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ABSTRACT 

In this research, the Block Hybrid Backward Differentiation Formulae (BHBDF) for the step 

number K= 4,5 and 6 were developed for the solution of  general second order  ordinary 

differential equations ODE.  The Order of the Block methods are 5,6 and 7 respectively. The 

Continuous formulations of this methods were done through interpolation and collocation 

approaches. The power series polynomial was used as basis function at some selected grids and 

off-grids points. The continuous schemes were further evaluated at those points to produce 

discrete schemes which are combined to form block method. Analysis of the basic properties of 

the discrete schemes investigated showed consistency, zero stability and convergence of the 

proposed block methods. Numerical examples were solved to examine the efficiency and 

accuracy of the proposed method. The results showed that the proposed methods with relatively 

small errors performed favorably in comparison with the existing methods.  
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CHAPER ONE 

1.0                                                   INTRODUCTION 

1.1          Background to the Study  

Some real-life physical problems that arise in various fields of study, be they engineering, 

medicine, the sciences, or others, when modeled mathematically, lead to differential equations 

(Abada et al., 2017). Many of these equations do not have solution in closed forms. There is 

need to provide good numerical methods to approximate their solutions. Development of linear 

multi-step methods (LMMs) for solving ordinary differential equations (ODEs) can be generated 

using some methods such as Taylor series, numerical interpolation, numerical integration and 

collocation techniques. Block methods for solving ordinary differential equations (ODEs) have 

been proposed by Milne (1953) The Milnes idea of proceeding in blocks was developed by 

Rosser (1967) 

The general second-order ordinary differential equation of the form 

        (1.1) 

Where is assumed to satisfy a Lipchitz condition as given in Henrici (1962). 

A differential equation can be defined as an equation that contains a derivative or involve a 

dependent variable (y) an independent variable (x) and one or more differential co-efficient of y 

with respect to x. An example of a differential equation is . Differential equations are categorized 

to two forms which are: Ordinary Differential Equations (ODEs) and Partial Differential 

Equations (PDEs). An ordinary differential equation (ODEs) is one in which the unknown 

function is dependent variable with a single independent variable. An Ordinary Differential 

Equations (ODEs) is classified according to the order of the highest derivative with respect to the 

dependent variable appearing in the equations. The most important cases for application are the 



first and second orders. Partial Differential Equations (PDEs) are differential equation in which 

the unknown function is a function of multiple independent variables and the equation involves 

its partial derivative.  

Several numerical methods have been designed and proposed in literature for solving second 

order ordinary differential equations. For example, Areo and Adeniyi (2013) developed a self-

starting linear multistep method and applied it to solve second order IVPs of ODEs directly. Two 

intra step grid points were considered by means of collocation and interpolation approach. Omar 

and Abeldrahim (2016) proposed a single-step hybrid block method of order five to solve second 

order ODEs. In the work, three off step points were approximated by collocation approach. 

In the work by Olabode and Momoh (2016), continuous hybrid multistep method with Legendre 

polynomial as the approximate solutions was investigated to obtain the approximation of the 

solution of second order ODEs. Also, two intra step grid points were considered by means of 

collocation and interpolation approach. Moreso, Sunday et al. (2014) developed numerical 

solution of stiff and oscillatory first order differential equations, using the combination of power 

series and exponential function to produce a new numerical integrator for the solution of stiff 

first order ODEs. Most of the methods proposed for the solution of stiff problems are 

numerically unstable unless the step size is taken to be extremely small and the adoption of 

implicit A-stable schemes is better for the solution of stiffness problems.  

Especially methods for the numerical solutions of the second order Ordinary Differential 

Equations (ODEs). The integer k is called the step number of the method for k  is called a multi 

step or k –step method. Linear multi step method of step number k or a linear k-step method, can 

be written in the general form as follow: 



 

Where  and are continuous coefficients to be determined h is the step size 

k is the step number. M is the order of the differential equation. 

1.2 Statement of the Research Problem 

Numerical analyst are usually faced with the challenge of obtaining starting or initial values for 

Linear Multistep Methods (LMMs) when step number  in solving differential equations 

numerically before now, one step methods like Taylor series, Euler method Runge-Kutta or 

Trapezoidal methods are used to obtained the starting values for such methods (Omar and 

Abeldrahim, 2016). The hybrid method is not exempted from this problem as it shares the same 

standard methods (Ibrahim et al., 2020). The need for special predictors to predict the off-grid 

values in hybrid forms of the Linear Multistep Methods (LMMs) (Sunday et al., 2014). The 

discrete schemes obtained from the continuous formulation of k-step block hybrid backward 

differentiation formulae can be used in block form to obtain the block solution.  

1.3    Aim and Objectives of the Study 

The aim of this research is to developed block hybrid backward differentiation formulae for 

solving class of second order ordinary differential equations (ODEs). Hence the following 

objectives are to: 

•  Developed block hybrid backward differentiation formulae for step numbers k=4, 5 and 6 

with two off-grid points at interpolation. 

• Perform analysis of the basic properties of the proposed method in terms of order, error 

constant, zero stability, consistency and convergence. 

• Apply the developed block hybrid backward differentiation formulae to solve some second 

order ordinary differential equations (ODEs). 



• Compare the results of the proposed methods with some existing methods and exact 

solutions.  

1.4 Significance of the Study 

The development of Block Hybrid Backward Differentiation Formulae (BHBDF) for solving a 

class of second-order ordinary differential equations (ODEs) holds considerable significance 

within the realm of numerical methods and mathematical modelling (Kayode and Obarhua, 

2017; ). This research addresses a crucial need for efficient and accurate techniques to tackle the 

complexities inherent in solving general second-order ODEs. 

Advancement of Numerical Methods: The study contributes to the advancement of numerical 

methods for solving ODEs. The creation of Block Hybrid Backward Differentiation Formulae 

introduces a novel approach that combines the strengths of backward differentiation and block 

methods. This innovation expands the toolkit available to researchers and practitioners, enabling 

them to tackle a wider array of differential equations more effectively. 

Enhanced Solution Accuracy: The development of Block Hybrid Backward Differentiation 

Formulae has the potential to offer enhanced accuracy in solving second-order ODEs. By 

incorporating power series polynomials as basis functions and utilizing interpolation and 

collocation approaches, the study seeks to provide solutions that are not only accurate but also 

adaptive to the characteristics of the problem at hand. 

Broad Applicability: The research's focus on general second-order ODEs underscores its broad 

applicability. Many scientific disciplines, including physics, engineering, biology, and 

economics, rely on ODEs to model real-world phenomena. The methods developed in this study 

could find practical utility across these domains, enabling researchers to derive more accurate 

and insightful results from their models. 



In conclusion, the development of Block Hybrid Backward Differentiation Formulae for solving 

second-order ordinary differential equations signifies a substantial contribution to the field of 

numerical methods and mathematical modeling. Its potential to enhance accuracy, broaden 

applicability, and strike a balance between efficiency and precision reinforces its importance in 

addressing complex ODEs prevalent across various scientific disciplines. The rigorous analysis 

and validation offered by the study further solidify the significance of the proposed methods 

within the realm of practical implementation and theoretical advancement. 

1.5 Scope and Limitation of the Study 

This research is restricted to solving second order ordinary differential equations (ODEs). The 

major focus of this study is on developing k-step of block hybrid backward differentiation 

formulae (BHBDF) for solving some class of second order ordinary differential equations 

(ODEs) with two off-grids points. The performance of these schemes in the solution of 

differential equations shall be checked and it is restricted to numerical solutions of with two off-

grids points at interpolation point which is only used to obtain  numerical schemes. 

1.6 Justification for the Study 

The justification for this study rests upon the need to address existing challenges in numerical 

methods for solving second-order ODEs and the potential benefits that the development of Block 

Hybrid Backward Differentiation Formulae offers. The diverse applications, complexities of 

real-world problems, and the advancement of computational techniques all underscore the 

relevance and significance of this research. The empirical validation and potential for future 

research further affirm the importance of exploring this innovative approach to solving ODEs 

(Jator, 2001).  This research would contribute to numerical analysis through the formulation of 



new classes of efficient consistent block hybrid backward differentiation formulae for the direct 

solution of ordinary differential equations. 

1.7 Definition of Terms 

Linear Multistep Methods (LMMs): Given a sequence of to  be an approximation to  

and let .If a computational method for determining the sequence  takes the form 

of the linear relationship between  

 

(1.2) Then (1.2) is a linear multistep method (LMM) of step number k. 

Order of Linear Multistep Methods: A LMMs is said to be of order  if  

 

 is the error constant  

Error Constant: The term  is called error constant and it implies that the local truncation 

error is given by  

Consistency of LMM: A Linear Multistep Method is said to be consistent if it has the order 

and satisfies the following axioms or conditions 

i.            

ii.  

iii.         

Where (r) and  are the first and second characteristics polynomial of our method respectively  

  

 



Zero stability of Hybrid Block Methods: The Hybrid Block Method is said to be zero stable if 

the roots of of the characteristic polynomial  satisfies  and every 

root with  has multiplicity not exceeding two in the limit as  

Convergence of linear Multistep Methods: a LMMs is said to be convergent if and only if it 

satisfies both consistency and zero stability. 

Absolute Stability: The linear multi-step method is said to be absolutely stable if its region of 

absolute stability contains the whole of the left hand half for a given  and for all the root of 

satisfy and it is absolutely unstable for that  

otherwise. 

Absolute Error: Let  be any estimate to the number X, the absolute error in is referred to ∣, in 

which  is distant between the numbers X and. 

 Collocation Point:  a point at which the derivative of the function is evaluated. 

Interpolation Point:  a point at which the solution function is evaluated. 

Degree of Differential Equation:  the highest power which the differential equation is raised. 

For example 

The degree of the differential equation above is two 

Ordinary Differential equation (ODE): a differential equation that consists of   functions of an 

independent variable and its derivatives.  

For example. 

 

 

CHAPTER TWO 



2.0                                            LITERATURE REVIEW 

2.1 Review of Previous Related works 

2.1.1 Linear multistep methods 

A linear multistep method (LMMs) is known for solving ordinary differential equation (ODEs) 

and also higher order differential equations. The introduction of continuous collocation schemes 

is of more importance as better global error can be estimated and approximations can be equally 

obtained, the gap between the discrete collocations’ methods and the conventional multistep 

method is bridged (Yahaya and Tijjani, 2015). In recent times, discrete methods have been 

extended to continuous forms based on multistep collocation and by this extension, there is 

increase in their ability to solve the ordinary differential equations (ODEs): the discrete ones are 

self-starting they overcome the  problems of overlap solution models usually related with 

multistep finite difference methods and on the same fixed meshes. The higher order methods can 

be applied successively by selected different points of the step number. Differential equations 

first came in to existence with the invention of calculus by Newton and Leibnitz. Isaac (1671) 

listed three kinds of differential equations: 

          (2.1) 

          (2.2) 

         (2.3) 

In all the three classes, y is an unknown of  (or of  and ), and  is a given function. He 

solved these equations using infinite series and discussed  the non- uniqueness of solutions. 



The first two classes contained only ordinary derivatives of one or more dependent variables, and 

are called ordinary differential equations (ODE). The third class involved the partial derivatives 

of one dependent variable which is known as system of partial differential equations (PDEs). 

Jacob Bernoulli proposed the Bernoulli differential equation in 1695. This is an ordinary 

differentiation equation of the form . Differential equations are among the 

most important mathematical tools used in producing models in physical sciences, Biological 

sciences, and Engineering. Over the years, several researchers developed methods in finding 

analytical solutions of initial value problem (IVP) in ordinary differential equations (ODEs) of 

the form. 

      (2.4) 

The improvement of numerical methods for the solution of initial value problem (IVP) in 

ordinary differential equations (ODEs) of the form (2.4) gave mount to two major discrete 

variable methods namely: single step (one step) methods and multistep methods, most especially 

the linear multistep method. The single step methods are very low order of accuracy and they are 

suitable for first order IVPs of ODEs. Such as Euler’s methods, Runge-kutta methods etc. 

The numerical solution of higher order single step methods such as Runge-kutta methods, in 

terms of the number of function evaluation per step, is sacrificed since more function evaluations 

are required. Hence, solving (2.4) using any single step methods means reducing it to an 

equivalent system of first order IVPs in ODEs which increase the scale of the problem, thus 

increasing its size, reducing to first order is ineffective due to computational burden and also 

uneconomical arising from computer time wastage and gives results of low accuracy. 

However, Linear Multistep Methods include methods such as Numerov method, Adams-

Bashforth method, Adam-Multon method. These methods give more accuracy and are 



appropriate for the direct solution of (2.4) without necessarily reducing it to an equivalent system 

of first order IVPs of ODES. 

Ordinary Differential Equations of the form (2.4) are examined by some authors including Jator 

(2001), Mohammed (2010); Areo and Adeniyi (2013), Adamu et al. (2019) and Ra’ft et al. 

(2020) among others, by first reducing them to an equivalent system of first order ordinary 

differential equations and then using any appropriate numerical method to solve the resultant 

system. The disadvantage of this is that it consumes more time, human efforts and computer 

program to check the accuracy of these methods are usually complicated (Adamu et al., 2019).  

Moreso, in consideration of these setbacks, we considered a method that can solve LMM without 

reduction. Some prominent scholars have made efforts to solve higher order initial value 

problems of second order ordinary differential equations by a number of different methods, these 

includes the work Momoh et al. (2014), Abdelrahim et al. (2016), Adamu et al. (2019) and 

Ibrahim et al. (2020) among others. The direct methods are self-starting methods which are 

formulated in terms of LMMs called block methods. The block method offers the traditional 

advantage single step methods for instance, Rung-Kutta methods of been self starting and allow 

easy change of step length. Another important attribute of the block method is that all the 

discrete schemes are of uniform order and are obtained from a single continuous formula unlike 

the non-starting predictor corrector technique.  

Ibrahim et al. (2020) construct two-step second derivative hybrid block backward Differentiation 

formula. The newly proposed scheme was derived based on interpolation and collocation 

approach. The discrete schemes were obtained from the continuous schemes. The derived 

method is applied to solve non-linear systems of stiff  



ordinary differential equations. Numerical experiments show that the method is suitable for stiff 

differential equations. In this research, we shall adopt the block method approach to formulate a 

second order numerical scheme using power series approximation as basis function.  

Other numerical methods that are useful while solving ODEs are the collation methods and 

hybrid methods. In mathematics, collocation method for ordinary differential equation is a 

method for the numerical solution of ordinary differential equations, partial differential equations 

and integral equations. Collocation methods were used over the past decades in search of 

solution to a wide class of ordinary differential equations, partial differential equations, Integra-

differential equations and functional equations. The attractiveness of such methods is owing to 

their abstract simplicity and also large applicability. According to Popov et al. (2017), the 

method was first proposed by Frazer, Jones. The work of Frazer et al. (1938) was dedicated to 

the solution of PDEs. Collocation at the family of orthogonal polynomials is often called 

orthogonal collocation. Orthogonal collocation is the method for the numerical solution of partial 

differential equations. It uses collocation at the zeros of some orthogonal polynomials to 

transform the partial differential equation (PDE) to a set of ordinary differential equations 

(ODEs). The ODE can then be solved by any method (Ramos, 2017).  

Chebyshev orthogonal collocation methods are described by Fox and Parker (1968). Special 

collocation methods are very much related to this form of collocation, Henrici (1962). There is a 

quick improvement as reported in the literature on the use of collocation methods on the use of 

numerical solutions of first order ODEs. The multistep collocation techniques involve obtaining 

solution of a set of function of a linear combination of a function known as the trial function. The 

analytical solution of an IVP is assumed to be approximated by the basis function. The linear 



combination of this basis is required to satisfy the approximation at some certain grid points 

called the collocation points. 

The hybrid method has been anticipated in the literature. The methods share the property of 

utilizing data at other points other than the points the step points while retraining 

uniqueness of the continuous linear multistep methods.  

The Method involves the determination of an approximate solution in a suitable set of functions, 

sometimes called basis function. Hybrid method is not a method in its own accurate since 

particular predictors were needed to estimate the solution of the off-step point \and the derivative 

function as well. In view of the disadvantage mentioned above, many researchers focused on 

efforts in improving the numerical solution of IVPs of ODEs. One of the outcomes is the 

development of a class of methods called Block method. The contribution of Bolaji (2017) also 

proposed for a family of Hybrid Backward Differentiation Formulae and a three step Hybrid 

Linear Multistep method for a direct solution of second and third order ODEs and the solution of 

second order IVPs. 

 

2.2 Collocation Method 

A collocation method can simply be described as a method, which involves the determination of 

an approximate solution in a suitable set of functions, sometimes called basis function. The 

approximate solution is required to satisfy the initial or boundary conditions along with the 

differential equations (2.4) at certain points called the collocation points. 

Continuous collocation schemes is of  more importance as better  global error can be estimated 

and approximations can be equally obtained, the gap between the discrete collocations methods 

and the conventional multistep method is bridged. 



In recent times discrete methods have been extended to continuous forms based on multistep 

collocation and by this extension, there is this an increase in their ability to solve the ordinary 

differential equations (ODEs) the discrete one are self-starting they overcome the problems of 

overlap solution models usually related with multistep finite difference methods and on the same 

fixed meshes the higher order methods can be applied successively by selected different points of 

the step number. Obviously over the past years, collocation methods evolved as valuable 

methods for the solution of abroad class of problems covering ordinary and partial differential 

equations, functional equations and Butcher (2008) first proposed the collocation method, 

specifically intended for the solution of partial differential equations in two variables, with 

collocation being applied in two variables, with collocation being applied in one variable for 

each fixed value of the second. This actually is a method of lines procedure. The work of Kayode 

and Obarhua (2017) was dedicated to the solution of ODEs. While the applicability of 

collocation method to the solution of partial differential equations was mentioned in (Kayode 

and Obarhua, 2017), not only discussed collocation for both ordinary and partial differential 

equations, but also provided some numerical examples. These methods have in common the 

option of   polynomial for the basis function. 

2.3 Block Methods 

The narrative property of the method that can be briefly discussed in this chapter is that of 

simultaneously producing approximations to the solution of initial value problem at k points

. Although these methods will be formulated in terms of linear multistep methods, it 

can be observed that they are equivalent to certain Runge- Kutta method and preserve the 

traditional Runge – Kutta advantage of being self –starting and permitting easy change of step 

length. Their advantage over conventional Runge – Kutta method lies in the fact that they are 



less expensive in terms of function evaluations forgiven order blocks method appear to have 

been  proposed by Mohammed and Adeniyi (2014)  use to obtaining starting values of corrector 

of block method consists of a set of all new functions values which are evaluated during each 

application of the relative formula to produce k new set of values of solution in each 

computational step (Akinfenwa, 2011). Although these methods is formulated in terms of linear 

multi-step methods, it can be observed that they are equivalent to certain Runge- Kutta methods 

advantage of being self- starting and permitting easy change of step length their advantage over 

conventional Runge – Kutta method lies in the fact that they are less expensive in terms of 

function evaluations forgiven order method, predictor – corrector algorithms (Areo and Adeniyi, 

2013). 

2.4 Hybrid Methods 

 According to Kayode and Obarhua (2017) numerical analysis has over the years been 

determined on solution at the grid points ignoring what happens at other points than the grid 

points. Searching for higher order numerical methods has led to researchers throwing in 

additional off-step points in the process of formulation. Methods formulated using this approach 

are called hybrid methods, they preserve the self-starting property of Runge-Kutta methods as 

well as being able to provide more solutions at a single application. They are also said to be 

capable of overcoming Dalquist barrier theorem which states that a linear multistep method 

cannot have order greater than k+1 for k odd and k + 2 for k even. There have been successful 

methods developed in this area too. Like the methods in (Areo and Adeniyi, 2013; Badmus et al., 

2014; Kuboye and Omar, 2015 and Kayode and Obarhua, 2017). 

2.5 The Backward Differentiation Formula (BDF)  



Backward differentiation formula (BDF) is a linear multistep method suitable for solving 

differential equations and stiff initial value problems. The Backward Differentiation Formulae is 

an example implicit multistep method with a strange uniqueness of function evaluation at a 

single point. There are other modifications of this method such as the blended backward 

differentiation formula and the extended backward differentiation formula. 

  

 

CHAPTER THREE 

3.0             MATERIALS AND METHODS 

3.1 Derivation of the Numerical Schemes 

We present the derivation of some Hybrid Backward Differentiation Formula (HBDF) for 

solving some class of second-order ordinary differential equations of the form 

         

coupled with appropriate initial conditions 

 

where is a continuous function such that ,  is the initial point,  is an dimensional vector,  is a 

scalar variable,  and  are the initial values.  

In this research, we seek to develop numerical schemes in the form of HBDF as: 

 

where is the chosen step size and ,  are unknown continuous coefficients to be determined. For 

Backward Differentiation Formula, we note that  and . In this study, we will derive HBDF for the 



step numbers step numbers of the proposed method using power series function as the basis 

function.  

  

 

3.2 Specifications of the Method  

3.2.1 4-Step block hybrid backward differentiation formulae (4SBHBDF) 

We seek an approximation of the form; 

 

where is the interpolation points,  is the collocation points and  are unknown coefficients to be 

determined. Then, we take  

 

 

To derive 4SBHBDF, we take and . Therefore, (3.4)  

becomes; 

 

 

 

 

Interpolating (3.5) at  and collocate (3.6) at . This results in a system of equations; 



 

 

 

 

 

 

 

 

                                                                                                                                     

 

where 

and the matrix  of the proposed method is expressed as 

D=    (3.9) 

Solving (3.8) using matrix inversion method with the aid of Maple 2017 software to obtain the 

following continuous coefficients; 



(3.10) 

 

           (3.11) 



 

           (3.12) 

(3.13) 



(3.14) 

 

 

(3.15) 



 

 

           (3.16) 

The values of the continuous coefficients are then substituted in to the proposed method in (3.3) 

to obtain  

                                                                            (3.17) 

 



 



 



 

(3.18) 

Evaluate (3.18) at , gives the discrete scheme as 

                                                            (3.19)                                     

To obtain the sufficient schemes required, we obtain the first derivative of (3.18) and evaluate 

the continuous function at  and  

         

  

 

           

  

 

  

 



  

 

         (3.20) 

      

where is the first derivative of . 

Likewise, we further obtain the second derivatives of (3.18), thereafter, evaluating at  to obtain; 

  

  

          

  

           (3.21) 

3.2.2 5-Step block hybrid backward differentiation formulae (5SBHBDF) 

To derive 5SBHBDF, we take and . Therefore, (3.4) becomes; 

(3.22) 

Interpolating (3.5) at  and collocate (3.6) at . This results in a system of equations; 

 

+ 

+ 

 

+ 

+ 



 

 

 

 

 

where 

 

and the matrix  of the proposed method is expressed as 

   



 

 



 

 



 

 



 

 

               (3.25) 

        (3.26) 



 



 



 



 

           (3.27) 

Evaluate (3.27) at  gives the discrete scheme as 

(3.28) 

To obtain the sufficient schemes required, we obtain the first derivative of (3.27) and evaluate 

the continuous function at  to obtain;  

  

  

 

  

 

  



 

  

 

  

 

  

 

                                                         (3.29) 

 

where is the first derivative of . 

Likewise, we further obtain the second derivatives of (3.27), thereafter, evaluating at  to obtain; 

  

 

  

 

  

  

  

  

           (3.30) 

The equation (3.30) is the proposed 5SBHBDFfor solving second order ordinary differential 

equations. 

3.2.3 6-Step block hybrid backward differentiation formulae (6SBHBDF) 



To derive 6SBHBDF, we take and . Therefore, (3.4) becomes: 

 

Interpolating (3.5) at  and collocate (3.6) at . This results in a system of equations; 

+ 

++ 

++ 

  

+ 

 

++ 

 

 

 

 

 

where 

  

and the matrix  of the proposed method is expressed as 



D=  

  

 



 

 



 

 



 

 



 

 

           (3.33) 

   (3.34) 



 



 



 



 



 



 



 

                                                                                                                               (3.35) 

Evaluate (3.35) at gives the discrete scheme as 

      (3.36) 

To obtain the sufficient schemes required, we obtain the first derivative of (3.35) and evaluate 

the continuous function at  to obtain;  

  

 

  

  

  

  

  



  

  

   (3.37) 

Likewise, we further obtain the second derivatives of (3.35), thereafter, evaluating at  to obtain;  

  

  

  

  

  

 (3.38) 

 

3.3 Analysis of Basic Properties 

In this section, we address the order, error constants, consistency, stability and convergence of 

the developed methods.  

3.3.1 Order and error constants of the developed methods 

Following the works of (Areo and Adeniyi, 2013) and Ra’ft et al. (2020), the Local Truncation 

Error (LTE) for a block method of the form (3.3) is defined with the linear operator; 

 

We assume that  is sufficiently differentiable such that the linear operator defined above can be 

expanded as a Taylor’s series about the point . Then,  

 

The method above will be consistent if as . Therefore, we can compare the coefficient to have 



 

The method is consistent if for . The constant  is the error constant. After defining the concept of 

error constant, we shall obtain the error constants of the proposed discrete hybrid block methods 

for , , and .  

From 4SBHBDF, we developed the proposed method in (3.19) as 

 

where; 

 

Applying (3.41), we have 

 

Since . The implies the method is of order 5 with error constant  

For the first discrete method in (3.20) 

  

where; 

  

Applying (3.41), we have 

 

Since . The implies the method is of order 5 with error constant  

For the first discrete method in (3.21) 

  



where 

  

Applying (3.41), we have 

   (3.47) 

Since . The implies the method is of order 5 with error constant . 

For the second discrete method in (3.21) 

  

where 

  

Applying (3.41), we have 

  (3.48) 

Since . The implies the method is of order 5 with error constant  

We follow similar procedure for others and even for cases  and  and present the Order and Error 

constants for the proposed methods as follows;  

Table 3.1 Order and Error Constants of the 4SBHBDF 

method Order(p) Error Constants  

(3.19) 5  
 

(3.20) 5  

 
 

(3.20) 5  

 
 

(3.20) 5  

 



 

(3.20) 5  

 
 

(3.20) 5  

 
 

(3.20) 5  

 
 

(3.20) 5  

 
 

(3.21) 5  

 
 

(3.21) 5  

 
 

(3.21) 5  

 
 

(3.21) 5  

 
 

 Table 3.2 Order and Error Constants of the 5SBHBDF 

Method Order(p) Error Constants  

(3.28) 6  

(3.29) 6  

(3.29) 6  

(3.29) 6  

(3.29) 6  

(3.29) 6  

(3.29) 6  

(3.29) 6  



(3.30) 6  

(3.30) 6  

(3.30) 6  

(3.30) 6  

(3.30) 6  

(3.30) 6  

 

  

 

Table 3.3 Order and Error Constants of the 6SBHBDF 

Method Order(p) Error Constants  
(3.36) 7  

 

 
(3.37) 7  

 

 
(3.37) 7   

 

 
(3.37) 7  

 

 
(3.37) 7  

 

 
(3.37) 7  

 

 
(3.37) 7  

 

 
(3.37) 7  

 
(3.37) 7  

 

 
(3.38) 7  

 
(3.38) 7  

 

 
(3.38) 7  



 

 
(3.38) 7  

 
 

 
3.38 7  

 

 
3.38 7  

 

 
3.38 7  

 

 
3.38 7  

 

 
 

  

 

3.3.2 Consistency 

The sufficient conditions for a linear multistep to be consistent are;  

• ( i.e. the method has at least order of one). 

•  

•  

•  

where and  are the first and second characteristic polynomials respectively.  

In section 3.3.1, we have established the axioms. 

(i) where , , and  for cases of the 4SBHBDF, 5SBHBDF, and 6SBHBDFrespectively. 

 (ii) It satisfied   in at each cases of 4SBHBDF, 5SBHBDF, and 6SBHBDF.  

 (iii), we shall consider (3.19) and obtain the first and second characteristic polynomials as;  

 



Then  

  

Therefore,  

  

and 

  

  

Hence, which satisfied the condition (iii). Since the three conditions are satisfied, it follows that 

(3.19) is consistent.  

We follow similar procedure for others and even for cases  and  and present the first and second 

characteristic polynomials for the other in the table. 

Table 3.4 Condition for Consistency of the 4SBHBDF 

Method   

(3.19)   

 

(3.20)   

 

(3.20) 
 

 

 

 

(3.20) 
 

 

 

 

(3.20) 
 

 

 

 



 

 

 

 

 

 

 

 

Table 3.5: Condition for consistency of the 5SBHBDF 

method  
 

 
 

(3.28) 
 

 
 

 

(3.30) 

       

(3.30) 

       

(3.30) 

         

(3.30) 

       

(3.30) 
 

 
 

 

 

  

 

Table 3.6 Condition for Consistency of the 5SBHBDF 

method   



(3.36)   

(3.37) 
 

 

 

 

(3.37) 

              
 

              

 

(3.37) 

               
 

                 
 

(3.37) 

              
 

                
 

(3.37) 

               
 

                    
 

(3.37) 

              
 

                  
 

(3.37) 

              
 

                   
 

 

 

 

 

3.3.3 Zero stability  



According to Awari (2017), a linear multistep method is said to be zero-stable if no root of the 

first characteristic polynomial has modulus greater than one, if every root with modulus one is 

simple, i.e.  and has multiplicity not greater than the order of the differential equation.  

To obtain the zero-stability of HBDF, we shall express the proposed methods in matrix 

difference equation form; 

 

Where 

 

 

,, and  are  matrices obtained from the combined coefficients of the HBDF. The roots of the first 

characteristics polynomial  is obtained from; 

 

 

  

 

3.3.3.1 Zero stability of 4SBHBDF 

We express the schemes in 4SBHBDFin the form (3.41) and obtain the, and as 

 



 

 

 

  

Then, therefore 4SBHBDFis zero-stable since  

3.3.3.2 Zero stability of 5SBHBDF 

We express the schemes in 5SBHBDFin the form (3.42) and obtain the, and as 



 

 

 

 

 

Then, therefore 5SBHBDFis zero-stable since .  

3.3.3.3 Zero stability of 6SBHBDF 

We express the schemes in 6SBHBDFin the form (3.41) and obtain the, and as 

 



 

 

 

 

 

Then , therefore 6SBHBDFis zero-stable since  

  

 

3.4 Convergence 



The necessary and sufficient condition for a Linear Multistep Method to be convergent is the 

method to be consistent and zero-stable. Since, the proposed Backward Differentiation Formulae 

are both consistent and zero-stable, we conclude that the proposed methods are convergent. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

CHAPTER FOUR 

4.0    RESULTS AND DISCUSSION 



4.1 Results 

Problem: 1 

Constant Coefficient Linear Type   

 

 

Exact solution: 

 

Source Hussaini  and Muhammad (2021) 

Results of Problem 1 is presented in Table 4.1 and Table 4.2 

  

 

Table 4.1 Numerical Comparison of Exact Solution and the Proposed Methods for Problem 

1 at  

x Exact 4SBHBDF 5SBHBDF 6SBHDF 

0.0 4 4 4 4 

0.1 3.703477803016 3.703477800904654 3.70347780303625 3.7034778030095 

0.2 2.092512222723 2.092512211056652 2.09252222790784 2.0925122226926 

0.3 2.030109209389 2.030109247870297 2.03010920922489 2.0301092094835 

0.4 10.68384526906 10.68384536914484 10.6838452687145 10.683845269302 

0.5 27.19950587509 27.19950610485733 27.1995058743943 27.199505875615 

0.6 56.97102341802 56.97102390216715 56.9710234167154 56.971023419096 

0.7 108.5987462326 108.5987471960738 108.598746230267 108.59874623471 

0.8 195.6104858887 195.6104877209509 195.610485884562 195.61048589256 



0.9 339.0264188636 339.0264222318543 339.026418856481 339.02641887047 

1.0 571.1433607200 571.1433667080193 571.143360708019 571.14336073189 

 

The Table 4.1 shows the numerical results of problem 1. The results show that the proposed 

methods 4SBHBDF, 5SBHBDF and 6SBHBDF agree well with the exact solution as illustrated 

in the tabulated results. The results also proved that as the number of step size  increases, the 

accuracy increases.  

  

 

Table 4.2 Absolute Error  in proposed methods for Problem 1  

x 4SBHBDF 5SBHBDF 6SBHBDF Hussaini and 

Muhammad (2021) 

0.0 0 0 0 0 

0.1 2.111386E-09 2.021077E-11 6.511951E-12 1.3159E-07 

0.2 1.166701E-08 6.712188E-11 3.104634E-11 6.7720E-07 

0.3 3.848114E-08 1.642611E-10 9.438140E-11 2.1628E-06 

0.4 1.000783E-07 3.520264E-10 2.363964E-10 5.5378E-06 

0.5 2.297648E-07 6.981589E-09 5.226320E-10 1.2576E-05 

0.6 4.841329E-07 1.313958E-09 1.067437E-09 5.2072E-05 

0.7 9.634269E-07 2.378996E-09 2.065300E-09 9.8616E-05 

0.8 1.832210E-06 4.178189E-09 3.833801E-09 2.6315E-05 

0.9 3.368216E-06 7.156504E-09 6.833380E-09 1.8063E-04 

1.0 6.015070E-06 1.199823E-08 1.187924E-08 3.2162E-04 

 



The results of the errors of problem 1 at h=0.01, proved that as the number of step size  

increases, the accuracy increases.  

 

 

 

 

 

 

 

Problem: 2 

Constant Coefficient Linear Type 

 

 

Exact Solution  

 

Source: Badmus et al.  (2014)  

Results of Problem 1 is presented in Table 4.3 and Table 4.4 

 



 

 

 

 

 

 

 

 

 

 

Table 4.3 Numerical Comparison of Exact Solution and the Proposed Methods for Problem 

2 at  

x Exact 4SBHBDF 5SBHBDF 6SBHBDF 

0 0 0 0 0 

0.1 1.00513852551048 1.005138525510492 1.005138525510484 1.005138525510484 

0.2 1.01055824175352 1.010558241753543 1.010558241753527 1.010558241753527 

0.3 1.01626544391208 1.016265443912109 1.016265443912083 1.016265443912083 

0.4 1.02226654286652 1.022266542866562 1.022266542866525 1.022266542866525 

0.5 1.02856806714979 1.028568067149859 1.028568067149798 1.028568067149798 

0.6 1.03517666493419 1.035176664934279 1.035176664934192 1.035176664934192 



0.7 1.04209910605024 1.042099106050362 1.042099106050249 1.042099106050249 

0.8 1.04934228403829 1.049342284038433 1.049342284038292 1.049342284038292 

0.9 1.05691321823310 1.056913218233285 1.056913218233101 1.056913218233102 

1.0 1.06481905588225 1.064819055882486 1.064819055882258 1.064819055882258 

 

The Table 4.3 shows the numerical results of problem 2. The results show that the proposed 

methods 4SBHBDF, 5SBHBDF and 6SBHBDF agree well with the exact solution as illustrated 

in the tabulated results. The results also proved that as the number of step size  increases, the 

accuracy increases.  

 

 

 

 

 

 

Table 4.4 Absolute Error  in proposed methods for Problem 2 

x 4SBHBDF 5SBHBDF 6SBHBDF Badmus et al. 

(2014) 

0.0 0 0 0 0 

0.1 7.307217E-15 6.163983E-17 5.166811E-18 2.021077E-11 

0.2 1.657122E-14 1.344640E-16 1.184919E-17 6.712188E-11 

0.3 2.577850E-14 2.103543E-16 1.860079E-17 1.642611E-10 

0.4 3.695325E-14 2.911278E-16 2.546709E-17 3.520264E-10 

0.5 6.058473E-14 3.468657E-16 3.239023E-17 6.981589E-09 



0.6 8.653712E-14 4.193913E-16 3.969403E-17 1.313958E-09 

0.7 1.126725E-13 5.010015E-16 5.334440E-17 2.378996E-09 

0.8 1.411474E-13 5.859614E-16 6.877556E-17 4.178189E-09 

0.9 1.831217E-13 6.762430E-16 8.440513E-17 7.156504E-09 

1.0 2.278189E-13 7.395821E-16 1.002848E-16 1.199823E-08 

 

The results show that errors become smaller as the step size k increases. It also observed that 

there is accuracy as step size k increases. 

 

 

 

 

 

 

Problem: 3 

Constant Coefficient Linear Type 

 

 

Exact solution as: 



 

Source: Abada  et al. (2017) 

 

 

Results of Problem 3 is presented in Table 4.5 and Table 4.6 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.5 Numerical Comparison of Exact Solution and the Proposed Methods for Problem 

3 at  

X Exact 4SBHBDF 5SBHBDF 6SBHBDF 

1.00 1 1 1 1 

1.003125 1.00307652585769 1.00307652585771 1.003076525857696 1.003076525857696 

1.006250 1.00605750308351 1.00605750308355 1.006057503083516 1.006057503083516 

1.009375 1.00894499508883 1.00894499508889 1.008944995088838 1.008944995088837 



1.012500 1.01174101816798 1.01174101816806 1.011741018167989 1.011741018167988 

1.015625 1.01444754268641 1.01444754268653 1.014447542686415 1.014447542686414 

1.018750 1.01706649423567 1.01706649423584 1.017066494235674 1.017066494235673 

1.02187 5 1.01959975475628 1.01959975475650 1.019599754756289 1.019599754756288 

1.025000 1.02204916362943 1.02204916362969 1.022049163629433 1.022049163629432 

1.028125 1.02441651873840 1.02441651873873 1.024416518738405 1.024416518738403 

1.031250 1.02670357750080 1.02670357750121 1.026703577500808 1.026703577500806 

 

The Table 4.5 shows the numerical results of problem 3. The results show that the proposed 

methods 4SBHBDF, 5SBHBDF and 6SBHBDF agree well with the exact solution as illustrated 

in the tabulated results. The results also proved that as the number of step size  increases, the 

accuracy increases.  

  

 

Table 4.6 Absolute Error  in prosed methods for Problem 3  

x 4SBHBDF 5SBHBDF 6SBHBDF Abada et al. 

(2017) 

1.000000 1 1 1 1 

1.003125 1.584762E-14 2.902001E-16 6.035170E-17 1.0000E-14 

1.006250 3.538009E-14 6.233869E-16 1.362264E-16 2.0000E-14 

1.009375 5.409330E-14 9.585251E-16 2.105833E-16 3.0000E-14 

1.012500 7.645367E-14 1.306081E-15 2.836268E-16 2.0000E-14 

1.015625 1.218539E-13 1.526144E-15 3.537719E-16 2.0000E-14 

1.018750 1.698903E-13 1.716720E-15 4.242471E-16 2.0000E-14 



1.021875 2.166456E-13 1.943949E-15 5.103597E-16 3.0000E-14 

1.025000 2.660267E-13 2.173730E-15 6.497260E-16 4.0000E-14 

1.028125 3.349836E-13 2.414736E-15 7.865096E-16 4.0000E-14 

1.031250 4.057153E-13 2.550703E-15 9.208023E-16 4.0000E-14 

 

The errors of this method at each k-step compared with the abada solution shows that error 

becomes smaller as the step size increases. it is also observed that there is efficient and accuracy 

as step size increases. 

 

 

 

 

 

 

 

Problem: 4 

Linear System of Second Order Initial Value problem (IVP) 

 

 

, h=0.01 

Exact Solution: 

 



Source: Hussaini and Muhammad (2021) 

Results of Problem 4 is presented in Table 4.7 and Table 4.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.7a Numerical Comparison of Exact Solution and the Proposed Methods for 

Problem 4 at for  

X Exact 4 SBHBDF 5 SBHBDF 6 SBHBDF 

0.0 1.0000000000000 1.0000000000000 1.0000000000000 1.000000000000 

0.1 1.221402758160169 1.2214027581980047 1.221402758160167 1.221402758160167 

0.2 1.491824697641270 1.4918246977910167 1.491824697641264 1.491824697641272 

0.3 1.822118800390508 1.8221188007610667 1.822118800390498 1.822118800390513 

0.4 2.2255409284924676 2.2255409292307309 2.225540928492451 2.225540928492476 

0.5 2.7182818284590453 2.7182818297719146 2.718281828459022 2.718281828459060 



0.6 3.3201169227365474 3.3201169248974443 3.320116922736516 3.320116922736572 

0.7 4.0551999668446745 4.0551999702285565 4.055199966844632  

0.8 4.9530324243951148 4.9530324294908558 4.953032424395059 4.953032424395173 

0.9 6.0496474644129460 6.0496474718788228 6.049647464412873 6.049647464412931 

1.0 7.3890560989306501 7.3890561096167800 7.389056098930556 7.389056098930675 

 

The Table 4.7a shows the numerical results of Problem 4. The results show that the proposed 

methods 4SBHBDF, 5SBHBDF and 6SBHBDF agree well with the exact solution as illustrated 

in the tabulated results. The results also proved that as the number of step size  increases, the 

accuracy increases.  

  

 

Table 4.7b Absolute Error  in prosed methods for Problem 4 

X 4SBHBDF 5SBHBDF 6SBHBDF Hussani and 

Muhammad 

(2021) 

0.0 0.0 0.0 0.0 0.0 

0.1 1.584762E-14 2.902001E-16 6.035170E-17 3.782E-11 

0.2 3.538009E-14 6.233869E-16 1.362264E-16 1.496E-10 

0.3 5.409330E-14 9.585251E-16 2.105833E-16 3.704E-10 

0.4 7.645367E-14 1.306081E-15 2.836268E-16 7.379E-10 

0.5 1.218539E-13 1.526144E-15 3.537719E-16 1.312E-09 

0.6 1.698903E-13 1.716720E-15 4.242471E-16 2.160E-09 

0.7 2.166456E-13 1.943949E-15 5.103597E-16 3.382E-09 

0.8 2.660267E-13 2.173730E-15 6.497260E-16 5.094E-09 



0.9 3.349836E-13 2.414736E-15 7.865096E-16 7.464E-09 

1.0 4.057153E-13 2.550703E-15 9.208023E-16 1.068E-08 

 

The errors of this method at each k-step compared with the exact solution shows that error 

becomes smaller as the step size increases. it is also observed that there is efficient and accuracy 

as step size increases. 

  

 

Table 4.8a Numerical Comparison of Exact Solution and the Proposed Methods for 

Problem 4 at for  

X Exact 4 SBHBDF 5 SBHBDF 6 SBHBDF 

0.0 1.000000000000000 1.0000000000000000 1.000000000000000 1.000000000000000 

0.1 1.2214027581601698339 1.2214027581980047 1.2214027581601671 1.2214027581601671 

0.2 1.4918246976412703178 1.4918246977910167 1.4918246976412642 1.4918246976412721 

0.3 1.8221188003905089748 1.8221188007610667 1.8221188003904986 1.8221188003905132 

0.4 2.2255409284924676045 2.2255409292307309 2.2255409284924519 2.2255409284924762 

0.5 2.7182818284590452353 2.7182818297719146 2.7182818284590227 2.7182818284590603 

0.6 3.3201169227365474895 3.3201169248974443 3.3201169227365164 3.3201169227365723 

0.7 4.0551999668446745872 4.0551999702285565 4.0551999668446328 4.0551999668447133 

0.8 4.9530324243951148036 4.9530324294908558 4.9530324243950594 4.9530324243951731 

0.9 6.0496474644129460837 6.0496474718788228 6.0496474644128736 6.0496474644130312 

1.0 7.3890560989306502272 7.3890561096167800 7.3890560989305563 7.3890560989307722 

 

The Table 4.8a shows the numerical results of problem 4. The results show that the proposed 

methods 4SBHBDF, 5SBHBDF and 6SBHBDF agree well with the exact solution as illustrated 



in the tabulated results. The results also proved that as the number of step size  increases, the 

accuracy increases.  

 

 

 

 

 

 

 

 

 

Table 4.8b Absolute Error  in prosed methods for Problem 4  

x 4SBHBDF 5SBHBDF 6SBHBDF Hussani and 

Muhammad 

(2021) 

0.0     

0.1 1.584762E-14 2.902001E-16 6.035170E-17 3.782E-11 

0.2 3.538009E-14 6.233869E-16 1.362264E-16 1.496E-10 

0.3 5.409330E-14 9.585251E-16 2.105833E-16 3.704E-10 

0.4 7.645367E-14 1.306081E-15 2.836268E-16 7.379E-10 

0.5 1.218539E-13 1.526144E-15 3.537719E-16 1.312E-09 

0.6 1.698903E-13 1.716720E-15 4.242471E-16 2.160E-09 

0.7 2.166456E-13 1.943949E-15 5.103597E-16 3.382E-09 

0.8 2.660267E-13 2.173730E-15 6.497260E-16 5.094E-09 



0.9 3.349836E-13 2.414736E-15 7.865096E-16 7.464E-09 

1.0 4.057153E-13 2.550703E-15 9.208023E-16 1.068E-08 

 

The errors of this method at each k-step compared with the exact solution shows that error 

becomes smaller as the step size increases. it is also observed that there is efficient and accuracy 

as step size increases. 

 

 

 

 

 

 

 

Problem: 5   

Variable Coefficient Linear Type  

 

 

Exact solution: 

 

Source: Badmus et al. (2014) 

Results of Problem 5 is presented in Table 4.9  

 



 

 

 

 

 

 

 

 

 

 

Table 4.9 Numerical Comparison of Exact Solution and the Computed Results from the 

proposed method.  

X Exact 4SBHBDF 5SBHBDF 6SBHBDF 

1.0 1 1 1 1 

1.1 2.4701988672182829 2.4701988672608552 2.4701988672187693 2.4701988672182877 

1.2 2.8898549811593281 2.8898549812856299 2.8898549811605495 2.8898549811593207 

1.3 3.2695365991805926 3.2695365994060417 3.2695365991826082 3.2695365991805986 

1.4 3.6169125594644035 3.6169125597911295 3.6169125594672004 3.6169125594644255 

1.5 3.9376982887163044 3.9376982891421087 3.9376982887198388 3.9376982887163082 

1.6 4.2362516323143080 4.2362516328346191 4.2362516323185326 4.2362516323143180 

1.7 4.5159614605420799 4.5159614611519441 4.5159614605469496 4.5159614605420382 

1.8 4.7795088555179296 4.7795088562122628 4.7795088555234023 4.7795088555179716 

1.9 5.0290473123789455 5.0290473131530200 5.0290473123849836 5.0290473123789457 



2.0 5.2663299577411102 5.2663299585905134 5.2663299577476803 5.2663299577410391 

 

The Table 4.9 shows the numerical results of problem 5. The results show that the proposed 

methods 4SBHBDF, 5SBHBDF and 6SBHBDF agree well with the exact solution as illustrated 

in the tabulated results. The results also proved that as the number of step size  increases, the 

accuracy increases.  

 

 

 

 

 

 

 

 

4.9b Absolute Error  in proposed methods for Problem 5 

x 4SBHBDF 5SBHBDF 6SBHBDF Badmus et al. 

(2014) 

1.0 0 0 0 0 

1.1 4.257245E-11 4.954632E-13 4.794671E-15 2.021077E-11 

1.2 1.263052E-10 1.289621E-12 1.118039E-15 6.712188E-11 

1.3 2.254480E-10 2.034710E-12 6.058695E-15 1.642611E-10 

1.4 3.267263E-10 2.811952E-12 9.758609E-15 3.520264E-10 

1.5 4.258054E-10 3.554371E-12 3.835802E-15 6.981589E-09 

1.6 5.203131E-10 4.276249E-12 9.720218E-15 1.313958E-09 



1.7 6.098615E-10 4.801756E-12 4.168247E-14 2.378996E-09 

1.8 6.943314E-10 5.456282E-12 4.202684E-14 4.178189E-09 

1.9 7.740732E-10 6.023162E-12 2.180659E-14 7.156504E-09 

2.0 8.494079E-10 6.567251E-12 7.110028E-14 1.199823E-08 

 

The errors of this method at each k-step compared with the exact solution shows that error 

becomes smaller as the step size increases. it is also observed that there is efficient and accuracy 

as step size increases. 

 

 

 

 

 

 

Problem: 6 

Consider the system of equations of Stiefel and Bettis problem  

 

 

 



 

Exact Solutions are given as; 

 

 

Source: Yahaya and Tijjani (2015) 

 

Results of Problem 6 is presented in Table 4.10 and Table 4.11. 

 

 

 

 

 

 

 

 

 

Table 4.10a Numerical Comparison of Exact Solution and the Proposed Methods for 

Problem 6 at for  

x Exact 4SBHBDF 5 SBHBDF 6SBHBDF 

0.000000 0 0 0 0 

0.003125 0.999995122074278 0.999995122074278 0.999995122074278 0.999995122074278 

0.006250 0.999980488344701 0.999980488344701 0.999980488344701 0.999980488344701 

0.009375 0.999956098954032 0.999956098954032 0.999956098954032 0.999956098954032 

0.012500 0.999921954140212 0.999921954140212 0.999921954140212 0.999921954140212 



0.015625 0.999878054236352 0.999878054236352 0.999878054236352 0.999878054236352 

0.018750 0.999824399670731 0.999824399670731 0.999824399670731 0.999824399670731 

0.02187  0.999760990966796 0.999760990966796 0.999760990966796 0.999760990966796 

0.025000 0.999687828743151 0.999687828743151 0.999687828743151 0.999687828743151 

0.028125 0.999604913713556 0.999604913713556 0.999604913713556 0.999604913713556 

0.031250 0.999512246686917 0.999512246686917 0.999512246686917 0.999512246686917 

 

The Table 4.10a shows the numerical results of problem 6. The results show that the proposed 

methods 4SBHBDF, 5SBHBDF and 6SBHBDF agree well with the exact solution as illustrated 

in the tabulated results. The results also proved that as the number of step size  increases, the 

accuracy increases.  

 

 

 

 

 

Table 4.10b Absolute Error  in proposed methods for Problem 6 

x 4SBHBDF 5SBHBDF  6SBHBDF Error in 

Yahaya and 

Tijjani (2015) 

0.000000 0 0 0 0 

0.003125 2.381376E-22 7.298480E-23 1.041200E-26 5.6685E-22 

0.006250 5.405120E-22 1.581604E-22 2.380000E-26 9.2282E-22 

0.009375 8.316330E-22 2.454614E-22 3.716060E-26 2.0528E-22 



0.012500 1.205856E-21 3.374029E-22 5.041800E-26 3.0176E-21 

0.015625 2.552634E-21 3.987581E-22 6.357000E-26 2.6388E-21 

0.018750 4.099494E-21 4.649762E-22 7.859600E-26 1.8847E-22 

0.02187 5 5.619969E-21 5.433785E-22 1.304450E-25 4.5946E-21 

0.025000 7.359366E-21 6.239018E-22 1.917050E-25 3.8066E-21 

0.028125 1.094169E-20 7.090608E-22 2.527360E-25 3.9205E-21 

0.031250 1.485984E-20 7.636379E-22 3.138200E-25 1.2096E-21 

 

The errors of this method at each k-step compared with the exact solution shows that error 

becomes smaller as the step size increases. it is also observed that there is efficient and accuracy 

as step size increases. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.11a Numerical Comparison of Exact Solution and the Proposed Methods for 

Problem 6 at for  

x Exact 4SBHBDF 5SBHBDF 6SBHBDF 

0.0000 0 0 0 0 

0.003125 0.003123432421368 0.003123432421368 0.003123432421368 0.003123432421368 

0.006250 0.006246834371010 0.006246834371010 0.006246834371010 0.006246834371010 

0.009375 0.009370175377494 0.009370175377494 0.009370175377494 0.009370175377494 

0.012500 0.012493424969984 0.012493424969984 0.012493424969984 0.012493424969984 



0.015625 0.015616552678538 0.015616552678538 0.015616552678538 0.015616552678538 

0.018750 0.018739528034400 0.018739528034400 0.018739528034400 0.018739528034400 

0.021875 0.021862320570301 0.021862320570301 0.021862320570301 0.021862320570301 

0.025000 0.024984899820758 0.024984899820758 0.024984899820758 0.024984899820758 

0.028125 0.028107235322366 0.028107235322366 0.028107235322366 0.028107235322366 

0.031250 0.031229296614099 0.031229296614099 0.031229296614099 0.031229296614099 

 

The Table 4.11a shows the numerical results of problem 6. The results show that the proposed 

methods 4SBHBDF, 5SBHBDF and 6SBHBDF agree well with the exact solution as illustrated 

in the tabulated results. The results also proved that as the number of step size  increases, the 

accuracy increases.  

 

 

 

 

  

 

Table 4.11b Absolute Error  in proposed methods for Problem 6  

x 4SBHBDF 5SBHBDF 6SBHBDF Error in Yahaya and 

Tijjani (2015)  

0.000000 0 0 0 0 

0.003125 4.312814E-20 3.292285E-22 1.242837E-24 5.6685E-22 

0.006250 9.713139E-20 3.185519E-22 2.829327E-24 9.2282E-22 

0.009375 1.499253E-19 2.506054E-23 4.408140E-24 2.0528E-22 



0.012500 2.135932E-19 1.127375E-21 5.990016E-24 3.0176E-21 

0.015625 3.469364E-19 4.921169E-21 7.360440E-24 2.6388E-21 

0.018750 4.911499E-19 6.255357E-21 9.197510E-24 1.8847E-22 

0.02187 5 6.341507E-19 5.901612E-21 1.221512E-23 4.5946E-21 

0.025000 7.880187E-19 4.661617E-21 1.557615E-23 3.8066E-21 

0.028125 1.011539E-18 9.136466E-21 1.892938E-23 3.9205E-20 

0.031250 1.245920E-18 1.636987E-20 2.228554E-23 1.7865E-20 

The errors of this method at each k-step compared with the exact solution shows that error 

becomes smaller as the step size increases. it is also observed that there is efficient and accuracy 

as step size increases. 

 

 

 

 

 

 

 

CHAPTER FIVE 

5.0                  CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 



 In this research, block hybrid backward differentiation of order (k+1) have been developed by 

the interpolation and collocation techniques with  off- grids points for the solution of second 

order ordinary differential equations (ODEs). The power series expansion technique was used as 

the basis function. Analyses of the basic properties of the methods have also been verified which 

shows that the methods are of order (k+1). It also showed that the methods are consistent, zero- 

stable and convergent. Some selected problems showed that second order ordinary differential 

equations (ODEs) have been considered and agree strongly with the exact solution to determine 

the efficiency and accuracy of the methods. It was also observed from the error tables and figures 

that the block hybrid backward differentiation formulae (BHBDF) performed better in solving 

problems of second order ordinary differential equations (ODEs) as they produce smaller errors.  

The accuracy of the methods developed was tested with nine test problems (Real-life problem, 

stiefel and bettis problem and highly stiff problem) and their corresponding results were 

compared with other methods develop by researchers. Moreover the outcome of the comparison 

of the method to the results of exact solution showed that, the proposed methods is more 

efficient. It should be note that the accuracy and efficiency of the method is dependent on the 

implementation strategies. If economical computation is required, then the new method is a 

better choice. The proposed method is therefore recommended for general purpose used. Maple 

17 software package was employed to generate the schemes and results.  

5.2 Recommendations 

It is proposed for further research that; 

• Researchers should try other basis functions different  from power series  to develop scheme . 

• The number of k- steps  to be increased as the performance of the method is investigated. 



•  More off-grid points should be focused in order to enhance global error estimations. 

• Researchers should consider developing computer software for solution of initial value 

problems of the proposed method. 

5.3 Contributions to Knowledge 

The following contributions were made: 

• Formulation of new class of hybrid methods which are based on block hybrid backward 

differentiation formulae (BHBDF) for the solution of second order ordinary differential 

equations.  

• Derivation of some hybrid methods which are self-starting. 

• The methods are applicable to stiff system, non linear and system of second order 

ordinary differential equations (ODEs). 

• The efficiency and accuracy of the proposed method were proven to be relatively high at 

error analyses ranging between E-14 and E-26, with the lowest error obtained with the 

method at K = 6. The study introduces new approaches for discretization, interpolation, 

and collocation, contributing to the evolution of techniques used in computational 

mathematics. 
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