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ABSTRACT

In this research, transmission dynamics of Rift Valley Fever (RVF) with mosquito, livestock
and human host using ordinary differential equation was studied and analyzed. RVF is a viral
zoonosis fundamentally transmitted by mosquitoes and primarily affects livestock but has
the ability to affect humans. It has become a public worry due to its potential to spread rapidly
and become an epidemic. The Effective Reproduction Number R¢ was computed using next
generation matrix and used to investigate the local and global stability of the equilibrium, the
disease-free equilibrium state was found to be locally asymptotically stable if Re< 1. And by
constructing a function using Castillo-Chavez's method, the disease-free state is found to be
globally asymptotically stable if R, < 1. This implies that rift valley fever could be put under
control in a population where the Reproduction Number is less than 1. Numerical simulations
using Adomian Decomposition Method (ADM) gives insightful analytical results to further
explore the dynamics of the disease.
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CHAPTER ONE

1.0 INTRODUCTION

1.1 Background to the Study

Rift Valley Fever (RVF) is a viral illness of people and livestock that can cause mild to
serious side effects. RVF is also known as enzootic hepatitis of sheep and cattle (Adeyeye et
al., 2011). It is an acute, infectious and zoonotic disease of predominantly cattle, sheep, goat,
camels, African buffalo (Syncerus caffer) and humans. The disease is caused by an arbovirus
and is associated with periodic outbreaks that mostly occur on the African continent. It is a
febrile disease that is accompanied by abortion in livestock and a severe fatal haemorrhagic
syndrome in humans has been observed (Evans et al., 2008). The disease was first reported
among sheep in Kenya by Montgomery in 1912 and Stordy in 1913 (Anon, 2010), but the

disease was not isolated until 1931 (Morril, 2001).

RVF is transmitted by mosquitoes and infects domestic livestock and humans in Africa and
the Middle East (Abdo-Salam et al., 2006). The mild indications may include: fever, muscle
pains, and migraines which frequently keep going for as long as seven days. The serious side
effects may include: loss of sight starting three weeks after the contamination, diseases of the
cerebrum creating extreme migraines and confusion, and bleeding along with liver issues
which may happen within the first few days. The individuals who have bleeding have a 50%

chance of death (WHO, 2010).

RVF is a viral zoonosis that essentially influences animals yet in addition has the ability to
infect humans. The sickness additionally brings about huge monetary misfortunes because

of death and early termination among RVF-infected animals. The infection was first

iX



recognized in 1931 during an examination concerning a scourge among sheep on a ranch in
the Rift Valley of Kenya. From that point forward, episodes have been accounted for in sub-
Saharan Africa. In 1977 a hazardous episode was accounted for in Egypt, the RVF infection
was introduced to Egypt through infected animals exchange along the Nile irrigation system
framework. In 1997-1998, a significant outbreak occurred in Kenya, Somalia and Tanzania
following El Nifio occasion and broad flooding. Following infected animals exchange from
the horn of Africa, RVF spread in September 2000 to Saudi Arabia and Yemen, denoting the
primary detailed event of the virus outside the African landmass and raising worries that it

could stretch out to different parts of Asia and Europe (WHO, 2018).

The outbreak on the Arabian Peninsula represents the first cases of RVF outside Africa. In
2007, an outbreak occurred in Kenya and Somalia where over 404 human cases, including
118 deaths, were reported (Centers for Disease control and Prevention (CDC), 2007). In
South Africa, the last outbreak occurred in May 2010; preliminary investigation revealed that
186 humans were confirmed RVF cases out of which 18 died (WHO, 2010). An overview of
the disease is necessary given climate changes that favour possible outbreaks (Gould and
Higgs, 2009) and the warning signals dispatched to countries in Africa by the Food and
Agriculture Organization and World Health organization (Food and Agriculture

Organization, 2008).

In Nigeria, Ferguson first isolated the virus from animals (Ferguson, 1959). Subsequent
serological evidence suggests that the virus may be circulating at low levels in domestic
livestock and in the human population, particularly among livestock workers and wildlife
rangers (Olaleye et al.,1996). Cattle, sheep, goats and camels in the states of Kaduna and
Sokoto have revealed significant antibody titres in their serum (Ezeifeka et al., 1982).
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Serological prevalence of the disease in these animal species in lle-Ife and Ibadan was
observed by Olaleye et al. (1996) who confirmed the existence of the disease in Nigeria.
Apart from these observations, experimental infection with different strains of the disease in
three indigenous breeds of sheep in Nigeria, namely: The West African dwarf, Yankasa and
Ouda have resulted in fatal disease (Fagbami et al., 1975). Further studies are therefore

required to determine the present status of the disease in Nigeria.

1.2 Statement of the Research Problem

RVF has been a major course of concern, presently, virological and serological evidence
suggests that the RVF virus exists throughout sub-Saharan Africa and Madagascar and, in
the light of its recurrence in Egypt in 1993 and 2003 (Anon, 2010), it may be extending its
range even further. In September 2000, cases of unexplained haemorrhagic fever in humans
and associated animal deaths in south-western Saudi Arabia and Yemen were confirmed as
RVF and, by mid-January 2001, the disease had claimed several human lives in these

countries (Abdo-Salam et al., 2006).

Hence, we formulated a model to take a closer look at this silent but deadly disease, by
incorporating control and trapping of these infectious vectors and livestock to curb the spread

of the disease.

1.3 Aim and Objectives of the Study

The aim of this work is to develop and analyse a mathematical model for the transmission
dynamics of Rift Valley Fever (RVF) virus with human host. The objectives of the study are

to:

1. formulate a mathematical model for RVVF virus.
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2. determine the criteria for positivity of the model equations.
3. determine the Disease free and endemic equilibria of the model equations and conditions

for their stability.

&

solve analytically using Adomian Decomposition Method.

5. carry out numerical simulation of the model using maple software.

1.4 Motivation for the Study

Nigeria is at high risk of RVF and it would be great to take precautionary measures to prevent
any occurrence of this plague. The outbreak of diseases in the world recently has proven that
no stone must be left unturned; every communicable disease must be treated as a matter of
urgency. In order to save lives and prevent any other pandemic from occurring, the study of
subject matters like this becomes a necessity for our general well being and for generations

yet to come.

1.5 Justification for the Study

RVF has plagued a lot of nations of the world and it is still spreading its tentacles. The
singular factor that RVF can be transmitted by mosquitoes raises a lot of concern, neglect of
this disease can cause future outbreaks. RVF is a mosquito-borne disease (Abdulkadir, 1989).
Aedes is the species of mosquito that is incriminated in biological transmission (Turell et al.,
2008), although Glossina, Culicoides, Culex species and sand flies may play limited roles in
biological and mechanical transmission (Hoch et al., 1985). Apart from these vectors, the
disease has been reported to spread through needle inoculation, contact with infected animals

or humans with high prevalence during periods of heavy rainfall (Zeller et al.,1997).

1.6 Scope and Limitation of the Study
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The model is limited to the transmission dynamics of Rift Valley Fever with human host

incorporating culling rate (control) and trapping of mosquitoes.
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1.7 Definition of Terms

Effective reproduction number Rc: This is the average number of secondary cases per

infection in a population made up of both susceptible and non-susceptible hosts.

Disease free equilibrium: This is a steady state solution of a system, when there is no disease

present in a given population.

Trapping of Mosquitoes: This is the control of mosquito population to reduce damages

caused to human health, economies and general well being.

Culling livestock: This is the elimination of undesired animals from the herd for reasons of

uneconomic, poor production, sterility problems and incurable diseases.
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CHAPTER TWO
2.0 LITERATURE REVIEW
2.1 Mathematical Models of Rift Valley Fever

Farida et al. (2016) developed vaccination models for live and killed vaccines. A ruminant
population at time t (N(t)) was divided into classes of susceptible (S(t)), infectious (I(t)),
recovered (R(t)) and vaccinated by live vaccines (Vi(t)) or vaccinated by killed vaccines
(V2(t)) ruminants. A population of adult female mosquitoes at time t (M(t)) was divided into

susceptible (U(t)) and infectious (W(t)) classes.

Ruminants (livestock) have a very high immunity, hence they concluded that RVFV remains

endemic at a very low level, when an outbreak occurs. The model equations were given as:

S(t)=A, (S, 1,RV )+ (1= py, — oy ) AV, — ANS — p,4S — 1S
i(t):ﬂVVS + P AV, —(u+d +y)I

R(t) =71+ ppAV, — 4R

V, ()= pudS —(u+ AV,

)
U(t)=A, (M)-alU —(1-8)aVU - U
)

(2.1)

W (t)=alU +(1-8)aV,U — W

Although live vaccines induce early and long-term immunity, they may cause viraemia in
ruminants and have a potential for virulence reversion. Hence, they were not recommended
in non-endemic areas or during the breeding season of mosquitoes or during disease
outbreaks (Ikegami and Makino, 2009; Kamal, 2011). Susceptible ruminants were vaccinated

at a rate p11¢1, where 1/g1 is the time period that ruminants remain susceptible before being
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vaccinated and only a fraction p11 of ruminants was actually vaccinated. Vaccinated
ruminants leave the vaccination class at a rate A with a probability of p12 to successfully
acquire a life-long immunity, a probability of p13 that reversion to virulence occurred, and a

probability of 1 — p12 — p13 for vaccine failure.

Although killed vaccines are safer than live vaccines, they may have poor immunogenicity
by not inducing long-term immunity and often requiring multiple vaccination doses (Ikegami
and Makino, 2009; Bird, 2012). It was assumed that susceptible ruminants are vaccinated at
rate p2192, where 1/¢2 is the time period that ruminants remain susceptible before being
vaccinated by killed vaccine and only a fraction p21 Of ruminants was actually vaccinated.
Vaccinated ruminants leave the vaccination class at rate v with a probability of p22 to receive
booster vaccines and successfully acquire long-term immunity, and a probability of 1—p2. for
individuals to become susceptible again due to vaccine failure or not receiving booster

vaccines.

The model described in (Tianchan et al., 2012) was constructed to describe the transmission
of RVFV between three prototypes: two mosquito populations and one livestock population.
The model considered both individual-to-individual transmission of virus between species
(called “horizontal transmission”) and mother-to-offspring transmission of virus (vertical
transmission) in one mosquito species. The mosquitoes that can transmit RVFV both
horizontally to livestock and vertically to their progeny “floodwater Aedes” mosquitoes were
labelled “species 1”. Livestock were labelled “species 2”, and mosquitoes that transmit
RVFV only horizontally to livestock “Culex” were labelled “species 3”. Considering
populations of these species distributed throughout a large but finite two-dimensional region.

The general model allowed for travel among any pair of patches in the simulated region.

XVi



Example of this movement is livestock that is transported from a farm to a different farm or
auction house. Such travel need not be between adjacent patches; transportation may move
individuals between one patch and a geographically disconnected patch. Species living on a

given patch may have patch-specific epidemiologic and demographic characteristics.

Gaff et al. (2007) constructed a compartmental, ordinary differential equation (ODE) model
of RVFV, it considers two populations of mosquitoes (one exhibiting vertical transmission
and the other not) and a population of livestock animals with disease-dependent mortality.
One population of vectors represented Aedes mosquitoes, which can be infected through
either vertically or via a blood meal from an infectious host. The other vector population is
able to transmit RVFV to hosts but not to their offspring; here they considered it to be a
population of Culex mosquitoes. Once infectious, mosquito vectors remain infectious for the
remainder of their lifespan. Infection is assumed not to affect mosquito behavior or longevity
significantly. Hosts, which represent various livestock animals, can become infected when
fed upon by infectious vectors. Hosts may then die from RVFV infection or recover,
whereupon they have lifelong immunity to reinfection (Wilson, 1994). Neither age structure
nor spatial effects were incorporated into this model. Populations contain a number of
susceptible (Si), incubating (infected, but not yet infectious) (Ei) and infectious (l)
individuals, i = 1, 2, 3. Infected livestock will either die from RVFV or will recover with
immunity (R2). To reflect the vertical transmission in the Aedes species, compartments for
uninfected (P1) and infected(Q1) eggs are included. As the Culex species cannot transmit
RVF vertically, only uninfected eggs (P3) are included. Adult vectors emerge from these
compartments at the appropriate maturation rates. The size of each adult mosquito population

is Ni =Sj + Ei + Ij, for = 1 and 3. The livestock population was modeled using a logistic
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population model with a given carrying capacity, K. The total livestock population size is

No=S, +Ex+ 2 + Ro.

The system of ODEs that represented the populations is given below:

Aedes vector
dP,
5 - (Ni-al)-6R
dQ
—= blql 17 lQl
dS HP d S ﬂZlSIIZ
dt N
dE B, 2 (22)
- B Ak
2
dl,
—+=600Q,-d,l, +¢E
dN
d_tlz(b1_d1)N1
Livestock
dS =b.N _d SN, _ﬂlZSZIl _ﬂ3232|3
dat TP K, N, N,
dEZ =_d2E2N2 +ﬂ1282|1 +ﬂ3282|3 _ngz
dt K, N, N,
dl d,I.N
d_tzz_%"'ngz_?/zlz_ﬂzlz (2.3)
2
dR,  d,R,N,
=- +7,l
dt Kk, 27
dN d,N
dt2 :_Nz(bz_ :< 2]_/12'2
2

Culex mosquito Vector

Xviii



@zbgl\l3 —03P3 _ﬂZSSSIZ
2
%293%—%83 _:Bzzl«;\lsslz

2

dE L3591

o= UE - 2?\123 2_ g E, (2.4)
dl

d—tsz—d3|3+83E3

dN

d_,::(bs_ds)Ns

The model presented was a simplified representation of the complex biology involved
in the epidemiology of RVF.
Our model is based on the following assumptions;
i.  That the population is heterogeneous.
ii.  That people, animals and vectors (mosquitoes) have equal natural death rate in their
respective compartments.

iii.  The only way of entry into the population is through birth and the only way of exit
is through death from natural causes or culling (elimination of infected animals) for
livestock only.

iv.  That trapping of mosquitoes controls the spread of the disease.

v.  That RVF virus can be spread from humans to mosquitoes and vice versa;

mosquitoes to livestock and vice versa.

2.2 Effective Reproduction Number
The effective reproduction number (Rc) is the average number of secondary cases per
infectious case in a population made up of both susceptible and non-susceptible hosts. If Rc

> 1, the number of cases will increase, such as at the start of an epidemic. Where Rc=1, the
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disease is endemic, and where R¢ < 1 there will be a decline in the number of cases. The
effective reproduction number can be estimated as the product of the basic reproduction

number and the fraction of the host population that is susceptible (x). So:

R, = RyX

(2.5)

The next generation approach described by Van Driessche and Watmough (2002) is an

acceptable method to compute Basic reproduction number.

We used this approach to determine our Effective Reproduction Number of the next

generation matrix FV1,

A (x)is the rate of transfer of individuals into compartment i by every means except the

epidemic.

\"A (X) is the transfer of individuals out of compartment i.

V, =V (x)-V," (x) (2.6)
Given the DFE, R is calculated thus:

_ ok

F _6_)(j(EO) (2.7)
oV,

v :&(EO) 2.8)

R.=p(FV) (2.9)

2.3 Global Stability of Disease Free Equilibrium
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Global stability means that the system will come to the equilibrium point from any possible
starting point (i.e., there is no "nearby" condition). Castillo Chavez stability theorem was

used to determine the global stability of disease free equilibrium in this study.

We can write the model system as:

dX

dts = A(Xs - XD.F.ES )+ A.lXi (2.10)
dX.

R AX

o AX, (2.11)

2.4 Local Stability of Disease Free Equilibrium

Local stability of an equilibrium point means that if you put the system somewhere nearby

the equilibrium point then it will move itself to the equilibrium point in some time.

2.5 Adomian Decomposition Method (ADM)

The Adomian decomposition method (ADM) is a semi-analytical method for solving
ordinary and partial nonlinear differential equations. The method was first introduced by an
American mathematician and aerospace engineer of Armenian descent George Adomian in
1981 and developed by him in 198l. The method employs the use of the "Adomian
polynomials” to represent the nonlinear portion of the equation as a convergent series with
respect to these polynomials, without actual linearization of the system. These polynomials
mathematically generalize Maclaurin series about an arbitrary external parameter, which

gives the solution method more flexibility than direct Taylor series expansion.
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This method has been applied to solve differential and integral equations of linear and non-
linear problems in mathematics, physics, biology and chemistry and now a large number of
research papers have been published to show the feasibility of the decomposition method

(Nhawu et al., 2015).

We show how the method works by considering the derivative operator: D =d/dx
Dy(x)= yO+Iy(s)ds (2.12)
0

Where s=0 was chosen for simplicity

y(0)=Y, (2.13)

The derivative operator is defined on the space of smooth functions and its inverse acts in the

space of integrable functions.
D'Dy=D"y (x)=Y (O)+_[y' (s)ds=y (0)+y(x)—y(0) (2.14)
0

Assuming the solution is the infinite sum

Y(X)= Yo+ ¥i+ Y, ot DY (2.15)

k>0

We substitute the series into either the differential equation or the formula;

DZYk"'azyk :ZDyk+aZyk =0

k>0 k>0 k>1 k>0

or
D>y, =-aD™*) y, =-a) Dy,

k>0 k=0 k=0

(2.16)
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Comparing like terms, we get the recurrence relation

Dy, +ay, =0

or (2.17)
Y,,,=—-aD™y,,k=0,1,2

Each of these recurrences is a linear difference-differential equation;

y, =—aD'y, = —ay, —axy, (2.18)

with y, (0)=-ay,,

2

_ ) X
y,=—aD'y, =—a’D'x=-a’y, +a’ - Yo (2.19)

with y, (0)=-a’y,

3

. X

y; =—ab 1y2 =—a3y0 _a3§y0 (2.20)
with y,(0)=-a’y,
We get the solution;

——y,a(1-a+a’ a2 oy 2 o 2.21

y(X)=-Yoa(l-a+a’—..)+y,| 1-ax+ TR B e (2.21)

For the initial value problems for non-linear equations such as;

Yra(O)y()+bON, = £(1).5(0)=, (222)
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The ADM method is to represent the non-linear term as the sum of Adomian polynomials

Ny =2 A (Yo Yur Yarees Yo ) (2.23)

n>0

Where A, are the Adomian polynomials specifically generated for each non-linear operator

according to the formula

Aw(yo’yyyz' ’yn 'd/?,n {Zyk } ,n=0,12,... (2.24)
A =N,

yldN (2.25)
A, dy, -
N, =A+A+A+.. (2.26)

correspond to ordinary generating functions.
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2.6 Sensitivity Analysis

Sensitivity analysis confirms the effect each parameter has on the disease transmission. The
objective of sensitivity analysis is to give rise to uncertainties of the model outputs (Leon et

al.,2009).

To determine sensitivity index with respect to a parameter value g, we have;

Rc:aRcX&
" oq R

C

I

(2.27)
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CHAPTER THREE

3.0 MATERIALS AND METHODS

3.1  Formulation of the Model

The model equations of Rift Valley Fever (RVF) are formulated using first order ordinary
differential equation. Features such as vaccination to susceptible class, treatment of infected
class and culling livestock, which is the elimination of infected livestock, control and spread

of the disease among livestock and humans using vaccination and treatment respectively.

In formulating the model, we considered horizontal transmission in mosquitoes; control
(culling rate) vector population was also considered. Humans were considered to be a source
of infection to mosquitoes (contact rate from humans to vectors was assumed to be almost
negligible). We also assumed that livestock and humans get infected when they come in
contact with infectious vectors. Natural death rate occurs in all three groups.

The model was divided into three populations; the susceptible, Siand infected, I; classes, for
i =h, I, mfor, human (h), livestock (I) and mosquitoes (m), respectively. The two susceptible
populations (humans and livestock) become infected via an infectious mosquito bite at per
capita rates Si. The newborns in each category are recruited at the per capita birth rate of A;
and hosts die naturally at per capita rates . Recovery in livestock is introduced at a constant
rate y;; recovery in humans at a constant rate y,. The rates for treatment are; livestock t;,
treated humans t;, and the vector is trapped at a constant rate §m. Since a population dynamics
model is considered, all the state variables and parameters are assumed to be non-negative.
The model assumes that individuals mix homogeneously in the human and livestock

population where all individuals have equal chance of getting the infection if they come into
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contact with infectious mosquitoes, and that transmission of the infection occurs with a
standard incidence. It is the assumption of the model that there is natural mortality, thus there

IS no disease induced death, but rather culling of infected livestock

The human population is sub-divided into the following subgroups; susceptible Sh, exposed

En, infected 7, and recovered Rn. The size of the human population is therefore given by;

N, =S, +E +I, +R, (3.1)
The livestock population is given by;

N, =S +E+I, +R (32)

And mosquito population is given by;
Nm :Sm +Im (33)
The disease occurs with equal probability across all age groups, hence the natural death rate

upis the same across all stages of the disease in humans.

The schematic representation of the model is given in the Figure 3.1.
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Fig. 3.1 Schematic Diagram of the Model
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The model equations derived from schematic diagram in figure (3.1) are given thus:

Human Population

CISh =A _ﬂhmlmsh

=, N, - .S, + 7R,
%:ghEh —(ﬂh +Th)1h
dd%:rhlh —(,Llh +7/h)Rh

Livestock Population

dSI =A _ﬂImImSI _

at N, (M"‘Vg)sl"‘?/lRl

E _ ﬂImImSI

" N —(m+7+5)E

dI
d_tI:g'E' —(t+¢ +7)],

dr
d—t'zng, +7,E +7], _(M +7/|)R|

Mosquito Population

dSm A _ﬁmlllsm _ﬂmhIhSm _

d ™ N. N

m m

= (4 + 3,

)Sn

XXX

(3.4)

(3.5)

(3.6)

3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)



dIm _ ﬂmIIISm + ﬂmhIhSm _
dt N N

m m

(tt + )1, (3.13)

And summing (3.4) - (3.7), (3.8)- (3.11) and (3.12) - (3.13) gives;

dN,

" =A,—(S, +E, +1, +R, ) 44, (3.14)
N,

W:A' —(S,+E +1,+R) 4 —¢], (3.15)
dgltm = Ay~ (4 +3,)(Sy +1,) (3.16)

Table 3.1: Notation and definition of variables and parameters

Symbol  Description

N,(t)  Total population of humans at time t

N, (t)  Total population of livestock at time t
N, (t) Total population of mosquitoes at time t
S,(t)  Susceptible humans at time t

S (t) Susceptible livestock at time t

S.(t)  Susceptible mosquitoes at time t

E, (t) Exposed humans at time t

E (t) Exposed livestock at time t

I,(t)  Infected humans at time t

I (t) Infected livestock at time t
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Infected mosquitoes at time t
Recovered livestock at time t
Recovered humans at time t
Recruitment rate of human
Recruitment rate of livestock

Recruitment rate of mosquitoes
Efficacy of vaccination

Culling rate of livestock (control)
Adequate contact rate from livestock to mosquito
Adequate contact rate from mosquito to livestock
Adequate contact rate from mosquito to humans
Adequate contact rate from humans to mosquitoes
Disease incubation period in livestock
Disease incubation period in humans
Rate at which humans recover
Rate at which livestock recover
Treatment rate in humans
Treatment rate in livestock

Trapping rate of mosquitoes
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s Natural death rate of mosquitoes
n Natural death rate of livestock

L, Natural death rate of humans

The following assumptions were considered in constructing the model:

1. The recruitment rate into the susceptible class is at constant rate.

For the model equations, let;

k, =&, +u,

K, = 1ty + 7,

Ky = 1, + 7,

k4 :Iul +Vg

Ko =1 +7,+¢

Ke =4 +C +71,

Kk, =1+,

Kg = 1, + 9,

XXXiii

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)



Thus, equations (3.4) to (3.13) becomes

dSh =A _ﬂhmImSh

E— h N, — Sy + R,

dE I.S
_hzﬂhm m>h _klEh
dt N,

dI
d_th =&E, -k,

drR
d_th = ThIh — k3Rh

ds .S
d_tIZAl A N, t=k,S +7R

E — ﬂImImSI —k EI
5

dt N,

dI

d_tl =&E -k,
dR

d_tl =V, S, +7,E +71, - kR

%—A _ﬂmIIISm _ﬂmhIhSm _kSSm

d ™ NN

m m

XXXiV

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)



CIIm — ﬂmIIISm + ﬂmhIhSm _kBIm
dt N N

m m

(3.34)

3.2 Basic Properties of the Model

3.2.1 Feasible region of the model

Theorem 3.1: The system (3.25) - (3.34) has solutions which are contained in the
feasible region ¢.

Let ¢=(S,.E. .L,,R,)eR and ¢=(S,E.I,R)eR! and V=(S,.I,)eR? be any

solution of the system with non-negative initial conditions, then adding the equations

together (3.25)-(3.28) and (3.29)-(3.32) and (3.33)-(3.34), we have

ds, dE, dI, dR,
+ + +
dt  dt  dt dt

=A,— 1, (S, +E, +1,+R,)

dN (3.35)
d_th =Ny =N,

dN

d_th+'uhNh = A, (3.36)
IF =e*

N, (t)e"t = [Ae"" +C

XXXV



A
N, (t)="—"+Ce !
h() Hy

Using the initial conditions

t=0,N, (0)=N,

C =Ny _ﬁ
Hiy,
N (t) = ﬁ+[Nho —ﬂJew (3.37)
Hy h

Applying Birkoff and Rota’s theorem on differential inequality (Birkoff & Rota, 1982), we

obtain:

A
As t — oo. The total population approaches —*
Hy

A
Thus, 0<N, <"
Hy

Again,

dS, dg, dI, dR
d—t'+d—t'+d—t'+d—t'=AI -1 (S, +E +1, +R)—c],

dN
d_tl =A =N, —cl, (3.38)
dN
5 FHAN=A -l (3.39)

XXXVi



IF =l —em

N, (t)e"" = I(A%Ic'l')e”" +C

(A1_QL)
H

N, = +Ce

Using the initial conditions, t=0,N, (0)=N,,

N, - (=) +[N.O ~i-ah) )}ew (3.40)

= Am —(,le +5m ) Nm (341)

glt’“ +(ty + S, )Ny = A (3.42)

Jmeslt _ (v

IF=e
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N et = [| o g ¢
" M + 0,

N =D ool
"+ 6,

Applying initial conditions at t =0,N | (O) =N,

A
N, = n_+C
Y O
A
C= hdmo'_ .
M+,
o= +£N"‘°_ﬂA+m5 je%w (3.43)

Equations (3.36)- (3.38) satisfy the conditions of the theorem above. Therefore, they exist in

the feasible region.

3.2.2 Positivity of the solutions

The model monitors human, livestock and vector population. We show that all the variables

are non-negative always.

Theorem 3.2: Let
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(Sy Ey 1, R,)eR*:S,(0)>0,E,(0)>0,1,(0)>0,R,(0)>0
S, +E, +1, +R, sﬁ
Hy
(S,.E.I,R)e®R*:5,(0)>0,E (0)>0,1,(0)>0,R (0)>0
S +E +I,+R S% (3.44)
1
(Sy.1,)eR?:S,(0)>0,I,(0)>0

Sy +1, SM
Hi,

Then the solutions of {S, (t),E, (t).1,(t),R,(t),S, (t),E, (t).1, (t).R (t),S,(t).I, (t)} are positive

forall t>0.
Proof:
Applying the method used by Wiah (Wiah et al., 2014)

From (3.25), we have;

dSh _A _ﬂhmImSh

ot N, — Sy + 7Ry
ds
d_th >~/ S,
ds
— >y dt (3.45)
Sy
ds,
S—h > I—ﬂhdt

XXXiX



S.(t)=S,(0)e™" >0
From (3.26), we have;

dEh _ ﬁhmlmS

h
—kE
dt N, “E,

dE
d—thz —k,E,

L

j%zj—kldt

h
E,(t)>E,(0)e™ 20
From equation (3.27), we have;

dl
d_th =65, koI,

x|

(3.46)

(3.47)



[ [t

h
I,(t)>1,(0)e™ =0
From equation (3.28), we have;

drR
d_th =7, I, — k],

drR
Eﬁz-&&

IRy > it

drR

R—hh > [kt
R,(t)=R,(0)e™ >0

From equation (3.29), we have;

ds Bl S
d_tl = A _ITII_k4S| +7R

ds
Efz_h&

xli

(3.48)



L

ds
| S—I' > [ —k,dt

S(t)=S(0)e™ =0
From equation (3.30), we have;

dE I,S
_I:lBIm m*l _ksEl
dt N,

% ke
dt

%> ot

| d?EI' > [ kgt

E (t)>E (0)e™ >0
From equation (3.31), we have;

dI
d_tl =¢E -k,

xlii

(3.49)

(3.50)



dI
d_tl > kI,

s gt

ﬂﬁzj—&dt
II
I(t)>1,(0)e™ >0
From equation (3.32), we have;

% =V S +7,E +7], -kR

Ry kR
dt

R 5

R(t)=R (0)e™ 20

From equation (3.33), we have;

xliii

(3.51)

(3.52)



dt " N N

m m

% A — ﬂmIIISm _ /BmhIhSm _kSSm

B 5 ks
dt

m

From equation (3.34), we have;

dIm — ﬂmIIISm + ﬁmhIhSm _kSIm
dt N N

m m

ALy 5 ki
dt

dI

m > _k,dt

j?ﬁzj—@m

xliv

(3.53)

(3.54)



I,(t)>1,(0)e™ >0

Therefore S..E..1.,R.,S,,E,,I;,R,,S,, L. remain positive at every given time. The solutions

of the model equations (3.25) to (3.34) are all positive. Hence the model is valid.
3.3 Equilibrium States of the Model

At equilibrium, let

m

ds, ds, ds, dE, dE dI, dI, dI, drR dR
—l=— =B A Az o = N1 (3.55)
gt dt dt dt dt dt dt dt dt ot

At any arbitrary equilibrium state, let

w Un u»m
3 - =
v »nw un
3 % T % T %

m m
m In

E' = = (3.56)

>

—
—
3 * - o0 *

3

A

0 %

Py
0 0

Then, the steady states of (3.25) - (3.34) satisfy the following algebraic system:

mI:]S* % %
Ah_%_auhsh—i—thh =0 (3.57)

h
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:maImSh _ klE; =0

h
&E, —k,I; =0

I} kR, =0

(3.60)

I*S* * *
A —%—kﬁ, +7R =0

PulnS_y £ g
5

|
gE —kJI =0

v.S +0E +1L -k,R =0

Am _ IBmII\III Sm _ ﬂmhIhSh _kSSr; — O

m m

ﬁmIII Sm + ﬂmhIhSm _ kSI:n =0
N N

m m

From equation (3.59)

From equation (3.63)

xlvi

(3.58)

(3.59)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)



From equation (3.58), we have;

B =Tk,
1" "h

From equation (3.62), we have;

Substituting (3.69) into (3.67) gives;

I = Bom€oSuln _ KeSply
" kkN, N

Where,

k = Prnén
kik,

Substituting (3.70) into (3.68) gives;

I = PnéiSi 1y _ KioSi T
kN, N,

Where,

— IBImgI

xlvii

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)



Substituting (3.71) and (3.73) into (3.66) gives;

PuSa |((ksSiTh | [ B\ KeSi )y 1 _g
Nm NI Nm Nh

ﬁmls;kloer;N; +ﬂmh8;k98:I:1Nr _ksN;Nl*N;ITn

* * *

Nu Ny N,

=0

(ﬂm|s:1klos|N;+ﬂth;k98:N|* —ksN;NfN;)IL =0

:BmIAﬁlBImgIAI KoKk, + ﬂmhAﬁﬂhmghAl (k7 TV, ) ksks — AﬁA| (k7 +V, ) k K KsKsKg ]I* ~0
K koksKsKg 22, (k4k7 _7/|Vg) i

(3.75)

From equation (3.75),

I, =0 (3.76)

m
or,

ﬂmlAﬁﬁlmglAlk7klk2 +ﬂmhAﬁﬂhmghAl (k7 +V, ) KsKs _AﬁAI (k7 +V, ) kK, KsKsKg -0
ki K;KsKeKs 1, (k4k7 - 7|Vg)

(3.77)

3.4 Disease Free Equilibrium State (DFE)

Disease free equilibrium states are steady when all the infectious classes in a population are

zero, that is; the population comprises of susceptible humans and vectors only.
At Disease Free Equilibrium, let;

xlviii



Sh
E | |Er
L | |
R, | |Rs
SI S|O
E | |EC
L I?
R R|O
|8
m IO

From (3.57);

« A +7R
Slzlkll
4

From (3.60);

xlix

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)



Substituting (3.83) into (3.82) gives,

o Ak VS

S,
K,k
k,k, —v.7,

Substituting (3.84) into (3.83) gives,

RI* — VgAI
Kks =7,

From (3.61);

5 =n
Ky

m

Thus for human population, the Disease Free Equilibrium state is given by;

S, ﬁ
Hy
E, 0
I, 0
R, 0

Thus for Livestock population, the Disease Free Equilibrium state is given by;

(3.84)

(3.85)

(3.86)

(3.87)



S KA,
Kk, =v.7
E, 0
] 0
R VgAI
: Kk, —v
K7 =V (3.88)
Thus for Mosquito population, the Disease Free Equilibrium state is given by;
S, A,
1| |0
(3.89)

Disease Free Equilibrium (DFE) Point



Ay,
A
E, @)
1, 9
R, @)
s, A K,
k,k; —Vv_ 7
E |= @)
| 0
R V_/\,
I K,K; —V, 7
Am
S, K,
I O

(3.90)

Equation (3.90) shows the disease free equilibrium of the population.
3.5 Effective Reproduction Number, R
Effective reproduction number is the number of secondary infections caused by an infected

individual during his entire time of infectiousness (Diekmann et al.,1990). If the reproduction

ratio is greater than one, the disease will spread throughout the entire population and if it is



less than one, the disease will die out with time. The basic reproduction number determines

the direction of the disease (Oguntolu et al.,2019).

Using Next Generation Matrix (Diekmann and Heesterbeek, 2000);
R.=p(FV)

where p is the spectral radius of the Next Generation Matrix (FV‘l), E(X) is the rate of

appearance of new infections in compartment i, V," (X) is the rate of transfer of individuals

out of compartment i
V. =V (x) -V (%) (3.91)
Given the DFE, R is calculated thus:

— aFI

F=—%
ax,.

(E) (3.92)

— av|

V=210
8xj

(E) (3.93)

ﬂhmI:nSr?
Ny
0
ﬁImITnSIo
1 Nlo
0
ﬁmhI:Sr?l + ﬁmIITS;
N, N,

(3.94)




00 0 0 &,

F_lo 0 o o LBnk (3.95)

_klEtT
g,Ep =K1}
V=V -V'=| —kE (3.96)
& B — Kl
_kSI:n
Where,
_klE;
_kZI:
Vo= _kSEI* (3.97)
kIt
kL
0
,E;
Vi=l 0 (3.98)
g/
0

liv



ki O 0 O
-&, K, 0 O
V=0 0 0 O
0 —¢ ki O
i 0 0 kg
l 0 0 0
K,
S L5
kk, k,
vi=| 0 0 i 0
ks
0 o & L
keks kg
0 0 0 0
0 0 0
0 0 0
FVvi=| O 0 0
0 0 0
Bunén  Bun  Bué
i kK, k, kskg

(3.99)

(3.100)

(3.101)

From (3.101), we calculate the eigenvalues to determine the effective reproduction number

R

C

Taking the dominant eigenvalue of the matrix FV ™ and computing ‘A—/II ‘ =0, gives;



2 0 0o o fm
k8
0 A 0 0 0
0 0o -2 o Lk |4 (3.102)
(k;, +V, kg
0 0 0 A 0
Banén B Buéi ﬁ )
klkZ k2 k5k6 kG

25 _[ﬁmlﬂml KiKoK7&1 + BunBunKsKeks&n + BunBamKsKsV, &1 ]/13 -0

ik Kok (K +V,) 3109
/15 3 ﬂmlﬂmlk1k2k7gl + mh,mak5k5k7gh + mh:makskGVegh /13 =0 (3.104)
k1k2k5k6k8 (k7 +V8)
Implies;
4y =0,4,=0,4,=0

P \/k1k2k5k6k8 (K7 +V, ) (B BinkiKoko ) + B BrnKsKskon + BrnBumksKoV, €1 )
.=

(3.105)
kJ.k2k5k6k8 (k7 + Vs)

A =— \/k1k2k5k6k8 (K7 +V, ) (Bt BrnkikoKr ) + B B KsKeKo & + B BrnkeKeV, &1 )

3.106
K,k ksksks (K; +V,) ( )

Clearly, 4, is the dominant eigenvalue

Therefore;

Ivi



R — \/k1k2k5k6k8 (K; +V, ) (BinBrkikokr&y + B BunKsKsko& + B BrnKsKsV, 1)
¢ kK, Kskoks (K, +V,)

(3.107)

Thus our effective Reproduction number is given by equation (3.107). This is the average

number of secondary cases generated by an infected individual in this model.
3.6 Local Stability of Disease Free Equilibrium State
We investigate the local stability of the equilibrium points by the theorem below:

Theorem 3.3: The disease free equilibrium of the model equations (3.25)-(3.34) is locally

asymptotically stable if R, <1.

Proof:

Linearizing the model equations (3.25)-(3.34) at any arbitrary equilibrium point (E") gives

the jacobian

-, 0 0 y»%w O 0 0 0 0 -c

¢, -k, 0 0 O O 0O 0 0 g

O ¢ -k, 0 0 0O O 0 O O

o 0 ¢ -k, O O O 0O O O

I(E) = g 8 8 g G 00 0 (3.108)

¢, -k, 0 0 0 ¢

o 0 0O O 0 g -k O O O

o 0o 0 O v 7 17 -k, 0 O

o 0 - O O O -—¢ 0 —c O

' 0 0 ¢ 0 O 0 ¢ 0 0 -k

where;

Ivii



C, = + 4,
Nh
szﬁhmsh ’
I\Ih
CSZﬂhmIm
N,
B
c,=—>"+k
4 N| 4,
C5:ﬁlmsl
N, °
CGZﬂImIm
N,
CYZﬂthm
N,
Cazﬂlmsm
N, °
Pl | B
) = NII_|_ Nhh+k8

We evaluated the Jacobian at the disease free equilibrium to determine the local stability of

the system and obtained;

Iviii



-4, O 0 7 0 0 0
0 -k O 0 0 0 0
0 ¢ -k, O 0 0 0
0 0 ., —k; O 0 0

o 0 0 0 -k 0 0
J(E°)=

o 0 0 0 0 -k O

0 0 0 0 0 & -k

0 0 0 0 vV, T, T,

0 0 ﬁmh 0 0 0 _ﬂml

0 0 ﬂmh O O 0 ﬂml

Using elementary row transformation, the matrix above becomes

lix

e

0 _ﬁhm

O ﬁhm

0 0

0 0

O _ﬂlmk7
K, +Vv,

O ﬂlka
K, +v,

0 0

0 0

k, 0
0 -k

(3.109)




J(E°)=
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
A = BimTnén
kk,
Bk
A2 — Im ™7

A (K +v,)

0 0 0 -B,

0 0 0 4,

(3.110)



— ﬂlkaEI
A ZA (kv

_ KK, —nV,

A=

_ Bk, (k4k67| +Ks7i6 — kskevg)

A koksks (ks +V,)

_ KsKsKs BinBan + KiKs &1 Bin B + KsKeV, Bom B
kKK (k7 - Vg)

A

— k5k6k7ﬂhmﬂmh + klk7glﬂlmﬂml + k5k6vgﬂhmﬂmh + k1k5k6k7k8 + k1k5k6k8ve

& koky (K, +v, )

Therefore, the Characteristics equation of the upper triangular Jacobian is

Ixi



_—(ﬂM) 0 0 2 0 0 0 0 _—
0 ~(k+4) 0 0 0 0 0 0 0 B
0 0 ~(kt4) 0 0 0 0 0 0 %
1
0 0 0 (ki) 0 0 0 0 0 A
0 0 0 0 ~(k+2) 0 0 }/, 0 A
J(E°)=
0 0 0 0 0 —(k+4) 0 0 0 A
0 0 0 0 0 0 ~(k+4) 0 0 A
0 0 0 0 0 0 0 —(A+A) 0 A
0 0 0 0 0 0 0 0 —(k+4) -A
0 0 0 0 0 0 0 0 0 A-2
(3.111)

Therefore, the eigenvalues are

A==, <0

(3.112)
4 :_kiz_(ﬂh+5h)<o (3.113)
o=k, =—(14,+7,)<0

(3.114)

Ay =k =~(t, +7,) <0
(3.115)

Ixii




(3.116)
A =—ks =—(1+7,+5)<0
(3.117)
Ay =—ks=—(1+¢ +7,)<0
(3.118)
/’iﬂ =—A4 :_(k4k7 _7IV5J= —H (lul +7 +V&') <0
K, My +V, (3.119)
Ay =—Kq :—(,um+§m)<0
(3.120)
ﬂ'lo — A7 — k5k6k7ﬁhmﬂmh + klk7gllBImﬁml + k5k6vgﬂhm18mh + k1k5k6k7k8 + k1k5k6k8vs
kiksks (K +V, ) (3.121)
For A10 to be negative, then
k5k6k7ﬂhmﬂmh + klk7g|ﬂ|mﬂm| + k5k6vgﬂhmﬂmh + |(1k5k6k7k8 + klk5k6k8va < 0
kiksks (K, +V,) (3.122)

K,KsKeK; Bun B + KiKoKo &1 B B + KoKsKeV, B B
k1k2k5k6k8(k7 +Vg) <1

=R, <1

This implies that, A, <0 if R, <1,

Ixiii



Hence, the disease free equilibrium E° of the equation (3.26) and (3.35) is locally

asymptotically stable (LAS) if R, <1.
3.7 Global Stability of Disease-Free Equilibrium State(EO)

Theorem 3.4: The D.F.E (EO ) of the model system is globally asymptotically stable (GAS)

in the feasible region ¢ of R, <1 and unstable if R, >1.

Proof: To establish the global stability of the D.F.E, the two conditions as in (Castillo-chavez

et al., 2002) for R. <1 were used for the model system. The conditions are

dXx
(H1) For o F(X,0),X is globally asymptotically stable (g.a.s),

(H2) G(X,Z)=AZ G(X,Z), G(X,Z)=0 for (X,Z)e&, where A= D,G(X",0)
is an M-matrix (the off-diagonal elements of A are nonnegative) and ¢ is the region where

the model makes biological sense.

We can write the model system as:

dXx

== A Xore )+ AX, (3.123)
dx

S = AX.

o AX; (3.124)
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Where

X, =(S7,5% RS2 (3.125)

are the non-infectious compartments,

X, =(18, 19,12, ES ES,R)' (3.126)
denote the infectious compartments. The disease-free equilibrium is denoted as

E® =(X;,0) (3.127)
Where,

X:=(Ng, NP, NP )

(3.128)
P F(X,0) (3129)
% =A, — .S, (3.130)
? ~ A, kS, +7R (3131)
t
L vs kR (3132)
djtm — A, kS, (3133

Ixv



From (3.130)

&széﬂﬂ—e%ﬂ+sdok‘“

Hy

From (3.131), we have;

ds, V. A
—L=A,—kS, +y =
dt | —KS 7, K.k,
@ :A| + 7/|ng| _k15|
dt K,K,
S (t) _ A, (k4k7 +7/|Vg) _ A, (k4k7 +7|Vg)
' k. K, k.k,k,
From (3.132)
ﬁ =V,S,-k;R
dt
@ = YA -kR,
dt K,
R (t) =zl Yol g, g ()t
Kk, Kk,

From (3.133)

dS

m

dt

=A

m

—k,S

m

e ' +5,(0)e™

Ixvi

(3.134)

(3.135)

(3.136)

(3.137)

(3.138)

(3.139)

(3.140)



S, (1) = Ak— —%e‘@ +s,(0)e™
3 3

Hence,

Sp(t) >N (t) ast—0

S (t)+R’(t) >N/ (t) ast—0
Sa(t)>Np(t) ast—0
Irrespective of the value of
5,(0).5/(0).R’(0).5,(0)

Thus

X" :(N,?, \AS N,‘;,O) is globally asymptotically stable.

Given that;
G(xy)=C,-G(xy)

G(xY)=C,~G(x.y)

0G(x,0)

Where C =

Ixvii

(3.141)



ﬂhml\llmsh _ klEh
h

&,Ey =Ky,

I S
y'=G(x,y)= %—kSEI (3.142)

&E —kql,

ﬁmlllsm +ﬂmh|hsm _k8|m
N N

m m

N, (3.143)
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N,
& —k, 0 0 0 | h
C - 0 0 _k5 0 ﬁlmsl E|
y N, (3.144)
0 0 & _kG 0 Il
0 B.S, 0 fuS _k8 I,
L Nm Nm -
&Ew+éﬁ§l—
h
&,Ep =K1y,
o | g S
y | (3.145)
g =kl
ﬂmhshlh +:Bm|SIII _k |
Nm Nm 8 'm

é(xy):Cy—G(hy)

Ixix



_klEh + ﬂhmsh I m

h

N A
_kSEI + ﬂImSI Im

N,

gE =kl

ﬂmhshlh +ﬂmlslll _kglm

N N

m m

Then é(x,y):o

O O O O O

asymptotically stable when R, <1.

ﬂhmlmsh —kE
1=h

h

& E, — k1,
Bin S
I '—k5E|
|
g B =K,

ﬁmlllsm +ﬂmh|hsm _kBIm

N N

m m

3.8 Endemic Equilibrium Point (EEP) in terms of Force of Infection

Ixx

(3.146)

(3.147)

This satisfies the conditions H1 and H2, therefore the disease free equilibrium is globally

The endemic Equilibrium Point (EEP) in terms of forces of infection are computed;



E' = (S Ep Ty RySLELTLR,S, T ) =(S0 B TR ST E TR, ST (3.148)
are the Endemic Equilibrium Points.

A=A S —uS, +7.R =0 (3.149)
A S, —kE =0 (3.150)
&.E, —kI =0 (3.151)
r,I7 +k,R =0 (3.152)
A-A4"S" -kS +7R =0 (3.153)
S —KE =0 (3.154)
gE ™~ k] =0 (3.155)
V.S +7,E +7l -k, R =0 (3.156)
A, =S, =S —kS =0 (3.157)
A0S + A0S, —kJ =0 (3.158)
Where,

= /J'hl\n;:m A= ﬂ'ﬁ,lm A= ﬂ&hjh and i’ = ff\ll (3.159)

A+ is the force of infection of humans to mosquitoes.
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. is the force of infection of livestock to mosquitoes.
~+ is the force of infection of mosquitoes to humans.

"+ is the force of infection of mosquitoes to livestock.

From (3.149)

«_ AR

S _ (3.160)
" ﬂ"nm + :uh

From (3.150)

. ST
E’ Jﬁrlz_h (3.161)
1

From (3.151)
=— (3.162)

From (3.152)

~ _ Tyl

R

(3.163)

From (3.153)

S**:A' +7RC

=T (3.164)
m 4

From (3.154)
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EI** — ﬂ’lmsl

k5
From (3.155)
I"I"* — gl EIH
k6

From (3.156)

R

o V.S, +7E +1]

|(7

From (3.157)

s A

m= " =
Aoty + Ay +Kg

From (3.158)

ml m

m k8

Substituting (3.163) into (3.160) gives

S = Ay + 70Tl
h (/111*:1 +:uh)k3

Substituting (3.170) into (3.161), gives

—_ o (Ah +7/hThI:)

- (Ao + 2o ) S

S

kK (j’h*r; + Hy )

(3.165)

(3.166)

(3.167)

(3.168)

(3.169)

(3.170)

(3.171)
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Substituting (3.171) into (3.162), gives

[ = & om
KikoKs (ﬂhm + Uy ) — & 7nTh At

Let,

= &n
h - p
Kik ks (ﬂ'hm + Hy ) — & YhThAm

Substituting (3.173) into (3.170), gives

S An+ 7T A
(21:1 +;Uh)k3

Substituting (3.173) into (3.171), gives

™ = /11::1 (Ah +7hThA1)
h k1k3(ﬂ~h*;+ﬂh)

Substituting (3.173) into (3.163), gives

(3.172)

(3.173)

(3.174)

(3.175)

(3.176)

(3.177)



Substituting (3.164) and (3.177) into (3.167), gives

VA +(7,ks + 778 )(ﬂ;’ + k4)I:*

£

R™ = — — (3.178)
| k7(j“lm+k4)((ﬂ'lm+k4)_vgyl)
Substituting (3.178) into (3.164), gives
A+ VA + (ks + 7,8 ) (A +K )71
" 1TV (T| 6T 0 I)(ﬂ1m 4)7| [ (3.179)

K (21;1*+k4)2 ((Al*n:"_kzl)_vgyl)

Substituting (3.179) into (3.165) gives,

£ = A+ VA, +(le6 + 7,8 )(41: +k4)7|1|** (3.180)

| ksks (21:+k4)2 ((11:+k4)_vgyl)

Substituting (3.180) into (3.166) gives,

. AR (3.181)

((k5k6k7 (e (k) ))—((qke+r|5|)(11:+k4)g|y|11;))(k5k6k7(31:+k4)2((ﬂ1:+k4)—v€y|))

= A (3.182)

Substituting (3.182) into (3.179), gives

. A+ 7V A, +(lee +TI8I)(2'I:+k4)7/IA2
| k7(ﬂ1:+k4)2((ﬂ1:+k4)_vg7l)

(3.183)

Substituting (3.182) into (3.180), gives

[xxv



w| Ay ENVA, +(le6 +T|5|)(ﬂ|*r:+k4)7|Az
ksk; (11: +k, )2 ((/11: +k4)—V£}/|)

Substituting (3.182) into (3.178), gives

o VA +(lee +Tlgl)(ﬂ’l*r:+k4)A2
k; (ﬂ’l*r:+k4)((/1|:+k4)_vgyl>

R =

Substituting (3.169) into (3.168), we have;

A

(ﬂ, + A +k)
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(3.184)

(3.185)

(3.186)



A+ 70Tn A

(ﬂ‘h*r:l +,Uh)k3

Jom (A + 7070 A)

kiks (ﬂ'h*r; +,Uh)
&0\ oA

S, klkzks(ﬂh*r; +ﬂh)_5h7hfhﬂh*r;
EV | | A
I Ky
R A|+7|V8A|+(le6+flgl)(/11:n*+k4>7|Az
ST k(A k) (A k) -vn)
E~ -
" - A|+7’|VEA|+(lez+7|5|)(ﬂ1m+k4)7|Az
R ksky (A +k,) ((/11:+k4)—v5;/,)
il | A
I V5A|+(les+7|5|)(ﬂ1:+k4)A2

k; (ﬂ'l: + k4)((/11: + kA)_Vg7/| )

A, (3.187)
Ao + Ay +Kg
A (Ao + 2
ks(/lr:; +/1;’;+k8)

The total population of humans at endemic equilibrium in terms of forces of infection is

given as;
N, =S, +E, +I, +R, (3.188)
N:: Ay + 7T A +ﬂ”h*r:1(Ah+}/hThA1) 6‘hAhﬂh*; 7,A

o~ - + — —+
(ﬂhm + i, ) ky KKk, (ﬂhm + yh) kKoK, (ghm + luh)_gh}/h,l-hﬂhm K, The total
population of livestock at endemic equilibrium in terms of forces of infection is given as;
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N =S +E +I +R"
_AI+y|v5/\,+(r|k6+r|,9|)(/11*nf+k4)7/|A2 N A,+;/,ng,+(rlk6+rl,s|)(21*;+k4)7/|A2
okl (k) )T () (A k) v
eMA +eV A A
((k5k6k7(ﬂ{: e[ +k4)—Vg}/|))—((le6+r|8|)(ﬂ1: +k4)g|ylﬂ1:))(k5k6k7(ﬂ1: e (2 +k4)—v£;/|))
VA, +(zks +rlg,)(ﬂ1: +k4)AZ
(i) ) v

+

(3.189)

The total population of mosquitoes at endemic equilibrium in terms of forces of infection is
given as;
N =S +I

o A A (Ao + 20 (3.190)
" At A Ky Ky (A + A )

Hence, from equation (3.187) the endemic equilibrium point in terms of force of infection

is determined.

3.9 Numerical Solution of the Model Equations using Adomian Decomposition Method

(ADM)

This method has been applied to solve differential and integral equations of linear and non-
linear problems in mathematics, physics, biology and chemistry and up to now a large
number of research papers have been published to show the feasibility of the decomposition
method (Nhawu et al.,2015). It was first introduced by George Adomian in 1981 and

developed by him in 1988 (Adomian, 1988).
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The numerical solution of the model equations was solved and gave the following results.

3.9.1 Analytical solution of the model equation using adomian decomposition method

Considering equations (3.4) - (3.13) with the following initial conditions;

5,(0)=S, Ey(0)=Ey, 1,(0)=11, R\(0)=Ry, $,(0)=S,,
o’ I|(O):|lov R|(0)=R,O, Sm(O):SmO, |m(0):|mo} (3.191)

Integrating both sides of (3.4) through (3.13) with respect to 't'and applying the initial

conditions (3.191) gives;

t
S, (1) =Sy, + A t— jﬂ“mm b dt — yhjshdt—ythhdt (3.192)
m 0
E, (t jﬁhm b it — jgh+yh)E dt (3.193)
h
t t
I (1) =Ty + &, [ Eydt=[ (s, +7, ) T, (3.194)
0 0
t t
Ry (t) = Roo +7, [ T,dt =] (24, + 7, ) Rydlt (3.195)
0 0
S (1) =S+ At- jﬁ'm L dt jyl+v Sdt+y|det (3.196)
I
jﬂ'm Lt jy,+rl+g|)Edt (3.197)
t t
I (t) =2, [ E,dt—[ (44 +c +7,)Tdt (3.198)
0 0
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t t t t
R (t)=v,[Sdt+7,[Edt+r [Tdt—[(z+7)Rdt (3.199)
0 0 0 0

t t t
S (1) =S +Amt—IMdt —jmdt—j(ym +6,)S,dt (3.200)
0 Nm 0 Nm 0
t t t
L (t)=1, +jﬂm"j'sm dt—.[ﬂm*,‘jhsm dt [ (11, + 0, )1t (3.201)
0 m 0 m 0

Using Adomian Decomposition method, the solution of equation (3.192) through (3.201) are

given in the series of the form;

Shzzshn’ Eh:ZEhn’ Ih:ZIhn’ Rh:ZRhn' SI:ZSIn'

n;O O::0 ) n=0 ) n=0 <:10:0 (3202)
EI :ZEIn’ II :ZIIn' RI =ZRIn' szzsmn’ Im:ZImn

n=0 n=0 n=0 n=0 n=0

The integrands in equation (3.192) through (3.202) are expressed thus;

A=1S,, B=S,, C=R, D=E, F=1I,, G=IS, H=S§,

(3.203)
J=R,K=E, L=I, M=R, N=IS,, P=1S,,Q=S,,T=I_

The linear and non-linear operators in equation (3.203) are decomposed in series form as

n=0 n=0 n=0 n=0 n=0
G:iGn, H:iHn, J:iJn, K:iKn, L:iLn, (3.204)
n=0 n=0 n=0 n=0 0

Substituting (3.202) into equation (3.192) to (3.201), gives;

Ixxx



[,,S

) o t o t
> S = Suo + Ayt - Zjﬂ“mm bt g,y [Sydt—7, > [Rdt

n=0 n=0 g n=0 g n=0 g

o) w o t
ZEm=EhO+ZjﬂN dt Zj &, + 1, ) Edt
0 h 00

) o o t
> Ry =Rug + 7, 2 [ 1,0t =3 [ (4, +7, ) Ryclt
n=0 n=0 g n=0 o

iRln vgij.SdHr,ZJ-EquZJ‘Idt ij' (1 +7 )Rt
0

n=0 o n=0 o n=0 g

Equation (3.204) to (3.214) can be written as;

Ixxxi

(3.205)

(3.206)

(3.207)

(3.208)

(3.209)

(3.210)

(3.211)

(3.212)

(3.213)

(3.214)



Zw:shnz Spo + At — ﬁhmjzphdt uhjZBdtﬂ/hJ.ZCdt

n=0 m 0 n=0 o n=0 o0 n=0

w t o t oo
>'S, = ,O+At—'ﬁ'lmj26ndt (44 +v,)[ 2 H e+, [ 3 dt
0 0

=0 | on=0

>

0 t » t » t » t »
DRy =Ro+V, [ Y Hdt+z [ Y Kodt+7, [ Ldt—(s+7) [ > M,dt
n=0 0 n=0 o0 n=0 o0 n=0 o0 n=0

From equation (3.215) through (3.224), we define the following scheme;

Ixxxii

(3.215)

(3.216)

(3.217)

(3.218)

(3.219)

(3.220)

(3.221)

(3.222)

(3.223)

(3.224)



sHo = Sho +Aht ELO = E|o

EHO = EhO Io=1,

Lo =1y RLO = RIO

RHO = Rho SMo = Smo +Amt
SHO_Sh0+Aht Lo =Ino
Hence;

ﬂ t t t
SHn+l == th IA\dt_ﬂhj Bndt_yhjcndt
0 0

m 0

t t
EHn+1 = ﬁhm IA’ldt _(8h +:uh )J. Dndt
m 0 0
t t
| :gh.[Dndt—(,uh +7, ).[ F dt
0 0
t t
Rina = Thj Fdt—(u, +7, )J C,dt
0 0
ﬂ t t t
S = —ﬂ'[Gndt —(1 +vg)J. H dt+ yljJndt
Nl 0 0 0
ﬁ t t
E.. = ﬁIGndt—(,u, +7,+5)[ K, dt
10 0

t t
[ = glj.Kndt—(,u, +C +71, )I L, dt
0 0

RLn+1 =V,

O —

t t t
Hndt+rlendt+r,jLndt—(,u, +y,)IMndt
0 0 0
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(3.225)

(3.226)

(3.227)

(3.228)

(3.229)

(3.230)

(3.231)

(3.232)

(3.233)



:IMZ

t
Eon [P dit — (s, +5,) [ Qe
0

n

Sho + TuiSus + IwoSk2

Bo = SHo
B1:SH1

000

o

N

o

N

O O

i

A 0
I
o

H2

I
20

m
T

N

II'I'I m

-

o
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(3.234)

(3.235)

(3.236)

(3.237)

(3.238)

(3.239)



Fo=Tho

F=1 (3.240)

F, =1,

Go = IMOSLO

G, =1y.So+ oSy (3.241)

G, =1y,Si0+ TS+ TwoSie

Ho = S|_o

H, =S, (3.242)

Hz = st

Jo'_ RLO

J, =R, (3.243)
2= RLZ

[xxxv



K0 = ELO

K, =E, (3.244)
Kz = ELZ

Lo =1,

L1 =1, (3.245)
Lz =1,

Ivlo = RLO

|\/|1 = RLl (3.246)

Mz = RLZ

I\lo = ILOSMO

N1 = ILlSM0 + ILOSMl (3.247)

N2 = ILZSMO + ILISMl + ILOSMZ
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Po =IHOSMO
Pl =IHISMO +IHOSM1 (3-248)
P, =11,Su0 + LuiSus + LhoSw2

Qy =Smo
Q =Sy, (3.249)
Qz = SMZ
To =Iyo
T =1, (3.250)
T, =1y,
For n=0, equation (3.226) gives;
ﬂ t t t
S, = —%j/\)dt—yhj Bydt + 7, [ Cylt (3.251)
m 0 0 0
Substituting (3.236) through (3.238) into (3.251) gives
ﬁ t t t
S, = —ﬁjlmsmdt—yhjsmdtwnj R, dt (3.252)
m 0 0 0

Substituting equation (3.225) into (3.252) gives

Ixxxvii



t t t
Spy = —%j Lo [Sno + Aut]dt = s, [[Syo + Agt]dt +7, [ Rygclt
0 0

m 0

t t ¢
S, =— ﬁhm J’[Imosho +1,,A,t]dt —yhj[sho +A,t]dt +7nf Ryodt
0

m 0 0

Integrating and collecting like terms, we obtained;

N

m

. | Aut’ Apt®
Sle_ﬂh {Imoshot"' 2h :|_luh|:shot+%:|+7h[Rh0t]

At

S . =— ﬁhm ImOShOt _ ﬂhm ImOAht2
H1 ™

+7 R t
N N Vn"ho

_:uhShOt -

m

ﬁhmImOAhtz _ /UhAhtz

S . = _ﬂhmImOShOt
e 2N, 2

N

=ty Spot + 7, Reot =

m

N

m

oS i Y\ t?
Sha :{_M_ﬂhsho+7/tho:|t_|:%_ﬂhAh:|E

m

For n=0, equation (3.227) gives;
ﬂ t t
E,, = NLJ Adt— (s, + a4, ) Dyl
m 0 0
Substituting (3.236) through (3.239) into (3.256) gives
ﬂ t t
Epy = %J.IM oSodt—(&, + 44, )I Eyodt
m 0 0
Substituting equation (3.225) into (3.257) gives;

Ixxxviii

(3.253)

(3.254)

(3.255)

(3.256)

(3.257)



Ban | t
By =2 [T [Sp + Agt]dt = (5, + 14, ) [ Eolt
0
Integrating and collecting like terms, we obtained;

I At
B = %{Imoshot +%}_(5h +/uh)[Eh0t]

m

LoS oA ||
Ele{ﬁh 0~ho _(‘C"h+luh)Eh0:|t+|:ﬁh v 0 {HE}

m

For n=0, equation (3.228) gives;
t t

I,,= gh.[ Dodt —( 4, + 7, )j F,dt
0 0

Substituting (3.239) through (3.240) into (3.260) gives
t t

Iy = 5hI Eyodt _(/Uh T, )IIHOdt
0 0

Substituting equation (3.225) into (3.261) gives;
t t

Ly = ‘9hj Epodt _(,Uh T, )_[IHodt
0 0

Integrating and collecting like terms, we obtained;
Ly = & [Enot] = (2 + 73, )[Toot]

Ly = I:ghEhO ~ (4, +Th)[1h0]:|t
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(3.258)

(3.259)

(3.260)

(3.261)

(3.262)

(3.263)



For n=0, equation (3.229) gives;
t t

Ry = rhj. Fodt — (1, + 7, )ICOdt
0 0

Substituting (3.238) through (3.240) into (3.264) gives;
t t

Ry. = ThIIHOdt _(ﬂh + 7y )I Ryt
0 0

Substituting equation (3.225) into (3.265) gives;
t t

Rys = ThIIhOdt - (,Uh Ty )I Ryodt
0 0

Integrating and collecting like terms, we obtained;
Riy = Tulpol _(:Uh + Th) Ryl

R :[rhlho — (14, +rh)Rh0]t

For n=0, equation (3.230) gives;
ﬂ t t t
S, Z—ﬁIGodt—(M +v5)J.Hodt+;/,IJodt
10 0 0
Substituting (3.241) through (3.243) into (3.268) gives;
ﬂ t t t
Siu= _ﬁj. oS, odt _(/4 +V, )J.SLOdt +7LJ‘ Rio
I 0 0 0

Substituting equation (3.225) into (3.265) gives;

XC

(3.264)

(3.265)

(3.266)

(3.267)

(3.268)

(3.269)



t t t
Su:—%j o(Sio +At)dt—( 1 +v, I S,0+A,t)dt+y|IR,0dt (3.270)
0 0

I 0

Integrating and collecting like terms, we obtained;

m | A2 A2 At?
SL1= ﬂl |:ImOSI0t OTI:|_IU|_|:Slot+ |2 i|—V5{SIOt+IT}+}/|[R|Ot]

NI
2
Su= {_ finlnoSi _(IUL +V£)S|O +7 R|o}t _[M+(ﬂL +V5)AL}t_ (3.271)
N, N, 2
For n=0, equation (3.230) becomes;
ﬁ t t
B = [Godt = (14 +7,+2) [ Kyt (3.272)
0

Substituting (3.241) through (3.244) into (3.272) gives;
,B t t
B =0 [MoSuodt =14 +7,+4)[ E gt (3.273)
I 0 0
Substituting equation (3.225) into (3.273) gives;
ﬁ t t
E, = ﬁjlmo (Sio+ At)dt—(z4 +7,+5 ) Etlt (3.274)
10 0
Integrating and collecting like terms, we obtained;
N I At
E.= 'il_l{lmoslot + OTI} (1 +7,+5)Et
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ﬁmIm S ﬂmImA t2
Ele{—' N,O 9 (147, +6)E, [t+| Zmmot NIO "5

For n=0, equation (3.232) becomes;
t t

I,= g,j Kodt — (14 +¢ +7, )j L,dt
0 0

Substituting (3.244) through (3.245) into (3.276) gives;
t t

I,= gLJ' Eodt— (s +¢ +7, )IILodt
0 0

Substituting equation (3.225) into (3.277) gives;
t t

I,=¢ j Eodt—(z +¢ +7, )jILodt
0 0

Integrating and collecting like terms, we obtained;
lu =& (Euot) (44 +6 +7 )t
I,= [5|E|_o —(# +¢ +1 )ILO]t

Forn=0, equation (3.234) becomes;

t t

t
Hodt+r,jKodtJrz'l.[LOdt—(,uI +y,)IModt
0

0 0

RLl =V,

O t—y

(3.280)

Substituting (3.242) through (3.244) to (3.246) into (3.280) gives;
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(3.276)

(3.277)

(3.278)

(3.279)



js dt+r,jELodt+r,jILodt ) jRLodt

0

Py
E

Substituting equation (3.225) into (3.281) gives;

R, =V, [(Sp+A) dt+r,jElodt+qu.odt H+ IR.odt

o'—.~

Integrating and collecting like terms, we obtained;

R, :VC{ o A'th}+z', [E,Ot]+z', [I,Ot]—(,u, +7, )[R,Ot]

2

[VS|0+T|E|0+T| 10 (ﬂ|+7l RIO] (VA)2

For n=0, equation (3.235) becomes;

5%

t t t
'jNodt—ﬁmthOdt—(ym+5m)ondt
0 m 0 0

m

N

Substituting (3.247) through (3.249) into (3.284) gives;

t

t t
Su1 = _ﬂml J‘ILOSMOdt_&J.IHoSMOdt _(fum +5m)J.SMOdt
N g N o 0

Substituting equation (3.225) into (3.285) gives;

t

3’%

N

m

Integrating and collecting like terms, we obtained;

Xciii

(3.281)

(3.282)

(3.283)

(3.284)

(3.285)

t t
L [10(S 0+Amt)dt—%flho(8mo+Amt)dt—(ym+5m)j(SmO+Amt)dt (3.286)
0 m 0



N N N N

m m m m

S, , = [ PlioSwo  BanlnoSmo _(:um+§m)sm0j [ BulioAn  BunlnoA (ﬂm+5m)Amj§ (3.288)

For n=0, equation (3.235) becomes;

=

t t t
— m ﬂm
v = !Nodt+ N;!Podt—(ym +5m)£TOdt (3.289)

m

Substituting (3.247), (3.248) and (3.250) into (3.289) gives;

P | P | t
oy =2 jILosMOdHN—thHOsMOdt—(ym 0, ) [Tyt (3.290)
m 0 m 0 0

Substituting equation (3.228) into (3.292) gives;

‘Q

t t t
Nm' [T (Sno+ At dt+flmhjlho(sm0+/\mt)dt—(ﬂm+am)j1M0dt (3.291)
0 m 0 0

m

Integrating and collecting like terms, we obtained;

B, LAt ) Bun Lo Ant’
IM1=N_I IIOSmOt_|-IOT +— Nm IhoSmot h02 —(lle+O'm)(Imot)

m

l,,, = (ﬂmll\;o +ﬂmhhosm0 _(lum+o-m)1m0] [ﬁleo :Bthho JZ (3.292)

m m m m

For n=1, equation (3.226) gives;
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t t t
S,,, — P [ Adt— g, [Bdt+y,[Cdt (3.293)
Nh 0 0 0
Substituting (3.236) to (3.237) into (3.293) gives;
ﬂ t
thj Sio + loSyy ) dt yh'[SHldtﬂ/hIRHldt (3.294)
m 0
Integrating and collecting like terms, Sh2 gives;
_L B 1 Bml 10" "m _I_i BmhIhOAm A Z4_|_l I _L maImOAh
N, hm 4 2 N 2 h 3| mo{ 2 N
m m h
1 Al Bml g Smo n Bmh Lig 5o (L 461 A + 1 BszloAm
2uh h N N (Mm m) ml |~ h 2 N
m m m
1 Bmh hO m 3 1 maImOShO
LT v VA Ll R TN, =S50 T Y Reg
m
Bml I10 Sm() Bmh Ih0 SWO 1
2 _
T N N B (Mm T Gm) ImO Sh() EH W, 3
m m
1 ma oM 1 1 ma o Sho 2
R A L LN R A R AR A
1 2
T (%50 = (1 + 1) Ryg) 1
(3.295)
For n=1, equation (3.227) becomes;
E,,, ﬂhmjAldt (&, + 1, det (3.296)

Substituting (3.239) and (3.242) into (3.298) gives;
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E,,= ﬁhmJ(IMISHOHMOSHl)dt (&, + 4, jEHldt (3.297)

m 0

Integrating and collecting like terms, En2 gives;

e B i l BmlIl()Am _I_i Bmhlh()Am A t4_|_i I 1 ma m0 h
hmi 412 N 2 N h 3(mo| 2N
m m h
1 B ml IZO SmO B mh IhO SmO 1 I3ml Il() Am
_?MhAh T N T N _(Mm-l_cm)ImO Ah+ 7]\[—
m m m
| B. I S
1 Pk hom 3 l hm m0 "~ h0
T Ty Sio |0 T3 | Lo _N—h_uhShO-l_thhO]
m
Bml IIO Sm() ﬁmh IhO SmO
2
oyt — (“m +om) LolSult]] - (sh
m m
| ma ImOAht 1 Bh ml h0 2
th)| 5 N 2|7, (&) B |1
(3.298)
For n=1, equation (3.228) becomes;
t t
Ly, = &, [ Ddt—(u, +7, ) Rt (3.399)
0 0
Substituting (3.239) and (3.240) into (3.299) gives;
t t
Ly, = &, | Eyudit = (s, + 7, ) [ Tyt (3.300)
0 0

Integrating and collecting like terms, 112 gives;
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g (% ﬁhmI&OAht +%(ﬂhm:\rjnosho _(gh +ﬂh)EhO]t2J
) h
1
_E(Th +ﬂh)(8hEho _(Th +ﬂh)Ih0)t2

When n=1, equation (3.229) becomes;
t t
Ry, = Thj Fdt —( +rh)JC1dt
0 0
Substituting (3.238) and (3.240) into (3.302) gives;
t t
Ry, = ThJIHldt ~ (0 + 7, )_[ Ry, dt
0 0

Integrating and collecting like terms, Rn2 gives;

1
2

Forn=1, equation (3.230) becomes;

t t t
S,, =—%IGldt—(yl +v, ) [ Hydt+7, [ 3,dt
I 0 0 0

Substituting (3.241) and (3.242) into (3.305) gives;

t t !
Si, =_%I(IM18LO +IMOSL1)dt_('u| Ve )jSlet+7/'IRL1dt
0 0 0

Integrating and collecting like terms, Si» gives;
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_(ghEhO _(Th +:uh)1h0)t2 _E(Vh +zuh)(ThIh0 _(7’h +/uh)Rh0)t2

(3.301)

(3.302)

(3.303)

(3.304)

(3.305)
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For n=1, equation (3.231) becomes;
ﬁ t t
E,= ﬁJ‘Gldt —(1y+1,+¢ )j K,dt
I 0 0

Substituting (3.241) and (3.244) into (3.308) gives;

b
E =£m
L2 NI

O —y

t
(Iy1Sio +1yoSuy ) dt— (14 + 7, + ¢ )I E,,dt

0
(3.300)

Integrating and collecting like terms, E.> gives;
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Bml I10 SmO Bml’t IhO SmO

1

S
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ml 10 ~m0

o (Hm+6m) ImO

IS B 1S
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For n=1, equation (3.232) becomes;
t t

I, = g,jKldt—(,u, +C +7, )j L dt
0 0

Substituting (3.244) and (3.245) into (3.311) gives;

3
1 B Lo i
)|

N My,

m m

i [ l3lm Im()SlO

(bt

2 N

i

(3.310)

(3.311)



t t
I, =& [Epdt—(m +¢ +7,)[T,0t (3.312)
0 0

Integrating and collecting like terms, I.> gives;

3
g (l PinTmoAit +1('B'mlmos'° —(&+um+1) EIO]tzj

6 N 20 N (3.313)
1

_E(Tl T4 +CI)(€I Eio _(T| T4 +Cl)Im)t2

For n=1, equation (3.233) becomes;
t t t t

Ru, =V, [Hydt+7 [Kdt+7, [ Ldt = (s +7) [ M,dt (3.314)
0 0 0 0

Substituting (3.242) through (3.246) into (3.314) gives;
t t t t

Ru, =V, [Sudt+7 [Eydt+z [T,dt—(m +7) [Rydt (3.315)
0 0 0 0

Integrating and collecting like terms, R gives;

Ci



AL

B i Bml Il()Am + =
1 Im| 2 N

1 Bmh h() m
2 N

m

A
2N, 2 ()N

! | | |
+z[‘ﬁl[ﬁlm[§lmo[

1 Bml 10 S0 BmhIhOSmO
5 [ + = (m,,

N

m m

+7) (iv AP+ ; (¥ S0

- (ul+tl+el) E,

= Jo e

1
_V[Blm

1 Bml 10 S Bmh h()SmO

1
+ — 5 Ylngl

|
n

s
3
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i Blm Im()Alt
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2
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(3.316)

For n=1, equation (3.234) becomes;

t
ST NP
m 0

Z|

EBRE]

O )
)
o
o

— (4t +5, )ledt (3.317)

Substituting (3.247) through (3.249) into (3.317) gives;

Pu |
Sw =__IJ(IL18MO+ILOSM1 dt
0

h

t t
thj TusSuo +TuoSus ) dt= (4, +6,) [ Syt (3.318)
0 0

m

ﬂmh
N

m

t t
[ (TsSuo + TuoSu ) dt = (1, +6, ) [ Syt (3.319)
0 0
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Integrating and collecting like terms, Sm2 gives;

1 1 1 BmlIIO m 1 BmhIhO m 1
_Nm Bml 3 [10[_2 N 7 i ) (“ + m) A, +(81E10
IS B,1S
3, 1 Bml 10°m0 mh h0 "m0
(ul+cl+rl>llo)1\ L N, (um+5)Sm0]
m
[ A
2 L L _i Bml 10" "m
(g Ey— (y+qtT)l )Sm()]z N Bmh[?, Iho[ 2N

1 Baboh, 3,1
- _?( W T8N +(ehEh0—(uh-|-th)Ih0)Am £ty
Bml by Smo Bmh b Smo 2
T Ty () S| (8B (B T 5) ) S 1
m m
1] 1 Bml 0% 1 Bmh o, 1 3, 1
(Mm +5m) [ 3 [ 2 Nm 2 Nm 2 (Mm +6m) Am £+ 2
_ BmlIZOSm() _ BmhIhOSmO _ +5)S 1‘2
N N (um m) mo
m m
(3.320)
For n=1, equation (3.235) becomes;
ﬁ t ﬂ t t
IM2 _ le JNldt+ thjpldt_(lum +0m)JTldt (3321)
m 0 m 0 0

Substituting (3.247), (3.248) and (3.250) into (3.321) gives;

=

O )

ml

IMZ N

t t
(TsSyo +1,0Syy ) dt - ﬁhj (TS + TuoSua ) dt = (4, + 0, ) [Tt (3.322)
m o 0

m

Integrating and collecting like terms, Im2 gives;

ciii



1 1 1 l3mlIIOAm 1 l3mhIhOAm 1
| B ?[Izo TN 2 v )AL (8B (y
m m
LS B .1 S
3, 1 Bml 10 "m0 mh "h0 "m0
—I—cl+rl)lm)A £t Im[ N N ( —|—6)Sm0
m m
I A
2 L i 1 Bml 10" "m
+(81Ezo_(“z"'cl"'fz)lzo)Smo]’ + 2 B | 3 Iho[ 2 N
m m
1 l“))mhIhO m 1 3 1
STy —?(u +8m)A —I—(ehEhO—(uh—I—th)IhO)Am LY
l‘))ml IIO SmO Bmh IhO Sm0
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m m
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(Bato)| 3127w 2 N, 2| W,
I3mhIhOSmO
Pmh h0"mo 2
+ N (le‘i'Gm) ImO !
m

(3.323)

For the final results of S,,,E,,,1,,R,,,S,,E_,I,,R.,Sy, ]}, , check equations (3.324)-

(3.333) in appendix A.
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CHAPTER FOUR
4.0 RESULTS AND DISCUSSION
4.1 Variables and Parameter Values Estimation

Table 4.1: Values for variables/parameters used for analytical solutions of the Model

Symbol Value Sources
S, 500 Assumed
E 220 Assumed
n 100 Assumed
I Assumed
R, 200 Assumed
S Assumed
EI 890 Assumed
[ 450 Assumed
I 200 Assumed
R 120 Assumed
S 700
I, 500 Estimated
N, 1020
N Estimated
: 1660 Estimated
N 1200
7 0.5 (Majok et al.,1991)
A, 0.9 Assumed
7 0.25 Assumed
g 0.25 Assumed
v, 0.25 Assumed
» 0.25 Assumed
A, 0.8 Assumed
A, 0.25 Assumed
C 0.25 Assumed
&, 0.25 Assumed
B 0.39 Assumed

B 0.25 Assumed

Ccv



B 0.001 Assumed

7, 0.25 Assumed
T, 0.25 Assumed
S, 0.25 Luguoye et al., 2016
m 0.01 Assumed
i, 0.67 Assumed

4.2 Sensitivity Analysis of the Model

Sensitivity analysis confirms the effect each parameter has on the disease transmission. The
objective of sensitivity analysis is to give rise to uncertainties of the model outputs (Leon et

al.,2009).

Table 4.2 Sensitivity indices of the model parameters on R¢

Parameters Value Sensitivity Index
Bim 0.61 0.4843392736
el 0.25 0.2421696368
Bmi 0.25 0.4843392736
M 0.25 0.04036160614
en 0.25 0.0006023356211
L 0.5 -0.4036160614
2 0.25 -0.1210848184
Bmh 0.25 0.01566072602

Bhm 0.001 0.01566072602
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Table 4.2 shows the sensitivity indices of the effective Reproduction number, R_for the
model equations (3.4)-(3.13). The parameters have both positive and negative effects on R,
. The most sensitive parameters are contact rates from livestock to mosquito, £, mosquito
to livestock, £, . The next important parameter is incubation period in livestock (¢, ). The
parameters with the least effect on R_ are; incubation period o the disease in humans, &, and
natural death rate of livestock g . The values shown in table 4.2 were computed with maple

and codes were shown in appendix B.
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Figure 4.1: Effect of Treatment on Infected Livestock Population
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Figure 4.1 shows the effect of treating livestock, this causes a decrease in the infected class

of livestock. The more livestock are treated and precautionary measures are put in place, the

less the spread of RVF virus among the livestock population.
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Figure 4.2: Effect of Treatment of Humans on Infected Human Population

Figure 4.2 shows the relationship between treatment of humans and infected human

population. The higher the rate of treatment, the lower the infected human population. This

means the more humans are treated, the less the spread of this disease in the population.
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Figure 4.3: Effect of Incubation Period on Infected Livestock Population

Figure 4.3 shows the relationship between incubation period and infected livestock. The
longer the incubation period, the higher the spread of RVF virus among the vectors and

eventually increase in infected livestock population.

Cix



150 \ \\

Ef#f
~
o
e

50 N ~_

time

——E =025 —-g =0.5 Eh—[}."a’ﬁ

Figure 4.4: Effect of Incubation Period of Humans on Exposed Human Population

Figure 4.4 shows the relationship between exposed humans and incubation period. The
longer the incubation period of the disease, the lower the exposed human population.
Extended incubation period, decreases the exposed human class because RVF virus cannot
be transmitted from one human to another. Infected humans when treated recover and as such

the exposed class reduces.
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Figure 4.5: Effect of Recovery of Livestock on Susceptible Livestock Population

This relationship shows that an increase in recovery of livestock, increases the susceptible
livestock population. The more livestock are recovered, the higher the susceptible livestock

class.
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Figure 4.6 Trapping Rate of Mosquitoes on Infected Mosquito Population

Figure 4.6 shows the relationship between trapping rate of mosqitoes on infected mosquito
Population. An increase in the trapping rate, results in decrease of infected mosqitoes; this is

because they have little or no interaction with either infected humans or livestock.
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Figure 4.7 Culling Rate of Livestock on Infected Livestock Population

This relationship shows that the increase in the elimination of infected livestock (culling
rate), decreases the infected livestock population. The more infected livestock are eliminated,

the less the transmission of RVVF virus.
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Figure 4.8 Effect of Contact Rate from Humans to Mosquitoes on Susceptible

Population

This relationship shows that an increase in contact rate from humans to mosquitoes, yields a
decrease in susceptible human population. The less humans come in contact with vectors, the

less the spread of the disease and the higher the susceptible population.
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Figure 4.9 Effect of Recovery of Humans on Susceptible Human Population

This relationship shows that an increase in recovery rate, yields an increase in susceptible
human population. The more humans recover, the higher the susceptible population of

humans.
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Figure 4.10 Effect of Vaccination of Livestock on Recovered Livestock Population

This figure shows the efficacy of vaccination on livestock; the more livestock are vaccinated,
the more the population of recovered livestock. In other words, an increase in the rate of

vaccination yields an increase in the recovered livestock class and eventually the spread of

the disease reduces overtime.
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Figure 4.11 Effect of Treatment of Livestock on Recovered Livestock Population

This relationship shows that an increase in treatment of livestock, yields an increase in the

recovered class of livestock. The more livestock are treated, the less the spread of RVF virus

in the population.

cxvii



CHAPTER FIVE

5.0 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The Rift VValley Fever Model formulated in this work exists in a feasible region where disease
free and endemic equilibrium points are obtained and the local and global stability of disease-
free equilibrium was investigated. The positivity of solutions using Wiah’s method was also
determined. The model has three interventions; efficacy of vaccination, culling of livestock
and trapping of mosquitoes. The model analysis showed that disease free equilibrium exists
and is locally asymptotically stable whenever its effective reproduction number is less than
1, and it has a unique endemic equilibrium when Rc>1. These results have important public
health implications, since they determine the severity and outcome of the epidemic that is,
clearance or persistence of infection) and provide a framework for the design of control
strategies. Further analysis showed that the disease-free point is locally stable implying that
small perturbations and fluctuations on the disease state will always result in the eradication
of the disease if Rc<1. In the final analysis efficacy of vaccination, culling of livestock and
mosquito trapping intervention program will effectively control the spread of rift valley

fever.

Adomian Decomposition method was used to solve the model equations. The sensitivity

analysis of the parameters was also investigated and sensitivity indices were obtained.

5.2 Contribution to Knowledge
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In this work a model was developed for the transmission dynamics of Rift Valley Fever virus,
we incorporated effective vaccination, culling rate (control), trapping of mosquitoes, contact
rates; humans to mosquitoes and vice versa, livestock to mosquitoes and vice versa, and

incubation period of humans and livestock.

5.3 Recommendations

The system of equations can further be looked into by incorporating isolation of infected
livestock. Limit and/or prohibit movements of animals from affected areas to disease-free

areas to reduce the spread of the disease.

Use of personal protective equipment (PPE): particularly important for veterinarians (care,
autopsies) and PPE in slaughter houses or during slaughtering animals should be used to

prevent livestock to human transmission.

More vector control programmes using insecticide and mosquito treated nets, can be adopted

in addition to trapping vectors.
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APPENDICES

APPENDIX A: Maple Code for Adomian Decomposition Method (ADM)

> Sy, = collect(SHo +8,+S t)

H2>
B 1 Bl i 1 Bt Yo P A A
g1 m2 N 2 N )" iy |1
H* 4 Nh Nh ma 3 mo
1 ma Im() h 1 | Bml IIO Sm0 Bmh IhO Sm0
DAL R e e L
h m m
111 Bml 10""m +L B 1 Yo Ao g _ 1 malm() ho 1 A
3027 W, 2N, w76 TN, 6 i

Bml Il() SmO Bmh Ih() SmO

N + N o (urn+6m) ImO] Sh()]] —H [
m m

1 1 2
27N, NS T S R TS, (0o = (M, T 7,) Ryg) |©+ | A,
ma ImOSh()
- W, Su+ R, | 14 S,
(3.324)
> E, = collect(EHo +E,, +E,, t)
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B 1 B Lo 4 1 Bt Yo M AP
p m{2 N, 2 N, § 1 1
EH::E N + T ma ?ImO
h h
_L ma m0”"h i + i BmlIZ()Sm() Bmhlh()SmO _ + I A
2 N 2 “ﬁ h 3 N N (“m Gm) m0 h
h m m
LA L Bt b M L1 B i T Mo ¢ ||-L (& 1) B Lo ™ A
312 N 2 N ho 6 N,
m m h
1 ma Lo 1 1 ma Lo Sho
A ey N, + N, Bim | 2 o | N, S0 T Ry,
1 Bml Lo Smo Bmh Lo Smo
* 2 N + N N (p'm + Gm) Im() Spo || — (eh
m m
1 maImOSh() 1 2 maIm()ShO
+“h) > N, ey (eh—l—uh)Eho r+ N, - (eh —i—uh)Eho t
+ EhO
(3.325)
> IH = collect( IH() + IHI + IHZ’ t)
3
L &, Bpun Lo M ! N 1 Bl 1 cuE |- L
n N, 27 W, 2 (&) B | = o (
2
1) (& Eno = (% T %) Vo) | £ (8 Bno — (M + %) Lig) £+ T
(3.326)

> R, = collect(RHo + Ry, + Ry t)

R, = [% T, (ehEho - (uh + rh) L

= (M T ) Rug) £+ Ry
(3.327)

> 8, = collect(SLo +S8,,+5 t)
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) — % (0 +7) (%5 = (, + ) Rho)j’ + (7,

I

he



B 1 B Lo +L B Lo Ao AA
im| 2 Nm 2 Nm i 1 1
SL = _E Nl + _Fl Blm ?ImO
1 B Lo S 1 Bt Lo Smo I Bt 1o Smo _
27 N, y (WA T N, (,
111 Bml IIO Am 1 I"))mh IhO Am
+cm)1 oMt T3 N 5 N Si (ul-i-ve)
1 Blm Im()Al 1 1 3 1 BIm ImOAl 1
I A C R B R AT L R e
1 1 Blm ImOSZO
+"8)A1_ Vl{ﬁzm [flmo[_T - (“1+V8)S10+R10Yz
1 { BuurlioSmo B Yo Smo
+ N + N (m, +0,) L0150 — (ul + vg)
1 B0 1 1 1 1 1
) N, —?(pl—i—vs)Slo—l—?Rmyl +yl(?Slov€+?Emtl+?Imrl
|
1 2 Blm m0 10
— > (1w, +7) Rm) £+ A - N (“z +v.) S +Rmyl] 1+,
(3.328)
> E, = collect(ELo +E,, +EL2,t)
B 1 Bml IOAm + 1 B h[hO moA t4
E = 1 | 2 Nm 2 m : + € i[
L Nl N[ Blm 3 mo0
1 B Lo LA +L Bt LioSmo " B i B Smo B
27N, 2 ()N T T N (,
|1 Bml LA, 1 Bmh Lo A
+0)Im0]Al+? TN Ty Si
m m

1 Pl 1 g Ly
2 N Nl Im | 2 "m0

Blm ImO 10 1 Bml IlO Smo Bmh IhO Smo
N (M) St Rey |t (K,
I m m
1 B LS 1 5
+cm) Im()] Sm]] —<u1+rl+el) B N, _7(“1+T1+81)E10 t
Blm lm() 10
[ N, (ul—i—tl—kel)Em t+E,
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(3.329)
> IL = collect(ILo + ILI + IL2’ t)N

3
1 g l3[m Im() Al ! 1 B Im Im()Sl() 1
I = g5 N —2(u1+rl+e)E

L 6 N, f 10

/

1
_?(“l+cl

+ rl) (81E10 — (ul +e+ ’Cl) Im)

2+ (& — (b + e+ 1)1, e +1,

(3.330)
> R, = collect(RLo +R,, +RL2,t)
B 1 B Lo 1 B LeN 3
R, Ve[ 3 N, . <ul+v€)Al + N, . (ul+yl) v A |t
L l Blm Im()SlO i L i I"))lm ImOSlO
R R N, 2 (MﬁVS)SmJF > R | T4 | N
1 1
) (w7 te) Byl + ) T (&Ep— (b T1) L) = (b +7) [?Szo"g
1 1 2
Ty Eyyt 5 LT3 () Rloj]’ T (SlngJrEloTerIon/_ (w+7) Rzo)’
+R10
(3.331)
> 8= collect(SMO +S,,,+ Sy t)
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>

1

1 1 l?)ml Il() Am 1 |3mh IhO Am 1
Bml [ 10 [ ______ (u + 8m) Am

S, = -— By
M, 3 2 N, 2 N, 2 \Fm
1 1 1 1 Bml IIOAm
Y (&E0n—(y+ot1)T) Am] N_[Bmh [? | 2 N
m
1 BmhIhOAm 1 1
_? Nm - 7 (Hm+6m) Am + ? (£hEh0_ (uh +Th) IhO) Am (um
1 Bml IIO Am 1 Bmh IhO Am 1 3
+3,) 6 N 6 N 6 (m, +8,)A, ||+
1 Bt lig Ao 1 Bun o M 1 L8 yA - L B 1y
2 2 Nm 2 (um m) 7 Nm ml | 2 10

m

L S
BulySwo BunloSmo (n,+8,)S ] + % (&E0— (wtetT)T) SmO]]

N N m0
m m
1 1 ~ Bt lio Smo B B Lo Smo B N " 1 B
N Bmh 2 ho N N (IJ' ) m0 2 (8}1 h0
m m m
1 Bml Il() Sm() 1 Bmh Ih() Smo 1
= (T ) L) Sa ]] (H, T8,) [ -3 N~ 2 N, — 5 (4

t+S,,

N

m m

B B 1 S
2 ml 10 m() mh"h0 ~m0
Jz +[Am— - —(u +8m) 0

(3.332)

IM = collect(IMO + I + IMZ’ )
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l3ml Il() Am

1
2 N
m m

+L [3 i] _i Bmlll()Am
Nm mh| 3 hO 2 N
3

L Pmhh0"m _%(u +6m)Am

|
0=

Bmh Ih() Am 1
— 7 (Mm + Sm) Am

1 1
L= N_[Bml [?110
m

I
3 (8B (It aty)ly)A,

+ (ShEh() - (“h + Th) Ih()) A,

3 i Bml II() Am

1 B Bt b Smo _ B Yo Simo B S n i
ml N N 2 l 10 (H‘
m
N

m
" 1 B il ~ Bt g Smo _ Bt 2o Smo _
N | Fmh| 2 "ho N N (” m

m m

I 1 B
+> (ehEhO - (uh +'ch) Iho) SmOJ] - (pm +cm) [ : ml]\lfom S

Bml 10 m0 + BmhIhOSmO .
(M,

N
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m

(3.333)
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APPENDIX B: Maple Code for the Sensitivity Analysis of Effective Reproduction
number.
> restart,

A T e A e T A T R R
+cpk, = Y, W kg = 6m+um;

k= g U,
k, = T, T U,
ky =y, + 1,
ky = v, +u

ks =gt tT
ke =g+ +g
k7 ::yl+ul

kg = Sm +u,

. \/ ey K ks kg (K7 + v, ) (ma B ks ko kr &y + By, By ks ke v, + By, Bk i g 81)

c by ks kg (K +v,)

> R

R =
((Sh ) (7t wy) (8, T R,) (8T 1) (g t+e) (Yz T
+ Ve) (ma B (&1 +7) (&8, +0) (v, 1), +B,,B,, (&1 +7) (g

172
o) ve, B, B, (g ) (T ) (YT w) 81)) /((Eh 1) (T,
+ uh) (Sm + um) (el +u,+ rl) (81 +u,+ C/) (Yz +u,+ v£)>

ma d R:

> A = . ;
C
R. dB,,
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A= % ((ma (e + 1) (5 1,) (8, 1) (& + 1 +7) (g + 1, +0) (41
)/
((eh ) (7, +m) (8, +w,) (5w +71) (g +1,+¢) (yl +y
+ vg) (ma B, (el +ut 17]) (sl +u,+ c,) (yl + “z) e, +B, B, (el +ut rl) (el
4 6) v, e, + B, B (8 + 1) (T, 1) (Y1) el)>l/2j . ((Bmh (& +n,
+1) (5w +e) (v+w)e, +B,, (5 +m+1) (g +m+0) vssh)/
(e tm) (T 1) (8, F ) (8 T+ 1) (8T +e) (v u
+ vg) (ma B (g + 1+ rl) (el +u,+ c[) (v,+ ”z) &, B, B, (gt +1) (el

/
+“l+cl> Vggh + BZm Bml (eh +Hh> (Th +uh) (Yl+ul) 81)>12j

> - - - - - = = =
eval( 4,[B,,,=0.001,B, =0.61,8 ,=025,p ,=025,,=05,4¢,=025¢=025,=025,
ky =026, k) = 0.26, ky = 0.26,k, = 0.75, ks = 1, ks = 1, k; = 0.75, kg = 0.92,v_= 0.25])

0.01566072602

BﬂL )
R, dp, ¢

1
A=~ ((Blm (& 1) (T + 1) (8, T m,) (& F 1y 1) (& + 1y +a) (1 + 1

)/

((eh ) (7, ) (8, +w,) (5w +71) (g +1,+¢) (yl +u,

> AI:

F9) (B Bon (& 15 1) (8T 1+ ) (v 1) 8, +B,,B,,, (8 +1,+7) (g
) v By, B, (8 ) (T (1) 81))1/2j ‘ (((eh 1) (5,
1) By (v, 1) 81)/

((eh ) (7, +m) (8, +w,) (5w +71) (g +1+¢) (yl +y

+9,) (B Byun (81, 1) (51, ¢) (v, + 1) 8, + By, B, (541, +7) (g

12
o) v, B, B, (8 T 1) (5 TR, (v R) 81)) )
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eval( Al, [ B,,=0.001,B =061, =0258 =025u=05¢ =025¢=0257,
=0.25,k; =026, ky = 0.26, ky = 0.26,k, = 0.75, ks = 1, ks = 1, k; = 0.75, kg = 0.92, v
= 0.25])

0.4843392736

eval( A2, [ma =0.001,8, =0.61,p =025B  =025u=0.5¢ =025¢=0257,
=0.25,k; = 0.26, k) = 0.26, ky = 0.26,k, = 0.75, ks = 1, ks = 1, k; = 0.75, kg = 0.92, v
= 0.25])
0.01566072602
eval( A3, [ B,,=0.001,8 =061, =025pB =025u=05¢ =025¢=025y7,
=0.25,k = 0.26,k, = 0.26, k; = 0.26,k, = 0.75, ks = 1, kg = 1, k; = 0.75, ky = 0.92, v,
= 0.25])
0.4843392736
eval( AA, [ma =0.001,8, =0.61,p =025B  =025u=0.5¢ =025¢=025,7,
=0.25, k; = 0.26, k) = 0.26, ky = 0.26,k, = 0.75, ks = 1, ks = 1, k; = 0.75, kg = 0.92, v
= 0.25])
0.2421696368
eval( AS, [ma =0.001,B, =0.61,p =025 =025 =05¢ =0.25¢=025,
=0.25,k = 0.26,k, = 0.26, k; = 0.26,k, = 0.75, ks = 1, kg = 1, k; = 0.75, ky = 0.92, v,
= 0.25])
0.04036160614
eval( A6, [ma =0.001,8, =0.61,p =025B  =025u=0.5¢ =025¢ =025,
=0.25,k; = 0.26,ky = 0.26, k3 = 0.26,k, = 0.75, ks = 1, ks = 1, k; = 0.75, kg = 0.92, v,
= 0.25])
0.0006023356211

eval( A7, [ma =0.001,B, =0.61,8 =025B =025 =05¢, =0.25¢=025,
=0.25,k; = 0.26,ky = 0.26, ky = 0.26,k, = 0.75, ks = 1, ks = 1, k; = 0.75, kg = 0.92, v
= 0.25])

-0.4036160614
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> _ _ _ _ _ _ _
eval( 48,[B,,, = 0.001.B,, =0.61.B, =025, =025, =05,=025¢-025y,

=0.25,k; =026, ky = 0.26, ky = 0.26,k, = 0.75, ks = 1, ks = 1, k; = 0.75, kg = 0.92, v
= 0.25])

-0.1210848184
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