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ABSTRACT 

In this research, transmission dynamics of Rift Valley Fever (RVF) with mosquito, livestock 

and human host using ordinary differential equation was studied and analyzed. RVF is a viral 

zoonosis fundamentally transmitted by mosquitoes and primarily affects livestock but has 

the ability to affect humans. It has become a public worry due to its potential to spread rapidly 

and become an epidemic. The Effective Reproduction Number Rc was computed using next 

generation matrix and used to investigate the local and global stability of the equilibrium, the 

disease-free equilibrium state was found to be locally asymptotically stable if Rc< 1. And by 

constructing a function using Castillo-Chavez's method, the disease-free state is found to be 

globally asymptotically stable if 𝑅𝑐 ≤ 1. This implies that rift valley fever could be put under 

control in a population where the Reproduction Number is less than 1. Numerical simulations 

using Adomian Decomposition Method (ADM) gives insightful analytical results to further 

explore the dynamics of the disease. 
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CHAPTER ONE 

1.0            INTRODUCTION 

1.1 Background to the Study 

Rift Valley Fever (RVF) is a viral illness of people and livestock that can cause mild to 

serious side effects. RVF is also known as enzootic hepatitis of sheep and cattle (Adeyeye et 

al., 2011). It is an acute, infectious and zoonotic disease of predominantly cattle, sheep, goat, 

camels, African buffalo (Syncerus caffer) and humans. The disease is caused by an arbovirus 

and is associated with periodic outbreaks that mostly occur on the African continent. It is a 

febrile disease that is accompanied by abortion in livestock and a severe fatal haemorrhagic 

syndrome in humans has been observed (Evans et al., 2008). The disease was first reported 

among sheep in Kenya by Montgomery in 1912 and Stordy in 1913 (Anon, 2010), but the 

disease was not isolated until 1931 (Morril, 2001).  

RVF is transmitted by mosquitoes and infects domestic livestock and humans in Africa and 

the Middle East (Abdo-Salam et al., 2006). The mild indications may include: fever, muscle 

pains, and migraines which frequently keep going for as long as seven days. The serious side 

effects may include: loss of sight starting three weeks after the contamination, diseases of the 

cerebrum creating extreme migraines and confusion, and bleeding along with liver issues 

which may happen within the first few days. The individuals who have bleeding have a 50% 

chance of death (WHO, 2010). 

 RVF is a viral zoonosis that essentially influences animals yet in addition has the ability to 

infect humans. The sickness additionally brings about huge monetary misfortunes because 

of death and early termination among RVF-infected animals. The infection was first 
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recognized in 1931 during an examination concerning a scourge among sheep on a ranch in 

the Rift Valley of Kenya. From that point forward, episodes have been accounted for in sub-

Saharan Africa. In 1977 a hazardous episode was accounted for in Egypt, the RVF infection 

was introduced to Egypt through infected animals exchange along the Nile irrigation system 

framework. In 1997–1998, a significant outbreak occurred in Kenya, Somalia and Tanzania 

following El Niño occasion and broad flooding. Following infected animals exchange from 

the horn of Africa, RVF spread in September 2000 to Saudi Arabia and Yemen, denoting the 

primary detailed event of the virus outside the African landmass and raising worries that it 

could stretch out to different parts of Asia and Europe (WHO, 2018). 

 The outbreak on the Arabian Peninsula represents the first cases of RVF outside Africa. In 

2007, an outbreak occurred in Kenya and Somalia where over 404 human cases, including 

118 deaths, were reported (Centers for Disease control and Prevention (CDC), 2007). In 

South Africa, the last outbreak occurred in May 2010; preliminary investigation revealed that 

186 humans were confirmed RVF cases out of which 18 died (WHO, 2010). An overview of 

the disease is necessary given climate changes that favour possible outbreaks (Gould and 

Higgs, 2009) and the warning signals dispatched to countries in Africa by the Food and 

Agriculture Organization and World Health organization (Food and Agriculture 

Organization, 2008). 

In Nigeria, Ferguson first isolated the virus from animals (Ferguson, 1959). Subsequent 

serological evidence suggests that the virus may be circulating at low levels in domestic 

livestock and in the human population, particularly among livestock workers and wildlife 

rangers (Olaleye et al.,1996). Cattle, sheep, goats and camels in the states of Kaduna and 

Sokoto have revealed significant antibody titres in their serum (Ezeifeka et al., 1982). 
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Serological prevalence of the disease in these animal species in Ile‐Ife and Ibadan was 

observed by Olaleye et al. (1996) who confirmed the existence of the disease in Nigeria. 

Apart from these observations, experimental infection with different strains of the disease in 

three indigenous breeds of sheep in Nigeria, namely: The West African dwarf, Yankasa and 

Ouda have resulted in fatal disease (Fagbami et al., 1975). Further studies are therefore 

required to determine the present status of the disease in Nigeria. 

1.2 Statement of the Research Problem 

RVF has been a major course of concern, presently, virological and serological evidence 

suggests that the RVF virus exists throughout sub-Saharan Africa and Madagascar and, in 

the light of its recurrence in Egypt in 1993 and 2003 (Anon, 2010), it may be extending its 

range even further. In September 2000, cases of unexplained haemorrhagic fever in humans 

and associated animal deaths in south‐western Saudi Arabia and Yemen were confirmed as 

RVF and, by mid‐January 2001, the disease had claimed several human lives in these 

countries (Abdo-Salam et al., 2006).  

Hence, we formulated a model to take a closer look at this silent but deadly disease, by 

incorporating control and trapping of these infectious vectors and livestock to curb the spread 

of the disease. 

1.3 Aim and Objectives of the Study 

The aim of this work is to develop and analyse a mathematical model for the transmission 

dynamics of Rift Valley Fever (RVF) virus with human host. The objectives of the study are 

to: 

1.  formulate a mathematical model for RVF virus. 
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2. determine the criteria for positivity of the model equations. 

3. determine the Disease free and endemic equilibria of the model equations and conditions 

for their stability. 

4.  solve analytically using Adomian Decomposition Method. 

5.  carry out numerical simulation of the model using maple software. 

1.4 Motivation for the Study 

Nigeria is at high risk of RVF and it would be great to take precautionary measures to prevent 

any occurrence of this plague. The outbreak of diseases in the world recently has proven that 

no stone must be left unturned; every communicable disease must be treated as a matter of 

urgency. In order to save lives and prevent any other pandemic from occurring, the study of 

subject matters like this becomes a necessity for our general well being and for generations 

yet to come. 

1.5 Justification for the Study 

RVF has plagued a lot of nations of the world and it is still spreading its tentacles. The 

singular factor that RVF can be transmitted by mosquitoes raises a lot of concern, neglect of 

this disease can cause future outbreaks. RVF is a mosquito‐borne disease (Abdulkadir, 1989). 

Aedes is the species of mosquito that is incriminated in biological transmission (Turell et al., 

2008), although Glossina, Culicoides, Culex species and sand flies may play limited roles in 

biological and mechanical transmission (Hoch et al., 1985). Apart from these vectors, the 

disease has been reported to spread through needle inoculation, contact with infected animals 

or humans with high prevalence during periods of heavy rainfall (Zeller et al.,1997). 

1.6 Scope and Limitation of the Study 
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The model is limited to the transmission dynamics of Rift Valley Fever with human host 

incorporating culling rate (control) and trapping of mosquitoes. 
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1.7 Definition of Terms 

Effective reproduction number Rc: This is the average number of secondary cases per 

infection in a population made up of both susceptible and non-susceptible hosts. 

Disease free equilibrium: This is a steady state solution of a system, when there is no disease 

present in a given population. 

Trapping of Mosquitoes: This is the control of mosquito population to reduce damages 

caused to human health, economies and general well being.  

Culling livestock: This is the elimination of undesired animals from the herd for reasons of 

uneconomic, poor production, sterility problems and incurable diseases.  
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CHAPTER TWO 

2.0     LITERATURE REVIEW 

2.1 Mathematical Models of Rift Valley Fever 

Farida et al. (2016) developed vaccination models for live and killed vaccines. A ruminant 

population at time t (N(t)) was divided into classes of susceptible (S(t)), infectious (I(t)), 

recovered (R(t)) and vaccinated by live vaccines (V1(t)) or vaccinated by killed vaccines 

(V2(t)) ruminants. A population of adult female mosquitoes at time t (M(t)) was divided into 

susceptible (U(t)) and infectious (W(t)) classes.  

Ruminants (livestock) have a very high immunity, hence they concluded that RVFV remains 

endemic at a very low level, when an outbreak occurs. The model equations were given as: 

     

   
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


      


    

   (2.1) 

Although live vaccines induce early and long-term immunity, they may cause viraemia in 

ruminants and have a potential for virulence reversion. Hence, they were not recommended 

in non-endemic areas or during the breeding season of mosquitoes or during disease 

outbreaks (Ikegami and Makino, 2009; Kamal, 2011). Susceptible ruminants were vaccinated 

at a rate 𝜌11φ1, where 1/φ1 is the time period that ruminants remain susceptible before being 
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vaccinated and only a fraction ρ11 of ruminants was actually vaccinated. Vaccinated 

ruminants leave the vaccination class at a rate λ with a probability of ρ12 to successfully 

acquire a life-long immunity, a probability of ρ13 that reversion to virulence occurred, and a 

probability of 1 – ρ12 – ρ13 for vaccine failure.  

Although killed vaccines are safer than live vaccines, they may have poor immunogenicity 

by not inducing long-term immunity and often requiring multiple vaccination doses (Ikegami 

and Makino, 2009; Bird, 2012). It was assumed that susceptible ruminants are vaccinated at 

rate ρ21φ2, where 1/φ2 is the time period that ruminants remain susceptible before being 

vaccinated by killed vaccine and only a fraction ρ21 of ruminants was actually vaccinated. 

Vaccinated ruminants leave the vaccination class at rate ν with a probability of ρ22 to receive 

booster vaccines and successfully acquire long-term immunity, and a probability of 1−ρ22 for 

individuals to become susceptible again due to vaccine failure or not receiving booster 

vaccines. 

The model described in (Tianchan et al., 2012) was constructed to describe the transmission 

of RVFV between three prototypes: two mosquito populations and one livestock population. 

The model considered both individual-to-individual transmission of virus between species 

(called “horizontal transmission”) and mother-to-offspring transmission of virus (vertical 

transmission) in one mosquito species. The mosquitoes that can transmit RVFV both 

horizontally to livestock and vertically to their progeny “floodwater Aedes” mosquitoes were 

labelled “species 1”. Livestock were labelled “species 2”, and mosquitoes that transmit 

RVFV only horizontally to livestock “Culex” were labelled “species 3”. Considering 

populations of these species distributed throughout a large but finite two-dimensional region. 

The general model allowed for travel among any pair of patches in the simulated region. 
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Example of this movement is livestock that is transported from a farm to a different farm or 

auction house. Such travel need not be between adjacent patches; transportation may move 

individuals between one patch and a geographically disconnected patch. Species living on a 

given patch may have patch-specific epidemiologic and demographic characteristics. 

 Gaff et al. (2007) constructed a compartmental, ordinary differential equation (ODE) model 

of RVFV, it considers two populations of mosquitoes (one exhibiting vertical transmission 

and the other not) and a population of livestock animals with disease-dependent mortality. 

One population of vectors represented Aedes mosquitoes, which can be infected through 

either vertically or via a blood meal from an infectious host. The other vector population is 

able to transmit RVFV to hosts but not to their offspring; here they considered it to be a 

population of Culex mosquitoes. Once infectious, mosquito vectors remain infectious for the 

remainder of their lifespan. Infection is assumed not to affect mosquito behavior or longevity 

significantly. Hosts, which represent various livestock animals, can become infected when 

fed upon by infectious vectors. Hosts may then die from RVFV infection or recover, 

whereupon they have lifelong immunity to reinfection (Wilson, 1994). Neither age structure 

nor spatial effects were incorporated into this model. Populations contain a number of 

susceptible (Si), incubating (infected, but not yet infectious) (Ei) and infectious (Ii) 

individuals, i = 1, 2, 3. Infected livestock will either die from RVFV or will recover with 

immunity (R2). To reflect the vertical transmission in the Aedes species, compartments for 

uninfected (P1) and infected(Q1) eggs are included. As the Culex species cannot transmit 

RVF vertically, only uninfected eggs (P3) are included. Adult vectors emerge from these 

compartments at the appropriate maturation rates. The size of each adult mosquito population 

is Ni = Si + Ei + Ii, for i = 1 and 3. The livestock population was modeled using a logistic 
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population model with a given carrying capacity, K2. The total livestock population size is 

N2 = S2 + E2 + I2 + R2. 

The system of ODEs that represented the populations is given below: 

 

Aedes vector 
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                                                                      (2.2) 

Livestock 
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                                               (2.3) 

Culex mosquito Vector 
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                                                                    (2.4) 

 

The model presented was a simplified representation of the complex biology involved 

in the epidemiology of RVF.  

Our model is based on the following assumptions; 

i. That the population is heterogeneous.  

ii. That people, animals and vectors (mosquitoes) have equal natural death rate in their 

respective compartments.  

iii. The only way of entry into the population is through birth and the only way of exit 

is through death from natural causes or culling (elimination of infected animals) for 

livestock only. 

iv. That trapping of mosquitoes controls the spread of the disease. 

v. That RVF virus can be spread from humans to mosquitoes and vice versa; 

mosquitoes to livestock and vice versa. 

 

2.2 Effective Reproduction Number 

The effective reproduction number (Rc) is the average number of secondary cases per 

infectious case in a population made up of both susceptible and non-susceptible hosts. If Rc 

> 1, the number of cases will increase, such as at the start of an epidemic. Where Rc=1, the 
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disease is endemic, and where Rc < 1 there will be a decline in the number of cases. The 

effective reproduction number can be estimated as the product of the basic reproduction 

number and the fraction of the host population that is susceptible (x). So: 

0cR R x
      (2.5) 

The next generation approach described by Van Driessche and Watmough (2002) is an 

acceptable method to compute Basic reproduction number. 

We used this approach to determine our Effective Reproduction Number of the next 

generation matrix FV-1. 

 iV x
is the rate of transfer of individuals into compartment i by every means except the 

epidemic. 

 iV x
is the transfer of individuals out of compartment i. 

   i i iV V x V x            (2.6) 

Given the DFE, Rc is calculated thus:   

 0
i

j

F
F E

x





          (2.7) 

 0
i

j

V
V E

x





      (2.8) 

 1

cR FV         (2.9) 

2.3 Global Stability of Disease Free Equilibrium 
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Global stability means that the system will come to the equilibrium point from any possible 

starting point (i.e., there is no "nearby" condition). Castillo Chavez stability theorem was 

used to determine the global stability of disease free equilibrium in this study. 

We can write the model system as: 

 . . 1S

s
s D F E i

dX
A X X A X

dt
          (2.10)

 

2
i

i

dX
A X

dt
                      (2.11) 

 

2.4 Local Stability of Disease Free Equilibrium 

Local stability of an equilibrium point means that if you put the system somewhere nearby 

the equilibrium point then it will move itself to the equilibrium point in some time. 

2.5 Adomian Decomposition Method (ADM) 

The Adomian decomposition method (ADM) is a semi-analytical method for solving 

ordinary and partial nonlinear differential equations. The method was first introduced by an 

American mathematician and aerospace engineer of Armenian descent George Adomian in 

1981 and developed by him in 198l. The method employs the use of the "Adomian 

polynomials" to represent the nonlinear portion of the equation as a convergent series with 

respect to these polynomials, without actual linearization of the system. These polynomials 

mathematically generalize Maclaurin series about an arbitrary external parameter, which 

gives the solution method more flexibility than direct Taylor series expansion. 
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This method has been applied to solve differential and integral equations of linear and non-

linear problems in mathematics, physics, biology and chemistry and now a large number of 

research papers have been published to show the feasibility of the decomposition method 

(Nhawu et al., 2015).  

We show how the method works by considering the derivative operator: D d dx  

   1

0

0

x

D y x y y s ds            (2.12) 

Where s=0 was chosen for simplicity 

  00y y           (2.13) 

The derivative operator is defined on the space of smooth functions and its inverse acts in the 

space of integrable functions. 

           1 1 ' ' ' '
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0 0 0

x
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Assuming the solution is the infinite sum 
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We substitute the series into either the differential equation or the formula; 
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Comparing like terms, we get the recurrence relation 

1

1

1

0

, 0,1,2

k k

k k

Dy ay
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y aD y k
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


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        (2.17) 

Each of these recurrences is a linear difference-differential equation; 
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We get the solution; 
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For the initial value problems for non-linear equations such as; 

          0, 0y

dy
a t y t b t N f t y y

dt
                                                                (2.22) 
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The ADM method is to represent the non-linear term as the sum of Adomian polynomials 

 0 1 2

0

, , ,..., ,y n n

n

N A y y y y


                                                             (2.23) 

Where An are the Adomian polynomials specifically generated for each non-linear operator 

according to the formula 

 0 1 2

0 0

1
, , ,..., , 0,1,2,...

!

n n
k

n n kn
k

d
A y y y y N y n

n d



  

 
  

 
                       (2.24) 

0 0

1 0

1

0

,...

y

y

A N

y dN
A

dy




                                                                       (2.25) 

0 1 2 ...yN A A A                     (2.26) 

correspond to ordinary generating functions. 
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2.6 Sensitivity Analysis 

Sensitivity analysis confirms the effect each parameter has on the disease transmission. The 

objective of sensitivity analysis is to give rise to uncertainties of the model outputs (Leon et 

al.,2009). 

To determine sensitivity index with respect to a parameter value q, we have; 

cR c
q

c

R q

q R


  


         

 (2.27) 
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CHAPTER THREE 

3.0    MATERIALS AND METHODS 

3.1      Formulation of the Model 

The model equations of Rift Valley Fever (RVF) are formulated using first order ordinary 

differential equation. Features such as vaccination to susceptible class, treatment of infected 

class and culling livestock, which is the elimination of infected livestock, control and spread 

of the disease among livestock and humans using vaccination and treatment respectively. 

In formulating the model, we considered horizontal transmission in mosquitoes; control 

(culling rate) vector population was also considered. Humans were considered to be a source 

of infection to mosquitoes (contact rate from humans to vectors was assumed to be almost 

negligible). We also assumed that livestock and humans get infected when they come in 

contact with infectious vectors. Natural death rate occurs in all three groups. 

The model was divided into three populations; the susceptible, Si and infected, Ii classes, for 

i = h, l, m for, human (h), livestock (l) and mosquitoes (m), respectively. The two susceptible 

populations (humans and livestock) become infected via an infectious mosquito bite at per 

capita rates 𝛽i. The newborns in each category are recruited at the per capita birth rate of Λi 

and hosts die naturally at per capita rates μi. Recovery in livestock is introduced at a constant 

rate γ𝑙; recovery in humans at a constant rate γℎ. The rates for treatment are; livestock 𝜏𝑙, 

treated humans 𝜏ℎ  and the vector is trapped at a constant rate 𝛿m. Since a population dynamics 

model is considered, all the state variables and parameters are assumed to be non-negative. 

The model assumes that individuals mix homogeneously in the human and livestock 

population where all individuals have equal chance of getting the infection if they come into 
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contact with infectious mosquitoes, and that transmission of the infection occurs with a 

standard incidence. It is the assumption of the model that there is natural mortality, thus there 

is no disease induced death, but rather culling of infected livestock 

The human population is sub-divided into the following subgroups; susceptible Sh, exposed 

Eh, infected Ιh, and recovered Rh. The size of the human population is therefore given by; 

h h h h hN S E R              (3.1)  

The livestock population is given by; 

l l l l lN S E R    
         (3.2) 

And mosquito population is given by; 

m m mN S             (3.3) 

 The disease occurs with equal probability across all age groups, hence the natural death rate 

𝜇ℎis the same across all stages of the disease in humans. 

The schematic representation of the model is given in the Figure 3.1. 
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Fig. 3.1 Schematic Diagram of the Model 
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The model equations derived from schematic diagram in figure (3.1) are given thus: 

Human Population 

h hm m h
h h h h h

h

dS S
S R

dt N


 


    

      

 (3.4) 

 h hm m h
h h h

h

dE S
E

dt N


 


          (3.5) 

 h
h h h h h

d
E

dt
  


            (3.6) 

 h
h h h h h

dR
R

dt
     

        
(3.7) 

Livestock Population 

 l lm m l
l l l l l

l

dS S
v S R

dt N



 


     

      

(3.8) 

 l lm m l
l l l l

l

dE S
E

dt N


  


   

       

(3.9) 

 l
l l l l l l

d
E c

dt
  


    

        
(3.10) 

 l
l l l l l l l l

dR
v S E R

dt
         

       
(3.11) 

Mosquito Population 

 m ml l m mh h m
m m m m

m m

dS S S
S

dt N N

 
 

 
     

     

(3.12) 
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 m ml l m mh h m
m m m

m m

d S S

dt N N

 
 

  
    

      

(3.13) 

And summing (3.4) - (3.7), (3.8)- (3.11) and (3.12) - (3.13) gives; 

 h
h h h h h h

dN
S E R

dt
      

      
 (3.14) 

 l
l l l l l l l l

dN
S E R c

dt
        

      
 (3.15) 

  m
m m m m m

dN
S

dt
                        (3.16) 

Table 3.1: Notation and definition of variables and parameters 

Symbol     Description 

 hN t       Total population of humans at time t 

 lN t       Total population of livestock at time t  

 mN t      Total population of mosquitoes at time t 

 hS t        Susceptible humans at time t 

 lS t         Susceptible livestock at time t 

 mS t       Susceptible mosquitoes at time t 

 hE t       Exposed humans at time t 

 lE t         Exposed livestock at time t 

 h t         Infected humans at time t 

 l t          Infected livestock at time t 
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 m t        Infected mosquitoes at time t 

 lR t        Recovered livestock at time t 

 hR t        Recovered humans at time t 

h             Recruitment rate of human 

l             Recruitment rate of livestock 

m            Recruitment rate of mosquitoes 

𝑣𝜀             Efficacy of vaccination 

lc                   Culling rate of livestock (control) 

lm               Adequate contact rate from livestock to mosquito 

ml              Adequate contact rate from mosquito to livestock 

mh           Adequate contact rate from mosquito to humans 

hm       Adequate contact rate from humans to mosquitoes 

l         Disease incubation period in livestock 

h             Disease incubation period in humans 

h         Rate at which humans recover 

l         Rate at which livestock recover 

h         Treatment rate in humans 

l          Treatment rate in livestock 

m         Trapping rate of mosquitoes  
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m             Natural death rate of mosquitoes 

l              Natural death rate of livestock 

h             Natural death rate of humans 

The following assumptions were considered in constructing the model: 

1. The recruitment rate into the susceptible class is at constant rate. 

For the model equations, let; 

1 h hk   
      

(3.17) 

2 h hk   

      
(3.18) 

3 h hk          (3.19) 

4 lk v 
      (3.20) 

5 l l lk     

      
(3.21) 

6 l l lk c   

      
(3.22) 

7 l lk   
      (3.23) 

8 m mk   

      
(3.24) 
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Thus, equations (3.4) to (3.13) becomes 

 

 

 

h hm m h
h h h h h

h

dS S
S R

dt N


 


             (3.25)           

1
h hm m h

h

h

dE S
k E

dt N

 
           (3.26) 

2
h

h h h

d
E k

dt



            (3.27) 

3
h

h h h

dR
k R

dt
  

      
(3.28) 

4
l lm m l

l l l l

l

dS S
k S R

dt N





            (3.29) 

5
l lm m l

l

l

dE S
k E

dt N

 
 

      (3.30) 

6
l

l l l

d
E k

dt



                   (3.31) 

7
l

l l l l l l

dR
v S E k R

dt
                     (3.32) 

8
m ml l m mh h m

m m

m m

dS S S
k S

dt N N

  
                  (3.33) 
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8
m ml l m mh h m

m

m m

d S S
k

dt N N

   
                  (3.34) 

 

 

 

3.2 Basic Properties of the Model 

3.2.1 Feasible region of the model 

Theorem 3.1: The system (3.25) - (3.34) has solutions which are contained in the  

feasible region 𝜉. 

Let   4, , ,h h h hS E R     and   4, , ,l l l lS E R     and   2,m mV S     be any 

solution of the system with non-negative initial conditions, then adding the equations 

together (3.25)-(3.28) and (3.29)-(3.32) and (3.33)-(3.34), we have 

 h h h h
h h h h h h

dS dE d dR
S E R

dt dt dt dt



           

 

                                                                                                    (3.35) 

h
h h h

dN
N

dt
                                                                                                   (3.36) 

ht
IF e


  

   hh
t dtt

h hN t e e C


    

h
h h h

dN
N

dt
  



xxxvi 
 

  hth
h

h

N t Ce





   

Using the initial conditions 

  00, N 0h ht N   

0
h

h

h

C N



   

  0
hth h

h

h h

N t N e


 

  
   

 
                                                                                    (3.37) 

Applying Birkoff and Rota’s theorem on differential inequality (Birkoff & Rota, 1982), we 

obtain: 

As 𝑡 → ∞. The total population approaches
h

h


  

Thus, 0 h
h

h

N



   

Again, 

 l l l l
l l l l l l l l

dS dE d dR
S E R c

dt dt dt dt



             

l
l l l l l

dN
N c

dt
             (3.38)

 

l
l l l l l

dN
N c

dt
             (3.39) 
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dtl

l
e t

IF e e


   

 
 

l ll l lt t

l

l

c
N t e e C

 



  
   

 
ll l l t

l

l

c
N Ce






  

   

Using the initial conditions,   00, 0l lt N N   

 
0

l l l

l

l

c
N C



  
   

 
0

l l l

l

l

c
C N



  
   

   
0

ll l l l l l t

l l

l l

c c
N N e



 


      

   
 

       (3.40) 

Also, 

  m
m m m m m

dN
S

dt
        

 m
m m m m

dN
N

dt
            (3.41) 

 m
m m m m

dN
N

dt
            (3.42) 

   m m m m
dt t

IF e e
       
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 m mm
tt m

m

m m

N e e C
 

 

 
  

 
  

 m m tm
m

m m

N Ce
 

 

 
 


 

Applying initial conditions at   00, 0m mt N N   

m
m

m m

N C
 


 


 

0
m

m

m m

C N
 


 


 

 
0

m m tm m
m m

m m m m

N N e
 

   

   
   

  
                                                      (3.43) 

Equations (3.36)- (3.38) satisfy the conditions of the theorem above. Therefore, they exist in 

the feasible region.   

3.2.2 Positivity of the solutions 

The model monitors human, livestock and vector population. We show that all the variables 

are non-negative always. 

Theorem 3.2: Let 
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         

         

     

4

4

2

, , , : 0 0,E 0 0, 0 0, 0 0

, , , : 0 0,E 0 0, 0 0, 0 0

, : 0 0, 0 0

          

h h h h h h h h

h
h h h h

h

l l l l l l l l

l
l l l l

l

m m m m

m
m m

m

S E R S R

N
S E R

S E R S R

N
S E R

S S

N
S







     
 
     
 
 

   
 

   
     

 
   
 
 

   


 





 

 

              (3.44) 

Then the solutions of                     ,E , , , ,E , , , ,h h h h l l l l m mS t t t R t S t t t R t S t t    are positive 

for all 0t  . 

Proof: 

Applying the method used by Wiah (Wiah et al., 2014) 

From (3.25), we have; 

h hm m h
h h h h h

h

dS S
S R

dt N


 


    

 

h
h h

dS
S

dt
 

 

h
h

h

dS
dt

S
                                                                                                           (3.45)  

h
h

h

dS
dt

S
    
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   0 0ht

h hS t S e


   

From (3.26), we have; 

1
h hm m h

h

h

dE S
k E

dt N

 
   

1
h

h

dE
k E

dt
 

 

1
h

h

dE
k dt

E
 

                                                                                                        (3.46) 

1
h

h

dE
k dt

E
    

    10 0k t

h hE t E e   

From equation (3.27), we have; 

2
h

h h h

d
E k

dt



    

2
h

h

d
k

dt


  

 

2
h

h

d
k dt


 

                                                                                                         (3.47) 
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2
h

h

d
k dt


 

   

    20 0k t

h ht e     

From equation (3.28), we have; 

3
h

h h h

dR
k

dt
     

3
h

h

dR
k R

dt
 

 

3
h

h

dR
k dt

R
 

                                                                                                        (3.48) 

3
h

h

dR
k dt

R
    

    30 0
k t

h hR t R e


   

From equation (3.29), we have; 

4
l lm m l

l l l l

l

dS S
k S R

dt N





      

4
l

l

dS
k S

dt
 
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4
l

l

dS
k dt

S
 

                                            (3.49) 

4
l

l

dS
k dt

S
    

    40 0k t

l lS t S e   

From equation (3.30), we have; 

5
l lm m l

l

l

dE S
k E

dt N

 
   

5
l

l

dE
k E

dt
 

 

5
l

l

dE
k dt

E
 

          

(3.50) 

5
l

l

dE
k dt

E
    

    50 0
k t

l lE t E e


   

From equation (3.31), we have; 

6
l

l l l

d
E k

dt



    
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6
l

l

d
k

dt


  

 

6
l

l

d
k dt


 



          

(3.51) 

6
l

l

d
k dt


 

   

    60 0
k t

l lt e


     

From equation (3.32), we have; 

7
l

l l l l l l

dR
v S E k R

dt
        

7
l

l

dR
k R

dt
 

 

7
l

l

dR
k dt

R
 

          

(3.52) 

7
l

l

dR
k dt

R
    

    70 0
k t

l lR t R e


   

From equation (3.33), we have; 
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8
m ml l m mh h m

m m

m m

dS S S
k S

dt N N

  
      

8
m

m

dS
k S

dt
 

 

8
m

m

dS
k dt

S
 

          

(3.53) 

8
m

m

dS
k dt

S
    

    80 0
k t

m mS t S e


   

 

From equation (3.34), we have; 

8
m ml l m mh h m

m

m m

d S S
k

dt N N

   
     

8
m

m

d
k

dt


  

 

8
m

m

d
k dt


 



          

(3.54) 

8
m

m

d
k dt


 

   
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    80 0
k t

m mt e


   
 

Therefore 
, , , , , , , , ,h h h h l l l l m mS E R S E R S    remain positive at every given time. The solutions 

of the model equations (3.25) to (3.34) are all positive. Hence the model is valid. 

3.3 Equilibrium States of the Model 

At equilibrium, let 

0h l m h l h l m h ldS dS dS dE dE d d d dR dR

dt dt dt dt dt dt dt dt dt dt

  
                            (3.55) 

At any arbitrary equilibrium state, let 

*

*

*

*

h
h

l
l

mm

hh

l l

h h

l l

m
m

h
h

l
l

S
S

SS

SS

EE

E E
E

R
R

R
R















 
   
   
   
   
   
   
   
    
   
       
      
   
    

 

                (3.56) 

Then, the steady states of (3.25) - (3.34) satisfy the following algebraic system: 

0hm m h
h h h h h

h

S
S R

N


 

 
 

                             (3.57) 
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1 0hm m h
h

h

S
k E

N

  


           (3.58) 

2 0h h hE k    
         

(3.59) 

3 0h h hk R               

 (3.60)      

4 0lm m l
l l l l

l

S
k S R

N




 
 

          

   

(3.61) 

5 0lm m l
l

l

S
k E

N

  


 

           

(3.62) 

6 0l l lE k    
          

(3.63) 

7 0l l l l l lv S E k R                  (3.64) 

8 0ml l m mh h h
m m

m m

S S
k S

N N

    
 

    

        

(3.65) 

8 0ml l m mh h m
m

m m

S S
k

N N

    
 

   

         

(3.66) 

From equation (3.59) 

*

2

h h
h

E

k

 

              (3.67) 

From equation (3.63) 
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*

6

l l
l

E
I

k

 

           (3.68) 

From equation (3.58), we have; 

*

1

hm m h
h

h

I S
E

k N

  

          (3.69) 

From equation (3.62), we have; 

*

5

lm m l
l

l

I S
E

k N

  

                   (3.70) 

Substituting (3.69) into (3.67) gives;  

* 9

1 2

hm h h m h m
h

h h

S k S

k k N N

      
             (3.71) 

Where, 

9

1 2

hm hk
k k

 
                         (3.72) 

Substituting (3.70) into (3.68) gives; 

* 10

5 6

lm l l m l m
l

l l

S k S

k k N N

      
           (3.73) 

Where, 

10

5 6

lm lk
k k

 
           (3.74) 
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Substituting (3.71) and (3.73) into (3.66) gives; 

10 9
8 0ml m l m mh m h m

m

m l m h

S k S S k S
k

N N N N

      
      

        
     

      

* * * * * * *

10 9 8

* * *
0ml m l m h mh m h m l h l m m

h l m

S k S N S k S N k N N N

N N N

         
      

 * * * * * *

10 9 8 0ml m l h mh m h l h l m mS k S N S k S N k N N N             

   

 

2 2 2

7 1 2 7 5 6 7 1 2 5 6 8 *

1 2 5 6 8 4 7

0
ml h lm l l mh h hm h l h l

m

h l

k k k k v k k k v k k k k k

k k k k k k k v

 



     

 

         
    

 

          (3.75) 

From equation (3.75), 

0m

             (3.76) 

or, 

   

 

2 2 2

7 1 2 7 5 6 7 1 2 5 6 8

1 2 5 6 8 4 7

0
ml h lm l l mh h hm h l h l

h l

k k k k v k k k v k k k k k

k k k k k k k v

 



     

 

        



 

                  (3.77) 

   3.4 Disease Free Equilibrium State (DFE) 

Disease free equilibrium states are steady when all the infectious classes in a population are 

zero, that is; the population comprises of susceptible humans and vectors only. 

At Disease Free Equilibrium, let; 
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0

0

0

0

0

0

0

0

0

0

h
h

h
h

hh

hh

l l

l l

l l

l
l

m
m

m
m

S
S

EE

RR

S S

E E

R R

S
S

 
   
   
   

   
   
   
   
    
   
       
   
   
   
      

                                                                                                  (3.78)               

 

Substituting (3.76) into (3.69) and (3.73) gives; 

* * 0h l                           (3.79) 

Substituting (3.76) into (3.65) and (3.66) gives; 

* * 0h lE E            (3.80) 

Substituting (3.76), (3.79) and (3.80) gives into equation (3.56) gives; 

* 0hR            (3.81) 

From (3.57); 

*

4

l l l
l

R
S

k

 
          (3.82) 

From (3.60); 

*

7

l
l

v S
R

k

           (3.83) 



l 
 

Substituting (3.83) into (3.82) gives, 

*
* 7

4 7

l l l
l

k v S
S

k k

 


 

* 7

4 7

l
l

l

k
S

k k v




          (3.84) 

Substituting (3.84) into (3.83) gives, 

*

4 7

l
l

l

v
R

k k v









         (3.85) 

From (3.61); 

*

8

m
mS

k


           (3.86) 

  Thus for human population, the Disease Free Equilibrium state is given by; 

0

0

0

h h

h

h

h

h

S

E

I

R



   
   
   
   
   
   
   
   
   
   
   
 

            (3.87) 

Thus for Livestock population, the Disease Free Equilibrium state is given by; 
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7

4 7

4 7

0

0

l l

l

l

l

l

l
l

S k

k k v

E

I

v
R

k k v











   
      
   
   
   
   
   
   
   
   
             (3.88)

 

Thus for Mosquito population, the Disease Free Equilibrium state is given by; 

8

0

m m

m

S

k

I

   
   
   
   
   

            (3.89) 

Disease Free Equilibrium (DFE) Point 
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7

4 7

4 7

8

0

0

0

0

0

0

h
h

h

h

h

h

l
l

l

l

l

l

l
l

m

m

m

S

E

I

R

k
S

k k v

E

I

v
R

k k v

S
k

I













   
   
   
   
   
   
   
   
   
   
   
   
      
   
   
      
   
   
   
   

   
   
   
   
   
   
   
   
   
   
       

      (3.90) 

Equation (3.90) shows the disease free equilibrium of the population. 
 
 

3.5 Effective Reproduction Number, Rc 

Effective reproduction number is the number of secondary infections caused by an infected 

individual during his entire time of infectiousness (Diekmann et al.,1990). If the reproduction 

ratio is greater than one, the disease will spread throughout the entire population and if it is 
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less than one, the disease will die out with time. The basic reproduction number determines 

the direction of the disease (Oguntolu et al.,2019). 

Using Next Generation Matrix (Diekmann and Heesterbeek, 2000); 

 1

cR FV   

where 𝜌 is the spectral radius of the Next Generation Matrix  1FV 
,  iF x is the rate of 

appearance of new infections in compartment i,  iV x
 is the rate of transfer of individuals 

out of compartment i  

   i i iV V x V x                            (3.91) 

Given the DFE, Rc is calculated thus:   

 0
i

j

F
F E

x





                       (3.92) 

 0
i

j

V
V E

x





          

(3.93) 

0

0

o

hm m h

o

h

o

lm m l
i o

l

o o

mh h m ml l m

o o

m m

S

N

S
F

N

S S

N N





 





 

 
 
 
 
 

 
  
 
 
 

   
 

        (3.94) 
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7

7

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0

hm

lm

mh ml

k
F

k v





 

 
 
 
 

  
 

 
 
 

        

(3.95) 

1

2

5

6

8

h

h h h

l

l l l

m

k E

E k

V V V k E

E k

k







 

  

 



 
 

  
    
 

  
   

        (3.96) 

Where, 

1

2

5

6

8

h

h

l

l

m

k E

k

V k E

k

k





 





 
 
  

  
 
  

   

         (3.97) 

0

0

0

h h

l l

E

V

E











 
 
 
 
 
 
 
 

          (3.98) 
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1

2

5

6

8

0 0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0 0

h

l

k

k

V k

k

k





 
 

 
 
 

 
                    

(3.99) 

1

1 2 2

1

5

5 6 6

8

1
0 0 0 0

1
0 0 0

1
0 0 0 0

1
0 0 0

1
0 0 0 0

h

l

k

k k k

V
k

k k k

k







 
 
 
 
 
 
 

  
 
 
 
 
 
 
         

(3.100) 

 

8

71

7 8

1 2 2 5 6 6

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0

hm

lm

mh h mh ml l ml

k

k
FV

k v k

k k k k k k







     



 
 
 
 
 
 
 
 

 
 
 
 
 
 
  

       

(3.101) 

From (3.101), we calculate the eigenvalues to determine the effective reproduction number 

cR . 

Taking the dominant eigenvalue of the matrix 1FV   and computing 0A I  , gives; 
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 

8

7

7 8

1 2 2 5 6 6

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

hm

lm

mh h mh ml l ml

k

k

k v k

k k k k k k













     






 






     

(3.102) 

 

 
5 31 2 7 5 6 7 5 6

1 2 5 6 8 7

0ml ml l mh hm h mh hm hk k k k k k k k v

k k k k k k v





        
 

  
    

  (3.103) 

 
5 31 2 7 5 6 7 5 6

1 2 5 6 8 7

0ml ml l mh hm h mh hm hk k k k k k k k v

k k k k k k v





        
 

  
    

  (3.104) 

Implies; 

1 2 30, 0, 0      

  

 
1 2 5 6 8 7 1 2 7 5 6 7 5 6

4

1 2 5 6 8 7

ml lm l mh hm h mh hm hk k k k k k v k k k k k k k k v

k k k k k k v

 



        


  



   (3.105)    

  

 
1 2 5 6 8 7 1 2 7 5 6 7 5 6

5

1 2 5 6 8 7

ml lm l mh hm h mh hm hk k k k k k v k k k k k k k k v

k k k k k k v

 



        


  
 


  (3.106)  

Clearly, 4  is the dominant eigenvalue 

Therefore; 
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  

 
1 2 5 6 8 7 1 2 7 5 6 7 5 6

1 2 5 6 8 7

lm ml l mh hm h mh hm h

c

k k k k k k v k k k k k k k k v
R

k k k k k k v

 



          



   

(3.107) 

Thus our effective Reproduction number is given by equation (3.107). This is the average 

number of secondary cases generated by an infected individual in this model.  

3.6 Local Stability of Disease Free Equilibrium State 

We investigate the local stability of the equilibrium points by the theorem below: 

Theorem 3.3: The disease free equilibrium of the model equations (3.25)-(3.34) is locally 

asymptotically stable if 1cR  . 

Proof: 

Linearizing the model equations (3.25)-(3.34) at any arbitrary equilibrium point ( *E ) gives 

the jacobian 

 

1 2

3 1 2

2

3

4 5*

6 5 5

6

7

7 8 9

7 8 8

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

h

l

h

l

l

l l

c c

c k c

k

k

c c
J E

c k c

k

v k

c c c

c c k













 

  
 


 
 
 

 
  

  
 

 
 

 
   
 
    

(3.108) 

where; 
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1
hm m

h

h

I
c

N


   ,     

2
hm h

h

S
c

N


  ,    

3
hm m

h

I
c

N


  ,    

4 4
lm m

l

I
c k

N


   , 

5
lm l

l

S
c

N


  ,   

6
lm m

l

I
c

N


  ,   

7
mh m

m

S
c

N


  ,   

8
lm m

m

S
c

N


  ,   

9 8
ml l mh h

m m

I I
c k

N N

 
    

We evaluated the Jacobian at the disease free equilibrium to determine the local stability of 

the system and obtained; 
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 

1

2

3

7
4

7

7
5

7

6

7

8

8

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

h h hm

hm

h

h

lm
l

o

lm

l

l l

mh ml

mh ml

k

k

k

k
k

k v
J E

k
k

k v

k

v k

k

k







  














 

 

 

 
  













 




 




 


 


   


 
 






























          

(3.109) 

Using elementary row transformation, the matrix above becomes 
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 

1

2

1

3 1

4 2

5 2

6 3

4 5

8 6

7

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

h h hm

hm

hm h

l

o

k

k
k

k A

k A

J E

k A

k A

A A

k A

A

  



 



 
  
 
 

 
 
 

 
 
 

 
 
 

  
 


 

 
 
 
 
 
 
 
 

  



 








          

(3.110) 

1

1 2

hm h hA
k k

  
  ,   

 
7

2

7

lm

l

k
A

k v



 

 ,  
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 
7

3

5 7

lm l

l

k
A

k k v

 


 
 ,   

4 7
4

4

lk k v
A

k


  , 

 

 
7 4 6 5 5 6

5

4 5 6 7

lm l l lk k k k k k v
A

k k k k v





    



 ,   

 
5 6 7 1 7 5 6

6

1 5 6 7

hm mh l lm ml hm mhk k k k k k k v
A

k k k k v





       



 

 

 
5 6 7 1 7 5 6 1 5 6 7 8 1 5 6 8

7

1 5 6 7

hm mh l lm ml hm mhk k k k k k k v k k k k k k k k k v
A

k k k k v

 



         



 

Therefore, the Characteristics equation of the upper triangular Jacobian is 
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 

 

 

 

 

 

 

 

 

 

1

2

1

3 1

4 2

5 2

6 3

4 5

8 6

7

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

h h hm

hm

hm h

l

o

k

k
k

k A

k A

J E

k A

k A

A A

k A

A

   

 

 




 











 
   
 
 

 



 



 



  





 


  


  


   


 
 




























 

(3.111) 

Therefore, the eigenvalues are 

1 0h   

         (3.112)

 

 2 1 0h hk               (3.113) 

 3 2 0h hk       
       (3.114) 

 4 3 0h hk       
       

(3.115) 
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 5 4 0lk v      
       

(3.116) 

 6 5 0l l lk         
       

(3.117) 

 7 6 0l l lk c                

(3.118) 

 4 7
8 4

4

0
l l ll

l

vk k v
A

k v





  




   
      

      (3.119) 

 9 8 0m mk       
       (3.120) 

 

 
5 6 7 1 7 5 6 1 5 6 7 8 1 5 6 8

10 7

1 5 6 7

hm mh l lm ml hm mhk k k k k k k v k k k k k k k k k v
A

k k k k v

 



      


   
 

 (3.121) 

For λ10 to be negative, then 

 
5 6 7 1 7 5 6 1 5 6 7 8 1 5 6 8

1 5 6 7

0hm mh l lm ml hm mhk k k k k k k v k k k k k k k k k v

k k k k v

 



         



  

(3.122) 

 
2 5 6 7 1 2 7 2 5 6

1 2 5 6 8 7

hm mh l lm ml hm mhk k k k k k k k k k v

k k k k k k v





       

 1
 

1cR   

This implies that, 10 0   if  1cR  ,  



lxiv 
 

Hence, the disease free equilibrium oE  of the equation (3.26) and (3.35) is locally 

asymptotically stable (LAS) if 1cR  . 

3.7 Global Stability of Disease-Free Equilibrium State  0E  

Theorem 3.4: The D.F.E  0E of the model system is globally asymptotically stable (GAS) 

in the feasible region   of 1cR   and unstable if 1cR  . 

Proof: To establish the global stability of the D.F.E, the two conditions as in (Castillo-chavez 

et al., 2002) for 1cR   were used for the model system. The conditions are 

 1H For  ,0 ,
dX

F X X
dt

  is globally asymptotically stable (g.a.s), 

 2H   ,G X Z AZ     , ,G X Z


     0,G X Z


  for   ,X Z  , where  0   ,zA D G X 

is an M-matrix (the off-diagonal elements of A are nonnegative) and  is the region where 

the model makes biological sense. 

 We can write the model system as: 

 

 . . 1S

s
s D F E i

dX
A X X A X

dt
         (3.123) 

2
s

i

dX
A X

dt
          (3.124) 
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Where  

 0 0 0 0, , ,
T

s h l l mX S S R S        (3.125) 

are the non-infectious compartments, 

 0 0 0 0 0, , , , ,
T

o

i h l m h m hX I I I E E R        (3.126) 

denote the infectious compartments. The disease-free equilibrium is denoted as 

 0 *,0sE X          (3.127) 

Where, 

 * 0 0 0, ,s h l mX N N N          

         (3.128) 

 ,0s
s

dX
F X

dt
         (3.129) 

h
h h h

dS
S

dt
           (3.130) 

1
l

l l l l

dS
k S R

dt
            (3.131) 

2
l

l l

dR
V S k R

dt
          (3.132) 

3
m

m m

dS
k S

dt
           (3.133) 
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From (3.130) 

     1 0h ht th
h h

h

S t e S e
 



 
         (3.134) 

From (3.131), we have; 

1

4 7

l l
l l l

dS V
k S

dt k k




           (3.135) 

1

4 7

l l l
l l

dS V
k S

dt k k

 
           (3.136) 

 
   

 1 14 7 4 7

1 4 7 1 4 7

0
l l l l k t k t

l l

k k V k k V
S t e S e

k k k k k k

       
     (3.137) 

From (3.132) 

2
l

l l

dR
V S k R

dt
          (3.138) 

2

4

l l
l

dR V
k R

dt k

          (3.139) 

   2 2

2 4 2 4

0
k t k tl l

l l

V V
R t e R e

k k k k

    
        (3.140) 

From (3.133) 

3
m

m m

dS
k S

dt
    
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   3 3

3 3

0
k t k tm m

m mS t e S e
k k

  
         (3.141) 

Hence, 

   0 0

h hS t N t   as 0t   

     0 0 0

l l lS t R t N t    as 0t   

   0 0

m mS t N t   as 0t   

Irrespective of the value of 

       0 0 0 00 , 0 , 0 , 0h l l mS S R S  

Thus  

 0 0 0, , ,0s h l mX N N N   is globally asymptotically stable. 

Given that; 

   
^

, ,yG x y C G x y   

   
^

, ,yG x y C G x y   

Where 
 ,0G x

C
t





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 

1

2

5

6

8

' ,

hm m h
h

h

h h h

lm m l
l

l

l l l

ml l m mh h m
m

m m

I S
k E

N

E k I

I S
k Ey G x y

N

E k I

I S I S
k I

N N









 

 
 

 
 

 
 
 

   
 
 

 
 
 

   
   

    (3.142) 

 

1

2

5

6

8

0 0 0

0 0 0

0 0 0

0 0 0

0 0

hm h

h

h

lm l

l

l

mh h ml l

m m

k S

N

k

k S
C

N

k

S S k

N N









 

 
 
 
  
 
 
 

  
 
 
 
 
 
 
    

   (3.143) 
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1

2

5

6

8

0 0 0

0 0 0

0 0 0

0 0 0

0 0

hhm h

h

hh

llm l

y

l

l l

mh h ml l m

m m

Ek S

N

Ik

Ek S
C

N

k I

S S k I

N N









 

  
  
  
   
  
  
  
   
  
  
  
  
  
  
     

   (3.144) 

1

2

5

6

8

hm h m
h

h

h h h

lm l m
ly

l

l l l

mh h h ml l l
m

m m

S I
k E

N

E k I

S I
k EC

N

E k I

S I S I
k I

N N









 

 
  

 
 
 
 
 

   
 
 
 
 
 

   
 

  

 

   (3.145) 

   
^

, ,yG x y C G x y   
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1 1

2
2

5 5

6
6

8 8

hm h m hm m h
h h

h h

h h h
h h h

lm l m lm m l
l l

l l

l l l
l l l

mh h h ml l l ml l m mh h m
m m

m m m m

S I I S
k E k E

N N

E k I
E k I

S I I S
k E k E

N N

E k I
E k I

S I S I I S I S
k I k I

N N N N

 




 




   

   
     

   
   

   
   
   

     
  
  

  
  
  

       
   









 (3.146) 

 

 

 

 

 

 

1

2

^

3

4

5

,

0
, 0

, 0,

0
,

0

,

G x y

G x y

G x y G x y

G x y

G x y











 
 

  
  
  
   
  
  
    

  
 

  

    

(3.147) 

Then  
^

, 0G x y   

This satisfies the conditions H1 and H2, therefore the disease free equilibrium is globally 

asymptotically stable when 0 1R  . 

3.8   Endemic Equilibrium Point (EEP) in terms of Force of Infection 

The endemic Equilibrium Point (EEP) in terms of forces of infection are computed; 

Let 
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   1 ** ** ** ** ** ** ** ** ** **, , ,R ,S , , ,R ,S , ,E , ,R , ,E , ,R , ,h h h h l l l l m m h h h h l l l l m mE S E E S S S       
  

(3.148) 

are the Endemic Equilibrium Points. 

** ** ** ** 0h hm h h h h hS S R             (3.149) 

** ** **

1 0hm h hS k E  
          

(3.150) 

** **

2 0h h hE k   
        

(3.151) 

** **

3 0h h hk R            (3.152) 

** ** ** **

4 0l lm l l l lS k S R     
      

(3.153) 

** ** **

5 0lm l lS k E           (3.154) 

** **

6 0l l lE k            (3.155) 

** ** ** **

7 0l l l l l lv S E k R             (3.156) 

** ** ** ** **

8 0m ml m mh m mS S k S              (3.157) 

** ** ** ** **

8 0ml m mh m mS S k            (3.158) 

Where, 

** ** ** **, , ,hm m lm m mh h ml l
hm lm mh ml

h l m m

and
N N N N

   
   

   
   

   

(3.159) 

**

hm : is the force of infection of humans to mosquitoes. 
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**

lm : is the force of infection of livestock to mosquitoes. 

**

mh :  is the force of infection of mosquitoes to humans. 

**

ml : is the force of infection of mosquitoes to livestock. 

From (3.149) 

**
**

**

h h h
h

hm h

R
S



 

 



        (3.160) 

From (3.150) 

** **
**

1

hm h
h

S
E

k




         

(3.161) 

From (3.151) 

**
**

2

h h
h

E

k


           (3.162) 

From (3.152) 

**
**

3

h h
hR

k

 


         

(3.163) 

From (3.153) 

**
**

**

4

l l l
l

lm

R
S

k





 



        

(3.164) 

From (3.154) 
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** **
**

5

lm l
l

S
E

k




         

(3.165) 

From (3.155) 

**
**

6

l l
l

E

k


 

         

(3.166)          

From (3.156) 

** ** **
**

7

l l l l l
l

v S E
R

k

    
        (3.167) 

From (3.157) 

**

** **

8

m
m

mh ml

S
k 




 
         (3.168) 

From (3.158) 

 ** ** **

**

8

mh ml m

m

S

k

 
 

        

(3.169) 

Substituting (3.163) into (3.160) gives 

 

**
**

**

3

h h h h
h

hm h

S
k

 

 

  



          (3.170) 

Substituting (3.170) into (3.161), gives 

 
 

** **

**

**

1 3

hm h h h h

h

hm h

E
k k

  

 

  



       

(3.171) 
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Substituting (3.171) into (3.162), gives 

 

**
**

** **

1 2 3

h h hm
h

hm h h h h hmk k k

 

     


 

 
      (3.172) 

Let, 

 

**
**

1** **

1 2 3

h h hm
h

hm h h h h hm

A
k k k

 

     


  

 
     (3.173) 

Substituting (3.173) into (3.170), gives 

 
** 1

**

3

h h h
h

hm h

A
S

k

 

 

 



                                                                                         (3.174) 

Substituting (3.173) into (3.171), gives 

 

 

**

1**

**

1 3

hm h h h

h

hm h

A
E

k k

  

 

 



       (3.175) 

Substituting (3.173) into (3.163), gives 

** 1

3

h
h

A
R

k


          (3.176) 

From (3.166), we have; 

**
**

6

l l
l

E

k


   making  

**

lE  the subject of formula, 

**
** 6 l
l

l

k
E




          (3.177) 
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Substituting (3.164) and (3.177) into (3.167), gives 

  
    

** **

6 4**

** **

7 4 4

l l l l lm l

l

lm lm l

v k k
R

k k k v





   

  

    


  
     

(3.178) 

Substituting (3.178) into (3.164), gives 

  

    

** **

6 4**

2
** **

7 4 4

l l l l l l lm l l

l

lm lm l

v k k
S

k k k v





     

  

      


  
            (3.179) 

Substituting (3.179) into (3.165) gives, 

  

    

** **

6 4** **

2
** **

5 7 4 4

l l l l l l lm l l

l lm

lm lm l

v k k
E

k k k k v





     


  

       
 
    
                

(3.180) 

Substituting (3.180) into (3.166) gives, 

                

** **
**

2 2
** ** ** ** ** **

5 6 7 4 4 6 4 5 6 7 4 4

l l lm l l l lm
l

lm lm l l l l lm l l lm lm lm l

v

k k k k k v k k k k k k k v



 

    

            

  
 

        

(3.181) 

Let, 

**

2l A 
                   

(3.182) 

Substituting (3.182) into  (3.179), gives 

  

    

**

6 4 2**

2
** **

7 4 4

l l l l l l lm l

l

lm lm l

v k k A
S

k k k v





     

  

     


  
              (3.183) 

Substituting (3.182) into (3.180), gives 
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  

    

**

6 4 2** **

2
** **

5 7 4 4

l l l l l l lm l

l lm

lm lm l

v k k A
E

k k k k v





     


  

      
 
    
                

(3.184) 

Substituting (3.182) into (3.178), gives 

  
    

**

6 4 2**

** **

7 4 4

l l l l lm

l

lm lm l

v k k A
R

k k k v





   

  

   


  
               (3.185) 

Substituting (3.169) into (3.168), we have; 

 
 

** **

**

** **

8 8

m mh ml

m

mh mlk k

 

 

 
 

 
                 (3.186) 
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 
 

 

 

  

1

**

3

**

1

**

1 3

**

** ****
1 2 3

**
1

**
3

**
**

6 4 2

****

7

**

**

**

**

**

h h h

hm h

hm h h h

hm h

h h hm

hm h h h h hmh

hh

h

l l l l l l lm l
h

lml

l

l

l

m

m

A

k

A

k k

k k kS

AE

k

v k k AR

kS

E

R

S



 

 

  

 

 

     



     



 



 





  
 
 
 
 

      
 

 
 

 
 

 
 
 
 
 
 

    

  

    

  
    

 
 

2
**

4 4

**

6 4 2**

2
** **

5 7 4 4

2

**

6 4 2

** **

7 4 4

** **

8

** **

** **

8 8

lm l

l l l l l l lm l

lm

lm lm l

l l l l lm

lm lm l

m

mh ml

m mh ml

mh ml

k k v

v k k A

k k k k v

A

v k k A

k k k v

k

k k











 

     


  

   

  

 

 

 


















 

      
 
    
 

   

  



 

 

 




















 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



             (3.187) 

The total population of humans at endemic equilibrium in terms of forces of infection is 

given as; 

(3.188) 

The total 

population of livestock at endemic equilibrium in terms of forces of infection is given as; 

 
 

   

** ** ** ** **

** **
1** 1 1

** ** ** **
33 1 3 1 2 3

h h h h h

hm h h hh h h h h hm h
h

hm h hm h hm h h h h hm

N S E R

AA A
N

kk k k k k k

      

         

    


    
       


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  

    
  

    

 

** ** ** ** **

** **

6 4 2 6 4 2**

2 2
** ** ** **

7 4 4 5 7 4 4

** **

2
** **

5 6 7 4

l l l l l

l l l l l l lm l l l l l l l lm l

l lm

lm lm l lm lm l

l l lm l l l lm

lm lm

N S E R

v k k A v k k A
N

k k k v k k k k v

v

k k k k

 

 



           


     

    

 

    

            
   
       
 

  

               
  

    

2
** ** ** **

4 6 4 5 6 7 4 4

**

6 4 2

** **

7 4 4

l l l l lm l l lm lm lm l

l l l l lm

lm lm l

k v k k k k k k k v

v k k A

k k k v

 





          

   

  











       

   

  


 

         (3.189) 

The total population of mosquitoes at endemic equilibrium in terms of forces of infection is 

given as; 

 
 

** ** **

** **

**

** ** ** **
8 8 8

m m m

m mh mlm
m

mh ml mh ml

N S

N
k k k

 

   

  


  
  

    

     (3.190) 

Hence, from equation (3.187) the endemic equilibrium point in terms of force of infection 

is determined. 

3.9 Numerical Solution of the Model Equations using Adomian Decomposition Method 

(ADM) 

This method has been applied to solve differential and integral equations of linear and non-

linear problems in mathematics, physics, biology and chemistry and up to now a large 

number of research papers have been published to show the feasibility of the decomposition 

method (Nhawu et al.,2015). It was first introduced by George Adomian in 1981 and 

developed by him in 1988 (Adomian, 1988). 
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The numerical solution of the model equations was solved and gave the following results. 

3.9.1 Analytical solution of the model equation using adomian decomposition method 

Considering equations (3.4) - (3.13) with the following initial conditions; 

         

         

0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0

h ho h ho h ho h ho l lo

l lo l lo l lo m mo m mo

S S E E I I R R S S

E E I I R R S S I I

     


     

 (3.191) 

Integrating both sides of (3.4) through (3.13) with respect to ' 't and applying the initial 

conditions (3.191) gives; 

  0

0 0 0

t t t

hm m h
h h h h h h h

m

I S
S t S t dt S dt R dt

N


            (3.192) 

   0

0 0

t t

hm m h
h h h h h

h

I S
E t E dt E dt

N


           (3.193) 

   0

0 0

t t

h h h h h h ht E dt dt               (3.194) 

   0

0 0

t t

h h h h h h hR t R dt R dt             (3.195) 

   0

0 0 0

t t t

lm m l
l l l l l l l

l

S
S t S t dt v S dt R dt

N



 


            (3.196) 

   
0 0

t t

lm m l
l l l l l

l

I S
E t dt E dt

N


                       (3.197) 

   
0 0

t t

l h h l l l lt E dt c dt               (3.198) 
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   
0 0 0 0

t t t t

l l l l l l l l lR t v S dt E dt dt R dt                                        (3.199) 

   0

0 0 0

t t t

ml l m mh h m
m m m m m m

m m

S S
S t S t dt dt S dt

N N

 
 

 
           (3.200) 

   
0 0 0

t t t

ml l m mh h m
m mo m m m

m m

S S
t dt dt dt

N N

 
 

 
             (3.201) 

Using Adomian Decomposition method, the solution of equation (3.192) through (3.201) are 

given in the series of the form; 

0 0 0 0 0

0 0 0 0 0

, , , , ,

, , , ,

h hn h hn h hn h hn l ln

n n n n n

l ln l ln l ln m mn m mn

n n n n n

S S E E R R S S

E E R R S S

    

    

    

    


       



        


    

    
 (3.202) 

The integrands in equation (3.192) through (3.202) are expressed thus; 

, , , , , , ,

, , , , , , ,

m h h h h h m l l

l l l l l m h m m m

A S B S C R D E F G S H S

J R K E L M R N S P S Q S T

          


            
 (3.203) 

The linear and non-linear operators in equation (3.203) are decomposed in series form as 

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

, , , , ,

, , , , ,

, , , ,

n n n n n

n n n n n

n n n n n

n n n n n

n n n n n

n n n n n

A A B B C C D D F F

G G H H J J K K L L

M M N N P P Q Q T T

    

    

    

    

    

    


     




     



     


    

    

    

  (3.204) 

Substituting (3.202) into equation (3.192) to (3.201), gives; 
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0

0 0 0 00 0 0

t t t

hm m h
hn h h h h h h

n n n nm

I S
S S t dt S dt R dt

N


 

   

   

                      (3.205) 

 0

0 0 00 0

t t

hm m h
hn h h h h

n n nh

I S
E E dt E dt

N


 

  

  

                     (3.206) 

 0

0 0 00 0

t t

hn h h h h h h

n n n

E dt dt  
  

  

                                (3.207) 

 0

0 0 00 0

t t

hn h h h h h h

n n n

R R dt R dt  
  

  

                      (3.208) 

 0

0 0 0 00 0 0

t t t

lm m l
ln l l l l l l

n n n nl

S
S S t dt v S dt R dt

N



 

   

   


                        (3.209)

 
0 0 00 0

t t

lm m l
ln l l l l

n n nl

I S
E dt E dt

N


  

  

  

                     (3.210) 

 
0 0 00 0

t t

ln h h l l l l

n n n

I E dt c dt  
  

  

                             (3.211) 

 
0 0 0 0 00 0 0 0

t t t t

ln l l l l l l l l

n n n n n

R v S dt E dt dt R dt    
    

    

                                   (3.212) 

 0

0 0 0 00 0 0

t t t

ml l m mh h m
mn m m m m m

n n n nm m

S S
S S t dt dt S dt

N N

 
 

   

   

 
                       (3.213) 

 
0 0 0 00 0 0

t t t

ml l m mh h m
mn mo m m m

n n n nm m

S S
dt dt dt

N N

 
 

   

   

 
                                (3.214) 

Equation (3.204) to (3.214) can be written as; 
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0

0 0 0 00 0 0

t t t

hm
hn h h n h n h n

n n n nm

S S t A dt B dt C dt
N


 

   

   

                      (3.215) 

 0

0 0 00 0

t t

hm
hn h n h h n

n n nm

E E A dt D dt
N


 

  

  

                   (3.216) 

 
0 0 00 0

t t

hn ho h n h h n

n n n

I I D dt F dt  
  

  

                   (3.217) 

 0

0 0 00 0

t t

hn h h n h h n

n n n

R R F dt C dt  
  

  

                    (3.218) 

 0

0 0 0 00 0 0

t t t

lm
ln l l n l n l n

n n n nl

S S t G dt v H dt J dt
N




 

   

   

                      (3.219) 

 0

0 0 00 0

t t

lm
ln l n l l l n

n n nl

E E G dt K dt
N


  

  

  

                     (3.220) 

 0

0 0 00 0

t t

ln l h n l l l n

n n n

K dt c L dt  
  

  

                       (3.221) 

 0

0 0 0 0 00 0 0 0

t t t t

ln l n l n l n l l n

n n n n n

R R v H dt K dt L dt M dt    
    

    

                       (3.222) 

 0

0 0 0 00 0 0

t t t

ml mh
mn m m n n m m n

n n n nm m

S S t N dt P dt Q dt
N N

 
 

   

   

                     (3.223) 

 0

0 0 0 00 0 0

t t t

ml mh
mn m n n m m n

n n n nm m

N dt P dt T dt
N N

 
 

   

   

                       (3.224) 

From equation (3.215) through (3.224), we define the following scheme; 
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0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

H h h L l

H h L l

H h L l

H h M m m

H h h M m

S S t E E

E E

R R

R R S S t

S S t

  

   

   

   

    

             (3.225) 

Hence; 

1

0 0 0

t t t

hm
Hn n h n h n

m

S A dt B dt C dt
N


                      (3.226) 

 1

0 0

t t

hm
Hn n h h n

m

E A dt D dt
N


                     (3.227) 

 1

0 0

t t

Hn h n h h nD dt F dt                      (3.228) 

 1

0 0

t t

Hn h n h h nR F dt C dt                      (3.229) 

 1

0 0 0

t t t

lm
Ln n l n l n

l

S G dt v H dt J dt
N




                      (3.230) 

 1

0 0

t t

lm
Ln n l l l n

l

E G dt K dt
N


                      (3.231) 

 1

0 0

t t

Ln l n l l l nK dt c L dt                       (3.232) 

 1

0 0 0 0

t t t t

Ln n l n l n l l nR v H dt K dt L dt M dt                         (3.233) 
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 1

0 0 0

t t t

ml mh
Mn n n m m n

m m

S N dt P dt Q dt
N N

 
                      (3.234) 

 1

0 0 0

t t t

ml mh
Mn n n m m n

m m

N dt P dt T dt
N N

 
                     (3.235) 

0 0 0

1 1 0 0 1

2 2 0 1 1 0 2

M H

M H M H

M H M H M H

A I S

A I S I S

A I S I S I S

 


  
   

               (3.236) 

.

.

.

 

0 0

1 1

2 2

H

H

H

B S

B S

B S

 


 
 

                  (3.237) 

.

.

.

 

0 0

1 1

2 2

H

H

H

C R

C R

C R

 


 
 

                  (3.238) 

.

.

.

 

0 0

1 1

2 2

H

H

H

D E

D E

D E

 


 
 

                  (3.239) 
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.

.

.

 

0 0

1 1

2 2

H

H

H

F

F

F

  


  
  

                  (3.240) 

.

.

.

 

0 0 0

1 1 0 0 1

2 2 0 1 1 0 2

M L

M L M L

M L M L M L

G I S

G I S I S

G I S I S I S

 


  
   

               (3.241) 

.

.

.

  

0 0

1 1

2 2

L

L

L

H S

H S

H S

 


 
 

                  (3.242) 

.

.

.

 

0 0

1 1

2 2

L

L

L

J R

J R

J R

 


 
 

                  (3.243) 
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.

.

.

 

0 0

1 1

2 2

L

L

L

K E

K E

K E

 


 
 

                  (3.244) 

.

.

.

 

0 0

1 1

2 2

L

L

L

L

L

L

  


  
  

                  (3.245) 

.

.

.

 

0 0

1 1

2 2

L

L

L

M R

M R

M R

 


 
 

         (3.246)

.

.

.

 

0 0 0

1 1 0 0 1

2 2 0 1 1 0 2

L M

L M L M

L M L M L M

N I S

N I S I S

N I S I S I S

 


  
   

      (3.247) 

.

.

.
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0 0 0

1 1 0 0 1

2 2 0 1 1 0 2

H M

H M H M

H M H M H M

P S

P S S

P S S S

  


    
      

      (3.248) 

.

.

.

 

0 0

1 1

2 2

M

M

M

Q S

Q S

Q S

 


 
 

         (3.249) 

.

.

.

 

0 0

1 1

2 2

M

M

M

T

T

T

  


  
  

         (3.250) 

 

For 0,n  equation (3.226) gives; 

1 0 0 0

0 0 0

t t t

hm
H h n

m

S A dt B dt C dt
N


            (3.251) 

Substituting (3.236) through (3.238) into (3.251) gives 

1 0 0 0 0

0 0 0

t t t

hm
H M H h H n H

m

S S dt S dt R dt
N


            (3.252) 

Substituting equation (3.225) into (3.252) gives 



lxxxviii 
 

   1 0 0 0 0

0 0 0

t t t

hm
H M h h h h h n h

m

S I S t dt S t dt R dt
N


            (3.253) 

   1 0 0 0 0 0

0 0 0

t t t

hm
H m h m h h h h n h

m

S S t dt S t dt R dt
N


              (3.254) 

Integrating and collecting like terms, we obtained; 

 
2 2

1 0 0
2 2

hm mo h h
H m h h ho h ho

m

I t t
S I S t S t R t

N


 

    
        

   
 

2 2

0 0 0
1 0

2 2

hm m h hm m h h h
H h h n ho

m m

I S t I t t
S S t R t

N N

  
 

 
       

2 2

0 0 0
1 0

2 2

hm m h hm m h h h
H h h h ho

m m

S t t t
S S t R t

N N

  
 

   
           

2

0 0 0
1 0

2

hm m h hm m h
H h h h ho h h

m m

I S I t
S S R t

N N

 
  

   
         
   

            (3.255) 

For 0,n  equation (3.227) gives; 

 1 0 0

0 0

t t

hm
H h h

m

E A dt D dt
N


                     (3.256) 

Substituting (3.236) through (3.239) into (3.256) gives 

 1 0 0 0

0 0

t t

hm
H M H h h H

m

E S dt E dt
N


                     (3.257) 

Substituting equation (3.225) into (3.257) gives; 
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   1 0 0

0 0

t t

hm
H m ho h h h h

m

E S t dt E dt
N


                      (3.258) 

Integrating and collecting like terms, we obtained; 

  
2

0
1 0 0 0

2

hm m h
H m h h h h

m

I t
E S t E t

N


 

 
     

 
     

 
2

0 0 0
1 0

2

hm m h hm m h
H h h h

m m

S I t
E E t

N N

 
 

      
        

    
             (3.259) 

For 0,n  equation (3.228) gives; 

 1 0 0

0 0

t t

H h h hD dt F dt                       (3.260) 

Substituting (3.239) through (3.240) into (3.260) gives 

 1 0 0

0 0

t t

H h H h h HI E dt dt                       (3.261) 

Substituting equation (3.225) into (3.261) gives; 

 1 0 0

0 0

t t

H h h h h HE dt dt                        (3.262) 

Integrating and collecting like terms, we obtained; 

    1 0 0H h h h h hE t t        

  1 0 0H h h h h hI E t                        (3.263) 



xc 
 

For 0,n  equation (3.229) gives; 

 1 0 0

0 0

t t

H h h hR F dt C dt                      (3.264) 

Substituting (3.238) through (3.240) into (3.264) gives; 

 1 0 0

0 0

t t

H h H h h HR dt R dt                       (3.265) 

Substituting equation (3.225) into (3.265) gives; 

 1 0 0

0 0

t t

H h h h h hR dt R dt                       (3.266) 

Integrating and collecting like terms, we obtained; 

 1 0 0H h h h h hR t R t       

 1 0 0H h h h h hR R t                         (3.267) 

For 0,n  equation (3.230) gives; 

 1 0 0 0

0 0 0

t t t

lm
L l l

l

S G dt v H dt J dt
N




                      (3.268) 

Substituting (3.241) through (3.243) into (3.268) gives; 

 1 0 0 0 0

0 0 0

t t t

lm
L M L l L L L

l

S I S dt v S dt R
N




                      (3.269) 

Substituting equation (3.225) into (3.265) gives; 
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     1 0 0 0

0 0 0

t t t

lm
L m l l l l l l lo

l

S S t dt v S t dt R dt
N




                        (3.270) 

Integrating and collecting like terms, we obtained; 

 
2 2 2

0
1 0 0 0 0 0

2 2 2

lm m l l l
L m l L l l l l

l

I t t t
S I S t S t v S t R t

N



 

       
            

     
  

   
2

0 0 0
1 0 0

2

lm m l lm m l
L L l l l L L

l l

S t
S v S R t v

N N
 

 
  

     
           
   

           (3.271) 

For 0,n  equation (3.230) becomes; 

 1 0 0

0 0

t t

lm
L l l l

l

E G dt K dt
N


                                (3.272) 

Substituting (3.241) through (3.244) into (3.272) gives; 

 1 0 0 0

0 0

t t

lm
L M L l l l L

l

E I S dt E dt
N


                      (3.273) 

Substituting equation (3.225) into (3.273) gives; 

   1 0 0 0

0 0

t t

lm
L m l l l l l l

l

E S t dt E dt
N


                        (3.274) 

Integrating and collecting like terms, we obtained; 

 
2

0
1 0 0 0

2

lm m l
L m l l l l l

l

t
E S t E t

N


  

  
      

 
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 
2

0 0 0
1 0

2

lm m l lm m l
L l l l l

l l

S t
E E t

N N

 
  

     
       
   

             (3.275) 

For 0,n  equation (3.232) becomes; 

 1 0 0

0 0

t t

L l l l lK dt c L dt                        (3.276) 

Substituting (3.244) through (3.245) into (3.276) gives; 

 1 0 0

0 0

t t

L L L l l l LE dt c dt                         (3.277) 

Substituting equation (3.225) into (3.277) gives; 

 1 0 0

0 0

t t

L l L l l l LE dt c dt                         (3.278) 

Integrating and collecting like terms, we obtained; 

   1 0 0L l L l l l LI E t c t         

 1 0 0L l L l l l LE c t                          (3.279) 

For 0,n  equation (3.234) becomes; 

 1 0 0 0 0

0 0 0 0

t t t t

L l l l lR v H dt K dt L dt M dt                                    

(3.280) 

Substituting (3.242) through (3.244) to (3.246) into (3.280) gives; 
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 1 0 0 0 0

0 0 0 0

t t t t

L L l L l L l l LR v S dt E dt dt R dt                          (3.281) 

Substituting equation (3.225) into (3.281) gives; 

   1 0 0 0 0

0 0 0 0

t t t t

L l l l l l l l l lR v S t dt E dt dt R dt                           (3.282) 

Integrating and collecting like terms, we obtained; 

      
2

1 0 0 0 0
2

l
L l l l l l l l l

t
R v S t E t t R t    

 
       

 

  

   
2

1 0 0 0 0
2

L l l l l l l l l l

t
R v S E R v                            (3.283) 

For 0,n  equation (3.235) becomes; 

 1 0 0 0

0 0 0

t t t

ml mh
M m m

m m

S N dt P dt Q dt
N N

 
                      (3.284) 

Substituting (3.247) through (3.249) into (3.284) gives; 

 1 0 0 0

0 0 0

t t t

ml mh
M L M Ho Mo m m M

m m

S S dt S dt S dt
N N

 
                       (3.285) 

Substituting equation (3.225) into (3.285) gives; 

       1 0 0 0 0 0

0 0 0

t t t

ml mh
M l m m h m m m m m m

m m

S S t dt S t dt S t dt
N N

 
                   (3.286) 

Integrating and collecting like terms, we obtained; 
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 
2 2 2

0 0
1 0 0 0 0 0

2 2 2

ml l m mh h m m
M l m h m m m m

m m

t t t
S I S t S t S t

N N

 
 

         
             

     

 

                   (3.287) 

   
2

0 0 0 0 0 0
1 0

2

ml l m mh h m ml l m mh h m
M m m m m m m

m m m m

S S t
S S t

N N N N

   
   

        
             
   

     (3.288) 

For 0,n  equation (3.235) becomes; 

 1 0 0 0

0 0 0

t t t

ml mh
M m m

m m

N dt P dt T dt
N N

 
                      (3.289) 

Substituting (3.247), (3.248) and (3.250) into (3.289) gives; 

 1 0 0 0 0 0

0 0 0

t t t

ml mh
M L M H M m m M

m m

I S dt S dt dt
N N

 
                       (3.290) 

Substituting equation (3.228) into (3.292) gives; 

     1 0 0 0 0 0

0 0 0

t t t

ml mh
M l m m h m m m m M

m m

S t dt I S t dt dt
N N

 
                        (3.291) 

Integrating and collecting like terms, we obtained; 

  
2 2

0 0
1 0 0 0

2 2

ml l m mh h m
M l m ho mo m m m

m m

t t
S t I S t t

N N

 
 

      
           

   
 

 
2

0 0 0 0 0 0
1 0

2

ml l m mh h m ml l m mh h m
M m m m

m m m m

S S t
I t

N N N N

   
 

        
         
   

            (3.292) 

For 1,n  equation (3.226) gives; 
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2 1 1 1

0 0 0

t t t

mh
H h h

h

S A dt B dt C dt
N


                                                                                     (3.293) 

Substituting (3.236) to (3.237) into (3.293) gives; 

 2 1 0 1 1 1

0 0 0

t t t

mh
H M Ho M H h H h H

m

S I S I S dt S dt R dt
N


                     (3.294) 

Integrating and collecting like terms, SH2  gives;   

 

 

                                                                                                           (3.295) 

For 1,n  equation (3.227) becomes; 

 2 1 1

0 0

t t

hm
H h h

h

E A dt D dt
N


           (3.296) 

Substituting (3.239) and (3.242) into (3.298) gives; 



xcvi 
 

   2 1 0 0 1 1

0 0

t t

hm
H M H M H h h H

m

E S S dt E dt
N


            (3.297) 

Integrating and collecting like terms, EH2 gives; 

 

 

                                                                                                                         (3.298) 

For 1,n  equation (3.228) becomes; 

 2 1 1

0 0

t t

H h h hD dt F dt                      (3.399) 

Substituting (3.239) and (3.240) into (3.299) gives; 

 2 1 1

0 0

t t

H h H h h HE dt dt                       (3.300) 

Integrating and collecting like terms, ΙH2 gives; 
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 

    

3
20 0 0

0

2

0 0

1 1

6 2

1

2

hm m h hm m h
h h h h

h h

h h h h h h h

t S
E t

N N

E t

 
  

    

    
     

  

    

                                                 (3.301)   

When 1,n  equation (3.229) becomes; 

 2 1 1

0 0

t t

H h h hR F dt C dt                      (3.302) 

Substituting (3.238) and (3.240) into (3.302) gives; 

 2 1 1

0 0

t t

H h H h h HR dt R dt                     (3.303) 

Integrating and collecting like terms, RH2 gives; 

       2 2

0 0 0 0

1 1

2 2
h h h h h h h h h h h hE t R t                                           (3.304) 

 

For 1,n  equation (3.230) becomes; 

 2 1 1 1

0 0 0

t t t

lm
L l l

l

S G dt v H dt J dt
N




                                  (3.305) 

Substituting (3.241) and (3.242) into (3.305) gives; 

   2 1 0 0 1 1 1

0 0 0

t t t

lm
L M L M L l L l L

l

S S S dt v S dt R dt
N




                      (3.306) 

Integrating and collecting like terms, SL2 gives; 
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(3.307) 
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For 1,n  equation (3.231) becomes; 

 2 1 1

0 0

t t

lm
L l l l

l

E G dt K dt
N


                      (3.308) 

Substituting (3.241) and (3.244) into (3.308) gives; 

   2 1 0 0 1 1

0 0

t t

lm
L M L M L l l l L

l

E S S dt E dt
N


                                  

(3.309) 

Integrating and collecting like terms, EL2 gives; 



c 
 

 

                            (3.310) 

For 1,n  equation (3.232) becomes; 

 2 1 1

0 0

t t

L l l l lK dt c L dt                       (3.311) 

Substituting (3.244) and (3.245) into (3.311) gives; 



ci 
 

 2 1 1

0 0

t t

L l L l l l LE dt c dt                         (3.312) 

Integrating and collecting like terms, ΙL2 gives; 

 

    

3
20 0 0

0

2

0 0

1 1

6 2

1

2

lm m l lm m l
l l l l l

l l

l l l l l l l l l

t S
E t

N N

c E c t

 
   

    

    
      

  

      

                                          (3.313) 

For 1,n  equation (3.233) becomes; 

 2 1 1 1 1 1

0 0 0 0

t t t t

L l l lR v H dt K dt L dt M dt                        (3.314) 

Substituting (3.242) through (3.246) into (3.314) gives; 

 2 1 1 1 1 1

0 0 0 0

t t t t

L L l L L l l LR v S dt E dt dt R dt                         (3.315) 

Integrating and collecting like terms, RL2 gives; 
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                               (3.316) 

For 1,n  equation (3.234) becomes; 

 2 1 1 1

0 0 0

t t t

ml ml
M m m

m m

S N dt Pdt Q dt
N N

 
             (3.317) 

Substituting (3.247) through (3.249) into (3.317) gives; 

     2 1 0 0 1 1 0 0 1 1

0 0 0

t t t

ml mh
M L M L M H M H M m m M

m m

S S S dt S S dt S dt
N N

 
                (3.318) 

     2 1 0 0 1 1 0 0 1 1

0 0 0

t t t

ml mh
M L M L M H M H M m m M

m m

S S S dt S S dt S dt
N N

 
                (3.319) 
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Integrating and collecting like terms, SM2 gives; 

 

 

 

                                  (3.320) 

For 1,n  equation (3.235) becomes; 

 2 1 1 1

0 0 0

t t t

ml mh
M m m

m m

N dt Pdt T dt
N N

 
            (3.321) 

Substituting (3.247), (3.248) and (3.250) into (3.321) gives; 

     2 1 0 0 1 1 0 0 1 1

0 0 0

t t t

ml mh
M L M L M H M H M m m M

m m

S S dt S S dt dt
N N

 
                (3.322) 

Integrating and collecting like terms, ΙM2 gives; 
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                                                                                                                             (3.323) 

For the final results of ,E , ,R , ,E , ,R , ,H H H H L L L L M MS S S   , check equations (3.324)-

(3.333) in appendix A. 
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CHAPTER FOUR 

4.0     RESULTS AND DISCUSSION 

4.1 Variables and Parameter Values Estimation 

Table 4.1: Values for variables/parameters used for analytical solutions of the Model 

Symbol Value Sources 

hS  

hE  

h  

hR                                                     

lS                                                                      

lE  

l  

lR  

mS  

m  

hN  

lN  

mN  

 

l  

500 

220 

100 

                                                                            

200 

  

 890 

 450  

  200 

 120  

   

 700  

 500  

1020  

 

1660 

1200 

 

0.5 

Assumed 

Assumed 

Assumed 

Assumed 

Assumed 

Assumed 

Assumed 

Assumed 

Assumed 

Assumed 

 

 

Estimated 

 

Estimated 

Estimated 

 

 

(Majok et al.,1991) 

l  0.9 Assumed 

l  0.25 Assumed 

l  0.25 Assumed 

v  0.25 Assumed 

ml  0.25 Assumed 

h  0.8 Assumed 

m  0.25 Assumed 

lc  0.25 Assumed 

h  0.25 Assumed 

lm  0.39 Assumed 

mh  0.25 Assumed 
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hm  0.001 Assumed 

h  0.25 Assumed 

l  0.25 Assumed 

m  0.25 Luguoye et al., 2016  

h  0.01 Assumed 

m  0.67 Assumed 

   

4.2 Sensitivity Analysis of the Model 

Sensitivity analysis confirms the effect each parameter has on the disease transmission. The 

objective of sensitivity analysis is to give rise to uncertainties of the model outputs (Leon et 

al.,2009). 

Table 4.2 Sensitivity indices of the model parameters on Rc 

βlm   0.61    0.4843392736 

εl                                                 0.25         0.2421696368 

βml                                             0.25             0.4843392736 

 γl                                              0.25    0.04036160614 

εh                                      0.25                                          0.0006023356211 

  μl                                             0.5    -0.4036160614 

 vε                                             0.25     -0.1210848184 

 βmh                                           0.25                       0.01566072602 

 βhm                                            0.001    0.01566072602 

Parameters               Value                                     Sensitivity Index 
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Table 4.2 shows the sensitivity indices of the effective Reproduction number, cR for the 

model equations (3.4)-(3.13). The parameters have both positive and negative effects on cR

. The most sensitive parameters are contact rates from livestock to mosquito, lm  mosquito 

to livestock, ml . The next important parameter is incubation period in livestock ( l ). The 

parameters with the least effect on cR  are; incubation period o the disease in humans, h and 

natural death rate of livestock l . The values shown in table 4.2 were computed with maple 

and codes were shown in appendix B.  

 

Figure 4.1: Effect of Treatment on Infected Livestock Population 
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Figure 4.1 shows the effect of treating livestock, this causes a decrease in the infected class 

of livestock. The more livestock are treated and precautionary measures are put in place, the 

less the spread of RVF virus among the livestock population. 

 

Figure 4.2: Effect of Treatment of Humans on Infected Human Population 

Figure 4.2 shows the relationship between treatment of humans and infected human 

population. The higher the rate of treatment, the lower the infected human population. This 

means the more humans are treated, the less the spread of this disease in the population. 
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Figure 4.3: Effect of Incubation Period on Infected Livestock Population 

Figure 4.3 shows the relationship between incubation period and infected livestock. The 

longer the incubation period, the higher the spread of  RVF virus among the vectors and 

eventually increase in infected livestock population. 
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Figure 4.4: Effect of Incubation Period of Humans on Exposed Human Population 

Figure 4.4 shows the relationship between exposed humans and incubation period. The 

longer the incubation period of the disease, the lower the exposed human population. 

Extended incubation period, decreases the exposed human class because RVF virus cannot 

be transmitted from one human to another. Infected humans when treated recover and as such 

the exposed class reduces. 
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Figure 4.5: Effect of Recovery of Livestock on Susceptible Livestock Population 

This relationship shows that an increase in recovery of livestock, increases the susceptible 

livestock population. The more livestock are recovered, the higher the susceptible livestock 

class. 
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Figure 4.6 Trapping Rate of Mosquitoes on Infected Mosquito Population 

Figure 4.6 shows the relationship between trapping rate of mosqitoes on infected mosquito 

Population. An increase in the trapping rate, results in decrease of infected mosqitoes; this is 

because they have little or no interaction with either infected humans or livestock. 
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Figure 4.7 Culling Rate of Livestock on Infected Livestock Population 

This relationship shows that the increase in the elimination of infected livestock (culling 

rate), decreases the infected livestock population. The more infected livestock are eliminated, 

the less the transmission of RVF virus. 
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Figure 4.8 Effect of Contact Rate from Humans to Mosquitoes on Susceptible 

Population 

This relationship shows that an increase in contact rate from humans to mosquitoes, yields a 

decrease in susceptible human population. The less humans come in contact with vectors, the 

less the spread of the disease and the higher the susceptible population. 
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Figure 4.9 Effect of Recovery of Humans on Susceptible Human Population 

This relationship shows that an increase in recovery rate, yields an increase in susceptible 

human population. The more humans recover, the higher the susceptible population of 

humans. 
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Figure 4.10 Effect of Vaccination of Livestock on Recovered Livestock Population 

This figure shows the efficacy of vaccination on livestock; the more livestock are vaccinated, 

the more the population of recovered livestock. In other words, an increase in the rate of 

vaccination yields an increase in the recovered livestock class and eventually the spread of 

the disease reduces overtime. 
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Figure 4.11 Effect of Treatment of Livestock on Recovered Livestock Population 

This relationship shows that an increase in treatment of livestock, yields an increase in the 

recovered class of livestock. The more livestock are treated, the less the spread of RVF virus 

in the population. 
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CHAPTER FIVE 

5.0                          CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

The Rift Valley Fever Model formulated in this work exists in a feasible region where disease 

free and endemic equilibrium points are obtained and the local and global stability of disease-

free equilibrium was investigated. The positivity of solutions using Wiah’s method was also 

determined. The model has three interventions; efficacy of vaccination, culling of livestock 

and trapping of mosquitoes. The model analysis showed that disease free equilibrium exists 

and is locally asymptotically stable whenever its effective reproduction number is less than 

1, and it has a unique endemic equilibrium when Rc>1. These results have important public 

health implications, since they determine the severity and outcome of the epidemic that is, 

clearance or persistence of infection) and provide a framework for the design of control 

strategies. Further analysis showed that the disease-free point is locally stable implying that 

small perturbations and fluctuations on the disease state will always result in the eradication 

of the disease if Rc<1. In the final analysis efficacy of vaccination, culling of livestock and 

mosquito trapping intervention program will effectively control the spread of rift valley 

fever. 

Adomian Decomposition method was used to solve the model equations. The sensitivity 

analysis of the parameters was also investigated and sensitivity indices were obtained. 

5.2 Contribution to Knowledge 
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In this work a model was developed for the transmission dynamics of Rift Valley Fever virus, 

we incorporated effective vaccination, culling rate (control), trapping of mosquitoes, contact 

rates; humans to mosquitoes and vice versa, livestock to mosquitoes and vice versa, and 

incubation period of humans and livestock.  

5.3 Recommendations 

The system of equations can further be looked into by incorporating isolation of infected 

livestock. Limit and/or prohibit movements of animals from affected areas to disease-free 

areas to reduce the spread of the disease. 

Use of personal protective equipment (PPE): particularly important for veterinarians (care, 

autopsies) and PPE in slaughter houses or during slaughtering animals should be used to 

prevent livestock to human transmission.  

More vector control programmes using insecticide and mosquito treated nets, can be adopted 

in addition to trapping vectors. 
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APPENDICES 

APPENDIX A: Maple Code for Adomian Decomposition Method (ADM)  

>  

 

          (3.324) 
>  
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APPENDIX B: Maple Code for the Sensitivity Analysis of Effective Reproduction 

number. 
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