain intersections. Intersection is invariant; it 

cannot be destroyed nor can new ones be born, no matter how much 

the lines are stretched and twisted. The number of holes in an object is . 

also topologically invariant, meaning that a sphere may be 

transformed into the surface of a horse-shoe, but never into a 

doughnut. The transformations which are allowed are called 

homeomorphisms, and when applied, they m~st not change the 

invariant properties of the objects. Thus, a sphere and the surface of a 

cube are homeomorphic, but the sphere and a doughnut are not. A 

straight line and the Koch curve are topologically the same. Moreover, 

a straight line is a prototype of an object which has dimension one. 

Thus, if the concept of dimension is a topological notion, we could 

expect that the Koch has topological dimension one. This is, however, 

a delicate matter and it troubled mathematicians around the turn of 

the twentieth century. The history of the various notions f dimension 

involves the greatest mathematicians of that time: men like POintcare, 

H. Lesbesgue, L.EJ. Brouwer, G. cantor, K. Menger, W. Harowitcz, P. 

Alexandroff, L. Pontragin, G. Pea no, P. Urysohn, E. Cech and D. 

Hilbert. That history is very closely related to the creation of early 

fractals. Hausdoff remarked that the problem of creating the notion of 

dimension is a very complicated one. People had an intuitive idea 

about dimension: the dimension of an object, say X, is the number of 

independent parameters (coordinates), which are required for the 

unique description of its pOints. 
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Poincare's idea was inductive in nature and started with a point. A 

point has dimension O. Then a line has dimension 1, because it can be 

split into two parts by a point (which has dimension 0) and a square 

has dimension 2 because it can be split into 2 parts by a line (which 

has dimension 1). A 'cube has dimension 3 because it can be split into 

2 parts by a square (which has dimension 2) 

In the development of topology, mathematicians looked for qualitative 

features which would not change when the objects were transformed 

properly (technically by a homeomorphism). Two objectsx and y 

(topological spaces) are homeomorphic if there is a homeomorphism 

h: X ~ Y (i.e. a continuous one-to-one and onto mapping that has a 

continuous inverseh-I
). The topological dimension of an object 

certainly should be preserved. But it turned out that there were severe 

difficulties in aiming at a proper and detailed notion of dimension 

which would behave that way. For example, in 1878, Cantor formed a 

transformation from the unit interval [0,1] to the unit square [O,I]x[O,I] 

which was one-to-one and onto. Thus it seemed that we need only one 

parameter for the description of the pOints in a square. But Cantor's 

transformation is not a homeomorphism. It is not continuous, i.e. it 

does not yield a space-filling curve. But then the plane-filling 

construction of Peano and later Hilbert yielded transformation 9 from 

the unit interval [0,1] to the unit square [O,l]x[O,l] which were even 

and continuous. But they were not one-to-one (i.e. there are pOints, 

say XI and X2(XI ;t; x2 ) in the unit interval which are mapped to the same 

point square y = g{xl)= g{xJ. This questioned the question - which so 

far seemed to ,have an obvious answer - whether or not there is a one­

to-one and onto transformation between 1=[0,1] and / 2 = [O,l]x [0,1 ] 

which is continuous in both directions. Or more generally, is the m-
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dimensional one, 1m = [a,lt n * m. If there is such a . transformation, 

mathematicians felt they were in trouble: a one-dimensional object 

would be homeomorphic to a two-dimensional one. Thus, the idea of 

topological invariance would be wrong. 

. . . .. ~:~ :.:: .':: : :4~:~;;.: .. ~ __ ~.~:I .::~ 

Between 1890 and 1910 several proofs appeared showing that / " and' i'·:' · _. . .. , 

r are not homeomorphic where n * m, but the arguments were not 

complete. It was the Dutch mathematician Brouwer who ended the 

crisis in 1917 by an elegant proof which enriched the development of 

topology enormously. But the struggle for a suitable notion of 

dimension and a proof that obvious objects - like r - had obvious 

dimensions went on for two more decades. The work of the German 

mathematician Hausdorff (which led eventually to fractal dimension) 

also falls in this time span. 

During the 20th century mathematicians came up with many different 

notions of dimension (small inductive dimension, covering dimension, 

homological dimension) (c. Kovatowski, 1978). Several of them are 

topological in nature: their value is always a natural number (or 0 for 

points) and does not change for topologically equivalent objects. 

2.9 The Fractal Dimension 

Mandelbrot (.1982) offers the following tentative definition of a fractal: 

"A fractal is by definition ' a set for which the Hausdorf-Besicovitch 

dimension strictly exceeds the topological dimension" 

This definition requires a definition of the term set, Hasudorff­

Besicovitch dimension (D) and topological dimension (Dr)' which is 

always an integer. For the present purpose we find that a rather loose 
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definition of these terms and illustrations - using simple examples - is 

more useful than the more formal mathematical discussion available. 

In fact Mandelbrot (1986) has retracted this tentative definition and 

proposes instead the following: 

"A fractal is a shape made of parts similar to the whole in some way" 

A neat and complete characterization of fractals is still lacking 

(Mandelbrot, 1987). The point is that the first definition, although 

correct and precise, is too restrictive. It excludes many fractals that 

are useful in physics. A fractal looks the same whatever the scale. An 

example of this is the cumulus clouds. They consist of big heaps with 

smaller bulges that have smaller bumps with bumps on them and so 

on down to the smallest scale you can resolve. In fact, from a picture 

showing only the clouds we cannot estimate the size of the clouds 

without extra information. Fractals may be considered to be sets of 

points in space. For example, the set of points that make up a line in 

ordinary Euclidean space has the topological dimension D.r = 1 and the 

Hausdorff-Besicovitch dimension D = 1. The Euclidean dimension of 

space is E = 3. Since D = Dr for the line it is not a fractal according to 

Mandelbrot's definition. Similarly, the set of points that form a surface 

in E = 3 space has the topological dimension Dr ' and D = 2 . Again an 

ordinary surface is not fractal independent of how complicated it is. 

Also, a bailor sphere has D = 3 and Dr = 3 

The concept of a distance between points in space is central to the 

definition of the Hausdorff-Besicovitch dimension and therefore of the 

fractal dimension D. How do we measure the 'size' of a set of points in 
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space? A simple way to measure the length of an object is to divide 

space into smaller cubes of sides 8 as illustrated in figure 

(2.18) space 

Figure 2.17: The coast of Southern part of Norway 

g 

Figure: 2.18: Measuring the size of curves 

We might use small spheres of diameter t5 instead. If we centre a 

small sphere on a point in the set then all point that are at a distance 
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r < ~8 from the point at the centre are covered by the sphere. By 
2 

counting the number of spheres needed to cover the set of points we 

obtain a measure of the size of the set. A curve can be measured by 

finding the number N(8) of line segments of length 8 needed to cover 

the line. For an ordinary curve we have N(8) = L~ . The length of the"" 

curve is given by L = N(8) · 8 0-+0 ) L08° In the limit 8 ~ 0, the measure 

L becomes asymptotically equal to the length of the curve and is 

independent of 8. We may choose to associate an area with the set 

pOints defining a curve by giving the number of disks or squares 

needed to cover the curve. This number of squares is again N (8) , and 

each square has an area of 0 2
• The associated area is therefore given 

by 

A = N(8 ) . 8 2 
0 -+0 ) L08

1 

Similarly, we may associate a volume, V , with the line as follows 

V = N(8) · 8 3 
0 -+0 ) L08

2 

For ordinary curves both A and V tend to zero as 0 vanishes, and the 

only interesting measure is the length of the curve. We find that for an 

ordinary surface the number of squares needed to tile it is N(o)= 102 

in the limit of vanishing 8, where Ao is the area of the surface, we 

may associate volume with the surface by forming the sum of the 

volumes of the cube needed to cover the surface. 

V = N (8) . 8 3 
0 -+0 ) L08

2 

What if we associate a length with a surface: 

L = N(8) · 8 0 -+0 ) L08- 1 which diverges for 8 ~ O. This result is 

measurable since it is impossible to cover a surface with a fin ite 

number of line segments. We conclude that the only useful measure of 
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a set of pOints defined by a surface in three dimensional space is the 

area. 

We shall see that one may easily define sets of pOints that are curves 

which twist so badly that their length is infinite and in fact three curves 

(Peano curves) that fill the space. Also there are surfaces that fold so 

wildly that they fill space. In order to discuss such strange sets of 

points it is useful to generalize the measure of the size first discussed. 

So far in order to give a measure of the size of a set of pOints, S I is 

space we take a test function h(5) = r(l)5d - a line, square, disk, bailor 

cube - and cover the set to form the measure Md = Ih(5) 

for lines squares and cubes the geometrical factor r(d) = 1 (Feder, 

1988). We have r =" for disks, r =" for spheres. In general, we find 
4 6 

that, as 5 ~ 0, the measure Md = Ih(5) is either zero or infinite 

depending on the choice of d - the dimension of the measure. The 

Hausdorff-8esicovitch dimension D of the set S is the critical 

dimension for which the measure Md changes from zero to infinity: 

Md = "r(5)5d = r(d)N(5Y ----::-~){O, d < D 
L. 8 .... 0 00, d > D * 

Md is called the d -measure of the set. The value of Md for d = D is 

often finite but may be zero or infinite; it is the position of the jump 

M d as a function of d that is important. This definition defines the 

Hausdorff- 8esicovitch dimension D as a local property in the sense 

that it measures properties of sets of points in the limit of vanishing 

diameter or size 5 of the test function and to cover the set. It also 

follows that the fractal dimension D may depend on position . Actually, 

there are several fine pOints that have to be considered. In particular, 
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the definition of the Hausdorff-Besicovitch dimension allows for a 

covering of the set by "balls" that are not of the same size, but have 

diameters less than 8 . The 8 -measure is then the infimum: roughly 

the minimal value obtainable in all possible coverings. The case in 

which the Hausdorff-Besicovitch dimension is non-integer is said to be 

fractal. The definition (*) of the fractal dimension can be sued in 

practice. Consider again the coastline shown in Fig (2.18) which have 

been covered with a set of squares with edge length 0, with the unit 

of length taken to equal the edge of the frame. Counting the number 

of squ.ares needed to cover the coastline given the number N(o). Now 

we may proceed as implied by equation (*) and calculate M d , or we 

may simply go ahead and find NCo) for smaller values of 0 . Since it 

follows from equation (*), that asymptotically in the limit of small 0, 

1 
N(o) - OD C* 1) 

We may determine the fractal dimension of the coastline by finding the 

slope of In NCo) plotted as a function of lno The resulting plot for the 

coastline shown in Fig 2.17 is presented in Fig 2.19 

~r-! --~-

n ' 
I • I .' t kr.. I .. , 

Figure 2.19: The number of 'boxes' needed to cover the coastline in figure in figure 

2.17 
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We find approximately that D = 1.5. The dimension N(tS), determined 

for equation (* 1) by counting the number of boxes needed to cover 

the set as a function of the box size, is now called the box-counting 

dimension or box-dimension. More generally, therefore, a fractal 

dimension, sometimes used to refer to what is commonly called the " , " ,i ,: " : ~., 

capacity dimension, is roughly speaking the exponent 0 in the 

expression 

n(s)=s-Dwhere n(s) is the minimum number of open sets of diameter 5 

needed to cover the set. 

2.10 Mathematical Foundations in Image Processing 

Image processing is divided into three parts, corresponding to as many 

goals. The first one derives from the discrete nature of images and the 

search for their minimal representation in terms of digital memory. 

This discipline is called image compression. The second goal is the 

restoration of a better version of an image, given a generation model 

with noise an blur and other perturbations. The third goal is analysis, 

which means in Greek "breaking into parts". In analysis, all spurious 

details disappear leaving only the main structures. The aim is not 

denoising or compression but to construct an invariant code putting in 

evidence the main parts and permitting a fast recognition in a large 

database of shapes. 

2.11 The Heat Equation 

The heat equation arises naturally in the image generation process. 

Indeed, according to Shannon's theory, an image can be correctly 

represented as a discrete set of values, the "samples", only if it has 

been previously smoothed. We start with Vo the original image. Then a 
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blur kernel K is applied, i.e. we convolve Uo with K to obtain a new 

image K * Uo' A subsequent subsampling is thereafter possible, where 

the distance between samples is related to the bandwidth of the blur 

kernel by the Nyquist rule. Stability of the image representation is 

maintained. This simple remark that smoothing is necessary part of 

image formation, leads to our first PDEs. The difference between the 

original and the blurred image is roughly proportional to its Laplacian 

(Gabor, 1960). In order to formalize this remark, we have to notice 

that K is spatially concentrated and that we may introduce a scale 

parameter for K , namely 

K,, (x) = ~K(h~ ) 
Then, 

Uo * KJx)- Uo(x) -» ~Uo(x) so that when h gets smaller, the blur process 
h 

looks more and more like the heat equation 

au =~u,u(o)=uoConversely, Gabor deduced that we can, in some 
at 

extent, deblur an image by reversing time in the heat equation 

au at = -~u, u(o) = Um,,,r.d 

Numerically, this amounts to subtracting its Laplacian from the 

observed image: 

Ur.,,/rwd = Uoh,,",vcd - h~Uoh".rv.d 

This equation can be repeated several times with some small values of 

h until it blows up. The reversed heat equation is extremely ill-posed. 

All the same, Gabor' s method is efficient and can be applied with 

some success to most digital images obtained from an optical device. 

We therefore set two directions. One is to improve, to stabilize the 

reverse heat equation. This can be done through nonlinear models. 

48 



The second direction is to go on with the heat equation: we can 

numerically simulate a further blurring of the image. This leads to the 

wavelet theory and its applications to optimal multiscale sampling and 

compression. Second, iterated linear and nonlinear smoothing (i.e. 

nonlinear PDEs) will relevant to image analysis. We can improve the 

time-reverse ht equation. A pseudoinverse is used where the " 

propagation term Du - is tuned by the sign of the Laplacian . . 

au = -signf1UIDul 
at 

This equation is called a "shock filter". This equation propagates, with 

constant speed, the level lines of the image in the same direction as 

the reverse heat equation would do. It therefore enhances the image. 

The equation more or less equivalent to a nonlinear filter due to 

Kramer filter can be interpreted as a partial differential equation, by 

the same kind of heuristic arguments which Gabor developed to derive 

the heat equation. The equation is 

au = -signD 2u(Du, Du ~Dul at 
thus, the Laplacian is replaced by a directional second derivative of 

the image D2u(Du,Du). Kramer's version yields a slightly better 

version of the shock filter. The third deblurring method is to the best 

knowledge, the best version. It poses the deblurring problem as an 

inverse problem. Given the observed image Uo , we try to find a 

restored version U such that K * U is as close as possible to Un and 

the oscillations of U is nonetheless bounded: 

Ure.,(ored = Argmin(flDul + A(K * U - uol) 
The parameter A tunes the oscillations we allow for the restored 

version. If A is large, the restored version will satisfy accurately the 
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equation K * U = Uo' but may be very oscillatory. If instead A. is small, 

we get a smooth but inaccurate solution. This parameter can be 

computed in principle as a Lagrange multiplier. The obtained 

restoration can be remarkable. 

In image analysis, the heat equation has had s very different use: 

Marr, Hildreth, Canny, Witkin, Koendrink proposed in the eighties to 

analyze an image by applying the heat equation. The heat equation is 

easily proved to be the only good candidate if the image analysis has 

to be linear. The question arises of what derivations should be 

computed in an image. The early research in computer vision proposed 

"edge detection" as a main tool: it is assumed that the apparent 

contours of the objects and also the boundaries and facets of objects, 

result in step discontinuities in the image, while inside those 

boundaries, the image oscillates only mildly. The apparent contour 

pOints or "edge points" will be computed as pOints where the gradient 

is in some sense largest. Two ways to so: Hildreth and Marr proposed 

the pOints where A (7 · crosses zero. A significant improvement was 

done by Canny, who proposed to compute the pOints where Du is 

maximal on the gradient lines. Such pOints satisfy D2u(Du, Du) = 0 

The heat equation under sound invariant requirements is the only 

good linear filter. But there are nonlinear ways to smooth an image. 

The first one was proposed by Perona and Malik. The idea is roughly 

to smooth out what has to be smoothed, the irrelevant, homogenous 

regions and enhance instead the boundaries. Thus, the diffusion 

should look like the heat equation when iDui is small and an inverse 

heat equation should instead be applied when iDui is large. Here is the 
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equation in divergence form 

1 
g(S)= 2 decreases when s increases. It is easily checked that we 

1 + As 

have diffusion equation when IDul:s; A, and an inverse diffusion 

equation when IDul > A,. In order to do so, we rewrite the equation in "' .- .'. ".> .. 

the following way. We consider the second derivative of U in the 

derivative of Du 

2 ( DU DU ) u'1'1 = D u IDul'I Dul 

and the second derivative in the orthogonal direction, 

2 ( DU 1. DUl.) 
U~~ = D u IDul' IDul 

where 

Du = (u. .. ,UJand Dul. = (- uy,uJ . The Laplacian can be rewritten in the 

intrinsic coordinates (c;, 7]) as I1U = u~~ + u'l'l ' The Perona-Mal ik 

equation rewrites as 

au u~¢ (1- A,21 Du12 'p'l'l 
= 2 + 2 at 1 + A,21 Dul 1 + A,21 Dul 

So the first term always appears as a one-dimensional heat equation 

in the directional heat equation, or reverse heat equation in the 

direction of the gradient. So this model mixes the heat equation and 

the reverse heat equation. 

The Perona-Malik model attempts to put in a single operator two very 

different goals which we already mentioned, namely restoration and 

analysis. But it comes at a cost: the model contains a "contrast 

threshold" which can only be fixed manually. Mathematical existence 
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and uniqueness are not guaranteed, despite some attempts by 

Kichenassamy and Weickert. We summarize the involved parameters: 

we need to fix both A. and the smoothing scale (s), t and the threshold 

on the gradient in Canny's edge detector as well. This means that we 

have a two parameter game: How this will be dealt with in automatic 

image analysis has no general answer for the time being. 

2.12 Contributions to Fractals and Image Processing 

Contributions in image processing have come through four main 

approaches. Two of which rely on geometric space techniques and the 

other two abstract space techniques. 

Under geometric space techniques we have: 

1. Linear Models comprising of 

(a) Convolution 

(b) Fourier analysis 

(c) Tomography 

(d) Kriging, splines 

2. Nonlinear Models 

(a) Morphological filtering 

(b) Granulometry 

(c) Random sets 

(d) Watersheds 

Under abstract spaces, we have 

1. Statistical models using techniques such as 

(a) Multivariate analysis 

(b) Neuronalnets 

(c) Sterelogy 
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2. Syntactical Models such as 

(a) Semantic approaches 

(b) Grammars 

(c) Neuronal nets 

2.12.1 Linear Models 

Linear models have the vector space as a working structure i.e. a set 

of vectors V such that 

(i) V is a commutative .9roup 

(ii) K is a field 

and there exists can external law of multiplication between scalars 

and vectors. 

The main vehicle for linear models in image processing is the linear 

heat equation, first suggested by Gabor, 1960 and he came up with 

the following smoothing equation 

l ' UO *Kh(X)-UO(x)_u () 
1m - 0 X 
h~O h 

and the deb/urring equation 

au -at = -I:!U, U(O) = Uwtored 

Rudin and Osher in 1987 and 1992 proposed a pseudoinverse 

equation where the propagation term (Ou) is tuned by the sign of the 

Laplacian 

au = - signl:!UI Dul 
at 

the equation is called a shock filter. 
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Nonlinear Models 

Perona and Malik in 1987 developed the following which is nonlinear 

for which no mathematical existence and uniqueness have been 

guaranteed despite efforts by Kichenassamy and Weikert. It is given 

as 

a lot of nonlinear image analysis models have been tried in the last 15 

years. Actually almost all possible nonlinear parabolic equations have 

been proposed, some given below. 

The Rudin-Osher-Fatemi's Model 

This consists, for the smoothing term, of minimizing the total variation 

of U . The gradient descent for flDul writes 

au _( DU)_ 1 U 
at - IDul - IDul ~~ 

written in this way, the method appears as diffusion in the direction 

orthogonal to the gradient, tuned by the magnitude of the gradient. 

Casselles and Coil proved that this equation is indeed well-posed in 

the space of bounded variation. A variant was proposed by Alvarez et 

ai, 

au IDul dO ( Du ) 1 U 
at= IK * Dul IV IDul = IK * Dul ~~ 

where the tuning of the gradient in norilocal. 
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Kimia, Tonnenbaum and Zacker proposed, endowed in a more general 

analysis framework, the equation 

aa~ =IDUldiv(I~:I)= D2
U( l~ul' ~~ )=u" 

this equation had been proposed before in another context by Sethian 

as a tool for front propagation algorithms. This equation, which we call 

in continuation "curvature equation", is a "pure" diffusion in the 

direction orthogonal to the gradient. The Weickert equation is a variant 

of the curvature equation with non local estimate of the direction 

orthogonal to the gradient: the diffusion direction 

d = sEigen(K * (Du ® Du)) 

is computed as the eigenvector of the least eigenvalue of 

K * (Du ® Du) if the convolution kernel, the eigenvector is simply Du l. . 

Other diffusions have been considered as well: for interpolation goals, 

Caselles et aI., proposed a diffusion which may be interpreted as the 

strongest possible image smoothing, 

au = D2u(Du, Du) 
at 

Zhong and Camona proposed a diffusion in the direction 

of d = sEigen(Du2
) of the eigenvector with least eigenvalue of Du 2

• 

Sochen, Kimmel and Malladi proposed instead a nondegenrate 

diffusion, associated with a minimal surface variational formulation: 

their idea was to make a gradient descent for the area of the graph 

U, JJI + IDu21, which leads to the diffusion equation 

au ( Du J 
8t = div ~I+IDuI2 
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2.12.2 Contribution to Fractals 

Fractals came from chaos theory. Therefore, no discussion of fractals 

without reference to chaos theory is complete. The science of fractals 

must be credited first to Mandelbrot. Here we present renditions of 

the Mandelbrot set. 

Figure 2.20: Renditions of the Mandelbrot set 

In atmospheric physics the Lorenz equation has the following fractal 

plot 

Figure 2.21: The Lorenz equation 
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We present Julia sets due to Gaston Julia 

Figure 2.22: Julia sets 
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Ag 2.23: Fractals due to Terry Wright 
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Fig 2.24: Quadratic Attractors 

Fig 2.25: Strange Attractors 
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CHAPTER THREE 

FRACTALS 

3.1 Feedback and the Iterator 

When we think of fractal images, figures or structures, we usually 

perceive them as static objects. This is a legitimate initial standpoint in 

many cases as for example when we deal with natural . structures like 

the ones in figures 3.1 to 3.3 below 

Fig. 3.1 Red Lake Peak, the Sierra Nevada 
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Fig. 3.2 California Oak Tree, (Quercus lobata), Valley Oak 

Fig 3.3: The fern. Verlag Gustav Fischer, Stuttgart 

But this point of view tells us little about the evolution or generation of 
a given structure, often as, for example in botany; we like to discuss 
more than just the complexity of ripe plant. In fact any geometrical 
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model of a plant which does not also incorporate its dynamic growth 

plan will not lead very far. The same is true for mountains, whose 

geometry is a result of past tectonic activity as well as erosion 

processes which still and will forever shape what we see as mountains. 

We can also say the same for the depOSits of zinc in an electrolyte ' . 

experiment. 

3.1.1 The Principle of Feedback 

The most important example of a simple process with very 

complicated behaviour is the process determined by expressions such 

as x 2 + r:. where c is considered to be a fixed consta nt or 

p + rp(1- p) where r a constant. 

Feedback processes are fundamental in all exact sciences. In fact they 

were first introduced by Isaac Newton and Gottfried Leibniz some 300 

years ago . 

.... '. . '.' 
,: ,, ~,,~ ----,--

____ L-__ ... 

r---'~' .... ~- . .,. _ .~ 

,. ~ '-"t'.; 

-----' 

Fig, 3.4 The Feedback machine with IU = input Unit, 

OU = Output Unit, CU = Control Unit 

The feedback machine has three storage units (IU = input unit, OU = 
Output Unit, CU = control Unit), and one processor all connected by 

four transmission links [Peitgen, Jurgen ans Saupe, 1992] 
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3.1.2 Types of Feedback Machines 

We consider as simple examples of feedback machines which process 

numbers. One-step machines are characterized by an iteration formula 

X/HI = I(x,,), where I(x) can be any function of x. It requires some 

number as input and returns a new output e.g I(x,,) = x/~ + 1). The 

formula can be controlled by a fixed parameter (e.g. x 2 + c, i.e. with 

control parameter c), but in any case the output depends only on the 

input. The numbers are indexed in order to keep track of the time 

(cycle) in which they were obtained. 

- ---"---

Fig. 3.5 Principle of the one-step feedback machine 

One-step machines are very useful mathematical tool's and have been 

developed in particular for numerical solution of complex problems. 

One-step processes represent only a particular class of a family of 

feedback methods. Multistep feedback processes are computed by a 

formula such as 

x,,+o = g(xlI+o_1 ' xll+o_2 ' X,,+o_3 , ... , xo) ........................................... 1 

an example is the 2-step law which generates the Fibonacci numbers 

g(xll,xll_I )= XII +xn_1 ............................................................ 2 

machines with memory are typical of our computer age. While a 

machine without memory reacts to their inputs always in the same 

way, a machine with memory may react differently upon taking its 

own state or content of the memory into account. 
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3.2 Self-Similarity in Fractals 

Self-similarity is a concept which can be understood without any 

trouble. The new bread romanesco (see figure below) a crossing 

between cauliflower and broccoli, illustrates the concept. 

Fig. 3.6 The brocolli romanesco, exhibi ts striking self-similarity 

Macroscopically, we see a form which is best described as a cluster . 

That cluster is composed of smaller clusters which look almost 

identical to the entire cluster, however scaled down by some factor. 

Each of these clusters again is composed of smaller ones, and these 

again of even smaller ones, without difficulty, we can identify at least 

three generations of clusters on clusters. The second, third and all the 

following generations are essentially scaled down versions of the 

previous ones. In a rough sense, this is what self-similarity means. 

Below, we find the classical Mandelbrot fractal and a magnification of a 

section of it. When the fractal is fully developed that is when the 

image-generating iteration (eqn 1) goes to infinity the image reaches a 
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limit and becomes invariant under more iterations. At this pOint, the 

self-similarity in the fractals is fully developed. 

Fig 3.7: Mandelbrot classical fractal 

Fig 3.8 : Zooms of Mandelbrot classical fractal 
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3.3 Limits and Self-similarity 

A rigorous discussion of the concept of self-similarity is intimately 

related to concepts of limits. The visual observation in nature, 

however, is simple and immediate. Fractals add new dimension to the 

problem of dealing with limits; but also a new perspective from which 

to understand the concept of limits. On one hand fractals may 

visualize the limit object in a feedback process; on the other hand 

some fractals demonstrate self-similarity in its pure form. In fact 

.many fractals can be completely characterized and defined by their 

self-similarity properties. 

Self-similarity extends one of the most fruitful notions of elementary 

geometry: similarity. Two objects are similar if they have the same 

shape, regardless of their size. Corresponding angle, however, must 

be equal and corresponding line segments must all have the same 

factor of proportionality. For example, when a photo is enlarged it is 

enlarged by the same factor in both horizontal and vertical directions. 

We call this enlargement factor the scaling factor. The similarity 

between the images is called the similarity transformation. 

3.3.1 Similarity Transformations 

Similarity transformations are compositions involving a scaling, a 

rotation and a transition. In the plane, we denote points P by their 

coordinate pairs P(x,y) . We now apply scaling, rotation and transition 

to one point, P = (x,y) , of a figure. First a scaling operation denoted by 

S, takes place, yielding a new point P' = (x', y')' with 

x' =sx 

y'=sy 

where s > 0 is the scaling Jactor 
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a scale reduction occurs of P(x,y) if s < 1 and an enlargement will occur 

when s < 1. Next a rotation R, is applied to P'(x',y') yielding 

P" = (x",y") 

x" = cos Ox' - sin (}y' 

y" = sin Ox' + cos (}y' 

this describes a counterclockwise (mathematically positive) rotation of 

P' about the origin of the coordinate system by an angle of () . 

Finally, a translation Tof P"a displacement (Tx, Ty)is given by 

XIII = x" + Tx 
y'" = y" + Ty 

which yields the point 

pili = (x"',y"') 

Summarizing,we may write 

pili = T(P")= T(R(P)) = T(R(S(P))) 

or using the notation 

w(p) = T(R(S(P))) 
we have P'" = W(p) 

W is the similarity transformation. In the formulas 

XIII = S cos Ox - s sin (}y + Tx 
y'" = s sin Ox + s cos y + Ty 

applying W to all pOints of an object in the plane produces a figure 

which is similar to the original. [Crownover, 1995] 

"" 

... --- ... 
• !. r; 

s · 
l 

___ .~. __ ~._ ~... . ........... ----t~· ~.~ 

Fig. 3.7 A similarity transformation is applied to the triangle ABC. The scaling factor is s = 2 I 

the rotation is by 270°, and the translation is given by Tx = 0 and Ty = 1 
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3.3.2 Similarity and Growth 

We look at the logarithmic spiral. A spiral drawn on a disk seems to 

grow continuously as it is turned around its center; in fact the 

logarithmic spiral is special in that magnifying it is the same as 

rotating the spiral. 

..... ,.. .. ___ ...... _ 1 

Fig. 3.8: The magnifying of a logarithmic spiral by a factor b shows the same spiral, 
however rotated by an angle B (about 210°) 

Fig 3.8 illustrates this remarkable phenomenon, which as such is 

another example of a self-similar structure. 

Fig. 3.9: The growth of an ammonite follows a logarithmic spiral 
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Figure 3.9 shows an ammonite which is a good example of a 

logarithmic spiral in nature. In other words an ammonite grows 

according to a law of similarity. 

It grows in such a way that its shape is preserved. Most living things 

however, grow by a different law. An adult is not simply a baby scaled 

up, In the growth from baby to adult, different parts of the body are 

scaled up, each with a different scale factor. Two examples are: 

a. Relative to the size of the body, a baby's head is much larger 

than an adult's 

b. If we measure the arm length or head size for humans of 

different ages and compare it with body height, we observe 

that humans do not grow in a way that maintains geometric 

similarity. The arm, which at birth is one-third as long as the 

body is by adulthood closer to two-thirds as long. [Peitgen, 

Jurgens and Saupe, 1992] 

We can discuss two different phases: one that fits early 

development, up to the age of about three years, and another that 

fits development after that sometime called isometric growth. After 

the age three years, however, the ratio drops significantly, 

indicating that body height is growing relatively faster than head 

size. This is called allometric growth. 

3.3.3 What is Self-Similarity? 

Intuitively, it seems the word self-similarity seems clear and hardly 

needs a definition. However, talking in precise mathematical terms 

about self- similarity is a much more difficult undertaking. For 

example, in the romenesco plant or for that matter in any 

physically existing object, the self-similarity may hold only for a 
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few powers of magnitude. Below a certain scale, matter 

decomposes into a collection of molecules, atoms, and going a 

bit further, elementary particles. Having reached that stage, of 

course, it becomes ridiculous to consider miniature slowed-down 

copies of the complete object. Also, in a structure like the 

cauliflower, the part can never exactly be equal. Some variation 

must be accounted for. Thus, it is already clear at this point that 

there are several variants of mathematical definitions of self­

similarity. In any case, we like to think of mathematical fractals as 

objects which possess recognizable details at all microscopic scales 

- unlike real physical objects. When considering cases of fractals 

where the small copies, while looking like the whole, have variants, 

we have the so-called statistical self-similarity. Moreover, the 

miniature copies may be disturbed in other ways, for example, 

somewhat skewed. , For this case there is the notion of self-affinity. 

. .' '.. ~ 

" ,::,» -;<' 

3.3.4 Self-similarity and the Koch Curve 

To exemplify the concept, we choose the Koch curve which is already 

familiar. The Koch curve looks like it is made up of four identical parts. 

Let us look at one of these, say the one on the extreme left. We take a 

variable zoom lens and observe that at exactly x3 ,magnifying power 

the little piece seems to be identical to the entire curve. Each one of 

the little pieces breaks into four identical pieces again, and each of 

them seems so identical to the entire Koch curve when we apply a 

magnification lens of x9, and so on ad infinitum. This is the self­

similarity property in its purest form. 
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Fig. 3.10: One-quarter of a Koch curve (top) is magnified by a factor of 3. due to the 
self-similarity of the Koch curve the result is a copy of the whole curve 

But even in this case, where copies of the whole appear at all stages 

and are exact and are not disturbed in any way, there are still various 

degrees of self-similarity possible. Consider for example, a cover of a 

book that contains on it a picture of a hand holding that very book. As 

we look deeper and deeper into the design, we see more and more of 

the rectangle covers. Contrast that with an idealized structure of a 

two-branch tree as shown in the figure below. Also pictures in the self­

similar Sierpinski gasket. All three examples are self-similar structures. 

They contain small replicas of the whole. However, there is a 

significant difference. Let us try to find pOints which have the property 

that we can identify small replicas of the whole in their neighborhoods 

at any degree of magnification. In the case of the book design the 

copies are arranged in a nested sequence, and clearly the self­

similarity property can be found only at one particular pOint. This is the 

limit point at which the sizes of the copies tend to zero. The book 

cover is self-similar at this point. 
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Fig. 3.11: the Sierpinski Gasket (left) is self-similar at all of its points, while the 
two-branch tree (middle) is self-similar only at the leaves. The structure on the 
right is self-similar only at the centre point 

The situation is much different in the two-branch tree. The complete 

tree is made up of the stem and two reduced copies of the whole. 

Thus, smaller and smaller copies accumulate near the leaves of the 

tree. In other words, the property of self-similarity condenses in the 

set of the eaves. The whole tree is not strictly self-similar but self­

affine. The stem is not similar to the whole tree but we can interpret it 

as an affine copy which is compressed to a line. In the Sierpinski 

gasket, similar to the Koch curve above, we can find copies of the 

whole near every point of it. The gasket is composed of small but 

exact copies of itself. Considering these differences, we call all those 

objects self-similar, while only the Sierpinski gasket and the Koch 

curve are in addition called strictly self-similar Also the set of leaves 

without the stem and all the branches is strictly self-similar. The 

cauliflower is a physical approximation of self-similarity, but not 

strictly self-similar as in the two-branch tree. 

3.3.5 Geometric Series and the Koch Curve 

Fractals such as the Koch curve, the Sierpinski gasket and many 

others are obtained by a construction process. Ideally, however, this 

process should never terminate. Any finite stage of it produces an 

object, which may have a lot fine structures depending on how far the 
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process has been allowed to proceed; but essentially it is still far from 

a true fractal. Thus the fractal only exists as an idealization. It is what 

we would get if we let the process run indefinitely. In other words 

fractals really are limit objects, and their existence is not as natural as 

it may seem. Limits often lead to new quantities, objects or qualities; 

this is true particularly for fractals. However, given an object, there 

are cases where it is not immediately obvious whether a limit exists at 

all. As for example the first sum in 

"" 1 1 1 1 . d' t' th " f' 't h'l .L..J-=-+-+-+ .. ,IS Ivergen I.e. e sum IS In Inl e w Ie 
k 1 2 3 

1 1 1 1 ;r2 2:-2 = - + - + - + ,.. converges to - (as shown by Euler) 
k 149 6 

The geometric series has an analogy in the construction of basic 

fractals. 'There is an initial object and a scaling factor. The important 

property of the scaling factor is that it be less than 1 in magnitude, 

Then there is a construction process 

Step 1: Start with initial object (P) 

Step 2: Scale down P by the scaling factor q and add 

Step 3: Scale down P by the scaling factors q.q and add 

Step 4: ... 

The point is that this infinite construction leads to a new object, 

representing the process - the limit of geometric series. The Koch 

island, which we see in its basic construction is obtained in an 

analogous manner except that rather than adding up numbers, we 

'add up' geometric objects. 'Addition' of course, is here interpreted as 

a union of sets, and the important point is that in each step we add a 

certain number of scaled down version of the initial set, 

Step 1: We choose an equilateral triangle T with sides of length a 
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Step 2: We scale down T by a factor of Jj' and paste on three copies 

of the resulting little triangles as shown. The island is now bounded by 

3.4 line segments, each of length ~. 

Step 3: We scale down T by a factor Jj' -Jj' and paste 3.4 copies of the 

resulting little triangles as shown. The resulting island is bounded by 

3.4.4 straight segments, each of length 13'-13' -a 

Step 4: ... 

T f~ J . ( ~: '::. j 

'-..' :: :" ! - ' J r J 

h 

Fig. 3.12: The Koch island is the limit of the construction and has area 

A 2 3a 2 

5 
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The point here is that the infinite construction leads to a new 

geometric object, the Koch. In fact, the analogy between the 

geometric process and the geometric series goes much further. 

3.3.6 The Area of the Koch Curve 
. ... :~. ~.' 

At the beginning we have the area A, for initial triangle T, and · , .. 

calculate A I = .J3 a 2
• In each step k, we have to add the area of nk little 

4 

equilateral triangles with sidessk • n l =3,n2 =3·4,n3 =3 ·4 ·4 ... In other 

words nk = 3· 4k
-

l
• The sides Sk of the little triangles are obtained by 

successively scaling down the side of the original triangle by a factor of 

}j' . In other words, Sk = (}j'j a. Combining these results, we get 

In other words, if we develop the terms step by step, we have the 

series 

.J3( 4 4
2 

4
3 

4
k

-
l

) 2 
Ak+1 = AI + - 1 + - + - 2 + - 3 + ... + - k- I a . The expression in the bracket 

4 9 9 9 9 -

, t' I f th t ' , 4 4
2 

4
3 

h' h h IS a par la sum 0 e geome riC series 1+9"+92+93+ '" w IC as a 

a limit 1- IX; = 2.. That means that the Koch island, the geometric 
1- 9 5 

objects of the limit, has area A = AI + .J3 ,2.a2 and since AI = .J3 . a2 
I we 

12 5 4 

finally obtain A = 3..J3 , a 2
• This is quite a convincing argument that there 

5 
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is indeed a new geometric object resulting from the infinite process. 

There are properties of limit that are not shared by any of its finite 

stage approximations. The most important property is that of self­

similarity. For example the self-similarity of the Koch curve is reflected 

by the fact that the curve is made up of four identical parts. 

Another property of the Koch curve which is not shared by any of its 

finite stage approximations is that its length is infinite. As the Koch 

curve is one- third of the boundary of the Koch is; and, we have that 

the boundary of the island is also infinitely long. In contrast to this, the 

area of the Koch island is finite, well-defined number as seen above. 

3.4 Encoding Images by Simple Transformations 

So far, we have discussed two extreme ends of fractal geometry. We 

have explored fractal monsters, such as the Cantor set, the Koch 

curve, and the Sierpinski gasket; and we have argued that there are 

many fractals in natural structures and patterns, such as coastlines, 

blood vessel systems, and cauliflower. We have discussed features, 

such as self-similarity, scaling properties, and fractal dimensions 

shared by those natural structures and the monsters; but we have not 

yet seen that they are close relatives in the sense that may be a 

cauliflower is just a 'mutant' of a Sierpinski gasket, and a fern is just a 

Koch curve let loose. 

We may regard fractal geometry as a new language in mathematics 

[Falconer, 1989]. As the English language can be broken down into 

letters and the Chinese language into characters, fractal geometry 

promises to provide a means to break down the patterns and forms of 

nature into primitive elements, which then can be composed into 

"words' and 'structures' describing these efficiently[Lauerier, 1991]. 
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Here, we will discuss one of the major dialects of fractal geometry as if 

it were a language. Its elements are primitive transformation, and its 

words are primitive algorithms, we introduce the metaphor of the 

Multiple Reduction 'Copy Machine (MRCM), which will be our centre of 

interest. 

3.4.1 The Multiple Reduction Copy Machine 

The Multiple Reduction Copy Machine (MRCM) provides 

metaphor for what is known as a deterministic Iterated 

a good 

Function 

System (IFS). Both terminologies can be used interchangeably. The 

crucial idea is that the machine runs in a feedback loop; its own output 

is fed back in its new input again and again. 

-
Consider an MRCM with three lens system, each of which is set to 

reduce by a factor ~. The resulting copies are assembled in the 

configuration of an equilateral triangle. 

in nisI 
imago 

inltiei 
irn"'·Gi: 

Ir ,i!?al 
imJ~<' 

" 

1st copy 

:~ 

1 st COp'; 2."1C C:'yY 

21'4:1 copy 

,. ~ ... ,.. 
... " '" ~ ' 

"':' ... ')I ..... .. 1> 

Fig. 3,13: Three iterations of an MRCM with three different initial images 
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Fig 3.13 shows the effect of the machine run three times beginning 

with different initial images. In (a), we take a disk and we use 

different shadings to keep track of the effect of the individual lens 

systems. In (b) we try a truly "arbitrary' image. In just a few 

iterations, the machine, or abstractly speaking the process, throws out 

images which look more and more like a Sierpinski gasket. In (c) we .. '.' : .:.< 

start with a Sierpinski gasket and observe that the machine has no 

effect on the image. The assembled reduced copies are the same as 

the initial image. That is because of the self-similarity property of the 

Sierpinski gasket. Let us summarize this first experiment. No matter 

which initial image we take and run the MRCM with. We obtain a 

sequence of images which always tends towards one and the same 

final image. This is called the attractor of the machine process. 

Moreover, when we start the machine with the attractor, then nothing 

happens. One says the attractor is left invariant or fixed. The MRCM 

machine always has been a unique final image as an attractor, and 

this final image is invariant under the iteration of the MRCM. 

3.4.2 Composing Simple Transformations 

The Multiple Reduction Copy Machine is based on a collection of 

contractions. The term contraction means, roughly speaking that 

pOints are moved closer together when one contraction is applied, we 

may also say use transformations which reduce by one factor, say X. 
Horizontally and by a different factor, say li ' vertically is also 

allowed. A similarity transformation, however, leaves angles 

unchanged, while more general transformation may not. 

78 



scale sh~a! 

...... ...... 

---_. ~ .. - --
Fig. 3.14: Transformations with scaling, shearing, reflection, rotation and translation 
are admissible in an MRCM 

The lens of the MRCM can be described by affine linear transformations 

of the plane. Talking about a plane means that we fix a coordinate 

system, an x-axis and a y-axis. Relative to that coordinate system 

every point P in the plane can be written as a pair(x,y) . Sometimes we 

write P = (x,y) . In this way, pOints can be added together and can be 

multiplied by real numbers: if 

PI = (x"YI) and P2 =(x2'Y2 ) then 

~ + P2 = (XI + X2,Y, + Y2) 

and sP = (sx, S.l~ ) 

.- - -------------------, 
;., .. y+ ................... ~ 

!I;" -'-~ / ; 

I n I . 
I ; I 
I i I 

., .... /: ... L .. .... .. ~j 
- I ' ! .--- . _L-'-.:....:-_' __ 

.1). \ ....... _ ............. " .... _ ..... ... .. 
I ' , 

. \ .I ",';" .t.; .T :.:: 

---------
Fig. 3.15: (Left) Two points (x"YI) and (X2' Y2) are 

added (x"y,) + (X2'Y2 ) = (XI + X2'YI + yJ . (Right) A point is multiplied by a number: 

s(x,y) = (sx,sy) 
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A linear mapping F is a transformation which associates with every 

point P in the plane a point F(P) such that F(~ + P2 ) = F(~) + F(P2 ) for all 

points ~ and P2 and F(sP) = sF(P) 

For any real numbers and all points P. A linear transformation F can 

be represented with respect to the given coordinate frame by a matrix 

where if P = (x ,y) andF(P) = (u , v), then 

u =ax+by 

v =cx +dy 

in other words, a linear transformation is determined by four 

coefficients, 

a, b,c, d. These are special representation which helps us to discuss 

contractions more conveniently. To this end we write the four 

coefficients in our matrix as 

[
r c~s ¢ - s sin lP] 
rsm ¢ s coslP 

such a representation is always possible. We set 

to obtain rand ¢. Similar formulas hold for sand lP. In this way, it is 

easier to discuss reductions, rotations and reflections. 

3.4.2.1 Wh en s = r , 0 ~ r < 1 and lP = ¢ 

This fixes a mapping which reduces by a factor of r and 

simultaneously rotates by the angle ¢ counterclockwise (the mapping 

is just a reduction if ¢ = 0 
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3.4.2.2 When s = r, 0 ~ r < 1 and rp = 1! and rp = 0 

This fixes a mapping which reduces by a factor of rand 

simultaneously reflects with respect to the y-axis. 

3.4.2.3 When r = a, and s = b, 0 ~ a < 1, 0 ~ b < 1 and rp = ¢ = 0 

r=a,ands=b,O~a<l, O~b<landrp=¢=Ofixes a mapping which reduces : : · :.·.' ~ 

by a factor b in the y-direction 

3.4.2.4 When s = r > 0, and rp = rp 

s = r > 0, and rp = rp defines a similarity transformation given by a rotation 

by an angle of rp and a scaling by a factor of r. 

Affine linear mappings are simply the compositions of a linear mapping 

together with a translation. In other words, if F is linear and Q is a 

point, then the real mapping w(P) = F(P) + Q where P is any point in the 

plane, is said to be affine linear. Affine linear mapping allows us to 

describe contractions which involve positioning in the plane (i.e. the 

translation by Q is given by a pair of coordinates, say (e,f), an affine 

linear mapping w is given by six numbers 

[: ~;] 
and if P = (x,y) and W(P) = (u, v) then 

u = ax + by + e 

v = ex + dy + f 

Another notation for the same equations can also be used 

w(x,y) = (ax + by + e,ex + dy + f) 

in the discussion of Iterated Function Systems, it is crucial to study the 

objects which are left invariant under iteration of an IFS. 
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Given an affine linear mapping W we can ask which are left invariant 

Under w? This is an exercise with a system of linear equations. 

Instead, w(P) = P means 

x=ax+by + e 

y=ex+dy+ I 

Solving this system of equations yields exactly one solution, as long as 

the determinant(a -1Xd -1)- be;;c 0. This point P = (x, y) is called the 

fixed point ofw. Its coordinates are 

-e(d-1)+bl x = ---'--~-"--
(a -1))(d -1) - be 

- I(a -1) + ee 
y = -..:-...:..---'----

(a -1)(d -1) - be 

3.4.3 IFS and the Hutchinson Operator 

Let wI' W 2 ' w3 ' .. · be N contractions of the plane. We define a mapping -

the Hutchinson Operator as follows: Let Abe any compact subset of the 

plane. Here we think of A as an image. Then by the collage obtained 

by applying the /Acontractions to A and assembling the results can be 

expressed by the collage mapping 

W(A) = WI (A) u w2(A) U w3(A) U .. , U wN(A) 

the Hutchinson Operator turns the repeated application of the 

metaphoric MRCM into a dynamical system: an IFS. Let Ao be an initial 

set (image) then we obtain 

Ak+1 = W(Ak)' k = 0,1,2, .. . 

a sequence of sets (images), by repeatedly applying w. An IFS 

generates a sequence which tends towards a final image, A"" which we 

call the attractor of the IFS (or MRCM), and which is left invariant by 

the IFS. In terms of w, this means that w(Aco) = A 
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The image coding problem has led to a central question: how images 

can be compared or what the distance between two images is. Felix 

Hausdorff proposed a method of determining this distance. The 

Hausdorff distance has two marvelous consequences. First, we can talk 

about the sequence of images Ak having limit A", in a very precise 

sense: A", is the limit of the sequence Ao,ApA2"" provided that the 

Hausdorff distance h(Ao,Ak)goes to 0 ask k goes to 00 .[Peitgen and 

RIcter, 1997] 

But even more importantly, Hutchinson showed that the operator W 

which describes the collage W(A) = WI (A) u w2(A) u w3(A) u ... wN(A) is a 

contraction with respect to the Hausdorff distance. That is, there is a 

constantc, with 0:$ c < 1 such that h(w(A), weB)) for all compact sets 

A and B in the plane. 

In establishing this fundamental property, Hutchinson was able to 

inject into consideration one of the most powerful and beautiful 

principles in mathematics - the contraction mapping principle. The 

Hausdorff distance determines the distance of images. It is based on 

the concept of distance of pOints. Expressed generally, the distance 

between points of a space X can be 
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Fig. 3.16: Three methods of measuring distance in the plane ( the lattice distance, 
the Euclidean distance, the maximum norm distance) and the corresponding unit 
sets (the set of points which have the distance 1 to the origin of the coordinate 
system). 

Measured by a function d: X x X ~ 91 Here 91 denotes the real numbers 

and the function d must have the properties. 

i. d{x,y)~ 0 

ii. ~];)= 0 iff x = y 

iii. d~x: y j = :(y, x) 
iv. d{x, y) ~ d{x, z) + d{y, z) triangle inequality ) 

holds for all x,y, z E X where d is the metric. [Kryszig, 1978]. 

Once we have a metric space X , we can talk about limits of sequences. 

Let XO,XPX2' ••• be sequence of paints from X and an element of X . Then 

a is the limit of the sequence provided 

lim d{xk , a) = 0 
k~~ 

In other words, for any 5> 0, we can find a paint Xn in the sequence so 

that any point later in the sequence has distance to a less than 5 

d{xll,a) < 5, k > n 

In this case we say that the sequence converges toa. The central 

problem of dynamical systems theory is to forecast the long-term 
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behaviour. Often that behaviour will not depend on the initial choice 

ao • That is exactly the environment for the contraction mapping 

principle. It provides everything which we can use to make the 

forecast. But having in mind the variety of both wild and tame 

behaviour which feedback processes can produce/ it is clear that the 

principle will select some subclass of feedback systems for which it can · 

be applied. Here, we state two features which characterize this 

class. 

3.4.3.1 The Space 

The objects, numbers, images, transformations, etc., which we call 

an must belong to a set in which we can measure the distance 

between any two of its elements, for example, the distance 

between x and y is d{x,y). Furethermore, the set must be 

subtracted in some sense. That means, if an arbitrary sequence 

satisfies a special test which examines the possible existence of a 

limit, then a limit exists and belongs to the set. 

3.4.3.2 The Mapping 

The sequence of objects is obtained by a mapping, say, f . That 

means that for any initial objectao' a sequence ao,a"a2 , ••• is 

generated by a
l1

+1 = f {aJ, n = 0,1,2,3, ... Furthermore, f is a contraction. 

That means that for any two elements of the space, say x and y , 

the distance between f( x) and f ey ) is always strictly less than the 

distance between x and y . For this class of feedback systems the 

contraction mapping principle gives the following remarkable result. 
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3.4.3.3 The Attractor 

For any initial objectao' the feedback system a/HI = f(a,,} Will always 

have a predictable long-term behaviour.There is an object a", (the limit 

of the feedback system) to which the system will go. We call a", the 

unique attractor of the feedback system. 

3.4.3.4 Invariance 

The feedback system leaves a", invariant. In other words, if we start 

with a"" then a", is a fixed point of f i.e. f(a..,} = a", 

3.4.3.5 The Estimate 

We can predict how fast the feedback system will arrive close to 

a", when it is started at ao. We only have to test the feedback loop 

once on the initial object. That means, if we measure the distance 

between ao and al = f(ao)we can already safely predict how often we 

have to run the system to arrive near a", within a prescribed accuracy. 

Moreover, we can estimate the distance between ao and a", [Barnsely, 

1993]. 

3.5 The Attractor of a Contraction Mapping 

A mapping f is a contraction of the metric space provided that 

there is a constant c, 0 ~ c < 1 such that for all x,y in X one has that 

d(f(x),f(Y))~ cd(x,y) 

The constant c is called the contraction factor for f. Let {a", } be a 

sequence of elements from a complete metric space X defined 

a<X)+1 = fea,,) The following holds true 

a. There is a unique attractor a<X) = liman 
n-+<X) 
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b. aoo is invariant, J(aJ= aoo 

c. There is an a priori estimate for the distance from an to the 

attractor, d(a" a.),; Cd[a, ' ).) [Sa rnsely, 1993] 
l-c 

.... - .-: . . ' .. 

From the contraction property of J we derive d(fCao ),JCaoo) ) = cd(ao, act,) 

Applying the triangle inequality, we further obtain 

d(ao, aoo ) ~ d(ao, J(ao ))+ d(ao', JCaoo)) ~ d(ao, J(ao ))+ cd(ao, aoo) 

thus 

d( ) < cd(ao, J(ao )) 
ao,aoo - (I-c) 

and likewise 

d( )<cd(an,an+l) 
an, aoo - ( ) l-c 

for all n = o,1,2, .... 

Finally, with 

d(an, an+l) ~ ed(an_l, an) ~ e 2 d(an_2 , an-I) ~ ... ~ en d(ao, al ) 

we arrive at the result 

d( ) 
< e" d(ao, a l ) 

an,aoo - ( ) l-e 

this allows us to predict n so that an is within a prescribed 

distance to the limit. 

3.6 The Hausdorff Distance 

Given an image A, the E -collar of A t written Act which is the set A with 

together with all pOints in the plane which have a distance from A of 

not more than E • Hausdorff measured the distance between two 

compact sets A and B in the plane using A-collar. 
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Fig. 3.17: The & -collar of a set A in the plane. The & -collar of A 

includes A and is not just the set of points close to A. 

In precise mathematical terms the definition of the Hausdorff distance 

is as follows: 

Let X be a complete metric space with a metric d . For any compact 

subset A of X and & > 0, define the & -collar of A by 

At: = {x E X I d(x,y) ~ & for some Y E A} 

for any compact subset A and B of X , the Hausdorff distance is 

h(a,b) = inf{& I A c Bt: and BeAt:} 

according to Hausdorff, the space of ail compact subsets of X I 

equipped with the Hausdorff distance, is another complete metric 

space. This implies that the space of all compact subsets of X is a 

suitable environment for the contraction mapping principle. 

3.7 Physical Applications 

Several methods have been proposed for the automatic solution of the 

inverse problem .e. the encoding of images, but none has yet really 

proven itself to be the right choice. Therefore, we discuss a few ideas, 

some of which go back to Barn~ley in the early 1980s. These ideas, 

however do not lead to automatic algorithms, they are more suitable 

for interactive computer programs requiring an intelligent human 

operator. 
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Assume that we already have approximated a given original image by 

an MRCM. The blueprint of an MRCM is already determined by its first 

copy. The copy is a collage of transformed images. Applying the MRCM 

to the original image, called the target image, one also determines the 

quality of the approximation . When the copy is identical to the original, 

then the corresponding IFS codes the target image perfectly. When the 

distance of the copy to the target is small, then we know from the 

contraction mapping principle, that the attractor of the IFS is not far 

from the initial image. 

These properties enables us to find the code for a given target image, 

in particular for target images which contain apparent self-similarities 

such as the fern. 

inillafrmege 

I 
I 
! 

Fig 3.18: Application of three MRCMs to the Sierpinski gasket. Top: the correct MRCM 
leaves the image invariant: middle: a reasonable approximation; bottom : bad 
approximation 

We exploit the contraction mapping principle to analyze the results of 

Figure 3.18. The a priori estimate for a sequence Q o,Q p Q 2, ... which is 

generated by a contraction J in a metric space with attractor Q "" yields 
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( ) 
e n d(ao, a l ) 

d an, a.., ~ ( ) 1-e 

Here c is the contraction factor of f and ak+1 = f(a k ) , f ork = 0,1,2,.. . in 

particular, this means that 

d( ) < d(ao, f (ao )) 
ao, a.., - (I-e) 

Thus, a single iteration starting from the initial ao gives us an estimate 

for how farao is from the attractor a.., with respect to the metricd . '. 

Now let us interprete this result for the Hutchinson operator W with '. 

respect to the Hausdorff distance h. Let e be the contraction factor of 

w and let P be an arbitrary image (formally a compact subset of the 

plane). We would like to test how a good Hutchinson operator will 

encode the given image P. This can be obtained from the equation 

3.2. Indeed, in this setting, (3.2) 

now reads 

1 
h(P, A.., )~ -( -)h(P, w(P)) .... .. .... ... ...... .. ... .. .... ....... 3.3 

1-e 

where A.., is the attractor of the IFS given by W . In other words, the 

quality of the encoding measured by the Hausdorff distance between 

P and A.., is controlled by applying the Hutchinson operator just once to 

P and quantifies by h(P, w(P)). [Barnsley, 1993]. Barnsely calls (3.3) 

the "collage theorem for Iterated Function systems 

Fractals are greatly applied in artworks and textile designs and other 

such areas. Here, we present a few such examples. 
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CHAPTER FOUR 

IMAGE EROSION AND DILATION 

4.1 Mathematical Morphology 

Mathematical Morphology is a tool for extracting image components,,:; .. ..... . 

that are useful for representation and description. The technique was 

originally developed by Matheron and Serra [cmm.ensmp.fr/] at the 

Ecole des Mines in Paris. It is a set-theoretic method of image analysis 

providing a quantitative description of geometrical structures. (At the . 

Ecole des Mines they were interested in analysing geological data and 

the structure of materials). Morphology can provide boundaries of 

objects, their skeletons, and their convex hulls. It is also useful for 

many pre- and post-processing techniques, especially in edge thinning 

and pruning. 

Generally speaking most morphological operations are based on simple 

expanding and shrinking operations. The primary application of 

morphology occurs in binary images, though it is also used on grey 

level images. It can also be useful on range images. (A range image is 

one where grey levels represent the distance from the sensor to the 

objects in the scene rather than the intensity of light reflected from 

them). 

4.2 Set Operations 

The two basic morphological set transformations are erosion and 

dilation. These transformations involve the interaction between an 

image A (the object of interest) and a structuring set 13, called the 

structuring element. 

Typically the structuring element 13 is a circular disc in the plane, but it 

can be any shape. The image and structuring element sets need not be 
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restricted to sets in the 2D plane, but could be defined in 1, 2, 3 (or 

higher) dimensions. 

Let A and 13 be subsets of .--t. The translation of A by x is denoted Ax 

and is defined as 

Ax = {c : c = a + ~,for a E A}. 
" The reflection of 13, denoted B, is defined as 

"-

B = {x : x = - b, for b E B}. 

. • " -;: . ,\:. ! '" • 
' ;.' " 

The complement of A is denoted A C
, and the difference of two sets A 

and 13 is denoted A - 13. 

4.3 Erosion 

Erosion of the object A by a structuring element 13 is given by 

AeB={x:BxCA}. 

The translation of 13 by x is denoted Bx and is defined as 

Bf = {c: c = b + x, for b E B} 

Binary erosion uses the following fCJr its mask: 

111 

111 

111 

This means that every pixel in the neighborhood must be 1 for the 

output pixel to be 1. Otherwise, the pixel will become O. No matter 

what value the neighboring pixels have, if the central pixel is 0 the 

output pixel is O. Just a single 0 pixel anywhere within the 

neighborhood will cause the output pixel to become O. Erosion can be 

used to eliminate unwanted white noise pixels from an otherwise black 

area. The only condition in which a white pixel will remain white in the 
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output image is if all of its neighbors are white. The effect on a binary 

image is to diminish, or erode, the edges of a white area of pixels . 

-----------
I I 

I ---- - ------

Figure 4: A is eroded by the structuring element F3 to give the internal 

dashed shape. 

Dilation and erosion are . duals of each other with respect to set 

complementation and reflection. That is, 

To see this, consider first the left hand side: 

Now, if I3x is contained in A, then Ex n AC = 0 ,and so 

(A 8 By = {x : Bx n AC = 0y. 
But the complement of the set Bx n AC = 0 of all xs that satisfy is 

just the set of all xs such that 

Bx n AC =10 
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Application 

MATLAB CODE 

BWI = imread('circbw.tif'); 

SE=eye(5); 

BW2=erode ((BWl,SE); 

IMSHOW (BW1) 

FIGURE, imshow (BW2) 

r I . , .. •. ' . --_Ell 

Before 
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- II 

I 'Jilililil .. ...........,... .. 
I r:....--. 

Before After (Using a structuring element of 12x 12 matrix) 

4.4 Dilation 

Dilation of the object A by the structuring element 13 is given by 

A i-B R = {x : B.r: n A ¥ VJ}. 

Dilation is the opposite of erosion , Its mask is: 

000 

000 

000 

This mask will make white areas grow, or dilate. The same rules that 

applied to erosion conditions apply to dilation, but the logic is inverted 

- use the NAND rather than the AND logical operation. Being the 

opposite of erosion, dilation will allow a black pixel to remain black 

only if all of its neighbors are black. This operator is useful for 

removing isolated black pixels from an image. The result is a new set 

made up of all pOints generated by obtaining the reflection of 13 about 

its origin and then shifting this reflection by x. 
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Consider the example where A is a rectangle and 13 is a disc centred on 

the origin. (Note that if 13 is not centred on the origin we will get a 

" translation of the object as well.) Since 13 is symmetric, B = B. This 

definition becomes very intuitive when the structuring element 13 is 

viewed as a convolution mask. 
-------------------------, 

A 
y ii 

~------_r-=~~~~ I 
., ~, .-. 

--- --- -------.-- .-------- -- / ' A(±) B 

x 

Figure 3: A is dilated by the structuring element 13. 

Application 
MATLAB CODE 
BWl = imread('circbw.tif'); 
SE = zeros(5,5); 
BW2 = dilate(BW1,SE); 
imshow (BW1) 
figure, imshow (BW2) 
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DILATION 

r I . • •. '. ' . -- . 
- II ~ 

fr:.~t1r 
., 
I • I • 

• • 
Before After (Using a structuring element or 5x5 matrix) 

r I . • .. ,. ' . --- II ~ , ... ... ~ .. 11l~''' ~ i ~ -illl) iE:.i1i!' 
..J 

• • • • 

~ I .. - .. 
Before After (Using a structuring element of 12x 12 matri x) 
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4.5 Other Morphological Operations 

Erosion and dilation can be used in a variety of ways, in parallel and 

series, to give other transformations including thickening, thinning, 

skeletonisation and many others. 

Two very important transformations are opening and closing. Now 

intuitively, dilation expands an image object and erosion shrinks it. 

Opening generally smoothens a contour in an image, breaking narrow 

isthmuses and eliminating thin protrusions. Closing tends to narrow 

smooth sections of contours, fusing narrow breaks and long thin gulfs, 

eliminating small holes, and filling gaps in contours. 

4.5.10pening 

The opening of A by 13, denoted by A 0 B, is given by the erosion by 

13, followed by the dilation by 13, that is 

A 0 B = (A e B) ffi B. 

r--------------------~ 
1 I 
1 _ __ _ -

--------------
I 
I 

, 

~~ _I 

I 

Figure 5: The opening (given by the dark dashed lines) of A (given by the sol id 

lines. The structuring element B is a disc. The internal dashed structure is A eroded 

by B. 

Opening is like 'rounding from the inside': the opening of A by 13 is 

obtained by taking the union of all translates of 13 that fit inside A. 

Parts of A that are smaller than 13 are removed. Thus 
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A 

B 

Figure 6: The opening of A by the structuring element B. 

4.5.2 Closing 

Closing is the dual operation of opening and is denoted by A. B. It is 

produced by the dilation ,of A by 13, followed by the eTosion by 13: 

A • B = (A EFt B) 8 B. 

I 

( 

-

, ________ .J ..... ________ ,./ 

Figure 7: The closing of A by the structuring element B. This is like' smoothing from 

the outside'. Holes are filled in and narrow valleys are . closed'. 

Just as with dilation and erosion, opening and closing are dual 

operations. That is 
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(A. By = (AC 0 BC). 

The opening operation satisfies the following properties: 

a. AoBisasubsetofA. 

b. If C is a subset of 0, then Co Bis a subset of Do B. 

( A 0 B) 0 B = A 0 B 
c. 

Similarly 

1. A is a subset of A. B. 

2. If C is a subset of 0, then C • B is a subset of D. B. 

FA. B). B = A. B 
3. 

Property 3, in both cases, is known as idempotency. It means that any 

application of the operation more than once will have no further effect 

on the result. 

(Ao B). B 
The morphological filter can be used to eliminate 'salt and 

pepper' noise. Salt and pepper noise is random, uniformly distributed 

small noisy elements often found corrupting real images. It will appear 

as black dots or small blobs on a white background, and white dots or 

small blobs on the black object. The background noise is eliminated at 

the erosion stage, under the assumption that all noise components are 

physically smaller than the structuring element 13. Erosion on its own 

will increase the size of the noise components on the object. However, 

these are eliminated at the closing operation. 

The important thing to note is that morphological operations preserve 

the main geometric structures of the object. Only features ' smaller 

than' the structuring element are affected by transformations. All other 
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features at 'larger scales' are not degraded. (This is not the case with 

linear transformations, such as convolution). 

The boundary of a set A, denoted BA, can be obtained by first eroding 

A with B, where B is a suitable structuring element, and then 

performing the set difference between A and its erosion. That is 

8A = A - (A e B). 

Typically, B would be a 3 x 3 matrix of is. 

Region filling can be accomplished iteratively using dilations, 

complementation, and intersections. Suppose we have an image A 

containing a subset whose elements are 8-connected boundary points 

of a region. Beginning with a point p inside the boundary, the objective 

is to fill the entire region with is. 

Since, by assumption, all non-boundary pOints are labeled 0, we begin 

by assigning 1 to p, and then construct 

X k = (Xk - 1 ffi B) n AC,for k = 1,2, ... 

where Xo = p, and B is the 'cross' structuring element shown in figure 

8. The algorithm terminates when Xk = Xk-l. The set union of Xk and A 

contains the filled set and its boundary. 

A 

Figure 8: The region in A is filled using the structuring element B. 

Likewise, connected components can also be extracted using 

morphological operations. If Y represents a connected component in 
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an image A and a point p in Y is known, then the following iterative 

expression yields all the elements of Y: 

X k = (X k- 1 ffi B) n A,for k = 1,2, ... 

where Xo = P and B is a 3 x 3 matrix of is. If Xk = Xk-l the algorithm 

has converged and we let Y = Xk. 

An important step in representing the structural shape of a planar 

region is to reduce it to a graph. This is very commonly used in robot 

path planning. This reduction is most commonly achieved by reducing 

the region to its skeleton. 

The skeleton of a region is defined by the medial axis transformation 

(MAT). The MAT of a region R with border B is defined as follows: for 

each point p in R, we find its closest neighbour in B. If P has more 

than one such closest neighbour, then p belongs to the medial axis (or 

skeleton) of R. Of course, closest depends on the metric used. Figure 9 

shows some examples with the usual Euclidean metric. 
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Figure 9: The skeletons of three simple regions 

Direct implementation of the MAT is computationally prohibitive. 

However, the skeleton of a set can be expressed in terms of erosions 

and openings. Thus, it can be shown that 
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K 

S(A) = U Sk(A), 
k=O 

where 

K 

Sk(A) = U { (A 8 kB) - [(A 8/~B) 0 B], 
k=o 

B . t t' I t (A e k B). d' t k . . f IS a s ruc urtng e em en , In Ica es successive erosions 0 

A, and K is the last iterative step before A erodes to an empty set. 

Thus A can be reconstructed from its skeleton subsets Sk(A) using the 

equation 

K 

A = U (Sk(A) ffi kB), 
k=O 

where 

represents k successive dilations of Sk(A). 

4.6 Outlining 

Other functions can be performed using erosion and dilation as their 

basic operation. One of these is outlining. It is possible to perform a 

single erosion operation and then subtract the resultant image from 

the original. The result will be an image that shows a one-pixel outline 

of all objects. If two erode operators are performed before the 

subtraction, a two-pixel outline would be created. If desired, a dilation 

operation can be performed before the erosion as a way to clear up 

any unwanted 'holes" in the white areas and may produce a cleaner 

outline image. This is optional because, while making the image 

cleaner, it might also affect the border of the original image. 
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4.7 Binary Hit-or-Miss Operators 

Two operator masks have been discussed so far, one filled with I's to 

perform erosion and another filled with O's to perform dilation. There 

are other masks that could be useful for other types of conditional 

processing. For example, the following masks can be used to check to 

see if a pixel is four-connected to its neighbors: 

0 0 0 0 1 0 0 0 0 0 0 0 

0 1 1 0 1 0 1 1 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 1 0 

A similar set of masks can be used to check for eight-connectivity. 

Bridges, which are defined to be single-pixel connections between 

groups of similar pixels, can be identified by the following masks: 

1 0 1 1 1 1 

1 1 1 0 1 0 

1 0 1 1 1 1 

There also are masks that check for corners or interior pixels or other 

conditions. 

Performing multiple passes on the same image to check for every 

possible condition of interest can become time consuming. To solve 

this problem, a concept can be borrowed from the image point 

operators - look-up tables. Because each pixel in a binary image is 

either one or zero, it can becom.e a bit that is grouped with other 

pixels in the neighborhood to form a numerical value. The 

neighborhood of 9 binary pixels becomes a 9-bit number that can be 

used as an index into a look-up table to determine if the output pixel 

should be a hit or a miss. This table is known as a 9-to-l LUT since the 

9-bit input value results in a i-bit output value. The table has 512 
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entries, the number of possible conditions of the 3 x 3 binary pixel 

neighborhood. 

Obviously, the challenge of using this technique is generating the 

proper look-up table, because all possible conditions of pixel 

neighborhoods must be considered. Once this task is completed, 

however, the resultant processing is much faster. 

4.8 Pipelined Processing 

A number of morphological operators have been performed by 

applying a single 3 x 3 pixel mask. There are others, such as 

shrinking, thinning, and skeletonization, for which 3 x 3 will not 

suffice. A 5 x 5 mask is needed to perform these functions. But that 

mask size creates over 33 million conditional patterns that must be 

checked for each pixel! A very efficient method is to use a two-stage 

pipeline processing technique, with both stages using 3 x 3 masks 

[http://www.homepages.inf.ed.ac.uk/]. The first stage of the 

procedure is to process an image, checking for pixels that might be 

operated upon. This first stage of the pipeline generates a new binary 

image that marks the likely candidates. The second stage of the 

pipeline then uses the original binary image and the marked image to 

determine whether each pixel is a hit or a miss for the desired 

function. The look-up table method of processing is used, so these 

checks become very fast. The result is performing the equivalent of 33 

million checks per pixel in two passes of a look-up table. 

4.9 Shrinking 

Shrinking will reduce objects in a binary image to a single point 

located at the geometric center of the object. This can be thought of 

as finding the center of mass of an object. For objects that do not have 
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holes in them, a single point is generated. If there is a hole, the 

process will produce a ring of pixels that surrounds the hole and is 

equidistant from the nearest boundary. 

4.10 Thinning 

The thinning function is similar to shrinking, except that thinning 

generates a minimally connected line that is equidistant from the · 

boundaries. Some of the structure of the object is maintained. 

Thinning also is useful when the binary sense of the image is reversed, 

creating black objects on a white background. If the thinning function 

is used on this revered image, the results, are minimally connected 

lines that form equidistant boundaries between the objects. 

4.11 Skeletonization 

Skeletonization also is similar to thinning, except that it maintains 

more information about the internal structure of objects. The classic 

way to think about skeletonization is to set fire (mentally, of course) to 

pixels around the outer edge of an object simultaneously. As the fire 

burns inward toward the center of the object, eventually it will meet 

burning pixels from the opposite direction. When two opposing fires 

meet they extinguish one another, leaving behind a single (or double) 

pixel boundary, or skeleton, of the object. 

Application 

MATLAB CODE 
BWl=imread ( 'circbw. t if ' ) ; 
BW2 = bwmorph (BW l , 's ke l ', i nf ) ; 
Imwri t e (BW2 , 's ke l e t on. tif ' ) 
Imshow (BWl) 
Figure , imshow (BW2) 

106 



r...-
_ II , ........ 

.. .......... 
I r: -----

4.12 Grayscale Morphological Operations 

While morphological operations usually are performed on binary 

images, some processing techniques also apply to grayscale images. 

These operations are for the most part limited to erosion and dilation. 

Grayscale erosions and dilations produce results identical to the 

nonlinear minimum and maximum filters. 

The minimum operator will interrogate a 3 x 3 (or any other size) 

neighborhood and select the smallest pixel value to become the output 

value. This has the effect of causing the bright areas of an image to 

shrink, or erode. Similarly, grayscale dilation is performed by using the 

maximum operator to select the greatest value in a neighborhood . 

. Morphological functions that are based on hit-or-miss processing, such 

as thinning and skeletonization, do not translate well to grayscale 

images. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 
This work is an investigation into how images can be formed on the ' 0 

one hand and image analysis on the other. The work was undertaken . 0 

because of the tremendous usefulness of the science of fractals and ;o 00 

image analysis. These fields are young and have promise of greater ° 

usefulness and applications in the future. We have seen that for most 
natural objects are indeed fractals of some sort. After Mandlebrot 
plotted the first fractal, fractals have continued to be discovered not 
just in the form of arts or synthesized landscapes but also used in 
solving problems such as percolation problems [Feder, 1996], stock 
market behaviour [Mandelbrot, 2004] and other events for which 
results seemed unpredictable and chaotic such as weather behaviour. 

What can be said about fractals is that even though the shapes 
generated look so intricate, yet they obey sound mathematical 
principles. In general, for a fractal to form the following conditions 
must be met. 

a. Its dimension must be a fraction, not an integer 
b. there must be an iteration scheme 
c. the iteration scheme must be convergent 
d. in particular, the scheme must obey the contraction mapping 

principle 
e. As a result of (3), there must be an attractor i.e. a final image 

that forms (the limiting image). This is analogous to the 
limiting point of a sequence. 

f. The sequence of images must be compact. This means that 
any sequence of im9ges must also converge within the initial 
image set. 

While the technology does not yet exist to derive the attractor (which 
can only be obtained after an infinite number of iterations), we can 
come within a reasonable neighbourhood of the attractor in our 
construction. 

Erosion and dilation are the basic operations of mathematical 
morphology. All other operations of mathematical morphology are 
based on different combinations of erosion and dilation. Erosion is 
sometimes called Minkowski subtraction and dilation is called 
Minkowski addition [Serra, 1996]. Mathematical morphology is based 
on binary images i.e. the image is in black and white form (although 
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PROGRAM LISTING 

THE MANDELBROT SET (C++ PROGRAM) 
// MainFrm.cpp : implementation 6f the CMainFrame class 

#include "stdafx.h" 
#include "Mandel.h" 

#include "MainFrm.h" 

#ifdef DEBUG 
#define new DEBUG NEW 
#undef THIS FILE 
static char THIS FILE[] = FILE 
#endif 

/////////////////////////////////////////////////////////// 
////////////////// 
// CMainFrame 

IMPLEMENT_DYNCREATE(CMainFrame, CFrameWnd) 

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd) 
//{{AFX_MSG_MAP(CMainFrame) 

// NOTE - the ClassWizard will add and remove 
mapping macros here. 

// DO NOT EDIT what you see in these blocks of 
generated code 

//}}AFX_MSG_MAP 
END_MESSAGE_MAP() 

/////////////////////////////////////////////////////////// 
////////////////// 
// CMainFrame construction/destruction 

CMainFrame::CMainFrame() 
{ 

// TODO: add member initialization code here 

CMainFrame::-CMainFrame() 
{ 

} 

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs) 
{ 
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if( !CFrameWnd::PreCreateWindow(cs) 
return FALSE; 

// TODO: Modify the Window class or styles here by 
modifying 

// the CREATESTRUCT cs 

return TRUE; 

///////////////////////////////////////////////////// / 11// / 
//// / ///////////// 
// CMainFrame diagnostics 

#ifdef DEBUG 
void CMainFrame: :AssertValid() const 
{ 

CFrameWnd::AssertValid(); 

void CMainFrame::Dump(CDumpContext& de) const 
{ 

CFrameWnd::Dump(dc); 

#endif // DEBUG 

////////////////////////////////////////////////////// ////1 
////////////////// 
// CMainFrame message handlers 

// MandelView.cpp : implementation of the CMandelView c l ass 
// 

#include "stdafx.h" 
#include "Mandel.h" 

#include "MandelDoc.h" 
#include "MandelView.h" 

#ifdef DEBUG 
#define new DEBUG_NEW 
#undef THIS FILE 
stat i c char THIS FILE [] FILE 
#endif 

// define Mandelbrot set constants: 
#define CIMAX 1.2 
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#define CIMIN -1.2 
#define CRMAX 1.0 
#define CRMIN -2.0 
#define NMAX 128 

// colors used to create Mandelbrot pattern: 
OWORO ColorTable [6] = 

{ OxOOOOff, // red 
OxOOffOO, // green 
OxffOOOO, // blue 
OxOOffff, // yellow 
OxffffOO, // cyan 
OxffOOff}; // magenta 

/////////////////////////////////////////////////////////// 
////////////////// 
// CMandelView 

IMPLEMENT_DYNCREATE(CMande1View, CView) 

BEGIN_MESSAGE_MAP(CMandelView, CView) 
//{{AFX_MSG_MAP(CMandelView) 
ON_WM_SIZE () 
//}}AFX_MSG_MAP 

END_MESSAGE_MAP() 

/////////////////////////////////////////////////////////// 
////////////////// 
// CMandelView construction/destruction 

CMandelView: :CMandelView() 
{ 

// TOOO: add construction code here 
m Col = 0; 

CMandelView: :-CMandelView() 
{ 

} 

BOOL CMandelView::PreCreateWindow(CREATESTRUCT& cs) 
{ 

// TODO: Modify the Window class or styles here by 
modifying 

// the CREATESTRUCT cs 

return CView: :PreCreateWindow(cs); 
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} 

/////////////////////////////////////////////////////////// 
////////////I////J 
// CMandelView drawing 
void CMandelView: : On Draw (CDC* pDC) 
{ 

CMandelDoc* pDoc = GetDocument(); 
ASSERT_VALID(pDoc); 
// TODO: add draw code for native data here 
m Col = 0; 
m_CR = (float)CRMIN; 

} 

/////////////////////////////////////////////////////////// 
////////////////// 
// CMandelView diagnostics 

#ifdef DEBUG -
void CMandeIView::AssertValid() const 

CView: :AssertValid(); 

void CMandeIView::Dump(CDumpContext& dc) const 
{ 

CView: : Dump (dc) ; 

CMandelDoc* CMandeIView::GetDocument() // non-debug version 
is inline 

ASSERT (m_pDocument-
>IsKindOf (RUNTIME_CLASS (CMandelDoc) )); 

return (CMandelDoc*)m_pDocument; 
} 

#endif // DEBUG 

/////////////////////////////////////////////////////////// 
////////////////// 
// CMandelView message handlers 

void CMandeIView::OnSize(UINT nType, int cx, int cy) 
{ 

CView: :OnSize(nType, cx, cy); 

// TODO: Add your message handler code here 

if(cx <= 1 I I cy <= 1) // avoid divide-by-zero 
return; 
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m ColMax ex; 
m RowMax = ey; 

m OCR 
m OCI 

(float) ((CRMAX - CRMIN) I (m_ColMax - 1)); 
(float) ((CIMAX - CIMIN) I (m_RowMax - 1)); 

void CMandelView::OrawCol() 

CClientOC ClientOC (this); 
float CI; 
int ColorVal; 
float I; 
float ISqr; 
float R; 
int Row; 
float RSqr; 

if(m_Col >= m ColMax I I GetParentFrame()->IsIeonie()) 
return; 

CI = (float)CIMAX; 
for (Row = 0; Row < m RowMax; ++Row) 
{ 

R = (float)O.O; 
I = (float)O.O; 
RSqr = (float)O.O; 
ISqr = (float)O.O; 
ColorVal = 0; 
while(ColorVal < NMAX && RSqr * ISqr < 4) 
{ 

++ColorVal; 
RSqr = R * R; 
ISqr = I * I; 
I *= R; 
I += I + CI; 
R = RSqr - ISqr + m CR; 

ClientOC.SetPixelV(m_Col, Row, 
ColorTable[ColorVal % 6]); 

CI -= m OCI; 

m Col++; 
m CR += m OCR; 
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// Mandel.cpp 
application. 
// 

Defines the class behaviors for the 

#include "stdafx.h" 
#include "Mandel.h" 

#include "MainFrm.h" 
#include "MandeIDoc.h" 
#include "MandeIView.h" 

#ifdef DEBUG -
#define new DEBUG NEW 
#undef THIS FILE 
static char THIS FILE[] = 
#endif 

FILE ; 

/////////////////////////////////////////////////////////// 
////////////////// 
// CMandelApp 

BEGIN_MESSAGE_MAP(CMandeIApp, CWinApp) 
//{{AFX_MSG_MAP(CMandeIApp) 
ON_COMMAND (ID_APP_ABOUT, OnAppAbout) 

// NOTE - the ClassWizard will add and remove 
mapping macros here. 

// DO NOT EDIT what you see in these blocks of 
generated code! 

//}}AFX_MSG_MAP 
// Standard file based document commands 
ON_COMMAND (ID_FILE_NEW, CWinApp: :OnFileNew) 
ON_COMMAND (ID_FILE_OPEN, CWinApp: :OnFileOpen) 

END_MESSAGE_MAP() 

/////////////////////////////////////////////////////////// 
////////////////// 
// CMandelApp construction 

CMandelApp: :CMandeIApp() 
{ 

// TODO: add construction code here, 
// Place all significant initialization in 

InitInstance 
} 

////////////////////////////////////////////////////// /// 1 / 
////////////////// 
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// The one and only CMandelApp object 

CMandelApp theApp; 

/////////////////////////////////////////////////////////// 
////////////////// 
// CMandelApp initialization 

BOOL CMandelApp::lnitlnstance() 
{ 

// Standard initialization 
// If you are not using the~e features and wish to 

reduce the size 
// of your final executable, you should remove from 

the following 
// the specific initialization routines you do not 

need. 

#ifdef AFXDLL 
Enable3dControls(); 

MFC in a shared DLL 
#else 

Enable3dControlsStatic(); 
linking to MFC statically 
#endif 

// Call this when using 

// Call this when 

// Change the registry key under which our settings 
are stored. 

// TODO: You should modify this string to be something 
appropriate 

// such as the name of your company or organization. 
SetRegistryKey(_T("Local AppWizard-Generated 

Applications")); 

LoadStdProfileSettings(); // Load standard INI file 
options (including MRU) 

// Register the application's document templates. 
Document templates 

// serve as the connection between documents, frame 
windows and views. 

CSingleDocTemplate* pDocTemplate; 
pDocTemplate = new CSingleDocTemplate( 

I DR_MAINFRAME, 
RUNTIME_CLASS (CMandelDoc), 
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RUNTIME_CLASS (CMainFrame), 
frame window 

RUNTIME CLASS(CMandelView)); 
AddDocTemplate(pDocTemplate); 

// main SOl 

// Parse command line for standard shell commands, 
DOE, file open 

CCommandLineInfo cmdInfo; 
ParseCommandLine(cmdInfo); 

// Dispatch commands specified on the command line 
if (!ProcessShellCommand(cmdInfo)) 

return FALSE; 

// The one and only window has . been initialized, so 
show and update it. 

m_pMainWnd->ShowWindow(SW_SHOW); 
m_pMainWnd->UpdateWindow(); 

m_pMainWnd->SetWindowText("Mandelbrot Demo"); 

return TRUE; 

/////////////////////////////////////////////////////////// 
////////////////// 
// CAboutDlg dialog used for App About 

class CAboutDlg : public CDialog 
{ 

public: 
CAboutDlg(); 

// Dialog Data 
//{{AFX_DATA(CAboutDlg) 
enum { roo = 100 ABOUTBOX }; 
/ /} }AFX_DATA 

// ClassWizard generated virtual function overrides 
//{{AFX_VlRTUAL(CAboutDlg) 
protected: 
virtual void DoDataExchange(CDataExchange* pOX ) ; // 

DDX/DDV support -
/ /} } AFX _VIRTUAL 

// Implementation 
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protected: 

} ; 

/ / { {AFX_MSG (CAboutDlg.) 
// No message handlers 

/ /} }AFX MSG 
DECLARE_MESSAGE_MAP() 

CAboutDlg: :CAboutDlg() 
{ 

CDialog(CAboutDlg::IDD) 

//{{AFX_DATA_INIT(CAboutDlg) 
//}}AFX_DATA_INIT 

void CAboutDlg: : DoDataExchange (CDataExchange* pDX) 

CDialog::DoDataExchange(pDX); 
//{{AFX_DATA_MAP(CAboutDlg) 
//}}AFX_DATA_MAP 

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog) 
//{{AFX_MSG_MAP(CAboutDlg) 

// No message handlers 
/ /} }AFX_MSG_ MAP 

END_MESSAGE_MAP() 

// App command to run the dialog 
void CMandelApp::OnAppAbout() 
{ 

CAboutDlg aboutDlg; 
aboutDlg.DoModal(); 

//////////////////////////!//////////////////////////////// 
////////////////// 
// CMandelApp message handlers 

BOOL CMandelApp::Onldle(LONG lCount) 
{ 

// TODO: Add your specialized code here and/or call 
the base class 

CWinApp::Onldle(lCount); 

CMandelView *PView = (CMandelView *) ((CFrameWnd 
*)m_pMainWnd)->GetActiveView(); 
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PView->DrawCol()i 
return TRUEi 

THE FERN LEAF (BASIC CODE) 
SCREEN 12 
INPUT "Number of Iterations (5000) :", 
left = 30 
w = 300 
w1 w + left 

imax 

e1 = .5 * w: e2 = .57 * w: e3 = .408 * w: e4 = .1075 * w 
f1 = 0 * w: f2 = -.036 * w: f3 = .0893 * w: f4 = .27 * w 
REM FIXED POINT MAP 1 
x = e1 
y = 0 
FOR i = 1 TO imax 
r = RND 
REM map 1 ( stem) 
50 IF r > .02 GOTO 100 
xn = 0 * x + 0 * y + e3 
yn = 0 * x + .27 * Y + f1 
GOTO 400 
REM map 2 (right leaf) 
100 IF r > .17 GOTO 200 
xn = .139 * x + .263 * Y + e2 
yn = .246 * x + .224 * Y + f2 

GOTO 400 
REM map 3 (left) 

200 IF r > .3 GOTO 300 
xn = .17 * x - .215 * Y + e3 
yn = . 222 * x + .176 * Y + f3 

GOTO 400 
REM map 4 (top of fern) 
300 xn = . 781 * x + .034 * Y + e4 

yn = 
REM draw 
400 PSET 
x = xn 

y = yn 
NEXT i 
END 

-.032 * x + 
game point 
(xn + left, 

.739 * Y + f4 

w1 - yn) 

THE SIERPINSKI GASKET (BASIC PROGRAM) 
DEFINT x,y 
FOR Y = 0 TO 255 

FOR x = 0 TO 255 
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IF (x AND y) 
NEXT x 

= 0 THEN PSET (x + 30, y + 30) 

NEXT Y 
END 

THE KOCH CURVE (BASIC PROGRAM) 
DIM xleft(10), xright(10), ' yleft(10), yright(10) 
INPUT "Peak offset (0.29) :", r 
Level = 5 
xeft(level) = 30 
xight(level) = 30 + 300 
yeft(level) = 190 
GOSUB 100 
END 
REM DRAW LINE AT LOWEST LEVEL OF RECURSION 
100 IF level > 1 GOTO 200 
LINE (xleft(l), yleft(l) - (xright(l), yright(l)) 
GOTO 300 
REM BRANCH INTO LOWER LEVELS 
200 level = level + 1 
REM LEFT BRANCH 
xleft(level) = xleft(level + 1) 
yleft(level) = yleft(level + 1) 
xright(level) = .333*xright(level +1) + .667*xleft(level + 
1 ) 
yright(level) 
1 ) 
GOSUB 100 

.333*yright(level +1) + .667*yleft(level + 

REM MIDDLE LEFT BRANCH 
xleft(level) = xright(level) 
yeft(level) = yright(level) 
xright(level) = .5*xright(level + 1) + .5xleft(level + 1) -
r*(yleft(level + 1) - yright(level + 1)) 

yright(level) = .5*yright(level + 1) + .5yleft(level + 1) -
r*(xleft(level + 1) - xright(level + 1)) 
GOSUB 100 
REM MIDDLE RIGHT BRANCH 
xleft(level) = xright(level) 
yleft(level) = yright(level) 
xright(level) = .667*xright(level + 1) + .333*xleft(level + 
1) 
yright(level) 
1 ) 
GOSUB 100 
REM RIGHT BRANCH 

.667*yright(level + 1) + .333*yleft(level + 
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Xleft(level) = xright(level) 
yleft(level) = yright(level) 
xright(level) = xright(level + 1) 
yright(level) = yright(level + 1) 
GOSUB 100 
Level = level + 1 
300 RETURN 
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MATLAB CODE FOR FIG 1 & 2 
BWl = irnread('circbw.tif'); 

SE=eye(5); 

BW2=erode ((BW1,SE); 

IMSHOW (BW1) 

FIGURE, irnshow (BW2) 

MAT LAB CODE FOR FIG 3 & 4 

BWl = irnread('circbw.tif'); 
SE = zeros(5,5); 
BW2 = dilate(BW1,SE); 
irnshow (BW1) 
figure, irnshow (BW2) 

MATLAB CODE FOR SKELETONIZATION 

BW1=imread ('circbw.tif'); 
BW2 = bwmorph (BW1, 'skel', inf); 
Imwrite (BW2, 'skeleton.tif') 
Imshow (BWl ) 
Figure, imshow (BW2) 
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