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ABSTRACT 

In this thesis, we propose an infection age-structured mathematical model 

of the dynamics of HI VI AIDS pandemic in a community partitioned into 

two distinct compartments of susceptible and infected classes. The infect­

ed class is structured by age of infection, giving rise to a pair of model 

equations with one an ordinary differential equation and the other a 

partial differential equation. The equilibrium states are obtained and 

analyzed for stability using the modifi ed version of the Bellman and 

Cooke 's Theorem [5]. The Math-Cad Computing Application is used 

to obtain the tables from \\'hich the conclusions about the stability or 

instability of the system are drawn. 

vii 



CHAPTER ONE 

INTRODUCTION 

1.1 Background to the study: 

The need for the application of mathematical concepts to every aspect 

of human life in the present age of Science and Technology cannot be 

over-emphasized. Numerous phenomena can be conceptualized and 

transformed into mathematical problems. The solutions to such problems 

will then provide insights into such phenomena and also serve as bases 

for further investigation. The approaches to the solutions bring about 

special schemes which may be numerical or analytical in nature. 

Problems such as the existence of equilibrium states and their stability are 

of great interest in the mathematical models of population dynamics as 

pointed out in Akinwande [1]. because they serve as the bases for 

analysis and to draw conclusions . 

In this work we propose an infection age-structured mathematical 

model of HIV/AIDS dynamics. The model is a system of ordinary and 

partial differential equations. The population pet) is partitioned into two 

compartments of Susceptible Set), this is the class in which members are 

virus-free but are prone to infection as they interact with the members of 
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the infected class. The second class is the infected class I(t), this is the 

class of those that have contracted the virus, they are at various stages of 

infection. They exhibit the symptoms of full blown AIDS. 

The infected class is structured by the infection age with a density 

function pet, a) where '(is the time and 'a' is the infection age .There is 

a maximum infection age 'T' at which a member must leave the 

compartment via death that is when a=T. This is not withstanding that a 

member of both the susceptible class and the infected class still die by 

natural causes. 

This work has been divided into five chapters. Introduction is the first 

chapter. Related literature revi ewed in chapter two. The model equations 

with all the boundary conditions, the definition of parameters, the 

equilibrium states and corresponding characteristics are all presented in 

chapter three. In chapter four, we analyze and interpret the equilibrium 

states for stab ility or otherwise and finally , the conclusion and 

recommendations are presented in chapter five. 

1.2 Aims and Objectives of the Study 

The aims and objectives of this study are: 

(i) To propose a 2- dimensional mathematical model of HI VIA IDS 
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dynamics for a community. 

(ii) To analyze the equilibrium states for stability or instability. 

(iii) To draw conclusions on the spread and pattern of the dynamics . 

1.3 Significance of the Study: 

The interplay between the Human Immunodeficiency Virus (HIV) and 

the body system turns out to be significantly more dynamic than most 

biological scientists would have suspected. The weakening of the immune 

system of the infected person by HIV, day by day has grave social, 

economic and political implications to the entire nations and regions as 

the productive segments of the population are been incapacitated by the 

disease. 

The study of population has been of great relevance to the growth of 

any nation or community over time because of the practical influence it 

has on human life. "Population plays a vital role in the economic success 

of a nation" Odekunle [23] , to the extent that she cannot survive without 

adequately understanding the dynamism of her population. 

Population studies is also significant for both short term and long term 

planning in the fields of education, health, employment, social security 

and environmental preservation. The studies in addition, provide handy 
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information for formulation of government policies so as to achieve 

economical and social objectives. 

Since the study of population is so relevant in the existence of any 

nation, the formulation of mathematical models of real life phenomena 

has made immense and reliabl e contribution in the study of population 

dynamics in our lives as people. 

This research work is not an exception, but of its unique feature is that 

it is an infected age-structured population model of the dynamics of 

HIV/AIDS pandemic. An attempt is made to test the effectiveness of anti­

retroviral drugs with infection age for a longer life expectancy. 

1.4 Scope and Limitation of the Study: 

The population P (t) of this mode l is partitioned into two compartments: 

susceptible class and infected class. Hence, it is a two dimensional 

mathematical model. The effectiveness of anti-retroviral drugs 

application in slowing down the death of the infected victims of the 

disease is paramount in this study. One of the limitations of this work is 

the in- avai lability of data in a locality like Minna which would have been 

of great interest for case study_ hence the use of hypothetical values for 

the parameters. 
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1.5 A brief overview on HIV/AIDS pandemic: 

HIV is an abbreviation, which stands for Human Immunodeficiency 

Virus. HIV is a retrovirus, the causative agent of AIDS pandemic. AIDS 

on the other hand, stands for Acquired Immuno-Deficiency Syndrome. It 

is a syndrome which refers to a group of symptoms that collectively 

indicate or characterize a disease . 

It was discovered that HIV causes AIDS by destroying a certain kind 

of blood cell (CD4 T-cell), which is crucial to the normal functioning of 

the human immune system. In fact, loss of these cells in people with HIV 

is an extremely powerful predictor of the development of AIDS. Studies 

have revealed that most people infected by HIV carry the virus for 5 -10 

years before enough damage is done to the immune system for AIDS to 

develop . 

Patients are generally said to have crossed to the term AIDS when the 

helper cells come to zero functioning, in which a healthy individual 

whose CD+4 measure 2000 cells per micro-litre of blood fall short by 

200, Ibinaiye [16]. During this stage the viral level climbs sharply and the 

measure of immune activity drops sharply. 
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Once AIDS develops, people rarely survive for more than two years, 

but the persistence of a good immune response in the face of constant 

attack by HIV raises the issue of why a patient lives marginally longer. 

Kudos to scientific discovery of anti-retroviral drugs, its application 

according to doctors can slow down dramatically the destruction of the 

victim 's immune system which will consequently give a longer life-span. 

Scientists have identified two types of HIV: HIV -1 and HIV -2. The 

HIV -1 is the earliest known primary cause of AIDS world-wide while 

HIV -2 is prevalent mostly in West Africa. In persons infected with HIV-

2, the Immunodeficiency seems to develop more slowly compared to 

persons infected with HIV-l. HIV-2 is less infectious in the early stage of 

infection. The earliest known case of HI V-I in a human was from a blood 

sample collected in 1959 from a man in Kinshasa, Democratic Republic 

of Congo, (How he became infected was unknown) CDC[9]. The genetic 

analysis of his blood sample suggested that HIV-l may have stemmed 

from a ingle virus in the late 1940s or early 1950s. The virus was 

believed to have existed in the United States since, at least in the mid to 

late 1970s. 
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From 1979-1981 rare types of opportunistic infections such as 

pneumonia, cancer, and other illnesses were being reported by doctors in 

Los Angeles and New York among a number of patients who were 

homosexuals, these were conditions not clearly found in people with 

healthy immune systems. i.e. people with high number of CD4 T- cells. 

In 1983 scientists discovered the virus that causes AIDS, it was first , 

named HTLV (Human T-Cell Lymphotropic Virus type Ill) by an 

International Scientific Committee and this name was later changed to 

HIV (Human Immunodeficiency Virus). When HIV enters the body it 

infects the lymphocytes, the white blood cells (CD4 T-cells) of the 

immune system which fights against infections in the body. It was in 

1982, that public health officials began to use the term 'Acquired 

Immuno-Deficiency Syndrome' or AIDS to describe the occurrences of 

opportunistic infections. 

AIDS is a medical diagnosis made by doctors based on specific 

criteria established by the CDC [9] (Centre for Diseases Control and 

prevention) in New-York City. Its symptoms are similar to the symptoms 

of many other diseases. The only way to determine whether one is 

infected is to go for an HIV - status-test, i.e. to be tested for HIV 
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infection. You cannot rely on symptoms or not, to know whether or not 

you are infected with HIV. Man y people who are infected with HIV do 

not have any symptoms at all for many years. The following may be 

warning signs and symptoms of infection with HIV. 

• Rapid weight loss. 

• Dry cough. 

• Recurring fever or profuse night sweat. 

• Profound and unexplained fatigue. 

• Swollen lymph glands in the arm-pits, groin or neck. 

• Diarrhea that lasts for more than a week. 

• Pneumonia. 

• White sports or unusual blem ishes on the tongue, in the mouth and in 

the throat. 

• Memory loss, depression and other neurological disorders . 

• Red, brown, pink, purplish blotches on or under the skin or inside the 

mouth, nose or eye-lids. 

Similarly, you cannot rely on symptoms to establish that a person has 

AIDS. The symptoms of AIDS are similar to the symptoms of many other 

illnesses. 
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2.1 Introduction: 

CHAPTER TWO 

LITERATURE REVIEW 

The purpose of this chapter is to review some of the literature on the 

dynamics of HIV/AIDS pandemic. Thousands of mathematical models 

have been developed on this topic from different points of view, which 

can be grouped as follows: 

• HIV: Its Transmission I Spread . 

• HIV: Its Prevention and Treatment. 

2.2 Mathematical Modeling: 

Benyah [6], defines Mathematical Modeling as "the process of 

creating a mathematical representation of some phenomenon in order to 

gain a better understanding of that phenomenon", mathematical modeling 

has become a crucial engineering technique over a long period of time 

before now. This is because of its attempts to match observation with 

symbolic statement. 

Mathematical models stimulate our intuitive knowledge to generate 

new hypothesis, suggest experiments and measure crucial parameters. 

Essentially, any real life-situation in the physical and biological world, 
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whether natural or involving technology and in human intervention is 

subject to analysis by modeling if it can be put in quantitative terms. 

Thus, optimization and control theory may be used to model industrial 

processes, traffic patterns, sediment transport in streams and other 

situations; information and communication theory may be used to model 

message transmission; linguistic characteristics and the likes. Also 

dimensional analysis and computer simulation may be used to model 

atmospheric circulation patterns, stress distribution in engineering 

structures, the growth and development of land forms and a host of other 

processes in science and engineering. 

Once, a model has been developed and used to answer questions; it 

should be critically examined and often modified to obtain a more 

accurate reflection of the observed reality of that phenomenon. Generally, 

the success of a model depends on how easily it can be used and how 

accurate are its predictions. 

As emphasized by Benyah [6J "Mathematical modeling is an evolving 

process, as new insight is gained the process begins as additional factors 

are considered". 
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Steps to Mathematical Modeling: 

In building a mathematical model for a real-life situation it requires a 

thorough understanding of the underlying principles of the system to be 

modeled. During the process of building a mathematical model, the 

modeler will decide what factors can be de-emphasized. Different 

problems may require very different methods of approach. 

Benyah [6] , outlined the following steps as a general approach to the 

formulation of real-life problem in mathematical terms: 

(a) Identify the problem. 

(b) Identify the important variables and parameters. 

( c) Determine how they relate to each other, stating the assumptions. 

(d) Develop the equation(s) that express the relationship between the 

variables and constants. 

(e) Analyze and solve the resulting mathematical problem. 

Epidemiology is the mathematical study of the spread of disease and 

one of the most pressing problems in this area of recent has to do with 

HIV/AIDS. It is estimated that over 40 million people live with 

HIV/AIDS, and of these over 29 million are Africans, about 2.6 million 

of children aged 1-14 years are infected; about 11 million children are 
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orphaned world-wide by the scourge of which 950 000 or more are 

resident in Nigeria and the rate of infection in most of the developing 

countries is high" Farai [13]. 

2.3 HIV: Its Transmission / Spread. 

It is established that a lot of research has been conducted on the 

transmission HIV/AIDS . Consequently, there is a great deal of valuable 

scientific and public health information about the ways in which HIV is 

transmitted. 

CDC[9] (Centre for Disease Control and prevention) in New-York 

City explains that HIV is spread by sexual contact with an infected 

person, by sharing needles and/or syringes (primarily among drug users) 

and less commonly through transfusion of infected blood or blood 

clotting factors . Babies born to HIV infected women may become 

infected before or during birth or through breast-feeding after birth. 

On the fears of some people that HIV might be transmitted in other 

ways such as through air, water or insects. CDC pointed out that no 

scientific evidence to support any of the these fears has been found, 

adding that if HIV were being transmitted through other routes, the 

pattern of the reported cases would have been much different from what 
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has been observed. For example, if mosquitoes could transmit HIV 

infection, many more young children and pre-adolescents would have 

been diagnosed with AIDS. 

It is also important to note that infection with HIV has been the sole 

common factor shared by AIDS cases throughout the world among 

homosexuals, blood transfusion recipients, persons with hemophilia, sex 

partners of infected persons, children born to infected women and 

occupationally exposed health care workers. The conclusion after more 

than 20years of scientific research is that people, if exposed to HIV 

through sexual contact or injecting drug users for example, may become 

infected with HIV. If they become infected, most of them will eventually 

develop AIDS. 

In an attempt to find out if genetic mutation influences the spread of 

HIV/ AIDS, Krischner et al [19] designed a model that compares the rate 

of HIV transmission in two populations. All the individuals in one group 

have two copies of normal genetic mutation that protects persons from 

HIV infection (CCRS gene). The second group was a combination of 

individuals some with two mutated CCRS alleles, some with one mutated 

and one normal mutated allele. They found out that persons with two 
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copies or alleles of their mutation and one normal copy can be infected, 

but they carry lower levels of the virus and take two years longer, on 

average to develop AIDS. 

People with two normal coples of the CCRS gene are almost 

susceptible to HIV infections. In the model, population without the 

protective mutation, the researchers found out that HIV / AIDS prevalence 

increased logarithmically for the first 35yrs of the epidemic, reaching 18 

percent before leveling off. Whil e, in the model population with mutated 

CCRS gene, the prevalence reached approximately 12 percent. 

Prevalence began to decline after 70 years. 

Finally, their result suggested that the CCRS mutation limits the 

epidemic by decreasing the probability of infection due to lower viral 

found with one copy of the mutated gene. 

2.4 HIV: Its Prevention and Treatment. 

Prior to 1996, scientists estimated that about hal f the people with HIV 

would develop AIDS within 10years after becoming infected . The time 

varied from person to person and depended on many factors, including a 

person's health status, social status and his or her health related 

behaviours. 
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Joseph [17] examined the increasing of the HIV in the human body; 

his model gives an answer to the question why the space of time between 

HIV infection and outbreak of AIDS differs to a great extent. It also gives 

insight into the phenomenon that our immune system, generally cannot 

root out HIV completely once it sets into human system. 

Since 1996, the introduction of powerful anti - retroviral therapies has 

dramatically changed the progression time between HIV infection and the 

development of AIDS. 

Dominick and Martins [12] reviewed of mathematical models of HIV 

dynamics, disease progression and therapy started by introducing a basic 

model of virus infection and demonstrated how it was used to study HIV 

dynamics and to measure crucial parameters that lead to the new 

understanding of the disease process. Finally, they showed how 

mathematical models can be used to understand the correlation of long -

term immunological control of HIV and the design of therapy regimes that 

convert a progressing patient into a state of long - term non- progression. 

There are also other medical treatments that can prevent or cure some 

of the illnesses associated with AIDS, though the treatments do not cure 

AIDS itself. But, because of the advances in drugs therapies and other 

- 15 -



medical treatments, estimates of how many people will develop AIDS 

and how soon are being recalculated, revised, or are currently under 

study. As with other diseases, early detection of infection allows for more 

options for treatment and preventative health care. 

David et al [11] examined the impact of condom use on the sexual 

transmission of Human Immunodeficiency Virus (HI V) and Acquired 

Immune Deficiency Syndrome (AIDS) amongst a homosexual 

population. 

First, they derived a multi-group S~I~R-type model of HIV/AIDS 

transmission where the homosexual popUlation is split into sub-groups 

according to frequency of condom use. Both susceptible and infected 

individual can transfer between the different groups. They discussed in 

detail an important special case of their model-which includes two risk 

groups and perform an equilibrium and stability analysis for this special 

case. Their analysis shows that the model exhibits the result which was 

far from expectations. 

Michael et al [20] introduced a mathematical model to study 

accelerating impact of HIV infection on the incidence rates of 

tuberculosis (TB) disease. A sexually active population aged from 15 to 
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49years is followed cross-sectional over a period of time, beginning with 

the year in which an HIV infection was probably first present in the 

population. The model calculates the growing incidence rates of new TB 

disease in HIV -positive and in HIV -negative individuals. Model 

equations derived by an actual method, are developed recursively. Input 

information required for the calculations includes the age distribution of 

the study population, pre-HIV annual TB infection rates, annual HIV­

infection and mortality rates and estimates of annual TB disease break 

down rates in the absence and in the presence of the HIV infection. With 

correct input data the model provides a useful blueprint for health 

agencies in designing effective programme for curbing in the future, the 

course of similar dual epidemics in the population. 

Research works on risk and benefits of medication for Human 

Immuno- deficiency Virus (HIV) shows that infected patients are at the 

risk of developing fungal and bacterial infections that take the 

"opportunity" provided by the patient's weakened Immune System to 

attack the body. 

Moore at el [21] found out that the ability of zidovudine (ZDV) 

therapy to prolong survival in HI V-infected patients is limited to 1 and 2 
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years in patients with CD+ 4 cell-count of 500/mm3 or less, perhaps due 

to the emergence of ZDV which is HIV resistant. Beyond one year of 

ZDV use, changing to an alternative therapy - such as didanosine, 

zalcitabine, stavudine or combination of therapy may be appropriate, 

concluded the authors. 

They determined the duration of ZDV benefit in 393 patients receiving 

HIV care at a large urban clinic, 57 percent of the patients were injecting 

drug users. They compared the 235 patients who use ZDV with 158 non­

users and found out that the ri sk of dying was reduced two-thirds when 

ZDV was used for less than one year. 

However, this hazard declined only 25 percent by the second year. 

These findings demonstrate an early, though limited benefit of ZDV in an 

urban predominantly black population with a relatively high proportion of 

women and injecting drug users. This study proceeded current work on 

combination of therapies and contributed to the evolving knowledge 

based on treatment options for HI V-infected patients . 

Using a mathematical method called "Uncertainty analysis" in the 

University of California - Los Angeles (UCLA)[9] researchers led by 

Blower, calculated the impact of a range of variables on HIV infection in 
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San-Francisco. The researchers assumed that anti-retroviral treatments 

lower the amount of virus contained in the blood stream by at least half 

and possibly up to 100-fold: meaning that widespread use of anti­

retroviral drugs will make it more difficult for HIV -positive persons to 

transmit the virus to sex-partners. 

The mathematicians also assumed that drug resistant strains of HIV 

will develop but will be less infectious even with "worst-case 

assumptions" such as the evolution of drug resistant HIV that is infectious 

and an increase in unprotected sexual activity among persons using anti­

retroviral drugs are factored in the model and predict that anti-retroviral 

treatment will stop the HIV/AIDS epidemic in San Francisco "well 

before" the end of the century. Their prediction met with reactions from 

various researchers. 

Ganges [14] pointed out that other studies conducted in Uganda and 

United States have shown that anti-retroviral treatment "only marginally 

affects a person 's ability to infect" others with the virus. He added that 

the main reason why anti-retroviral treatment will not slow the epidemic 

is that "in the real world, most patients manage to sustain a 50 percent or 

less reduction" in viral load, a smaller reduction than calculated in the 
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UCLA study. 

The authors m [9] replied that their model was based on San 

Francisco data, where most patients on anti-retroviral therapy have 

experienced decrease in viral load of more 50 percent. Therefore, the 

pandemic could only be slowed down through the widespread usage of 

anti-retroviral drugs because treating only a small percentage of the HIV­

positive population would have "very little impact" on HIV transmission . 

They concluded that regardless of whether anti-retroviral can reverse the 

HIV/AIDS pandemic or not, the drugs "should be available to all who 

need them, regardless of their social status "because (the drugs) help 

extend life expectancy of the infected persons. 
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CHAPTER THREE 

THE MODEL EQUATIONS 

3.1 Introduction: 

In this work, we propose an infection age-structured mathematical 

model of HIV / AIDS dynamics . The population is partitioned into two 

compartments of susceptible class Set), this is the class in which members 

are virus-free but are prone to infection as they interact with the members 

of the infected class; The second class is the infected class I(t), this is the 

class of those that have contracted the virus, they are at various stages of 

infection, including that of full blown AIDS . 

The infected class is structured by the infection age with density 

function pCt a) where ' t' is the time and ' a ' is the infection age. There is 

a maximum infection age 'T' at which a member of the infected class 

must leave the compartment via death i.e. when a=T; this , not 

withstanding a member of the class could still die by natural causes at a 

rate ~, this is also applicable to the susceptible class S (t). 

We let the death rate via infection be G(a) = 5tan( rca ) where 8 is an 
2kT 

additional burden due to infection while k is a control parameter which 

could be associated with the measure of slowing down the death of the 
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infected such as the effectiveness of the application of anti-retroviral 

drugs which give the victims longer life-span. A high value of k will 

imply high effectiveness of such measure and vice-versa. It is assumed 

that while the new births in S (t) are born therein, the offspring of I(t) are 

shared between Set) and I(t) in the proportion e and 1-e, 0 ~ e ~ 1. 

3.2 Definition of parameters: 

The parameters used in the model equations of the population are 

defined as follows:-

~ = natural birth rate. 

~ = natural death rate. 

a = rate of contracting the HIV. 

0" (a) = death rate from infection where a = age of infection. 

h(a) = the gross death rate of the infected class. 

5 = an additional burden from infection which is being regulated 

by environmental factors such as the social status of the 

infected person; 0 ::; 5 < 1. 

k = measure of the effectiveness of efforts at slowing down the 

death of infected victims. It is the control parameter of the death 
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rate via infection. If the level of k is high, that indicates low death 

rate of infected persons and vice-versa. 

8 = the proportion of the offspring of the infected class which are 

virus-free at birth, 0 ~ e ~ I . 

1-8 = the proportion of the off-spring of the infected class which 

have contracted the virus. 

T= maximum infection age, but it is assumed that with 

effectiveness of k as ' a ' approaches T, O"(a) tends to infinity. 

Let the population pet) = s(t) + I(t) where S (t) is the susceptible 

class and I (t), is the infected class. We now, consider the system of 

the model equation as: 

dS I 

- = (fJ - ,u)S(t) + efJI(t) - as(t)I(t) 
dt 

And 

) 

I(t) = fp(t ,a)da , O ~ a < T 

o 

ap(t,a) ap(t ,Cl) h() ( ) 0 -'---'--'-- + + apt, a = 
at aa 

Where, 

h(a) = ,u + O"(a) 

(3.1 ) 

(3.2) 

(3.3) 

(3.4) 
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And 

(Y(a) = 6tan( tfa ), 
2kT 

(Y(a) ~ co as a ~ kT 

o 

o :s a<kT (3 .5) 

a 

Fig. 1: The Graph of Infection age against (Y(a), the Death rate via 

Infection. 

It is assumed that k
J 

< k2 < .......... < k . 

Let 

p(t,O) = B(t) = as(t)l(t) + (1- fJ)f31(t) (3.6) 

And, 

p(O,a) = ¢(a) (3.7) 

S(O) = So ' 1(0) = 10 (3.8) 
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3.3 Equilibrium State: 

At an equilibrium state, dS = 0 and op = 0 
dt at 

Let 

(S(t), J(t» = (x, y ) 

And 

p(t ,a) = ¢(a) 

From (3.2), 

T 

Y = f¢(a)da 
o 

From (3.6) 

¢(O) = B(O) = axy + (1- B)j3y 

Substituting (3.9) - (3.11) into (3.1) and (3.3) become 

(/3 - fL)x + Bj3y - axy = 0 

And, 

d¢(a) + h(a)¢(a) = 0 
da 

d¢(a) = -h(a)d(a) 
d(a) 
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(3.14) 
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Integrating (3.15) gives 

¢(a) = ¢(O)exp{ - fh(S)ds } (3.16) 

If 

w(a - s) = exp{ - fh(S)ds} (3.17) 

Then 

(3.18) 

Therefore (3.16) takes the form: 

¢(a) = ¢(O)w(a) (3.19) 

From (3.11) 

T 

Y = ¢(O) f w(a)da = ¢(O)UJ (3.20) 
o 

Where 

T 

UJ = f w(a)da (3.21 ) 
o 

Using (3.12) in (3 .20), gives 

y = (axy + (I - 8)f3y)UJ (3.22) 

Solve (3.13) and (3.22) simultaneously for xand y . 

From (3.22), either 
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y = ° or (ax + (1- B)f3)w = 1 
(3.23) 

x = _ 1_ (1 _ (1- B)f3w ) (3.24) 
aw 

From (3.13), ify = 0, x = 0 , thus the point(x,y)= (0,0) is the zero 

equilibrium state. And substituting (3 .24) into (3.12) we have, 

(13 - ,u)(1 - (1 - B)f3w ) 
y= 

a (1 - f3w ) 
(3.25) 

So, the point 

(X,y )=[_l (1 - (1 - B)f3w), (13 - ,u)(l - (1- B)f3w ) ] 
a w a(l - f3w) 

(3.26) 

given by (3.24) and (3.25) respectively is the non-zero equilibrium state. 

3.4 The Characteristic Equations: 

In order to obtain the characteristic equation, we shall perturb 

as fo llow: 

Set) = x + p(t) , pet) = peAl (3.27) 

let) = y + q(t) , q(t) = qeA 
I (3.28) 

And, 

p(t,a) = ¢(a) + 7J(a)e).1 (3.29) 
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T 

q = J17(a)da (3.30) 
o 

Substituting, (3.27) and (3.28) into the model equation (3.1) 

Considering (3.12) and neglecting term of order 2 (i .e. pq) gives the 

above equation as: 

Or 

(jJ - j.J - ay - A)p + (8jJ - ax)q = 0 

And, substituting (3.29) into (3.3 ) which is given by 

ap(t, a) +ap(t,a) + h( ) (t ) = 0 at aa a p ,a , 

We have, 

Differentiating with respect to ' a ' 

A17(a)eA
/ + ~¢(a) + eA

/ ~17(a) + h(a)¢(a) + h(a)1J (a)e A
/ = 0 

da da 

But, (3.14) is given by d¢(a) + h(a)¢(a) = o. 
da 
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(3.32) 

(3.33) 

(3.34) 



So equation (3.34) reduces to: 

d -7](a) + (h(a) + A )7] (a) = 0 
da 

Solving the ordinary differential equation (3.36), we have 

d7](a) = - (h(a) + A)da 
7](a) 

~(a) = ~(o)exp{ - I(,:t + h(S))dS} 

Integrating (3.38) over [0, T] gives 

Or 

-
q = ry(O)b(A) 

Where 

Since q = 7](O)b(A) , what is 7](0) then? 

From (3.12), ¢(O) = axy+(1-f))f3y 
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(3.3 5) 

(3.36) 

(3 .37) 

(3.38) 

(3.39) 

(3.40) 

(3.41 ) 



And from (3.29), pet, a) = ¢(a) + 77(a)e
A I 

Therefore, 

p(t, 0) = B(t) = ¢(O) + 77(O)e
AI (3.42) 

And, from (3.6) 

pet, 0) = B(t) = as(t)I(t) + (1- 8)/31(t) (3.43) 

Substituting (3.27) and (3.28) into (3.6), and using (3.12) and (3.42). 

Comparing (3.44) with (3.42) and using (3.12) for ¢(O) we have, 

axy + (1- 8)p'y + 77(O)e AI = axy + ay PeAl + axqeAI + a pqe2AI 

+ (1- 8)p'y + (1 - 8)/3qe A I 

(Neglecting the term of order 2) 

- - -
77(0) = ay P + axq + (1- 8)/3q 

Substituting 77(0) in (3.40) 

ay pb)" + [(ax + (1- 8)/3)b()..) - (jq = 0 
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(3.45) 

(3.46) 

(3.47) 



So from equations (3.32) and (3.47) the Jacobian determinant for 

the system with the eigenvalue A is: 

I 
{3-;..t-ay-J.. 

ayb(J..) 

8{3 -ax 

(ax + (1- 8){3)b(J..) _\ = 0 

and the characteristic equation is thus given by : 

({3 - ;..t - ay - J..)[(ax + (1- 8){3)b(J..) -\] - ayb(J..)(8{3 - ax) = 0 
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(3.48) 

(3.49) 



CHAPTER FOUR 

ST ABILITY OF EQUILIBRIUM STATES 

4.1 The Zero Equilibrium State: 

At the zero equilibrium state (x,y)= (0,0), the characteristic equation 

becomes: 

((3 -,u-A)[(1-8)(3b(A)- I] = 0 

So either 

(3-Jl- A =0 

Or 

(l-8)(3b(A)-1 = 0 

From (4.2), 

A <0 if (3<Ji 

( 4.1) 

(4.2) 

(4.3) 

(4.4) 

But (4.3) is a transcendental equation. We shall apply the Bellman and 

Cooke Theorem for the stability or otherwise of equilibrium states. The 

equation can be expressed in the form H(iy)=F(y)+iG(y), it is required 

that the real F(y) and imaginary G(y) parts of H(iy) will satisfy the 

condition if: (a) All the zeros ofF(y ) and G(y) are real and alternating. 

(b) The inequality F(y) G1(y)-F 1(y) G(y) > 0 be satisfied 

for at least one value ofy-(see Appendix). 
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From (3.40) 

Where 

h(s) = fJ. + o-(s) 

We leto-(s) = b' tan (~), for the purpose of computation, 
2kT 

so that 0 :s a < kT and 0 < k $ 1. 

a a 

f( A. + h(s) )ds = f(A. + Ji + o-(s) )ds 
o 

( ) 2kTb' ( JrQ ) = A.+ fJ. a + --Log sec -
Jr 2kT 

Therefore, 
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(4.5) 

(4.6) 

(4 .7) 

(4.8) 

(4.9) 

(4.10) 



(4.12) 

~ ( I ( )r p{-CA +,u)T + 2kT8 LOg SeC (~)}+ I 
1 s: 7[ 7[ 2k (A+ ,u) 
/\, + ,u. + u tan -

2k 

(4.13) 

1 { 2kT8 ( 7[ ) } 

( ( 

7[ )) exp -7[-Log sec 2k -,uT - AT 
A + ,u. + 8 tan -

2k 

- (A+,u) 
(4.14) 

Substituting (4.14) into (4.3) 

( A + ,u. + 8tan(~)) - (A + ,u)exp( 2kT8 LOg Sec(~) - /-tT - AT) 
(1- fJ){3 2k 7[ 2k 

(A + ,u { A + ,u + 8 tan ( ~ ) ) 
- I = 0 

- (A + ,u { A + ,u. + 8 tan ( ;k )) = 0 ( 4.15) 
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Let 

h(A) = 0 (4.16) 

(4.17) 

= (1- B)P ( A + p + Stan(~)) -(I - B)P(A + p)exp( 2k:S Log sec( ~) - pT - AT ) 

( 4.18) 

=(1- 8)13 A +(1- 8)13 ( ,u + 5tan( ~ )) 

(
2kT5 ( J[ ) ) - (1 - 8)f3Aexp -J[- Logsec 2k - fiT - AT 

(
2kT5 ( J[ ) ) -(\- 8)13 fi exp -J[-Log sec 2k - ,uT - AT 

( 4.19) 

(
2kT5 ( J[ ) ) -(1-8)13 A exp -J[-Logsec 2k - ,uT- AT 
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_ (I - 8)(3 fI ex{ 2k: 
8 

Log sec( ;k ) - fiT - AT J (4 .20) 

If we set A. = iw, we have that 

h(iw) = fe w) + ig(w) (4.21) 

The condition for Re A. <0 will then be given by the inequality 

f (O)g 1 (O)-fl (O)g(O) > 0 (4.22) 

Therefore, 

h(iw) = ((1- 8)(3- fI) (fl + 8tan(~))+((3 -8(3 -2f1- 8tan(~)}w 

, . ( 2kT8 ( ff ) 1 + w -(I -fJ )/3IW exp -7[-Logsec 2k - /-iT- iwT 

( 2kT5 ( 7[ ) ) -(1- fJ)/3 /-i exp - 7[ - Logsec 2k - /-iT - iwT (4.23) 

I 

Resolving into real and imaginary parts, we have 

f (w) = ((1- fJ)/3 - Ill) ( /-i + 5 tan(;k )) + w2 (4.24) 

g(w)= ( /3-fJ/3 - 2/-i - 5tan( ;k ))w 

( 2kT5 ( 7[ ) ) -(1- fJ)/3 w exp - 7[ - Log sec 2k - /-iT - wT 

( 2kT5 ( 7[ ) ) -(1 - fJ)/3 /-i exp - 7[ - Log sec 2k - /-iT - wT (4.25) 

- 36 -



From equations (4.24) and (4.25) , 
( 4.26) 

f l (W)=2w 

(
2kT8 (7[ 'I ) 

-(1- B){3 exp -7[- Log sec 2k j - fiT - wT 

(
2kT8 (7[ ) J +(l-B){3wTexp -7[-Logsec 2k - flT-wT 

(
2kT8 (7[ 'I ) 

+ (1 - B) {3 fI T exp -7[- Log sec 2k j - fiT - wT 
(4.27) 

(4.28) 

(
2kT8 (7[ 1 ) 

g (0) = -(1- B){3 fI exp -7[-Log sec 2k j - fiT 
(4.29) 

fl (0) = 0 
( 4.30) 

(
2kT8 ( 7[ 'I ) 

- (1 - B) {3 exp -7[-Log sec 2k j - fiT 

(
2kT8 (7[ 1 ) 

+ (l-B){3 fI Texp -7[-Log sec 2k j- fiT 
(4.31) 
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From (4.28) to (4.31) the inequality then gives 

f (O)g 1(0) > 0 
(4.32) 

Let 

J I (k) = f(O)g 1(0) ( 4.33) 

So the zero equilibrium state will be stable when 

fJ < f.1 and J I (k) > 0 (4.34) 

and unstable if otherwise. 

(
2kTO ( n ) ) -(1- B)fJ exp -n-Logsec 2k - f.1T 

+ (1- B)fJ f.1 Texp( 2k;O Log sec ( ;: ) - f.1T ) ] 

Using a Math Cad Software, hypothetical parameter values were used to 

generate a table of values for J I (k) so as to analyze the result, some of 

the values obtained are presented in table 4.1 below. 
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Table 4.1: The Table of values for the Zero equilibrium state. 

0 = 1.0 8=0.4 T = IO 

k ll(k) Remarks ll(k) Remarks ll(k) Remarks ll(k) Remarks 

f3 = 0.5, f3 = 0.25 , f3 = 0.15 f3 = 0.20, 

j..l = 0.2 j..l = 0.50 j..l = 0.20 j..l = 0.15 

0.2 0.27 stable 0.796 stable 0.04 stable 0.003 stable 

0.3 - 0.003 Unstable 0.514 stable 0.06 stable 0.012 stable 

0.4 - 0.013 Unstable 0.395 stable 0.043 stable 0.008 stable 

0.5 - 0.012 Unstable 0.333 stable 0.033 stable 0.006 stable 

0.6 - 0.010 Unstable 0.296 stable 0.027 stable 0.005 stable 

0.7 - 0.009 Unstable 0.272 stable 0.024 stable 0.004 stable 

0.8 - 0.008 Unstable 0.254 stable 0.021 stable 0.004 stable 

0.9 - 0.007 Unstable 0.214 stable 0.019 stable 0.003 stable 

1.0 - 0.006 Unstable 0.230 stable 0.017 stable 0.003 stable 
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4.2 The Non-zero Equilibrium state: 

At the non - zero equilibrium state 

Where 

T 

x = 
1- (1- B)j1w 

a lII 

_ (j1 - fL )(1 - (I - B)j1lII) 
y-

a (l- j1w) 

w = f co (a)da ; coCa) = exp {-h(s )ds} and from (4.16), we have that 
o 

I I ( 2kTO ( " ) ) 
b(A)=lII=(A + fL) (1 s: (,, )) exp - ,,- Logsec 2k -fLT- AT (4 .35 

/L. + fL + u tan -
2k 

Consider the characteristic equation (3.49) 

(j1 - fl - ay - A ) [(ax + (l - BJ1)b(A)) - I]- ay(Bj1 - ax)b(A) = O 

Substituting b(A) into (3.49), we have 

(j1-p - ay- A ) 

I 
(ax + (1- B)j1) -­

(A+ p) 

- ay(Bj1- ax) 
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=0 
(A + /1) 

Simplifying, we have 

Let equation (4.36) takes the form 

H( A) = 0 ( 4.37) 

H(A) = ([3 - /1- ay- A) 

[
2kT5 ( 7r ) ) - (ax + (1- 8)[3)A exp - 7r - Lug sec 2k - /1T - AT 

[
2kT5 ( 7r ) ) - (ax + (1- 8)[3) /1 exp -7r- Log sec 2k - ItT - AT 
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(
2kTt5 ( 1[ ) J +ay(()!3-ax)Aexp -1[-Logsec 2k -pT-AT 

(
2kTt5 ( 1[ ) J +ay(()!3-ax)pexp -1[-Logsec 2k -llT-AT (4.38) 

Setting A = iw 

H ( iw ) = (!3 - Jl - ay - iw ) 

{(ax + (1 - B)p)iw+ (ax + (1 - BltI{J1 + 8tan( ;k) 1 

. ( 2kT5 ( 1[ ) 1 - (ax + (1- ())f3)lW exp -1[- Log sec 2k - JlT - iwT 

(
2kT5 ( 1[ ) 1 -(ax+(1-())!3)Jl exp -1[-Logsec 2k -JlT-iwT 

+ w' - ( J1 + 8tan(;k l}w -J1"v -+ + 8tan( ff2k J)} 

(
2kT5 ( 1[ ) ) + ay(()f3 - ax) iw exp -1[- Log sec 2k - ItT - iwT 
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(
2kTt5 ( 7r ) ) +ay(B{J-ax),uexp -7r-Logsec 2k -JLT-iwT (4.39) 

H (iw) = (f3 - f.1 - ay ) 

{(ax + (1- B)f3 J;w+ (ax + (I - B)f3\P + "tan( ;k )) 

- (ax + (1- B){J)iw exp( 2k:t5 Log sec( ;k ) -JLT - iWT ) 

(
2kTt5 ( 7r ) ) -(ax+(I-B){J)JL exp -7r-Logsec 2k -JLT -iwT 

- (ax + (I-B)f3)w' expek
:" LOgSeC( ;k) -pT - iWT) 

(
2kTt5 e - kT ( 7r ) . ) + ay(B{J - ax) iw exp 7r Log sec 2k - JLT - IwT 
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(
2kT6 ( " ) ) +ay({}j3-ax),uexp -,,-Logsec 2k -,uT-iwT ( 4.40) 

Resolving into real and imaginary parts 

H (w) = F(\V) + iG(w) (4.41 ) 

( 4.42) 

G(w)= (fJ-f..l-ay) 

{(ax + (I-B)f3}w-(ar+ (1- B)jJ}wexfk:O LOgSe{~)- pT - WT) 

(
2kT8 ( " ) ) - (ax + (1- {})fJ)f..lexp -,,-Log sec 2k - f..lT - wT 

(
2kT8 ( " ) ) - (ax + (1- {})fJ)w2 exp -,,-Log sec 2k - f..lT - wT 
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(
2kTO ( ;r ) ) +(ax+(l-B),B),uw exp -;r-Logsec 2k -,uT-wT 

(
2kTO ( ;r ) ) +ay(B,B-ax) wexp -;r-Logsec 2k -,uT - wT 

(
2kTO ( ;r ) ) +ay(B/3- ax),uexp -;r-Logsec 2k -/-IT-wT ( 4.43) 

FI(w) =2w (,B-,u-ay)+2w (ax +(1 - B)/3) 

( 4.44) 

{(ro; + (1- owl -(ro; + (1- 0) iJlexfk: " Log se{ ;:} I'T - wT 1 

(
2kTO ( ;r ) 1 +(ax+(l-B),B) IIlTexp -;r-Logsec 2k -,uT-wT 

(
2kTO ( ;r ) 1 + (ax + (1- B) ,B),uT exp -;r-Log sec 2k - ,uT - wT 
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[
2kTO ( ;rr ) ) - 2w(ax+(1- 61 )p) exp -;rr-Logsec 2k -,uT-wT 

[
2kTO ( ;rr J ) + (ax + (1- 61) p ),u exp -,,- Log sec 2k -,uT - wT 

[
2kTO ( ;rr ) ) - (ax + (1- 61) ,0), lvT exp -;rr- Log sec 2k -,uT - wT 

( 2kTo ( ;rr ) ) +ay(61fJ -ax) eXPl-;rr-LogSeC 2k -JLT -wT 

- ~(B.8 -ax) WTexpek~8 LOgSec(~) -I-'T - wT 1 

( 4.45) 

Setting w = 0 
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(4.46) 

(
2kT5 (7r I ) + ay( Bj3 - ax),u exp -;r- Log sec 2k) - ,uT 

(4.47) 

( 4.48) 

(
2kT8 ( 7r I ) 

+ (ax + (1- B)j3),uTexp -7r- Log sec 2k ) - f-lT 

(
2kT8 ( 7r I ) 

+(ax+(l-B) ,B)Jl exp -7r-Logsec 2k )- ,uT 
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+ fi( fi + 5tan(~ J) -ay(e[3 -ax) 

(
2kT5 ( J[ ) ) +ay(e[3-ax)exp -J[-Logsec 2k - fiT 

- ay(e[3 - ax )pT exp (2~5 Log sec( ~ ) - ,LIT) ( 4.49) 

From (4.46) to (4.49) 

(4.50) 

Let 

J 2 (k) = F(O) G1 (0) (4.51) 

So the non- zero equilibrium state will be stable when 

J J (k) > 0 (4.52) 

And unstable if otherwise, so: 

{ (m + (1- 11),8) - (m + (1- 0) iJ)exfk: " Log sec(;: ) -I'T ) 

+ (ax + (1- e)[3)pT cxp (2k;5 Log sec( ;k ) - fiT ) 
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(
2kT5 ( ;rr ) ) + (ax+(l-e)j3),u exp -;rr-Logsec 2k -fiT 

(
2kT5 ( ;rr ) ) + ay(ej3 - ax)exp -:rr-Logsec 2k - fiT 

Using the Math Cad Software: hypothetical parameter values were used 

to generate a table of va lues for J2 (k), so as to analyze the result; some of 

the values obtained are presented in table 4.2 below. 
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Table 4.2: The table of values of the Non - zero equilibrium state. 

a = 0.3 5 = 1.0 e = 0.4 T = 10 

k J 2 k) Remarks J 2 k) Remarks J 2 (k) Remarks J 2 (k) Remarks 

/3 = 0.5, /3 = 0.25, /3=0.15, /3 = 0.25 , 

Jl = 0.2 Jl = 0.50 Ji = 0.20 Ji = 0.15 

0.2 0.261 Stable 0.061 Stable -0.007 Unstable -0.003 Unstable 

0.3 0.003 Stable 0029 Stable -0.0002 " -0.002 Unstable 

0.4 -0.001 Unstable 0.020 Stable 0.0002 Stable -0.004 Unstable 

0.5 -0.001 Unstable 0.016 Stable 0.0001 Stable -0.048 Unstable 

0.6 -0.0007 Unstable 0.014 Stable 0.0001 Stable -0.039 Unstable 

0.7 -0.0004 Unstable 0.013 Stable 0.00009 Stable -0.005 Unstable 

0.8 - 0.0003 Unstable 0.012 Stable 0.00007 Stable -0.002 Unstable 

0.9 -0.0002 Unstable 0.011 Stable 0.00007 Stable -0.001 Unstable 

l.0 -0.0001 Unstable 0.010 Stable 0.00006 Stable -0.0008 Unstable 
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4.3 Analysis and Interpretation of the Equilibrium States 

Analysis: 

From table 4.1 , we note that: 

(a) J 1 (k) <0, when /3 » f.1 (much greater than) and k is high. 

(b) J1 (k»O, when /3 « f.1 (much less than) and k is low. 

(c) J 1 (k»O, when /3 < f.1(a little less than) and k is low. 

(d) J1 (k»O, when /3 > f.1 (a little) and k is high or low. 

And, from table 4.2, we note that: 

(a) J2 (k) > 0, when /3 » f.1 (much greater than) and k is low. 

(b) J2 (k) > 0, when /3 « f.1 (much less than) and k is high. 

(c) J2 (k) < 0, when /3< f.1 (a little less than) and k is low. 

(d) h (k) < 0, when /3 > f.1 (greater than) and k is high. 

Note however that the results presented in table 4.1 and table 4.2 

above are for 0 =0.3, 8=0.4 in each case and a =0.3 in table 4.2 . The 

profile remains the same as these values range from 0.2 to 1. 

Interpretation: 

From table 4 .1 the zero equilibrium state is unstable only when the 

natural birth rate (/3) is very much greater than the natural death rate (f.1 ) 

even as the value of k is increasing (i.e. with the increase in drug 
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application) with the infection age. The population is stable when the 

natural birth rate (f3) is much less than or a little less than the natural 

death rate (j.J) even when the value of k is increasing. This is because 

naturally, the population will be decreasing with the additional burden of 

the scourge and stable also when the natural birth rate (f3) is a little 

greater than the natural death rate (j.J ) even as the value of k increases, if 

otherwise the natural birth rate (13) must be strictly greater than the 

natural death rate (j.J ). 

From table 4.2, the non- zero equilibrium state (which is the state of 

population sustenance) is stable only when the natural birth rate (13) is 

much less than or a little less than the natural death rate (JI) even as the 

value ofk increases. But unstable when the natural birth rate (13) is much 

greater than and a little greater than the natural death rate (j.J) as the value 

of k continue to increase. Interestingly, the zero-equilibrium state is stable 

when the natural birth rate (f3) is a little greater than the natural death 

rate (Ji) even when the value of k is increasing, this is due to a little 

difference between the former and the later despite the burden of the 

disease on the community. 
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CHAPTER FIVE 

5.0 CONCLUSION AND RECOMMENDATION 

5.1 Conclusion: 

From the observations, we conclude that the zero equilibrium state 

will be stable when the natural birth rate (fJ) is less than the natural death 

rate (;..t); while, the non - zero equilibrium state will be unstable when 

the natural birth rate (fJ) is greater than the natural death rate (;..t ) even as 

the value of k is increasing. 

A low value of k indicates that the effectiveness of effort in curbing 

with the scourge of the disease is low resulting in high death rate among 

the infected, thus leading to the stability of the zero equilibrium state; and 

consequent wiping out of the population. This implies that once the 

disease- AIDS is introduced into a community, the dynamics of the 

system faces likely extinction of the populace except for intervention. 

It follows therefore, that the app lication of anti - retroviral drugs can 

at best slow down the eventual extinction of the infected population as 

illustrated in fig. 1- the graph of infection age against the death rate via 

infection and also as observed in table (4.2). This may suggest that the 

ideal control may be to completely remove the infected group and prevent 

- 53 -



, 

other members of the population that are virus free from contacting the 

VIruS. 

5.2 Recommendation : 

The obvious stability of the zero equilibrium state explains strongly 

why the pandemic tends to wipe out communities once it sets in. We 

therefore recommend that: 

1. Public enlightenment should be intensified, so that more people would 

go for HIV-Status-Test to prevent further spread of the virus. 

2. Also, with awareness campaign stigmatization and discrimination of 

HIV / AIDS victims would be minimized. 

3. Government should put in place potent legislations to punish 

individuals who in any way contribute to the spread, this will invariably 

reduce the spread of the HIV among the populace. 

4. The anti-retroviral drug should be easily accessible and affordable to 

those HIV patients, whom inadvertently would have the hope of living a 

normal life and possibly live longer after infection. 

S. Any effort aimed at prevention still stands out as the optimal way out 

of the pandemic. 
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APPENDIX 

Bellman and Cooke's Theorem for Stability of Characteristic 

Equations 

Theorem: 

Let 

~ (z) =,P (z,e') (A. I) 

where P (z, w) is a polynomial with principal term . Suppose that (iy), 

for every y € R is separated into its real and imaginary parts, 

~ (iy) = F(y) + iG(y). If all zeros of ~ (z) have negative real parts, then 

the zeros ofF(y) and G(y) are real , simple, alternate and 

G1(y) F(y) - G(y) FI (y) > 0 (A.2) 

for y € R. Conversely, all zeros of ~ (z) will be in the left half - plane 

provided that either ofthe following conditions is satisfied. 

(i) All the zeros ofF(y) and G(y) are real, simple and alternate and 

inequality (A.2) is satisfied for at least one y. 

(ii) All the zeros of F(y) are real and, for each zero, Relation (A.2) is 

satisfied. 

(iii) All the zeros of G(y) are real and, for each zero, Relation (A.2) is 

satisfied. 
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