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ABSTRACT 

In this research work, a mathematical model of the transmission dynamics of typhoid fever and 

its control was developed using a system of ordinary differential equations. Local stability 

analysis on the disease-free equilibrium was done using the Jacobian matrix approach. The semi-

analytical solutions of the model were obtained using the Differential Transformation method 

and the solutions were plotted using Maple. The result of the findings shows that the Disease 

Free Equilibrium State (DFE) of the model is stable if R0˂1.  The result of the numerical 

simulation shows that a reduction in the contact rate with infectious individuals reduces the 

transmission rate of the disease. The simulation also reveals that at high treatment rates for the 

infected individuals, the number of recovered individuals increases. Hence, as the vaccination 

rate increases, the population of the exposed class decreases. However, due to Typhoid fever’s 

connection with malaria and other febrile infections we recommend that those infections should 

be incorporated into the model. 
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CHAPTER ONE 

1.0                                                  INTRODUCTION 

1.1 Background to the Study 

Typhoid fever is an infectious disease caused by a highly infectious and invasive Salmonella 

enteric serovar Typhi (S.Typhi) that affects humans (Nthiiri et al., 2016). It is spread through 

contaminated food, water, or drink. The contaminated food or water that contains these bacteria 

causes illness upon ingestion. They travel in the human intestines and then enter the bloodstream 

(Muhammad et al., 2015). 

It is a global health problem whose impact is difficult to estimate because the clinical 

representation is confused with those of many other febrile infections. The disease has a very 

high social and economic impact because of the hospitalization of patients with acute disease and 

the complications and loss of income attributed to the duration of the clinical illness (World 

Health Organization, 2003). 

The symptoms includes prolonged fever, fatigue, headache, nausea, abdominal pain, and 

constipation or diarrhea (WHO, 2018). Some patients may have a rash; severe cases may lead to 

serious complications or even death (WHO, 2018). The symptoms are lessened with antibiotic 

medications, however, a great number of people treated for typhoid fever usually experience 

relapse, after some time with symptoms that are milder and last for a shorter period compared 

with the initial illness, requiring further treatment with antibiotics (Basnyat, 2017).  

Typhoid fever affects millions of people worldwide each year, with an estimated 11-20 million 

cases and disease-induced deaths of approximately 128,000-161,000 annually (WHO, 2018). 

People are inoculated using vaccines, even though repeated mass vaccinations at intervals of 5 



years interval are required to stymie disease incidence. However, they are not 100% efficient. If 

one acquires a drug-resistant strain of typhoid fever and is not treated with effective antibiotics, a 

serious and prolonged illness may result (Nthiiri et al., 2016). 

Typhoid fever is largely controlled in Europe and North America. Typhoid remains endemic in 

many parts of the world, notably Asia and Africa, where it is an important cause of febrile illness 

in crowded, low-income settings. A notable feature of typhoid is the carrier state- asymptotically 

infected individuals who continue to shed Salmonella typhi in their stool or urine for many years, 

thereby sustaining transmission (Watson & Edmunds, 2015). 

Despite the recommendation by the World Health Organization in 2003 that typhoid vaccination 

is considered for the control of endemic disease and outbreaks, in the early twentieth- century, 

public health officers were debating the best methods of evaluating typhoid vaccine 

effectiveness, and whether vaccination was a distraction from improvements in sanitation and 

hygiene, These remain contemporary policy issues for ministries of health and other health 

partners who may be considering programmatic anti-typhoid vaccination as a counterpart to 

other anti-typhoid measures such as improvements in income distributions, sanitation, water 

supplies and handwashing with soap (post-defecation and before the preparation of food in the 

home or sold in the street) as well as identification and management of carriers (Hardy, 2001). 

1.2 Statement of the Research Problem 

Typhoid fever affects millions of people worldwide each year, with an estimated 11-20 million 

cases and disease-induced deaths of approximately 128,000-161,000 annually (WHO, 2018). 

Among the factors that mitigate the control of the disease are the asymptotically carrier infected 

individuals who continue to shed Salmonella typhi bacteria in their stool or urine for many years, 



thereby sustaining transmission and a great number of people treated for typhoid fever usually 

experience relapse. In 2003, WHO recommended the use of vaccines for the control of the 

disease. Thus, this research seeks to formulate a mathematical model that incorporates the 

aforementioned factors. 

1.3  Aim and Objectives of the Study 

This study aims to formulate and validate a mathematical model for the spread and treatment of 

typhoid fever using a system of first-order ordinary differential equations with seven 

compartments.  

The objectives are to  develop mathematical model that: 

•  Check the epidemiological well-posedness of the model. 

•  Obtain both the Disease-Free-Equilibrium (DFE) and the Endemic Equilibrium (EE) 

states of the model.  

•  Carry out local stability analysis on the disease-free-equilibrium 

•  Obtain the semi-analytical solution of the model using the Differential 

Transformation Method (DTM). 

• Obtain the Basic Reproduction Number (R0) 

 

1.4  Motivation of the Study 

This research was motivated by the number of Typhoid fever disease-mortalities and also 

because the disease is notably endemic in Africa, with Nigeria among the countries affected. 

  

 

1.5  Justification for the Study 



The social and economic impact of the disease due to hospitalization of patients with acute 

disease and the complications and loss of income attributed to the duration of the clinical illness 

necessitates this study. This thesis seeks to help public health practitioners make an informed 

decision such as strategizing ways to control the transmission of the disease. Hence, this work 

will be of immense value to the population at large in fighting against the threat of the disease. 

The compartments are susceptible class (S), Exposed Class (E), Asymptomatic infected class 

(C), Symptomatic infected class (I), Hospitalized or Treatment Class (T), Vaccinated class (V), 

and the concentration of Bacteria in the environment (B). 

1.6  Scope and Limitations of the Study 

The model subdivides the human population into seven mutually exclusive compartments 

namely, Susceptible class (S), Exposed Class (E), Asymptomatic infected class (C), 

Symptomatic infected class (I), Hospitalized or Treatment Class (T), Vaccinated (V). It also 

includes the concentration of Bacteria in the environment (B). 

Some of the limitations are;  

• Lack of proper documentation of data by public servants. 

• The model is not age-structured 

1.7  Definition of Terms 

Asymptomatic: Not showing symptoms 

Disease Free Equilibrium (D.F.E): is an equilibrium state that signifies the eventual absence of 

disease. 

Endemic: the presence of a disease in a population 



Endemic Equilibrium (E.E): is an equilibrium state that signifies the presence of disease in a 

population 

Epidemiology: is the study of the spread and control of disease in a population 

Equilibrium: means a state of rest of a body. 

Exposed: Individuals that are infected but not yet infectious 

Infected: Individuals who have Typhoid fever infection & are capable of infecting others. 

A mathematical model: is the representation of a real-life phenomenon in mathematical terms. 

An ordinary Differential equation: is an equation involving a dependent variable and its 

derivative with respect to one independent variable 

Recovered:  the class of individuals that have been treated and cured.  

Stable Equilibrium: is the state of a system returning to its original state of rest if slightly 

displaced. 

Susceptible: These are individuals who are prone to infection but not yet infected. 

Symptomatic: showing symptoms 

Treatment: Receiving medical care 

Vaccinate; To inoculate against diseases. 

Immunoglobulins(A,G and M): Is a medical test use to check the amount of certain antibodies. 

Immunoglobulin A(lgA): The antibodies are found in areas of the body such the nose, breathing 

passages, digestive tract, ears, eyes, and vagina. 

Immunoglobulin G(lgG): The antibodies found in all body fluids. 

Immunoglobulin M(lgM): The antibodies are the largest antibody. 

CHAPTER TWO 



2.0        LITERATURE REVIEW 

2.1  Overview of Typhoid Fever 

During an acute infection, Salmonella typhi multiplies in mononuclear phagocytic cells before 

being released into the bloodstream. After ingestion of food or water, typhoid organisms pass 

through the pylorus and reach the small intestine. They rapidly penetrate the mucosal epithelium 

via either microfold cells or enterocytes and arrive in the lamina propria, where they rapidly 

elicit an influx of macrophages that ingest the bacilli but do not generally kill them. Some bacilli 

remain within the macrophages of the small intestinal lymphoid tissue. As a result of this silent 

primary bacteremia, the pathogen reaches an intracellular haven within 24 hours after ingestion 

throughout the organs of the reticuloendothelial system (Spleen, liver, bone marrow), where it 

resides during the incubation period, which usually takes 8 to 14 days. The incubation period in a 

particular individual depends on the number of inoculums, that is, it decreases as the number of 

inoculum increases, and on host factors.  

This infection that grows in the intestine and blood is spread by eating/drinking food/water 

contaminated with the faces of an infected person. The risk factors include poor sanitation and 

poor hygiene. Those who travel to the developing world are also at risk and only humans can be 

infected (WHO, 2003). Diagnosis is by either culturing the bacteria or detecting the bacterium’s 

DNA in the blood, stool, or bone marrow, typhoid vaccine can prevent about 30% to 70% of 

cases during the first two years. It is recommended for those at high risk, that is people traveling 

to areas where the disease is common (Anwar et al., 2014). 

 

2.1.1  Symptoms of typhoid fever 



The clinical presentation of typhoid fever varies from a mild illness with low-grade fever, 

malaise, and slight dry cough to a severe clinical picture with abdominal discomfort and multiple 

complications (WHO, 2003). The acute non-complicated disease is characterized by prolonged 

fever, disturbances of bowel function, which is constipation in adults, and diarrhea in children. 

Cough is common in the early stage of the illness. A complicated case results in an intestinal 

perforation which is frequently fatal as it is accompanied by a sudden rise in pulse rate, 

hypertension, and subsequent abdominal rigidity (Center for Disease Control, 2014). Other 

serious complications documented with typhoid fever include haemorrhages (causing rapid death 

in some patients) hepatitis, myocarditis, pneumonia disseminated intravascular coagulation, etc. 

(WHO, 2003).  

2.1.2  Diagnosis of typhoid fever 

Bone marrow aspirate culture is the gold standard for the diagnosis of typhoid fever, and it is 

particularly valuable for patients who have been tested to have a negative blood culture with the 

recommended volume of blood (Gasem et al., 1995). The volume of blood cultured is one of the 

most important factors in the isolation of Salmonella typhi from typhoid patients. In some 

regions it may be impossible to collect large volumes of blood and going for alternative 

diagnostic methods may be necessary for cases in which blood cultures are negative, because 

reducing the blood volume, reduces the sensitivity of the blood culture. However, an effort 

should be made to draw sufficient blood if at all possible. Blood should be taken using sterile 

techniques of various punctures and should be inoculated immediately into a blood culture bottle 

with the syringe that has been used for collection. Testing can take place immediately or storage 

can continue for a week without affecting the antibody titre, (Wain et al., 2001). Stools can also 

be collected from acute patients and they are especially useful for the diagnosis of typhoid 



carriers. The isolation of Salmonella typhi from stools is suggestive of typhoid fever. Stool 

specimens should be collected in a sterile wide-mouthed plastic container. The likelihood of 

obtaining positive results increases with the number of stools collected. Specimens should 

preferably be processed within two hours after collection. If there is a delay, it should be stored 

in a refrigerator at 40C or in a cool box with freezer packs and should be transported to its 

laboratory in a cool box (Wain et al., 2001). 

In 2003, WHO presented a quick and reliable diagnostic test for typhoid fever as an alternative to 

the Widal test. The recent advances include the IDL tubex test marketed by a Swedish company, 

which reportedly can detect IgM antibodies from patients within a few minutes. Another rapid 

serological test is typhidot, which takes 3 hours to perform. It was developed in Malaysia for the 

detection of specific IgM and IgG antibodies. A newer version of the test, typhidot-M was 

recently developed to detect specific IgM antibodies only (Anwar et al, 2014).  

2.1.3  Treatment of typhoid fever 

Fluoroquinolones (ofloxacin, ciprofloxacin, fleroxacin, perfloxacin) are widely regarded as 

optimal for the treatment of typhoid fever in adults (Wain et al., 2001). They are relatively 

inexpensive, well-tolerated, and more rapidly and reliably effective than the former first-line 

drugs; chloramphenicol, ampicillin, amoxicillin, and trimethoprim-sulfamethaxazole.  

The fluoroquinolines attain excellent tissue penetration, kill S.typhi in its intracellular stationary 

stage in monacytes /macrophages and achieve higher active drug levels in the gall bladder than 

other drugs. They produce a rapid therapeutic response, that is, clearance of fever and symptoms 

in three to five days and very low rates of post-treatment carriage (Arnold et al., 1993). 

Treatment at home with antibiotic tablets is treated within seven to 14 days. Incubation period is 

usually one to two weeks, and duration of the illness is about three to four weeks. Surgery is 



usually indicated in cases of intestinal perforation. Most surgeons prefer simple closure of the 

perforation with drainage of the peritoneum. Death occurs on 10 % to 30 % of untreated cases. 

(WHO, 2003). 

2.1.4 Prevention from typhoid fever 

The major routes of transmission of typhoid fever are through drinking water or eating food 

contaminated with Salmonella typhi. Prevention is based on ensuring access to safe water and by 

promoting safe food handling practices, health education is paramount to raising public 

awareness and inducing bahaviour change (WHO, 2003). 

Safe Water 

Typhoid fever is waterborne disease and the main preventive measure is to ensure access to safe 

water. The water needs to be of good quality and must be sufficient to supply all the community 

with enough drinking water as well as for all domestic purposes.  

 During outbreaks, the following control measures are of particular interest: 

(a) In urban areas control and treatment of the water supply systems must be strengthened 

from catchment to consumer.  

(b) In rural areas, well must be checked for pathogens and treated if necessary.  

(c) At home, particular attention must be paid to the disinfection and the storage of the water 

however safe its source. Drinking water can be made safe by boiling for one minute or by 

chlorination. Narrow-mouthed pots with covers for storing water help reduce the 

secondary transmission of typhoid fever.  

(d)     In some situations, such as poor rural areas in developing countries or refugee camps, fuel 

for boiling water and storage containers may have to be supplied. (WHO, 2003) 

Food Safety  



Contaminated food is another important vehicle for typhoid transmission. Appropriate food 

handling and processing are paramount and the following basic hygiene measures must be 

implemented during epidemics. 

(a) Washing hands with soap before preparing or eating food  

(b) Avoiding raw food, shellfish, ice;  

(c) Eating only cooked and still hot food or reheating it.  

 During, outbreaks, food safety inspections must be reinforced in restaurants and for street 

food vendors’ activities.  

 Typhoid can be transmitted by chronic carriers who do not apply satisfactory food-related 

hygiene practices. These carriers should be excluded from any activities involving food 

preparation and serving. They should not resume their duties until they have had three negative 

cultures at least one month apart. 

Sanitation  

Proper sanitation contributes to reducing the risk of transmission of all diarrhoeal pathogens 

including Salmonella typhi.  

(a) Appropriate facilities for waste disposal must be available for all community  

(b) Collection and treatment of sewage especially during the rainy season must be 

implemented  

(c) In areas where typhoid fever is known to be present the use of human excreta as fertilizer 

must be discouraged. 

 

Health Education (Enlightenment Campaign) 



Health education is paramount to raising public awareness of all the above-mentioned preventive 

measures. Health education messages for vulnerable communities need to be adapted to local 

conditions and translated into local languages. In order to reach communities, all possible means 

of communication (e.g. Media, Schools, Women groups, religious groups) must be applied. 

Community involvement is the cornerstone of behavior change with regard to hygiene and for 

setting up maintenance of the needed infrastructures. In health facilities, all staff members must 

be repeatedly educated about the need for: 

(a) Excellent personal hygiene at work  

(b) Isolation measures for patient  

(c) Disinfection measure. 

This campaign reduces the rate of transmission because those who are properly informed will 

reduce their exposure to infection whenever they meet any infectious opportunity. 

2.1.5 Vaccination against typhoid fever 

Vaccine is a medical product that helps in stimulating the body's immune system in order to 

prevent or control infection. It trains the body's immune system to fight off a particular 

microorganism so that it cannot establish a serious infection. Two safe and effective vaccines are 

now licensed and available. One is based on defined subunit antigens and the other on whole-cell 

live attenuated bacterial. The first of these vaccines contain Vi capsular polysaccharide(vicps) 

which is given in a single dose while the other is the live oral vaccine called purified capsular 

polysaccharide derived from Ty2la which is to be taken in three doses for two days apart on an 

empty stomach (Black et al., 1990). The occurrence of S.typhi strains that are resistant to 

fluoroquinolones emphasizes the need to use safe and effective vaccines to prevent typhoid 

fever. WHO recommends vaccination for people traveling to high-risk areas where the disease is 



endemic. People living in such areas, are people in refugee camps, sewage workers, and children 

should be the target groups for vaccination.  

Mathematical models have played a key role in the formulation of Typhoid fever control 

strategies and the establishment of interim goals for the intervention programmes. A model was 

developed by Cvjetanović et al. (1971), where the number of newly infected persons was 

expressed as a function of the infectious and susceptible people in a community within a given 

time. The age structures of the population are established, which enabled a more complicated 

detailed simulation of the effect of various interventions and strategies to control the disease in 

different age groups. The study indicated that once the incidence of the infection has fallen 

below the threshold, it cannot be maintained in a community due to the loss of the main source 

of infection chronic carriers, as they die out naturally. 

2.2 Mathematical Models of Typhoid Fever 

Khan et al. (2015) presented a mathematical analysis of the Typhoid model with saturated 

incidence. They formulated a mathematical model of the type SEIR (Susceptible, Exposed, 

Infected, and Removed) to understand the transmission dynamics of the disease. Local and 

global stability analysis was carried out on the equilibrium state. The Runge-Kutta method was 

used to obtain the numerical solution of the model. Their result shows that the endemic 

equilibrium was both locally and globally stable. Their model was given as follows; Khan et al. 

(2015) 

  

 

 

    (2.1) 



 

 

Where       =Growth rate of the population 

                 = Disease contact rate 

              d  = Natural mortality rate 

 =Rate of flow from class E to class S 

  =Rate of flow from class I to class S 

 =Disease-induced death rate at class E 

 =The rate at which latent individuals are infected. 

 = Disease-induced death rate at class I 

 =Rate of recovery from infection 

 q =Proportion of individuals joining the class E 

 k=Educational adjustment. 

 

Adetunde (2008) formulated a mathematical model for the dynamics of typhoid fever in the 

Kassena-Nankana District of the upper East Region of Ghana. The equilibrium states of the 

model were obtained and their stability was also investigated. The threshold condition for the 

disease-free equilibrium to be stable was presented. The results showed that the disease-free 

equilibrium was globally asymptotically stable. The formulated model was given as Adetunde 

(2008) 

   

      

      (2.2) 



 

Where S(t) = Susceptible class, I(t)= Infected class, C(t)= Carriers, 

 R(t)= Recovered class. 

= the per capital natural mortality rate 

= the rate of disease-induced death for infectious class 

= the rate of infection 

= Rate of which the infected become carriers 

= Rate of recovery for the carrier-class 

= the rate of disease-induced death for a career class 

b= Rate of recovery for the infected class 

Kalajdzievska and Li (2011) developed a mathematical model of the effects of carriers on the 

transmission dynamics of infectious diseases. They investigated that infections could be 

transmitted through carriers, infected individuals who are contagious but do not show any 

disease systems. It was assumed that the disease carriage state is infectious while those in the 

latent period are not. Their model incorporated demography and disease-induced death and it 

allows carriers to become symptomatic over time. They carried out local stability on the disease-

free equilibrium. Their result showed that a greater probability to develop carriage will increase 

the basic reproduction number which makes the infection persist. Testing and Diagnosis of 

carriers were seen as an effective control measures in a country where infectious diseases persist.  

Their model equations were given as Kalajdzievska and Li (2011) 

 

                (2.3) 

 



 

Where S= Susceptible class, = carrier-class, I= symptomatically infectious or infectious class,  

R= Recovered class, = transmission coefficient for the carrier compartment. 

= transmission coefficient for the symptomatically infected compartment. 

= Rate of recovery 

P= Probability of a newly Infected Individual,= Vaccination rate,  

= Diagnosis rate, b = Rate of recruitment into susceptible class  

d1, d4: Natural death rates for the susceptible and recovered classes 

d2, d3: Death rates for and I compartments respectively. 

Liao and Yang (2013) extended the classical SIR framework by incorporating a compartment 

(W) that tracked pathogen concentration in the water. Susceptible individuals are infected with 

multiple transmission pathways in their model titled “The Dynamics of a vaccination model with 

multiple transmission ways of water-borne diseases”. The control reproduction number, stability 

analysis of both the disease-free and endemic equilibrium were carried out. Bifurcation theory 

was applied to explore a variety of dynamics of their model. Their model is given as follows; 

Liao and Yang (2013). 

  

      (2.4) 

 

 

Where S= susceptible population, I=Infected class, R= Recovered Class, W= Pathogen 

concentration. = transmission rate for the environment to human,= transmission rate for human 



to human, = natural human/death rate, = shedding rate, = Bacteria death rate and = Recovery 

rate.  

Rihan et al. (2014) formulated a fractional SIRC model with Salmonella Bacterial Infection. The 

solution for the fractional-order model at any time t* continuously depends on all the previous 

states at t<t*. The Authors stated that fractional-order dynamical models are more suitable to 

model biological systems with memory than their integer orders. The presence of a fractional 

differential order into a corresponding differential equation leads to a notable increase in the 

complexity of the observed behavior and enlarges the stability region of the solutions. Numerical 

solutions of their model were obtained using Caputo’s derivative and using an unconditionally 

stable implicit scheme. The disease-free and endemic states equilibrium was confirmed to be 

asymptotically stable under some conditions. The basic reproduction number  was calculated 

using the next-generation matrix method, in terms of contact rate recovery rate, and other 

parameters in their model. 

Their model was given as Rihan et al. (2014) 

 

           

              (2.5) 

         

Where S(t) = Susceptible class, I(t)= Infected class, C(t)= Cross immune individuals, 

R(t)= Recovered class. 

 = Cross immune period, = Is the fraction of the exposed cross immune individuals.= 

Infectious period, = Contact rate, = Rate of recovery for the carrier stage, = Total immune 

period, = Disease induced mortality rate and = Mortality rate. 



The fractional-order of their SIRC Epidemic model was given as: 

 

           

              (2.6) 

           

Mutua et al. (2015) developed a mathematical model for malaria and typhoid fever co-infection 

dynamics. They first developed a model for only typhoid fever, their model subdivides the 

human population of interest into four compartments susceptible humans(S), infected human (I), 

carrier humans(C), and recovered human (R). They later considered the incorporation of an 

additional compartment B, which represents bacteria in the Environment. Typhoid is largely 

contracted from water and food, thus transmission of typhoid through direct person-to-person 

contact was neglected by them. They presented that people in tropical communities are living at 

risk to contact both diseases (either concurrently or an acute infection superimposed on a chronic 

one). Through mathematical analysis, they identify distinct features of typhoid and malaria 

infection dynamics as well as the associated relationships. Their result shows that the global 

dynamics of typhoid infection can be determined by a single threshold Ro. The typhoid basic 

reproduction number <1 (>1) provided conditions for the global eradication (uniform persistence 

of the typhoid infection). Their model was given as follows; Mutua et al. (2015). 

 

 

       (2.7) 

 

 



Where = contact rate, = rate at which the infected individuals either progress to carrier-class. 

= recovery rate for the infected individuals. 

= rate at which individuals in the carrier-class recover from typhoid. 

= rate at which the infectious group excretes bacteria. 

= rate at which the carrier group excretes bacteria. 

They assumed that the growth rate of the bacteria in the environment logistic and becomes non-

infectious at a rate, r and k represent per capita growth and carrying capacity respectively and  

denotes typhoid induced mortality in humans. The constant recruitment into the susceptible 

human is represented by  while the natural death rate of a human is represented by. 

Kgosimore and Kelatlhegile (2016) considered the disease typhoid as a major public health 

concern in tropical developing countries, especially in areas where access to clean water and 

other sanitation measures are limited. Typhoid has complex pathogenesis and manifests as an 

acute febrile disease, with a relatively long incubation period that involves the transmigration of 

the microorganism through the Peyer’s patch, localized multiplication in the mesenteric lymph 

nodes, and subsequent spread to the liver and spleen prior to showing clinical symptoms. It is a 

serious life-threatening infection characterized by false diagnosis due to similar signs and 

symptoms with malaria which leads to improper control and management of the disease. They 

carried out a mathematical analysis of Typhoid infection with treatment where a deterministic 

model of Typhoid which accounts for relapse of treatment was considered. Mathematical 

analysis and numerical simulations were carried out to determine the transmission dynamics of 

typhoid in a community. They established that the disease-free equilibrium is locally 

asymptotically stable if <1 and unstable if >1. The endemic equilibrium exists and is stable if >1. 

Numerical Simulations suggested that increasing treatment sustains the typhoid epidemic in the 



population. Implications of their result point to an added effect from carriers evolving from 

treatment relapse. The dependence of modification on transmission parameters on treated 

populations provides insight into the role of treatment in the transmission dynamics of the 

disease. Their model was given as Kgosimore and Kelatlhegile (2016) 

 

 

      (2.8) 

 

 

Where; 

S= the susceptible class, I= Infective,= Carrier Infective, T=treated Infective, R= Recovered 

class, = Recovery rate, = Natural death rate, = Relapse rate, B= Contact rate, = Rate at which the 

carriers develop symptoms, = Recruitment rate of susceptible class, , = disease-induced death 

rates, P= rate at which a proportion of newly infected individuals become carriers. 

(1-p) = Rate at which newly infected individuals became symptomatic. 

Nthiiri et al. (2016) developed a mathematical model of Typhoid Fever Disease Incorporating 

protection against infection. They assumed that the bacteria are transmitted through food and 

water contaminated with faeces and urine of an infected patient or a carrier. Sign and symptoms 

include sustained fever, poor appetite, vomiting, severe headache, and fatigue. The treatment is 

based on antibiotic susceptibility of the patient blood culture. The Authors presented that the 

chronic carrier state may be eradicated using oral therapy (Ciprofloxacin or norfloxacin). The 

basic reproduction number of the model formulated was computed using the next generation 

matrix approach. Stability analysis of the model was carried out to determine the conditions that 



favour the spread of the disease in a given population. Results from numerical simulation of their 

model showed that an increase in protection leads to low disease prevalence in a population. 

Their model equations were given as Nthiiri et al. (2016) 

 

      (2.9) 

          

Where p= Protected class, S= susceptible class, I= Infected class, and T= Treated class. 

= Is the recruitment rate in the susceptible class,   =the mortality rate,  = is the disease-induced 

mortality rate,  is the rate of treatment, and = the rate at which protection is lost by the protected 

class. Their model captures the transmission dynamics of Typhoid fever and its control using an 

extension of the standard SEIR model under some assumptions by adding some compartments 

like the IT (Infected but on Treatment class), V (Vaccinated Class), and the Bacteria class (B). 

Three control measures considered are treatment, vaccination, and enlightenment campaign.  

Peter et al. (2017) formulated a mathematical model that incorporated vaccination and treatment 

classes. They obtained the equilibrium states of the model. They carry out stability analysis on 

the disease-free equilibrium. Their model is as follows; Peter et al. (2017). 

      (2.10) 

Tilahun et al. (2018) developed a mathematical model that examined the co-infection of 

Pneumonia and Typhoid fever. They obtained the equilibria of the model and also analyzed them 

for stability. They also obtained the basic reproduction number. Their optimal control analysis 

showed that prevention of Pneumonia and Typhoid fever cost less. Their model is as follows; 

Tilahun et al., (2018) 

     (2.11) 



 

Abboubakar and Racke (2019) developed a mathematical model for the spread and control of 

Typhoid fever.  Their model was in two phases, a model without control and a model with 

control. They obtained the equilibrium states of the model, analyzed the disease-free equilibrium 

for both local and global stability using Lyapunov's theory. Their model equation is as follows; 

Abboubakar and Racke (2019) 

                          (2.12) 

Peter et al. (2021) formulated a model that took into account both direct and indirect 

transmission. They used an optimal control strategy to obtain the optimal path using Pontryagin's 

maximum principle. Their model equation is as follows; Peter et al. (2021) 

    (2.13) 

 

 

 

 

 

CHAPTER THREE 

3.0     MATERIALS AND METHODS 

3.1  Model Formulation 

Formulation of the model is the combination and the extension of the model reviewed in chapter 

two. The model considers the salient transmission properties. The model subdivides the human 

population into seven (7) mutually exclusive compartments, which are; Susceptible humans (S), 

Exposed humans (E), Asymptomatic infected humans (C), Symptomatic infected humans (I), 



humans who are receiving Treatments (T), and Vaccinated humans (V), And one compartment 

for the environmental Bacterial of the reservoir (B). 

                                                                           

  

 

 

 κ 
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 δ 

 

 

 

                        Interaction Flow 

Figure 3.1: Schematic Diagram of the Model 

3.1.1 Model assumptions 

The population of the susceptible humans  increases through constant recruitment of individuals 

into the population by birth or immigration, also due to relapse at the rate where , and also due to 

the rate at which vaccinated humans lose immunity at . It decreases as susceptible humans move 

to the Exposed compartment (E) through interaction with the contaminated environment  at the 

rate, and further decreases through natural death at the rate μ and vaccination at the rate ; The 



population of the exposed human compartment  decreases due to natural death at the rate  and 

also due to movement to infected classes after the incubation period at the rate. A Proportion of α 

move to the symptomatic infected compartment  at the rate,   while the remainder of the 

proportion move to the asymptomatic carrier infected compartment  at the rate, where. The 

population of the asymptomatic infected carrier compartment increases due to relapse at the rate  

and decreases due to movement to symptomatic infectious class at the rate,  , and also due to 

natural death at the rate, . The population of the symptomatic infected compartment decreases 

due to treatment at the rate, also due to disease-induced death, , and natural death at the rate. 

The population of the treatment compartment  decreases due to relapse at the rate, also due to 

disease-induced death , and also due to natural death at the rate (). 

The population of the vaccinated class increases at the vaccination rate  and decreases due to 

waning of immunity at the rate  and also due to natural death at the rate. The concentration of the 

bacteria is proportional to contamination from asymptomatic carrier, symptomatic carrier, and 

hospitalized classes at the rate,  respectively. And, it decreases at the decontamination rate . 

From the diagram and the assumption, we have the following system of coupled nonlinear 

ordinary differential equations; 

      (3.1) 

        (3.2) 

       (3.3) 

       (3.4) 

        (3.5) 



         (3.6) 

        (3.7) 

  

 

3.1.2 Description of variables and parameters 

Variable/Parameter               Description 

                                         Susceptible Humans 

                                         Exposed Humans 

                                          Asymptomatic Carrier humans 

                                           Symptomatic infected 

                                           Treated humans  

                                           Vaccinated Humans 

                                            Bacteria Concentration 

                                            Recruitment rate for the Human Population 

                                           Relapse rate 

                                           Proportion of  that move to asymptomatic carrier Class 

                                   Proportion  that move to symptomatic infected Class 

                                           Infectious rate 



                                          Natural Death Rate for humans 

                                          Rate of Loss of Immunity 

                                         Progression rate from Exposed to infected classes 

                                          Proportion of   that move to Symptomatic Infected class 

                                  Proportion of  that move to Asymptomatic Carrier class 

                                          Progression rate from asymptomatic carrier toSymptomatic  

                                              Infected class 

                                         Treatment Rate for Symptomatic infected class 

                                          Disease-induced death rate 

                                          Rate of environmental contamination by asymptomatic  

                                              Carrier class 

                                         Rate of environmental contamination by symptomatic  

                                              Infected class 

                                          Rate of environmental contamination by hospitalized class 

                                         Environmental Decontamination Rate 

3.2 The Positive Invariant Region 

The total human population is     (3.8) 



Where, 

     (3.9) 

Adding equation (3.1) to (3.7), yield for (3.10) 

     (3.10) 

Theorem 3.1 

The solutions of the system of equations (3.1) through (3.7) are feasible for if they enter the 

invariant region D. 

Proof 

Let  

 (3.11) 

Be any solution of the system of equations (3.1) to (3.8) with positive initial conditions. 

Suppose there are no disease-induced deaths, equation (3.10) becomes
 

  (3.12) 

That is, 

  (3.13) 

Multiplying both sides of equation (3.130 by its integrating factor    gives   

  (3.14) 

   (3.15) 



Integrating both sides gives 

 (3.16) 

 (3.17) 

Applying the initial condition, t=0, N(0)=N0 in (3.17) gives 

 (3.18) 

 (3.19) 

Substituting (3.19) into (3.17) gives 

 (3.20) 

Similarly, 

 (3.21) 

Separating variables gives 

 (3.22) 

Integrating both sides gives 

 (3.23) 

Applying the initial condition B(0)=B0 gives 

 (3.24) 

As , the human population N approaches  ,where K is the carrying capacity of the human 

population. 



Similarly at , the concentration of Bacterial B approaches B0. 

Hence all feasible solution set of the human population and the concentration of contaminant of 

the model (3.1) to (3.8) enter the region, 

 (3.25) 

Therefore, region D is positively-invariant (A region is positively-invariant if the solution that 

starts in it remains in it). That is, if  then  and if  then  . Hence, region D is positively invariant 

and equations (3.1) through (3.7) are epidemiologically meaningful and mathematically well-

posed in the domain D. Therefore, in this region it is appropriate to consider the dynamics of 

flow generated by the model (3.1) through (3.7). In addition, the usual existence, uniqueness, and 

continuation of the results hold for the system. 

3.3 Positivity of Solutions 

Let the initial condition be , Then the solution set of the system of equations (3.1) through (3.7) 

is positive for all  

Proof 

From equation (3.1), we have 

   (3.26) 

                   (3.27) 

Where,          (3.28) 

From equation (3.27), separating variables, we have 



        (3.29) 

Integrating both sides gives 

        (3.30) 

Taking exponents of both sides gives 

         (3.31) 

Where           (3.32) 

Applying the initial condition S(0)=S0 in (3.31), we have 

                     (3.33) 

Therefore, 

         (3.34) 

Similarly, from equation (3.2), we have 

               (3.35) 

Separating variables, we have 

         (3.36) 

Integrating both sides gives 

                  (3.37) 

Taking exponents of both sides gives 



          (3.38) 

Where           (3.39) 

Applying the initial condition E(0)=E0 in (3.38) gives 

E0=k           (3.40) 

Hence, 

          (3.41) 

Similarly, it can be verified that the rest of the equations are positive for all t˃0 since er˃0  

3.4 Equilibrium States of the Model 

At equilibrium,     (3.42) 

This implies, 

      (3.43) 

         (3.44) 

       (3.45) 

        (3.46) 

                    (3.47) 

         (3.48) 

        (3.49) 



         Let                    (3.50) 

Substituting equation (3.50) into equations (3.43) through (3.49) gives 

       (3.51) 

                    (3.52) 

        (3.53) 

         (3.54) 

          (3.55) 

          (3.56) 

        (3.57) 

From equation (3.54),  we have, 

         (3.58) 

From equation (3.55), we have 

          (3.59) 

Substituting equation (3.58) into (3.59) gives 

         (3.60) 

Substituting (3.60) into (3.53) gives 

      (3.61) 



     (3.62) 

       (3.63) 

Substituting (3.63) into (3.58) gives 

     (3.64) 

Substituting equation (3.64) into (3.59) gives 

    (3.65) 

Let          (3.66) 

And        (3.67) 

Substituting equations (3.66) and (3.67) into equations (3.63), (3.64) and (3.65) gives 

          (3.68) 

         (3.69) 

         (3.70) 

Substituting equations (3.68), (3.69), (3.70) into equation (3.57) gives 

     (3.71) 

     (3.72) 

From equation (3.52), we have 

          (3.73) 



From equation (3.56), we have 

          (3.74) 

Substituting equations (3.70), (3.73) and (3.74) into (3.51) gives 

     (3.75) 

    (3.76) 

     (3.77) 

Substituting equations (3.72), (3.77) into equation (3.520 gives 

 (3.78) 

This implies 

Either 

               (3.79) 

Or 

 (3.80) 

  (3.81) 

This implies, 

  (3.82) 

Substituting equations (3.79) into equations (3.63), (3.64), (3.65) and (3.72) gives 



C=I=T=B=0          (3.83) 

Substituting (3.79) into (3.77) gives 

          (3.84) 

Substituting equation (3.840) into (3.74) gives 

          (3.85) 

 

3.4.1 Disease-free equilibrium state (DFE) 

Equations (3.79), (3.83), (3.84), (3.85) give the disease-free equilibrium state. 

That is,  

    (3.86) 

3.4.2 Endemic equilibrium state 

Substituting equation (3.82) into (3.68) gives 

  (3.87) 

Substituting equation (3.82) into equation (3.69) gives 

 (3.88) 

Substituting equation (3.82) into (3.700) gives 

 (3.89) 

Substituting equation (3.82) into (3.72) gives 



  (3.90) 

Substituting equations (3.82) and (3.90) into equation (3.73) gives 

      (3.91) 

Substituting equations (3.91) into (3.74) gives 

     (3.92) 

Hence equations (3.87) to (3.92) gives E.E.S 

3.5 Basic Reproduction Number 

The basic reproduction number, R0,is defined as the number of secondary infections that an 

infective individual produces throughout the infectious period in an entirely susceptible 

population. A basic reproduction number is a threshold number that if it is less than unity, that is 

if R0<1 then the disease-free equilibrium (DFE) is locally asymptotically stable, and if it is 

greater than unity, that is if R0>1 then the disease-free-equilibrium is unstable. In this study, we 

employ the next generation matrix approach as described by Van den Driessche and Wathmough 

(2002) to obtain our Basic Reproduction Number. We take the basic reproduction number as the 

spectral radius of the product of the two matrices,  

F and V-1, that is, R0=ρ(F V-1).  

Our model has five infected classes; hence we have the next generation matrices F and V for new 

infection terms and transmission terms respectively as 

       (3.93) 



     (3.94) 

Let          (3.95) 

Substituting equation (3.95) into (3.94) gives 

      (3.96) 

Using Maple software, 

                                  (3.97) 

                                                      

                                                                                                                                    (3.98) 

 

 

The characteristics equation is 

 

                                                                                                                               (3.99) 

 

      (3.100) 

Hence, The Eigenvalues are 

  



                                                                                                                                  (3.101) 

Therefore, 

 (3.102) 

3.6   Local Stability Analysis of the Disease-Free Equilibrium State (DFE) 

We recall from equation (3.51) through (3.57) that the system of equations of the model at 

equilibrium gives:  

               (3.103) 

                   (3.104) 

                (3.105) 

                 (3.106) 

                             (3.107) 

                   (3.108) 

                 (3.109) 

 

 

 

 

 



 

Where, 

                  (3.110) 

Recall from (3.86) that the disease-free equilibrium state is expressed as 

                        (3.111) 

The Jacobean matrix of the system of equations at disease-free equilibrium state gives: 

            (3.112) 

Using Maple with elementary row operation, we transform (3.112) into upper triangular matrix as 

                         (3.113) 

From equation (3.113) we obtain the characteristics equation as 

   (3.114) 

That is, 

          (3.115) 

Either ( or orororor 

  or  )              (3.116) 

It implies that,  



()                       (3.117) 

From equation (3.117),  

 , 

 Hence, the disease-free-equilibrium state is stable 

3.7 Analytical Solution of the Model 

3.7.1   Differential transformation method 

The differential transformation method is based on Taylor series expansion, to obtain a semi-

analytical solution to both linear and nonlinear differential equations, (Ertürk, 2007). 

The differential transformation of nth order derivative is given as; 

                            (3.118) 

And the inverse differential transformation method of Y(n) is  

                  (3.119) 

Using the method, finite terms of the transformation are considered. Therefore, equation (3.119) 

can be expressed as 

                           (3.120) 

From equations (3.118) through (3.120), the following properties are proven and established 

according to (Jang et al, 2000) and (Hassan, 2004). 

• if , then      

• If , then , where a is a constant 



• if , then  

• if , then      

• if , then , where  

3.7.2   Analytical solution of the model using differential transformation method 

Consider our model  

               (3.121) 

                 (3.122) 

                (3.123) 

                (3.124) 

                (3.125) 

                            (3.126) 

                (3.127) 

With initial conditions  

                                    (3.128) 

Taking differential transformation of equations (3.121) through (3.128) gives 

 (3.129) 

                         (3.130) 

            (3.131) 



              (3.132) 

                         (3.133) 

              (3.134) 

            (3.135) 

When ,  

From equation (3.129) we have 

                  (3.136) 

                         (3.137) 

From equation (3.130), we have  

                (3.138) 

                    (3.139) 

From equation (3.131), we have 

              (3.140) 

              (3.141) 

From equation (3.132), we have 

               (3.142) 

              (3.143) 



From equation (3.133), we have 

              (3.144) 

               (3.145) 

From equation (3.134), we have 

              (3.146) 

               (3.147) 

From equation (3.135), we have 

            (3.148) 

              (3.149) 

When n=1, 

From equation (3.129), we have 

           (3.150) 

       (3.151) 

Substituting equations (3.128), (3.137), (3.145) and (3.149) into equation (3.151) gives 

       (3.152) 

From equation (3.130), we have 

                    (3.153) 



                               (3.154) 

Substituting equations (3.128),(3.137), (3.139), (3.149) into (3.154) gives 

             (3.155) 

From equation (3.31), we hav 

               (3.156) 

Substituting equations (3.129), (3.141), (3.145) into equation (3.156) gives 

           (3.157) 

From Equation (3.132) we have 

               (3.158) 

Substituting equations (3.139), (3.141), (3.143) into (3.158) 

               (3.159) 

From equation (3.133), we have 

               (3.160) 

Substituting equations (3.139) and (3.145) into equation (3.160) 

      (3.161) 

From (3.134), we have 

               (3.162) 



Substituting equations (3.137) and (3.147) into equation (3.162) gives 

           (3.163) 

From equation (3.135), we have 

              (3.164) 

Substituting equations (3.141), (3.143), (3.145) and (3.149) into (3.164) gives 

      (3.165) 

From equation (3.120), the solutions to our model using differential transformation method are: 

                 (3.166) 

                  (3.167) 

                  (3.168) 

                 (3.169) 

                           (3.170) 

                (3.171) 

                (3.172) 

Substituting equations (3.128), (3.137) and (3.152) into equation (3.166) gives 

         (3.173) 

Substituting equations (3.128), (3.139) and (3.155) into equation (3.167) gives 



          (3.174) 

Substituting equations (3.128), (3.141) and (3.157) into equation (3.168) gives 

         (3.175) 

Substituting equations (3.128), (3.143) and (3.159) into equation (3.169) gives 

          (3.176) 

Substituting equation (3.128), (3.145) and (3.161) into equation (3.170) gives 

       (3.177) 

Substituting equations (3.128), (3.147), and (3.163) into equation (3.171) gives 

  (3.178) 

Substituting equations (3.128), (3.149) and (3.165) into equation(3.172) gives 

  (3.179) 

Hence the analytical solutions of the model is given by (3.167) to (3.179)  

 

CHAPTER FOUR 

4.0    RESULTS AND DISCUSSION 

4.1 Results 

The Table 4.1 present the initial conditions and parameter values used for the simulation of the 

model. 

Table 4.1: Initial conditions and parameter values 



Parameters and State Variables   Value Source 

   10000 Nthiiri et al. (2016) 

   3500 Nthiiri et al. (2016) 

    1000 Nthiiri et al. (2016) 

    1500 Mutua et al. (2015) 

    2000 Assumed 

 

 

   5000 

    100 

Assumed 

Assumed 

    0.0357 Nthiiri et al. (2016) 

    0.03 Nthiiri et al. (2016) 

    0.0002 Assumed 

    0.016 Nthiiri et al. (2016) 

    0.9 Assumed 

    0.81 Nthiiri et al. (2016) 

Σ    0.7 Nthiiri et al. (2016) 

    0.8 Assumed 

    0.9 Nthiiriet al. (2016) 

Λ    0.005 Nthiiri et al. (2016) 

 

 

 

 

 

    0.009 

    0.014 

   0.004 

0.0345 

0.5 

 Assumed 

Assumed 

Mutua et al. (2015) 

Assumed 

Assumed 



 

The time t consider for this result simulation is in year. The Figure 4.1 – Figure 4.7 present the 

graphical simulation of the model 

 

 

 

 

 

 

 

 

 

(year) 



 

Figure 4.1: Effect of infectious rates on the infected class 

From Figure 4.1, it can be seen that as the infectious increases, the population of the symptomatic 

infectious class also increases. The implies infectious rate, as the direct impact of the infected 

population. It is there by important to consider all necessary precaution needed to control the 

increase in infection rate of the disease. 

 

 



 

 

t (year) 

 

Figure 4.2: Effect of vaccination rates on the susceptible class 

From the Figure 4.2, it can be seen that as the vaccination rate increases, the population of the 

susceptible class decreases. The susceptible population decreases and attained an equilibrium 

position, due to enlightenment campaign, encouraging people to go for vaccination against the 

disease and to avoid being exposed to contaminated water polluted food. 

(year) 



 

Figure 4.3: Effect of incubation rate on the asymptomatic carrier-class 

From the Figure 4.3, it can be seen that as the incubation rate increases, the population of the 

asymptomatic carrier-class increases. This implies that incubation rate influence the population of 

the asymptomatic carrier of typhoid diseases. In order to manage the infection rate, there is need 

to consider incubation rate. 

 

t (year) 



 

Figure 4.4: Effect of recovery rate on the treatment class 

From Figure 4.4, it can be seen that as the recovery rate increases, the population of the 

hospitalized class decreases. This means as people recover from typhoid fever, they will be no 

need to still be on treatment, the population will decrease due to relapse and many also decrease 

due to disease induce death, due to negligent from the health practitioner, when wrong treatment 

is being administered. 

 

 

 

t (year) 



 

Figure 4.5: Effect of Vaccination Rate on the Vaccination Class 

From Figure 4.5, it can be seen that as the vaccination rate increases, the population of the 

vaccination class also increases. This implies that when there is awareness on collection of 

vaccination, more individual will be found in the vaccination centre and this help to control the 

spread of the diasease among infected and susceptible individuals. 

 

 

 

 

 



 

 

t (year) 

 

 Figure 4.6: Effect of Vaccination Rate on the Exposed Class  

From Figure 4.6, it can be seen that as the vaccination rates increases, the population of the 

exposed class decreases. More so if there is no interaction with the contaminated environment, 

their will be reduction in the exposed individuals, and this might in turn control infection rate. 

 

 



 

 

t (year) 

 

Figure 4.7: Effect of Infectious Rate on the Asymptomatic Carrier Class 

From the Figure, 4.7, it can be seen that as the infectious rate increases, the population of the 

asymptomatic carrier increases. This depict that the infection rate has direct effect on 

asymptomatic carrier individuals. Hence there is no need to consider coreponding treatment given 

to infectious individual to  asymptomatic carriers. 

4.2 Discussion of Results 

The objective of this study was to develop and authenticate a mathematical model for the 

transmission and management of typhoid fever, employing a system of first-order ordinary 



differential equations comprising seven distinct compartments. The different compartments 

within the system under study include the susceptible class (S), exposed class (E), asymptomatic 

infected class (C), symptomatic infected class (I), hospitalised or treatment class (T), vaccinated 

class (V), and the concentration of bacteria in the environment (B).  

this study on typhoid fever has taken different dimensions compared to existing models, as so 

many mathematical models in the past have assumed that susceptible individuals recovered with 

immunity against the disease, that is, there is no re-infection once an individual has recovered 

from the infection  (Adetunde, 2008; Mutua et al., 2015; Nthiiri et al., 2016). This assumption is 

not realistic as fully recovered individuals still stand the risk of re-infection if they are exposed to 

the bacteria again which is the main target of the present study. 

The findings indicate that there is a positive correlation between the infection rate and the size of 

the symptomatic infectious class. Furthermore, as the rate of vaccination increases, the size of the 

susceptible population decreases. This finding corroborated the claims made by Nthiiri et al. 

(2016) and Mutua et al. (2015). 

This study's findings also revealed a positive correlation between the incubation rate and 

population growth. As the rate of recovery increases, there is a corresponding decrease in the 

population of individuals who are hospitalised. The findings indicate a positive correlation 

between vaccination rates and the size of the vaccinated population, as well as a negative 

correlation between vaccination rates and the size of the exposed population. This finding 

corroborated the claim made by Nthiiri et al. (2016). 

 

 



  

 

CHAPTER FIVE 

5.0       CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

In this work, a mathematical model for the spread and control of Typhoid fever by incorporating 

vaccination, treatment, waning rate, relapse rate was formulated. The equilibrium states of the 

model were obtained and analyzed. Local stability analysis was carried out on the disease-free 

equilibrium using the Jacobian matrix approach. According to the findings of this work, it can be 

deduced that the Disease Free Equilibrium State (DFE) of the model is stable if R0˂1. We 

obtained the semi-analytical solutions of the model using the Differential Transformation method 

and the solutions were plotted using Maple.  

 The result of the numerical simulation showed that reduction in the contact rate with infectious 

individuals reduces the transmission rate of the disease. Also, the findings of the study revealed 

that at high treatment rates for the infected individuals, the number of recovered individuals 

increases thereby leading to eventual dying out of the disease. It can also be concluded that as the 

vaccination rates increases, the population of the exposed class decreases. 

5.2  Recommendations 

• Policymakers and health practitioners are greatly advised to sensitize the people on 

the need to be vaccinated. Since, the model shows that the transmission of Typhoid 

fever infection rests greatly on the contact with the bacteria present in the 

environment 



• Infected and treated individuals should be retested after recovery to avoid relapse. 

• Health workers are greatly advised to uphold prevention and control measures when 

treating infectious individuals.  

• One of the constraints of this study is the unavailability of records of Typhoid fever 

cases; therefore, we recommend that health workers should keep proper records to 

make data available for researchers. 

•  Due to Typhoid fever's connection with malaria and other febrile infections, co-

infection of Typhoid fever and those infections can be incorporated into the model 

5.3  Contribution to Knowledge 

(i)  We formulated and validated a mathematical model for the transmission and control of 

Typhoid fever by incorporating vaccination, treatment, waning rate, relapse rate.  

(ii)  The work has shown that the disease-free equilibrium is stable. 

(iii)  The work has also shown that infected individuals recovered when the treatment rates 

and their efficacy are high.      
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Appendix  A 

Maple code For computation of R0 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix  B 

Maple code For Figure 4.1 
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Maple Code for Figure 4.2 
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Maple code for Figure 4.3 
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Maple code for Figure 4.5 
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Maple code for Figure 4.6 
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