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Abstract

It has been observed that collapses of structures are based on the way they
are constructed and the impacted force on them. It is therefore necessary to
study the design of their structural materials and the maximum external

force the structure can withstand on it which forms the basis of this ’

research work. For more approximate results, finite element method is used 3
as a piecewise appfoximating which reduces error in the numerical results

to the governing equation. The dynamic response of a flat plate subjected to
moving load which impact some forces on it at any instance of fime is

considered.
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Literature review

If a load is acting on solid and structure, then is a function of both time and
space are involved which is called moving loads.

Inglis, Fryba steele and Timosheko Young (1994), have solved by analytic
method the dynamic responses of a uniform bean subjected to moving load.
The dynamic Analysis of Elastic Bean on visco elastic foundation subject to
oscillation constant and variable magnitude load was investigated by
Aiyesimi Y. M (1989) The bean under the action of a variable travelling
transverse load by Oni S.T. (1997). Theory and problems of finite element
analysis by Buchana G.R. (1995). Finite element method for engineers by
Huebner K. Hill (1975). A simplified green element analysis of static and
dynamic foundation by Oniyekwe O.O (2002). In this reach the Dynamic
response of a flat plate under a moving load is investigated at instant time. In
which we assume that the plate is thin and the deformation small, also the
load is always keeping contact with the plate and impact force at any instant

time.
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CHAPTER ONE: INTRODUCTION

1.0 INTRODUCTION

By the experience of the collapsed of Tacoma Narrow bridge in USA
in 1940, a bridge in Noma in Nigeria in 2005,throbbing of the deck of a
passenger ship, damage of constructed roads in Nigeria with high traffic, the
frequently earth quake occurrences in populate countries of the world it was
observed that these problems as different courses.
In over coming all these type of problems, it is necessary to study the
- dynamic components of the structures involve in the construction of any
above. Before a bridge is designs the result of this research will be useful, in
the analysis of loads expected to pass through it to avoid its collapse or
crack as what happens in Nigeria bridges and roads.
In this research work we shall study the response of a flat plate under a
moving load. The load shall be assumed to be impacting some forces on the
plate at any instant of time.
1.1 Differential Equation
I.1.1 Introduction: Differential equations have their origin in mechanics.
The aim of mechanics is to explain and predict the motion of bodies.
Newton’s laws of motion led to the study of differential equation, whose

solution can be used to predict the position of a body at some later time.




Differential equation has been closely associated with the rise of physical
sciencel in previous centuries and they arc now being ased as models for real
world problem in variety}of other disciplines. Scientists, engineers, and
economists working on a wide varicty of problems, find it useful to set up
mathematical models of the systems, which they are investigating. These
models often yield an equation that contains some derivatives of unknown
functions. Such equation is referred to as a differential equation.

Example of such models includes the free fall of a body, the absorption of
~drugs into the body tissues, the decay of radioactive substances ctc.

These differential equations basicaily fall into two classes’ ordinary
differential equation and partial differential equation depending on the
number of independent variable present in the differential equation.

1.1.2 Linear and Non-Linear: If it does not occur any where the product of
the dependent variable y(r) with itself or any of its derivatives in the

equation then the equation, is said to be lincar otherwise it is non-linear.

Ly)= Y £y =) f1)eenn (1.1.2.0)

part
is a know function and its of order p.

For non-linear d.e the general equation is written as #(1.y, y"....y" ™", y)=0

or

Y= Fley, y'on ™) o (1.1.2.1) of order m

While solving, m arbitrary constant are involved which are to be determined.




I m conditions are prescribed at one point then the differential equation
together these conditions is called Initial Value Problem (IVP) and the
condition is initial condition, expressed as

)= Flrvy ™), )=, P=00200m=1(1.1.2.2)
If prescribed at more than one point these are called boundary condition.
Then differential equation of the system together with its Boundary
condition is called Boundary Value Problem (BVP).
1.1.3 Classification of Differential Equation: Differential equations are
- classified into two classes ordinary and partial differential equations based
on the number of independent variables involve in the differential equation.
It is the ordinary differential equation il one independent is involved and
partial differential equation if more than onc independent variable is
involved.
1.2 Ordinary Differential Equation: The general form of writing O.D.E is
L(y)=r.... (1.2.0) were L is the differential operator and r is the function of
independent variable. It is used to describe any physical substances that
involve one independent variable such as spring mass system, resistor
capacity inductance circuits, bending ol beams, chemical reactions and so

on.




The order of any differential equation is the order of its highest dei‘ivative
and like wise the degree is the degree éf its highest order.

13 Partial Differential Equation (PDE): Quantities that may be evaluated
at a specific location in space at a given time require more that one
independent variable, for their specification. The Differential Equation to be
solved to determine these quantitics among the partial derivative with
respect to these independent variables are referred to as Partial Differential
Equation

Mathematically physical system can be modeled e.g.

o’u 0’u Ou Ou Ou
+28 +C =D—+E—+u(x.y)....... (1.3.
axz (‘)X(?V ayz a}) 55 EW *‘ll(\ )) (l 3 O)

L[u]= A

is a second order PDE where X, y are independent variables and its solution

is of the form u = u(x,y).......... (1.3.1)
If D@+ E@ +u(x.y)=0
d  Ox

Then it is said to be homogeneous and if

D-aﬂ+ E@+u(x.y) #0
o ox

It is non-homogeneous.

1.3.1 Methods of Solving Partial Diflerential Equation: There are two
“methods of finding solution to a PDE. Analvtical and Numerical methods.
1.3.2 Analytical Methods: These are methods that give the exact solution to

the Partial Differential Equation.




1.3.3 Numerical Methods: These are methods that give the approximate

solution numerically to the partial differential cquation.

1.4 Analytical Methods

1.4.0 Method of General Solution: In this method we first find the general

solution and then the particular solution which satisfies the boundary and the

initial condition.

1.4.1 Separation of Variables: In this method it is assumed that a solution
~ can be expressed as a product of unknown function each of which depends

only on one of the independent variables. The suceess of the method hinges

on being able to write the resulting equation so that one side depends ;)11 the

remaining variables, each side must be a constant. By repetition of this

unknown functions can then be determined. Super position of these solutions

can then be used to find the actulal solution. The method often makes used of

Fourier series, Fourier integral, Bessel series and Legendre series. |

As an illustration of the use of separation of variable, consider heat in a slab ~

of thickness L. the governing equation for temperature, denoted by u is

P ool . (1.4.1.0)
a = ox

If we let the boundaries be kept at the same teimperature, say zero, then the
boundary conditions arc homogeneous

U0.0) = UL =0. t>0and U(x.0)= f(x) (1410




Using separation of variables
1 Tl ) . ; ;
U=X(x)T(t) —= = —_22 where \is real. This leads to two ordinary

rn

. . e . il ,
Differential equation = =-2" and Yee® =4
X ]

The general solutions is
T=e***" X =AsinAx=0+ BcosAx
The boundary conditions for x are x(0)=x(1.)=0

Consequently B=0 and the Eigen value condition is siniL =0

Which gives 4, = -”775.;1 =123,
The eigen functions are

n

S T
X =sin—x,n=123...

and the corresponding time factor is

T, = cxp[* (%) kl}. n=123..

Hence the final solution is of the form

U=y a, c,\-p[( - -”%) kt]sin ﬁLl < 4L
Now the initial condition implies that

l - ’
D f(x)=) a,sin %’5

=] .

For a pair of sine, the following identities hold




p I O.m+#n

LT X e
sin I-sm— A

S —

l"2,1n=n

M and integrating from 0 to L we get
/

Pl

Multiplying both sides by sin

. 2'.‘v.mt\'.__,ﬂ
a, = 76[‘/(,\).\111 Td.\.n —at 57 e T

Thus the solution is completely determined as

p

U(x,t)= i[%jf(x)sin i1—;—10511,\‘]sin -”I—mcxp[—('—ll/{-)- k/}sin ,—TLZI\'I w(14.1.3)
n=1 0 J i

1.4.2 Laplace Transformation method: The PDE is written in its Laplace
transform and associated with the boundary condition which is first obtained
with respect to one of the independent variable. We then solve the résulting
equation for the Laplace transform of the required solution which is then
found by taking the inverse Laplace transform. In cases where Laplace
inversion is difficult the complex inversion formula can be used.

We now as an example by using Laplace transform in solving PDE

consider the concentration ¢(x,t) of a difference surface of a given substance

D 2 s
governed by % = ka—ﬁ— BRI | oo vk s e naend (1.4.2.0)

ox”

subject to the boundary conditions “Clon=0.(l.y=C, and the initial
il

condition ¢(x, 0) =0 0<x<L

‘;




Taking the lLaplace transform with respect o t and using the initial

oc
— ."

condition, we get from the LHS =
X

a1

From the RHS we get e
g™ i

5 =

3

therefore, the PDE becomes

D¢ .,2“,
e il Oex<l
k

ox”

the boundary conditions are
%x—c-m. 5)=0
at the left end and

o(L.v) = [ee(Lndr = <3
0 s

at the right end. Thus the PDE has been reduced to ODE the solution is

Inverse transform is

L e ,.\'-"* ;
- ! J,c cosh 7 s

e TRRLY vioih s/kL

 The final result is

_ﬁ:[_ii (z;li"])co{(":l)m}: cxp{k’K’H ;)%}} .. (1.4.2.1)

Cy T o0 Z




1.5 Numerical method: The numerical methods of solving differential
equation are algorithms which produce a scrics of approximate solutions to
the differential equation at certain spaced points called grid, nodal. met, or
mesh points, along the co-ordinate of integral interval.

1.5.0 Single Step Methods: A singlé step method for solving the DE is one
in which the solution is approximated by calculating the solution of a related
first order difference equation. Thus a general single step method can be

written in the form vy, = v, +hd((,. v, .0 =012 N =T, (1.5.0.1)

where @, y./inis a function of the argument (, y, h called increment function
‘ t :
which depend on %: LU (1) = vout €]1,-0]
¢

If y ., can be obtained simply by evaluating the right hand side of (1.5.0.1)

n+l
it is called explicit otherwise it is implicit

1.5.1 Taylor Series Method: Let us assume that the Differential Equation
has a unique solution u(r) on [r,.5] and that v(r)e ""[r,.p] for =1 (1.5.0.1)

The Solution (/) can be expanded in a Taylor serics about any pointr, .
1 g | v
."(’)"" y(’u)"‘(’ —’o)y'(lo)""'z'(’ —’n)-." (’n)"‘f{("”u)‘." (’u).

(’(;)’:)l)‘ (2

FY —l~(/ —1,) "N, )+
P!

2 hl' h(l'+l)

: A ' () (=
J’(’»n):)’(lu)"’l’)’ (’0)+Ey (’o)""---"‘_m_y, (’0)"’ (P+|ﬁyl (S)

h=t,, -1 (LS.

nil nl n

ifr=1




[.5.2 Runge-Kutta Methods: This is the method that used the Mcan Value
Theorem thatis ' = f(i. ). v(t,) = v, 1€ (t,.h) satisties v(r,,,)= v(t,)+ n'(£,)
where & =1, +0,h. 0 <0, <I. for I order methods. For 2nd order method,

ky=nf(,.v,) |

ky=hf (1, +c,h.y, +ayk)

Yoo = AR R . (1.5.2.0)
3" order method

ko =hf(t,.v,)

ky = hf(t, +c,hy,p, +ayk,)

ky =hlr, +choy, +agk, +ank,)

VYo =, £k, Wk, +w k.

Therefore,

k, =I1/'(/,, +¢hy, +Za,,k,J ¢, =0, i=12..v

=1

kl o h/‘(’n ¥ yn) i=]
ky = hf (1, +e by, +ay,hk, =hf(t, + ¢y, +a,k, +a.k,)

m

o e e N o=t L. N (1.5.2.1)

=1

1.5.3 Implicit Runge-Kutta: Is defined with v slope by the following

equations k, = hf (1, +chy+D ak) . (1.5.3.0)

1=l




1.5.4 Multi-step Methods: The method is called multi-step method if the

vaiue of y(r) at r=1,, uses the values ol the dependent variables and its

derivative at more than one mesh points. This is written generally as

ynH = al—vn 2t a!yn+l +oot ”kyn—ﬁﬂ 32 I’¢(’n+l ”n"‘* lH—I’n«k{»‘ + ..":,H + y,,, E B .]’,',_,‘” ).(‘ 540)

If 4 is independent of y! it is explicit (Predictor) otherwise an implicit
(corrector).
1.5.5 Explicit Multi Step: By integrating the differential equation ' = /(1. y)

between the limit 7, and 1., we get

W) = Wl Y+ {FERNE e (1.5.4.0)

Integrating  (1.5.4.0) by approximating  /(/,»)by polynomial which
interpolate /(+.y) at k points 1,4, ,...t,,,. We shall use the Newton
backward difference formula of degreé (k-1) for this purpose

If /(. y)has k continuous derivatives then we have




o
ﬁk t’k— \&}—[”T\l"'l"] T\l—l"}\l—l"_'] ,“T....T\l’_l y A L _I[...\l—'l ) e i
h 2h’ g T =R

3 (k)
(1—1,,)(1—1,,_,)...(/—/,,,;“,)‘/ k'(’) ....................................................... (1.5.4.1)

where /' (£)is the k" derivatives of / cvaluated at somed in an interval
53 i =i g .
containing «.s, ,,.and 1, substituting =~/—" in(1.5.4.1)
1

V'_'f V‘-_|./.

P ()= f, +uVf, +u(u+ I)—"i+....+u(u 1)t +k =2) _A—" ol: '
(—l)' \

' f"’ (<) - : 4 1y
u 1)1, ., ) ———== Z( D V"’,/,, +(—l)( ; )h‘f‘“(:).......(l.5.4.2)

m=A)

Substituting this in (1.5.4.0) and putting « = hdu we obtain | \

Pl k=i
W) =20, )+ | D= 1)”'( JV”’/ +{=1)* ( ‘ J ‘/"“(é‘)}lu

—1f m=0

k-1 v
SO R e (1.5.4.3)

n=0
Ty = I( l)”’( }lu = j( l)( )/“‘"(:)du ...................... (1.5.4.4)

If remainder term 7\ is ignore we get : i

k
Y=V, +/,Z i e e SN S e 1 (1.5.4.5)

m=0

Calculating few terms of ) we obtain

12

£ =1 f,e = 4(1= A+ )l = 5(5=37 42 1t =5 (3= )3+ j— >+ )..(1.5.4.6)

1.5.5 Adams-Bashforth formulas (j=0) If 7" is evaluate J1en

J

equation (1.5.4.5) becomes

Posi o0 P A IV A AV L A3V L BV L 4 RV edionl1.5:5.0)

4




1.5.6 Nystrom formulas (j=1) If 7| is evaluate then equation (1.5.4.5)

n

becomes
Yo = Vg HH21, 44V [ 44V [ 4 BV £ 4 UV 1 4 ](1.5.6.0)

1.5.7 Implicit Multi Step: As in explicit method we expressed v ., in term of

previously
Implicit multi Step method:

| —u

by I)h*"/““”(é)}.. (1.5.7.0)

i pud
y(’IHI) =y(lu—l)+h Z(_I)’"( u)vm./;ul +(_|)"*'(

—1| m=0 m

k
MLO=AE IR SRRV . i (1.5.9.13

m=0

s |- i - : | —
were 7y, (j) = h'** j(-l)(k +';J./‘“"(:)du 8, (/)= j(—l)[ ”’)m, ........ (1.5.7.2)
2 -1

n

replacing the difference operator V" /., in terms of the function values

k
We alsainy . = . FEE ORI s ot eereeensansnannans (1.5.7.3)

m=0

1.5.8 Adams-Moulton formulas (j=0) then equation (1.5.7.3) becomes
yn+| S yn * h[.f;nl = %V./;H-l ) Tl_fvz.f;:+l I3 -jll—lv-“./;ul S '7!]_0() VA'./;H-I A #&;dvﬁ./;ul ](l 575) i

1.5.9 Milne-Simpson formulas (j=1)

yn+l =yn-l +,7[2-fu+l —2V-/;Ml +.l'¢v2~f;Hl +V.“~/I.l|| —‘:TVJ /;I-H _7)16v§/n+!](l 576)

1.6  Finite Difference Method (FDM): This is an approximated numerical

method that gives a point wise solution to the PDE. This method improved

~ as more points are used.




For various values of y,,7, we obtain

(@) (V, +1V ! =700 which is called the Richtimyer formula. For

7, =0.y=0

(b) (V, +4V )y = 7,03 (1 =1V )

il o
. =t - |
for y =0y=-4

m

1.7 Finite Element Method (FEM): This is approximated numerical
method that gives a piece wise solution to the PDIE:, which is an improved of
FDM (sce fig 1.7.1). The methods used in linding the parameters involve in
FDM are as follows.

1.7.1 Weighted Residual Methods: The approximating methods which
provide analvtical approximation. These are methods which gives analytical
procedure of obtaining solutions in form ol functions which are close some
sense to the exact soluti.on of BVP or iVP.

Some few well known methods are least sqiinre method, Partition methods,

Galerkin solution. Moment method and collocation

_0g|x..al

1.7.1.1 Least square: Chose weighting function to be to provide

N simultaneous equation for the determination of parameters «,.a,..q,
1.7.1.2 Partition method: When the domain R is divided into N non-

overlapping sub domain &, = j=1.2..N and weighted Residual are chosen as

O.xg R

l.xe R : ST : Silek
w, ={ ' then the DE is satisfied on the average in cach ol the N sub
!

£5ii




1.6.3 Multilevel explicit difference scheme: The general three level scheme

in which seven points are involve and can be written as

(A= V)V, +2/V} i, =, OF

nil

A+ = l‘ +2¢" + 11—y )ox ]”,'.', LAt 7 LS /A (1.6.3.1)

m

where ¢".and.y" are arbitrary parameters. The truncation error is given by \

T'm = (V, +7'V,) u(x,1,) - 0 (1-y,V, u(x, .1,) where u(x,.1,) satisfics
(1.6.1.1)

1.6.4 Two level implicit differences: The general two level implicit

difference scheme involving six points is obtained as

(1-4V,)'V,u"!= r[(1+oa3)""a§},"*' which on

[I +(o-1(1-y, ))ﬁiJu,’,’,*' = [l +(o+17, )af,Ju,’,’,
For various values of 6, y; we get the following unconditionally stable

methods

(a) Vu!" =w’u"" for 6=0, y,=0 which is 1.aesonen formula

m Nm

(b) V' =207 +v!) for 6=0, y)="2 called Crank-Neoson formula.

m

1.6.5 Multilevel implicit difference scheme: The three level difference
scheme base upon nine points

A=y V, +7,V) 'V, +t, V" =c(1+00)) 'avu)'  where z,.y,.y,.ando are

mn m

arbitrary which can be simplified and written as

la+e)+[o+2e) 2=y, + 7007 ' =

(1.6:51
[1+22) [0+ 20)+ 2, ~ 27000 it [z, + (00, ~ 77007 ! ( )




The basic idea of FDM is to replace the derivatives by finite difference
operator. An important feature of FDM is it approximates PDE by set of
algebraic equations. This makes it very suitable for application in computer.
With FDM we can treat some fairly difficult problem in practical problem.
See fig 1.6.1.

1.6.1 Difference methods: These are difference equation obtained from a
given DE which are them solve directly indirectly. The scheme can be
formed depending on the level which is either explicit or implicit.

~ Example of difference schemes are these:

Consider the heat flow equation

%t“_ =%,........(1.6.1.1)

Were t and x are time and space co-ordinate respectively, in the region
‘Ji=[a$xsb],[IZO] For x=a+mh.t =nk.
(the quantities h and k are mesh size in space and time respectively) the -

difference approximation at nodal point (m, n) can be written as

v n+ 2 ” (—)_»‘u g -1 42 2
G(V, ), =1u, were t= %z(‘gx—z] =h'0lu(x,.1,)+o(h?)....(1,6.1.2)

1.6.2 Two level explicit difference scheme: Choosing G(V,) =V, then

(1.6.1.1) becomes V,u*" =zox"u!, which is known as the Schmidt formula.

m




domain®,. The required equation for Partition method becomes

[elx.a)dx=0./=12..N

LA
1.7.1.3 Galerkin Method: If the weighting function is chosen to be

u),=m,_i=l.2...N where w(x.a)is the approximated solution of the

aa.l

problem. Il//, (v)e|x.aldx =0 !

R,

1.7.1.4 Moment Method: The weighting function is chosen to be w, =p (x)

Where p,(x) are polynomials equal I P, (el valdy =0
' #




Fig. 1.6.1 Finite Difference Method
Fig. 1.7.1 Finite Element Method




CHAPTER TWO: MATHEMATICAL FORMULATION

2.1  Deformation of plate theory (Vibration of plates). From fig 2.1 let the
plate be of uniform thickness r, which is small compare to the dimensions of
the plate, on v-y plane at middle planc of the plate. Assume that the
deflection in the z-direction is small compare with the thickness and middle
plane is normal and remain normal even alter deflection on middle surface
during vibration.

If the strains in thin layer of a typical elemiciit aie considered at the distance

z from the middle surface the following arc the strains representation:

o - 33 i '
Rt s o g, 0 Y T TR (2.1.0)
' ey o Xy :

Where w denotes the deflection of the plate in z direction e .c ., are

normal strains and shear strain in the thin layer. The corresponding stresses

~ by the relationship are known as:

£ P & o'w
Y sk B et ) e iien. 2.1.1
o, s (ﬂ,\. +v€".). o, T (ey +\l"_), To o) ( )

The potential energy accumulated in the shaded layer of the element during

deformation will be:

dU = _12.(( O, + (?_ro'y i 9 )dxd_ydz ............. (2 | 2)

= .;_. III(/’ O+ eyo"r o )]xdydz .............. (2 1 .3)
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0.6, EZ* |d'w  &*w|d*w
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on” oy~

£,6, EZ} |d*w @w|dw
V=5 | —
2 2= & [a

FoTo  20(1-V) Zl:z (7-",.,]2

% OxOy

2 -V
g2 3 Y 2o
e LZZ avzv +c"u 20_u(7_1: 2(]_,/)6\4
2(1-12) \ ax o’ o’ oy’ oxdy

EZ? [aﬁv 'w a%u}

~2(1-7?)

o' Lo |
|- L{ 4 ? ;} vy . (2.1.4)

e 2
ox" oy Ox~dy~

Since 7 =1 (thickness)

Er’

U=D||Adxdy, D= vk e le
H xdly 7—)121_‘,2 (2.1.5)
is the flexural rigidity of the plate. According to Smith[7]
2.2 Boundary Condition: The boundary condition for rectangular or

square plate is of three cases simply supported edges, clamped edges and the

free edges. Sce fig. 2.2.1

2.2.1 Simply Supported Edge: Two conditions must be satisfied that is the
displacement 1w =0 and the movement with the consigning direction of the

edge is zero.




v w
"D —+v—-1|=0, ...........(2.2.1.0
D(ax- ‘ayz) ( )

and since D=0 for edge x=constant

s g (2.2.1.1)

oy g

& v By

Similarly for edge y = constant

e n el g R (2.2.12)

Since w=0 and along the edge x=constant it follows that ng,v =0.1Itis

- possible to replace the boundary condition above with {w e 0’_66-—‘4’) & 0]
X" B

e S

Similarly for edge y=constant the boundary condition can be replaced by

[w=o, P =o] ........ (2.2.1.4)
gl

2.2.2 Clamped Edge (fixed edge): The two conditions that must be satisfied
are that the displacement w must be zero and the slope of the line

perpendiqular to the edge must be zero, i.c. for edge y,

w=0, % =0 For edge y=constant

S
80
8]
2

=0, ?"—’=O IFor edge x=constant P
X
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2.2.3 Free edge: For x = constant the two conditions to be satisfied are

that the moment My must be zero and that the quantity 1, = =0, —(—%:— on that
‘!

edge must be zero.

oM
Where Q. =—= Wl
ot arie o NG (2.2.3.0)
Since M, =-M .ai/{——zai/li
E Ox oy

1 b s
=V =-D ﬂ+(2 dyel i Tor M, =D o P s
Ox xav Ov? oy

By the condition of free edge M, = 0,V, =

For free edge y
3 w 7 ’
V,=-D) a—lm—v) 2 1=0 for M, = D S \Y?L,' =0
ay ya,\ ﬂy Ox”

In order to analyze the displacements and the stresses in a rectangular plate

the differential equation

A r 4 " N i A
D(a 4 +a G g ,)=U is solved........(2.2.3.1)

axll ayll a\,la})-
The above deformation is the so-called Kirchhoff-Love plate theory if the

load moves and keeps contact with the plate impacting force on it, at any

instant of times according to Smith{7] and Witiiam|8}.




2.3 Finite Element Method (FEM): The finite element method is a
numerical technique. for obtaining approximate solutions to differential
equation used in wide variety of engineering problems. It is difficult to
obtain exact solution to some diﬁ’ercnlial cquations so it becomes necessary
to use approximate solution rather than the exact which is a close solution.
FEM is a piece wise approximation to the equation.

The basic premise of FEM is that a solution region can be replaced by
assemblage of all the discretized element solutions. These elements can be
~ put in variety of ways to represent complex shapes which are later put
together. Figure (1.6.1) and (1.7.1) shows the FDM and FEM.

2.3.2 History of the Method: The method first appeared in 1960 when
Clough used it in the paper presented on plane clasticity paper, but it idea
date back on two you asked a applied mathematician, physicist, or an
engineer about the origination of the method. Each has some justification for
the claims.

The applied mathematician are interested on boundary value problem,
physicist on solving continuum problems and engineer searching for way in
which to find .the stiffness influence coefTicients of shall type of Structure
| reinforced by ribs and spars.

; 2.33 How the Method Works: The problem is discretized into finite

number of elements by dividing the solution region into elements. Then

(9]
o
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express the unknown field variable in terms of assumed approximating

~function within each clement called interpolation function, which are
defined in term of the values of the field variables at speciﬁed points called
nodal or nodes points. With finite clement representation of problem, nodal
values of the field variables becomes the new unknown. Once these
unknown are found, the interpolation function define the field variable
throughout the assemblage of elements. Finite element method has the
ability to formulate solutions for individual elements. Before adding them

~ together to represents the entire problem.
The process is in six steps
(a) Discretize the continuum
(b) Select interpolation
(c) Find the elements properties
(d) Assemble the elements properties to obtain the syétem equation
(e) Solve the equation
(f) Make additional computation if desired see Kenneth. S
2.3.4 Applications: The application of Fem can be divided in to three .
categories depending on the prpblcm, to solve. They are .

“(a) Equilibrium problem

| (b) Eigen value problem of solid and fluid mechanics

(¢) Multitude of time dependent or propagation.




(a) Equilibrium problem (Time independent problem) in solid mechanics
problem to find the displacement distribution or stress or temperature
distribution for a given mechanical or thermal loading. Tlﬁs could sometime
be finding pressure velocity, temperature and concentration.

(b) Eigen Value Problem: These is problems whoSc solution often require
the determination of natural frequencies ¢.g. problem involving both solid
and fluid.

Multitude of time-dependent or propagation problein of continuum
mechanics. In this category time dimension is added to the problem of the
first two categories.

But in the mere fact this method (FEM) can be used to solve particular
problem does not mean it is the most practical solution techniques.

The range of FEM application extends to all engincering disciplines.

2.4 Finite Element methods: we divide the domain R into M finite clements

(n (2)

with piecewise approximate solutions as w=u"+u" +_ . +u"" + . +u™ were‘-.‘,
u " are approximate solutions of cach element

The function «'’ is express as ' = N where N is the shape function
and ¢ is the column vector which depends on the nodal values of the

function u or its derivatives.




’l ' . g :

The nodal parameters ¢ may be determined by using any one of the method

~used to determine the nodal parameters such as least square finite clement,
Galerkin finite elemente. t. ¢
2.5 Choice of Method: The numerical method gives the approximate

solution to PDE. Becomes of its piecewise approximation to the PDE, FEM

is used to find the solution to the governing equation.
The cubic Hermite Polynomial will be used as the interpolation fuﬁvction,

since the plate is assumes to be of rectangular shape see Kenneth.
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Since V'w(x,y.r)= + +2——
v v R Py

Then (3.1.3a) becomes:

[aay/] 70}[;\/] :[a/:]]{u} £ | (3

Multiple by the weight function [N]' and integrate both

J'J{[N]/ o' [N] [N]’ d [N] 2[N]I d g}V}]]U llvely = H/ [N]la'\dy ('3.

A 5)

x.y axes

1.6)

v a;i{'v B s (3.1.7)

using integration by part we have (twice)

oo S (AT 210,

jIN]’ & [N ]d - ja—[g.a—;{?’v—]dw

o o

ﬂN]ya[N] J{G[N]T o'[N] a [N] .a [N] }/

_ﬂN]’a V], Ia[N]' o’ [N]d, ”5 [N]' o’ [N]d "

Similarly

(3.1.8)

fiy 2o - vy 2l L2 1y P INE U} W19

dy o’

Also




d\’dy Bl bty B NS W e e (3.1.10)

fivy 23

1[["’]/ o' N] fa[N]’ a'[N] Ia [N]’ '[N, ]y

o oxoy? &t Ty’

B P 1) L I U P

oy’ ox oy’ ) 7

By applying boundary condition of deformation which are

|:w = 0,@: = 0] ,[w = 0,@4—: £ Oj}
ax B a.v B

Equation (3.1.6) becomes
PR e P 2 AL |
U }=% T (3.1.11)

Let

[Mm]= Uﬂ—.a)[c’v]dd jj—L-L Zlvl,, /+zjj [N]/ O;N] dxdy...(3.1.12)

(3.1.6) becomes:
_ P INY
[M]{U,}—B fvfdety - i (3.1.13)
Using Cubic Hermitian polynomial as the interpolaition. function since the

plate is assume to be a rectangular plate then

[N] [ X PN, (6 ) Ny (60 0) ]And

{
N

B
A




I, U , B, ) |
H R R R e T TR
g oy T @ oy x Oy I

Such that
Ni(x.)= 40)O(y). Ny(x.y)=A0()R(y)
Ny(xoy) = AR()O(a, N, (x.y) = AQ(x)S(v)
N (e 0) = AT ()b N, (x.v) = AR()S (1)
(i) ASISTL Ny~ AS (1)
Ny (o) = AT(S N Ny (5e9) = AS(O()
N, (x, )= AS()R(V)b, Npy(x.y)= AT(x)O(y)a....(3.1.15) o

Where Q(v)=a’ -3ax? +2x°, Q(v)=h"-3by" +2y°

R(x)=a’x-2ax? +3x° R(y)=b>y-2h" + v*
T(x)=x"—ax* T(y)=y* =by?, S(x)=3ax? = 24°

iz

............ (3.1.17)

2 2
¢ ]Z’ =6AQ(y)n(x), g A,,l =6AR(y)n(.\')h. . = 2AR(y)m(X)th
et ox~ Ox

2 2 A2
i =()A.S'(y)n(x),a }\2’5 =6Ah'l'(y)n(.\').(- A,," = =2 AaR(y)m(v)

ox’ ox ox”

2 2 2 : ‘
2 ]? = 6/1S(y)n(x),a }Y" =—6Ah'l'(y)n(,\‘). : A,[" =—2/laS(y)o(x)

ox ox” ox”

2 2 2
a—a-xlyz'l = —(’)AQ(y)rl(x),—a—é;l\—zi =—6AbR(v (). af/:i = 2,4aQ(y)()(x)..(3. 1.18)

e
[ &2




.'

2 " 2
%ivz_' = 6,4Q(x)n(y),.(_N_ = =24bM(p)O(x ) _-X = —()AaR(,\)n(y)
4 ; : )

aayiz“ =~640(x)n( y),% ==24bO(x)n(y). ’:)JN = 6AaR(x )n( y)

__N_7 =-6AS (A)n(y) “ =-24hS (x)o( y) — 6AaT(x)n( y)

z’.f‘ﬂ_o=6As(x)n(y),%”~-_zAhs<x)n( 120 ;J’V =641 (). 3.1.19)

Where

m(x) 2\—(/ n(y)—"y b m(x)=2a- 3y m(y)= 7/)—31' o(x)=a—3x

S e TSR (3.1.20)




k. |

o) T o)
: R(v)u(x)o - % O(x)m(y)h
EQ()’)’"(«")" — R(x)(v)a
S()n(x) s Q(x)n ()
Tl -1 00k
: ——-R(y)m(x)u ro R(x)n(y
U =) st (<04 Tl 0 [
O ‘ - Lt
LSOkl (<l
=0()n(x) S(nly)
T R(y)n(x)o - %S(x)m( v)b
_ 700 olx)a _ (e |

Therefore equation (3.1.12) becomes:
i ]= 3642 (1) [#1asdy + 36.4° [l ] [ hacy + 7242 0] 11" hawty. 3.1.21)
Where [H] [H ],[H "V [m'] are [H] [H'] are first evaluated beforé taking the

integral values of each element in the matrix.

Therefore

u,)= %[M']" 1 BT O R RO .(3.1.22)
Where

Bdlimd S e g (3.1.23)

The efféct of moving point load can be felt on x - avis, y — axis or both

For the load moving along x - axis parallel to y — axis equétion 3.1.2 becomes
DV*w(w,p)= ps(x=(x, + xCospt)) .eeen (3.1.24)

For the load moving along y - axis parallei L0 x - axiy equation 3.1.2 becomes

DV‘i-v(x.y)= pS(y=(v, + xSinf)) e {3.1.25)




CHAPTER ’l’HREE: PROBLEM SOLUTION

We assume that the. flat plate is thin and deformation is small, also the load
is always keeping contact with the plate and impact force at any instant of
time. Based on the above the plate is of the type so-called Kirchhoff-Love

plate theory. Therefore the governing equation subjected to the concentrated

moving load with magnitude P, mass m and x is the mass of the plate per 2

unit area and is given by:

\

DV w(x.y.0)- ,1573_“’(?%”_) = (v =(x, + yCosp o0~ (, + Xx,-,‘,/ﬂ){( e m(;;‘i (x. y,t))]..'.(& L
Taking thickness t to be constant, (3.1.1) becomes according Oni[4]
DV w(x,y) = po(x —(x, + ycos fO)S(y—(y, + xsinfi)) ......... (3.1.2)
The effect of the moving load is felt at the points [(x, + y cos /). (y, + xsin A0)]
Aiyesimi[l]
At the points x = x, + ycos grand y =y, + ysin 4 equation (3.1.2) becomes
DV'wlxy)=p ey (3.1.3)

Let w=[NJ,] where [N] is a shape function and (/] is the nodal

displacement vector of the plate element.
V(. y) =2 et dmge ) (3.1.3a)
wlx.y)=5

3

-y With € = young’s Modulus, and v = Poisson ratio of the

)
Where D= ‘]E(fl——l_’_)

plate material respectively and r is the thickness of the plate.




For a variable moving load along y-axis keeping x-axis constant
DV*'w(x.v)= pCosans(y - (v, + pSinfy)) ... (3.1.26)
For a circular moving load equation 3.1.2 becomes
DV w(x, )= po(x—(x, —(x+ gcos NS (v — (v, + gSinf)) ..... (3.1.27)
For a variable circular moving load equation 3.1.2 becomes
DV‘w(x, y)= Aosotd(x—(x, + ycos ﬂl))()'(y ~(yy + zSinpt)) .... (3.1.28) \
See Aiyesimi[ | |

~ Solving (3.1.24), (3.1.25), (3.1.26),(3.1.27), (3.1.28) we have

MU, = %[N(x‘, + zeos ] [ING] dy B (3.1.27)
MU} = —g-[zv( o+ zsin o [N v (3.1.28)
MU} = %cos oN(y, + zsin ] [N de (3.1.29)
Mfu,}= %[N(x,, + 708 ﬁ))]”' [N + gsinpn] ... (3.1.30) 3
MU, }= %cgs (ot[N();l, +zsin )] [N(x, + zeos ] oot (3] 31) .
Since [V]= [0(x)0(). Q) P~ RO ). O(x)S ()= Q)T (v}, b
= R(x)S()ats S()S () =S () (). T () (1)t, SO0 ) S )R(y o T(x_)Q(y)a]
............. L (3.1:32)




(3.1.29), 3.1 30). 3.1.31) becomes
[l }=Lv;] (3.1.32)
[l ) < ,‘)’[/v_;] (3.1.33)
(3.1.33) ¢
(3.1.34) '
(3.1.35) |

O(v, + xSinfi) f O(x )
R(y, + 1Sinfi )b f O(x )by
vy + zSinsm Jat [O(x )

Sy, + - Sin/y) fQ(v\)‘/"

- (v mﬁ» JQ(x)dx

S(y0 + zYmﬂ)a I 7( x)a& 2
Q(Vv gD j:[S(x)QE
R 25 5
L () Vo 4«18117/?1)”!?{“}#

e




Oy, + xSinf) [O(x)ds | X i
Oy + xSinfi)O(x, + y cos )

R(y, + xSi C )elx
oy ,I."mb I Ol R(vy + 2SinfibQ(x, + x cos i)
Q(yo + 7Sinfit)a IQ(x)dx & \
i : Oy + 2Sinf)aQ(x, + y cos i)
oW t X "’7/}’ )IQ(*\)‘IX S(yy + xSin)O(x, + xcos i)
=T(y, + zSinf)b IQ(x)dx =T (v, + 2SinfbQ(x, + y cos [i)
[N;]= ‘S(J'n + xSinfit )0 _[ R(x)dx e [N3]= —S(y(, + ,v%'in/fl)uk(x‘, + ycos )
S(y, + ,{.S'inﬂl)IS(x)dx S(vy + 2Sinfi)S(x, + x cos )
=7y, + 7Sinfi)p [S(x)ds =Ty, + SIS (x, + 1 cos )
S(vo + zSinft)a [T(x)dx Sy + 2Sinfi)aT (x, + y cos fi) 2

Oly, + xSinpr) I S (x el O(v, + xSinfi)S(x, + y cos ,3()
R(y, + ,(Sinﬂl)h I.S(A—)‘/x ‘ (/jgy(, + ,vS::.‘n'B/)bs( X, + x cos i) .\.
Oy, + Sinfi)a [T(x)dx Oy, + Sinfi)aT(x, + ycos i) |

[ Q(YO +/1"§'i"ﬂ’)Q(xo +gcosfil) |
R(y, + 2SinfpQ(x, +  cos fi)
Oy, + xSinf)aQ(x, + y cos )

S + 28inf)Q(x, + 1 cos i)

=T (y, + 2Sinf)pQ(x, + x cos )

' —S(y() +Z‘S‘inﬂt)ak(xn + X Cos ﬁ’)

[N5 = x cos mf

S(y, + 2Sinf)S(x, + x cos i)
=Ty, + zSinf)bS(x, + x cos f)
S(y, + 7Sin)aT (x, + y cos )
Oy, + xSinf3)S(x, + y cos fir)
R(yo + 7SinfhS(x, + x cos ,Bl)'
| O, + pSinfit)aT (x, + g cos fi) |

The evaluation of [17] ® [} [1'] ®[#']and  [1]' ®[11' |are as in appendix
A, B, C before the integration is performed and the boundary of the plate -

used.

‘We then obtained [7] and substituted in terms of [A/']




Such that (3.1.22), (3.1.33), (3.1.34), (3.1.35), (3.1.36), and (3.1.37)

becomes:
=211 v ' - o (3138)
v, }-——’B[T]"[N ] ... (3.1.39)
}=-g-[r]"[1v] kL S
=%[7"] V] ... (3.1.41) :
)= -g-[ Plvies - (3.1.42)
J=L 0] v .. (3.1.43)
Respectively




CHAPTER FOUR NUMERICAL SIMUTIONS
One element is used to cover the entire domain of the rectangular plate this
is assumed to be unit plate.
With these the limit of our integrgi values' will be from 0 to 1 on both axes.
Each element in appendix A,B,C where evaluated by a software math
Computer Aided Design, also to other matrices involves. Attached are |
printed out results for each matrices.
The constants involve are then varied to investigate their effe;:t to the'
system. The boundary condition of the edge plate also is used béfore

variation takes place.

e F 1S




Zero to eleven are numbers of columns and rows of matrices A, B and C

Were matrices z, x, and w are numerical results for A,B, and C

0 1 2 4 5 § 7 8 9 0 | 11
0| 4457| 0629]-0314 | 1543 [-1.371| 0.314 [|-1543 | 1.371|-0.771 |-4.457 | -0.629 | -2.229
1| 0629] 0.114 | 0.314 | 0.371[-0.286 | 0.057 |-0.371| 0.286 |-0.186 | -0.629 | 0.171 |-0.314
2| 0314[-0314 | 1.486 [-0.771] 0686 | -0.21| 0.771[-0.686 | -0.257 | 2.229 | 0.314 | 0.743
3| 1543 0.371|-0771| 4.457 | -1.629 | 0.186 | -4.457 | 1.629 |-2.229 | -1.543 | -0.371 |-0.771
4 1-1371)|-0286| 0636 [-1.629| 0914 |-0.143| 1.629 | 0914 | 0814 | 1.371| 0.286 | 0.686
5| 0314 0.057| -0.21| 0.186 |-0.143 | 0.038 |-0.186 | 0.143 |-0.062 | -0.057 | -0.057 | -0.105| &
6 |-1.543|-0371| 0.771|-4.457 | 1.629 |-0.186 | 4.457 |-1.629 | 2229 | 1543 | 0371] 0771
7| 1371| 0.286 |-0.686 | 1629 |-0.914 | 0143 | 0.371| 0.914 |-0.814 |-1.371 | -0.286 | -0.686
8 |-0.771|-2229 | 0.257 | 2.229 |-0.814 |-0.062 | -2.229 |-0814 | 1.486 | 0.771| 0186 | 0514
9 |-4457|-0629 | 2.229 [-1543 | 1.371|-0.314 | 1643 |-1.371| 0.771| 4.457 | 0.629 | 2.229
10|-0629|-0114 | 0314 |-0.371| 0.286 |-0.057 | 0.371|-0.286 | 0.186 | 0629 | 0114 | 0314 :
11[-2.229|-0314 | 0.743|-0.771| 0.686 |-0.105 | 0.771 |-0.686 | 0.514 | 2.229 | 0.314 | 1.486

0 1 2 3 4 5 6 7 8 9 10 11
0 288 024 -264| ' -288 0.24 0.22 288 -024 0.24 288| 024 024
1 264 032 -0.293 -0.24 -0.48 -0.027 0.24 048 0.02 -2.64 -0.32 -0.22
2 -0.24 -0.02 0.32 0.24 -0.24 -0.027 -0.24 0.02 0.08 0.24 0.02 -0.08
3 -2.88 -0.24 -2.64 288 024 022 -2.88 0.24 -0.24 288 0.24 024
4 -0.24 -0.08 -0.22 -2.64 072 -0.073 264 072 0.22 -0.24 0.08 -0.02
5 0.24 0.02 -0.32 -0.24 0.02 0.027 0.24 -0.02 -0.08 0.24 -0.02 0.08
6 288 024 -0.24 -2.88 0.24 0.02 288 -0.24 0.08 -2.88 -0.24 -2.64
7 -024 0.08 0.02 264 -0.72 p.667-10-2 -2.64 072 -242 0.24 -0.08 0.22
8 0.24 0.02 0.48 -0.24 0.02 -0.04 0.24 -0.02 -0.72 -0.24 -0.02 -0.72
9 -2.88 0 0.48 0 -0.24 0 -2.88 0 0 288 0 264
10 -2.64 -0.32 0.22 0.24 0.48 -0.027 -0.24 0.48 022 2.64 032 242
1 -0.24 0.02 -0.48 0.24 -0.02 0.04 0.02 -0.02 0.72 -0.24 0.02 072

—m =

R e



4.457| 2.229 |-0.629 (-4.457 | 2229 | 0.629 |-1.543 | 0.771 | 1.371 | 1.542| 0.771| 1.371
2.229| 1.486 |-0.629 [-2.229 | 0.743 | 0.314 |-0.771| 0.257 | 0.686 | 0.771| 0.514 | 0.686
-0.629|-0.314 | 0.114 | 0629 |-0.314 |-0.114 | 0.371|-0.186 | 0.286 |-0.371 |-0.186 | -0.286
4457 | 0.743 |-0.943 | 4.457|-2.229 |-0.629 | 1.543 |-0.771| 1.371|-1.543 | 0.771|-1.371
2.229| 1.486 |-0.314 (-2.229 | 1.486| 0.314 |-0.771 | 0.514 |-0.686 | 0.771| 0.257 | 0.686
0.629| 0.314 |-0.114 |-0.629 | 0.314 | 0.114 |-0.371 | 0.186 (-0.286 | 0.371| 0.186 | 0.286 '
-1.543(-0.771| 0371 | 1.543 (-0.771 (-0.371| 4.457 |-2.229 | 1.629 |-4.457 |-2.229 |-0.543
0.771) 0514 |-0.186 [-0.771 | 4629 | 0.186 |-2.229 | 1.486 |-0.814 | 2.229| 0.743 | 0.814
1.371| 0.686 | 0.286 [-1.371|-0.686 |-0.286 | 1.629 [-0.814 | 0.914 | -1.629 | -0.814 |-0.914
1.543(-0.771|-0.371 |-1.543 | 0.771|-0.286 | -4.457 | 2.229 |-1.629 | 4.457 | 2.229 | 1.629
0.771| 0514 |-0.186 | 0.771| 0.257 | 0.186 |-2.229 | 0.743 |-0.814 | 2229 | 1.485 | 0.814
1.371| 0.686 (-0.286 |-1.371| 0.686 [-0.286 (-1.629 [ 0.814 [-0914 | 1.629 | 0.814 | 0.914

#
"
wlo|vlo|luo|s|lwlp] o

—_
[=}

-
—_

11.794| 3097|-3583|-5794| 1.097| 1.163|-0.206| 1.903| 084|-5794(-0.097)-1.097|  ~ ~
5.497| 1.92]|-0.608|-2.097|-0.023| 0.345|-0.903| 1.023| 052(-2497( 0.366| 0.151
-1183| -0.649| 1.92| 0097| 0.131| -035( 0.903|-0.851| 0.109 | 2.097 | 0.149| 02377

312 0874 | -4354 (11794 | -4.097 | -0.663 | -6.794 | 1.097 | -1.097 | -0.206 | 0.64 | -1.903
0617 112 0151 -6.497 | 312 0.093| 3.497| 0709 0.349| 1903| 0623 1.351
1.183| 0.391|-0.644 | -0683 | 0.191| 0.179|-0.317 | 0.309| -0.428 | 0.554| 0.109| 0.261 !
-0.206| -0.903 | 0.903 | -5.794 [ 1.097 | -0.537 (11.794 | -4.097 | 3.937 | -5.794 | -2.007 | -2.411
1903| 088(-0851| 3497 | 2994 | 0.335| -4497| 312(-4049| 1097 | 0377 0349

0.84]-1.523| 1.023| 0617 -1.48|-0.388| -0.36|-1.649| 168]-1097] -0649] -112
5794 -14| 2337|-3086| 1.903 -06|-5794 [ 0857 | -0.857 [ 11.794 | 2.857 | 6.497
-2497| 008| 0249( 064| 1.023| 0.102|-2.097 | 0937 | -0.849| 5497| 1.92| 3549
-1.097| 0.391-0.023(-1.903| 1.351| -0.35(-0.837( 0.109| -1.12| 3.617| 1.149| 312

XT+Z+ W=

olo|lvlololalwlnslio

-
o

-
-

Sum of matrices A Band C A

-,




The matrix after the boundary condition of the plate

(eSS i | 2j 3 o I B 51550 i e 10 1}1 !
0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0
2 0 0| 0253|" 1.075 0| -2.209| -1635| 0.313| -0.183 0| 0248| 0277
3 0 0| 0187 7.83 , 0| -1.326|-10.345| 1.983| -2.089 0] 0631 212
4 0| 0 0 0 1 0 0 0 0 0 0 0
5 0 0| -0.144| -0.998 0] 0126 0941| -0.264( 0194 0] -0.142| -0.197
6 0 0| -1.568 |-10.776 0] 1.297| 10.168! -1.951 2.06 0| -0542( -0.242
7 0 ol 037 218 0| -0.258| -1.852| 0.399( -0415 0| 0.037( 0.081
8 0 0| -0.299| 0539 0 025| -0436| -0.374| 0.087 0] -0.296 | -0.405
9 0 0 ] 0 0 0 0 0 0 1 0 0
10 ] 0] 0253]| 0698 0| -0.402| -1542| 0295| -0.313 0 0234 0318
i1 0 - G3TT] 2ea 0 -G075} 206811 0394 -042 0] 0571 0,427
!
'.""“a.a . o
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DEFLECTION FOR VARIATION IN LOAD(POINT LOAD)
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DEFLECTION FOR VARIATION IN FLEXURAL RIGIDITY 3
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DEFLECTION FOR VARIATION IN FLEXURAL RIGIDITY
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DEFLECTION FOR VARIATION IN RADIUS(X)(MOVING LOAD)
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DEFLECTION FOR VAR!ATION IN LOAD (CIRCURAL LOAD)
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DEFLECTION FOR VARIATION IN (W) CIRCULAR VARIABLE LOAD
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CHAPTER FIVE

5.1 Discussion of Results

From Figures 1, 3, 5, and 8 we have shown the displacement against
vdistance for various values of p (load) with 4.8 X 108N. It can be observed
that an increase in p leads to increase in the deflection. Also the
displacement is sinusoidal with a maximum value at x = 10.8, 8.5, 10.5, and
10.5. The peak is at x = 8.5, 10.5, 8.5, and 8.5

In figures 2, 4, 6, and 9 we have shown the displacement against distance for
various values of D flexural rigidity keeping p load constant. It can be
observed that increase in D leads to decrease in deflection, which is also of
sinusoidal with a maximum value at x = 10.8, 8.5, 6.5, and 10.5, the peak is
at x = 8.510.5, 8.5, and 8.5 were p = 20000.

In fig 7, we have showed the displacement against distance for various
variational radii y it can be observe that the graph is almost linear at the point
7 = 0deflection increases as radii increases with maximum point at 6.8 peak
at 8.5 also sinusoidal.

In fig 10 we have shown the effect of variational angle on moving loads, the
graph is sinusoidal. The deflection is higher at f=r and lower at f=n/4 with

the same maximum and peak points at 8.5 and 10.5 respectively.



In fig 11 and 12 we look at the effect of variational angle of variable load, it

was observed that the graph are anti symmetric in shape for some angle e.g

n/4 and = it is linear at B=3n/2

5.2 Conlusion

In this research work we have studied the deflection of a plate subjected to

the moving load using finite element method.

The system was interpolated in to a shape function by the used of cubic

hermirtian interpolating' polynomial. This is then solved by Galerkin's
procedure, multiplying through with weight residual function. The integral is
then taken within the interval of plate dimension. This gives us the solution
to the mass matrix of the problem. The nodal displacement is then
determined after considering the natural boundary condition of the plate, by
multiplying through with its inverse.

The magnitude of moving load, flexural rigidity of plate material, variational

is then analyzed by plotting the graph of nodal displacement against the

distance of deflection. It was also observed that the displacement increases



variable loads affect the deflection and higher at m lower at 2w on both
moving and circulaxz variable loa&s.

5.3 Recommendation

With the above observation it is therefore recommended that the flexural
rigidity of plate shall be proportional to the highest expected load passing |
through the plate. The radii should be proportional also, variational angle at
n/2 is more sweet able for all problems. This reduces the problem of the
plate collapse or crack. These idea$ can be used in the constni;tion of '
bridges and roads. |

For further research the effect of eccencity, natural frequency variation of
height of the plate i.e. on uniform can be considered. This will improve the

result of this research work and structural reliability of the plate if applied in |

the construction.
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APPENDIX B

36m(y)* -12bm(y)n(y) 36am(y)” -36m(y)’ -12bm(y)o(y) 36am(y)* -36a’m(y)* -12am(y)o(y) 36am(y)’ -36m(y)* - 36am(y)”
Qx) Qx)* Q(X)R(x) Q) Qxy? Q)R(x) R(X)S(x) S(y) Q%) Q()T(x) Q(x)S(x) (12)bsr2(>;)m(y)Q Q()T(x)
X)S(X
- 4b? nq)’ 12abn(y)m(y) 12bm(y) 4b’n(y) -12am(y)o(y) 12bm(y) 4b7n@y)Y |- . 12bm(y) 4b “n(y) 12abn(y)m(y)Q(x
12bm(y)n( Q(x) Q()R(x) n(y)Q(x)* o(y)Q(x)* Q(X)R(x) n(y)Q(x) Q(x)S(x) 12abn(y)m(y n(y)Q(x) Q(x)S(x) )T(x)
QZ))’ Sx) JQX)T(x) S(x)
‘ X g
; -36am(y)* | 12abn(y)m(y) 36a’m9)’ 36am(y)* 12abm(y) -36 a’m(y)* 36am(y)’ -12abn(y)o(y) | -36a’m(y)’ 36am(y)* 12abm(y) 36a'm(y)”
QXR(x) |  Q(R(x) R(x) Q(X)R(x) o(y) QXR(x) | R(X) R()S(x) S(y) R(x) R(X)T(x) R(x)S(x). i r)l(y)R(X) R()T(x)
X
-36m(y) 12bn(y)m(y) 36a’m(y)” 36m(y)” 12bm(y) -36 am(y)* 36m(y)’ 12bm(y)o(y) 36a'm(y)> | 36m(y) 12bm(y) 36am(y)*
Qxy* Q)* R(x)Q(x) QW o(y) Qx)? Q(X)R(x) R(IS(x) S(x) Q(x) QX)T(x) Q()S(x) z r)l(y)Q(x) Gt
? ) X X)1(X
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12bm(y)o( Q) R(x)Q(x) o(y)Q()* Qy* o(y) o(y)Q(x)S(x Q(x)S(x) 12abm(y)o(y | S(x) Q(x Q(x)S(x) IT(x)
y) Qx)? Q(x) R(x) )
T(x) Q(x)
-36am(y)’ | -12abn(y)m(y) -36a’m(y)’ -36m(y)’ -12abm(y) 36azm(2')2 -36m(y)° -12abm(y)o(y) | 36a’m(y)’ -36am(y)’ -12abm(y) -36a’m(y)*
Q()R(x) QM)R(x) R(x)’ QM()R(x) o(y) Q)R(x) R(x) R(x)S(x) R(x) S(x) RX)T(x) R(x)S(x) & )n(y)R(x) RX)T(x)
X
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X
F - 4b™n(y)o(y) 12abm(y)o(y) 12bm(y)o(y) 4b%(v)? -12abm(y)o(y) | 12bm(y)o(y) 4b7o(y) -12abm(y) | 12bm(y)o(y) | 4b?n(y)o(y) | 12abo(y)m(y)S(x)
i 12bm§y)o( Q(x)S(x) R(0)S(x) Q(x)S(x) Q(x)S(x) R(x)S(x) S(x)? - | s o(y) ST | S&)? S(x)S(x) T(x)
¥ hrk
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: x) S(x) X
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12bm(y)n( S()Q(x) R(x)S(x) Q(x)S(x) Q(x)S(x) R(x)S(x) S(x)? S(x)? n(y) ST | S()? S()* T(x)
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Q(X)S(x)
-36m(y)’ | 12abn(v)m(y) 36a'm(y)” 36am(y)’ 12abm(y) -36a"m(y)” 36am(y)* 12abm(y)o(y) | -36am(y) 12am(y)’ 12abm(y) 36a’ m(y)y
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APPENDIX C

36m(x)m(y) | 36bm(y)m(x) | 12am(x)n(y) | 36m(y)m(x) | 36bm(y)m(y) | - - - - -36m(y)m(x) -36bm(y)m(x) | 12am(y)o(x)
Q(IQ(Y) R(y)Q(x) Q(X)R(y) Q()S(y) Q)T(y) 12am(y)n(x) | 36m(y)m(x) | 36bm(Y)m(x) | 12am(y)o(x) | Q(x)Q(y)b QX)R(y) Qx)Q(y)
QU)R(y) Q(X)S(y) QX)T(y) QX)S(y)
- - -4abn(x)n(y) | - - 4abn(y)n(x) 12bm(x)n(y) | 12b’m(x)n(y) | 4abn(y)o(x) | 12bm(x)n(y) 12b'm(x)n(y) | -4abo(x)n(y)
12bn(y)m(x) | 126’m(y)m(x) | Q(y)Q(x) 12bn(y)m(x) | 126°m(x)n(y) | R)Q(x) Q()S(y) Q(x)T(Y) S(QAx) Q(x)Qy) Q(X)R(y) QX)QAy)
Qx)Q(y) Q(X)R(y) Qx)S(y) QX)T(y)
- -36am(x)R(y) | - -36m(x)S(y) | - 3 12a’n(x)R(y) | 36am(x)S(y) | 36abm(X)T(y) | - 36am(x)Q(y) | 36abm(x)R(y) | -
36am(x)m(y) | m(y)R(x)b 122°n(x)Q(y) | m(y)Q(x) 36abm(x)T(y) | m(y)R(x) m(y)R(x) m(y)R(x) 12°0(x)S(y) | m(y)R(x) m(y)R(x) 12a°0(x)Q(y)
QMOR(x) m(y)R(x) m(y)R(x) m(y)R(x) m(y)R(X)
-36m(x)m(y) | -36bm(x)R(x) | - -36n(x)S(y) | -36bm(x)T(y) | 12an(x)R(y) | 36m(x)S(y) | 36bm(x)T(y) | 12ao(x)S(y) | 36m(x)Q(y) 36bm(x)R(y) | -
Qx)Qy) m(y)Q(x) 12an(x)Q(y) | m(y)R(x) m(y)Q(x) m(y)Q(x) m(y)Q(x) m(y)Q(x) m(y)Q(x) m(y)Q(x) m(y)Q(x) 12a0(x)Q(y)
m(y)Q(x) : m(y)Q(x)
-12m(x)o(y) | - -4abn(x)R(y) | - - 4abn()R(y) | 12bm(x)S(v) | 126°m(x)T(y) | 4abox)S(y) | 12bm(x)Q(y) | 12b’m(x)R(y) | -
QY)Q(x) 126'm(x)REY) | o(y)Q(x) 12bm(x)S(y) | 126'm(x)T(y) | o(y)Q(x) o(y)Q(x) o(y)Q(x) o(y)Q(x) o(y)Q(x) o(y)Q(x) 4abo(x)Q(y)
o(y)Q(x) 0(x)Q(y) o(y)Q(x) o(y)Q(x)
26am(v)Q(y) | 36abm(x)R(y) | 12a’n(x)R(y) | 36am(x)S(y) | 36abm(x)T(y) | - - - - - - -
m(y)S(x) m(y)R(x) m(y)R(x) m(y)R(x) m(y)R(x) 12an(x)R(y) | 36am(x)S(y) | 36abm(x)T(y) 12a:o(x)S(y) 36abm(x)Q(y) | 36abm(x)R(y) | 12a’0(x)Q(y)
L m(y)R(x) m(v)R(x) m(y)R(x) m(y)R(x) m(yR(X) m(y)R(x) m(y)R(x)
-36m(x)Q(y) | -36bm(x)R{y) | -12an(x)R(y) | -36m(x)S(y) | -36bm(x)T(y) | 12an(x)R(y) | 36m(x)S(y) | 36bm(x)T(y) | 12ac(x)S(y) | 36m(x)Q(y) 36bm(x)R(y) | -
1(y)S(x) m(y)S(x) m(y)S(x) m(y)S(x) m(y)S(x) m(y)S(x) m(y)S(x) m(y)S(x) m(y)S(x) m(y)S(x) m(y)S(x) 12(;3(8);)?(3()
m X
-12m(x)o(y) | - - - - 4abn(x)R(y) | 12bm(x)S(y) | 126"m(x)T(y) | 4abo(x)S(y) | 12bm(x)Q(y) | 12b'm(x)R(Y) | -
QY)S(x)b 126°m(x)R(y) | 4abn(x)Q(y) | 12bm(x)S(y) | 126’mX)T(y) | o(y)S(x) o(y)S(x) o(y)S(x) o(y)S(x) o(y)S(x) o(x)S(y)  _ | 4abo(x)Q(y)
| o(¥)S(x) o(y)S(x) o(¥)S(x) o(y)S(x) o(y)S(x)
36am(x)Q(y) | 36abm(x)R(y) | 12a’n(x)Q(y) | 36am(x)S(y) | 36abm(x)T(y) | - = - - -36am(x)Qy) | - 122°0(x)Q(y)
m(y)T(x) m(y)T(x) m(y)T(x) m(y)T(x) m(y)T(x) 122°n(x)R(y) | 36am(x)S(y) | 36abm(x)T(y) | 12a°0(x)S(y) | m(y)T(x) 36abm(x)R(y) | m(y)T(x)
m(y)T(x) m(y)T(x) m(v)T(x) m(y)T(x) m(y)T(x)
-36m(x)Q(y) | -36bm(x)R(y) | 12an(x)Q(y) | 36m(x)S(y) | 36bm(x)T(y) | 12an(x)R(y) | 36m(x)S(y) | -36bm(x)T(y) | - -36m(x)Q(y) | -36bm(x)R(y) | 12a0(x)Q(y)
m(y)S(x) m(y)S(x) m(y)S(x) m(y)S(x) m(y)S(x) m(y)S(x) m(y)S(x) m(y)S(x) 12(;‘;2?%()!) m(y)S(x) m(y)S(x) m(y)S(x)
m| %
- - -4n(v)n(x) - - 4abn(x)R(Y) | 12bm(x)S(y) | 126°m(x)T(y) | 4abo(x)S(y) | 12bm(x)Q(y) | 12b'm(x)R(y) | -
12bm(x)Q(y) | 126’m(x)R(y) | R(y0S(x)b 12bm(x)S(y) | 126'm(x)T(y) | n(y)S(x) n(y)S(x) n(y)S(x) n(y)S(x) n(x)S(x) n(y)S(x) 4abo(x)Q(y)
n(y)S(x) n(y)S(x) n(y)S(x) n (x)S(y) n(y)S(x)
- - - - 5 - 12a'n(x)R(y) | 36am(x)S(y) | 36abm(x)T(y) | - 36am(x)Q(y) | 36abm(x)R(y) | -
36am(x)Q(y) | 36abm(x)R(y) | 12a°n(x)R(y) | 36am(x)S(y) | 36abm(x)T(y) | m(y)T(x) m(y)T(x) m(y)T(x) 122%(x)S(y) | m(y)T(x) m(y)T(x) 122%0(x)Q(y)
m()T(x) m()T(x) m(v)T(x) m(T(x) m(y)R(x) m(y)T(x) m(y)T(x)
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APPENDIX A
36m(x)’Qy) | 36bm(x)*Q(y)? 12am(x)n(x) 36m(x)*Q(y) 36bm(x)*Q(y) -12am(x)n(x) -36m(x)°'Q(y) | 36bm(x)’Q(y) 12am(x)o(x) -36m(xy’ QW) | -36bm(x)'Q(y)* 12am(x)o(x)
R(y) Q(YR(y) S() T(y) QY)R(yY) S(v) - T) QWV)S(y) RY) QW)
36bm(x)’Q(y)* 36b’m(x)? l2al;m(x)n(x) 36bm(x)’R(y) 36b’m(x)? -12abm(x)n(x) | -36bm(x)R(y) -36b’m(x)* 12abm(x)o(x) -36bm(x)"Q(y) -36bzmgx)’ 12abm(x)o(x)
R(y) Ry)* QY)R(Y) S(v) RWT(Y) R(y) S RWT(Y) RY) S(v) R(Y) R(y) REQY)
12am(x)n(x) 12abm(x)n(x) 42’n(x)"Q(y) 12am(x)n(x) 12abm(x)n(x) -4a’n(x)? -12am(x)n(y) | -12abm(x)n(x) 4a’n(x)o(x) -12am(x)n(x) -12abm(x)n(x) 42’n(x)o(x)
QYR(Y) QWR(y) QW)S(y) QWT(y) QYR(Y) QWSy) QWIT(y) QW)S(y) QW) QYR(Y) Qly)”
36m(x)’Q(y) | 36bm(x)*R(y)? 12an(x)m(x) 36m(x)*S(y)? 36bm(x)*S(y) -12am(x)n(x) -36m(x)’S(y)* -36bm(x) 12am(x)o(x) -36m(x)*S(y) -36bm(x) 12am(x)o(x)
S S(v) QY)S(y) T(y) S(YR(Y) TYS(y) S(y)* Qy) S R(y) S(QY)
36bm(x)*Q(y) 36b’m(x)* 12abn(x)n(x) 36bm(x)*S(y) 36b’m(x)* -12abm(x)n(x) | -36bm(x)*T(y) -36bm(x)? 12abm(x)o(x) -36bm(x)’ -36b’m(x) 12abm(x)o(x)
T(y) RWT(Y) QWT(y) T(y) T(y) S() T(y)’b S T(y) T(y) Q¥) TYRKY) QWIT(Y)
-12am(x)n(x) | -12abm(x)n(y) 4a’m(x)’Q(y) -12am(x)n(x) | -12abm(x)n(x) 4a’n(x)’R(y) 12m(x)n(x) 12abm(x)n(x) -4a’n(x)o(x) 12m(x)n(x) 12abm(x)n(x) -4a’n(x)o(x)
QWYR(y) R(y)’ R(y) S(YR(Y) T(YIR(y) R(Y)S(y) RWT(Y) RY)S(y) R(¥)Q(y)a R{y) R(y)Q(Y)
- -36bm(x)’R(y) | -12am()n(x) | -36m(x)’S@y) | -36bm(xFT(y) | 12am(x)n(x) 36mESEF | 36bm(x)S(y) -12am(x)o(x) 36m(x)’ 36bm(x)? -12am(x ()
36bin(x)’S(y)* S() QY)S(y) S(y) RE)S(y) T(y) S(y)* S(y) Q) SYR(y) S
L Qy) A
-36tm(x)’QyY) | -36m(x)*T(y) -12a’n(x)m(x) | -36bm(x)’S(y) -36b’m(x)? 12abm(x)n(x) 36bm(x)*S(y) 36b’m(x)* -12abm(x)o(x) 36bm(x)*T(y) 36b’m(x)’ ~12abm(x(x)
T(y) R(y)b? T(yQL) T(y) Ty RWT(y) T(y) T(yy T(y) S(v) Q) RY)T(Y) TyQL)
12am(x)o(x) 12abm(x)o(x) 4a’n(x)’o(x) 12am(x)o(x) 12abm(x)o(x) -4a’n(x)’0(x) -12am(x)o(x) -12abm(x)o(x) 4a%o(x)*S(y) -12am(x)o(x) 12abm(x)o(x) 4a%(x)"S(y)
QW)S(y) RyY)S(y) QY)S(y) S)* SWT(Y) SWR(®Y) S)? T(y) S(v) : SQY) S(YR(Y) Q)
-36m(x)’Q(y)’ | -36bm(x)°’Q(y) -12am(x)n(x) -36m(x)*Q(y) -36bm(x)*Q(y) 12am(x)n(x) 36m(x)’S(y) 36bm(x)* -12am(x)o(x) 36m(x)’Q(y)* 36b’m(x)’ -12am(x)o(x)
R(Y) Q) S) T(y) RYQY) Q) T(y) Qy) S(y) QY) RYQY) Q)
- -36m(x)’Q(y) -36b’m(x)* -12abm(x)n(x) -36m(x)°R(y) -36b’m(x)’ 12abm(x)n(x) 36m(x)*S(y) 36b’m(x)* -12abm(x)o(x) 36m(x)’Q(y) 36bzm(2>;)2 -12abm(x)o(x)
R(y)b Ry QMR(Y) S(v)b ROYT(Y) SOR(Y) bR(Y) TERY) S R(Y) R(y)b R(y) QWIR(Y)
f2mkx)o(x) 12abm(x)o(x) 4a’n(x)o(x) 12am(x)o(x) 12m(x)o(x) -4a’m(x)*0(x) -12am(x)o(x) -12abm(x)o(x) 42%0(x)*S(y) -12am(x)o(x) -12abm(x)o(x) 4a’o(x2)2
Qy)a R(Y)Q(y) Qy)y* S(y)QY) Q(y)T(y)ab R(»QY) SMQY) T(y) Q) Qy) Q) QR(Y) Qly)




