FAILURE ANALYSIS OF THREE-LEGGED GUYED TELECOMMUNICATION MAST IN CALABAR AND MINNA, NIGERIA.

BY

UDOFIA, Udeme Mfon MEng/SIPET/2018/8807

A THESIS SUBMITTED TO THE POSTGRADUATE SCHOOL, FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA, NIGERIA. IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF ENGINEERING IN CIVIL ENGINEERING (STRUCTURAL ENGINEERING)

ABSTRACT

Two cases of telecommunication mast collapse in Calabar and Minna, Nigeria were considered for structural integrity audit to ascertain all the likely causes of the tower collapse. A Collapsed 30 metres three-legged guyed telecommunication mast, by University of Calabar Teaching Hospital, Calabar and a 20 metres three-legged guyed telecommunication mast at Tunga roundabout by David's road, Minna, Niger State, Nigeria was investigated. A typical 30 metres and 20 metres guyed mast of pipe section for the main pole and solid-round high tensile steel for bracing was modelled, analysed and designed using STAAD-Pro V8i software and loadings applicable to Calabar and Minna environment respectively. The result showed that the 30 metres three-legged guved telecommunication mast, by University of Calabar Teaching Hospital, Calabar and a 20 metres three-legged guyed telecommunication at Tunga roundabout by David's road, Minna, Niger State, Nigeria, collapsed due to insufficient depth of the footing for the guy wires as the mast themselves could not withstand the wind pressure and inadequate sections provided. There was no sufficient space for the guy wire anchorage. It was recommended from the study that; more attention should be paid to guy wire footing. The depth of the guy wires for the collapsed mast was 600mm and the minimum from this research is recommended to be 1200mm for any mast above 15 metres tall. More so, Proper analysis should be carried out on the guy wire in order to determine the initial tension value during guyed mast modelled, analysis and design. While sufficient space should be provided for guy wire anchorage.

TABLE OF CONTENTS

CON	TENTS	PAGE	
Cover	Page		
Title I	Page	ii	
Decla	ration	iii	
Certif	ication	iv	
Dedic	ation	v	
Ackno	owledgments	vi	
Abstra	act	vii	
Table	of Content	viii	
List of	List of Tables		
List of Figures			
List of	f Plates	xiv	
CHAI	PTER ONE		
1.0	INTRODUCTION	1	
1.1	Background to the Study	1	
1.1.1	Type of Tower Based on Cross Section	2	
1.1.2	Type of Tower Based on Structural Action	2	
1.1.3	Type of Tower Based on Material Sections	4	
1.2	Statement of the Research Problem	5	
1.3	Aim and Objectives of the Study	6	
1.4	Justification of the Study	7	
1.5	Scope of Study	7	

CHAPTER TWO

2.0	LITERATURE REVIEW	8			
2.1.1	Preamble	8			
2.1.2	Telecommunication tower	8			
2.1.3	Guy cable	14			
2.1.4	Wind load on the guy cable	15			
2.2	Research on collapse of mast	18			
2.2.1	Collapse case in Kaduna	18			
2.2.2	Collapse case in Sokoto	19			
2.2.3	Collapse case in Poland	19			
2.2.4	Collapse case in New York	20			
2.2.5	Collapse case in Clarksburg	21			
2.2.6	Collapse case in Missouri	22			
2.2.7	Collapse case in Florida	23			
2.2.8	Collapse case in Alabama	23			
2.2.9	Collapse case in Port Harcourt, Rivers State, Nigeria.	23			
2.2.10	Collapse case in Benue State	24			
2.2.11	Collapse case in Bayelsa State	25			
2.2.12	Collapse case in Jakarta, Indonesia	26			
CHAPTER THREE					
3.0	MATERIALS AND METHODS	28			
3.1	Materials (Design Information)	28			
3.2.1	STAAD-Pro V8i	28			
3.2.2	Loadings	29			

3.2.3	Brief account of BS 5950	31
3.2.4	Steel Designers Manual Seventh Edition	31
3.3	Methods	37
3.3.1	Analysis of Initial Tension Forces	37
3.3.2	Analysis of amplitude x sine function (angular frequency x time + phase	
	difference).	37
3.4	Tower Analysis and Design using STAAD pro	38
3.5	A Brief Account of Truss Analysis	38
3.5.1	Types of Truss Analysis	39
3.5.2	Joint Method of Analysis	39
3.6	Tower Analysis By Manual Approach	40
3.6.1	Analysis of the space truss:	43
3.7	Tower Design By Manual Approach	54
3.8	Design Statement	55
CHAI	PTER FOUR	
4.0	RESULTS AND DISSCUSION	62
4.1	Manual Structural Analysis Result	62
4.2	Manual Structural Design details	64
4.3	Software Structural Analysis and Design results	65
CHAI	PTER FIVE	
5.0	CONLUSION AND RECOMMENDATIONS	66

5.1	Conclusion	66

APPE	NDIX	73
REFE	REFERENCES	
5.3	Research Contributions to knowledge	68
5.2	Recommendations	67

LIST OF TABLES

Table		Page
2.1	Some record of tower failures in Nigeria and world over.	14
3.1	Characteristics wind Pressure	30
3.2	Equipment loading	30
3.3	Design by manual approach for vertical member	57
3.4	Design by manual approach for horizontal member	60
3.5	Design by manual approach for diagonal member	61
4.1	Reactions and Member Forces Summary	64

LIST OF FIGURES

Figure	2S	Page
1.1 :	Triangular and Square Tower.	2
1.2 :	Tower Types based on structural action	4
2.1 :	3D FEM model of the steel telecommunication tower	12
2.2 :	Layout of a typical telecommunication site	13
2.3 :	Guy anchorage systems: Bernard and Janusz (2014).	16
2.4 :	Guy sections close to the foundation: Bernard and Janusz (2014).	16
3.1 :	Maximum wind flow map for Nigeria (30 years and above) in m/s	33
3.2 :	Multiplying factor chat	34
3.3 :	Cross Section of the mast view from y-direction.	40
3.4 :	View from x-direction.	40
3.5 :	View from z-direction.	41
3.6 :	Schematic configuration	41
3.7 :	3.7a shows the space diagram of 30 meters three-legged guyed	
	telecommunication mast, 3.7b the plan and 3.7c the elevation.	42
3.8 :	3.8a shows Hot-Finish circular hollow section of the main poles and	
	3.8b shows the elevation.	43
3.9 :	Flexural buckling diagram with direction of wind and axial load	
	application on the mast.	54
3.10 :	Flexural buckling diagram	56
4.1 :	4.1a shows the space diagram details of 30 meters three-legged guyed	
	telecommunication mast	65

LIST OF PLATES

Plate		Page
I :	Mast collapse in Kaduna	18
II :	Wreckage of the Warsaw Radio mast, at Konstantynow, Gabin, Poland.	20
III :	Collapse of a Telecommunication Tower at the Summit Park Community in Clarksburg, Wv.	22
IV :	Collapse of a Telecommunication Tower near Takum Junction in	
V :	Kastina-Ala Benue State, Nigeria. Collapse of a Telecommunication Tower Jakarta, Indonesia.	25
	Wireless Estimator Google Maps screenshot.	27
VI:	Different part of the collapsed 20m Mast in Minna, Nigeria.	35
VII :	Different part of the collapsed 30m mast	36

CHAPTER ONE

2.0 INTRODUCTION

1.1 Background to the Study

In the contemporary era, the telecommunication industry plays a great role in human societies and thus much more attention is now being paid to telecommunication towers than it was in the past. At times of occurrence of natural disasters, telecommunication towers have the crucial task of instant transmission of information from the affected areas to the rescue centres. In addition, performance of infrastructure such as dams, electric, gas, and fuel transmission stations, depends extensively on the information being transmitted via these telecommunication towers (Amiri *et al.*, 2004).

Military and defence industries, in addition to television, radio, and telecommunication industries are other areas of application for such towers and thus creates the necessity for further research on telecommunication towers. There are three types of steel telecommunication towers mainly known to engineers as guyed towers, self-supporting towers, and monopoles as seen in Figure 1.1. Guyed towers normally provide an economical and efficient solution for tall towers of 150 metres and above, compared to self-supporting towers. Self-supporting towers are categorized into two groups of 4-legged and 3-legged lattice towers. The monopoles are designed for use with cellular, microwave, broadcast, and other applications. Monopoles are most economical for heights under 55 metres and are a viable solution for space limitation problems and rigid zoning codes. Industry separates monopoles from self-supporting towers with the latter being latticed. Most research to date has been performed on 3 & 4- legged self-supporting telecommunication towers. Therefore, in this research, general investigation

shall be carried out to obtain detailed information on collapsed mast in Nigeria and some cases outside Nigeria (Amiri *et al.*, 2004)

The different types of telecommunication towers are based upon their structural action, cross section and type of sections used. A brief description is as given below:

2.1.1 Type of tower based on cross section

Towers can be classified, based on their cross section, into square, rectangular, triangular, delta, hexagonal and polygonal towers. Open steel lattice towers make the most efficient use of material and enables the construction of extremely light-weight and stiff structures by offering less exposed area to wind loads. Most of the power transmission, telecommunication and broadcasting towers are lattice towers. Triangular Lattice Towers have less weight but offer less stiffness in torsion. With the increase in number of faces, it's observed that weight of tower increases. If the supporting action of adjacent beams is considered, the expenditure incurred for hexagonal towers is somewhat less (Al-jassani and Al-suraifi, 2017).

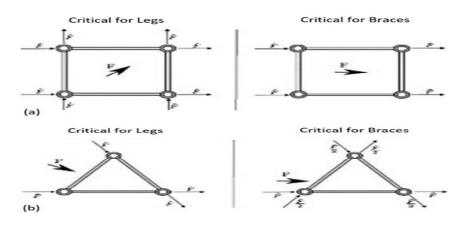


Figure 1.1: Triangular and Square Tower (Al-jassani and Al-suraifi, 2017)

2.1.2 Type of tower based on structural action

Towers are classified into three major groups based on the structural action. They are:

- a) Self-supporting towers
- b) Monopole

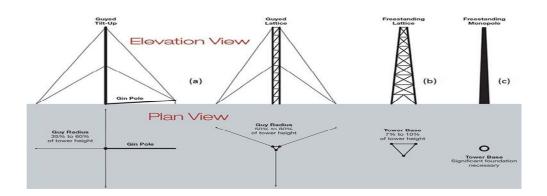
c) Guyed towers

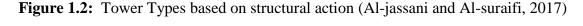
Self-supporting towers

The towers that are supported on ground or on buildings are called as self-supporting towers. Though the weight of these towers is more, they require less base area and are suitable in many situations. Most of the TV, MW, Power transmission, and flood light towers are self-supporting towers, as shown in Figure 1.1.

Monopole towers

It is single self-supporting pole, and is generally placed over roofs of high raised buildings, when number of antennae required is less or height of tower required is less than 9m. It uses minimal space and resemble a single tube, requires one large foundation, typically not exceed 45 m height and the antennas are mounted on the exterior of the tower, as shown in Figure 1.1.


Guyed towers


Guyed towers provide height at a much lower material cost than self-supporting towers due to the efficient use of high-strength steel in the guys. Guyed towers are normally guyed in three directions over an anchor radius of typically 2/3 of the tower height and have a triangular lattice section for the central mast. Tubular masts are also used, especially where icing is very heavy and lattice sections would ice up fully. These towers are much lighter than self-supporting type but require a large free space to anchor guy wires. Whenever large open space is available, guyed towers can be provided. There are other restrictions to mount dish antenna on these towers and require large anchor blocks to hold the ropes, as shown in Figure 1.1. (Al-jassani Al-suraifi, 2017).

Guyed tower benefits

1. Ideal for heights over 60 metres

- 2. Requires significant installation footprint to accommodate guy anchors
- 3. Has significant wind-loading capacity.
- Could be the cheapest choice in case of space availability for so high tower levels (Al-jassani and Al-suraifi, 2017).

1.1.3 Type of Tower Based on Material Sections

Based on the sections used for fabrication, towers are classified into angular and hybrid towers (With tubular and angle bracings). Lattice towers are usually made of bolted angles. Tubular legs and bracings can be economic, especially when the stresses are low enough to allow relatively simple connections. Towers with tubular members may be less than half the weight of angle towers because of the reduced wind load on circular sections. However the extra cost of the tube and the more complicated connection details can exceed the saving of steel weight and foundations (Al-jassani and Al-suraifi, 2017).

Telecommunication structures are fundamental components of communication and post-disaster networks and their serviceability immediately after a design-level earthquake is essential. In fact accessing to telecommunication and broadcast services is one of the main advantages of using telecommunication masts especially in emergency situations like after a severe earthquake. Telecommunication structures are also used for automatic control of electric power networks, which makes them all the more strategic for lifeline serviceability. Several published studies have used detailed nonlinear dynamic analysis of tall guyed masts using finite element models, either to predict the response of specific structures or to develop simplified analysis procedures more amenable to design practice (Osgoie *et al.*, 2012).

1.2 Statement of the Research Problem

There have been many cases of collapse of telecommunication mast worldwide. One of the significant incidents is the failure of the former 646 metres world's tallest guyed Warsaw Radio mast, at Konstantynow, Gabin, Poland, in 1991 during guy wire replacement (Cindy, 2011).

On January 20th, 2022 it was reported by Sahara Reporters, New York that Two workers of the Nigeria Telecommunication Limited (NITEL) have died in Kastina-Ala Local Government Area of Benue State, five were critically injured. It was learnt that the victim's died after the mast collapsed in the process of dismantling it. Sahara Reporters gathered that the workers were seven in number on top of the mast working around the NITEL premises near Takum Junction in Kastina-Ala when it suddenly collapsed. Confirming the incident, spokesperson for the police in the state, Sewuese Anene, affirmed that two people died in the accident. Chairman of Kastina-Ala Local Government Area, Alfred Atera, while lamenting the tragedy, said, They had loosed one side of the mast when the other part collapsed. Two of them died instantly while five others were taken to the hospital (Sahara Reporters, 2022).

On September 27, 2017, an incident occurred in Miami Gardens, Florida where three construction employees were killed. The employees were engaged in installing a new

antenna for a local TV station at the top of a 951-foot tall antenna tower constructed in 2009. The three employees were killed when the gin pole they were using suddenly disengaged from the tower structure plunging several hundred feet to the ground. The employees were tied to the gin pole and fell with it. The cause of the disengagement was the failure of attachment between the gin pole and the tower structure (Mohammad and Bryan, 2018).

A 105 metres high guyed radio transmission tower collapsed during the final phase of its construction on June 6, 1994 at approximately 9:00 am in Selma, Alabama. On that morning, two workers positioned near the top section of the tower, having completed the fastening of the coaxial cable to the top section of the tower, were beginning to lower the erection gin pole from the top section of the tower to the ground. The gin pole suddenly dropped and struck the coaxial cable, followed by the collapse of the tower structure. Both workers, who were tied to the collapsing tower, fell to the ground. The accident resulted in the death of one of the worker and serious injuries to the other Muhammad and Fragrance (1994).

In Minna, Nigeria, there was a collapse of three-legged guyed telecommunication mast of height 20 metres. Also, in Calabar, Cross River Sate, another three-legged telecommunication mast of height 30 metres collapsed in 2020 and 2021 respectively. Therefore, there is a need to carry out failure analysis of the two collapse telecommunication mast in Nigeria in other to find out the causes and then the solutions to prevent such occurrence in future.

1.3 Aim and Objectives of the Study

The aim of this work is to carry out failure analysis of three-legged guyed telecommunication mast in Calabar and Minna, Nigeria while the objectives are:

6

- 1. To identify the causes of collapse of three-legged guyed telecommunication mast.
- To analyse the two collapsed cases of three-legged guyed telecommunication mast in Calabar and Minna, Nigeria.
- 3. To design structurally 30 metres and 20 metres three-legged telecommunication mast using STAAD-Pro V8i software and manual approach respectively.

1.4 Justification of the Study

The importance of this research work is to know the causes of mast collapse and the possible solutions in Minna and Calabar. The list of collapsed mast in Nigeria is shown in Table 2.1 which shows just few cases as compared to the numerous cases of mast collapse across Nigeria without any record of those incidence. Collapse of mast causes a lot of casualties, loss to telecommunication industry and destruction of other structures close to the collapsed mast. This study seeks to reduce the rate of its future occurrence. This research is vital as there is no published document of collapsed mast in Nigeria except of news report, when there are so many records of collapse considered in this research is of hollow pipe section. Same sections will be considered in this work to make recommendations after due consideration. This will be a guide to practitioners, clients in Nigeria and the world at large.

1.5 Scope of Study

To identify the causes of collapse of three-legged guyed telecommunication mast.

To analyse the two collapsed cases of three-legged guyed telecommunication mast in Calabar and Minna, Nigeria.

To design structurally 30 metres and 20 metres three-legged telecommunication mast using STAAD-Pro V8i software and manual approach respectively.

7

CHAPTER TWO

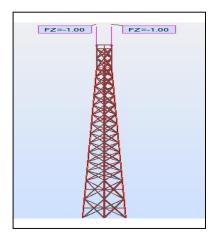
2.0 LITERATURE REVIEW

2.1.1 Preamble

Over the past 30 years, the growing demand for wireless and broadcast communication has spurred a dramatic increase in communication tower construction and maintenance. Many industries and communications demand towers for variety of purposes. Some of the applications of steel towers are Microwave transmission for communication, Radio transmission, Television transmission, Satellite reception, Air traffic controls, Flood light stands Meteorological measurements, Oil drilling masts, Overhead water tanks, Power transmission lines etc. Fastest growing telecommunication market has increased the demand of steel towers. Failure of such structures is a major concern (Joyson *et al.*, 2019).

2.1.2 Telecommunication Tower

Telecommunication towers, such as the ones used for emergency response systems, require elevated antennas to effectively transmit and receive radio communications. In the absence of tall buildings that antennas can be mounted to, self-supporting (Plate I) and guyed (Plate II) towers tend to be the most economical choice for mounting antennas. These types of towers are generally lightweight in comparison to building a solid structure and are also easier to fabricate and erect. The type of tower used for an application is usually dependent on the design height. "Broadcasting towers generally range from 400 ft to 2,000 ft in height, with those over 600 ft typically being guyed. Towers less than 600 ft will be either self-supporting or guyed, depending on the owner's preference, budget, and location (Eric and Hani, 2006).


Telecommunication structures are fundamental components of communication and post-disaster networks and their serviceability immediately after a design-level earthquake is essential. In fact accessing to telecommunication and broadcast services is one of the main advantages of using telecommunication masts especially in emergency situations like after a severe earthquake. Telecommunication structures are also used for automatic control of electric power networks, which makes them all the more strategic for lifeline serviceability (Osgoie *et al.*, 2012).

Srikanth & Neelima (2014) analysed a transmission line tower using Indian Standards IS: 875:1987(Wind Load), IS: 802:1995 (Structural steel), IS: 1893:2002 (Earthquake) and dynamic analysis of tower was performed considering ground motion of 2001 Bhuj Earthquake (India). The dynamic analysis was performed considering a tower system consisting two towers spaced 800m apart and 35m height each. This analysis was performed using numerical time stepping finite difference method which is central difference method were employed by a developed MATLAB program to get the normalized ground motion parameters such as acceleration, frequency, velocity which are important in designing the tower. The tower was analyzed using response spectrum analysis. Design and analysis of a steel lattice transmission line towers of a power system located in Delhi and Panjim was done using STAAD.ProV8i.Under the design and analysis of the system, the effect of wind and earthquake loads were studied and the results so obtained were compared for wind zones II and IV (seismic zone IV) for the same configuration of tower. Delhi and Panjim have same seismic zone but there is a lot of difference in the basic wind speed as Panjim is a coastal area. The analysis results was supplied to the management of the considered system for taking appropriate decisions regarding the improvement of power system design. The comparative analysis is carried out with respect to axial force, deflections maximum sectional properties and critical load condition for both locations (Shivam *et al.*, 2016).

Due to the failure of telecommunication structures which is a major concern. A comparative analysis was carried out for different heights of towers using different bracing patterns for Wind zones I to VI and Earthquake zones II to V of India. Gust factor method was used for wind load analysis, modal analysis and response spectrum analysis were used for earthquake loading. The results of displacement at the top of the towers and stresses in the bottom leg of the towers were compared. Displacement increases with the increase in speed of the wind. Results displayed that the increase in the displacement from wind zone I to wind zone VI is maximum for W-Bracing and it is minimum for K-Bracing. For all wind zones tower height between 25m to 35m with different bracing patterns do not show much difference in displacement. For wind zone I to IV, tower height between 35m to 45m having K-Bracing or W-Bracing gives maximum value of displacement and V-Bracing gives minimum value of displacement and V-Bracing or XBX -Bracing gives minimum value of displacement and V-Bracing or XBX -Bracing gives minimum value of displacement and V-Bracing or XBX -Bracing gives minimum value of displacement and V-Bracing or XBX -Bracing gives minimum value of displacement and V-Bracing or XBX -Bracing gives minimum value of displacement and V-Bracing or XBX -Bracing gives minimum value of displacement and V-Bracing or XBX -Bracing gives minimum value of displacement and V-Bracing or XBX -Bracing gives minimum value of displacement and V-Bracing or XBX -Bracing gives minimum value of displacement and V-Bracing or XBX -Bracing gives minimum value of displacement and V-Bracing or XBX -Bracing gives minimum value of displacement and V-Bracing or XBX -Bracing gives minimum value of displacement (Keshav *et al.*, 2015).

Marcel *et al.* (2007) carried out Structural Analysis of Guyed Steel Telecommunication Towers for Radio Antennas. The Brazilian telecommunication and electrical power transmission systems expansion were the main reasons for efficient and cost-effective transmission and telecommunication steel towers. Steel truss towers have been used to support transmission antennas or to enable electrical power transmission lines to be built, interconnecting the vast Brazilian territory. However, structural collapses, mainly associated with the wind action, are not uncommon to this particular structural solution (Blessmann, 2001; Carril, 2000). Despite these facts, most of the traditional structural analysis methods for telecommunication and transmission steel towers still assume a simple truss behaviour, where all connections are considered hinged. On the other hand, structural mechanisms, that could compromise the assumed structural response, can be present in various commonly used tower geometries whenever truss type models are adopted (Policani, *et al.*, 2000, Silva *et al.*, 2002).

One of the early experimental and theoretical study on the dynamic response of lattice self-supporting telecommunication towers under real and simulated wind forces was done by Chiu and Taoka (1973). In their research, a 3-legged 46-m Y self-supporting telecommunication tower was investigated for its dynamic response under wind loading. The study showed that the tower response to wind-induced forces was dominated by the fundamental mode of vibration. In addition, the average damping for the fundamental mode was obtained to be five percent (0.5%) of the critical viscous damping value, which is considered to be very low. Mikus (1994) carried out investigation of seismic response of six 3-legged self-supporting telecommunication towers with heights ranging from 20 to 90 meters. The selected towers were numerically simulated as bare towers. Three earthquake accelerograms were considered as input in the analysis. It was concluded that modal superposition with the lowest four modes of vibration would ascertain sufficient precision. Konno and Kimura (1973) carried out studies on the effects of earthquake loads on lattice telecommunication towers atop buildings. The objective of their work was to obtain the mode shapes, the natural frequencies, and the damping properties of such structures. Simulation of a stick model of the tower using lumped masses and a viscous damping ratio of 1 % was used in their studies. It was observed that in some of the members, the forces due to earthquake were greater than those due to wind. Jacek et al. (2015) carried out a stability analysis of steel telecommunication towers with random parameters to provide a numerical solution to the stability problem of the steel telecommunication tower with some random material and geometrical parameters as given in figure 2.1 below loaded with the vertical unit forces to determine via the generalized perturbation-based Stochastic Finite Element Method up to the fourth order probabilistic characteristics of the critical load multipliers. Computational analysis has been programmed and carried out in the FEM package ROBOT (3D linear elastic model with two-noded 30 beam and 156 space truss finite elements) as well as the mathematical package MAPLE, v. 14. Full determination of probabilistic characteristics for the critical load multipliers enables for reliability index approximation, detection of the output probability density function for critical

forces as well as reliable optimization of this model according to some new possible loadings of the tower (Like solar panels or small windmills). Figure 2.1 shows the 3D FEM model of the steel telecommunication tower.

Figure 2.1: 3D FEM model of the steel telecommunication tower (Jacek *et al.*, 2015) The telecommunication tower tested was 55, 20 meters high and is divided into nine 6,0 meters high segments, while the cross-section has the triangular shape. The legs are designed as the full round pipes with the diameter decreasing from the bottom as 110, 100, 90 and 80 mm. A simplified approach was taken for the free vibration analysis of wind turbines taking the effect of foundation into account. The method was based on an Euler-Bernoulli beam-column with elastic end supports. The elastic end-supports are considered to model the flexible nature of the interaction of these systems with the foundation. A closed-form expression of the characteristic equation governing all the natural frequencies of the system has been derived. Theoretical developments are explained by practical numerical examples. Analytical as well as a new experimental approach has been proposed to determine the parameters for the foundation. Some design issues of wind turbine towers are discussed from the point of view of the foundation parameters (Adhikari and Bhattacharya, 2012).

Figure 2.2 shows a typical layout a three-legged telecommunication mast consisting elevation of the mast, generator space and entrance.

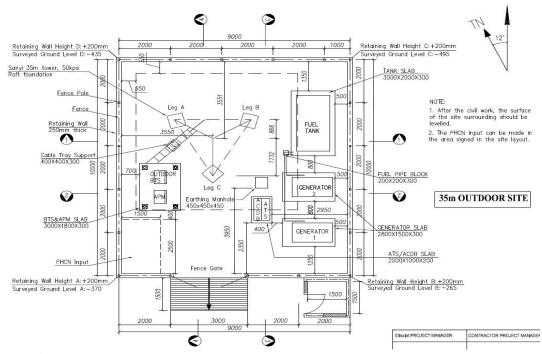


Figure 2.2: Layout of a typical telecommunication site (HIS Towers, 2020)

Table 2.1, Shows some record of tower failures in Nigeria and world over including date of incidence, State, City, country, height of the mast, number of casualty recorded, type of tower and the nature of collapse.

Table 2.1: Some record of tower failures in Nigeria and world over as investigated in the course of this research work

Date	State	City	Country	Heights (m)	Casualty	Tower Type	Extent of Collapse
	Konstantyno	-	-		·		
August 8, 1001	w, Voivodeship	Gabin	Poland	646.38	Nil	3- Laggad	Total Collapse
August 8, 1991	volvodesnip	Gabili	Folaliu		INII	Legged	Collapse
						3-	Total
June 6, 1994	Alabama	Selma	USA	105	1	Legged	Collapse
September 4,						3-	Total
2003	Alabama	Huntsville	USA	300	3	Legged	collapse
2005	Thubuinu	Traines vinie	CON	200	5	3-	Total
December, 2009	New York	New York	USA	114	1	Legged	collapse
	Summit	Clarksbur				3-	Total
February 1, 2014	Park, Utah	g	USA	102	1	Legged	collapse
September 27,		Miami				3-	Total
2017	Florida	Gardens	USA	285.3	3	Legged	Collapse
						3-	Total
April 19, 2018	Missouri	Fordland	USA	567.3	1	Legged	Collapse
October 17,	Valera	Vadara	Niceria	10	NI:1	3-	Total
2020	Kaduna	Kaduna	Nigeria	46	Nil	Legged 3-	Collapse Partial
June 15,2020	Sokoto	Nasarawa	Nigeria	55	Nil	Legged	Collapse
			-			3-	Total
June 27, 2020	Niger	Minna	Nigeria	25	Nil	Legged	Collapse
Marsh 12, 2021	Case Birran	Calaban	Niceria	20	NI:1	3-	Total
March 13, 2021	Cross River	Calabar	Nigeria	30	Nil	Legged	Collapse

2.1.3 Guy cable

Mast are usually supported at intervals by guy cables, the lower ends of which are anchored to the ground. For triangular masts, the minimum number of guys at any level is three and for square masts the minimum number of guys at any level is four. The guy cables used are made of either wire rope or wire strand. Wire rope is galvanised and is made in accordance with CSA standard G4-M, '' Steel wire rope for General purpose and for Mine Hoisting and Mine Haulage''. Seven-wire strand and nineteen-wire strand is made in accordance with CSA standard CAN3-G12-M, ''Zinc-coated steel wire strand," using hot, Zinc coated wire. Sometimes bridge strand made in accordance with ANS/ASTM standard A586, "Zinc-coated steel structural strand" and aluminium-coated steel wire strand made in accordance with ANSI/ASTM standard A474, "Aluminium-coated steel wire strand" are also used for guy cables (Isheke, 1985).

Because the guy cables act as elastic supports for the mast when subjected to lateral wind loads, it is necessary to know the relationships between loads, stresses and deformations for the guy cable. The weight of the guy cable and of a uniform ice distribution deforms the guy cable into a catenary (Isheke , 1985).

2.1.4 Wind load on the guy cable

The wind load is assumed to act on the guy cable as a uniform load. It changes the effective load per metre on the guy cables and thus alters the function expressing displacement versus tension as well as the value of the tension in the guy cable before any motion of the tower (Isheke, 1985).

Figure 2.3 shows guy anchorage systems for guyed telecommunication mast consisting of footing, anchorage bolts and nuts.

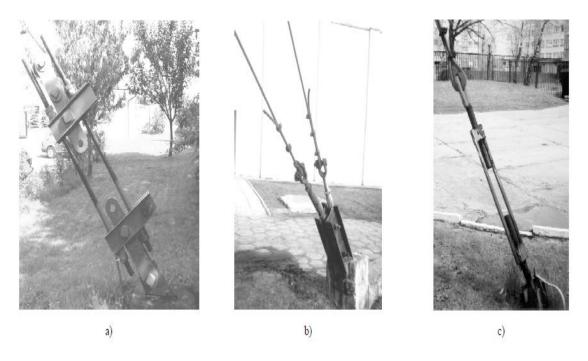
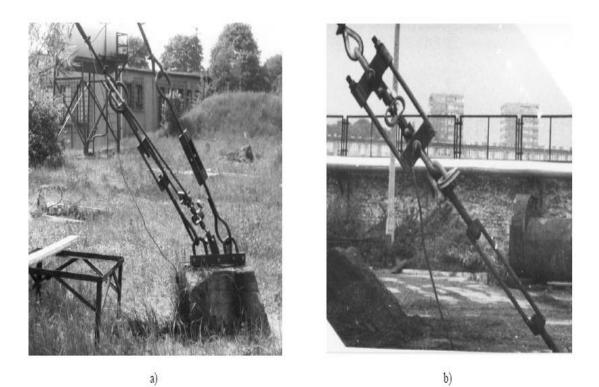



Figure 2.3: Guy anchorage systems (Bernard and Janusz (2014)

Figure 2.4 shows guy section close to the foundation for guyed telecommunication mast consisting of footing, anchorage bolts and nuts.

. Figure 2.4. Guy sections close to the foundation (Bernard and Janusz, 2014)

Jithesh (2014) studied telecommunication towers subjected to seismic and wind loading. In this the displacement due to wind by Gust Factor Method and Seismic effect by modal analysis and response spectrum method at top of the tower for various bracing systems for 30m, 40m, and 50m towers were compared. It is concluded that the joint displacement stress increases as the height of the tower increases and suggested optimum design for various earthquake zones.

In the present study, a detailed analysis has been made on the behaviour of the telecommunication tower subjected to wind and seismic loads with varying the bracing system of towers. Gust factor method is used for wind load analysis. Conducted analytical study on effect of wind on telecommunication towers, for wind speed of 50m/s for four combination of bracing systems; Also studied the effect of earthquake loading on telecommunication towers using Modal analysis and Response Spectrum method, for seismic zones III, IV and V for all the four combination of bracing systems.

Joyson *et al.* (2019) did a detailed analysis on the behaviour of the telecommunication tower subjected to wind and seismic loads with varying the bracing system of towers. Gust factor method was used for wind load analysis. Analytical study on effect of wind on telecommunication towers was conducted for wind speed of 50m/s for four combination of bracing systems. Also studied the effect of earthquake loading on telecommunication towers using Modal analysis and Response Spectrum method, for seismic zones III, IV and V for all the four combination of bracing systems.

The results of displacement at the top of the towers and stresses in the bottom leg of the towers were compared and the optimum bracing system was found.

17

2.2 Research on collapse of mast

2.2.1 Collapse case in Kaduna

Report of Structural Integrity Audit showed a collapsed case of 46 metres tower at 18 Muhammed Buhari way, City center, Kaduna, Nigeria that happened 2020. Plate I shows the twisted tower due to many loose bolts and lack of proper torqueing/ maintenance on the tower. This resulted in failure of the connecting joints in single/double shear thereby giving rise to high stress ratio at these connections. However, single plate (Outer connector) instead of double (inner and outer) plate were used for the leg joints providing low structural stability at these weak regions. With the application of wind pressure at these connection regions, structural failure is evident which also contributed to the twist experienced on the tower.

Plate I: Mast collapse in Kaduna (HIS Tower, 2020)

2.2.2 Collapse case in Sokoto

Report of Structural Integrity Audit showed a collapsed case of 55 metres tower at Silame Nassarawa, Sokoto State, Nigeria, that happened 2020. From the report, tower twisted due to failure in deflection at tower top and some loose bolts as observed on the tower. This failure is associated with the very low base to height ratio (slender tower) as manufactured and of which will requires huge weight to withstand deflection from wind impact on the tower. However, due to the absence of this required weight, tower bent from the middle of the tower height while the existing foundation remains intact (HIS Tower, 2021).

2.2.3 Collapse case in Poland

Telecommunication systems, such as radio and television broadcasting, require elevated antennas which are most economically supported on monopole, self-supporting, and guyed lattice towers as shown in Plate II. Unfortunately, failures of telecommunication structures due to dynamic effects are high compared with other structures of equal economic and social importance as seen in Plate II. One of the significant incidents is the failure of the former 646 metres world's tallest guyed Warsaw Radio mast, at Konstantynow, Gabin, Poland, in 1991 during guy wire replacement (Cindy, 2011).

Plate II: Wreckage of the Warsaw Radio mast, at Konstantynow, Gabin, Poland (Source: Cindy, 2011).

2.2.4 Collapse case in New York

In December 2009, a 46 year-old tower technician fell 43 feet to his death when a guyed communication tower collapsed. The 380-foot tall tower was supported by 21 guy wires at seven elevations, three at each height. The lowest three guy wires were at 43 feet. The victim and his co-workers were replacing the guy wires at the time of the incident. The workers first released the lowest three guy wires from the ground anchors. The next set of wires was at 93 feet. The tower immediately bent in response to the removal of the tension in the lowest guy wires. Tension gauge readings indicated that the remaining guy wires were either over-tensioned or tensioned unevenly. The workers adjusted the wires so that the tower was not bent. The victim, who was wearing a safety harness, started climbing the tower to remove the wires at the 43 feet.

As he was climbing, the workers on the ground observed the tower to be moving "like a wet noodle." The victim dropped the three wires and quickly climbed down. He then climbed to 43 feet to install the new guy wires. He successfully attached two wires before switching to the other side of the tower to attach the third wire. Meanwhile, two workers on the ground picked up one of the wires that was just attached and pulled it hand tight. They took enough slack out of the wire so that it was elevated and not touching the ground. At this moment, the tower start to collapse. The tower reportedly buckled or bent at 43 feet where the victim was. The lower section of the tower (from 43 feet down) fell northwest, while the section above 43 feet fell to southeast (180 degrees from the direction where the lower section fell). The whole tower collapsed. The victim, whose harness was still hooked to the tower, suffered fatal crushing and fall injuries. One worker called 911 and the rest ran to attend the victim. The emergency response staff arrived within minutes. The victim was pronounced dead at the scene (Andrew *et al.*, 2009).

2.2.5 Collapse case in Clarksburg

On February 1, 2014, at approximately 11:37 a.m., a 340'-high guyed telecommunication tower (Cell tower), suddenly collapsed during upgrading/construction activities as seen in Plate III. Four employees were working on the tower removing its diagonals. In the process, no temporary supports were installed. As a result of the tower's collapse, two employees were killed and two others were badly injured. The cell tower fell onto the guy wires of an adjacent smaller cell tower and caused it to collapse, killing a firefighter while he was rescuing the injured employees on the ground. Muhammad and Scott (2014 b).

Plate III: Collapse of a Telecommunication Tower at the Summit Park Community in Clarksburg, Wv (Muhammad and Scott, 2014 a)

2.2.6 Collapse case in Missouri

On April 19, 2018, an incident occurred in Fordland, Missouri where one employee was killed during the reinforcement of the KOZK 1,891-foot-tall guyed communication tower along Highway FF just north of Fordland, Missouri. The cause of the communication tower collapse was the weakening of the compressive strength of the tower legs by removing the bolts at the connection of the diagonals to the horizontal redundant. The compromised redundant effectively doubled the unbraced length of the tower leg which reduced the compressive capacity of the tower leg. The design required for the temporary frame for diagonal replacement above or below a guy level was not provided (Bryan and Mohammad, 2018).

2.2.7 Collapse case in Florida

On September 27, 2017, an incident occurred in Miami Gardens, Florida where three construction employees were killed. The employees were engaged in installing a new antenna for a local TV station at the top of a 951-foot tall antenna tower constructed in 2009. The three employees were killed when the gin pole they were using suddenly disengaged from the tower structure plunging several hundred feet to the ground. The employees were tied to the gin pole and fell with it. The cause of the disengagement was the failure of attachment between the gin pole and the tower structure (Mohammad and Bryan, 2018).

2.2.8 Collapse case in Alabama

A 105 metres high guyed radio transmission tower collapsed during the final phase of its construction on June 6, 1994 at approximately 9:00 am in Selma, Alabama. On that morning, two workers positioned near the top section of the tower, having completed the fastening of the coaxial cable to the top section of the tower, were beginning to lower the erection gin pole from the top section of the tower to the ground. The gin pole suddenly dropped and struck the coaxial cable, followed by the collapse of the tower structure. Both workers, who were tied to the collapsing tower, fell to the ground. The accident resulted in the death of one of the worker and serious injuries to the other Muhammad and Fragrance (1994).

2.2.9 Collapse case in Port Harcourt, Rivers state, Nigeria

On January 24th, 2017 it was reported by PM News that two persons, a 16-year old girl and and 45-year old local football coach are said to have died in the Nkpolu-Orowuoroku area in Mile 3 in Port Harcourt when a telecommunication mast and billboard fell on them during an hour long rain accompanied with thunderstorms. The female victim whose immediate identity remains unknown was said to have been under a giant umbrella assisting her mother to sell her wares when the mast suddenly collapse on a giant billboard and fell on the girl who died immediately. According to a witness, "We were about to start football practice when rain started falling with heavy wind. Suddenly, the telecommunication mast fell on a billboard which fell on her. A pole also fell on the football coach".

The mother of the girl who was in a state of shock said: "We are selling at Nkpolu here. My daughter was helping me to sell when suddenly the rain started falling with heavy breeze which now fell the mast and the billboard that collapsed on my daughter. The Rivers State government through the Rivers State Signage and Outdoor Advertising Agency has warned that it will prosecute any outdoor advertising agency that erects substandard outdoor advertising billboards in the state. Dimkpa attributed the collapse to lack of maintenance of the billboard and the use of substandard materials for their billboards. He said the rain of yesterday exposed the substandard nature of the billboards erected by the outboard advertising agencies in the state. He said that the agency will start the full implementation of the outdoor advertising law in the state to checkmate excesses of advertising agencies (PM News, 2017).

2.2.10 Collapse case in Benue State

On January 20th, 2022 it was reported by Sahara Reporters, New York that Two workers of the Nigeria Telecommunication Limited (NITEL) have died in Kastina-Ala Local Government Area of Benue State, five were critically injured. It was learnt that the victim's died after the mast collapsed in the process of dismantling it Sahara Reporters gathered that the workers were seven in number on top of the mast working around the NITEL premises near Takum Junction in Kastina-Ala when it suddenly collapsed. Confirming the incident, spokesperson for the police in the state, Sewuese Anene, affirmed that two people died in the accident. Chairman of Kastina-Ala Local Government Area, Alfred Atera, while lamenting the tragedy, said, They had loosed one side of the mast when the other part collapsed. Two of them died instantly while five others were taken to the hospital (Sahara Reporters, 2022).

Plate IV: Collapse of a Telecommunication Tower near Takum Junction in Kastina-Ala Benue State, Nigeria (Sahara Reporters, 2022)

2.2.11 Collapse case in Bayelsa State

On January 20th, 2022 it was reported by The Nations News that family members in Nange-Ama community of Southern Ijaw Local Government Area of Bayelsa State have escaped death by a whisker following the collapse of a telecommunications mast that destroyed their building. The telecom mast, which

is reportedly owned by one of the first generation mobile telecommunications company, fell and destroyed properties worth millions of naira including a building. It was gathered the telecommunications mast, which was erected in a residential area without allegedly considering its radius and reach, collapsed recently.

It was also gathered that several properties were destroyed including a wellfurnished six-bedroom bungalow owned by one Mrs. Eva Efere. Mrs Efere was said to be inside the house alongside three others when the unfortunate incident occurred, but no life was lost in the process (The Nation News, 2022).

2.2.12 Collapse case in Jakarta, Indonesia

On August 31st, 2022 it was reported in Featured News by Wireless Estimator Google Maps as Police said at least ten people, including seven children, were killed in Bekasi on the outskirts of Jakarta, Indonesia, in the morning after a truck crashed into a telecommunications tower near a bus stop and toppled the structure in a busy area where school children were on the street during a morning recess. The children's ages ranged from 7 to 11 years old. Police stated that an additional 20 people were injured, many of them children. The structure, which was near an elementary school, was not within the school's compound,

Images from the scene showed the communications tower had fallen across the road outside the school's gates and crashed into the bus stop on the sidewalk. It also fell on top of a truck's cab, reportedly killing the driver.

Authorities have not identified how many fatalities were caused by the falling structure versus those deaths that might have been caused by the truck. The truck driver survived

the crash and is now in police custody. Police have not yet determined the cause of the crash, but early signs suggest that the truck experienced brake failure. The truck toppled the tower that fell across the street (Wireless Estimator Google Maps, 2022).

Plate V: Collapse of a Telecommunication Tower Jakarta, Indonesia. Wireless

Estimator Google Maps screenshot

CHAPTER THREE

3.0 MATERIALS AND METHODS

3.1 Materials (Design Information)

Materials that were used for this study include the following;

3.2.1 STAAD-Pro V8i

STAAD-Pro V8i is a structural analysis program used to analyse 3 and 4 sided towers or any type of loads. Towers can be either guyed or self-supporting. The program is a compilation of spreadsheets that aid in the modelling of geometry of the tower, and application of external loads such as antennas, dishes and feedlines. STAAD Pro V8i analyses the towers using the TIA-222-G standard or any of the previous versions of the TIA/EIA standards. For steel analysis, the program uses the AISC ASD 9th edition.

Linear and nonlinear (p-delta) analyses can be performed to determine the displacements and forces in the structure. Once analysis has been performed, STAAD Pro V8i creates an extensive report consisting of all inputs into the software and results for the tower. The results include stresses in each member of the tower and whether or not the members fail or pass with respect to the standards and codes that were applied. The user interface of STAAD Pro V8i is very user friendly. The input menu opens to a

page for input of data. Along the top of the menu are tabs for all inputs necessary to create a tower model including Geometry, Guy Data, Discrete Loads, Dishes, etc.

The "Geometry" tab takes the user to the interface that allows the tower model to be created as see in Table 4.2. Here tower type can be chosen depending on if the tower is free standing or guyed, and 3 or 4 sided. The tower height and number of sections can then be defined (Kalamkar *et al.*, 2022).

The "General" tab takes the user to the interface that allow for choice of materials, computation of loads & definition, create supports and choices of section. The

"Analysis/Print" tab takes the user to the interface that allow for analysis before design once all the necessary input has been made, which takes few minutes to process and display the analysis for view minutes in case of any correction to be made. It will run an analysis on the tower and create an output report. The report consists of the inputs for the tower, member stresses due to loading, and a detailed list of whether each member passed or failed with respect to the data. A member is said to pass if it is loaded at less than 100 % of its allowable capacity. Also included in the report is a print out of the model outlining details of the tower. The "Design" tab takes the user to the interface that allow for selection of the design code, design parameter suitable for the design. The "Setup" tab takes the user to the interface that allow for generating of report after design which includes taking of pictures and selecting of the design results to be printed (Kalamkar *et al.*, 2022).

3.2.2 Loadings

There are different types of loads acting on the tower which includes the self-weight of the tower, live load from installed equipment, wind load on the mounted equipment and tower members. The loads acting on the selected tower are derived below.

Self-weight of the tower is automatically generated in STAAD pro by using the summing up the weights of all the sections. The weight obtained is distributed downwardly on all the tower members.

Equipment loads or antenna loads on the tower is calculated by calculating the weight of all installed equipment on the tower as shown below Table 3.2. Thereafter, the load is transferred to STAAD pro and applied to the tower nodes where the equipment is installed.

Characteristics wind pressure

The basic wind speed in Minna was collected from NiMET. BS 5950-1:2000, CP3: (2006) Chapter V: Part 2:, (Buick and Graham, 2012) Steel Designer's Manual was used. Table 3.1 shows the characteristics wind pressure analysis results.

Storey	Height (m)	Basic wind speed, V(m/s)	S1	S2	S3	Design wind speed, vs (m/s)	Characteristics wind pressure, wk(n/m2)= 0.613vs^2	Wk/1000 (kn/m2)	
1	5	45	1	0.83	1	37.35	855.1487925	0.855148793	
2	10	45	1	0.95	1	42.75	1120.295813	1.120295813	
3	15	45	1	0.99	1	44.55	1216.622633	1.216622633	
4	20	45	1	1.01	1	45.45	1266.275633	1.266275633	
5	25	45	1	1.03	1	46.35	1316.921693	1.316921693	
6	30	45	1	1.05	1	47.25	1368.560813	1.368560813	

Table 3.1: Characteristics wind Pressure

 $Vs = VS_1S_2S_3$ (for Class B, open country with no obstruction), Vs: Design speed at any height s in (m/s.), V : Basic wind speed in (m/s), S_1 : Multiplying factor relating to topology, S_2 : Multiplying factor relating to height above ground and wind braking, S_3 : Multiplying factor related to life of structure, $W_K = 0.613Vs^2 N/m^2$, W_K : Characteristics wind pressure

Loadings

There are different types of loads acting on the mast which includes its self-weight, live

load, equipment load and wind load. The loads acting on the mast are seen in Table 3.2.

	1	1		\mathcal{O}					
S/N	Descrip tion	N O.	Dia. (m)	Length (mm)	Width (mm)	Thicknes s(mm)	Weigh t(kg)	Total weight	Total weight
	•••••	s	(111)	()	()	5(1111)	•(8)	(kg)	(kN)
1	GSM	3		1000	170	63	25	75	0.75
2	Microw ave	1	0.4	400			14	14	0.14
3	Feeder cables	4					o.2	24	0.24
4	Coaxial cables	4					0.2	24	0.24
5	Live load							100	1

Table 3.2: Equipment loading

GSM: Radio Frequency Tri-band panel Antenna, **Feeder cables:** 12mm diameter feeder cables, **MW:** 0.4m diameter parabolic Microwave Antenna, **Coaxial cables:** 12mm diameter coaxial cables.

3.2.3 Brief account of BS 5950

BS 5950 is a British standard for the design, fabrication and erection of structural steelwork. It was first published in 1985. BS 5950 replaced BS 449, which used a permissible stress approach and uses a limit state design method. It does not apply to bridges, which are covered by BS 5400. BS5950, the design code for structural steel, has been substantially revised. It was superseded by BS EN 1993 on 30th March 2010 and withdrawn.

3.2.4 Steel designer's manual seventh edition

A remarkable book emerged. Within approximately 900 pages it was possible for the steel designer to find everything necessary to carry out the detailed design of most conventional steelwork. Although not intended as an analytical treatise, the book contained the best summary of methods of analysis then available. The standard solutions, influence lines and formulae for frames could be used by the ingenious designer to disentangle the analysis of the most complex structure. Information on element design was intermingled with guidance on the design of both overall structures and connections. It was a book to dip into rather than read from cover to cover. However well one thought one knew its contents, it was amazing how often a further reading would give some useful insight into current problems. Readers forgave its idiosyncrasies, especially in the order of presentation. How could anyone justify slipping a detailed treatment of angle struts between a very general discussion of space frames and an overall presentation on engineering workshop design? The book was very popular. It ran to four editions with numerous reprints in both hard and soft covers. Special versions were also produced for overseas markets. Each edition was updated by the introduction of new material from a variety of sources. However, the book gradually lost the coherence of its original authorship and it became clear in the 1980s that a more radical revision was required. After 36 very successful years, it was decided to rewrite and reorder the book, while retaining its special character. This decision coincided with the formation of the Steel Construction Institute and it was given the task of coordinating this activity. A complete restructuring of the book was undertaken for the fifth edition, with more material on overall design and a new section on construction. The analytical material was condensed because it is now widely available elsewhere, but all the design data were retained in order to maintain the practical usefulness of the book as a day-to-day design manual. Design examples are to the more appropriate of these two codes for each particular application. The fifth edition was published in 1992 and proved to be a very worthy successor to its antecedents. It also ran to several printings in both hard and soft covers; an international edition was also printed and proved to be very popular in overseas markets. The sixth edition of 2003 maintained the broad structure introduced in 1992, reflecting its target readership of designers of structural steelwork of all kinds, and included updates to accommodate changes in the principal design codes required a more radical review of the content (Buick and Graham, 2012).

Figure 3.1 shows the Maximum wind flow map for Nigeria (30 years and above) in m/s used for wind analysis.

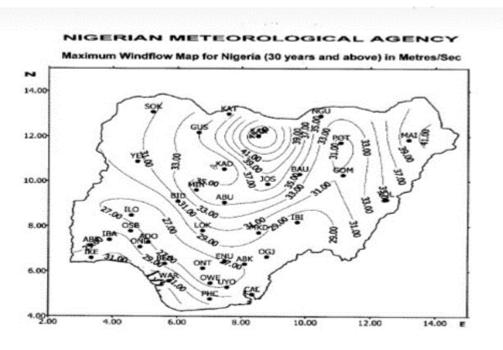
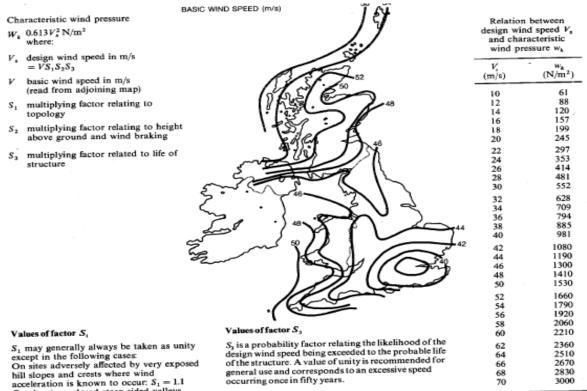



Figure 3.1: Maximum wind flow map for Nigeria (30 years and above) in m/s

Figure 3.2 shows the Multiplying factor chat used for wind analysis. It contains wind data such as characteristic wind pressure, basic wind speed, multiplying factor relating to topology.

 S_1 may generally always be taken as unity except in the following cases: On sites adversely affected by very exposed hill slopes and crests where wind acceleration is known to occur: $S_1 = 1.1$ On sites in enclosed steep-sided valleys completely sheltered from winds: $S_1 = 0.9$

Values of factors S.

Topo-			Height of structure h (m)														
Structure		graphical factor	5	10	. 15	20	30	40	50	60	80	100	120	140	160	180	200
Cladding etc.		1 2 3 4	0.88 0.79 0.70 0.60	1.00 0.93 0.78 0.67	1.03 1.00 0.88 0.74	1.06 1.03 0.95 0.79	1.09 1.07 1.01 0.90	1.12 1.10 1.05 0.97	1.14 1.12 1.08 1.02	1.15 1.14 1.10 1.05	1.18 1.17 1.13 1.10	1.20 1.19 1.16 1.13	1.22 1.21 1.18 1.15	1.24 1.22 1.20 1.17	1.25 1.24 1.21 1.19	1.26 1.25 1.23 1.20	1.27 1.26 1.24 1.22
rtical or rizontal on	≯ 50 m	1 2 3 4	0.83 0.74 0.65 0.55	0.95 0.88 0.74 0.62	0.99 0.95 0.83 0.69	1.01 0.98 0.90 0.75	1.05 1.03 0.97 0.85	1,08 1,06 1,01 0,93	1.10 1.08 1.04 0.98	1.12 1.10 1.06 1.02	1.15 1.13 1.10 1.07	1.17 1.16 1.12 1.10	1.19 1.18 1.15 1.13	1.20 1.19 1.17 1.15	1.22 1.21 1.18 1.17	1.23 1.22 1.20 1.19	1.24 1.24 1.21 1.21
Maximum vertical or maximum horizontal dimension	> 50 m	1 2 3 4	0.78 0.70 0.60 0.50	0.90 0.83 0.69 0.58	0.94 0.91 0.78 0.64	0.96 0.94 0.85 0.70	1.00 0.98 0.92 0.79	1.03 1.01 0.96 0,89	1.06 1.04 1.00 0.94	1.08 1.06 1.02 0.98	1.11 1.09 1.06 1.03	1.13 1.12 1.09 1.07	1.15 1.14 1.11 1.10	1.17 1.16 1.13 1.12	1.19 1.18 1.15 1.14		1.21 1.21 1.18 1.18

Note

h is height (in metres) above general level of terrain to top of structure or part of structure. Increase to be made for structures on edge of cliff or steep hill.

Topographical factors

ms: suburbs of large cities

open country with no obstructions
 open country with scattered wind-breaks
 country with many wind-breaks; small towns; subus
 city centres and other environments with large and

quent obstructions. fre

Figure 3.2: Multiplying factor chat (CP3, Chapter V: Part 2, 1972)

Plate IV shows pictures of different part of the collapsed 20m Mast in Minna, Nigeria. It seen from plate IV that, the mast fell on a 1- storey building close to the mast location.

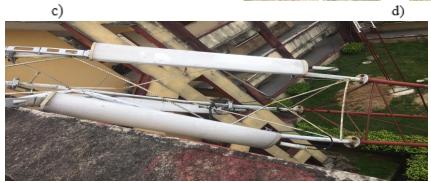

a)

Plate VI $(\mathbf{a} - \mathbf{c})$: Different part of the collapsed 20m Mast in Minna, Nigeria

Plate IV shows pictures of different part of the collapsed 30m Mast in Calabar, Nigeria. It seen from plate IV that, the mast fell on a 2- storey building close to the mast location.

e) Plate VII (a -e): Different part of the collapsed 30m mast

3.3 Methods

The following methods were adopted to carry out this research work:

Investigation of the structural causes of a collapsed 30 metres and 20 metres three legged guyed telecommunication mast in Calabar and Minna was done respectively. Other cases of collapse were equally studied within and across Nigeria. A typical of the collapsed mast was modelled, analysed and design with same loading and environmental condition for structural judgement.

3.3.1 Analysis of initial tension forces

The value of initial tension forces was determined by the dynamic method by counting the number of vibration amplitudes in a defined time. By a sharp jerking of the rope near its connection with anchoring, a vertical wave was caused and the amplitude of vibrations counted (full deflection) N in time t = 10 or 15 s. The rope initial tension at a half of its spread is calculated according to the Eq. (3.1) obtained from the transformation of the formula, defining the circular frequency of vibrations.

$$F_G = \frac{0.4077GLN^2}{t^2} \tag{3.1}$$

Where, F_G rope tension in kN,

G total rope weight in N,

L rope length in m,

N number of amplitudes in time t,

t time of measuring N vibration amplitudes in s (Bernard and Janusz, 2014).

3.3.2 Analysis of amplitude x sine function (angular frequency x time + phase difference)

$$X = A\sin(\omega t + \varphi) \tag{3.2}$$

Where X = displacement (m)

A = amplitude (m)

 ω = angular frequency (radiands/s)

t = time(s)

 φ = phase shift (radians)

$$A = \frac{X}{\sin(\omega t + \varphi)}$$
(3.3)

Given, X = 4m, $\varphi = 0$, t = 4.5 s

A =
$$\frac{4}{\sin[(\pi radians/s)(4.5s) + 0)} = \frac{4}{\sin(4.5\pi)} = 4m$$

A = 4m

Recall

$$F_G = \frac{0.4077 GLN^2}{t^2} = \frac{0.4077 X (0.03X31.05)X 31.05 X 4^2}{4.5^2} = 9.317 \text{ kN} \cong 10 \text{ kN}$$

Therefore, the initial tension on the mast is calculated as $F_G = 10$ kN, (Bernard and Janusz, 2014).

3.4 Tower Analysis and Design using STAAD pro

From the report generated using STAAD pro, the tower can be said to be stable as the stress ratio of all the tower members are less or equal to one. Also, the sizes of the tower members generated due to the present load exerted on the tower are less than the actual tower members. Finally, every failed member identified after the analysis has been provided with a suitable section by the software.

3.5 A Brief Account of Truss Analysis

Firstly, if we plan to design and build a truss structure, such as a tower structure for carrying external loads, we need to find out how much load is carried by each member of the tower. Secondly, in the case of an existing truss structure, we may need to replace one or a few members. In this case, we need to find the internal forces carried

by those few members within the truss structure. In both instances, the objective is to figure out and decide whether the members can sustain the forces or not and what size members and what type of cross sections are required.

3.5.1 Types of truss analysis

There are two major methods of analysis for finding the internal forces in members of a truss; the Method of Joints, which is typically used for the case of creating a truss to handle external loads, and the Method of Sections, which is normally used when dealing modifying the internal members of an existing truss. Both methods are based on the assumption that when a structure is in equilibrium, all pieces of the structure are also in equilibrium. While graphical method and triangle are not common commonly used.

3.5.2 Joint method of analysis

Here, it is assumed that all members are in tension reaction. A tension member experiences pull forces at both ends of the bar and usually denoted by positive (+ve) sign. When a member is experiencing a push force at both ends, then the bar is said to be in compression mode and designated as negative (-ve) sign.

In the joints method, a virtual cut is made around a joint and the cut portion is isolated as a Free Body Diagram (FBD). Using the equilibrium equations of $\sum Fx = 0$ and $\sum Fy$ = 0, the unknown member forces can be solved. It is assumed that all members are joined together in the form of an ideal pin, and that all forces are in tension (+ve reactions).

An imaginary section may be completely passed around a joint in a truss. The joint has become a free body in equilibrium under the forces applied to it. The equations $\sum H = 0$ and $\sum V = 0$ may be applied to the joint to determine the unknown forces in members meeting there. It is evident that no more than two unknowns can be determined at a joint with these two equations.

3.6 Tower Analysis By Manual Approach

Figure 3.3 shows the cross section of the three-legged telecommunication mast with different wind angle.

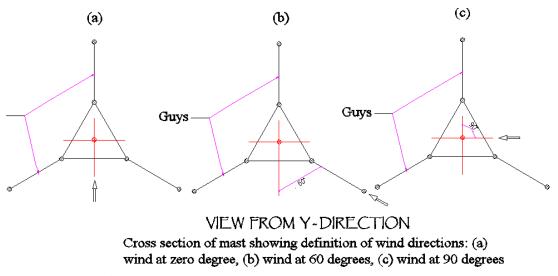


Figure 3.3: Cross Section of the mast view from y-direction

Figure 3.4 shows the elevation of the three-legged telecommunication mast win x-direction.

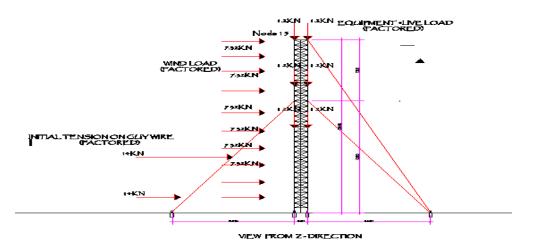
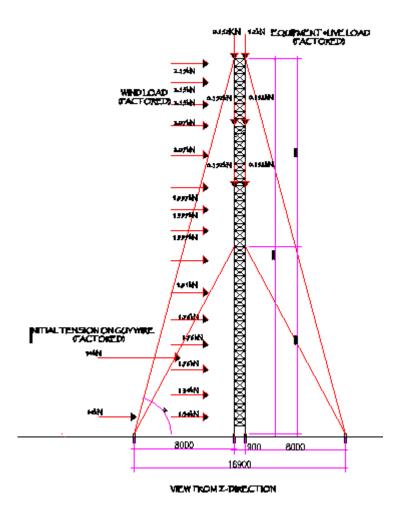
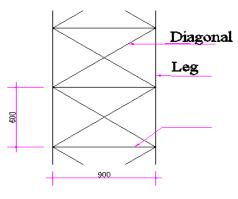
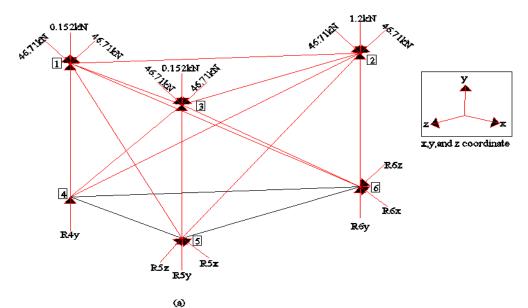


Figure 3.4: View from x-direction.

Figure 3.5 shows the elevation of the three-legged telecommunication mast win zdirection.


Figure 3.5: View from z-direction.

Schematic configuration

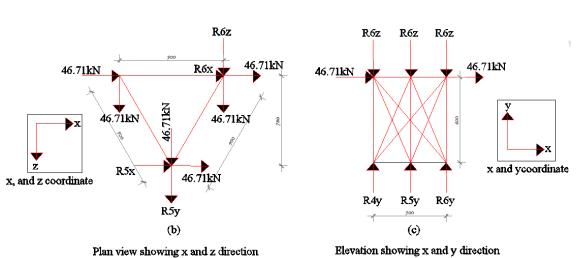

Figure 3.6: Schematic configuration

Figure 3.7 shows a 3-dimensional view of a space truss as seen in Figure 3.7a, the plan view in Figure 3.7b and the elevation in Figure 3.7c where the resolution of forces was considered in x, y, and z directions unlike in plannar trusses where the resolution of forces is done in two dorections only. The analysis consist of the computation of wind load, equipment load, dead load and live load application at each nodes.

Space diagram showing the top level of a 30 meters three legged gayed mast.

(a)

Figure 3.7: a - space diagram of 30 meters three-legged guyed telecommunication

mast, b - the plan and c - the elevation

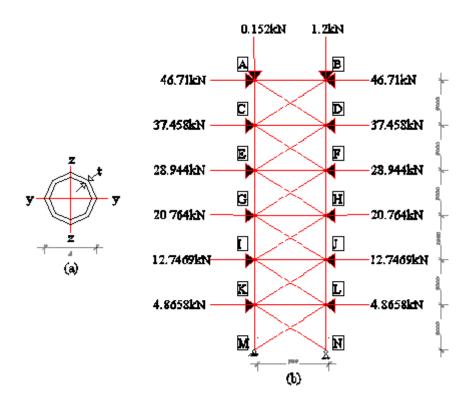


Figure 3.8: a - Hot-Finish circular hollow section of the main poles and b - elevation.

3.6.1 Analysis of the space truss:

Considering 3j = m + r for statically determinacy. From figure 3.3a, j = 6, m = 11, r = 7. 3x6 = 11+7 = 18. Thus, the truss is statically indeterminate.

Equilibrium of an entire space truss or equilibrium of sections of a space truss is described by the six scalar equations. $\Sigma F_x = 0$, $\Sigma F_y = 0$, $\Sigma F_z = 0$, $\Sigma M_{xx} = 0$, $\Sigma M_{yy} = 0$, $\Sigma M_{zz} = 0$

Or in vector form $F_R = 0$; $M_R = 0$. The resultant vectors of F_R and M_R represent threedimensional force and moment vectors.

Considering the equilibrium equation with only one unknown. The reaction component R_{6y} can be obtained by taking the summation of moments about an x-axis through point 4 and 5.

 $[\Sigma Mxx = 0; -ve \text{ for clockwise and } + ve \text{ for anticlockwise.}]$

 $(-1.2x0.9) + (R_{6y}x0.9) = 0$

 $\begin{aligned} -1.08 + 0.9R_{6y} &= 0 \\ R_{6y} &= \frac{1.08}{0.9} = 1.2 \text{ kN} \\ R_{6y} &= 1.2 \text{ kN} \\ &[\Sigma \text{ Mzz} &= 0; -\text{ve for clockwise and } + \text{ve for anticlockwise.}] \\ &(-1.2x0.9) + (46.71x0.6) + (R_{6y}X0.9) - (0.152X0.45) + (46.71X0.6) + (R_{5Y}x0.45) = 0 \\ &-1.08 + 28.026 + (0.9x1.2) - 0.0684 + 28.026 + 0.45R_{5y} = 0 \\ &55.9836 + 0.45R_{5y} = 0 \\ R_{5y} &= \frac{-55.9836}{0.45} = -124.408 \text{ kN} \\ R_{5y} &= -124.408 \text{ kN} \end{aligned}$

Taking the summation of forces in the y-direction and using the above determined values of reaction, we obtain the value of R_{4y} ;

[Σ Fy = 0; -ve for downward forces and + ve for upward forces.]

 R_{4y} -0.152-0.152-124.408-1.2+1.2 = 0

 R_{4y} - 124.408 = 0

 $R_{4y} = 124.408 \text{ kN}$

The value of R_{5z} can be obtained by taking the summation of moments about a y-axis through point 6.

 $[\Sigma Mzz = 0; -ve \text{ for clockwise and } + ve \text{ for anticlockwise.}]$

$$(46.71x0.9) + (46.71x0.45) + ((R_{5z}x0.45) = 0$$

$$63.0585 + 0.45R_{5z} = 0$$

$$R_{5z} = \frac{-03.0303}{0.45} = -140.13 \text{ kN}$$

 $R_{5z} = -140.13 \text{ kN}$

-62 0585

 R_{5x} will be obtained by taking the summation of moments about y-axis through point 6.

 $[\Sigma Mxx = 0; -ve \text{ for clockwise and } + ve \text{ for anticlockwise.}]$

$$(0.9xR_{5x}) + (0.9x46.71) = 0$$

 $0.9R_{5x} + 42.039 = 0$

$$R_{5x} = \frac{-42.039}{0.9} = -46.71 \text{ kN}$$
$$R_{5x} = -46.71 \text{ kN}$$

 R_{6z} will be obtained by taking the summation of forces in the z-direction.

$$-46.71 - 4 \ 6.71 - (-140.13) - 46.71 - R_{6z} = 0$$

 $0 - R_{6z} = 0$

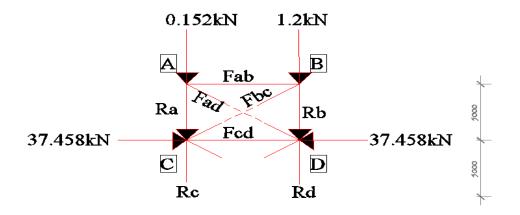
 $R_{6z} = 0 kN$

 R_{6x} is then obtained by taking the summation of forces in the x-direction.

 $46.71 - 46.77 + 46.71 + R_{6x} + 46.71 = 0$

$$R_{6x} = -93.42 \text{ kN}$$

To obtain the forces on all other members of the space truss, considering from the top of the mast 30 metres to 20 metres level through x-axis.

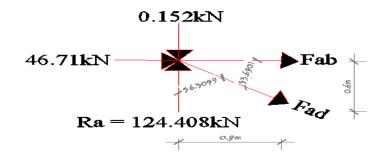

Computing the self-weight of the pole; Mass per meter = 6.82 kg/m;

6.82kg/mx 0.01 = 0.0682 kN/m;

0.0682 KN/m x 5 = 0.341 kN

Therefore, a 60.3mm outside diameter x 5mm thickness of length 5metres weighs 0.341kN as used in this analysis.

AT JOINT C:



Taking moment about joint C;

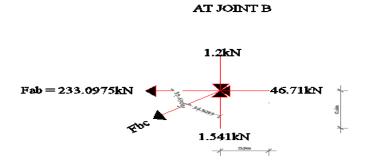
 $[\Sigma \ Mc \ = \ 0; \ +ve \ for \ clockwise \ and \ -ve \ for \ anticlockwise.]$ (1.541x0.9) $- \ 0.9R_D = 0$

 $1.3869 - 0.9R_D = 0$ $R_D = \frac{1.3869}{0.9} = 1.541 + 0.341 \text{ (self-weight)} = 1.882$ $R_D = 1.882 \text{ kN}$

$$\label{eq:star} \begin{split} [\Sigma \ Fy \ = \ 0; \ -ve \ for \ downward \ forces \ and \ +ve \ for \ upward \ forces.] \\ 124.408 - 0.152 - F_{AD} \sin 33.6901 = 0 \end{split}$$

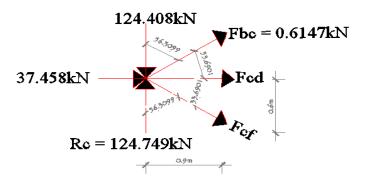
 $124.256 = F_{AD} \sin 33.6901$

 $F_{AD} = \frac{124.256}{\sin 33.6901} = 224.01 \text{ kN}$


 $F_{AD} = 224.01 \text{ kN}$

[Σ Fx = 0; +ve for eastward forces and – ve for westward forces.]

 $46.71 + F_{AB} + F_{AB}\cos 33.6901 = 0$


 $46.71 + F_{AB} + (224.01 \text{ x} \cos 33.6901) = 0$

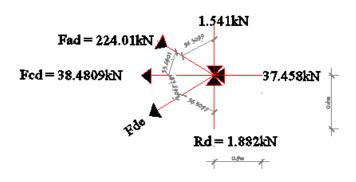
 $F_{AB} = 233.0975 \text{ kN}$

 $[\Sigma Fy = 0; -ve \text{ for downward forces and } + ve \text{ for upward forces.}]$ -1.2 +1.541 + F_{BC} sin33.6901 = 0 $0.341 + F_{BC} \sin 33.6901 = 0$ $F_{BC} = \frac{-0.341}{\sin 33.6901} = -0.6147 \text{ kN}$ $F_{BC} = -0.6147 \text{ kN}$

Taking moment about D

 $[\Sigma Md = 0; +ve \text{ for clockwise and } -ve \text{ for anticlockwise.}]$

 $(1.541x0.9) - 0.9R_{D} = 0$ $R_{C} - 124.749 \ge 0$ $R_{C} = \frac{124.749}{0.9} = 124.749 \ge 0$ $R_{C} = 124.749 \ge 0$ $R_{C} = 124.749 \ge 0$ $[\Sigma Fy = 0; -ve \text{ for downward forces and } + ve \text{ for upward forces. }]$ $-124.749 + 124.749 + (0.6147 \ge 0.34097 - F_{CF} \le 0.34097 - F_{CF}$


$$F_{\rm CF} = \frac{0.34097}{\sin 33.6901} = 0.6147 \text{ kN}$$

 $F_{CF} = 0.6147 \text{ kN}$

$$\label{eq:star} \begin{split} &[\Sigma\ Fx=\ 0;\ +ve\ for\ eastward\ forces\ and\ -ve\ for\ westward\ forces.\]\\ &37.458+F_{BC}\cos33.6901+F_{CF}\cos33.6901+F_{CD}=0 \end{split}$$

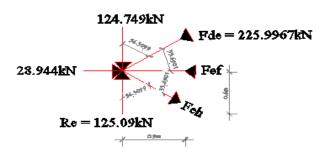
 $37.458 + (0.6147 \text{ x } \cos 33.6901) + (0.6147 \text{ x } \cos 33.6901) + F_{CD} = 0$ $38.4809 + F_{CD} = 0$

 $F_{CD} = -38.4809 \text{ kN}$

AT JOINT D

[Σ Fy = 0; -ve for downward forces and +ve for upward forces.]

 $-1.541+1.882 + (F_{AD} x \sin 33.6901) - (F_{DE} x \sin 33.6901) = 0$

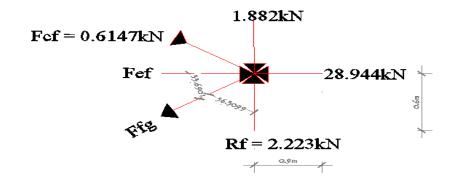

 $0.341 + (224.01 \text{ x} \sin 33.6901) - (F_{DE} \text{ x} \sin 33.6901) = 0$

 $135.03 - F_{DE} \sin 33.6901 = 0$

 $F_{DE} = \frac{135.03}{\sin 33.6901} = 225.9967 \text{ kN}$

 $F_{DE} = 225.9967 \text{ kN}$

 $[\Sigma Fy = 0; -ve \text{ for downward forces and } + ve \text{ for upward forces.}]$ -124.749 + 125.09 - (F_{AD} x sin33.6901) - (F_{EH} x sin33.6901) = 0


 $-124.749 + 125.09 - (225.9967 x \sin 33.6901) - (F_{EH} x \sin 33.6901) = 0$

 $-125.02 + F_{EH} \sin 33.6901 = 0$

 $F_{\rm EH} = \frac{125.02}{\sin 33.6901} = 225.382 \ kN$

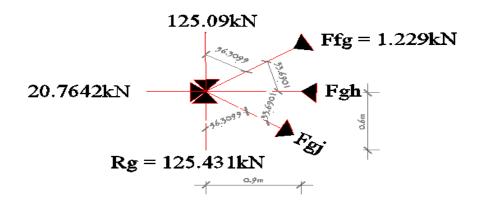
 $F_{EH} = 225.382 \text{ kN}$

[Σ Fy = 0; -ve for downward forces and + ve for upward forces.]

 $-1.882 + 2.223 + (F_{CF} x \sin 33.6901) - (F_{FG} x \sin 33.6901) = 0$

 $0.68197 - F_{FG} \sin 33.6901 = 0$

 $F_{FG} = \frac{0.68197}{\sin 33.6901} = 1.229 \text{ kN}$


 $F_{FG}=\ 1.229\ kN$

 $[\Sigma Fx = 0; +ve \text{ for eastward forces and } -ve \text{ for westward forces.}]$

 $F_{EF} - 28.944 - (0.6147 \text{ x} \cos 33.6901) - F_{EG} \cos 33.6901 = 0$

 $F_{CD} - 30.4706 = 0$

AT JOINT G

 $[\Sigma Fy = 0; -ve \text{ for downward forces and } + ve \text{ for upward forces.}]$ -125.09 + 125.341 + (F_{FG} x sin33.6901) - (F_{GJ} x sin33.6901) = 0

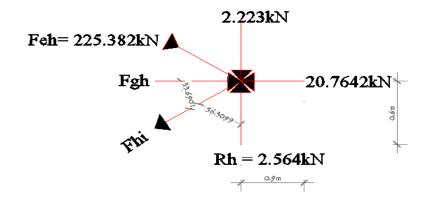
$$-125.09 + 125.341 + (1.229 \text{ x} \sin 33.6901) - (F_{GJ} \text{ x} \sin 33.6901) = 0$$

 $0.9327 - F_{GJ} \sin 33.6901 = 0$

 $F_{GJ} \!=\! \frac{0.9327}{\sin 33.6901} \!= 1.6814 \ kN$

 $F_{GJ} = 1.6814 \text{ kN}$

[Σ Fx = 0; +ve for eastward forces and – ve for westward forces.]

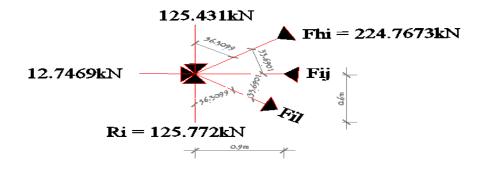

 $20.7642 - F_{GH} + (F_{FG} \times \cos 33.6901) + F_{GJ} \cos 33.6901 = 0$

 $20.7642 - F_{GH} + (1.229 \text{ x } \cos 33.6901) + 1.6814 \cos 33.6901 = 0$

 $\text{-}F_{GH} + 23.1858 = 0$

 $F_{GH} = 23.1858 \ kN$

AT JOINT H


 $[\Sigma Fy = 0; -ve \text{ for downward forces and } + ve \text{ for upward forces.}]$

- $-2.223 + 2.564 (F_{EH} x \sin 33.6901) (F_{HI} x \sin 33.6901) = 0$
- $-2.223 + 2.564 (225.382 \text{ x} \sin 33.6901) (F_{\text{HI}} \text{ x} \sin 33.6901) = 0$
- $-124.6785 F_{HI}\sin 33.6901 = 0$

 $F_{\rm HI} \!=\! \frac{-124.6785}{\sin 33.6901} \!= -224.7673 \ kN$

 $F_{HI} = -224.7673 \text{ kN}$

AT JOINT I

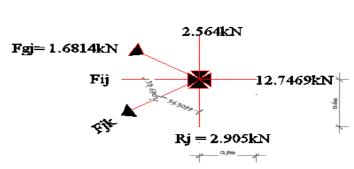
 $[\Sigma Fy = 0; -ve \text{ for downward forces and } + ve \text{ for upward forces.}]$ -125.431 + 125.772 + (F_{HI} x sin33.6901) - (F_{IL} x sin33.6901) = 0

$$-125.431 + 125.772 + (224.7673 \times sin 33.6901) - (F_{IL} \times sin 33.6901) = 0$$

 $125.0196 - F_{IL} \sin 33.6901 = 0$

 $F_{IL} = \frac{125.0196}{\sin 33.6901} = 225.382 \text{ kN}$

 $F_{IL} = 225.382 \text{ kN}$


 $[\Sigma Fx = 0; +ve \text{ for eastward forces and } -ve \text{ for westward forces.}]$

 $12.7469 - F_{IJ} + (F_{IH} \times \cos 33.6901) + F_{IL} \cos 33.6901 = 0$

 $12.7469 - F_{IJ} + (224.7673 \text{ x} \cos 33.6901) + (225.382 \cos 33.6901) = 0$

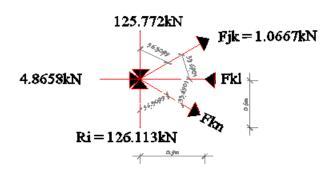
 $-F_{IJ} + 387.2936 = 0$

 $F_{IJ} = 387.2936 \text{ kN}$

AT JOINT K

 $[\Sigma Fy = 0; -ve \text{ for downward forces and } + ve \text{ for upward forces.}]$ -2.564 + 2.905+ (F_{JK} x sin33.6901) - (F_{GJ} x sin33.6901) = 0

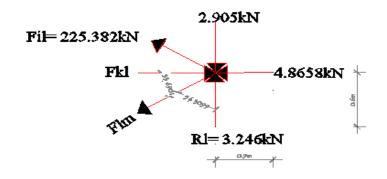
 $-2.564 + 2.905 + (F_{JK} x \sin 33.6901) - (1.6814 x \sin 33.6901) = 0$


 $-0.5917 + F_{JK} \sin 33.6901 = 0$

 $F_{JK} = \frac{0.5917}{\sin 33.6901} = 1.0667 \text{ kN}$

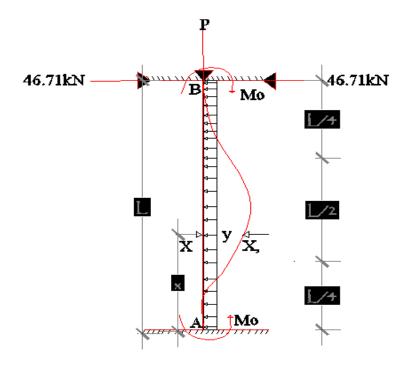
 $F_{JK} = 1.0667 \text{ kN}$

[Σ Fy = 0; -ve for downward forces and + ve for upward forces.]



$$\begin{aligned} -125.772 + 126.113 + (F_{JK} x \sin 33.6901) - (F_{KN} x \sin 33.6901) &= 0 \\ -125.772 + 126.113 + (1.0667 x \sin 33.6901) - (F_{KN} x \sin 33.6901) &= 0 \\ 0.9327 - F_{KN} \sin 33.6901 &= 0 \\ F_{KN} &= \frac{0.9327}{\sin 33.6901} &= 1.6814 \text{ kN} \\ F_{KN} &= 1.6814 \text{ kN} \\ [\Sigma Fx &= 0; +ve \text{ for eastward forces and } -ve \text{ for westward forces.}] \\ 4.8658 - F_{KL} + (F_{JK} x \cos 33.6901) + F_{KN} \cos 33.6901 &= 0 \\ 4.8658 - F_{KL} + (1.0667 x \cos 33.6901) + (1.6814 \cos 33.6901) &= 0 \end{aligned}$$

 $-F_{KL} + 7.1524 = 0$


 $F_{KL}=7.1524\ kN$

$$\begin{split} &[\Sigma \ Fy \ = \ 0; \ -ve \ for \ downward \ forces \ and \ +ve \ for \ upward \ forces.] \\ &-2.905 + 3.246 + (F_{IL} \ x \ sin 33.6901) - (F_{LM} \ x \ sin 33.6901) \ = 0 \\ &-2.905 + 3.246 + (225.382 \ x \ sin 33.6901) - (F_{LM} \ x \ sin 33.6901) \ = 0 \\ &125.3605 - F_{LM} \ sin 33.6901 \ = 0 \\ &F_{LM} \ = \ \frac{125.3605}{\sin 33.6901} \ = \ 225.997 \ kN \\ &F_{LM} \ = \ \ 225.997 \ kN \end{split}$$

3.7 Tower Design By Manual Approach

Check for crippling:

Recalling Euler's formula for crippling load (P) in columns with both ends fixed. Figure 3.9 shows that the three legs of the mast are fixed at each level of 5 meters long. Euler's formula was used to determine the buckling load for the pole.

Figure 3.9: Flexural buckling diagram with direction of wind and axial load application on the mast

The relation between equivalent length (L_e) and actual length (L) is $L_e = \frac{L}{2}$

Crippling load (P)
$$= \frac{\frac{4\pi^2 EI}{L^2}EI}{(\frac{l}{2})^2} = \frac{4\pi^2 EI}{L^2}$$

Euler's buckling load (P_E) = $\frac{\pi^2 EI}{Le^2}$

Yield strength $f_y = 275 N/mm^2$

Compressive force (F) = 124.408 kN

Area (A) =
$$\frac{Force}{Py} = \frac{124.408 X 10^3}{275} = 452.39 mm^2$$

Area of section (A) = $578.1mm^2$ was selected from the steel designers manual, page 1205, Appendix.

Outer diameter (D) = 76.1mm

Internal diameter (d) = 71.1mm

Thickness = 5 mm

Mass per metre = 8.77 kg/m

Area of section (A) = $\frac{\pi}{4} [D^2 - d^2] = \frac{\pi}{4} [76.1^2 - 71.1^2] = 578.1 \ mm^2$

Moment of inertia (I) = $\frac{\pi}{64} [D^4 - d^4] = \frac{\pi}{64} [76.1^4 - 71.1^4] = 391862.89mm^4 \approx$ 391.863x10³ mm⁴

Modulus of Elasticity (E) = 205Gpa = 205000 N/mm²

Check cross-section classification under pure compression. Need only check the section is not class 4 (slender).

Euler's buckling load (P_E) = $\frac{\pi^2 EI}{Le^2} = \frac{\pi^2 X 205000X391863}{2500^2} = 126855.1$ N = 126.9 kN > 124.408 kN. Satisfactory

Compression members:

3.8 Design Statement

Check the ability of a 60.3mm x 5mm Circular Hollow Section (CHS) in grade S275 steel to withstand a design axial compressive load of 124.408 kN over a 5.0m column with fixed ends and intermediate lateral braces provided restraint minor axis buckling at every 0.6m along the column length as seen in Figure 3.10.

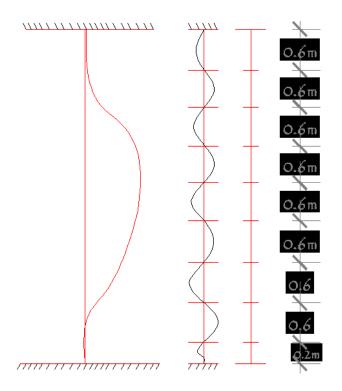


Figure 3.10: Flexural buckling diagram

Manual approach was used to design the three-legged guyed telecommunication mast in Calabar and Minna, Nigeria by Checking the ability of a 60.3mm x 5mm Circular Hollow Section (CHS) in grade S275 steel to withstand a design axial compressive load of 124.408kN over a 5.0m column with fixed ends and intermediate lateral braces provided restraint minor axis buckling at every 0.6m along the column length as seen in figure 3.6.

The result of the manual design is shown in Table 3.3s. From Table 3.3 it can be seen that the members is adequate for shear capacity check, moment capacity check, slenderness check and shear buckling check. Therefore, the design was satisfactory providing 76.1mm x 5mm Circular Hollow Section (CHS) in grade S275 steel against 60.3mm x 5mm used in the collapsed mat.

ITEM

CALCULATION

REFERENCES

Table 12, section 3.

work in building.

Structural use of steel

Design consideration:

Partial factors: $\gamma_{mo} = 0.5$; $\gamma_{m1} = 0.5$;

For axial compression, class 3 semi-compact is BS 5950-1:2000,

considered.

Geometric properties:

Dimensions and properties:

Yield strength $f_y = 275N/mm2$

Radius of gyration (ï) = 25.2mm

 $\varepsilon = \left[\frac{275}{f_y}\right]^{0.5} = \left[\frac{275}{275}\right]^{0.5} = 1$

 $D/t < 80\epsilon^2$ For compression due to bending.

 $60.3/5 = 12.06 < 80\epsilon^2$

Section is not class 4.

Shear capacity

Shear force $(F_v) = \frac{Force}{2} = \frac{124.408}{2} = 62.204$ kN

 $F_{\nu} = 62.204$ kN

 $P_{\nu} = 0.6 \ge 275 \ge 578.1 = 95386.5 = 95.387 \text{kN}$

 $F_v = 95.387 \text{KN} > 62.204 \text{kN}$ OK.

Section is satisfactory

Moment capacity

$$Z_x = \frac{D^3 - d^3}{6} = \frac{76.1^3 - 71.1^3}{6} = 13547.61 \text{ mm}^3$$
BS 5950-1: 2000,
section 4, page 49
$$P_y = 275N/mm^2$$

Design moment M = $\frac{WL_e}{8} = \frac{4.8658 \text{ x 5}}{8} = 3.04 \text{ kN.M}$

Wenwei et al. (2018)

and Steel designers

manual.

 $M_{C} = P_{y}Z_{x} = \frac{275 \times 13547.61}{10^{6}} = 3.73 \text{kN.M} > 3.04 \text{kN.M}$

OK.

Cross-section compression resistance:

 $N_{c.Rd} = \frac{Af_y}{\gamma_{mo}} = \frac{578.1 X 275}{0.5} X \ 10^{-3} = 317.955 \text{kN} >$

124.408kN OK.

Effective length (L_e) = $\frac{L}{2} = \frac{5000}{2} = 2500$ mm for Table 16.1, steel

buckling

designers manual

Non-dimensional slenderness:

$$\chi = \pi \sqrt{\frac{E}{f_y}} = \pi \sqrt{\frac{205000}{275}} = 85.8$$
$$\chi = \frac{\lambda}{\lambda 1} = \frac{L_e/i}{\lambda 1} = \frac{\frac{2500}{25.2}}{85.8} = 1.17 < 2.1 \text{ Check is Ok for}$$

self-weight deflection.

λ	is	the	member	slenderness	or	non-dimensional	Steel	designers
slen	der	ness					manual.	Table 16.4

 λ is the effective column length divided by the

appropriate radius of gyration ï.

 λ_1 is the slenderness at which the yield load (Af_y)

and elastic buckling load are coincident.

Buckling Resistance factor Check:

From buckling curves; buckling reduction factor (χ)

is read as 0.4.

 $\Phi = 0.5 [1 + \propto (\lambda - 0.2) + \lambda^2] = 0.5 [1 + \lambda^2]$

 $0.21(1.17 - 0.2) + 1.17^2$]

= 1.75.

$$\Phi = 1.75$$

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \lambda^2}} \le 1.0 = \frac{1}{1.75 + \sqrt{1.75^2 - 1.49^2}} = 0.37 \le 1.0$$
1.0

buckling reduction factor is ok.

Where α is the imperfection factor.

Buckling Resistance Check:

 $\mathbf{N.Rd} = \frac{XAf_y}{\gamma_{m1}} = \frac{0.37 X 578.1 X 275}{0.5} X \ 10^{-3} = 92.38 \text{kN} >$

62.204kN OK.

Section is satisfactory

Therefore, provide 76.1mm x 5mm Circular Cross

Section (CHS) for the main pole.

Area (A) = 578.1mm2

Table 3.4 s c5445cfrhows that 88.9mm x 5mm Circular Hollow Section (CHS) in grade S275 steel is sufficient to carry 387.293kN tensile load. All necessary checks was carry out and was satisfactory.

Table 3.4: Design by manual approach for horizontal memberITEMCALCULATION

Tensile force (F) = 387.293kN

 $P_v = 275 N / mm2$

Length of member = 0.9m

Area (A) = $\frac{Force}{Py} = \frac{387.293 X 10^3}{275} = 1408.34 \text{mm}2$

Area of section (A) =1630 mm^2 was selected from the

steel designers manual, page 1205, Appendix.

Outer diameter (D) = 88.9mm

Internal diameter (d) = 83.9mm

Thickness = 5 mm

Shear capacity

Shear force $(F_v) = \frac{Force}{2} = \frac{387.293}{2} = 193.65$ kN

 $F_{v} = 193.65 \text{kN}$

 $P_{\nu} = 0.6 \ge 275 \ge 268959 = 268.95 \text{kN}$

 $F_v = 2.68.95 \text{kN} > 193.65 \text{kN}$ OK.

Section is satisfactory

Cross-section compression resistance:

Nc.Rd =
$$\frac{Af_y}{\gamma_{mo}}$$
 = $\frac{1630 X 275}{0.5} X 10^{-3}$ = 896.500kN >

387.293kN OK.

Section is satisfactory

Table 3.5 .Shows that 32mm Circular Solid Section (CSS) in grade S275 steel is sufficient to carry 225.9967kN tensile load. All necessary checks was carry out and was satisfactory.

Table 3.5: Design by manual approach for diagonal memberITEMCALCULATION

Tensile force (F) = 225.9967 kN $F_{v} = 460 N/mm^{2}$ Partial factor of safety = 1.15Length of member = 1.082mArea (A) = $\frac{Force}{Fy} = \frac{225.9967 \times 10^3 \times 1.15}{460} = 564.99 \text{mm}2$ Area of section (A) = $806mm^2$ was selected from BS 8110-1:1997 Steel diameter (D) = 32mmShear capacity Shear force $(F_v) = \frac{Force}{2} = \frac{225.9967}{2} = 113$ kN $F_{v} = 113 kN$ $P_v = 0.6 \ge 275 \ge 804 = 132660 = 132.660$ kN $F_v = 132.660 \text{kN} > 113 \text{kN}$ OK. Section is satisfactory Cross-section compression resistance: $N_{c.Rd} = \frac{Af_y}{\gamma_{mo}} = \frac{804X\,275}{0.5}X\ 10^{-3} = 442.2kN > 225.9967kN$ OK.

Section is satisfactory

CHAPTER FOUR

4.0 **RESULTS AND DISCUSSION**

4.1 Manual Structural Analysis Result

Summary of the space truss analysis done in 3.6 shows the truss members, applied load, position of members (vertical, horizontal and diagonal) and nature of force on each members as seen in Table 4.1. From Table 4.1 it can be seen that the highest compressive forces is R5y = 124.408kN (vertical member) which was used for designs and check for shear capacity and shear buckling adequacy for the selected steel section and the highest tensile forces is Fij = 387.293kN which is a horizontal member. From the analysis result in Table 4.1 horizontal member has the highest force because wind load on x and z direction.

Mikus (1994) carried out investigation of seismic response of six 3-legged selfsupporting telecommunication towers with heights ranging from 20 to 90 meters. The selected towers were numerically simulated as bare towers. Three earthquake accelerograms were considered as input in the analysis. It was concluded that modal superposition with the lowest four modes of vibration would ascertain sufficient precision. Konno and Kimura (1973) carried out studies on the effects of earthquake loads on lattice telecommunication towers atop buildings. The objective of their work was to obtain the mode shapes, the natural frequencies, and the damping properties of such structures. Simulation of a stick model of the tower using lumped masses and a viscous damping ratio of 1 % was used in their studies. It was observed that in some of the members, the forces due to earthquake were greater than those due to wind.

Jacek *et al.* (2015) carried out a stability analysis of steel telecommunication towers with random parameters to provide a numerical solution to the stability problem of the

steel telecommunication tower with some random material and geometrical parameters as given in figure 2.1 below loaded with the vertical unit forces to determine via the generalized perturbation-based Stochastic Finite Element Method up to the fourth order probabilistic characteristics of the critical load multipliers. Computational analysis has been programmed and carried out in the FEM package ROBOT (3D linear elastic model with two-noded 30 beam and 156 space truss finite elements) as well as the mathematical package MAPLE, v. 14. Full determination of probabilistic characteristics for the critical load multipliers enables for reliability index approximation, detection of the output probability density function for critical forces as well as reliable optimization of this model according to some new possible loadings of the tower (like solar panels or small windmills). Figure 2.1 shows the 3D FEM model of the steel telecommunication tower.

Report of Structural Integrity Audit showed a collapsed case of 55 metres tower at Silame Nassarawa, Sokoto State, Nigeria, that happened 2020. From the report, tower twisted due to failure in deflection at tower top and some loose bolts as observed on the tower. This failure is associated with the very low base to height ratio (slender tower) as manufactured and of which will requires huge weight to withstand deflection from wind impact on the tower. However, due to the absence of this required weight, tower bent from the middle of the tower height while the existing foundation remains intact (HIS Tower, 2021)

S/N	MEMBER	LOAD(kN)	POSITION OF	NATURE OF
			MEMBER	FORCE
1	R _{4y}	124.408	VERTICAL	TENSION
2	R _{5y}	-124.408	VERTICAL	COMPRESSION
3	R _{6y}	1.2	VERTICAL	TENSION
4	R _C	124.749	VERTICAL	TENSION
5	R _D	1.882	VERTICAL	TENSION
6	R_E	125.09	VERTICAL	TENSION
7	R_F	2.223	VERTICAL	TENSION
8	R _G	125.431	VERTICAL	TENSION
9	R _H	2.564	VERTICAL	TENSION
10	RI	125.772	VERTICAL	TENSION
11	RJ	2.905	VERTICAL	TENSION
12	R _K	126.113	VERTICAL	TENSION
13	R _L	3.246	VERTICAL	TENSION
14	R _{5x}	-46.71	HORIZONTAL	COMPRESSION
15	R _{5z}	-140.13	HORIZONTAL	COMPRESSION
16	R _{6x}	-93.42	HORIZONTAL	COMPRESSION
17	R _{6z}	0		COMPRESSION
18	FAB	233.0975	HORIZONTAL	TENSION
19	F _{CD}	-38.4809	HORIZONTAL	COMPRESSION
20	$\mathbf{F}_{\mathbf{EF}}$	30.4706	HORIZONTAL	TENSION
21	F_{GH}	23.1858	HORIZONTAL	TENSION
22	FIJ	387.293	HORIZONTAL	TENSION
23	F_{KL}	7.152	HORIZONTAL	TENSION
24	F _{AD}	224.01	DIAGONAL	TENSION
25	F _{BC}	-0.6147	DIAGONAL	COMPRESSION
26	F _{CF}	0.6147	DIAGONAL	TENSION
27	F_{DE}	225.9967	DIAGONAL	TENSION
28	F_{EH}	225.382	DIAGONAL	TENSION
29	F _{FG}	1.229	DIAGONAL	TENSION
30	F _{GJ}	1.6814	DIAGONAL	TENSION
31	F_{HI}	-224.7673	DIAGONAL	COMPRESSION
32	F_{IL}	225.382	DIAGONAL	TENSION
33	F_{JK}	1.0667	DIAGONAL	TENSION
34	F _{KN}	1.6814	DIAGONAL	TENSION
35	FLM	225.997	DIAGONAL	TENSION

Table 4.1: Reactions and Member Forces Summary

4.2 Manual Structural Design Details

As a results of the manual analysis as seen in Table 4.1 and manual design as seen in Table 3.3, 3.4 and 3.5, Figure 4.1 is the details of structural provision suitable to carry the analysed load on the mast. The details can therefore, be used the reconstruction of

the collapsed masts. From Figure 4.1, it can be seen that the collapsed mast was under design as the provision in Figure 4.0 is higher that of the collapsed masts.

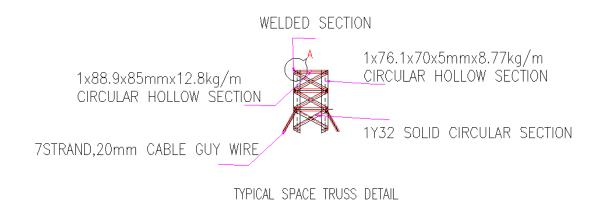


Figure 4.1: Details of 30 meters three-legged guyed telecommunication mast

4.3 Software Structural Analysis and Design results

STAAD-Pro V8i software was used in the course of analysis and design of the collapsed mast to compare with the manual analysis and design result for proper engineering judgement on the causes of the collapse. Software analysis, design and details are contained in the appendix.

CHAPTER FIVE

5.0 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

From the failure analysis of a collapFsed 30 metres and 20 metres three-legged guyed Telecommunication Mast in Minna and Calabar respectively. The following conclusions were drawn;

The failure of these structures happened during rainy season with thunderstorm where the soil was saturated with moisture and the guy wires were uprooted since there was a high rate of whirlwind application on the guy wires causing an increase of the initial tension on the guy wires couple with the insufficient depth of the footing for the guy wires as investigated.

The manual and software analysis results shows that most of the sections of the mast failed due to inadequate size which contributes to the collapsed.

From the manual and software design results, it is seen that the mast collapsed as some member failed in design showing that the sections used for the construction was not suitable. It was under designed. The software and manual design provided a suitable section for the failed members in case of reconstruction.

5.2 **Recommendations**

From the failure analysis of three legged guyed telecommunication mast in Calabar and Minna, Nigeria. The following recommendations were given;

- 1. Regular maintenance should be done in line with telecommunication tower installation guidelines to avoid frequent collapse.
- Communication tower owners should have a structural analysis completed and the tower structural integrity confirmed before sending contractors to work on a tower.
- 3. Mast Guy wires should be made from pre-stretched steel only. Guy wires should not be over tightened in the installation of guy towers in order to avoid excessive tension which may cause alignment problems, cable rupture and permanent wrapping of tower structural parts.
- 4. Communication tower contractors should use temporary guy wires to maintain tower structural integrity when replacing guy wires on a guyed tower.

5.3 Research Contributions to Knowledge

The research considered two cases of 30 metres high and 20 metres 3-legged guyed wired telecommunication masts collapse in Calabar and Minna, Nigeria for structural integrity and audit in order to ascertain the risk of collapse. Manual and software structural designs were carried out to confirm the provisions of structural members. From the findings, a minimum depth of guy wires is recommended to be 1200mm for any 3-legged telecommunication mast above 15 metres height.

REFERENCES

- Adhikari, S. & Bhattacharya S. (2012). Dynamic analysis of wind turbine towers on flexible foundations. *Shock and Vibration 19 37–56*. School of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
- Al-jassani, A. A. M., & Al-suraifi I. J. H., (2017). Telecommunication Cell Tower Most Common Alternatives Overview. *American Journal of Civil Engineering*, 5. 5, 268-281. Department of Structural Engineering, Budapest University of Technology and Economics, Budapest, Hungary.
- Amiri, G. G., Barkhordari, M. A., & Massah, S. R. (2004). Seismic Behaviour of 4legged Self- supporting Telecommunication Towers. 13th World Conference on Earthquake Engineering vancouver, b.c., Canada. pp. 215
- Andrew, M. C., Howard A. Z., & Sally, D. (2009). Fatality Assessment and Control Evaluation. Technician killed when guyed tower collapse. Case report 09NY095, New York State of opportunity, Department of Health.
- Bernard, W., & Janusz, H. (2014). Initial tension forces in guys of steel industrial chimneys at adjustment phase. American Journal of Environmental Engineering and Science, Faculty of Civil and Architecture, West Pomeranian University of Technology, Szczecin, poland. 1(5): pp. 104 -109.
- Blessmann, J. (2001). Acidentes Causados pelos Ventos (Accidents Caused by Wi. MMMMMnd Loading), 4th Edition, Editora da Universidade Federal do Rio Grande do Sul, In Portuguese, Porto Alegre, Brazil.
- Buick, D., & Graham, W., (2012). Steel Designer's Manual. The Steel Construction institute. Seventh Edition, ISBN-13: 978-1-4051-8940.
- Bryan D. E., & Mohammad A., (2018). Investigation of the April 19, 2018. Communication Tower collapse in Fordland, Missouri, USA.
- BS 5950-1:2000, (2000). Structural use of Steelwork in building. Technical Information Services department.
- Carril, J. (2000). Análise Numérica e Experimental do Efeito Dinâmico do Vento em Torres Metálicas Treliçadas para Telecomunicações, PhD Thesis, Escola Politécnica da Universidade de São Paulo - USP, In Portuguese, São Paulo, Brazil.
- Chiu, A. N. L & Taoka, G. T., (1973) Tower response to actual and simulated wind forces, *Journal of The Structural Division, ASCE*, 99, ST9, 1911-1929.
- Cindy, D. (2011). Analysis, design and strengthening of communication towers. Electronic Thesis and Dissertation, Civil Engineering and Environmental Engineering, University of Windsor.
- CP3: Chapter V: Part 2: September: 1972. Code for basic data for the design of buildings chapter V. Loading. British Standards Institution, 2 Park Street, London.

- Eric, J., & Hani, S. (2006). Analysis of radio communication towers subjected to wind, ice and seismic loadings. Master's Thesis, Civil and Environmental engineering, University of Missouri, Columbia.
- HIS Towers Nigeria (2020), Structural Appraisals Report of a 46m telecommunication mast at 18 Muhammed Buhari way, City centre, Kaduna.
- HIS Towers Nigeria (2021), Structural Appraisals Report of a 55m collapse Andrew SATCOM Tower, Sokoto, Nigeria.
- Isheke, M. B. (1985). Analysis of guyed towers. Master's Thesis, Department of Civil Engineering, Faculty of graduate studies, University of Windsor, Ontario, Canada.
- Jacek, S., Marcin, K. & Piotr, S. (2015). On stability analysis of steel telecommunication towers with random parameters. Chair of Steel Structures, Department of Structural Mechanics, Technical University of Łódź. Faculty of Civil Engrg., Arch. And Env. Engrg., 90-924 Łódź, Al. Politechniki 6, Poland.
- Jithesh, R. (2014) Analysis of Telecommunication Tower Subjected To Seismic And Wind Loading" published on international journal of advancement in engineering technology, management and applied science, 2 July 2014.
- Joyson, S. P., Dhilip, K. R. G., Binu, S. & Ram S. P., (2019). Effect of wind and earthquake loading on telecommunication tower. *International Journal of Innovative Technology and Exploring Engineering (IJITEE), ISSN:2278-3075, Volume-9, Issue-IS.*
- Kalamkar S. D., Shinde A. N., Dhokale A. A., Chikane R. E., Shinde D. L., Kamble V. P. (2022). Analysis of elevated water tank using STAAD pro. International Journal of Research Publication and Review. 3, 3, 1848 – 1852.
- Keshav, K. S., Duggal, S. K., Deepak, K. S. & Sachan A. K. (2015). Comparative analysis of steel Telecommunication tower Subjected to seismic & wind loading. *Civil Engineering and Urban Planning: An International Journal (CiVEJ)* 2,3.
- Konno, T. & Kimura, E. (1973). Earthquake effects on steel tower structures atop building. *Proceedings of the 5th World Conference on Earthquake Engineering*, Rome, Italy, Vol. 1, 184-193.
- Marcel, I. R. de Oliveira, & José G. S. da Silva, April-June 2007, "Structural Analysis of Guyed Steel Telecommunication Towers for Radio Antennas", 29(2), 195.
- Mikus, J.(1994). Seismic analysis of self-supporting telecommunication towers, M. Eng. Project Report G94-1. Department of Civil Engineering and Applied Mechanic, McGill University, Montreal, Canada.
- Mohammad, A., & Bryan D. E., (2018). Investigation of the September 27, 2017. Gin Pole collapse at Antenna Tower in Miami Gardens, Florida, USA.

- Muhammad, A., & Fragrance L., (1994). Investigation of the June 6, 1994 collapse of radio tower in Selma, Alabama, USA.
- Muhammad, A., & Scott, J. (2014). Investigation of the September 4, 2003, Collapse of the 1000-foot High TV Antenna Tower in Huntsville, Alabama. U.S. Department of Labor Occupational Safety and Health Administration Directorate of Construction.
- Muhammad, A., & Scott, J. (2014). Investigation of the February 1, 2014 Collapse of a Telecommunication Tower at the Summit Park Community in Clarksburg, WV, U.S. Department of Labor Occupational Safety and Health Administration Directorate of Construction. July, 2014.
- Osgoie, M. G., McClure, G., Zhang, X. H. (2012), Assessing the variability of seismic response analysis of tall guyed telecommunication tower with ambient variation measurements. Hydro-Quebec Research Institute (IREQ), Canada. Department of Civil Engineering and applied Mechnics, McGill University, Canada.
- PM News, (2017). Two persons, a 16-year old girl and and 45-year old local football coach died in the Nkpolu-Orowuoroku area in Mile 3 in Port Harcourt, Nigeria.
- Policani, M. N., Silva, J. G .S. da, Estrella Júnior, L.F., Vellasco, P.C.G. & da S., Andrade, S.A.L. de. (2000). Structural Assessment of Steel Telecommunication Towers", International Conference on Steel Structures of the 2000's, pp. 251-256, Istanbul, Turkey.
- Sahara Reporters, New York (2022). Two NITEL Workers Die, Five Injured As Telecom Mast Collapses In Benue, Nigeria.
- Shivam, P., Yogesh K., Anubhav S. & Nikhil S. (2016). Structural Analysis and Design of Steel Transmission Tower in Wind Zones II and IV- A Comparative Study. *International Journal of Engineering Technology, Management and Applied Sciences vol.4.* Department of Civil Engineering, Amity University, Uttar Pradesh, Noida, India.
- Silva, J. D., Vellasco, P. D. S., Andrade, S. D., & Oliveira, M. D. (2002). "An evaluation of structural steel design systems for transmission and telecommunication towers". In Proceedings of International IASS Symposium «Lightweight Structures in Civil E».
- Srikanth, L., & Neelima D. (2014). Dynamic Analysis of Transmission Line Towers. World Academy of Science, Engineering and Technology International Journal of Civil and Environmental Engineering Vol: 8, No:4.
- The Nation News, (2022). Families escape death as telecom mast collapses, destroys building Nange-Ama community of Southern Ijaw Local Government Area of Bayelsa State, Nigeria.
- Wenwei, Y., Jiankang L., Ni-na G., & Ruhao Y. (2018). Experimental Study on the Static Behaviour of Reinforced Warren Circular Hollow Section (CHS) Tubular Trusses. College of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China.

Wireless Estimator Google Maps, (2022). Cell tower collapse kills seven children outside of a school in Jarkata, Indonesia.

APPENDIX

Job information, load cases and load combination and free body diagram

Title MASTERS THES	ENGINEERIN ngineer yr Udeme (11/2021 SPACE FRAI SPACE FRAI 157 157 158 484 oad Cases nation Load Case	G, FUTMINNA Checked Engr Peter ME Highest Node Highest Beam	Approved Prof Aguwa		Date19/11/202 EGGED G Date		gr Peter 2021 11
Title MASTERS THES TITLE MASTERS THES TOTAL TOTA	SIS ENGINEERIN ngineer r Udeme '11/2021 SPACE FRA SPACE FRA SPACE FRA 157 its 484 000 Cases nation Load Cases tout are data fo	G, FUTMINNA Checked Engr Peter ME Highest Node Highest Beam	Approved Prof Aguwa	Ref By Engr Udeme File 30M THREE-Lt			-
DEPT. OF CIVIL JOD Inform Fr Name: Eng Date: 19/ Structure Type Number of Nodes Number of Basic L Number of Basic L Number of Combining	ENGINEERIN ngineer rr Udeme (11/2021 SPACE FRA SPACE FRA 157 its 484 coad Cases nation Load Cases tout are data fo	Checked Engr Peter ME Highest Node Highest Beam	Approved Prof Aguwa	^{By} Engr Udeme File 30M THREE-Lt			-
Job Inform Fr Name: Eng Date: 19/ Structure Type Number of Nodes Number of Basic L Number of Combin Included in this print	rudeme (11/2021 SPACE FRAM SPACE FRAM 157 Its 484 oad Cases nation Load Case tout are data fo	Checked Engr Peter ME Highest Node Highest Beam	Approved Prof Aguwa	File 30M THREE-LE			-
Job Inform Fr Name: Eng Date: 19/ Structure Type Number of Nodes Number of Basic L Number of Combin Included in this print	rudeme (11/2021 SPACE FRAM SPACE FRAM 157 Its 484 oad Cases nation Load Case tout are data fo	Checked Engr Peter ME Highest Node Highest Beam	Approved Prof Aguwa		EGGED G Date	/Time 19-Nov-	2021 11
Job Inform Er Name: Eng Date: 19/ Structure Type Number of Nodes Number of Basic L Number of Combin Included in this prime	rudeme (11/2021 SPACE FRAM SPACE FRAM 157 Its 484 oad Cases nation Load Case tout are data fo	Checked Engr Peter ME Highest Node Highest Beam	Approved Prof Aguwa				
Name: Eng Date: 19/ Structure Type Number of Nodes Number of Element Number of Basic L Number of Combin Included in this print	ry Udeme (11/2021 SPACE FRAM SPACE FRAM 157 its 484 oad Cases nation Load Case tout are data fo	Engr Peter ME Highest Node Highest Beam	Prof Aguwa				
Name: Eng Date: 19/ Structure Type Number of Nodes Number of Element Number of Basic L Number of Combining Included in this print	ry Udeme (11/2021 SPACE FRAM SPACE FRAM 157 its 484 oad Cases nation Load Case tout are data fo	Engr Peter ME Highest Node Highest Beam	Prof Aguwa				
Name: Eng Date: 19/ Structure Type Number of Nodes Number of Element Number of Basic L Number of Combining Included in this print	yr Udeme (11/2021 SPACE FRAM 157 its 484 oad Cases nation Load Cas tout are data fo	Engr Peter ME Highest Node Highest Beam	Prof Aguwa				
Date: 19/ Structure Type Number of Nodes Number of Elemen Number of Basic L Number of Combin Included in this print	SPACE FRAM SPACE FRAM 157 its 484 oad Cases nation Load Cas tout are data fo	ME Highest Node Highest Beam 5	158	1			
Date: 19/ Structure Type Number of Nodes Number of Elemen Number of Basic L Number of Combin Included in this print	SPACE FRAM SPACE FRAM 157 its 484 oad Cases nation Load Cas tout are data fo	ME Highest Node Highest Beam 5	158				
Structure Type Number of Nodes Number of Elemen Number of Basic L Number of Combin Included in this print	SPACE FRA 157 158 484 oad Cases nation Load Cas tout are data fo	Highest Node Highest Beam 5					
Number of Nodes Number of Elemen Number of Basic L Number of Combin Included in this print	157 ats 484 oad Cases nation Load Cas tout are data fo	Highest Node Highest Beam 5					
Number of Nodes Number of Elemen Number of Basic L Number of Combin Included in this print	157 ats 484 oad Cases nation Load Cas tout are data fo	Highest Node Highest Beam 5					
Number of Elemen Number of Basic L Number of Combin	nts 484 oad Cases nation Load Cas tout are data fo	Highest Beam					
Number of Basic L Number of Combin Included in this print	oad Cases nation Load Cas tout are data fo	5	607				
Number of Combin	nation Load Cas tout are data fo						
Number of Combin	nation Load Cas tout are data fo						
Included in this print	tout are data fo	ses 5					
All The							
	Whole Structu	ire					
		(
Included in this print	L/C	for load cases:		-			
Туре	L/C	Name	,				
				-			
Primary	1	SELF WEIGHT		_			
Primary	2	EQUIPMENT LOAD		_			
Primary	3	LIVE LOAD					
Primary	4	WIND LOAD X+					
Primary	5	WIND LOAD Z+					
Combination	6	GENERATED BRITISH	BS 5950 1				
Combination	7	GENERATED BRITISH	BS 5950 2				
Combination	8	GENERATED BRITISH	BS 5950 3				
Combination	9	GENERATED BRITISH	BS 5950 4				
Combination	10	GENERATED BRITISH	BS 5950 5				
Y							
Y X Z			. <u>*</u>			Load 5	
Free Body Diagram	(Input data was	s modified after picture ta	ken)				

STAAD.Pro V8i (SELECTseries 6) 20.07.11.33

Section properties, Materials, Supports and Primary load cases

-						Job	110	Sheet No	20		Rev
	0-0		1			Par	t				
itle MA	Software license STERS THE	ed to Hewlett-Pac	kard			Ref					
ivi/43						eroete.		Dates out at	2021	Chd =	er D-1
							Engr Udeme	Date19/11/2		Chd En	
^t DEF	PT. OF CIVIL	ENGINEER	ING, FUTMI	NNA		File	30M THREE-LE	GGED G	Date/Time	19-Nov-	2021 1
Sec	tion Pr	opertie	es Cont	<u></u>							
Prop	Sec	tion	Area (cm ²)	l _{yy} (cm ⁴)	l _{zz} (cm ⁴)	J (cm ⁴)	Material				
99	RD18.7		2.750	0.600	0.600	0.005					
100	RD20.75		3.380	0.910	0.910	0.007					
101	RD17.5		2.410	0.460	0.460	0.004					
102	RD20.25		3.220	0.830	0.830	0.007					
103	RD18.4		2.660	0.560	0.560	0.004		-			
104	RD25		4.910	1.920	1.920	0.015		_			
105	RD13.75		0.000	0.000	0.000	0.351		_			
106	RD20.5		3.300	0.870	0.870	0.007		-			
107	RD17.25 RD17		2.340 2.270	0.430	0.430	0.003					
108			2.270	0.410	0.410	0.003	STEEL				
2	<u>erials</u>		-				-				
Mat	Na	ime	E	v	Density	α					
			(kN/mm ²)		(kg/m ³)	(/℃)	-				
1	STEEL	007551	205.000	0.300	7.83E+3	12E -6					
2	STAINLES		197.930	0.300	7.83E+3	18E -6					
4	CONCRET		68.948 21.718	0.330 0.170	2.71E+3 2.4E+3	23E -6 10E -6					
4 Sup	CONCRET	Ē	21.718	0.170	2.4E+3	10E -6					
4		E Y	21.718 Z	0.170 rX	2.4E+3	10E -6] 1				
4 Sup	CONCRET	Y (kN/mm)	21.718 Z (kN/mm)	0.170 rX (kN ⁻ m/deg)	2.4E+3 rY (kN ⁻ m/deg)	10E -6 rZ (kN ⁻ m/deg] 1				
4 Sup Node	CONCRET	F (kN/mm) Fixed	21.718 Z (kN/mm) Fixed	0.170 rX	2.4E+3	10E -6] 1				
4 Sup Node	CONCRET ports (kN/mm) Fixed Fixed	Y (kN/mm) Fixed Fixed	21.718 Z (kN/mm) Fixed Fixed	0.170 rX (kN ⁻ m/deg)	2.4E+3 rY (kN ⁻ m/deg)	10E -6 rZ (kN ^r m/deg] 1				
4 Sup Node 1 2 4	CONCRET ports (kN/mm) Fixed Fixed Fixed	Y (KN/mm) Fixed Fixed Fixed	21.718 Z (KN/mm) Fixed Fixed Fixed	0.170 rX (kN'm/deg) -	2.4E+3 rY (kN [·] m/deg) -	10E -6 rZ (kN ⁻ m/deg] 1				
4 Sup Node 1 2 4 155	CONCRET ports (kN/mm) Fixed Fixed Fixed Fixed	Y (kN/mm) Fixed Fixed Fixed Fixed	21.718 Z (kN/mm) Fixed Fixed Fixed Fixed	0.170 rX (kN [·] m/deg) - -	2.4E+3 rY (kN [·] m/deg) - - -	10E -6 rZ (kN ⁻ m/deg] 1				
4 Sup Node 1 2 4	CONCRET ports (kN/mm) Fixed Fixed Fixed	Y (KN/mm) Fixed Fixed Fixed	21.718 Z (KN/mm) Fixed Fixed Fixed	0.170 rX (kN'm/deg) - - - -	2.4E+3 rY (kN [·] m/deg) - - - - -	10E -6 rZ (kN [·] m/deg - - -] 1				
4 Sup Node 1 2 4 155 156 158 Rele <i>There is</i>	CONCRET ports x (kN/mm) Fixed Fixed Fixed Fixed Fixed Fixed Solution Fixed Fi	Y (kN/mm) Fixed Fixed Fixed Fixed Fixed Fixed	Z (kN/mm) Fixed Fixed Fixed Fixed Fixed Fixed	0.170 rX (kN m/deg) - - - - - -	2.4E+3 rY (kN'm/deg) - - - - -	10E -6 rZ (kN'm/deg - - - - -] 1				
4 Sup Node 1 2 4 155 156 158 Rele There is	CONCRET ports x (kN/mm) Fixed Fixed Fixed Fixed Fixed Fixed Sases is no data of nary Lo	Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed	Z (kN/mm) Fixed Fixed Fixed Fixed Fixed Fixed	0.170 rX (kN m/deg) - - - - - -	2.4E+3 rY (kN'm/deg) - - - - -	10E -6] 1				
4 Sup 1 2 4 155 156 158 Rele There is Prin	CONCRET ports x (kN/mm) Fixed Fi	Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed	21.718 Z (kN/mm) Fixed Fixed Fixed Fixed Fixed Sees	0.170 rX (kN m/deg) - - - - - -	2.4E+3 rY (kN m/deg) - - - - - - -	10E -6] 1				
4 Node 1 2 4 155 156 158 Rele There in Num	CONCRET POOTS X (kN/mm) Fixed Fixed Fixed Fixed Fixed Fixed SEC Second SELF	Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed	Z (KN/mm) Fixed Fixed Fixed Fixed Fixed Fixed Sees Name	0.170 rX (kN m/deg) - - - - - -	2.4E+3 rY (kN'm/deg) - - - - - - - Type	10E -6] 1				
4 Node 1 2 4 155 156 158 Rele There i Num	CONCRET x (kN/mm) Fixed Fi	Y (kN/mm) Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed	Z (KN/mm) Fixed Fixed Fixed Fixed Fixed Fixed Sees Name	0.170 rX (kN m/deg) - - - - - -	2.4E+3 rY (kN'm/deg) Dead Dead Live	10E -6] 1				
4 Node 1 2 4 155 156 158 Rele <i>Prin</i> Numl 1 2	CONCRET CONCRET X (kN/mm) Fixed Fixed Fixed Fixed Fixed Fixed Fixed SELF CONCRET SELF	Fixed Fixed	Z (KN/mm) Fixed Fixed Fixed Fixed Fixed Fixed Sees Name	0.170 rX (kN m/deg) - - - - - -	2.4E+3 rY (KN m/deg) 	10E -6] 1				
4 Sup Node 1 2 4 155 156 158 Rele There is Prin Numi 1 2 3	CONCRET CONCRET X (kN/mm) Fixed Fixed Fixed Fixed Fixed Fixed Fixed SELF CONCRET SELF	Y (kN/mm) Fixed Fixed Fixed Fixed Fixed Fixed Fixed WEIGHT PMENT LOA	Z (KN/mm) Fixed Fixed Fixed Fixed Fixed Fixed Sees Name	0.170 rX (kN m/deg) - - - - - -	2.4E+3 rY (kN'm/deg) Dead Dead Live	10E -6] 1				
4 Node 1 2 4 1556 1558 Rele There is Prin Num 1 2 3 4	CONCRET CONCRET X (kN/mm) Fixed Fixed Fixed Fixed Fixed Fixed Fixed SELF CONCRET SELF	Fixed Fixed	Z (KN/mm) Fixed Fixed Fixed Fixed Fixed Fixed Sees Name	0.170 rX (kN m/deg) - - - - - -	2.4E+3 rY (kN m/deg) 	10E -6] 1				

Section properties, Materials, Supports and Primary load cases

00	oftware licensed to H	lewlett-Packard		Part					
tle MAST	TERS THESIS			Ref					
				^{By} En	ngr Udeme	Date19/11/2		Engr Pet	
DEPT	OF CIVIL ENG	GINEERING, FUTMINNA		File 30	M THREE-LEC	GGED G	ate/Time 19-N	lov-2021	
Coml	bination	Load Cases							
Comb.	Com	bination L/C Name	Primary	Prima	ry L/C Name		Factor		
6	GENERATED	D BRITISH BS 5950 1	1	SELF WEIGHT			1.40		
1			2	EQUIPMENT LOA	AD.		1.40		
7	GENERATED	D BRITISH BS 5950 2	1	LIVE LOAD SELF WEIGHT			1.60		
			2	EQUIPMENT LOA	AD.		1.40		
			4	WIND LOAD X+			1.40		
8	GENERATED	D BRITISH BS 5950 3	1	SELF WEIGHT	D.		1.40		
			2	EQUIPMENT LOA WIND LOAD Z+			1.40		
9	GENERATED	D BRITISH BS 5950 4	1	SELF WEIGHT			1.20		
			2	EQUIPMENT LOA	٨D		1.20		
			3	LIVE LOAD			1.20		
10	GENERATE	D BRITISH BS 5950 5	4	WIND LOAD X+ SELF WEIGHT			1.20		
.0		2	2		SELF WEIGHT 1.20 EQUIPMENT LOAD 1.20				
			3	LIVE LOAD			1.20		
			5	WIND LOAD Z+			1.20		
Intensit (N/mm ² 0.00	ty Height ²) (m)	<u>efinition : Type ˈ</u> 	_						
Intensit (N/mm ²	ty Height (m) 01 5.000 01 10.000 01 15.000 01 20.000 01 20.000 01 25.000		_						
Intensit (N/mm ² 0.00 0.00 0.00 0.00 0.00	ty Height (m) 01 5.000 01 10.000 01 15.000 01 20.000 01 20.000 01 30.000			/ Height Range					
Intensit (N/mm ² 0.00 0.00 0.00 0.00	ty Height (m) 01 5.000 01 10.000 01 15.000 01 20.000 01 20.000 01 30.000			/ Height Range (m)					
Intensit (N/mm ² 0.00 0.00 0.00 0.00 0.00 Exposu	ty Height (m) 01 5.000 01 10.000 01 20.000 01 25.000 01 25.000 01 30.000 re Range	5 - 154, 157							
Intensit (N/mm ² 0.00 0.00 0.00 0.00 0.00 Exposu Factor 1.00	ty Height (m) 01 5.000 01 10.000 01 15.000 01 20.000 01 25.000 01 30.000 re Range 00 Nodes		Nodes						
Intensit (N/mm ² 0.00 0.00 0.00 0.00 0.00 Exposu Factor 1.00	ty Height (m) 01 5.000 01 5.000 01 10.000 01 20.000 01 25.000 01 30.000 re Range 00 Nodes	5 - 154, 157 htt:Selfweight	Nodes	(m)					
Intensit (N/mm ² 0.00 0.00 0.00 0.00 0.00 Exposu Factor 1.00	ty Height (m) 01 5.000 01 10.000 01 15.000 01 20.000 01 25.000 01 30.000 re Range 00 Nodes	5 - 154, 157 htt:Selfweight	Nodes	(m)					
Intensit (N/mm ² 0.00 0.00 0.00 0.00 0.00 0.00 Exposul Factor 1.00 1 SEL	ty Height (m) 01 5.000 01 5.000 01 10.000 01 20.000 01 25.000 01 30.000 re Range 00 Nodes	5 - 154, 157 htt:Selfweight	Nodes	(m)					
Intensit (N/mm ² 0.00 0.00 0.00 0.00 0.00 0.00 Exposul Factor 1.00 1 SEL	ty Height (m) 01 5.000 01 5.000 01 10.000 01 20.000 01 25.000 01 30.000 re Range 00 Nodes	5 - 154, 157 htt:Selfweight	Nodes	(m)					

Different type of loads on the mast

Softwa								22	
tle MASTER	re licensed to	o Hewlett-Packard				Part			
	S THESIS	S				Ref			
						By Engr Ud	eme ^{Date} 1	19/11/2021	Chd Engr Peter
DEPT. OF	F CIVIL E	NGINEERING, FI	JTMINNA			File 30M THE	REE-LEGGE	D G Date/Tim	e 19-Nov-2021 11
Node	FX	NT LOAD			5	MZ			
	(kN)	(kN) (D	2019 March 1996	STOP and strength	(Nm)			
125	-	-0.152	-	-	-	-			
126	a	-0.152		-	-	-			
127	2	-0.152	-	-	-	-			
140	2	-0.152	-	-	-	-			
141	-	-0.152	-	-	-	-			
142 152	-	-0.152	-	-	-	-			
152		-0.152	-	-	0	-			
154	-	-0.152	-	-	-	-			
3 LIVE	LOAI	D : Node I	oads						
Node	FX			wx i	MY	MZ			
	(kN)		(kN) (k	Nm) (k	Nm) (k	(Nm)			
154		-1.000	-	-	-	-			
4 WIND	D LOA	D X+ : W	ind Loa	ding					
			ind Loa	ding					
Direction X	Type	Factor 1.000							
Direction ×	туре 1) LOA	Factor 1.000							
Direction X	Type 1	Factor 1.000							
Direction ×	туре 1) LOA	Factor 1.000							
Direction × 5 WIND Direction Z	Type 1 D LOA Type 1	Factor 1.000	ind Loa	ding					
Direction × 5 WIND Direction Z	Type 1 D LOA Type 1	Factor 1.000 1.000 D Z+ : Wi Factor 1.000	ind Loa Summai	nding ry	z	Resultant	rX	rY	ŕZ
Direction × 5 WINE Direction z Node E	Type 1 DLOA Type 1 Displa Node	Factor 1.000 AD Z+ : Wi Factor 1.000 Cement S L/C	ind Loa Summai	nding ry (mm)	(mm)	(mm)	(rad)	(rad)	(rad)
Direction × 5 WINE Direction Z Node C Max X	Type 1 DLOA Type 1 Displa Node 154	Factor 1.000 D Z+ : Wi Factor 1.000 Cement S L/C 7:GENERATEC	Summai	ry (mm) -14.653	(mm) 53.298	(mm) 384.884	(rad) 0.002	(rad) 0.132	(rad) -0.002
Direction × 5 WINE Direction Z Node E Max X Min X	Type 1 Type 1 Type 1 Displa Node 154 152	Factor 1.000 D Z+ : Wi Factor 1.000 Cement S L/C 7:GENERATEL 8:GENERATEL	ind Loa Summar X (mm) 380.894 -71.063	nding ry (mm) -14.653 -2.658	(mm) 53.298 450.545	(mm) 384.884 456.123	(rad) 0.002 0.010	(rad) 0.132 0.007	(rad) -0.002 0.003
Direction X 5 WIND Direction Z Node D Max X Min X Max Y	Type 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Factor 1.000 D Z+ : Wi Factor 1.000 Cement S L/C 7:GENERATEI 5:WIND LOAD	x (mm) 380.894 -71.063 -19.791	ry (mm) -14.653 -2.658 6.720	(mm) 53.298 450.545 176.438	(mm) 384.884 456.123 177.672	(rad) 0.002 0.010 0.013	(rad) 0.132 0.007 0.007	(rad) -0.002 0.003 0.002
Direction × 5 WINE Direction Z Node E Max X Min X Min Y	Type 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Factor 1.000 DZ+ : Wi Factor 1.000 Cement S L/C 7:GENERATEE 8:GENERATEE 8:GENERATEE 9:GENERATEE	Summal X (mm) 380.894 -71.063 -19.791 317.290	Y (mm) -14.653 -2.658 6.720 -16.737	(mm) 53.298 450.545 176.438 76.992	(mm) 384.884 456.123 177.672 326.926	(rad) 0.002 0.010 0.013 0.003	(rad) 0.132 0.007 0.007 0.112	(rad) -0.002 0.003 0.002 -0.002
Direction X 5 WINE Direction Z Node C Max X Min X Max Y Min Y Max Z	Type 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Factor 1.000 D Z+ : Wi Factor 1.000 Cement S L/C 7:GENERATEI 8:GENERATEI 5:WIND LOAD 9:GENERATEI 8:GENERATEI	Summa X (mm) 380.894 - 71.063 -19.791 317.290 -71.063	Y (mm) -14.653 -2.658 6.720 -16.737 -2.658	(mm) 53.298 450.545 176.438 76.992 450.545	(mm) 384.884 456.123 177.672 326.926 456.123	(rad) 0.002 0.010 0.013 0.003 0.010	(rad) 0.132 0.007 0.007 0.112 0.007	(rad) -0.002 0.003 0.002 -0.002 0.003
Direction X 5 WINE Direction Z Node E Max X Min X Max Y Min Y Max Z Min Z	Type 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Factor 1.000 D Z+ : Wi Factor 1.000 Cement S CC 7:GENERATEI 5:WIND LOAD 9:GENERATEI 8:GENERATEI 4:WIND LOAD	x (mm) 380.894 -71.063 -19.791 317.290 -71.063 211.157	Y (mm) -14.653 -2.658 6.720 -16.737 -2.658 6.720 -16.737 -2.658 6.720	(mm) 53.298 450.545 176.438 76.992 450.545 - 54.615	(mm) 384.884 456.123 177.672 326.926 456.123 218.150	(rad) 0.002 0.010 0.013 0.003 0.010 -0.001	(rad) 0.132 0.007 0.007 0.112 0.007 0.097	(rad) -0.002 0.003 0.002 -0.002 0.003 -0.002
Direction X 5 WINE Direction Z Node C Max X Min X Max Y Min Y Max Z	Type 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Factor 1.000 D Z+ : Wi Factor 1.000 Cement S L/C 7:GENERATEI 8:GENERATEI 5:WIND LOAD 9:GENERATEI 8:GENERATEI	Summa X (mm) 380.894 - 71.063 -19.791 317.290 -71.063	Y (mm) -14.653 -2.658 6.720 -16.737 -2.658	(mm) 53.298 450.545 176.438 76.992 450.545	(mm) 384.884 456.123 177.672 326.926 456.123	(rad) 0.002 0.010 0.013 0.003 0.010	(rad) 0.132 0.007 0.007 0.112 0.007	(rad) -0.002 0.003 0.002 -0.002 0.003
Direction X 5 WINE Direction Z Node E Max X Min X Max Y Min Y Max Z Min Z Min Z Max X	Type 1 Type 1 Type 1 Type 1 Displa Node 154 152 155 154 152 153 1	Factor 1.000 DZ+ : Wi Factor 1.000 Cement S Cement S L/C 7:GENERATEI 8:GENERATEI 8:GENERATEI 8:GENERATEI 4:WIND LOAD 7:GENERATEI	x (mm) 380.894 -71.063 -19.791 317.290 -71.063 211.157 0.000	Y (mm) -14.653 -2.658 6.720 -16.737 -2.658 -4.429 0.000	(mm) 53.298 450.545 176.438 76.992 450.545 - 54.615 0.000	(mm) 384.884 456.123 177.672 326.926 456.123 218.150 0.000	(rad) 0.002 0.010 0.013 0.003 0.010 -0.001 0.040	(rad) 0.132 0.007 0.007 0.112 0.007 0.097 0.040	(rad) -0.002 0.003 0.002 -0.002 0.003 -0.002 0.008
Direction X 5 WINE Direction Z Node C Max X Min X Max Y Min Y Max Z Min Z Min Z Max rX Min X	Type 1 Type 1 Type 1 Node 154 152 105 154 152 153 1 2	Factor 1.000 DZ+ : Wi Factor 1.000 Cement S Cement	x (mm) 380.894 -71.063 -19.791 317.290 -71.063 211.157 0.000 0.000	Y (mm) -14.653 -2.658 6.720 -16.737 -2.658 -4.429 0.000 0.000	(mm) 53.298 450.545 176.438 76.992 450.545 - 54.615 0.000 0.000	(mm) 384.884 456.123 177.672 326.926 456.123 218.150 0.000 0.000	(rad) 0.002 0.010 0.013 0.003 0.010 -0.001 0.040 -0.030	(rad) 0.132 0.007 0.007 0.112 0.007 0.097 0.040 0.044	(rad) -0.002 0.003 0.002 -0.002 0.003 -0.002 0.008 0.008
Direction X 5 WINE Direction Z Node C Max X Min X Max Y Min Y Max Z Min Z Max rX Min rX Max rY	Type 1 Type 1 Type 1 Sispla Node 154 152 105 154 152 153 1 2 154	Factor 1.0000 1.0000 1.0000 1.000 1.000 1.000 1.000 1.000 1.000	x (mm) 380.894 -71.063 -19.791 317.290 -71.063 211.157 0.000 380.894	Y (mm) -14.653 -2.658 6.720 -16.737 -2.658 -4.429 0.000 -14.653	(mm) 53.298 450.545 176.438 76.992 450.545 -54.615 0.000 0.000 53.298	(mm) 384.884 456.123 177.672 326.926 456.123 218.150 0.000 0.000 384.884	(rad) 0.002 0.010 0.013 0.003 0.010 -0.001 0.040 -0.030 0.002	(rad) 0.132 0.007 0.112 0.007 0.097 0.040 0.044 0.132	(rad) -0.002 0.003 0.002 -0.002 -0.002 0.008 0.008 -0.002 0.008 0.008 0.000 0.000
Direction X 5 WINE Direction Z Node E Max X Min X Max Y Min Y Max rX Min rX Max rY Max rY Min rX	Type 1 Type 1 Type 1 Type 1 Displa Displa 1 154 152 153 1 2 154 154 154 154	Factor 1.000 1.000 1.000 1.000 Cement S Cement S Center S	x (mm) 380.894 -71.063 -19.791 317.290 -71.063 211.157 0.000 0.000 0.000 380.894 -32.975	Y (mm) -14.653 -2.658 6.720 -16.737 -2.658 6.720 -14.653 -4.429 0.000 0.000 0.000 0.14.653 -15.417	(mm) 53.298 450.545 176.438 76.992 450.545 -54.615 0.000 0.000 53.298 110.274	(mm) 384.884 456.123 177.672 326.926 456.123 218.150 0.000 0.000 384.884 116.126	(rad) 0.002 0.010 0.013 0.003 0.010 -0.001 -0.001 -0.030 0.002 0.002	(rad) 0.132 0.007 0.007 0.007 0.007 0.007 0.040 0.044 0.132 -0.006	(rad) -0.002 0.003 0.002 -0.002 -0.002 0.003 0.008 0.008 -0.002 0.000

Print Time/Date: 19/11/2021 11:53

STAAD.Pro V8i (SELECTseries 6) 20.07.11.33

Print Run 22 of 1965

Beam displacement, Beam end displacement and Beam end force summary

2	Job No Sheet No 23	ev
Software licensed to Hewlett-Packard	Part	
Job Title MASTERS THESIS	Ref	
	By Engr Udeme Date19/11/2021 Chd Engr	Peter
Client DEPT. OF CIVIL ENGINEERING, FUTMINNA	File 30M THREE-LEGGED G Date/Time 19-Nov-20	21 11:44

Beam Displacement Detail Summary

	Beam	L/C	d	х	Y	Z	Resultant
			(m)	(mm)	(mm)	(mm)	(mm)
Max X	591	7:GENERATEL	0.600	380.894	-14.653	53.298	384.884
Min X	589	8:GENERATEL	0.600	-71.063	-2.657	450.545	456.123
Max Y	398	5:WIND LOAD	0.600	-19.791	6.721	176.438	177.672
Min Y	591	9:GENERATEL	0.600	317.290	-16.737	76.992	326.926
Max Z	589	8:GENERATEL	0.600	-71.063	-2.657	450.545	456.123
Min Z	590	4:WIND LOAD	0.600	211.157	-4.431	-54.615	218.150
Max Rst	589	8:GENERATEL	0.600	-71.063	-2.657	450.545	456.123

Beam End Displacement Summary

	Beam	Node	L/C	X	Y	Z	Resultant
				(mm)	(mm)	(mm)	(mm)
Max X	591	154	7:GENERATEL	380.894	-14.653	53.298	384.884
Min X	589	152	8:GENERATEL	-71.063	-2.657	450.545	456.123
Max Y	398	105	5:WIND LOAD	-19.791	6.721	176.438	177.672
Min Y	591	154	9:GENERATE[317.290	-16.737	76.992	326.926
Max Z	589	152	8:GENERATEL	-71.063	-2.657	450.545	456.123
Min Z	590	153	4:WIND LOAD	211.157	-4.431	-54.615	218.150
Max Rst	589	152	8:GENERATEL	-71.063	-2.657	450.545	456.123

Beam End Force Summary

The signs of the forces at end B of each beam have been reversed. For example: this means that the Min Fx entry gives the largest tension value for an beam.

				Axial	She	ear	Torsion	Bend	ling
	Beam	Node	L/C	Fx	Fy	Fz	Mx	My	Mz
				(kN)	(kN)	(kN)	(kNm)	(kNm)	(kNm)
Max Fx	3	4	8:GENERATEL	236.094	-1.441	-8.120	0.000	0.000	-0.000
Min Fx	2	6	8:GENERATEL	-126.055	-0.250	-4.676	0.000	-2.806	0.150
Max Fy	3	4	7:GENERATEL	63.089	18.804	-1.777	0.000	0.000	0.000
Min Fy	15	7	7:GENERATEL	64.148	-18.330	1.319	0.002	-0.820	-10.900
Max Fz	15	7	8:GENERATEL	223.389	1.639	8.210	-0.010	-4.646	0.906
Min Fz	3	4	8:GENERATEL	236.094	-1.441	-8.120	0.000	0.000	-0.000
Max Mx	24	8	7:GENERATEL	28.423	-0.225	0.116	0.054	-0.030	-0.032
Min Mx	13	5	7:GENERATEL	-87.010	1.104	5.815	-0.042	-3.264	0.666
Max My	2	6	7:GENERATEL	221.315	-1.933	7.261	0.000	4.356	1.160
Min My	3	7	8:GENERATEL	235.905	-1.441	-8.120	0.000	-4.872	0.864
Max Mz	14	6	7:GENERATEL	209.302	2.099	-8.003	-0.001	4.181	1.179
Min Mz	3	7	7:GENERATEL	62.900	18.804	-1.777	0.000	-1.066	-11.283

Print Time/Date: 19/11/2021 11:53

STAAD.Pro V8i (SELECTseries 6) 20.07.11.33

Print Run 23 of 1965

Typical steel design of member beam 1

				Job No		Sheet No	522		Rev
Software licensed to	Hewlett-Packard			Part		6			
Itle MASTERS THESIS				Ref					
				By Eng	r Udeme	Date19/11/	/2021	Chd En	gr Peter
DEPT. OF CIVIL EN	NGINEERING, FUTM	IINNA		File 30N	1 THREE-LE	GGED G	Date/Time	19-Nov-	2021 11
Steel Design All UNITS ARE - MEMBER TABLE	KN METE (UNLE RESULT/	Beam 1 Chec ss otherwis e critical cond/	Noted) RATIO		LOADING/ LOCATION				
1 ST RD49	PASS	BS-4.8.2.2 0.00		9					
MATERIAL DATA Grade of st Modulus of	eel = elasticity = ngth (py) =								
Member Leng	TIES (units - c th = 60.00 = 18.90 Net	Area = 18.90 Ef			8.90				
Moment of i Plastic mod Elastic mod Effective m Shear Area	ulus : ulus : odulus :	28.300 11.600 11.551 11.551	у-у 28 11 11 11	300 600 551 551					
Section Cla Squash Load Axial force	nits - kN,m) ss : (Squash load :	SLENDER 1048.95 0.103							
Compression Tension Cap Moment Capa Reduced Mom Shear Capac	Capacity : acity : city : ment Capacity : ity :	z-z axis 896.9 1048.9 6.4 6.4 377.6	у-у 896 1048 6 37	5.9 3.9 5.4 5.4					
(axis nomencla	LATIONS (units ture as per des	ign code)	у-у а	ixis					
Slenderness Radius of g Effective L	yration (cm) : ength :	49.033 1.224 0.600	49 1 0	224					
LTB check u	nnecessary for	this section							
CRITICAL LOADS	FOR EACH CLAUS	E CHECK (units- kN	1,m):						
CLAUSE BS-4.2.3-(Y) BS-4.2.3-(Z) BS-4.6 (T) BS-4.7 (C) BS-4.8.2.2 BS-4.8.2.3 BS-4.8.3.2 BS-4.8.3.3.1 BS-4.8.3.3.3 Torreform and d	0.049 6 0.999 7 0.896 7 0.089 6 0.115 6 0.103 6	FX VY - 0.4 107.7 - 43.9 - 107.7 0.4 107.7 - 43.8 0.3 43.9 - 43.9 - 43.9 - not been consider	VZ 9.6 9.6 0.4	MZ - 5.7 5.7 0.3 0.2 0.2	MY - - 0.0 0.0 0.0 0.3 0.3				

Typical steel design of member beam 1 continues

	~			Job	NO	Sheet No 523		Rev
	Software licensed to Hev	viett-Packard		Par	t			
Title M	ASTERS THESIS			Ref				
				Ву	Engr Udeme	Date19/11/2021	Chd En	gr Peter
ent D	EPT. OF CIVIL ENGI	NEERING, FUTM	IINNA	File	30M THREE-LE	GGED G	e 19-Nov-	2021 11:4
ALL MEM	JUNITS ARE - KN MBER TABLE	METE (UNLE RESULT/ FX	CRITICAL COND/ MY	E Noted) RATIO/ MZ				
			BS-4.8.2.2 0.00					
	Grade of stee. Modulus of ela Design Streng							
S	SECTION PROPERTII Member Length Gross Area =	= 60.00 16.60 Net	Area = 16.60 E	lff. Area = v-v axi	16.60 s			
	Moment of ine Plastic modul Elastic modul Effective modu Shear Area	rtia : us : us : ulus :	z-z axis 22.000 9.560 9.565 9.565 9.960	22.00 9.56 9.56 9.56 9.96	0 0 5 5 0			
D	DESIGN DATA (uni Section Class Squash Load Axial force/So	quash load :	SLENDER 921.30 0.118					
	Compression Ca Tension Capaci Moment Capaci Reduced Momen Shear Capacit	apacity : ity : ty : t Capacity : Y :	z-z axis 762.2 921.3 5.3 5.3 331.7	y-y axi 762.2 921.3 5.3 5.3 331.7				
	BUCKLING CALCULA (axis nomenclatu:	TIONS (units re as per des	- kN,m)					
	Effective Lene			0.60	0			
С	CRITICAL LOADS FO	OR EACH CLAUS	E CHECK (units- k	:N,m):				
B B B B	3S-4.8.2.2 0 3S-4.8.2.3 0 3S-4.8.3.2 0 3S-4.8.3.3.1 0 3S-4.8.3.3.3 0	.941 7 .822 7 .079 6 .105 6 .090 6	FX VY - 0.6 23.6 - 109.1 - 23.6 - 109.1 - 23.4 0.4 23.5 - Not been consider	7.3 4 - 4 0.3 0 - 0 - 0	.4 0.0 .4 0.0 .3 0.0 .2 0.2 .2 0.2			

Utilization ratio

2						Job No		Sheet No	1955	Rev	
	ftware licensed to H	wlett-Packard				Part					-
	ERS THESIS	Smott Fuckuro				Ref					-
						By -		Deterre		hd	_
							Udeme			^{hd} Engr Peter	_
DEPT	OF CIVIL ENG	INEERING, F	UTMINNA	4		File 30M	THREE	-LEGGED	G Date/Time 19	-Nov-2021 11:4	4
	ation Ra										
Beam	Analysis	Design		Allowable		Clause	L/C	Ax	Iz	ly	Ix
	Property	Property	Ratio	Ratio	(Act./Allow.)			(cm ²)	(cm ⁴)	(cm ⁴)	(cm4)
1	PIPBG60.3X	RD46	0.941	1.000	0.941	BS-4.8.2.2	7	16.600	22.000	22.000	44.0
2	PIPBG60.3X	RD51.5	0.901	1.000	0.901	BS-4.8.3.3.1	7	20.800	34.500	34.500	69.0
3	PIPBG60.3X	RD61	0.953	1.000	0.953	BS-4.8.3.3.1	7	29.200	68.000	68.000	136.
4	RD16	RD15.75	0.979	1.000	0.979	BS-4.8.3.3.1	8	1.950	0.300	0.300	0.
5	RD16	RD20	0.895	1.000	0.895	BS-4.8.3.3.1	7	3.140	0.790	0.790	1.
6	RD16	RD8	0.873	1.000	0.873	BS-4.8.2.2	7	0.500	0.020	0.020	0.
13	PIPBG60.3X	RD44.5	0.997	1.000	0.997	BS-4.8.2.2	7	15.600	19.200	19.200	38.
14	PIPBG60.3X	RD51	0.894	1.000	0.894	BS-4.8.3.3.1	7	20.400	33.200	33.200	66.
15	PIPBG60.3X	RD60	0.962	1.000	0.962	BS-4.8.3.3.1	7	28.300	63.600	63.600	127.
19	RD16	RD20.75	0.948	1.000	0.948	BS-4.8.3.3.1	7	3.380	0.910	0.910	1.
20	RD16	RD21.7	0.934	1.000	0.934	BS-4.8.3.3.1	8	3.700	1.090	1.090	2.
21	RD16	RD27.25	0.928	1.000	0.928	BS-4.8.3.3.1	7	5.830	2.710	2.710	5.
22	RD16	RD12	0.888	1.000	0.888	BS-4.8.3.3.1	6	1.130	0.100	0.100	0.
23	RD16	RD10	0.903	1.000	0.903	BS-4.8.2.2	7	0.790	0.049	0.049	0.
24	RD16	RD27.25	0.913	1.000	0.913	BS-4.8.3.3.1	7	5.830	2.710	2.710	5.
25	PIPBG60.3X	RD24	0.992	1.000	0.992	BS-4.8.2.2	7	4.520	1.630	1.630	3.
26	PIPBG60.3X	RD35.5	0.878	1.000	0.878	BS-4.8.3.3.1	7	9.900	7.800	7.800	15.
27	PIPBG60.3X	RD35	0.883	1.000	0.883	BS-4.8.3.3.1	8	9.620	7.370	7.370	14.
31	RD16	RD16.5	0.955	1.000	0.955	BS-4.8.3.3.1	7	2.140	0.360	0.360	0.
32	RD16	RD17	0.975	1.000	0.975	BS-4.8.3.3.1	8	2.270	0.410	0.410	0.
33	RD16	RD21.7	0.950	1.000	0.950	BS-4.8.3.3.1	7	3.700	1.090	1.090	2.
34	RD16	RD9	0.839	1.000	0.839	BS-4.8.3.3.1	6	0.640	0.032	0.032	0.
35	RD16	RD7	0.891	1.000	0.891	BS-4.8.2.2	7	0.380	0.032	0.012	0.
36	RD16	RD20.75	0.934	1.000	0.934	BS-4.8.3.3.1	7	3.380	0.910	0.910	1.
37	PIPBG60.3X	RD18.25	0.969	1.000	0.969	BS-4.8.3.3.1	6	2.620	0.540	0.540	1.
38	PIPBG60.3X	RD32	0.909	1.000	0.909	BS-4.8.3.3.1	7	8.040	5.150	5.150	10.
39	PIPBG60.3X	RD31.3	0.921	1.000	0.921	BS-4.8.3.3.1	8	7.690	4.710	4.710	9.
			-				7				_
43 44	RD16	RD17 RD17.5	0.874	1.000	0.874	BS-4.8.3.3.1	8	2.270	0.410	0.410	0.
44	RD16 RD16	RD17.5 RD21.25	0.948	1.000	0.948	BS-4.8.3.3.1 BS-4.8.3.3.1	8	2.410 3.550	0.460	0.460	2.
45		RD21.25 RD11.5	0.938		0.938	BS-4.8.3.3.1 BS-4.8.3.3.1	-		0.086		0.
46	RD16		0.947	1.000	0.947		6	1.040	0.086	0.086	_
	RD16	RD6.5				BS-4.8.2.2	7	0.330		Contraction of the second s	0.
48	RD16	RD21.7	0.968	1.000	0.968	BS-4.8.3.3.1	100	3.700	1.090	1.090	2.
49	PIPBG60.3X	RD13.75	0.998	1.000	0.998	BS-4.8.2.2	7	1.480	0.180	0.180	0.
50	PIPBG60.3X	RD31	0.891	1.000	0.891	BS-4.8.3.3.1	7	7.550	4.530	4.530	9.
51	PIPBG60.3X	RD31	0.946	1.000	0.946	BS-4.8.3.3.1	8	7.550	4.530	4.530	9.
55 56	RD16	RD17.25	0.946	1.000	0.946	BS-4.8.3.3.1	7	2.340 2.410	0.430	0.430	0.
10.01	RD16	RD17.5		1.000		BS-4.8.3.3.1			0.460	0.460	1000
57	RD16	RD21.25	0.979	1.000	0.979	BS-4.8.3.3.3	7	3.550	1.000	1.000	2.
58	RD16	RD9	0.984	1.000	0.984	BS-4.8.3.3.1	10	0.640	0.032	0.032	0.
59	RD16	RD6.5	0.951	1.000	0.951	BS-4.8.2.2	7	0.330	0.009	0.009	0.
60	RD16	RD21.25	0.961	1.000	0.961	BS-4.8.3.3.1	7	3.550	1.000	1.000	2.
61	PIPBG60.3X	RD18.5	0.984	1.000	0.984	BS-4.8.3.3.1	6	2.690	0.570	0.570	1.
62	PIPBG60.3X	RD29.6	0.968	1.000	0.968	BS-4.8.3.3.1	7	6.880	3.770	3.770	7.
63	PIPBG60.3X	RD31	0.875	1.000	0.875	BS-4.8.3.3.1	10	7.550	4.530	4.530	9.
64	RD16	RD9	0.989	1.000	0.989	BS-4.7 (C)	5	0.640	0.032	0.032	0.
65	RD16	RD9.5	0.880	1.000	0.880	BS-4.8.3.3.1	4	0.710	0.040	0.040	0.
66	RD16	RD5.5	0.219	1.000	0.219	BS-4.7 (C)	5	0.240	0.004	0.004	0.
67	RD16	RD16.5	0.927	1.000	0.927	BS-4.8.3.3.1	7	2.140	0.360	0.360	0.

Print Time/Date: 19/11/2021 11:53

STAAD.Pro V8i (SELECTseries 6) 20.07.11.33

Print Run 1955 of 1965

2	Job No Sheet No 1956 Rev							
Software licensed to Hewlett-Packard	Part							
Job Title MASTERS THESIS	Ref							
	By Engr Ude	me Date19/11/2021	Chd Engr Peter					
Client DEDT OF CIVIL ENGINEEDING ELITMININA	File 20M TUD	ELLECED C Date/Tim	10 Nov 2021 11-44					

2 50	ftware licensed to He	ewlett-Packard				Part					-		
	ERS THESIS					Ref							
						By Engl	By Engr Udeme Date19/11/2021 Chd Engr Peter						
DEDT	OF CIVIL ENG												
DEP I.	OF GIVIL ENG	alineening, r		1		3010	INNEE	-LEGGED (-1100-2021 11.44	<u>·</u>		
Itiliz	ation Ra	tio											
Beam	Analysis	Design		Allowable		Clause	L/C	Ax	IZ	ly 4	IX 4		
1	Property PIPBG60.3X	Property RD46	Ratio	Ratio	(Act./Allow.) 0.941	DC 1000	7	(cm ²) 16.600	(cm ⁴) 22.000	(cm ⁴)	(cm ⁴)		
1	PIPBG60.3X	RD46 RD51.5	0.941	1.000	0.941	BS-4.8.2.2 BS-4.8.3.3.1	7	20.800	34.500	22.000 34.500	69.0		
3	PIPBG60.3X	RD61	0.953	1.000	0.953	BS-4.8.3.3.1	7	29.200	68.000	68.000	136.0		
4	RD16	RD15.75	0.979	1.000	0.933	BS-4.8.3.3.1	8	1.950	0.300	0.300	0.6		
5	RD16	RD20	0.895	1.000	0.895	BS-4.8.3.3.1	7	3.140	0.790	0.790	1.5		
6	RD16	RD8	0.873	1.000	0.873	BS-4.8.2.2	7	0.500	0.020	0.020	0.0		
13	PIPBG60.3X	RD44.5	0.997	1.000	0.997	BS-4.8.2.2	7	15.600	19.200	19.200	38.4		
14	PIPBG60.3X	RD51	0.894	1.000	0.894	BS-4.8.3.3.1	7	20.400	33.200	33.200	66.4		
15	PIPBG60.3X	RD60	0.962	1.000	0.962	BS-4.8.3.3.1	7	28.300	63.600	63.600	127.2		
19	RD16	RD20.75	0.948	1.000	0.948	BS-4.8.3.3.1	7	3.380	0.910	0.910	1.8		
20	RD16	RD21.7	0.934	1.000	0.934	BS-4.8.3.3.1	8	3.700	1.090	1.090	2.1		
21	RD16	RD27.25	0.928	1.000	0.928	BS-4.8.3.3.1	7	5.830	2.710	2.710	5.4		
22	RD16	RD12	0.888	1.000	0.888	BS-4.8.3.3.1	6	1.130	0.100	0.100	0.2		
23	RD16	RD10	0.903	1.000	0.903	BS-4.8.2.2	7	0.790	0.049	0.049	0.0		
24	RD16	RD27.25	0.913	1.000	0.913	BS-4.8.3.3.1	7	5.830	2.710	2.710	5.4		
25	PIPBG60.3X	RD24	0.992	1.000	0.992	BS-4.8.2.2	7	4.520	1.630	1.630	3.2		
26	PIPBG60.3X	RD35.5	0.878	1.000	0.878	BS-4.8.3.3.1	7	9.900	7.800	7.800	15.6		
27	PIPBG60.3X	RD35	0.883	1.000	0.883	BS-4.8.3.3.1	8	9.620	7.370	7.370	14.7		
31 32	RD16 RD16	RD16.5 RD17	0.955	1.000	0.955	BS-4.8.3.3.1 BS-4.8.3.3.1		2.140	0.360	0.360	0.7		
32	RD16	RD17 RD21.7	0.975	1.000	0.975	BS-4.8.3.3.1 BS-4.8.3.3.1	8	3.700	1.090	1.090	0.8		
34	RD16	RD9	0.839	1.000	0.839	BS-4.8.3.3.1	6	0.640	0.032	0.032	0.0		
35	RD16	RD7	0.891	1.000	0.891	BS-4.8.2.2	7	0.380	0.002	0.012	0.0		
36	RD16	RD20.75	0.934	1.000	0.934	BS-4.8.3.3.1	7	3.380	0.910	0.910	1.8		
37	PIPBG60.3X	RD18.25	0.969	1.000	0.969	BS-4.8.3.3.1	6	2.620	0.540	0.540	1.0		
38	PIPBG60.3X	RD32	0.921	1.000	0.921	BS-4.8.3.3.1	7	8.040	5.150	5.150	10.3		
39	PIPBG60.3X	RD31.3	0.965	1.000	0.965	BS-4.8.3.3.1	8	7.690	4.710	4.710	9.4		
43	RD16	RD17	0.874	1.000	0.874	BS-4.8.3.3.1	7	2.270	0.410	0.410	0.8		
44	RD16	RD17.5	0.948	1.000	0.948	BS-4.8.3.3.1	8	2.410	0.460	0.460	0.9		
45	RD16	RD21.25	0.938	1.000	0.938	BS-4.8.3.3.1	7	3.550	1.000	1.000	2.0		
46	RD16	RD11.5	0.947	1.000	0.947	BS-4.8.3.3.1	6	1.040	0.086	0.086	0.1		
47	RD16	RD6.5	0.890	1.000	0.890	BS-4.8.2.2	7	0.330	0.009	0.009	0.0		
48	RD16	RD21.7	0.968	1.000	0.968	BS-4.8.3.3.1	7	3.700	1.090	1.090	2.1		
49	PIPBG60.3X	RD13.75	0.998	1.000	0.998	BS-4.8.2.2	7	1.480	0.180	0.180	0.3		
50	PIPBG60.3X	RD31	0.891	1.000	0.891	BS-4.8.3.3.1	7	7.550	4.530	4.530	9.0		
51	PIPBG60.3X	RD31 RD17.25	0.946	1.000	0.946	BS-4.8.3.3.1	8	7.550 2.340	4.530 0.430	4.530 0.430	9.0		
55 56	RD16 RD16	RD17.25 RD17.5	0.946	1.000	0.946	BS-4.8.3.3.1 BS-4.8.3.3.1	8	2.340	0.430	0.430	0.8		
57	RD16	RD17.5 RD21.25	0.943	1.000	0.943	BS-4.8.3.3.1 BS-4.8.3.3.3	7	3.550	1.000	1.000	2.0		
58	RD16	RD9	0.984	1.000	0.975	BS-4.8.3.3.1	10	0.640	0.032	0.032	0.0		
59	RD16	RD6.5	0.951	1.000	0.951	BS-4.8.2.2	7	0.330	0.002	0.002	0.0		
60	RD16	RD21.25	0.961	1.000	0.961	BS-4.8.3.3.1	7	3.550	1.000	1.000	2.0		
61	PIPBG60.3X	RD18.5	0.984	1.000	0.984	BS-4.8.3.3.1	6	2.690	0.570	0.570	1.1		
62	PIPBG60.3X	RD29.6	0.968	1.000	0.968	BS-4.8.3.3.1	7	6.880	3.770	3.770	7.5		
63	PIPBG60.3X	RD31	0.875	1.000	0.875	BS-4.8.3.3.1	10	7.550	4.530	4.530	9.0		
64	RD16	RD9	0.989	1.000	0.989	BS-4.7 (C)	5	0.640	0.032	0.032	0.0		
65	RD16	RD9.5	0.880	1.000	0.880	BS-4.8.3.3.1	4	0.710	0.040	0.040	0.0		
66	RD16	RD5.5	0.219	1.000	0.219	BS-4.7 (C)	5	0.240	0.004	0.004	0.0		
67	RD16	RD16.5	0.927	1.000	0.927	BS-4.8.3.3.1	7	2.140	0.360	0.360	0.7		

2						Job No		Sheet No	1957	Rev			
) So	ftware licensed to He	ewlett-Packard				Part					-		
	ERS THESIS					Ref							
						By Engr	By Engr Udeme Date19/11/2021 Chd Engr Peter						
						0.00				123	20		
DEPT.	OF CIVIL ENG	INEERING, F	UTMINNA	4		File 30M	THREE	-LEGGED (G Date/Time 19	-Nov-2021 11:4	4		
Jtiliza	ation Ra	tio Con	<u>t</u>										
Beam	Analysis	Design	Actual Ratio	Allowable Ratio	Ratio (Act./Allow.)	Clause	L/C	Ax (cm ²)	lz (cm ⁴)	ly (cm ⁴)	(cm ⁴)		
129	Property RD16	Property RD21.5	0.0000000	1.000	0.961	BS-4.8.3.3.1	7	A	1.050	1.050	2.		
130		RD21.5	0.961	March Marrie and	0.961	Marcol and a supervision of the second	6	3.630			10000000		
	RD16 RD16		0.895	1.000		BS-4.8.3.3.1		1.040	0.086	0.086	0.		
131	100 ATT 100 AT	RD7	0.973	1.000	0.973	BS-4.8.3.3.1	6	0.380	0.012	0.012	0.		
132	RD16	RD21	0.955	1.000	0.955	BS-4.8.3.3.1	7	3.460	0.950	0.950	1.		
133	PIPBG60.3X	RD19.5	0.986	1.000	0.986	BS-4.8.3.3.1	6	2.990	0.710	0.710	1.		
134	PIPBG60.3X	RD26	0.976	1.000	0.976	BS-4.8.3.3.1	7	5.310	2.240	2.240	4.		
135	PIPBG60.3X	RD27	0.934	1.000	0.934	BS-4.8.3.3.1	10	5.730	2.610	2.610	5.		
139	RD16	RD17.9	0.951	1.000	0.951	BS-4.8.3.3.1	7	2.520	0.500	0.500	1.		
140	RD16	RD17.25	0.982	1.000	0.982	BS-4.8.3.3.1	8	2.340	0.430	0.430	0.		
141	RD16	RD21.5	0.940	1.000	0.940	BS-4.8.3.3.1	7	3.630	1.050	1.050	2.		
142	RD16	RD11.5	0.947	1.000	0.947	BS-4.8.3.3.1	6	1.040	0.086	0.086	0.		
143	RD16	RD7	0.862	1.000	0.862	BS-4.8.2.2	7	0.380	0.012	0.012	0.		
144	RD16	RD20.75	0.952	1.000	0.952	BS-4.8.3.3.1	7	3.380	0.910	0.910	1.		
145	PIPBG60.3X	RD19.7	0.986	1.000	0.986	BS-4.8.3.3.1	6	3.050	0.740	0.740	1.		
146	PIPBG60.3X	RD25.5	0.976	1.000	0.976	BS-4.8.3.3.1	7	5.110	2.080	2.080	4.		
147	PIPBG60.3X	RD26	0.959	1.000	0.959	BS-4.8.3.3.1	10	5.310	2.240	2.240	4.		
151	RD16	RD17	0.966	1.000	0.966	BS-4.8.3.3.1	7	2.270	0.410	0.410	0.		
152	RD16	RD17	0.928	1.000	0.928	BS-4.8.3.3.1	8	2.270	0.410	0.410	0.		
153	RD16	RD20.5	0.969	1.000	0.969	BS-4.8.3.3.1	7	3.300	0.870	0.870	1.		
154	RD16	RD10.5	0.818	1.000	0.818	BS-4.8.3.3.1	10	0.870	0.060	0.060	0.		
155	RD16	RD6	0.906	1.000	0.906	BS-4.8.2.2	7	0.280	0.006	0.006	0.		
156	RD16	RD21.7	0.955	1.000	0.955	BS-4.8.3.3.1	7	3.700	1.090	1.090	2.		
157	PIPBG60.3X	RD20	0.950	1.000	0.950	BS-4.8.3.3.1	9	3.140	0.790	0.790	1.		
158	PIPBG60.3X	RD24.75	0.977	1.000	0.977	BS-4.8.3.3.1	7	4.810	1.840	1.840	3.		
159	PIPBG60.3X	RD25.5	0.930	1.000	0.930	BS-4.8.3.3.1	10	5.110	2.080	2.080	4.		
163	RD16	RD18.25	0.930	1.000	0.930	BS-4.8.3.3.1 BS-4.8.3.3.1	7	2.620	0.540	0.540	1.		
164	RD16	RD18.25	0.932	1.000	0.932	BS-4.8.3.3.1	8	2.020	0.340	0.340	0.		
											_		
165	RD16	RD21.25	0.957	1.000	0.957	BS-4.8.3.3.1	7	3.550	1.000	1.000	2.		
166	RD16	RD11.5	0.934	1.000	0.934	BS-4.8.3.3.1	6	1.040	0.086	0.086	0.		
167	RD16	RD6.5	0.962	1.000	0.962	BS-4.8.2.2	7	0.330	0.009	0.009	0.		
168	RD16	RD20.25	0.969	1.000	0.969	BS-4.8.3.3.1	7	3.220	0.830	0.830	1.		
169	PIPBG60.3X	RD21	0.950	1.000	0.950	BS-4.8.3.3.1	9	3.460	0.950	0.950	1.		
170	PIPBG60.3X	RD24.5	0.970	1.000	0.970	BS-4.8.3.3.1	7	4.710	1.770	1.770	3.		
171	PIPBG60.3X	RD24.75	0.969	1.000	0.969	BS-4.8.3.3.1	10	4.810	1.840	1.840	3.		
175	RD16	RD17.5	0.951	1.000	0.951	BS-4.8.3.3.1	7	2.410	0.460	0.460	0.		
176	RD16	RD16.5	0.946	1.000	0.946	BS-4.8.3.3.1	8	2.140	0.360	0.360	0.		
177	RD16	RD20.25	0.967	1.000	0.967	BS-4.8.3.3.3	7	3.220	0.830	0.830	1.		
178	RD16	RD10	0.938	1.000	0.938	BS-4.8.3.3.1	10	0.790	0.049	0.049	0.		
179	RD16	RD5.5	0.998	1.000	0.998	BS-4.8.2.2	7	0.240	0.004	0.004	0.		
180	RD16	RD21.5	0.946	1.000	0.946	BS-4.8.3.3.1	7	3.630	1.050	1.050	2.		
181	PIPBG60.3X	RD21.85	0.963	1.000	0.963	BS-4.8.3.3.1	9	3.750	1.120	1.120	2.		
182	PIPBG60.3X	RD24	0.953	1.000	0.953	BS-4.8.3.3.1	7	4.520	1.630	1.630	3.		
183	PIPBG60.3X	RD24.25	0.957	1.000	0.957	BS-4.8.3.3.1	9	4.620	1.700	1.700	3.		
184	RD16	RD8	0.840	1.000	0.840	BS-4.7 (C)	5	0.500	0.020	0.020	0.		
185	RD16	RD10.5	0.965	1.000	0.965	BS-4.8.3.3.1	7	0.870	0.060	0.060	0.		
186	RD16	RD7.5	0.968	1.000	0.968	BS-4.7 (C)	5	0.440	0.016	0.016	0.		
187	RD16	RD18.7	0.939	1.000	0.939	BS-4.8.3.3.1	7	2.750	0.600	0.600	1.3		
188	RD16	RD16.5	0.974	1.000	0.974	BS-4.8.3.3.1	8	2.140	0.360	0.360	0.		

Print Time/Date: 19/11/2021 11:53

STAAD.Pro V8i (SELECTseries 6) 20.07.11.33

Print Run 1957 of 1965

2						Job No		Sheet No	1958	Rev			
So	ftware licensed to He	ewlett-Packard				Part		_			-		
	ERS THESIS					Ref					1		
						By Engr	By Engr Udeme Date19/11/2021 Chd Engr Peter						
DEDT				^		070							
DEPT.	OF CIVIL ENG	INEERING, F	UIMINN	4		1 16 30M	THREE	-LEGGED (a Date Time 19.	Nov-2021 11:44	4		
	ation Ra			Allowable	Ratio	Olavaa		A.		hu	14		
Beam	Analysis Property	Design Property	Ratio	Allowable Ratio	(Act./Allow.)	Clause	L/C	Ax (cm ²)	Iz (cm ⁴)	ly (cm ⁴)	(cm ⁴)		
190	RD16	RD11.5	0.951	1.000	0.951	BS-4.8.3.3.1	6	1.040	0.086	0.086	0.1		
191	RD16	RD7	0.814	1.000	0.814	BS-4.8.3.3.1	6	0.380	0.012	0.012	0.0		
192	RD16	RD20.25	0.960	1.000	0.960	BS-4.8.3.3.1	7	3.220	0.830	0.830	1.0		
193	PIPBG60.3X	RD22.5	0.949	1.000	0.949	BS-4.8.3.3.1	9	3.980	1.260	1.260	2.		
194	PIPBG60.3X	RD23.5	0.964	1.000	0.964	BS-4.8.3.3.1	9	4.340	1.500	1.500	3.0		
195	PIPBG60.3X	RD24.5	0.926	1.000	0.926	BS-4.8.3.3.3	9	4.710	1.770	1.770	3.		
199	RD16	RD18.7	0.956	1.000	0.956	BS-4.8.3.3.1	7	2.750	0.600	0.600	1.		
200	RD16	RD16.2	0.993	1.000	0.993	BS-4.8.3.3.1	8	2.060	0.340	0.340	0.		
201	RD16	RD21	0.947	1.000	0.947	BS-4.8.3.3.1	7	3.460	0.950	0.950	1.		
202	RD16	RD12	0.895	1.000	0.895	BS-4.8.3.3.1	6	1.130	0.100	0.100	0.		
203	RD16	RD7.5	0.783	1.000	0.783	BS-4.8.3.3.1	6	0.440	0.016	0.016	0.		
204	RD16	RD20.25	0.942	1.000	0.942	BS-4.8.3.3.1	7	3.220	0.830	0.830	1.		
205	PIPBG60.3X	RD23	0.940	1.000	0.940	BS-4.8.3.3.1	9	4.150	1.370	1.370	2.		
206	PIPBG60.3X	RD23.5	0.946	1.000	0.946	BS-4.8.3.3.1	9	4.340	1.500	1.500	3.		
207	PIPBG60.3X	RD23.5	0.977	1.000	0.977	BS-4.8.3.3.1	9	4.340	1.500	1.500	3.0		
211	RD16	RD18.25	0.951	1.000	0.951	BS-4.8.3.3.1	7	2.620	0.540	0.540	1.		
212	RD16	RD16	0.951	1.000	0.951	BS-4.8.3.3.1	8	2.010	0.320	0.320	0.0		
213	RD16	RD20	0.924	1.000	0.924	BS-4.8.3.3.1	7	3.140	0.790	0.790	1.5		
214	RD16	RD9	0.855	1.000	0.855	BS-4.8.3.3.1	10	0.640	0.032	0.032	0.		
215	RD16	RD5.5	0.953	1.000	0.953	BS-4.8.2.2	7	0.240	0.004	0.004	0.0		
216	RD16	RD21	0.964	1.000	0.964	BS-4.8.3.3.1	7	3.460	0.950	0.950	1.		
217	PIPBG60.3X	RD23	0.950	1.000	0.950	BS-4.8.3.3.1	9	4.150	1.370	1.370	2.		
218	PIPBG60.3X	RD22.75	0.971	1.000	0.971	BS-4.8.3.3.1	9	4.060	1.310	1.310	2.0		
219	PIPBG60.3X	RD23.5	0.951	1.000	0.951	BS-4.8.3.3.1	9	4.340	1.500	1.500	3.0		
223	RD16	RD19	0.975	1.000	0.975	BS-4.8.3.3.1	7	2.840	0.640	0.640	1.3		
224	RD16	RD16	0.933	1.000	0.933	BS-4.8.3.3.1	10	2.010	0.320	0.320	0.		
225	RD16	RD20.75	0.946	1.000	0.946	BS-4.8.3.3.1	7	3.380	0.910	0.910	1.		
226	RD16	RD12	0.900	1.000	0.900	BS-4.8.3.3.1	6	1.130	0.100	0.100	0.2		
227	RD16	RD7	0.740	1.000	0.740	BS-4.8.3.3.1	6	0.380	0.012	0.012	0.0		
228	RD16	RD19.7	0.973	1.000	0.973	BS-4.8.3.3.1	7	3.050	0.740	0.740	1.4		
229	PIPBG60.3X	RD23.5	0.938	1.000	0.938	BS-4.8.3.3.1	9	4.340	1.500	1.500	3.0		
230	PIPBG60.3X	RD22.75	0.982	1.000	0.982	BS-4.8.3.3.1	9	4.060	1.310	1.310	2.		
231	PIPBG60.3X	RD24	0.950	1.000	0.950	BS-4.8.3.3.1	9	4.520	1.630	1.630	3.		
235	RD16	RD18.7	0.932	1.000	0.932	BS-4.8.3.3.1	7	2.750	0.600	0.600	1.3		
236	RD16	RD15.5	0.935	1.000	0.935	BS-4.8.3.3.1	8	1.890	0.280	0.280	0.		
237	RD16	RD19.5	0.964	1.000	0.964	BS-4.8.3.3.1	7	2.990	0.710	0.710	1.		
238	RD16	RD8.5	0.847	1.000	0.847	BS-4.8.3.3.1	10	0.570	0.026	0.026	0.		
239	RD16	RD5.5	0.896	1.000	0.896	BS-4.8.2.2	7	0.240	0.004	0.004	0.0		
240	RD16	RD20.75	0.944	1.000	0.944	BS-4.8.3.3.1	7	3.380	0.910	0.910	1.8		
241	PIPBG60.3X	RD24	0.941	1.000	0.941	BS-4.8.3.3.1	9	4.520	1.630	1.630	3.2		
242	PIPBG60.3X	RD22.5	0.972	1.000	0.972	BS-4.8.3.3.1	9	3.980	1.260	1.260	2.5		
243	PIPBG60.3X	RD23.65	0.954	1.000	0.954	BS-4.8.3.3.1	9	4.390	1.540	1.540	3.(
244	RD16	RD8.5	0.852	1.000	0.852	BS-4.7 (C)	5	0.570	0.026	0.026	0.0		
245	RD16	RD10	0.944	1.000	0.944	BS-4.8.3.3.1	7	0.790	0.049	0.049	0.		
246	RD16	RD7.5	0.813	1.000	0.813	BS-4.7 (C)	5	0.440	0.016	0.016	0.0		
247	RD16	RD19.5	0.943	1.000	0.943	BS-4.8.3.3.1	7	2.990	0.710	0.710	1.4		
248	RD16	RD15.5	0.963	1.000	0.963	BS-4.8.3.3.1	10	1.890	0.280	0.280	0.5		
249	RD16	RD20.25	0.968	1.000	0.968	BS-4.8.3.3.1	7	3.220	0.830	0.830	1.6		
250	RD16	RD12	0.947	1.000	0.947	BS-4.8.3.3.1	6	1.130	0.100	0.100	0.2		

Print Time/Date: 19/11/2021 11:53

STAAD.Pro V8i (SELECTseries 6) 20.07.11.33

Print Run 1958 of 1965

0						Job No		Sheet No	1959	Rev				
	fluence liesde - 11	udett Deck-and				Part					-			
	ftware licensed to He ERS THESIS	ewlett-Packard				Ref					-			
· MAG						10000000								
No. of Control of Cont				5m			By Engr Udeme Date19/11/2021 Chd Engr Peter							
DEPT.	OF CIVIL ENG	INEERING, F	UTMINN	٩		File 30M	THREE	-LEGGED	G Date/Time 19	-Nov-2021 11:44	4			
Jtiliz	ation Ra	tio Con	92											
Beam	Analysis	Design	Landa and	Allowable		Clause	L/C	Ax	Iz	ly	IX			
051	Property RD16	Property RD7	Ratio	2225240000000000	(Act./Allow.)	DO 10001	-	(cm ²)	(cm ⁴)		(cm ⁴			
251 252	RD16	RD19.7	0.950	1.000	0.950	BS-4.8.3.3.1 BS-4.8.3.3.1	6	0.380	0.012	0.012	0.			
252	PIPBG60.3X	RD24.25	0.955	1.000	0.953	BS-4.8.3.3.1 BS-4.8.3.3.1	9	4.620	1.700	1.700	3.			
253	PIPBG60.3X	RD24.25	0.941	1.000	0.941		9	3.980	1.260	1.260	2.			
						BS-4.8.3.3.1					-			
255	PIPBG60.3X	RD23.75	0.950	1.000	0.950	BS-4.8.3.3.1	9	4.430	1.560	1.560	3.			
259	RD16	RD19.25	0.941	1.000	0.941	BS-4.8.3.3.1	7	2.910	0.670	0.670	1.			
260	RD16	RD15.75	0.956	1.000	0.956	BS-4.8.3.3.1	10	1.950	0.300	0.300	0.			
261	RD16	RD20	0.975	1.000	0.975	BS-4.8.3.3.1	7	3.140	0.790	0.790	1.			
262	RD16	RD9.5	0.914	1.000	0.914	BS-4.8.3.3.1	6	0.710	0.040	0.040	0.			
263	RD16	RD6.5	0.968	1.000	0.968	BS-4.8.3.3.1	6	0.330	0.009	0.009	0.			
264	RD16	RD19.5	0.952	1.000	0.952	BS-4.8.3.3.1	7	2.990	0.710	0.710	1.			
265	PIPBG60.3X	RD24.25	0.936	1.000	0.936	BS-4.8.3.3.1	9	4.620	1.700	1.700	3.			
266	PIPBG60.3X	RD22.75	0.953	1.000	0.953	BS-4.8.3.3.1	9	4.060	1.310	1.310	2.			
267	PIPBG60.3X	RD23	0.971	1.000	0.971	BS-4.8.3.3.1	9	4.150	1.370	1.370	2.			
271	RD16	RD19.5	0.976	1.000	0.976	BS-4.8.3.3.1	7	2.990	0.710	0.710	1.			
272	RD16	RD15	0.845	1.000	0.845	BS-4.8.3.3.1	8	1.770	0.250	0.250	0.			
273	RD16	RD19.25	0.942	1.000	0.942	BS-4.8.3.3.1	7	2.910	0.670	0.670	1.			
274	RD16	RD12.5	0.876	1.000	0.876	BS-4.8.3.3.1	10	1.230	0.120	0.120	0.			
275	RD16	RD5.5	0.824	1.000	0.824	BS-4.8.2.2	7	0.240	0.004	0.004	0.			
276	RD16	RD20.25	0.955	1.000	0.955	BS-4.8.3.3.1	7	3.220	0.830	0.830	1.			
277	PIPBG60.3X	RD24	0.970	1.000	0.970	BS-4.8.3.3.1	9	4.520	1.630	1.630	3.			
278	PIPBG60.3X	RD22.5	0.952	1.000	0.952	BS-4.8.3.3.1	9	3.980	1.260	1.260	2.			
279	PIPBG60.3X	RD23	0.951	1.000	0.951	BS-4.8.3.3.1	9	4.150	1.370	1.370	2.			
283	RD16	RD19.5	0.946	1.000	0.946	BS-4.8.3.3.1	7	2.990	0.710	0.710	1.			
284	RD16	RD15.5	0.953	1.000	0.953	BS-4.8.3.3.1	10	1.890	0.280	0.280	0.			
285	RD16	RD20	0.932	1.000	0.932	BS-4.8.3.3.3	7	3.140	0.790	0.790	1.			
286	RD16	RD8.5	0.796	1.000	0.796	BS-4.8.3.3.1	6	0.570	0.026	0.026	0.			
287	RD16	RD7	0.819	1.000	0.819	BS-4.8.3.3.1	6	0.380	0.012	0.012	0.			
288	RD16	RD19	0.949	1.000	0.949	BS-4.8.3.3.1	7	2.840	0.640	0.640	1.			
289	PIPBG60.3X	RD24	0.952	1.000	0.952	BS-4.8.3.3.1	9	4.520	1.630	1.630	3.			
290	PIPBG60.3X	RD23	0.932	1.000	0.932	BS-4.8.3.3.1	9	4.150	1.370	1.370	2			
291	PIPBG60.3X	RD23.25	0.953	1.000	0.953	BS-4.8.3.3.1	9	4.250	1.430	1.430	2.			
295	RD16	RD20	0.952	1.000	0.952	BS-4.8.3.3.1	7	3.140	0.790	0.790	1.			
296	RD16	RD13.4	0.981	1.000	0.981	BS-4.8.3.3.1	8	1.410	0.160	0.160	0.			
297	RD16	RD13.4	0.972	1.000	0.972	BS-4.8.3.3.1	7	2.750	0.600	0.600	1.			
298	RD16	RD13	0.972	1.000	0.972	BS-4.8.3.3.1	10	1.330	0.140	0.140	0.			
290	RD16	RD5.5	0.967	1.000	0.987	BS-4.8.2.2	7	0.240	0.004	0.140	0.			
300	RD16	RD20	0.762	1.000	0.762	BS-4.8.3.3.1	7	3.140	0.004	0.790	1.			
300			-	1.000			9	4.710	1.770	1.770	3.			
	PIPBG60.3X	RD24.5 RD22.75	0.936			BS-4.8.3.3.3								
302	PIPBG60.3X	CONTROLEMENT DESCRIPTION	0.964	1.000	0.964	BS-4.8.3.3.3	9	4.060	1.310	1.310	2			
303	PIPBG60.3X	RD23	0.956	1.000	0.956	BS-4.8.3.3.3	9	4.150	1.370	1.370	2.			
304	RD16	RD5.5	0.423	1.000	0.423	BS-4.8.2.2	9	0.240	0.004	0.004	0.			
305	RD16	RD13.4	0.954	1.000	0.954	BS-4.8.3.3.1	8	1.410	0.160	0.160	0.			
306	RD16	RD14	0.963	1.000	0.963	BS-4.8.3.3.1	8	1.540	0.190	0.190	0.			
307	RD16	RD19.5	0.972	1.000	0.972	BS-4.8.3.3.1	7	2.990	0.710	0.710	1.			
308	RD16	RD15.5	0.911	1.000	0.911	BS-4.8.3.3.1	10	1.890	0.280	0.280	0.			
309	RD16	RD19.5	0.968	1.000	0.968	BS-4.8.3.3.1	7	2.990	0.710	0.710	1.			
310	RD16	RD6	0.868	1.000	0.868	BS-4.8.2.2	7	0.280	0.006	0.006	0.			
	RD16	RD9	0.862	1.000	0.862	BS-4.8.3.3.1	10	0.640	0.032	0.032	0.			

Print Time/Date: 19/11/2021 11:53

STAAD.Pro V8i (SELECTseries 6) 20.07.11.33

Print Run 1959 of 1965

0						Job No		Sheet No	1960	Rev	
	ftware licensed to H	audott Packard				Part					-
	ERS THESIS	ewiell-rackard				Ref					-
111/101						^{By} Engr	Ildom	Date19/	11/0001 G	hd Engr Peter	-
DEDT										20	-
DEPT.	OF CIVIL ENG	AINEERING, F	UTMINN	A		File 30M	THREE	-LEGGED	G Date/Time 19	-Nov-2021 11:44	-
	ation Ra		124		-	-					
Beam	Analysis Property	Design Property	Ratio	Allowable Ratio	Ratio (Act./Allow.)	Clause	L/C	Ax (cm ²)	Iz (cm ⁴)	ly (cm ⁴)	(cm ⁴
312	RD16	RD19	0.924	1.000	0.924	BS-4.8.3.3.1	7	2.840	0.640	0.640	1.
313	PIPBG60.3X	RD18.25	0.938	1.000	0.938	BS-4.8.3.3.3	6	2.620	0.540	0.540	1.
314	PIPBG60.3X	RD25.5	0.979	1.000	0.979	BS-4.8.3.3.1	7	5.110	2.080	2.080	4.
315	PIPBG60.3X	RD25.65	0.960	1.000	0.960	BS-4.8.3.3.1	8	5.170	2.120	2.120	4.
319	RD16	RD5.5	0.363	1.000	0.363	BS-4.8.2.2	7	0.240	0.004	0.004	0.
320	RD16	RD17.9	0.971	1.000	0.971	BS-4.8.3.3.1	8	2.520	0.500	0.500	1.
321	RD16	RD18.7	0.971	1.000	0.971	BS-4.8.3.3.1	7	2.750	0.600	0.600	1.
322	RD16	RD15.75	0.938	1.000	0.938	BS-4.8.3.3.1	7	1.950	0.300	0.300	0.
323	RD16	RD5.5	0.761	1.000	0.761	BS-4.8.2.2	7	0.240	0.004	0.004	0.
324	RD16	RD19	0.943	1.000	0.943	BS-4.8.3.3.1	7	2.840	0.640	0.640	1.
325	PIPBG60.3X	RD18	0.954	1.000	0.954	BS-4.8.3.3.1	6	2.540	0.520	0.520	1.
326	PIPBG60.3X	RD24.75	0.949	1.000	0.949	BS-4.8.3.3.1	7	4.810	1.840	1.840	3.
327	PIPBG60.3X	RD24.5	0.967	1.000	0.967	BS-4.8.3.3.1	10	4.710	1.770	1.770	3.
331	RD16	RD8.5	0.862	1.000	0.862	BS-4.8.3.3.1	10	0.570	0.026	0.026	0.
332	RD16	RD16.2	0.974	1.000	0.974	BS-4.8.3.3.1	8	2.060	0.340	0.340	0.
333	RD16	RD17.7	0.976	1.000	0.976	BS-4.8.3.3.1	7	2.460	0.480	0.480	0.
334	RD16	RD15.5	0.935	1.000	0.935	BS-4.8.3.3.1	7	1.890	0.280	0.280	0.
335	RD16	RD5.5	0.762	1.000	0.762	BS-4.8.2.2	7	0.240	0.004	0.004	0.
336	RD16	RD18.25	0.977	1.000	0.977	BS-4.8.3.3.1	7	2.620	0.540	0.540	1.
337	PIPBG60.3X	RD17.9	0.973	1.000	0.973	BS-4.8.3.3.1	6	2.520	0.500	0.500	1.
338	PIPBG60.3X	RD23.25	0.992	1.000	0.992	BS-4.8.3.3.1	7	4.250	1.430	1.430	2.
339	PIPBG60.3X	RD23.5	0.980	1.000	0.980	BS-4.8.3.3.1	10	4.340	1.500	1.500	3.
343	RD16	RD5.5	0.286	1.000	0.286	BS-4.8.2.2	7	0.240	0.004	0.004	0.
344	RD16	RD17.25	0.967	1.000	0.967	BS-4.8.3.3.1	8	2.340	0.430	0.430	0.
345	RD16	RD18.25	0.981	1.000	0.981	BS-4.8.3.3.1	7	2.620	0.540	0.540	1.
346	RD16	RD15.5	0.921	1.000	0.921	BS-4.8.3.3.1	7	1.890	0.280	0.280	0.
347	RD16	RD5.5	0.667	1.000	0.667	BS-4.8.2.2	7	0.240	0.004	0.004	0.
348	RD16	RD18.5	0.978	1.000	0.978	BS-4.8.3.3.1	7	2.690	0.570	0.570	1.
349	PIPBG60.3X	RD18	0.948	1.000	0.948	BS-4.8.3.3.1	6	2.540	0.520	0.520	1.
350	PIPBG60.3X	RD22.25	0.989	1.000	0.989	BS-4.8.3.3.1	7	3.890	1.200	1.200	2.
351	PIPBG60.3X	RD22.75	0.983	1.000	0.983	BS-4.8.3.3.1	10	4.060	1.310	1.310	2.
355	RD16	RD5.5	0.285	1.000	0.285	BS-4.8.2.2	7	0.240	0.004	0.004	0.
356	RD16	RD16	0.945	1.000	0.945	BS-4.8.3.3.1	8	2.010	0.320	0.320	0.
357	RD16	RD17.5	0.923	1.000	0.923	BS-4.8.3.3.1	7	2.410	0.460	0.460	0.
358	RD16	RD15	0.834	1.000	0.834	BS-4.8.3.3.1	7	1.770	0.250	0.250	0.
359	RD16	RD5.5	0.697	1.000	0.697	BS-4.8.2.2	7	0.240	0.004	0.004	0.
360	RD16	RD17.9	0.959	1.000	0.959	BS-4.8.3.3.1	7	2.520	0.500	0.500	1.
361	PIPBG60.3X	RD17.9	0.977	1.000	0.977	BS-4.8.3.3.1	6	2.520	0.500	0.500	1.
362	PIPBG60.3X	RD21	0.988	1.000	0.988	BS-4.8.3.3.1	7	3.460	0.950	0.950	1.
363	PIPBG60.3X	RD21.7	0.965	1.000	0.965	BS-4.8.3.3.1	10	3.700	1.090	1.090	2.
364	RD16	RD6	0.731	1.000	0.731	BS-4.7 (C)	5	0.280	0.006	0.006	0.
365	RD16	RD5.5	0.106	1.000	0.106	BS-4.8.2.2	7	0.240	0.004	0.004	0.
366	RD16	RD5.5	0.080	1.000	0.080	BS-4.8.2.2	9	0.240	0.004	0.004	0.
367	RD16	RD5.5	0.241	1.000	0.241	BS-4.8.2.2	7	0.240	0.004	0.004	0.
368	RD16	RD17	0.907	1.000	0.907	BS-4.8.3.3.1	8	2.270	0.410	0.410	0.
369	RD16	RD17.9	0.951	1.000	0.951	BS-4.8.3.3.1	7	2.520	0.500	0.500	1.
370	RD16	RD15	0.856	1.000	0.856	BS-4.8.3.3.1	7	1.770	0.250	0.250	0.
371	RD16	RD5.5	0.606	1.000	0.606	BS-4.8.2.2	7	0.240	0.004	0.004	0.

Print Time/Date: 19/11/2021 11:53

STAAD.Pro V8i (SELECTseries 6) 20.07.11.33

Print Run 1960 of 1965

2						Job No		Sheet No	1961	Rev			
Sof	tware licensed to H	ewlett-Packard				Part					-		
	ERS THESIS					Ref					-		
						By Engr	Ildom	Date 10/	11/2021 C	hd Engr Peter	-		
DEDT				•		073	By Engr Udeme Date19/11/2021 Chd Engr Peter File 30M THREE-LEGGED Date/Time 19-Nov-2021 11:44						
DEPT.	OF CIVIL ENG	INEERING, F	UIMINN	A		1 16 30M	THREE	E-LEGGED	G Date In 19	-Nov-2021 11:44	-		
	ation Ra		-75										
Beam	Analysis Property	Design Property	Actual Ratio	Allowable Ratio	Ratio (Act./Allow.)	Clause	L/C	Ax (cm ²)	Iz (cm ⁴)	ly (cm ⁴)	Ix (cm ⁴		
373	PIPBG60.3X	RD18.25	0.956	1.000	0.956	BS-4.8.3.3.1	9	2.620	0.540	0.540	1.		
374	PIPBG60.3X	RD20	0.928	1.000	0.928	BS-4.8.3.3.1	9	3.140	0.790	0.790	1.		
375	PIPBG60.3X	RD21.25	0.931	1.000	0.931	BS-4.8.3.3.3	9	3.550	1.000	1.000	2.		
379	RD16	RD5.5	0.539	1.000	0.539	BS-4.8.3.3.1	6	0.240	0.004	0.004	0.		
380	RD16	RD16.2	0.957	1.000	0.957	BS-4.8.3.3.1	8	2.060	0.340	0.340	0.		
381	RD16	RD17.5	0.970	1.000	0.970	BS-4.8.3.3.1	7	2.410	0.460	0.460	0.		
382	RD16	RD14	0.983	1.000	0.983	BS-4.8.3.3.1	7	1.540	0.190	0.190	0.		
383	RD16	RD5.5	0.608	1.000	0.608	BS-4.8.2.2	7	0.240	0.004	0.004	0.		
384	RD16	RD17.9	0.965	1.000	0.965	BS-4.8.3.3.1	7	2.520	0.500	0.500	1.		
385	PIPBG60.3X	RD19.7	0.978	1.000	0.978	BS-4.8.3.3.1	9	3.050	0.740	0.740	1.		
386	PIPBG60.3X	RD18.7	0.956	1.000	0.956	BS-4.8.3.3.1	9	2.750	0.600	0.600	1.		
387	PIPBG60.3X	RD20.75	0.967	1.000	0.967	BS-4.8.3.3.1	9	3.380	0.910	0.910	1.		
391	RD16	RD5.5	0.203	1.000	0.203	BS-4.8.2.2	7	0.240	0.004	0.004	0.		
392	RD16	RD15.75	0.979	1.000	0.979	BS-4.8.3.3.1	8	1.950	0.300	0.300	0.		
393	RD16	RD17	0.899	1.000	0.899	BS-4.8.3.3.1	7	2.270	0.410	0.410	0.		
394	RD16	RD13.4	0.880	1.000	0.880	BS-4.8.3.3.1	7	1.410	0.160	0.160	0.		
395	RD16	RD5.5	0.611	1.000	0.611	BS-4.8.2.2	7	0.240	0.004	0.004	0.		
396	RD16	RD17.5	0.919	1.000	0.919	BS-4.8.3.3.1	7	2.410	0.460	0.460	0.		
397	PIPBG60.3X	RD20.75	0.956	1.000	0.956	BS-4.8.3.3.1	9	3.380	0.910	0.910	1.		
398	PIPBG60.3X	RD17.5	0.979	1.000	0.979	BS-4.8.3.3.1	6	2.410	0.460	0.460	0.		
399	PIPBG60.3X	RD20.25	0.994	1.000	0.994	BS-4.8.3.3.1	9	3.220	0.830	0.830	1.		
403	RD16	RD5.5	0.140	1.000	0.140	BS-4.8.2.2	7	0.240	0.004	0.004	0.		
404	RD16	RD15.75	0.943	1.000	0.943	BS-4.8.3.3.1	8	1.950	0.300	0.300	0.		
405	RD16	RD17	0.980	1.000	0.980	BS-4.8.3.3.1	7	2.270	0.410	0.410	0.		
406	RD16	RD13.4	0.883	1.000	0.883	BS-4.8.3.3.1	7	1.410	0.160	0.160	0.		
407	RD16	RD5.5	0.534	1.000	0.534	BS-4.8.2.2	7	0.240	0.004	0.004	0.		
408	RD16	RD17.5	0.946	1.000	0.946	BS-4.8.3.3.1	7	2.410	0.460	0.460	0.		
409	PIPBG60.3X	RD21.7	0.966	1.000	0.966	BS-4.8.3.3.1	7	3.700	1.090	1.090	2.		
410	PIPBG60.3X	RD17.9	0.964	1.000	0.964	BS-4.8.3.3.1	6	2.520	0.500	0.500	1.		
411	PIPBG60.3X	RD20.75	0.954	1.000	0.954	BS-4.8.3.3.1	9	3.380	0.910	0.910	1.		
415	RD16	RD5.5	0.138	1.000	0.138	BS-4.8.2.2	7	0.240	0.004	0.004	0.		
416	RD16	RD15	0.980	1.000	0.980	BS-4.8.3.3.1	8	1.770	0.250	0.250	0.		
417	RD16	RD16.2	0.944	1.000	0.944	BS-4.8.3.3.1	7	2.060	0.340	0.340	0.		
418	RD16	RD12	0.926	1.000	0.926	BS-4.8.3.3.1	7	1.130	0.100	0.100	0.		
419 420	RD16	RD5.5 RD17	0.556	1.000	0.556	BS-4.8.2.2	7	0.240	0.004	0.004	0.		
22.22.	RD16	0.000 (0.000 (0.000))	0.889	1.000		BS-4.8.3.3.1	7	2.270	0.410	0.410	0.		
421 422	PIPBG60.3X PIPBG60.3X	RD22.75 RD17.9	0.959	1.000	0.959	BS-4.8.3.3.1 BS-4.8.3.3.1	6	4.060 2.520	1.310 0.500	1.310 0.500	2.		
422	PIPBG60.3X		0.961	1.000	0.961			3.220	0.830	0.830	1.		
423	RD16	RD20.25	0.966	1.000	0.966	BS-4.8.3.3.1 BS-4.8.2.2	9	0.240	0.004	0.830	0.		
424	RD16	RD5.5	0.046	1.000	0.046	BS-4.8.2.2 BS-4.8.2.2	7	0.240	0.004	0.004	0.		
425	RD16	RD5.5 RD7	0.760	1.000	0.150	BS-4.6.2.2 BS-4.7 (C)	5	0.240	0.004	0.004	0.		
420	RD16	RD5.5	0.166	1.000	0.760	BS-4.7 (C) BS-4.8.3.3.1	6	0.380	0.012	0.012	0.		
427	RD16	RD15.5	0.100	1.000	0.166	BS-4.8.3.3.1 BS-4.8.3.3.1	8	1.890	0.004	0.280	0.		
428	RD16	RD15.5 RD16.5	0.890	1.000	0.890	BS-4.8.3.3.1 BS-4.8.3.3.1	7	2.140	0.280	0.280	0.		
	RD16	RD18.5	0.965	1.000	0.965	BS-4.8.3.3.1 BS-4.8.3.3.1	7	1.130	0.380	0.360	0.		
	1010										-		
430	BD16	BD5 5	0 465	1 000	0 465	BS-1822			0 004	0.004 1	10		
430 431 432	RD16 RD16	RD5.5 RD17.25	0.465	1.000	0.465	BS-4.8.2.2 BS-4.8.3.3.1	7	0.240 2.340	0.004	0.004	0.		

Print Time/Date: 19/11/2021 11:53

STAAD.Pro V8i (SELECTseries 6) 20.07.11.33

Print Run 1961 of 1965

>						Job No		Sheet No	1962	Rev				
	N	den Destand				Part					-			
1000	ftware licensed to He	ewiett-Packard				Ref					-			
						10000000								
1011-1011-1011-1011-1011-1011-1011-101						071	By Engr Udeme Date19/11/2021 Chd Engr Peter							
DEPT.	OF CIVIL ENG	BINEERING, F	UTMINN.	A		File 30M	THREE	E-LEGGED	G Date/Time 19	-Nov-2021 11:44				
	ation Ra		-7.											
Beam	Analysis Property	Design Property	Actual Ratio	Allowable Ratio	Ratio (Act./Allow.)	Clause	L/C	Ax (cm ²)	Iz (cm ⁴)	ly (cm ⁴)	Ix (cm ⁴			
434	PIPBG60.3X	RD18.4	0.975	1.000	0.975	BS-4.8.3.3.1	10	2.660	0.560	0.560	1.			
435	PIPBG60.3X	RD20.25	0.948	1.000	0.948	BS-4.8.3.3.3	9	3.220	0.830	0.830	1.			
439	RD16	RD5.5	0.078	1.000	0.078	BS-4.8.2.2	7	0.240	0.004	0.004	0.			
440	RD16	RD15	0.951	1.000	0.951	BS-4.8.3.3.1	8	1.770	0.250	0.250	0.			
441	RD16	RD16	0.966	1.000	0.966	BS-4.8.3.3.1	7	2.010	0.320	0.320	0.			
442	RD16	RD11	0.854	1.000	0.854	BS-4.8.3.3.1	7	0.950	0.072	0.072	0.			
443	RD16	RD5.5	0.430	1.000	0.430	BS-4.8.2.2	7	0.240	0.004	0.004	0.			
444	RD16	RD17	0.953	1.000	0.953	BS-4.8.3.3.1	7	2.270	0.410	0.410	0.			
445	PIPBG60.3X	RD24	0.960	1.000	0.960	BS-4.8.3.3.1	7	4.520	1.630	1.630	3.			
446	PIPBG60.3X	RD19	0.963	1.000	0.963	BS-4.8.3.3.1	10	2.840	0.640	0.640	1.			
447	PIPBG60.3X	RD20	0.945	1.000	0.945	BS-4.8.3.3.1	9	3.140	0.790	0.790	1.			
451	RD16	RD5.5	0.065	1.000	0.065	BS-4.8.2.2	8	0.240	0.004	0.004	0.			
452	RD16	RD15	0.789	1.000	0.789	BS-4.8.3.3.1	8	1.770	0.250	0.250	0.			
453	RD16	RD15.5	0.970	1.000	0.970	BS-4.8.3.3.1	7	1.890	0.280	0.280	0.			
454	RD16	RD8.5	0.946	1.000	0.946	BS-4.8.3.3.1	7	0.570	0.026	0.026	0.			
455	RD16	RD5.5	0.490	1.000	0.490	BS-4.8.2.2	7	0.240	0.004	0.004	0.			
456	RD16	RD15.75	0.939	1.000	0.939	BS-4.8.3.3.1	7	1.950	0.300	0.300	0.			
457	PIPBG60.3X	RD24	0.992	1.000	0.992	BS-4.8.3.3.1	7	4.520	1.630	1.630	3.			
458	PIPBG60.3X	RD19.5	0.942	1.000	0.942	BS-4.8.3.3.1	10	2.990	0.710	0.710	1.			
459	PIPBG60.3X	RD19.5	0.980	1.000	0.980	BS-4.8.3.3.1	9	2.990	0.710	0.710	1.			
463	RD16	RD9	0.827	1.000	0.827	BS-4.8.3.3.1	7	0.640	0.032	0.032	0.			
464	RD16	RD15	0.775	1.000	0.775	BS-4.8.3.3.1	8	1.770	0.250	0.250	0.			
465	RD16	RD15.5	0.947	1.000	0.947	BS-4.8.3.3.1	7	1.890	0.280	0.280	0.			
466	RD16	RD8.5	0.820	1.000	0.820	BS-4.8.3.3.1	9	0.570	0.026	0.026	0.			
467	RD16	RD5.5	0.373	1.000	0.373	BS-4.8.2.2	7	0.240	0.004	0.004	0.			
468	RD16	RD16.2	0.967	1.000	0.967	BS-4.8.3.3.1	7	2.060	0.340	0.340	0.			
469	PIPBG60.3X	RD24.75	0.958	1.000	0.958	BS-4.8.3.3.1	7	4.810	1.840	1.840	3.			
470	PIPBG60.3X	RD19.7	0.987	1.000	0.987	BS-4.8.3.3.1	10	3.050	0.740	0.740	1.			
471	PIPBG60.3X	RD20	0.921	1.000	0.921	BS-4.8.3.3.1	9	3.140	0.790	0.790	1.			
475	RD16	RD9	0.949	1.000	0.949	BS-4.8.3.3.1	7	0.640	0.032	0.032	0.			
476	RD16	RD13.4	0.924	1.000	0.924	BS-4.8.3.3.1	8	1.410	0.160	0.160	0.			
477	RD16	RD15	0.895	1.000	0.895	BS-4.8.3.3.1	7	1.770	0.250	0.250	0.			
478	RD16	RD5.5	0.664	1.000	0.664	BS-4.8.3.3.1	8	0.240	0.004	0.004	0.			
479	RD16	RD5.5	0.432	1.000	0.432	BS-4.8.2.2	7	0.240	0.004	0.004	0.			
480	RD16	RD15	0.916	1.000	0.916	BS-4.8.3.3.1	7	1.770	0.250	0.250	0.			
481	PIPBG60.3X	RD25	0.976	1.000	0.976	BS-4.8.3.3.1	7	4.910	1.920	1.920	3.			
482	PIPBG60.3X	RD20	0.970	1.000	0.970	BS-4.8.3.3.1	10	3.140	0.790	0.790	1.			
483	PIPBG60.3X	RD19.5	0.938	1.000	0.938	BS-4.8.3.3.1	9	2.990	0.710	0.710	1.			
484	RD16	RD7	0.846	1.000	0.846	BS-4.7 (C)	4	0.380	0.012	0.012	0.			
485	RD16	RD5.5	0.527	1.000	0.527	BS-4.7 (C)	5	0.240	0.004	0.004	0.			
486	RD16	RD7.5	0.974	1.000	0.974	BS-4.7 (C)	4	0.440	0.016	0.016	0.			
487	RD16	RD11	0.982	1.000	0.982	BS-4.8.3.3.1	7	0.950	0.072	0.072	0.			
488	RD16	RD13.75	0.886	1.000	0.886	BS-4.8.3.3.1	10	1.480	0.180	0.180	0.			
489	RD16	RD15	0.843	1.000	0.843	BS-4.8.3.3.1	7	1.770	0.250	0.250	0.			
490	RD16	RD8.5	0.946	1.000	0.946	BS-4.8.3.3.1	10	0.570	0.026	0.026	0.			
491	RD16	RD5.5	0.291	1.000	0.291	BS-4.8.2.2	7	0.240	0.004	0.004	0.			
000005	RD16	RD16	0.945	1.000	0.945	BS-4.8.3.3.1	7	2.010	0.320	0.320	0.			
492														
492 493	PIPBG60.3X	RD25.5	0.935	1.000	0.935	BS-4.8.3.3.1	7	5.110	2.080	2.080	4.			

Print Time/Date: 19/11/2021 11:53

STAAD.Pro V8i (SELECTseries 6) 20.07.11.33

Print Run 1962 of 1965

0						Job No		Sheet No	1963	Rev	
	ftwara licensed to 11	audott Packard				Part		_			-
1000	ftware licensed to He ERS THESIS	ewlett-Packard				Ref					-
· MAG						1000000		Dates of		bd E D I	-
						^{By} Engr				^{hd} Engr Peter	_
DEPT.	OF CIVIL ENG	INEERING, F	UTMINN	4		File 30M	THREE	-LEGGED	G Date/Time 19	-Nov-2021 11:44	
	ation Ra	tio Con	17.								
Beam	Analysis Property	Design Property	Actual Ratio	Allowable Ratio	Ratio (Act./Allow.)	Clause	L/C	Ax (cm ²)	lz (cm ⁴)	ly (cm ⁴)	Ix (cm ⁴)
495	PIPBG60.3X	RD19.25	0.953	1.000	0.953	BS-4.8.3.3.3	9	2.910	0.670	0.670	1.3
499	RD16	RD11	0.982	1.000	0.982	BS-4.8.3.3.1	7	0.950	0.072	0.072	0.
500	RD16	RD13	0.973	1.000	0.973	BS-4.8.3.3.1	10	1.330	0.140	0.140	0.
501	RD16	RD14	0.976	1.000	0.976	BS-4.8.3.3.1	7	1.540	0.190	0.190	0.
502	RD16	RD8.5	0.928	1.000	0.928	BS-4.8.3.3.1	10	0.570	0.026	0.026	0.
503	RD16	RD5.5	0.257	1.000	0.257	BS-4.8.2.2	7	0.240	0.004	0.004	0.
504	RD16	RD15.75	0.955	1.000	0.955	BS-4.8.3.3.1	7	1.950	0.300	0.300	0.
505	PIPBG60.3X	RD25.5	0.955	1.000	0.955	BS-4.8.3.3.1	7	5.110	2.080	2.080	4.
506	PIPBG60.3X	RD20.5	0.977	1.000	0.977	BS-4.8.3.3.1	10	3.300	0.870	0.870	1.
507	PIPBG60.3X	RD19	0.957	1.000	0.957	BS-4.8.3.3.1	9	2.840	0.640	0.640	1.
511	RD16	RD13	0.910	1.000	0.910	BS-4.8.3.3.1	7	1.330	0.140	0.140	0.
512	RD16	RD12.5	0.946	1.000	0.946	BS-4.8.3.3.1	8	1.230	0.120	0.120	0.
513	RD16	RD13.75	0.896	1.000	0.896	BS-4.8.3.3.1	7	1.480	0.180	0.180	0.
514	RD16	RD5.5	0.111	1.000	0.111	BS-4.8.2.2	7	0.240	0.004	0.004	0.
515	RD16	RD5.5	0.363	1.000	0.363	BS-4.8.2.2	7	0.240	0.004	0.004	0.
516	RD16	RD13.4	0.917	1.000	0.917	BS-4.8.3.3.1	7	1.410	0.160	0.160	0.
517	PIPBG60.3X	RD25.5	0.950	1.000	0.950	BS-4.8.3.3.1	7	5.110	2.080	2.080	4.
518	PIPBG60.3X	RD20.75	0.964	1.000	0.964	BS-4.8.3.3.1	10	3.380	0.910	0.910	1.
519	PIPBG60.3X	RD18.5	0.982	1.000	0.982	BS-4.8.3.3.1	9	2.690	0.570	0.570	1.
523	RD16	RD13	0.878	1.000	0.878	BS-4.8.3.3.1	7	1.330	0.140	0.140	0.
524	RD16	RD12	0.977	1.000	0.977	BS-4.8.3.3.1	10	1.130	0.100	0.100	0.
525	RD16	RD13.4	0.888	1.000	0.888	BS-4.8.3.3.1	7	1.410	0.160	0.160	0.
526	RD16	RD8.5	0.776	1.000	0.776	BS-4.8.3.3.1	10	0.570	0.026	0.026	0.
527	RD16	RD5.5	0.212	1.000	0.212	BS-4.8.2.2	7	0.240	0.004	0.004	0.
528	RD16	RD15	0.877	1.000	0.877	BS-4.8.3.3.1	7	1.770	0.250	0.250	0.
529	PIPBG60.3X	RD25.5	0.958	1.000	0.958	BS-4.8.3.3.1	7	5.110	2.080	2.080	4.
530	PIPBG60.3X	RD20.75	0.994	1.000	0.994	BS-4.8.3.3.1	10	3.380	0.910	0.910	1.
531	PIPBG60.3X	RD18.7	0.952	1.000	0.952	BS-4.8.3.3.1	9	2.750	0.600	0.600	1.
535	RD16	RD13.75	0.986	1.000	0.986	BS-4.8.3.3.1	7	1.480	0.180	0.180	0.
536	RD16	RD11	0.863	1.000	0.863	BS-4.8.3.3.1	10	0.950	0.072	0.072	0.
537	RD16	RD12.5	0.948	1.000	0.948	BS-4.8.3.3.1	4	1.230	0.120	0.120	0.
538	RD16	RD5.5	0.179	1.000	0.179	BS-4.8.2.2	7	0.240	0.004	0.004	0.
539	RD16	RD7	0.859	1.000	0.859	BS-4.7 (C)	5	0.380	0.012	0.012	0.
540	RD16	RD12	0.976	1.000	0.976	BS-4.8.3.3.1	7	1.130	0.100	0.100	0.
541	PIPBG60.3X	RD25.5	0.962	1.000	0.962	BS-4.8.3.3.1	7	5.110	2.080	2.080	4.
542	PIPBG60.3X	RD21	0.961	1.000	0.961	BS-4.8.3.3.1	10	3.460	0.950	0.950	1.
543	PIPBG60.3X	RD18.25	0.958	1.000	0.958	BS-4.8.3.3.1	9	2.620	0.540	0.540	1.
544	RD16	RD8.5	0.771	1.000	0.771	BS-4.7 (C)	4	0.570	0.026	0.026	0.
545	RD16	RD7	0.981	1.000	0.981	BS-4.7 (C)	5	0.380	0.012	0.012	0.
546	RD16	RD7	0.969	1.000	0.969	BS-4.7 (C)	4	0.380	0.012	0.012	0.
547	RD16	RD13.75	0.972	1.000	0.972	BS-4.8.3.3.1	7	1.480	0.180	0.180	0.
548	RD16	RD11.5	0.967	1.000	0.967	BS-4.8.3.3.1	6	1.040	0.086	0.086	0.
549	RD16	RD12	0.888	1.000	0.888	BS-4.8.3.3.1	7	1.130	0.100	0.100	0.
550	RD16	RD8.5	0.902	1.000	0.902	BS-4.8.3.3.1	10	0.570	0.026	0.026	0.
551	RD16	RD6	0.901	1.000	0.901	BS-4.7 (C)	5	0.280	0.006	0.006	0.
552	RD16	RD14	0.971	1.000	0.971	BS-4.8.3.3.1	7	1.540	0.190	0.190	0.
553	PIPBG60.3X	RD25.5	0.965	1.000	0.965	BS-4.8.3.3.1	7	5.110	2.080	2.080	4.
554	PIPBG60.3X	RD21	0.976	1.000	0.976	BS-4.8.3.3.1	10	3.460	0.950	0.950	1.5
555	PIPBG60.3X	RD18	0.969	1.000	0.969	BS-4.8.3.3.1	9	2.540	0.520	0.520	1.0

Print Time/Date: 19/11/2021 11:53

STAAD.Pro V8i (SELECTseries 6) 20.07.11.33

Print Run 1963 of 1965

	ftware licensed to He	ewlett-Packard				Part					
· MAG						1000000	Udama	Dated o (4	1/0001 C	d Case Datas	_
				~		^{By} Engr				^{hd} Engr Peter	
DEPT.	OF CIVIL ENG	BINEERING, F	UTMINNA	4		File 30M	THREE	-LEGGED (B Date/Time 19	Nov-2021 11:	44
Utiliz	ation Ra	tio Con	<u>t</u>								
Beam	Analysis	Design	A CONTRACTOR OF THE OWNER	Allowable	and the second sec	Clause	L/C	Ax	lz	ly	Ix
	Property	Property	Ratio	Ratio	(Act./Allow.)		_	(cm ²)	(cm ⁴)	(cm ⁴)	(cm ⁴)
559	RD16	RD15	0.781	1.000	0.781	BS-4.8.3.3.1	7	1.770	0.250	0.250	0.5
560	RD16	RD10.5	0.953	1.000	0.953	BS-4.8.3.3.1	6	0.870	0.060	0.060	0.1
561	RD16	RD11	0.975	1.000	0.975	BS-4.8.3.3.1	4	0.950	0.072	0.072	0.1
562	RD16	RD10	0.815	1.000	0.815	BS-4.8.3.3.1	10	0.790	0.049	0.049	0.0
563	RD16	RD8.5	0.878	1.000	0.878	BS-4.7 (C)	5	0.570	0.026	0.026	0.0
564	RD16	RD12.5	0.974	1.000	0.974	BS-4.8.3.3.1	7	1.230	0.120	0.120	0.2
565	PIPBG60.3X	RD25.5	0.934	1.000	0.934	BS-4.8.3.3.1	7	5.110	2.080	2.080	4.1
566	PIPBG60.3X	RD21.25	0.954	1.000	0.954	BS-4.8.3.3.1	10	3.550	1.000	1.000	2.0
567	PIPBG60.3X	RD17.9	0.950	1.000	0.950	BS-4.8.3.3.1	9	2.520	0.500	0.500	1.0
571	RD16	RD15.5	0.902	1.000	0.902	BS-4.8.3.3.1	7	1.890	0.280	0.280	0.5
572	RD16	RD11	0.857	1.000	0.857	BS-4.8.3.3.1	6	0.950	0.072	0.072	0.
573	RD16	RD10.5	0.948	1.000	0.948	BS-4.8.3.3.1	4	0.870	0.060	0.060	0.
574	RD16	RD5.5	0.266	1.000	0.266	BS-4.8.2.2	7	0.240	0.004	0.004	0.0
575	RD16	RD10	0.838	1.000	0.838	BS-4.8.3.3.1	8	0.790	0.049	0.049	0.0
576	RD16	RD11	0.952	1.000	0.952	BS-4.8.3.3.1	7	0.950	0.072	0.072	0.1
577	PIPBG60.3X	RD25.5	0.914	1.000	0.914	BS-4.8.3.3.1	7	5.110	2.080	2.080	4.
578	PIPBG60.3X	RD21.25	0.953	1.000	0.953	BS-4.8.3.3.1	10	3.550	1.000	1.000	2.0
579	PIPBG60.3X	RD17.5	0.979	1.000	0.979	BS-4.8.3.3.1	9	2.410	0.460	0.460	0.9
583	RD16	RD15.5	0.917	1.000	0.917	BS-4.8.3.3.1	7	1.890	0.280	0.280	0.5
584	RD16	RD10.5	0.866	1.000	0.866	BS-4.8.3.3.1	6	0.870	0.060	0.060	0.1
585	RD16	RD10	0.841	1.000	0.841	BS-4.8.3.3.1	4	0.790	0.049	0.049	0.0
586	RD16	RD10	0.966	1.000	0.966	BS-4.8.3.3.1	10	0.790	0.049	0.049	0.0
587	RD16	RD10	0.944	1.000	0.944	BS-4.8.3.3.1	8	0.790	0.049	0.049	0.0
588	RD16	RD10.5	0.834	1.000	0.834	BS-4.8.3.3.1	7	0.870	0.060	0.060	0.1
589	PIPBG60.3X	RD25	0.940	1.000	0.940	BS-4.8.3.3.1	7	4.910	1.920	1.920	3.8
590	PIPBG60.3X	RD21.25	0.953	1.000	0.953	BS-4.8.3.3.1	10	3.550	1.000	1.000	2.0
591	PIPBG60.3X	RD17.25	0.965	1.000	0.965	BS-4.8.3.3.1	9	2.340	0.430	0.430	0.8
592	RD16	RD5.5	0.279	1.000	0.279	BS-4.8.2.2	9	0.240	0.004	0.004	0.0
593	RD16	RD9.5	0.962	1.000	0.962	BS-4.8.3.3.1	8	0.710	0.040	0.040	0.0
594	RD16	RD11	0.871	1.000	0.871	BS-4.8.3.3.1	8	0.950	0.072	0.072	0.1
595	RD16	RD15.75	0.959	1.000	0.959	BS-4.8.3.3.1	7	1.950	0.300	0.300	0.6
596	RD16	RD11	0.936	1.000	0.936	BS-4.8.3.3.1	6	0.950	0.072	0.072	0.1
597	RD16	RD9.5	0.994	1.000	0.994	BS-4.7 (C)	5	0.710	0.040	0.040	0.0
598	RD16	RD5.5	0.387	1.000	0.387	BS-4.8.2.2	7	0.240	0.004	0.004	0.0
599	RD16	RD11	0.936	1.000	0.936	BS-4.8.3.3.1	8	0.950	0.072	0.072	0.1
600	RD16	RD10	0.939	1.000	0.939	BS-4.8.3.3.1	7	0.790	0.049	0.049	0.0
601	Cir 0.02	N/A	0.050	1 000	0.050	DC 4 0 0 0 1		3.142	0.785	0.785	1.5
602	PIPBG60.3X	RD17	0.950	1.000	0.950	BS-4.8.3.3.1	6	2.270	0.410	0.410	0.8
603	Cir 0.02	N/A			-			3.142	0.785	0.785	1.5
604	Cir 0.02	N/A	-				+	3.142	0.785	0.785	1.5
605	Cir 0.02	N/A					$\left \right $	3.142	0.785	0.785	1.5
606	Cir 0.02	N/A					$\left \right $	3.142	0.785	0.785	1.5
607	Cir 0.02	N/A						3.142	0.785	0.785	1.5

Print Time/Date: 19/11/2021 11:53

STAAD.Pro V8i (SELECTseries 6) 20.07.11.33

Print Run 1964 of 1965