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ABSTRACT

This work is an investigation into how images can be generated on the
one hand and image analysis on the other. The science of generating
images helps us to understand the mathematical principles behind the
formation of natural structures. More importantly, the same theory has
enabled us to solve problems in a vast number of fields such as
economics, geology, physics, meteorology, etc. Image analyses were
carried out-using the tools of mathematical morphology. Erosion and
dilation of images were investigated and it was shown that all other
morphological operations are only a combination of erosion and
dilation.
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CHAPTER ONE
INTRODUCTION

1.1 The Science of Fractals and the Rebirth of Experimental
mathematics

Much scientific research of the past has analyzed human-made
machines and the physical laws that govern their operations. The
success of science relies on the predictability of the underlying
experiments. Euclidean geometry - based on lines, circles, etc. is the
tool used to describe spatial relations, while differential equations are
essential in the study of motion and growth. However, natural shapes
such as mountains, clouds or trees do not fit well into this framework.
The understanding of these phenomena has undergone a fundamental
change from the last two decades of the 20™ century. Fractal |
geometry as conceived by Mandelbrot [1978-79] provides
mathematical model for nature. One of Mandelbrot’s key observations
has been that these forms possess remarkable statistical invariance
under magnification [Peitgen, 1993]. This may be qualified by a fractal
dimension, a number that agrees with our intuitive understanding of
dimension which may not necessarily be an integer. These ideas may

also be applied to time-variant processes.

Another important discovery has been that even in very simple non-
linear dynamical systems, such as the double pendulum, long-term
predictions are not possible despite exact knowledge of the underlying
equations. Such systems exhibit behavioral patterns that we conceive
only as erratic or chaotic despite their very simple and deterministic
generating mechanisms. Arbitrarily small perturbations of solutions are
blown up by such systems until such solutions have lost all correlation

with the original ones. This phenomenon has been termed “sensitive



dependence on initial condition” and is the trademark of what is now
known as chaos theory [Peitgen, 1996]. There is a strong connection
between chaos and fractal geometry, namely, as one follows the
evolution of states of a chaotic non-linear system, it typically leaves a
trace in its embedding space which has a very complex geometric
structure. This trace is a fractal [Mandelbrot, 1982].

But what makes the science of fractals and chaos so interesting is
that, this fairly new area of research has created pictures of such
power and singularity that a collection of them, for example, has
proven to be one of the most successful world-wide series of
exhibitions ever sponsored by the Goethe Institute. Since 1985 the
exhibition has traveled to more than 100 cities in more than 30
different countries, attracting more than 140,000 visitors in London
alone [Peitgen and Saupe, 1996]. More important, however, is the fact
that chaos theory and fractal geometry have corrected our outmoded
conception of the world.

The magnificent success in the fields of natural sciences and
technology had, for many years fed the illusion that the world on the
whole functioned like the clockwork mechanism, whose laws were
known. It was believed, the evolution or development of things could -
at least in principle be ever more accurately predicted. Captivated by
the breathtaking advances in the promises of greater command of
information, many have put increasing hope in the machine.. One
conclusion that can be drawn from the new theories, which are
admittedly still young, is that stricter determinism and apparently
accidental development are not mutually exclusive, but rather their
coexistence is more the rule in nature. Chaos theory and fractal

{9]




geometry address this issue. In this sense, fractal geometry is first
and foremost a new ‘language’ used to describe complex forms of the
‘traditional language’ of the Euclidean geometry are basic visible forms
such as lines, circles and spheres, those of the new language do not
lend themselves to direct observations. They are namely, algorithms,
which can be transformed into shapes and structures only with the ™
help of computers. In addition, the supply of these algorithmic
elements is inexhaustively large; and they are capable of providing us
with a powerful descriptive tool. Once this new language has been
mastered, we can describe the form of a cloud as easily and as
precisely as an architect can describe a house using the language of
traditional geometry.

The correlation of chaos and geometry is anything but coincidental.
Rather, it is a witness to their deep kinship. This kinship as we see
later is best described in the Mandelbrot set, a mathematical object
discovered by Benoit Mandelbrot in 1980. It has been described by
some as the most complex, and possibly the most beautiful object
ever seen in mathematics. Its most fascinating characteristics
however, have only just recently been discovered, namely; that it can
be interpreted as an illustrated encyclopedia of an infinite number of
algorithms. It is a fantastically and efficiently organized storehouse of
images, and as such it is the example per excellence of order in chaos.
Fractals and modern chaos theory are linked by the fact that many of
the contemporary pace-setting discoveries in their fields were only
possible using computers. From the perception of our inherited
understanding of mathematics, this is a challenge which is felt by
some to be powerful renewal and liberation and Dby others a

denigration. In essence, chaos theory and fractal geometry change




radically our understanding of equilibria - and therefore of harmony
and order - in nature as well as in other contexts and offer a new
holistic and integrated model which can encompass an edge of the true
complexity of nature for the first time. It is highly probable that the

new methods and terminologies will allow us, for example, a much . &

more adequate understanding of ecology and climatic developmen't,.'.ffv-':'»':‘:’"’"""'“

and thus they could contribute to our more effectively tackling gigantic -

problems.

Fractal geometry and chaos are often associated with experimental
mathematics. Experimental mathematics does not imply an attempted
invasion of pure mathematics by applied mathematics. Applied
mathematics has always been permeated with science, hence with
experiment. This feature greatly contributed to its being thoroughly
unpopular with those believing that applied mathematics is bad
mathematics. But experimental mathematics means something
different: it means injecting experiment back into core parts of
mathematics that need not - at least at present have any contact with
science. Its most striking impact may be that it underlines the reality
of an essential distinction between mathematical fact and
mathematical proof. Many times mathematicians insist on defining
their fields narrowly, as beginning with proofs and gives short shrift
facts accustomed to seeing new mathematical fact almost exclusively
suggested by the proofs of old mathematical facts. But history reveals
that in the past, the development of mathematics has relied upon
many other sources, both of observation and of experimentation.
Today’s experimental mathematics does not even spurn the kind of
observation that has been characteristic of the least sophisticated



among the empirical sciences, but primarily relies upon active
experimentation.

New methods of searching for new facts provide mathematics with a

powerful front end of unexpected character, one that involves more

than just the proverbial pencil and paper. Thus pictures have already"-: o ;

demonstrated their astonishing power to help in early stages of both
mathematical proofs and physical theory. As this help expands, it may
well lead to a new equilibrium and the changes in the prevailing styles
completed mathematical proof and of completed physical theory. In
other words, we may be witnessing the re-emergence of a new active
doublet of experimental and/or theoretical study. As seen in physics,
experimental and theoretical physics seldom live in perfect harmony,
but they know they must not only coexist but actually listen to each
other and otherwise interact. Few in either party want to annihilate the
other. In mathematics, the situation is very different. There has been
a long history of conflict. The computer is a new tool that has come
into being and it has brought two gifts to science. Its first gift is vastly
enhanced calculations, which will not concern us in this work. The
second gift is graphics, which tells an altogether different story and
has brought a profound qualitative change, hence a fair amount of
upheaval. Computer graphics allow us the privilege and the delight of
taking up theories in physics and mathematics and of proving that if
they are suitably transformed, these very same theories are enriched
in their own mathematical or physical terms. And they also generate
patterns that readily pass for forgeries of life, nature, and even art, in

their unfathomable complication.



1.2 Chaos
For many, chaos theory already belongs to the greatest achievement

in the natural sciences. Indeed, it can be claimed that very few

developments in the natural science have awakened so much public

interest. The main maxim of science is its ability to relate cause and

effect. On the basis of laws of gravitation, for example, astronomical =t

events such as eclipses and the appearance of comets can be
predicted thousands of years in advance. Other natural phenomena,
however, appear to be much more difficult to predict. Although the
movements of the atmosphere, for example, obey the laws of physics
as much as the movements of the planets do, weather prediction is
still rather problematic. We speak of the unpredictable aspects of
weather just as if we were talking about rolling dice or letting an air
balloon loose to observe its erratic path as the relation between cause
and effect, such phenomena are said to have random elements. Yet
there was little reason to doubt that precise predictability could in
principle be achieved. It was assumed that it was only necessary to
gather and process greater quantities of more precise information
(e.g. through the use of denser networks of weather stations and more
powerful computers dedicated solely to weather analysis). Some of the
first conclusions of chaos theory however, have recently altered the
viewpoint. Simple deterministic systems with only a few elements (e.g.
the quadratic iterator) can generate random behaviour, and that
randomness is fundamental, gathering more information does not
make it disappear. This fundamental randomness has come to be
called chaos. An apparent paradox is that chaos is deterministic and
generated by fixed rules which do not themselves involve any
elements of change. In principle, the future is completely determined
by the past, but in practice, small uncertainties much like minute

1



errors of measurement which enter into calculations, are amplified,
with the effect that even though the behaviour is predictable in the
short-term, it is unpredictable over the long run. The discovery of such
behaviour is one of the most important achievements of chaos theory.
Another is the methodologies which have been designed for a precise

scientific valuation of the presence of chaotic behaviour m

mathematical models as well as in real phenomena. Using these
methodologies, it is now possible, in principle to estimate the
‘predictability horizon’ of a system. This is the mathematical, physical
or time parameter limit within predictability is ideally possible and
beyond which we will never be able to predict with certainty. It has
been established, for example, that the predictability horizon in
weather forecasting is not more than about two or three weeks
[Peitgen, Jurgen and Saupe, 1996]. this means that no matter how
many more weather stations are included in the observation, no
matter how much more accurately weather data are collected and
analyzed, we will never be able to predict the weather with any degree
of numerical accuracy beyond this horizon of time [Brigg, 1992].

For the era of determinism, which was mathematically grounded in
calculus, the ‘Laplace demon’ became the symbol. If we could imagine
a consciousness great enough to know the exact locations and
velocities of all objects in the universe at the present instant, as well
as the forces, then there could be no errors from this consciousness. It
could calculate anything about the past or the future from the laws of
cause and effect. In its core, the deterministic credo means that the
universe is comparable to the ordered running of a tremendously
precise clock in which the present state of things is, on the other hand
the cause of its future state. Present, past and future are bound




together by the causal relationships; and according to the views of the
determinist, the problem of an exact prognosis is only a matter of the
difficulty or recording all the relevant data. The deterministic credo

was characteristic of the Newtonian era, which for the natural sciences

came to an end at the latest through the insights of Weiner Heisenberg

in 1927 proclamation of his uncertainty principle, but for other':.“,'fgf_'.__-,,_‘;f,-._3?.-.-':

sciences it is still considered valid. Classical determinism in its fearful
strictness had to be given up - a turning point of enormous

importance.

Indeed, the history of numerical weather prediction illustrates better
than anything else the undiminished belief in a deterministic world, for
in reality Heisenberg’s uncertainty principle did not all mean the end of
determinism, it only modified it. The most carefully conducted
experiment is after all, newer completely isolated from the influences
of the surrounding world, and the state of a system is never precisely
known at any point in time. The absolute mathematical precision which
Laplace presupposed is not physically realizable; minute imprecision is,'
as a matter of principle, always present. What scientists actually
believed was this: from approximately the same causes follow
approximately the same effects in nature as well as in any good
experiment. And this is indeed often the case, especially over short
time spans. If these were not so, we would not be able to ascertain
natural laws, nor could we build any functioning machines. But this
apparently very plausible assumptions is not universally true, it does
not do justice to the typical course of natural processes over long
periods of time. Around 1960, Lorenz discovered this deficiency in the
models used for numerical weather prediction and it was he who
coined the term “butterfly effect” [Peitgen, 1993].



Thus, Heisenberg’s response to deterministic thinking was also
incomplete. He concluded that the strong causality principle is wrong

because its presumptions are enormous. Lorenz has now shown that .

the conclusions are also wrong. Natural laws, and for that matter ey

determinism, do not exclude the possibility of chaos. In other words; - i
determinism and predictability are not equivalent. And what is even a
more surprising finding of recent chaos theory has been the discovery
that these effects are observable in many systems which are much
simpler than the ‘weather’. In fact, this can be observed in very simple
feedback systems, even as simple as the quadratic iterator

x = ax(1-x) (the Logistic equation).

Moreover, chaos and order (i.e. causality principle) can be observed in
juxtaposing within the same system. There may be a linear
progression of errors characterizing a deterministic system which is
governed by the causality principle, while (in the same system) there
can also be an experimental progression of errors (i.e. the butterfly
effect) indicating that the causality principle breaks down. In other
words, one of the lessons coming out of chaos theory is that the
validity of the causality is narrowed by the uncertainty principle from
one end as well as by the intrinsic instability properties of the
underlying natural laws from the other end.

Chaos describes a situation where typical solutions (or orbits) of a
differential equation (or typical evolutions of some other models
describing deterministic evolution) do not converge to a stationary or
periodic function (of time) but continue to exhibit a seemingly



unpredictable behaviour. The dynamical system (or models) describing
deterministic evolution considered are differential equations
x=F(x)with xe X, X a differentiable manifold and F: X »>T(x) a vector

field on X, and differentiable mapping ¢:X - X which may or may

not be invertible. For a given initial state x,e Xthe corresponding _ -

evolution is the solution x(s)of the differential equation with x(0)=x,or
in the case of a mapping, the function N - X given by n¢"(x,). The
last case is the discrete-time situation, the first case that of continuous
time. Even if the evolution can be defined for negative time, only the
part with positive time is considered. Also, only bounded evolutions
are considered here i.e. x(r),x, witht>0,respectivelyn>0, whose
closure as a subset of X is compact. It is assumed that there is a
metric defined on X. One says that such a dynamical system is chaotic
if there is a subset X c Xwhich has positive measure (for every
measure in the Lebesgue measure class) which is invariant in the
sense that every evolution starting in X stays in X and such that the

evolutions in X have the following properties

1.2.1 Quasi-Periodic Evolution
No evolution starting in X is periodic or quasi-periodic. An evolution
x() is quasi-periodic if it can be written as x(t) = F(o,t,, 0,1, ...o,,) With

n-n

w,,0,,0,,..,0,independent over the rationals and F periodic with period
1 in all its variables, an evolution x,is quasi-periodic if it can be written
as x, =F(ono,n,..,0,nWith 1,0,,0,,..,0,independent over the
rationals and F periodic with period 1 in all its variables. No evolution

in Xtends to a periodic or quasi-periodic evolution as time tends to

infinity.
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1.2.2 Sensitive Dependence on Initial Conditions

(Sensitive dependence on initial conditions) there is some positive
constant A4such that for each x, € X and each ¢>0, there is some y,in
an ¢-neighbourhood of x, such that for some positive time the
evolution starting in x,and y,are more than A4apart. These conditions
are probably not independent. The first two conditions. may be a
consequence of the third condition. The third condition implies some
unpredictability. Even if we know the initial state with arbitrary (but-
finite) precision, there is some moment in the future at which the state
cannot be predicted within a distance 4 from the information about the
initial state. The main examples of chaotic dynamical systems (and
dynamical systems which are supposed to be chaotic) are discussed
below:

1.2.3The Logistic Family
This is a one-parameter family [Peitgen and Saupe, 1998] of one-

dimension mappingsL,(x)=1-ax?, it has been proved that for a large

set (of positive Lebesgue measure) of values of the parametera, this
mapping defines a chaotic dynamical system. These mappings were
introduced to describe population dynamics under certain conditions.

1.2.4The Henon Family
This is a 2-parameter family of two-dimensional invertible mappings

H,,.b(x,y)=(1—zwc2 +y,bx)b¢0in this example, there is only numerical
evidence that H,, defines, for many parameter values and 5, a

chaotic dynamical system.

11



1.2.5The Lorenz Family
This is a three parameter family of differential equations in R

Feoly-x)

y=rx—-y-xz

z=xy-bz

There is a well-developed theory concerning this system. Still there is

no complete proof that for any parametric values, this system is s

chaotic. This chaoticity is strongly suggested by numerical results
combined with geometric arguments: what is lacking is a tedious
numerical verification. This equation was proposed in connection with

convection problems.

1.2.6 General Axiom A Attractors

This is a class of abstract dynamical systems which are chaotic.
Among the chaotic dynamical systems they are the most ‘regular’
and also they are the ones which are most mathematically
understood. Finally in a number of physical and chemical
experiments, in particular related with weak turbulence and open
chemical reactions, far from equilibrium, the experimental data
indicate that one should explain these experiments in terms of
chaotic dynamical systems. The literature has not yet standardized
with respect to definition of chaotic maps.

1.3 Image Processing

Digital image processing involves the manipulation and interpretation
of digital images with the aid of a computer. Digital image processing
is an extremely broad subject and it often involves procedures which
can be mathematically complex. Here we attempt to only introduce the
subject matter until later in this work when the subject of erosion and
dilation of images will be adequately handled. The central idea behind

12



digital image processing is quite simple. The digital image is fed into
the computer, one pixel at a time. The computer is programmed to
insert these data into main equation, or a series of equations, and
then store the results of the computation for each pixel. These results
from a new digital image that may be displayed or recorded in pictorial
format or may itself be further manipulated by additional programs.
The possible forms 'of digital manipulations are literally infinite.
However, virtually all these procedures may be categorized into one
(or more) of the following.

1.3.1Image Rectification and Restoration

These operations are designed to correct distorted or degraded image
data to create a more faithful representation of the original scene. This
typically involves the initial processing of raw image data to correct for
geometric distortions, and to eliminate any noise present in the data.
Thus, the nature of any particular image restoration process is highly
dependent upon the characteristics of the sensor used to acquire the
image data. Image rectification and restoration procedures are often
termed preprocessing operations because they normally precede
further manipulation and analysis of the image data to extract specific

information.

1.3.2 Image Enhancement

These procedures are applied to image data in order to more
effectively display or record the data for subsequent visual
interpretation. Normally, image enhancement involves techniques for
increasing the visual distinction between features in a scene. The
objective is to create “new” images from the original image data in

order to increase the amount of information which can be visually

13



interpreted from the data. The enhanced image can be displayed
interactively on a monitor or they can be recorded in a hand copy
format, either in black and white or in colour. There are no simple
rules for producing the single “best” image for a particular application.
Often several enhancements made from the same “raw” image are

necessary.

1.3.3 Image classification

The objective of these operations is to replace visual analysis of the
image data with quantitative techniques for automating the
identification of features in a scene. This normally involves the analysis
of multispectral image data and the application of statistically based
decision rules for determining the object’s identity of each pixel in an
image. When these decisions rules are based solely on the spectral
radiances observed in the data, we refer to the classification process
as spectral pattern recognition. In contrast, the decision rules may be
base don the geometrical shapes, sizes, and [patterns present in the
image data. These procedures fall into the domain of spatial pattern
recognition. In either case, the intention of the classification process is
to categorize all pixels in a digital image into one of several themes.

1.3.4 Data Merging

These procedures are used to combine image data for a given object
with other acquired data sets for the same object. These data sets
might simply consist of image data generated on other data by the
same sensor. Frequently, the intent of the data merging is to combine

acquired data with other sources of information.
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1.4 Mathematical Concepts in Image Processing and Fractals
1.4.1Fractals

Fractals were originally defined by B.B. Mandelbrot as point sets with
non-integer diménsion in the sense of Hausdorff-Besicovitch. Classical
examples are the triadic Cantor set and the non-differentiable curve
obtained by von Koch. Typically, a fractal is self-similar (i.e. every
small looks like the larger whole) in a deterministic or stochastic way.
D. Sullivan introduced the concept of quasi-self-similarity. A quasi-
isometry is defined by a function f acting on a metric space M with a

1
metric satisfying % 2% <dU/®. /() <kd(x,y)
for all x,ye M

A set F is called quasi-self similar if there exists a kand r,such that
multiplication by lof FnD,(x)ymaps into F by a quasi-isometry for all
r

r<r, and all xe F (here D,(x)is the open ball centered at xof radius

r).

Accordingly, a fractal may be defined as a quasi-self-similar set. In
some important cases, the similarity transformations with two or more
generators. The Julia set of an analytic function f(z)is such a fractal.

The inverses of fbeing the generators of the corresponding semi-

group. The variety of ways, but generally accepted definitions are still
lacking. In one such a generalization, the fractal dimension is only a
local property. Multifractal measures are related to a distribution on a
geometric support which would be a fractal set in the ordinary sense.
The field of fractals is rapidly expanding, in particular their applications
in statistical physics, natural sciences and computer graphics e.g. the

use fractals in image processing may give a considerable compression
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of relevant data. Many ‘objects’ in nature such as coastlines, zeolites,
patterns of dielectric discharge, Anderson wave functions, dendritic
growth and viscous fingers can well be described by deterministic or
stochastic (multi-) fractal structures. [Feder, 1996]

1.4.2Image Processing (Concepts)

In order for any digital computer processing to be carried out on an
image, it must first be stored within the computer in a suitable form
that can be manipulated by the computer program. The most practical
way of doing this is to divide the image up into a collection of discrete
(usually small) cells, which are known as pixels (picture elements).
Most commonly, the image is divided into a rectangular grid of pixels,
so that each pixel is itself a small rectangle. Once this has been done,
each pixel is given a pixel value that represents the colour of that
pixel. It is assumed that the whole pixel is the same colour, and so
any colour variation that did not exist within the area of the pixel
before the image was discretized is lost. However, if the area of each
pixel is very small, then the discrete nature of the image is often not
visible to the human eye. Other pixel shapes and formation can be
used, most notably the hexagonal grid in which each pixel is a small
hexagon. This has the same advantage in image processing, including
the fact that pixel connectivity is less ambiguously defined that with a
square grid, but hexagonal grids are not widely used. Part of the
reason is that many object capture systems (e.g. digital cameras and
scanners), intrinsically discretize the captured image into a rectangular

grid in the first instance.

The discretization of images into pixels of a rectangular form make
them susceptible to treatments of linear algebra and calculus. The

16




image pixels form an array and thus a matrix /, has a specific binary

value that describes its colour and other attributes. Computer
programs written to process images take advantage of the array form
to process one pixel at a time until the job is done. An image that we

look at is given in its standard Euclidean basis. The change in the .

image occurs when we try to find a new basis where different features e

(shapes, edges, noise) are represented as basis vectors.

So by looking at an image in its standard basis, we cause changes to
the original image. Calculus is useful in image processing because
transforms such as the Fourier transforms and some of its sister
transforms are used as filters. Filtering usually take place in the
frequency domain so an image can be described in terms of
frequencies (i.e. colours) as

a. Low frequencies — background, overall shape

b. High frequencies - details, edges, noise, etc.

From (a) and (b) above, we can see that image representation is also
a waveform of the form say Acos2xfi . When the waveform Acos2xafi is

fed into a linear time-invariant filter(e.g. electrical filter), the output is
also harmonic but has in general a different amplitude and phase; let
it be Bcos(27fi +¢4). Then thye filter is completely specified by a certain

frequency-dependent complex quantity 7(f), whose amplitude is given

B ; :
by B/,and whose phase is 4 ;

Thus T(f)=%e"

We refer to T(f)as the transfer factor, transfer function, system

function, or frequency response of the filter.
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1.4.3 Enhancement (Enhance Features)

Enhancement makes images or signal “look” better. The tool for
enhancement is the spatial (i.e. more than one dimension) filters.
Since an image is usually two-dimensional (although three dimension
images are now possible), a two dimension Fourier or wavelet

transform are used to enhance the features of an image.

1.4.4Warping

Warping an image puts the image on an elastic mesh which is
stretched. Here the use of partial differential equations becomes
imperative. This done by formulating PDEs that describe the mesh
(array) deformations. Multi-grid PDE solvers are useful tools for mesh

deformation.
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CHAPTER TWO
LITERATURE REVIEW

2.1 Introduction
Mandelbrot is often characterized as the father of fractal geometry.
Some people, however, remark that many of the fractals and their_ ,

description goes back to classical mathematics and mathematicians of =~ :

the past like Gregor Cantor (1872), Giuseppe Peano (1890), David
Hilbert (1891), Helve von Koch (1904), Waclaw Sierpinski (1916),
Gaston Julia (1918), or Felix Hausdorff(1919), to name just a few. It is
true that the creation of these mathematicians played a key role in
Mandelbrot's concept of a new geometry. But, at the same time, they
did not think of their creations as conceptual steps towards a new
perception or a new geometry of nature. Rather, what we know so well
as die cantor set, the Koch curve, the Peano curve, the Hilbert curve
and the Sierpinski gasket were regarded as exceptional objects, as
counter examples, as 'mathematical monsters'. Maybe this is bit
overemphasized. Indeed, many of the early fractals arose in the
attempt to fully explore the mathematical content and the limits of
fundamentals notions (e.g. 'continuous' or 'curve'). The Cantor set, the
Sierpinski carpet and the Menger sponge stand out in particular
because of their deep roots and essential role in the development of
early topology.

But even in mathematical circles their profound meaning had been
somewhat forgotten, and they were as shapes, intended to
demonstrate the deviation from the familiar rather than typify the
normal. Then Mandelbrot demonstrated that these early mathematical
fractals in fact have many features in common with shapes found in
nature. In other words, we should say that Mandelbrot turned the
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manifold mathematical interpretation and value of these fantastic
inventions upside down. But in fact, he did more. The best way to
describe his contribution is to say that, indeed, some characters, such
as the Cantor set, were already there. But he went on to develop a
language into which the characters could be embedded. In other
words, he noticed that the seemingly exceptional is more like the rule
and then develop a systematic language with words and sentences and
grammar. According to Mandelbrot himself, he did not follow a grand
plan when carrying out the program; but rather summarized in a way,
his complex - one is tempted to say nomadic - scientific experience in
mathematics, linguistics, economics, physics, medical sciences and
communications networks, to mention a few areas where he was
active.

Before we begin a discussion of classical fractals, we introduce the
concept of self-similarity. It is the underlying theme in all fractals,
more pronounced in some of them and variations in others. In a way
the word self-similarity needs no explanation and at this point we

merely give an example of a natural structure with that property, a
cauliflower.

Fig 2.01 The Cauliflower
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Figure 2.1: The self-similarity of an ordinary cauliflower is demonstrated by
dissection and two successive enlargements (bottom). The small pieces look similar
to the whole cauliflower head. [Peitegen and Saupe, 1998]

It is not a classical mathematical fractal, but here the meaning of self-
similarity is readily revealed without any mathematics. The cauliflower
head contains branches or parts, which when removed and compared
with the whole are very much the same, only smaller. These clusters
again can be decomposed into smaller clusters, which again look very
similar to the whole as to the first generation branches. This self-
similarity carries through for about three or four stages. After that the
structures are too small for further dissection in mathematical
idealization, the self-similarity property of a fractal may be continued
through infinitely many stages. This leads to new concepts such as
fractal dimension which are useful for natural structures that do not

have this infinte detail.
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2.2 Self-Similarity in the Decimal System

Although the notion of self-similarity is only 20 years old there are
many historical constructions which make substantial use of its core
idea. Probably the oldest and most important construction in that
regard is the decimal system. It is impossible to estimate where ,

mathematics and the natural sciences would be without this ingenious = -

invention. We a re so used to the decimal system that we take it for
granted, however, it evolved after a long scientific and cultural
struggle and it is very closely related to the material from which
fractals are made. It is also the prerequisite of the metric (measuring)
system (for length, area, volume, weights, etc). Let us look at a metric
stick, which carries markers for decimeters (ten make a metre), and
millimeters (ten make a centimeter), a thousand make a metre). In a
sense, a decimetre together with its markers looks like a metre with its
markers, however, scaled down by a factor of 10. This is not an
accident. It is in strict correspondence with the decimal system. When
we say 357mm, for example, we mean 3 decimetres, 5 centimetres,
and 7 millimeters. On other words, the position of the figure
determines their place value, exactly as in the decimal number
system. One metre has a thousand millimeters to it and when we have
to locate position 357, we go to the 3 decimetre-tick mark, from there
to 5 centimetre tick mark, and from there to the 7 millimetre tick
mark. Most people take this elegant process for granted but somebody
who has to convert miles, yards and inches can really appreciate the
beauty of this system.
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Fig 2.2 The branches of the decimal tree leading to 357 are highlighted

Actually finding a position on the metre stick corresponds to a walk on
the branches of tree, the decimal number tree. The structure of the

tree expresses the self-similarity of the decimal system very strongly.

2.3 The Cantor Set

Cantor (1845-1918) was a German mathematician at the University
of Halle where he carried out his fundamental work in the foundations
of mathematics, which we now call set theory. The Cantor set was
first published in 1883 and emerged as an example of certain
exceptional sets. It is probably fair to say that in the zoo of
mathematical monsters — or early fractals - the Cantor set was by
far the most important, though it is less visually appealing and more
distant to an immediate natural interpretation than in some of the
others. It is now understood that the Cantor set plays a role in many
branches of mathematics, and in fact, in a very deep sense in chaotic
dynamical system, and in somehow hidden as the essential skeleton
or model behind many other fractals (for example Julia sets).

The basic cantor set is an infinite set points in the unit interval{o.].
That is, it can be interpreted as a set of certain numbers,

121278 1 2 : ’
S for example, 01,-,=,—,=,—,—,—,—,...plotting this and all
; R 3°3°9°9°9°9°27°27 P g
other points (assuming we could know where they were) would not

make much of a picture at all.
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Rather than plotting just points, we plot horizontal lines whose base
points are exactly at all the difficult point belonging to the Cantor set.
By so doing we are able to see the distribution of these points better.

2.3.1 Construction of the Cantor Set

. 221,
Start with the interval [0,1]. Now take away the open interval [5'5} i.e.

. This

(VS I S

remove the middle third from [0,1]]but not the numbers % and

leaves two intervals [0,%] and El} of length %each and complete a

basic construction step. Now we look at the remaining interval{o.ﬂ
d

and B—,l}and remove their middle thirds which yields intervals of

1 . ; .
Iengthg. Continue on in this way. In other words, there is a feedback

process in which a sequence of (closed) intervals in generated - one

after the first step, two after the second, four after the third step,

eight after the fourth step, etc. (i.e2" intervals of length 3i after the

n" step.

- s s e APy S . SESSUT SN i

Figure 2.3: The Cantor set represented by vertical lines whose bas points are exactly
at all the different points belonging to the set.
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Figure 2.4: Some initial steps of the construction

Therefore, the Cantor set is the set of points which remain if we carry
out the mentioned steps infinitely often. How is infinitely often
explained? A pointx, is in the Cantor set if we can guarantee that no
matter how often we carry out the removal process, the point x will

not be taken out. Obviously 0,1,l 2L2T o ... are examples

3°3°9°9°9°9°27°27°
of such points because they are the end points of the interval which
are created in the steps; and therefore must remain All these points
have one thing in common, namely, they are related to the power of

1 e g
3 - or rather, to e Triadic numbers are numbers which are

represented with respect to base 3.

|

Figure 2.5: A three-branch tree visualizes the triadic expansion of numbers on the
unit interval.

A three-branched tree visualizes the triadic expansion of numbers from

the limit interval. The first main branch covers all numbers between 0
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and%. Following down the branches all the way to the interval and

keeping note of the labels 0, 1 and 2 for choosing the left, middle or
right branches will produce a triadic expansion of the number in the

interval which is approached in this process.

Now we can completely describe the Cantor set by representing the =%

numbers from [0,1] in their triadic expansion i.e. we switch to the
expansion of x with respect to the base 3, as in equation 2.1

x=a,-3" +a,-3% +a,-37 +a,-37" +... (2.1
Thus here, the x=aq,,a,,a,,..are numbers from {0,,2,}. Let us write

some points of Cantor set as triadic numbers %=0.1in the triadic

2
system, and§=0.02. In general, we can characterize any point of the

Cantor set in the following way.

"The Cantor set C is the set of points in [0,l] for which there is a
triadic expansion that does not contain the digit 1”.

In the above examples, % and % are points in the Cantor set

according to this statement, since their triadic expansion 0.2 and 0.02
do not contain the digit '1'. However the two examples % andéseem
to contradict this rule, their expansions 0.1 and 0.01 clearly show digit

lll.

2.4 The Sierpinski Gasket and Carpet
Our next classical fractal is about 40 years younger than the cantor
set. It was introduced by the great Polish mathematician Waclaw
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Sierpinski (1882-1969) in 1916. Sierpinski was a professor at Lvov, a
city founded in 1256. The basic geometric construction of the
Sierpinski gasket goes as follows. We begin with a triangle in the plane
and then apply a repetitive scheme of operations to it. Pick the
midpoints of its three sides. Together with the old vertices of the
original triangle, these midpoints define for congruent triangles of
which we drop the centre one. This completes the basic construction
step.

s e
........

Figure 2.6: The basic construction steps of the Sierpinski gasket

2.4.1 The Sierpinski Carpet

Sierpinski has added another object to the gallery of classical fractals,
the Sierpinski carpet. We begin with a square in the plane. Subdivide
it into nine little congruent squares of which we drop the centre one
and so on. The resulting object which remains if one carries out this
process infinitely often can be seen as a generalization of the centre
set (in 2 dimensions). Indeed if we look at the intersection of a line
which goes through the centre we observe precisely the construction
of the Cantor set.
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Figure 2.7: The basic construction steps of the Sierpinski carpet

2.5 Koch Curves

Helve von Koch was a Swedish mathematician who in 1904, introduced
what is now called the Koch curve. Fitting together three suitably
rotated copies of the Koch curve produces a figure which for obvious
reasons is called a Koch curve.
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Figure 2.8: Fxcerpts from von Koch's original 1906 article

Little is known about von Koch, whose mathematical contributions
were certainly not on the same category as those of the stars like
Cantor, Peano, Hilbert, Sierpinski or Hausdorff. Here the Koch
construction must have its way because it leads to many interesting
generalizations. The koch curve is a difficult to understand as the
cantor set or the Sierpinski gasket. However, the problems with it are
of a difficult nature. First of all as the name implies, it is a curve, but
this is not immediately clear from the construction. Secondly, the
curve contains no straight lines or segments which are smooth in the
sense that we could see them as a carefully bent line. Rather, this
curve has much of the complexity, folds within folds within folds and

SO on.
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Figure 2.10: Some natural lakes

2.5.1 Construction of the Koch curve

We begin with a straight line. Partition it into three equal parts, then
replace the middle third by an equilateral triangle and take away its
base. This completes the basic construction step. A reduction of this
frame, made in four parts, will be reused in the following stages. It is
called the generator. Thus, we now repeat each of the resulting line
segments, partitioning them, into three equal parts, and so on.

. 7 o
step 4 N PN o ﬁmﬁu\.

secd 4 K < e
o
dd-- I g
o 2 L £l .
stec . L . generai
step O . —— - REGELS

Figure 2.11: Stages in the construction of the Koch curve
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Actually, Koch wanted to provide another example for discovery first
made by the German mathematician Karl WeistraB, who in 1872 had
precipitated a minor crisis in mathematics. He had described a curve
that could not be differentiated, i.e. a curve which does not admit a
tangent at any of its points. The ability to differentiate (i.e. calculate
the shape of a curve from point to point) invented by Newton and
Leibniz. If a curve has a corner, then there is a problem. There is no
way to fit a unique tangent. The Koch curve is an example of a curve
which in a sense is made out of corners everywhere i.e. there is no

way to fit a tangent to any of its points.

2.5.2 Generalized Koch Constructions

It is almost obvious how one can generalize the Koch construction to
obtain a whole universe of self-similar structures. Such a Koch
construction is defined by an initiator, which may be a collection of
line segments, and a generator, which is a polygonal line composed
of a number of connected line segments. Beginning with the initiator,
one replaces each line segment by a properly scaled down copy of
the generator curve. Here it is necessary to carefully match end
points of the line segment and the generator. This procedure is
repeated ad infinitum, of course, one stops, as soon as the length of
the largest line segment in the graph is below the graphic device.
Whether or not the Koch curve yields a conveying sequence of
images or even curves depends on the choice of the initiator and

generator.



2.5.3 Length of the Koch Curve
At each stage in the original Koch curve, we obtain a curve. At the

first, we are left with a curve which is made up of 4 line segments of
the same length, after the second step we have 4x4, and then 4 x 4 X
4 lie segments after the third step, and so on. Qf the original line had

length L, then after the first step a line has length L><]5 after the

second step, we have Lx%, then Lxgl_;, and so on. Since each of the

steps produces a curve of line segments, there is no problem in

measuring their respective lengths. After the first step it is 4xLx%,

then 42xLx—1—

—, and so on. After thet" step, it 54" x Lx—. We

3 3

observe that from step to step the length of the curve grows by a
4 .

factor of5 . This presents some problems. First of all, the Koch curve

is the object which one obtains if one repeats the construction steps
infinitely often. But what does this mean? Next even if we could
answer this question, why is it a curve which comes out? Qr why is it

that the curves in each step do not intersect themselves.

Figure 2.12: Construction process of the Koch curve
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In figure (2.12), we see two curves which we can hardly distinguish.
But they are different. The top one shows the result of the construction
after 5 steps, while the other curve shows the result after 20 steps. In

: . o
other words, since the length of the individual line segment is .

where kis the number of steps, it is clear that any of the changes in
the construction are soon below visibility unless one works under a
microscope. Thus, for practical purposes, one is tempted to be
satisfied with a display of something like the 10" step, or whatever is
appropriate to fool the eye. But such an object is not the Koch curve.
It would have a finite length and would still show its straight line
construction segments under sufficient magnification.

2.6 Space-Filling Curves

Talking about dimensions in an intuitive way, we perceive lines to be
typical for one-dimensional objects and planes as typical for two-
dimensional objects. In 1890 Giuseppe Peano (1858-1932) and
immediately after that in 1891, David Hilbert (1862-1943), discussed
curves which live in a plane and which dramatically demonstrate that
our naive idea about curves is very limited. They discussed curves
which "fill" a plane, i.e. given some patch of the plane, there is a curve
which meets every point in that patch.
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Figure 2.13: Construction of a plane-filling curve with initiator and generator

Figure (2.‘13) indicates that first steps of the iterative construction of
Peano's original curve. In nature the organization of space-filling
structures is one of the fundamental building blocks of living beings.
An organ must be supplied with necessary supporting substances such
as water and oxygen. In many cases these substances will be
transported through vessel system that must reach every point in the
volume of the organ. For example, the kidney houses three interwoven
tree-like vessel systems, the arterial, the veins, and the urinary
systems. Fractals solve the problem of how to organize such a
complicated structure in an efficient way. Qf course, this was not what
Peano and Hilbert were interested in over 100 years ago. It is only
now after Mandelbrot's work, that the omnipresence of fractals has
become apparent.

The Peano curve is obtained by anther vefsion of the Koch curve
construction. We begin with a single line segment, the initiator, and
then substitute the segment as shown in figure 2.13. Apparently, the
generator has two points of self-intersection. More precisely, the curve
touches itself at two points. Nbserve that this generator curve fits

nicely into a square whose points will be reached by the Peano curve.
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Take each straight line piece of the curve in the first stage and replace
it by the properly scaled down generator. Qbviously the scaling factor
is 3. This constitutes stage 2. There are a total of 32 self-intersecting
points in the curve. Now we repeat, i.e. in each step, line segments
are scaled down by a factor of 3. Thus, in the £” step, a line segment

has a lengthik, which is a very rapidly declining number. Since each

line segment is replaced nine line segments of one-third
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Figure 2.14: First page of Hilbert's original; paper 1890

The length of the previous line segments, we can easily calculate the
length of the curves in each step. Assume that the length of the
original line segment constituting the initiator was 1, then we obtain in

1
stage 1:9x§=3 , and stage 21:9x9x3L2=9. Expressed as a general
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rule, in each step of the construction, the resulting curve increases in

length by a factor of 3. In stage k, the length is 3*..

2.7 Self-Similarity

The Peano curve construction, though as easy or as difficult, as the
construction of the Koch curve, bears within it several difficulties
which did not occur or were hidden in the latter construction.
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Figure 2.7'5: Second page of Hilbert 's paper 1890

For example, take the intrinsic concept of self-similarity. For the
construction of the Koch curve, it seemed that we could say that the
final curve has similarity with each of the preceding steps. Qf you look
at the Peano curve in the same intuitive way, each of the steps has
similarity with the preceding steps; but if you look at the final curve,
essentially we see a filled out square which does not look at all similar
to the early steps of the construction. In other words, either the Peano
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curve is not self-similar, or we have to be much more careful in

describing what self-similar means.
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Figure 2.16: Peano curve of four different stages traced out

In conclusion, we have shown that a notion of self-similarity in a strict
sense requires a discussion of the object which finally results from the
construction of the underlying feedback system. NQne must carefully
distinguish between a finite construction stage and the fractal itself.
But if that is so, then how can we discuss the forms and patterns we
see in nature, as for example the cauliflower, from that point of view?
The cauliflower shows the same forms - clusters are composed of
smaller clusters of essentially the same form - over a range of several,
say five or six, magnification scales. This suggests that the cauliflower
should be discussed in the framework of fractal geometry very much
like our plates are suitably discussed within the framework of
Euclidean geometry. But a plant is not a perfect sphere and the
cauliflower is not perfectly self-similar. First, there are imperfections in
self-similarity: a little cluster is not an exact scaled version of a larger
cluster. But more importantly, the range of magnification within which
we see similar forms is finite. Therefore, fractals can only be used as
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models for natural shapes, and one must be always be aware of the

limitations.

2.8 Fractals and the Problem of Dimension
The invention of space-filling curves was a major event in the

development of the concept of dimension. They questioned the . ..

intuitive perception of curves as one- dimensional objects, because
they filled the plane (i.e. an object which is intuitively perceived as
two-dimensional). Talking about fractals, we usually think of the
fractal dimension, Hausdorff dimension or box counting dimension
whose original concepts reside in the early development of topology.
Topology is a branch of mathematics which has essentially been

developed in the 20th century. It deals with the question of form and
shape from a qualitative point of view. Two of the basic notions are
dimension and homeomorphism. Topology deals with the shapes that
can be pulled and distorted in a space that behaves like a rubber.

Figure 2.17: A circle can be continuously deformed into a triangle

In topology, straight lines can be bent into curves and circles can be

pinched into triangles or pulled out as squares. For example, from the
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point of view topology, a straight line and the Koch curve cannot be
distinguished. AQr the coast of a Koch island is the same as a circle. Or
a plain sheet is equivalent to one which is infinitely crumpled.
However, not everything is topologically changeable. Intersection of
lines, for example remain intersections. Intersection is invariant; it
cannot be destroyed nor can new ones be born, no matter how much
the lines are stretched and twisted. The number of holes in an object is
also topologically invariant, meaning that a sphere may be
transformed into the surface of a horse-shoe, but never into a
doughnut. The transformations which are allowed are called
homeomorphisms, and when applied, they must not change the
invariant properties of the objects. Thus, a sphere and the surface of a
cube are homeomorphic, but the sphere and a doughnut are not. A
straight line and the Koch curve are topologically the same. Moreover,
a straight line is a prototype of an object which has dimension one.
Thus, if the concept of dimension is a topological notion, we could
expect that the Koch has topological dimension one. This is, however,
a delicate matter and it troubled mathematicians around the turn of
the twentieth century. The history of the various notions f dimension
involves the greatest mathematicians of that time: men like Pointcare,
H. Lesbesgue, L.E.]J. Brouwer, G. cantor, K. Menger, W. Harowitcz, P.
Alexandroff, L. Pontragin, G. Peano, P. Urysohn, E. Cech and D.
Hilbert. That history is very closely related to the creation of early
fractals. Hausdoff remarked that the problem of creating the notion of
dimension is a very complicated one. People had an intuitive idea
about dimension: the dimension of an object, say X, is the number of
independent parameters (coordinates), which are required for the

unique description of its points.
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Poincare's idea was inductive in nature and started with a point. A
point has dimension 0. Then a line has dimension 1, because it can be
split into two parts by a point (which has dimension 0) and a square
has dimension 2 because it can be split into 2 parts by a line (which
has dimension 1). A cube has dimension 3 because it can be split into

2 parts by a square (which has dimension 2)

In the development of topology, mathematicians looked for qualitative
features which would not change when the objects were transformed
properly (technically by a homeomorphism). Two objectsX and Y
(topological spaces) are homeomorphic if there is a homeomorphism
h:X -»Y (i.e. a continuous one-to-one and onto mapping that has a
continuous inverses™). The topological dimension of an object
certainly should be preserved. But it turned out that there were severe
difficulties in aiming at a proper and detailed notion of dimension
which would behave that way. For example, in 1878, Cantor formed a
transformation from the unit interval [0,] to the unit square [0,I]x[0,!]
which was one-to-one and onto. Thus it seemed that we need only one
parameter for the description of the points in a square. But Cantor's
transformation is not a homeomorphism. It is not continuous, i.e. it
does not yield a space-filling curve. But then the plane-filling
construction of Peano and later Hilbert yielded transformation g from
the unit interval [0,1] to the unit square [0,1]x[0,1] which were even
and continuous. But they were not one-to-one (i.e. there are points,
sayx, and x,(x, #x,)in the unit interval which are mapped to the same

point square y=g(x,)=g(x,). This questioned the question - which so

far seemed to have an obvious answer - whether or not there is a one-
to-one and onto transformation between 71=[01] and 7*=[0,1]x[0,]

which is continuous in both directions. Qr more generally, is the m-
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dimensional one, 1" =[01]" n#zm. If there is such a transformation,

mathematicians felt they were in trouble: a one-dimensional object
would be homeomorphic to a two-dimensional one. Thus, the idea of

topological invariance would be wrong.

Between 1890 and 1910 several proofs appeared showing that /" and
I"are not homeomorphic where n#m, but the arguments were not
complete. It was the Dutch mathematician Brouwer who ended the
crisis in 1917 by an elegant proof which enriched the development of
topology enormously. But the struggle for a suitable notion of
dimension and a proof that obvious objects - like /" - had obvious
dimensions went on for two more decades. The work of the German
mathematician Hausdorff (which led eventually to fractal dimension)
also falls in this time span.

During the 20™ century mathematicians came up with many different
notions of dimension (small inductive dimension, covering dimension,
homological dimension) (C. Kovatowski, 1978). Several of them are
topological in nature: their value is always a natural number (or 0 for
points) and does not change for topologically equivalent objects.

2.9 The Fractal Dimension

Mandelbrot (1982) offers the following tentative definition of a fractal:
"A fractal is by definition a set for which the Hausdorf-Besicovitch
dimension strictly exceeds the topological dimension"

This definition requires a definition of the term set, Hasudorff-
Besicovitch dimension (D)and topological dimension(D,), which is

always an integer. For the present purpose we find that a rather loose
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definition of these terms and illustrations - using simple examples - is
more useful than the more formal mathematical discussion available.
In fact Mandelbrot (1986) has retracted this tentative definition and

proposes instead the following:
"A fractal is @ shape made of parts similar to the whole in some way"

A neat and complete characterization of fractals is still lacking

(Mandelbrot, 1987). The point is that the first definition, although

correct and precise, is too restrictive. It excludes many fractals that
are useful in physics. A fractal looks the same whatever the scale. An
example of this is the cumulus clouds. They consist of big heaps with
smaller bulges that have smaller bumps with bumps on them and so
on down to the smallest scale you can resolve. In fact, from a picture
showing only the clouds we cannot estimate the size of the clouds
without extra information. Fractals may be considered to be sets of
points in space. For example, the set of points that make up a line in
ordinary Euclidean space has the topological dimension D, =land the
Hausdorff-Besicovitch dimension D=1. The Euclidean dimension of
space is E=3. Since D=D,for the line it is not a fractal according to
Mandelbrot's definition. Similarly, the set of points that form a surface
in E=3space has the topological dimension D,, and D=2 . Again an

ordinary surface is not fractal independent of how complicated it is.
Also, a ball or sphere has D=3and D, =3

The concept of a distance between points in space is central to the
definition of the Hausdorff-Besicovitch dimension and therefore of the

fractal dimension D. How do we measure the 'size' of a set of points in
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space? A simple way to measure the length of an object is to divide
space into smaller cubes of sides 8 as illustrated in figure
(2.18) space :
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Figure 2.17: The coast of Southern part of Norway

Figure: 2.18: Measuring the size of curves

We might use small spheres of diameter &§instead. If we centre a
small sphere on a point in the set then all point that are at a distance
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r<15from the point at the centre are covered by the sphere. By
2

counting the number of spheres needed to cover the set of points we
obtain a measure of the size of the set. A curve can be measured by
finding the number N(5) of line segments of length § needed to cover

the line. For an ordinary curve we have N(5)=L%. The length of the:

curve is given by L=N(§)-5T>L05°In the limit § -0, the measure

Lbecomes asymptotically equal to the length of the curve and is
independent of 6. We may choose to associate an area with the set
points defining a curve by giving the number of disks or squares
needed to cover the curve. This number of squares is again N(J§), and

each square has an area of §°. The associated area is therefore given
by

A=N(8) 6’ —=> L'

Similarly, we may associate a volume, V', with the line as follows
V=N(@) 6 —=>L5°

For ordinary curves both 4 and ¥ tend to zero as § vanishes, and the

only interesting measure is the length of the curve. We find that for an

ordinary surface the number of squares needed to tile it is N(5):f%ﬁ2

in the limit of vanishing &6, where 4;is the area of the surface, we

may associate volume with the surface by forming the sum of the
volumes of the cube needed to cover the surface.

V=N(8) 6 —=—> L5’

What if we associate a length with a surface:

L=N(3) 8§ —=—L,6'which diverges for &§—0. This result s

measurable since it is impossible to cover a surface with a finite

number of line segments. We conclude that the only useful measure of
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a set of points defined by a surface in three dimensional space is the

area.

We shall see that one may easily define sets of points that are curves
which twist so badly that their length is infinite and in fact three curves .

(Peano curves) that fill the space. Also there are surfaces that fold so "

wildly that they fill space. In order to discuss such strange sets of o

points it is useful to generalize the measure of the size first discussed.
So far in order to give a measure of the size of a set of points, S, is

space we take a test function A(s)=y(5)5- a line, square, disk, ball or
cube - and cover the set to form the measure M, = k()

for lines squares and cubes the geometrical factor y(d)=1 (Feder,
1988). We have y=%for disks, y:% for spheres. In general, we find

that, as 60, the measure M,=) h(S)is either zero or infinite

depending on the choice of 4- the dimension of the measure. The
Hausdorff-Besicovitch dimension D of the set Sis the critical
dimension for which the measure M, changes from zero to infinity:

0,d<D

M, =Y 763" =y(d)N(6) T’{w, d>D

M, is called the d-measure of the set. The value of M, for d=Dis

often finite but may be zero or infinite; it is the position of the jump
M, as a function of 4 that is important. This definition defines the

Hausdorff- Besicovitch dimension D as a local property in the sense
that it measures properties of sets of points in the limit of vanishing
diameter or size §of the test function and to cover the set. It also
follows that the fractal dimension Dmay depend on position. Actually,
there are several fine points that have to be considered. In particular,

45



the definition of the Hausdorff-Besicovitch dimension allows for a
covering of the set by "balls" that are not of the same size, but have
diameters less than 8 . The 8 -measure is then the infimum: roughly
the minimal value obtainable in all possible coverings. The case in
which the Hausdorff-Besicovitch dimension is non-integer is said to be

fractal. The definition (*) of the fractal dimension can be sued in

practice. Consider again the coastline shown in Fig (2.18) which have
been covered with a set of squares with edge length §, with the unit

of length taken to equal the edge of the frame. Counting the number V
of squares needed to cover the coastline given the number N(5). Now

we may proceed as implied by equation (*) and calculate M,, or we
may simply go ahead and find N(5)for smaller values of § . Since it

follows from equation (*), that asymptotically in the limit of small ¢,

1
N(5)~F )

We may determine the fractal dimension of the coastline by finding the

slope of InN(S) plotted as a function of In§ The resulting plot for the

coastline shown in Fig 2.17 is presented in Fig 2.19
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Figure 2.19: The number of 'boxes' needed to cover the coastline in figure in figure
2.17
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We find approximately that D=1.5. The dimension N(5), determined

for equation (*1) by counting the number of boxes needed to cover
the set as a function of the box size, is now called the box-counting
dimension or box-dimension. More generally, therefore, a fractal
dimension, sometimes used to refer to what is commonly called the
capacity dimension, is roughly speaking the exponent D in the
expression

n(e)=¢"where n(g) is the minimum number of open sets of diameter s

needed to cover the set.

2.10 Mathematical Foundations in Image Processing

Image processing is divided into three parts, corresponding to as many
goals. The first one derives from the discrete nature of images and the
search for their minimal representation in terms of digital memory.
This discipline is called image compression. The second goal is the
restoration of a better version of an image, given a generation model
with noise an blur and other perturbations. The third goal is analysis,
which means in Greek "breaking into parts". In analysis, all spurious
details disappear leaving only the main structures. The aim is not
denoising or compression but to construct an invariant code putting in
evidence the main parts and permitting a fast recognition in a large

database of shapes.

2.11 The Heat Equation

The heat equation arises naturally in the image generation process.
Indeed, according to Shannon's theory, an image can be correctly
represented as a discrete set of values, the "samples", only if it has
been previously smoothed. We start withU,the original image. Then a
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blur kernel Kis applied, i.e. we convolve U, with X to obtain a new
image K =*U,. A subsequent subsampling is thereafter possible, where

the distance between samples is related to the bandwidth of the blur
kernel by the Nyquist rule. Stability of the image representation is
maintained. This simple remark that smoothing is necessary part of
image formation, leads to our first PDEs. The difference between the .
original and the blurred image is roughly proportional to its Laplacian |
(Gabor, 1960). In order to formalize this remark, we have to notice
that K is spatially concentrated and that we may introduce a scale

parameter for K, namely

K (x)= lK(hL/)

Then,
Lig! K"(;)_U°(x)—+ AU,(x) so that when » gets smaller, the blur process
looks more and more like the heat equation
a@—i{:AU,U(O):U0 Conversely, Gabor deduced that we can, in some
extent, deblur an image by reversing time in the heat equation

aa—(z] = =AU, U(0)=U ruona

Numerically, this amounts to subtracting its Laplacian from the
observed image:

U U - hAU
This equation can be repeated several times with some small values of
h until it blows up. The reversed heat equation is extremely ill-posed.
All the same, Gabor’ s method is efficient and can be applied with
some success to most digital images obtained from an optical device.
We therefore set two directions. Qne is to improve, to stabilize the
reverse heat equation. This can be done through nonlinear models.

restored — 7 observed observed
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The second direction is to go on with the heat equation: we can
numerically simulate a further blurring of the image. This leads to the
wavelet theory and its applications to optimal multiscale sampling and
compression. Second, iterated linear and nonlinear smoothing (i.e.
nonlinear PDEs) will relevant to image analysis. We can improve the
time-reverse ht equation. A pseudoinverse is used where the f
propagation term Du - is tuned by the sign of the Laplacian

aa_(tj = —signAUIDu|

This equation is called a "shock filter". This equation propagates, with
constant speed, the level lines of the image in the same direction as
the reverse heat equation would do. It therefore enhances the image.
The equation more or less equivalent to a nonlinear filter due to
Kramer filter can be interpreted as a partial differential equation, by
the same kind of heuristic arguments which Gabor developed to derive
the heat equation. The equation is

aa_(t] = —signDzu(Du,DulDul

thus, the Laplacian is replaced by a directional second derivative of

the image D’u(Du,Du). Kramer's version yields a slightly better

version of the shock filter. The third deblurring method is to the best
knowledge, the best version. It poses the deblurring problem as an

inverse problem. Given the observed image U, , we try to find a
restored version U such that K *Uis as close as possible to U, and
the oscillations of U is nonetheless bounded:

Ui = Arg min([|Du] + A(K xU U, )
The parameter A tunes the oscillations we allow for the restored

version. If Aiis large, the restored version will satisfy accurately the
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equationK *U =U,, but may be very oscillatory. If instead Ais small,

we get a smooth but inaccurate solution. This parameter can be
computed in principle as a Lagrange multiplier. The obtained
restoration can be remarkable.

In image analysis, the heat equation has had s very different use:
Marr, Hildreth, Canny, Witkin, Koendrink proposed in the eighties to
analyze an image by applying the heat equation. The heat equation is
easily proved to be the only good candidate if the image analysis has
to be linear. The question arises of what derivations should be
computed in an image. The early research in computer vision proposed
"edge detection" as a main tool: it is assumed that the apparent
contours of the objects and also the boundaries and facets of objects,
result in step discontinuities in the image, while inside those
boundaries, the image oscillates only mildly. The apparent contour
points or "edge points" will be computed as points where the gradient
is in some sense largest. Two ways to so: Hildreth and Marr proposed
the points where A (7 crosses zero. A significant improvement was
done by Canny, who proposed to compute the points whereDu is

maximal on the gradient lines. Such points satisfy D?u(Du, Du)=0

The heat equation under sound invariant requirements is the only
good linear filter. But there are nonlinear ways to smooth an image.
The first one was proposed by Perona and Malik. The idea is roughly
to smooth out what has to be smoothed, the irrelevant, homogenous
regions and enhance instead the boundaries. Thus, the diffusion

should look like the heat equation when |Dy| is small and an inverse

heat equation should instead be applied when |Duis large. Here is the
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equation in divergence form aa—U = div(quuF))"where
t

1 i : .
g(s)=1+ﬂs2 decreases when s increases. It is easily checked that we

have diffusion equation when |Dy<i and an inverse diffusion
equation when |Du|> 4. In order to do so, we rewrite the equation in

the following way. We consider the second derivative of U in the
derivative of Du

5 | -Dw <D
U =D e
B u[lDul’lDulJ

and the second derivative in the orthogonal direction,

1
U, =Dzu(Du_L Du J

N
where
Du=(Uv\.,U_‘,)and Dul=(—Uy,Ux). The Laplacian can be rewritten in the

intrinsic coordinates (£,7) as  AU=U.+U,. The Perona-Malik

m*

equation rewrites as

w__ U, (-2,

o 1+2Duf 1+ 2|Dd}

So the first term always appears as a one-dimensional heat equation
in the directional heat equation, or reverse heat equation in the
direction of the gradient. So this model mixes the heat equation and

the reverse heat equation.

The Perona-Malik model attempts to put in a single operator two very
different goals which we already mentioned, namely restoration and
analysis. But it comes at a cost: the model contains a "contrast

‘threshold" which can only be fixed manually. Mathematical existence
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and uniqueness are not guaranteed, despite some attempts by
Kichenassamy and Weickert. We summarize the involved parameters:
we need to fix both 4 and the smoothing scale(s),r and the threshold

on the gradient in Canny's edge detector as well. This means that we
have a two parameter game: How this will be dealt with in automatic
image analysis has no general answer for the time being.

2.12 Contributions to Fractals and Image Processing
Contributions in image processing have come through four main
approaches. Two of which rely on geometric space techniques and the
other two abstract space techniques.

Under geometric space techniques we have:
1. Linear Models comprising of
(a) Convolution
(b) Fourier analysis
(c) Tomography
(d) Kriging, splines

2. Nonlinear Models
(a) Morphological filtering
(b) Granulometry
(c) Random sets
(d) Watersheds

Under abstract spaces, we have

1.  Statistical models using techniques such as
(a) Multivariate analysis
(b) Neuronalnets
(c) Sterelogy
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2. Syntactical Models such as
(a) Semantic approaches
(b) Grammars
(¢) Neuronal nets

2123 Linear Models
Linear models have the vector space as a working structure i.e. a set
of vectors V such that
(i) Vis a commutative group
(i) Kis a field
and there exists can external law of multiplication between scalars
and vectors.

The main vehicle for linear models in image processing is the linear
heat equation, first suggested by Gabor, 1960 and he came up with
the following smoothing equation

fim U, * Kh(;)‘ Uo(x) * Uo(x)

h—0

and the deblurring equation

& sy U(0)=U
ot

restored

Rudin and Nsher in 1987 and 1992 proposed a pseudoinverse
equation where the propagation term (Du) is tuned by the sign of the

Laplacian
L —signAU| Dyl
ot

the equation is called a shock filter.
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Nonlinear Models

Perona and Malik in 1987 developed the following which is nonlinear
for which no mathematical existence and uniqueness have been
guaranteed despite efforts by Kichenassamy and Weikert. It is given

as

_a_U_ B Ug + (1 ~ /12|Du|2)]'7'l
o 1+2|Du 1+ 2|Duf

a lot of nonlinear image analysis models have been tried in the last 15
years. Actually almost all possible nonlinear parabolic equations have

been proposed, some given below.

The Rudin-Qsher-Fatemi's Model
This consists, for the smoothing term, of minimizing the total variation

of U . The gradient descent for [|Du| writes

oU Du 1

it o f Tk

or \|Du|) |Dyl

written in this way, the method appears as diffusion in the direction
orthogonal to the gradient, tuned by the magnitude of the gradient.

Casselles and Coll proved that this equation is indeed well-posed in
the space of bounded variation. A variant was proposed by Alvarez et

al,

oU  |Dy ,(Du] 1

o " U
o [K*Du \|[Dd) [K*Dd ¥

where the tuning of the gradient in nonlocal.
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Kimia, Tonnenbaum and Zacker proposed, endowed in a more general

analysis framework, the equation

aU |Du|dn{ J D (Dul Du}
| Dy |Du| * | Dy

this equation had been proposed before in another context by Sethian
as a tool for front propagation algorithms. This equation, which we call
in continuation "curvature equation", is a "pure" diffusion in the
direction orthogonal to the gradient. The Weickert equation is a variant
of the curvature equation with nonlocal estimate of the direction
orthogonal to the gradient: the diffusion direction

d = sEigen(K * (Du ® Du))

is computed as the eigenvector of the least eigenvalue of

K *(Du® Du) if the convolution kernel, the eigenvector is simply Du*.

Nther diffusions have been considered as well: for interpolation goals,
Caselles et al., proposed a diffusion which may be interpreted as the
strongest possible image smoothing,

ou
o

Zhong and Camona proposed a diffusion in the direction

= D*u(Du, Du)

0fd=sEigen(Du2) of the eigenvector with least eigenvalue of Du’.

Sochen, Kimmel and Malladi proposed instead a nondegenrate
diffusion, associated with a minimal surface variational formulation:
their idea was to make a gradient descent for the area of the graph

U, Hl +\Du2 , which leads to the diffusion equation
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2.12.2 Contribution to Fractals
Fractals came from chaos theory. Therefore, no discussion of fractals

without reference to chaos theory is complete. The science of fractals
must be credited first to Mandelbrot. Here we present renditions of

the Mandelbrot set.

Figure 2.20: Renditions of the Mandelbrot set

In atmospheric physics the Lorenz equation has the following fractal
plot

Figure 2.21: The Lorenz equation
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We present Julia sets due to Gaston Julia

Figure 2.22: Julia sets
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Fig 2.23: Fractals due to Terry Wright
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Fig 2.25: Strange Attractors
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CHAPTER THREE

FRACTALS
3.1 Feedback and the Iterator
When we think of fractal images, figures or structures, we usually
perceive them as static objects. This is a legitimate initial standpoint in
many cases as for example when we deal with natural structures like

the ones in figures 3.1 to 3.3 below

Fig. 3.1 Red Lake Peak, the Sierra Nevada



Fig. 3.2 California Oak Tree, (Quercus lobata), Valley Oak

Fig 3.3: The fern. Verlag Gustav Fischer, Stuttgart

But this point of view tells us little about the evolution or generation of
a given structure, often as, for example in botany; we like to discuss
more than just the complexity of ripe plant. In fact any geometrical
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model of a plant which does not also incorporate its dynamic growth
plan will not lead very far. The same is true for mountains, whose
geometry is a result of past tectonic activity as well as erosion
processes which still and will forever shape what we see as mountains.
We can also say the same for the deposits of zinc in an electrolyte
experiment.

3.1.1 The Principle of Feedback

The most important example of a simple process with very
complicated behaviour is the process determined by expressions such
as x’+cwhere ¢ is considered to be a fixed constant or

p+rp(1- p)where r a constant.

Feedback processes are fundamental in all exact sciences. In fact they
were first introduced by Isaac Newton and Gottfried Leibniz some 300

years ago.

------

Fig, 3.4 The Feedback machine with IU = input Unit,
OU = Output Unit, CU = Control Unit

The feedback machine has three storage units (IU = input unit, OU =

Output Unit, CU = control Unit), and one processor all connected by

four transmission links [Peitgen, Jurgen ans Saupe, 1992]
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3.1.2 Types of Feedback Machines
We consider as simple examples of feedback machines which process
numbers. One-step machines are characterized by an iteration formula

x,, =f(x,), where f(x) can be any function of x. It requires some
number as input and returns a new output e.gf(x,)=x’+1). The

formula can be controlled by a fixed parameter (e.g. x*+c¢, i.e. with
control parameter ¢), but in any case the output depends only on the
input. The numbers are indexed in order to keep track of the time
(cycle) in which they were obtained.

> Ke ™ TiXg3 e L

i 3

Fig. 3.5 Principle of the one-step feedback machine

One-step machines are very useful mathematical tools and have been
developed in particular for numerical solution of complex problems.
One-step processes represent only a particular class of a family of
feedback methods. Multistep feedback processes are computed by a
formula such as

L5 ARPOE RN S SRR 1) O S 1

an example is the 2-step law which generates the Fibonacci numbers
g(x” = )= X Ry R s RS e 2

machines with memory are typical of our computer age. While a
machine without memory reacts to their inputs always in the same
way, a machine with memory may react differently upon taking its

own state or content of the memory into account.
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3.2 Self-Similarity in Fractals
Self-similarity is a concept which can be understood without any
trouble. The new bread romanesco (see figure below) a crossing

between cauliflower and broccoli, illustrates the concept.

Fig. 3.6 The brocolli romanesco, exhibits striking self-similarity

Macroscopically, we see a form which is best described as a cluster.
That cluster is composed of smaller clusters which look almost
identical to the entire cluster, however scaled down by some factor.
Each of these clusters again is composed of smaller ones, and these
again of even smaller ones, without difficulty, we can identify at least
three generations of clusters on clusters. The second, third and all the
following generations are essentially scaled down versions of the
previous ones. In a rough sense, this is what self-similarity means.
Below, we find the classical Mandelbrot fractal and a magnification of a
section of it. When the fractal is fully developed that is when the

image-generating iteration (egn 1) goes to infinity the image reaches a
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limit and becomes invariant under more iterations. At this point, the

self-similarity in the fractals is fully developed.

Fig 3.7: Mandelbrot classical fractal

Fig 3.8: Zooms of Mandelbrot classical fractal
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3.3 Limits and Self-similarity

A rigorous discussion of the concept of self-similarity is intimately
related to concepts of limits. The visual observation in nature,
however, is simple and immediate. Fractals add new dimension to the
problem of dealing with limits; but also a new perspective from which
to understand the concept of limits. On one hand fractals may
visualize the limit object in a feedback process; on the other hand
some fractals demonstrate self-similarity in its pure fbrm. In fact
.many fractals can be completely characterized and defined by their
self-similarity properties.

Self-similarity extends one of the most fruitful notions of elementary
geometry: similarity. Two objects are similar if they have the same
shape, regardless of their size. Corresponding angle, however, must
be equal and corresponding line segments must all have the same
factor of proportionality. For example, when a photo is enlarged it is
enlarged by the same factor in both horizontal and vertical<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>