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ABSTRACT 

In the past, the analysis of order and error constants of block linear multistep methods are usually 

determined on the individual members of the block. In this project, we proposed the analysis of 

the schemes in block form as they appeared for implementation. Specifically, cases k= 2, 3, 4 and 

5 for both Adams Moulton (implicit) and Adams Bashforth (explicit) were reformulated as 

continuous schemes to generate a number of sufficient schemes necessary to make the methods 

self-starting. The derivation was done through the continuous collocation technique using power 

series as basis function and the property of order and error constants is examined on the entire 

block of each step number considered. Numerical experiment was also conducted on the methods 

considered and it was observed that the accuracy of the methods increases as the step number 

increases. Furthermore, the Adams Moulton methods produced more accurate results than the 

corresponding Adams Bashforth methods.  
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  CHAPTER ONE 

1.0       INTRODUCTION 

1.1 Background to the Study 

There are a number of differential equations which are studied in calculus to get close form 

solution. However, not all differential equations possess closed form or finite solution. Numerical 

methods for ordinary differential equations (ODEs) are methods used to produce numerical 

approximations to the solution of ordinary differential equations in discrete form. Many 

differential equations cannot be solved using analytical method, therefore, for practical purposes 

such as in engineering, a numeric approximation to the solution is often sufficient (Akinfenwa et 

al., 2011).   

Numerical methods for solving first-order initial value problems (IVPs) are often categorized into 

linear multistep methods (LMM), or Runge-Kutta methods (Akinfenwa et al., 2011). A further 

division can be realized by dividing the methods into explicit and implicit methods. Explicit linear 

multistep methods include Adams – Bashforth methods, and any Runge-Kutta method with a lower 

diagonal Butcher tableau is explicit. While implicit linear multistep methods include Adams-

Moulton methods, and Backward Differentiation Formula (BDF). Linear Multistep Methods 

require less evaluation of the derivative function f  than one step methods in the range of integral 

 0 ,x b . For this reason, they have been very popular and important for solving ordinary differential 

equations numerically (Muhammed et al., 2014). However, these methods have certain limitations 

such as the overlap of solution models and the requirement of a starting value. Other limitations 

include yielding the discrete solution values ,...,n Ny y hence uneconomical for producing large 

output. A continuous formulation is desirable in this respect. The collocation method is probably 

the most important numerical procedure for the construction of continuous methods – (Lie and 
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Norsett, 1989; Onumanyi et al., 1994; 1999; 2001). The continuous method preserves the Runge-

kutta traditional advantage as it allows generation of necessary and sufficient number of schemes 

which makes the method self-starting and is more accurate since it is implemented as a block 

method. Block methods were first introduced by Milne (1953) for the purpose of obtaining starting 

values for predictor-corrector algorithms (Sarafyan, 1965). However, Rosser (1967), developed 

Milne’s idea into algorithms for general use. Block methods have also been considered by 

Shampine and Watts (1969), Musa et al. (2012), Jator and Li, (2012), Akinfenwa, et al., 2013; 

Mohammed and Adeniyi, (2014), Badmus et al. (2015), Omar and Adeyeye (2016), Akinfenwa et 

al., (2017).  Furthermore, error analysis of numerical methods is crucial; an acceptable linear 

multistep method (LMM) must be convergent. Consistency and zero stability are the necessary 

and sufficient conditions for convergence of a LMM. According to Musa et al. (2012), consistency 

controls the magnitude of the local truncation error while zero stability controls the manner in 

which the error is propagated at each step of the computation. A method which is not both 

consistent and zero stable is rejected outright and has no practical interest. In the past times, 

analysis of these properties are being carried out on the individual member of a block linear 

multistep methods - (Ibrahim et al., 2011; Muhammad et al., 2014), whose results may not be 

assumed for the entire block method. However, in this project work, we carry out the analysis of 

the derived block methods on the entire block.   

1.2 Statement of the Research Problem 

Linear multistep methods implemented by the predictor-corrector method have been found to be 

very expensive to implement in terms of developing predictors. Furthermore, this predictor 

developed is usually of lower order to the corrector, thus it has great consequence on the accuracy  
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of the corrector results. The block multistep methods are one of the numerical methods which have 

been suggested by scholars to cater for the shortcoming of predictor-corrector method, since block 

method are self-starting which eliminates the use of predictors and provides solutions at each grid 

(and off-grid) within the interval of integration without overlapping thereby eradicating the idea 

of predictor. However, prior to the implementation of numerical methods, convergence analysis is 

a very key instrument to determine the reliability of such numerical methods. Before now, the 

determination of the order of accuracy and error constants of block methods, their convergence 

and plotting their absolute stability regions have been done for the individual members of the block 

and whose result may not be assumed for the entire block. In this research, the properties 

(particularly, order and error constants) of the entire block of some Adams Bashforth and Adams 

Moulton methods are considered.  

1.3 Aim and Objectives of the Study 

The aim of this study is to carry out block error analysis of some Adams Bashforth and Adams 

Moulton schemes. The specific objectives are to:  

1.  derive the continuous formulation of both Adams Bashforth and Adams Moulton 

methods when   2, 3, 4k k k= = = and 5k = ; 

2.  obtain from the continuous method, the schemes necessary and sufficient to make the 

methods self-starting; 

3.  investigate the properties of the entire members of the block methods (in terms of 

convergence and stability) as a single entity. 

4.  carryout numerical experiments using the derived block methods. 
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1.4 Significance of the Study 

Error in numerical analysis is key, prior to this work, authors determine the error analysis of 

block linear multistep methods using the individual scheme that constitute the block members 

of the method. Consequently, in this research work, rather than using the conventional 

approach of obtaining order and error constants of individual member in the block method, 

an efficient approach that yields the order and error constants of block members at once is 

analysed  thereby saving computing time. 

1.5 Scope and Limitations of the Study 

This research work considers the block error analysis of some selected step numbers of the 

Adams Bashforth and Adams Moulton schemes for the numerical solution of first order 

ordinary differential equation. 

1.6 Definition of some Terms 

1.6.1 Initial value problem (Akinfenwa et al., 2011) 

This is any differential equation in which the initial condition of the problem is given, it is 

given in the form 

1 1 1

0 0 0 0 0 0( ) ( , , ... ),   ( ) ,   ( ) ... ( )n n n ny x f x y y y y x y y x y y x y− − −  = = = =       

,a x b  given 0 1...a x x N b= =   

1.6.2 Linear multistep method (LMM)  

Unlike the one step method that utilizes one previous value of the numerical solution to 

approximate the subsequent value, a k step multistep method utilizes 1k −  previous value. 

A general k-step LMM is given in the form 

1 0

k k

n j n j j n j

j j

y y h f + +

= =

= +            
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where   is the order of differential equation in consideration. (Yahaya, 2004) 

1.6.3 Block method  

A block method is formulated in linear multistep method form which preserves the advantage 

of one step method of being self-starting and permitting the change of step length. Its general 

form is given as: 

0

k k

m j m j j m j

j j o

Y A y h B F− −

= =

= +       

where 
1 1 1 1( , ,... ) ,  ( , ,... )T T

m n n n r m n n n rY y y y F f f f+ + − + + −= =    and  j jA s B s   are properly chosen 

r r  matrix coefficients and 0,1, 2...m = represents the number n mr=  is the first step 

number of the nth block and r is the proposed block size (Yahaya, 2004). 

1.6.4 Consistency 

Linear multistep methods are said to be consistent if it has order 1p   (Muhammad et al., 

2014).  

1.6.5 Zero stability 

A block method is said to be zero stable if the roots , 1,2,3...i i s =  of the first characteristics 

polynomial ( )   defined by 
1

0

( ) 0
s

i s

i

A   −

=

= =  satisfies 1 1   and for the roots with 

1 1 =  the multiplicity must not exceed the order of the differential equation in consideration; 

(Muhammad et al., 2014).  

1.6.6 Convergence 

If a linear multistep method is stable and of order r , then it is convergent of order r . 

Convergence of order r means that for sufficiently accurate starting approximations 

𝑦0, … , 𝑦𝑘−1 the global error satisfies 𝑦𝑛, … , 𝑦(𝑡𝑛) = 𝑂(ℎ𝑟) on compact intervals [0, 𝑛ℎ] , 
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where 𝑛ℎ ≤ 𝑇. The constant symbolized by the 𝑂(ℎ𝑟) notation is bounded by 𝑒𝑥𝑝(𝑇𝐿) , 

where 𝐿 is a Lipschitz constant of the vector field 𝑓(𝑡, 𝑦). 

1.6.7 Truncation error 

This is  of two kind: The local truncation error at a time step 1n+  is given as 

1 1

1( ) n ny z

n h
h + +−

+ = . It is the difference between the exact solution and the approximation 

applied to the exact solution at time t. The global truncation amount to error that occurs in the 

use of a numerical approximation to solve a problem. 

1.6.8 Matrix 

A matrix is a set of real or complex numbers (or elements) arranged in rows and columns to 

form a rectangular or square array. Example, 
11 12

21 22

a a

a a

 
 
 

 is a  2 2  matrix 
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CHAPTER TWO 

2.0             LITERATURE REVIEW 

2.1 Numerical Methods 

Numerical analysis is concerned with all aspects of the numerical solution of a problem, from the 

theoretical development and understanding of numerical methods to their practical implementation 

as reliable and efficient computer programs. Numerical analysis is the study of algorithms that use 

numerical approximation for the issues of mathematical analysis of real world problems arising 

from all fields of engineering, physical sciences, life sciences, social sciences, medicine and 

business. In most cases, a number of these problems are dynamical in nature with relation to time, 

space and other physical quantities which might be transformed into ordinary differential equations 

(ODEs). However, most numerical analysts concentrate on small subfields, but they share some 

common concerns, perspectives, and mathematical methods of research. When presented with a 

problem that cannot be solved directly, they exchange it with a “nearby problem” which will be 

solved more easily. Examples are the utilization of interpolation in developing numerical 

integration methods and root-finding methods – (Onumanyi et al., 2001; Yahaya, 2004, 

Mohammed and Yahaya, 2010). There is widespread use of the language and results of algebra, 

real analysis, and functional analysis (with its simplifying notation of norms, vector spaces, and 

operators). There is a fundamental concern with error, its size, and its analytic form. When 

approximating a problem, it is prudent to know the characteristics of the error within the computed 

solution. Moreover, understanding the shape of the error allows creation of extrapolation processes 

to boost the convergence behaviour of the numerical method. Numerical analysts are concerned 

with stability, a concept referring to the sensitivity of the solution of a problem to small changes 

in the data or the parameters of the problem. Numerical analysts are very curious about the 
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consequences of using finite precision computer arithmetic, this can be especially important in 

numerical algebra, as large problems contain many rounding errors. Numerical analysts are 

generally interested about measuring the efficiency (or “cost”) of an algorithm, for an example, 

the employment of Gaussian elimination to solve a linear system  Ax B= containing n equations 

would require approximately 
32

3

n
 arithmetic operations. Numerical analysts would want to 

understand how this method compares with other methods for solving the problem. 

However, a number of the ODEs don't have analytical solution, therefore one amongst the possible 

ways to tackle this problem is to think about a discrete domain instead of a continuous one. Hence 

for practical purposes like engineering, a numerical approximation is commonly sufficient. 

Numerical methods for ODEs are methods accustomed to find numerical approximations to the 

solutions of ODEs. Conceptually, a numerical method starts from an initial point then takes a brief 

step forward in time to search out the subsequent solution point. The overall numerical methods 

for approximating initial value problems (IVPs) of ODEs for the value of ( )y x  at discrete times 

it  can be written as  

( )1

0

, ,..., , ,
k

j n j f n k n k n n

j

y h y y y x h + + + −

=

=        (2.1) 

( )n ny y x  where 0nx x nh= +  for   

where h  is the time step and n  is an integer.  

The common numerical methods used to solve ODEs are categorized as one-step ( )1k =  methods 

and multistep ( 1k  ) methods (Akinfenwa et al., 2011).  
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2.2 Linear multistep method (LMM) 

Linear multistep methods are used for the numerical solution of ordinary differential equations. 

Conceptually, a numerical method starts from an initial point and then takes a short step forward 

in time to find the next solution point. The process continues with subsequent steps to map out the 

solution. Single-step methods (such as Euler's method) refer to only one previous point and its 

derivative to determine the current value. Methods such as Runge–Kutta take some intermediate 

steps (for example, a half-step) to obtain a higher order method, but then discard all previous 

information before taking a second step (Butcher, 2008). Multistep methods attempt to gain 

efficiency by keeping and using the information from previous steps rather than discarding it. 

Consequently, multistep methods refer to several previous points and derivative values. In the case 

of linear multistep methods, a linear combination of the previous points and derivative values is 

used. 

The general k-step linear multistep method is given as  

( )1 1 1 1 0 1 1 1 1 0... ...k n k k n k n n k n k k n k n ny y y y h f f f f       + − + − + + − + − ++ + + + = + + + +   (2.2) 

or equivalently (Ndanusa, 2007). 

0 0

k k

j n j j n j

j j

y h f + +

= =

=          (2.3) 

It is always the case that 1k = , also at  least one of the 0  and 0  will be non-zero.  

A linear multistep method is defined by a choice of quantities 'j s  and 'j s . If  0k = , the 

method is called explicit (because the method can directly compute n ky + ). If 0k  , the method 

is called implicit (since the value of n ky +  depends on the value of ( ),n k n kf x y+ +
, and the equation 

must be solved for  n ky + . Sometimes an explicit multistep method is used to “predict” the value of 
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n ky + . That value is then used in an implicit formula to “correct” the value. The result is a predictor 

– corrector method. However, the predictor-corrector method has a great setback of starting values 

which means more time and human efforts are needed to derive another method(s) to allow the 

main method to be implemented. Moreover, the predictors developed are of lower order to the 

corrector; therefore, corrupting the expected results generated by the corrector. Linear multistep 

techniques (for various families as expressed above) have been found to create generally higher 

order of exactness to differential equations by numerous scientists – Ndanusa (2007), Ndanusa and 

Adeboye (2008), Mohammed and Yahaya (2010), Chollom et al. (2014), Akinfenwa et al. (2014) 

and Akinfenwa et al. (2017). 

2.2.1 Families of linear multistep methods 

There are three families of linear multistep methods that are commonly used: 

(i) The Adams–Bashforth methods allow us explicitly to compute the approximate solution at 

an instant time from the solutions in previous instants. The Adams – Bashforth methods 

are explicit methods and the coefficients are 0 1 2... 0k   −= = = =  and 1 1k − = − ,  while 

'j s  are chosen such that the methods have an order k. The Adams – Bashforth methods 

with k=1,2,3,4,5 are: (Hairer et al., 1993). 

( )

( ) ( )

( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( )

1

2 1 1 1

3 2 1 1 2 2

4 3 1 1 2 2 3 3

1 1

5 4

,

1 3
, ,

2 2

5 , 16 , 23 ,
12

9 , 37 , 59 , 55 ,
24

251 , 1274 , 2

720

n n n n

n n n n n n

n n n n n n n n

n n n n n n n n n n

n n n n

n n

y y hf x y

y y h f x y f x y

h
y y f x y f x y f x y

h
y y f x y f x y f x y f x y

f x y f x yh
y y

+

+ + + +

+ + + + + +

+ + + + + + + +

+ +

+ +

= +

 
= + − + 

 

= + − +

= + − + − +

− +
= +

( )

( ) ( )

2 2

3 3 4 4

616 ,

2774 , 1901 ,

n n

n n n n

f x y

f x y f x y

+ +

+ + + +














−  
   +   

(2.4)  
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(ii) The Adam-Moulton Methods – are implicit and the coefficients are 0 1 2... 0k   −= = = =  

and 1 1k − = − ,  while 'j s  are chosen such that the methods have a highest order possible 

and 0k  . By removing the restriction that 0k =  a k-step Adams Moulton method can 

reach order k+1, while the Adams – Bashforth methods has only order k. In each step of 

Adams–Moulton methods an algebraic matrix Riccati equation (AMRE) is obtained, which 

is solved by means of Newton's method. The Adams – Moulton methods with k=1,2,3,4 

are: (Hairer et al., 1993). 

( )

( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( ) ( )

1 1 1

1 1 1

2 1 1 1 2 2

3 2 1 1 2 2 3 3

1 1 2 2

4 3

,

, ,
2

, 8 , 5 ,
12

, 5 , 19 , 9 ,
24

19 , 106 , 264 , 64

720

n n n n

n n n n n n

n n n n n n n n

n n n n n n n n n n

n n n n n n

n n

y y hf x y

h
y y f x y f x y

h
y y f x y f x y f x y

h
y y f x y f x y f x y f x y

f x y f x y f x yh
y y

+ + +

+ + +

+ + + + + +

+ + + + + + + +

+ + + +

+ +

= +

= + +

= + − + +

= + − + +

− + − +
= +

( )

( )

3 3

4 4

6 ,

251 ,

n n

n n

f x y

f x y

+ +

+ +














+ 
  

 

 (2.5) 

(iii) The backward differentiation formula (BDF) – is a family of implicit methods in which for 

a given function and time, approximate the derivative of a function using information from 

already computed times, thereby increasing the accuracy of the approximation. These 

methods are especially used for the solution of stiff differential equations (Curtiss and 

Hirschflder, 1952). The general formula for a BDF can be written as  

( )
0

,
k

j n j n k n k

j

y h f x y + + +

=

=         (2.6) 

The coefficients 'j s  and   are chosen so that the method achieves order k, which is the 

maximum possible. 
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2.3 Block Method 

According to Yahaya and Sagir (2013), a block method can be defined as follows; 

Let mY  and mF  be defined by ),...,,(),,...,,( 1111 −++−++ == rnnnmrnnnm fffFyyyY . Then a general k-

block, r-point block method is a matrix of finite difference equation of the form; 

 
= =

−− +=
k

j

k

i

mimim fhyAY
1 0

11         (2.7) 

where all the iA'  and si'  are properly chosen r x r matrix coefficients and ,....2,1,0=m represents 

the block number, mn =  is the first step number of mth  block and r  is the proposed block size. 

The block method was first proposed by Milne (1953) who advocated their utilization just as a 

method for obtaining starting values for predictor – corrector schemes (Sarafyan, 1965) and later 

continuing in blocks for general use was created by Rosser (1967). There are impressive writing 

on the method of solution of ordinary differential equations (ODEs) by predictor-corrector 

techniques as reported in (Lambert, 1973; 1991; Onumanyi et al., 1994; Fatunla 1994; Awoyemi 

and Idowu, 2005; Areo and Adeniyi, 2013; Ndanusa and Tafida, 2016). The predictor-corrector 

method has a great setback of starting values which implies additional time and human efforts are 

expected to develop another method(s) to permit the main scheme to be implemented. Also, the 

predictor derived are usually of lower order to the corrector; consequently, defiling the normal 

outcomes produced by the corrector. Nonetheless, to beat the test in creating separate predictors, 

and different deficiencies in the predictor-corrector technique, the development of the block 

method was proposed (Milne, 1953). This contains main and additional methods generated from 

the same continuous scheme, which are normally consolidated to at the same time produce 

simultaneously discrete solutions for IVPs at non-overlapping points ( )1 2, ,...,n n n Nx x x+ + +  ; thus, it 
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is self-starting. Implementation of linear multistep methods in block form has been found to give 

better estimation as found in the studies by (Fatunla, 1994, Yahaya, 2004; Badmus and Yahaya, 

2009; Jator and Li, 2012; Mohammed, 2011; Yahaya and Sagir, 2013; Akinfenwa, et al., 2013; 

Mohammed and Adeniyi, 2014; Badmus et al., 2015; Omar and Adeyeye, 2016; Akinfenwa et al., 

2017).  

Furthermore, the central concepts in the analysis of linear multistep methods, and indeed any 

numerical method for differential equations, are convergence, and stability. However, in past 

time, the determination of the order and error constants for the block methods, has been 

accomplished for the single individual members (particularly the main schemes - Yahaya, 

2004; Badmus and Yahaya, 2009; Badmus, et al., 2015; Akinfenwa et al., 2017) of the block 

and whose outcome may not be true for other members of the block. Consequently, in this 

research work, the determination of the order and error constants of block linear multistep 

method are established using the entire block members concurrently.  
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CHAPTER THREE 

3.0                    MATERIALS AND METHODS 

3.1 Derivation of Block Adams Methods 

For the purpose of the aim of this project, the block forms of Adams methods for two-step, three-

step, four-step and five-step are derived in this subsection. The continuous collocation technique 

is employed in the derivation process of these schemes.  

A power series of a single variable x in the form (3.1): 

0

( ) j

j

j

p x a x


=

=          (3.1)  

is used as the basis or trial function, to produce the approximate solution given as 

1

0

( )         
r s

j

j

j

y x a x
+ −

=

=            (3.2)  

where a j   are unknown coefficients to be determined, r and s are the numbers of interpolation 

and collocation points respectively.  

Differentiating (3.2),  

 ( )
1

1

1

( ) ,
r s

j

j

j

y x f x y ja x
+ −

−

=

 = =         (3.3)   

Interpolating (3.2) and collocating (3.3) at specified points lead to a system of nonlinear equations 

of the form  

AX B=           (3.4) 

Solving the equation (3.4) via matrix inversion technique, the values of 'ja s are obtained and 

substituted back into (3.2) to yield the continuous scheme of the Adams method in the form  

( ) ( ) ( )1 1

0

k

k n k j n j

j

y x x y h x f − + − +

=

= +        (3.5) 
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In order to obtain the sufficient number of equations required to solve an ODE, the continuous 

scheme is evaluated at the non-interpolating points. 

3.2 Derivation of Adams Bashforth Block Methods 

The Adams Bashforth method is an explicit method; meaning 0k =  in equation (3.5). 

3.2.1 Two-step Block Adams Bashforth Method 

For this method one interpolation point and two collocation points are considered, 1r =  and 2s =  

and a polynomial of degree 2 is obtained as follows; 

2

0

( )         j

j

j

y x a x
=

=           (3.6) 

The derivative is given as 

2
1

1

( ) j

j

j

y x ja x −

=

 =           (3.7) 

Interpolating (3.6) at 1nx + and collocating (3.7) at nx  and 1nx +  and representing in matrix form: 

2

1 1 0 1

1

1 2 1

1

0 1 2

0 1 2

n n n

n n

n n

x x a y

x a f

x a f

+ + +

+ +

    
    

=    
    
    

       (3.8) 

Using matrix inversion the values of 'ja s  are given as 

1

1 1
0 1 2 2

1

1 1
2 12 2

nn n

n

n nh h

a y hf hf

a f

a f f

++

+

= − − 


= 
= − + 

        (3.9) 

Substituting (3.9) into (3.6) and collecting like terms gives the continuous scheme 

2
1 1

1 12 2 2 2
( ) ( ) ( )x x

n n nh h
y x y h x f h f+ += + − + − + − +       (3.10) 

Evaluating (3.10) at nx x=  and 2nx +  gives the block members of the 2 step Adams Bashforth 
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( )

( )

1
1 12

1
2 1 12

3

n n n n

n n n n

y y h f f

y y h f f

+ +

+ + +

= + + 


= − − 
      (3.11) 

3.2.2 Three-step block Adams Bashforth method 

For this method, one interpolation point and three collocation points are considered, 1r =  and

3s =  and a polynomial of degree 3 is obtained as follows; 

3

0

( )         j

j

j

y x a x
=

=           (3.12) 

The derivative is given as 

3
1

1

( ) j

j

j

y x ja x −

=

 =           (3.13) 

Interpolating (3.12) at 2nx + and collocating (3.13) at nx , 1nx +  and 2nx +  and representing in matrix 

form: 

2 3
0 12 2 2

2
1 1

2
2 21 1

2
3 32 2

1

0 1 2 3

0 1 2( ) 3( )

0 1 2( ) 3( )

nn n n

nn n

nn n

nn n

a yx x x

a fx x

a fx x

a fx x

++ + +

+

++ +

++ +

    
    
    =
    
     

    

     (3.14) 

Using matrix inversion the values of 'ja s  are given as 

1 2

1 2

1 2

2 2 2

1 4 1
0 2 3 3 3

1

3 1
2 4 6

1 1 1
3 6 3 6

n n

n n n

n n n

n n

n

f f f

h h h

f f f

h h h

a y hf hf hf

a f

a

a

+ +

+ +

+ +

+= − − − 


= 


= − + + 
= − + 

    (3.15) 

Substituting (3.15) into (3.12) and collecting like terms gives the continuous scheme 

3 2 3 2 3 2

2 2 2

31 1 1 4 1 1 1
2 1 26 4 3 3 3 6 4 3

( ) ( ) ( ) ( )x x x x x x
n n n nh h hh h h

y x y x h f h f h f+ + += + − + − + − + − + − −   (3.16) 
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Evaluating (3.16) at 1,n nx x x +=  and 3nx +  gives the block members of the 3 step Adams Bashforth 

method 

51 2
1 2 1 212 3 12

1 4 1
2 1 23 3 3

5 234
3 2 1 212 3 12

n n n n n

n n n n n

n n n n n

y y hf hf hf

y y hf hf hf

y y hf hf hf

+ + + +

+ + +

+ + + +

= + − − 


= + + + 


= + − + 

    (3.17) 

3.2.3 Four-step block Adams Bashforth method 

Following similar procedure in the above two methods derived, the four-step block Adams 

Bashforth method is presented as follows: 

1 4 1
1 3 1 2 33 3 3

5 19 31
2 3 1 2 324 24 24 8

3 9 9 3
3 1 2 38 8 8 8

3 37 59 55
4 3 1 2 38 24 24 24

n n n n n

n n n n n n

n n n n n n

n n n n n n

y y hf hf hf

y y hf hf hf hf

y y hf hf hf hf

y y hf hf hf hf

+ + + + +

+ + + + +

+ + + +

+ + + + +

= − − − 


= − + − − 


= + + + + 
= − + − + 

   (3.18) 

3.2.4 Five-step block Adams Bashforth method 

Similarly, the five-step block Adams Bashforth method is presented as follows: 

1 4 1 2 3 4

2 4 1 2 3 4

3 4 1 3 4

4 1 2 3

3 21 4 9 27

80 40 3 10 80

1 2 19 4 29

90 45 24 15 90

19 53 11 251

720 360 30 720

14 64 9 8

45 45 8 15

n n n n n n n

n n n n n n n

n n n n n n

n n n n n n

y y f hf hf hf hf

y y hf hf hf hf hf

y y hf hf hf hf

y y hf hf hf hf

+ + + + + +

+ + + + + +

+ + + + +

+ + + +

= + − − − −

= + − − − −

= + − + −

= + + + + + 4

5 4 1 2 3 4

14

45

251 637 44 109 1901

720 360 3 30 720

n

n n n n n n n

hf

y y hf hf hf hf hf

+

+ + + + + +













= + − − + +


  (3.19) 
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3.3 Derivation of Adams Moulton Block Methods 

The Adams Moulton method is an implicit method; meaning 0k   in equation (3.5). 

3.3.1 Two-step Block Adams Moulton Method 

For this method one interpolation point and three collocation points are considered, 1r =  and 3s =  

and a polynomial of degree 3 is obtained as follows; 

3

0

( )         j

j

j

y x a x
=

=           (3.20) 

The derivative is given as 

3
1

1

( ) j

j

j

y x ja x −

=

 =           (3.21) 

Interpolating (3.20) at 1nx + and collocating (3.21) at nx , 1nx +  and 2nx +  and representing in matrix 

form: 

2 3
0 11 1 1

2
1

2
2 11 1

2
3 22 2

1

0 1 2 3

0 1 2( ) 3( )

0 1 2( ) 3( )

nn n n

nn n

nn n

nn n

a yx x x

a fx x

a fx x

a fx x

++ + +

++ +

++ +

    
    
    =
    
     

    

     (3.22) 

Using matrix inversion the values of 'ja s  are given as 

2 2 2

5 2 1
0 1 1 212 3 12

1

3 1 1
2 1 24 4

1 1 1
3 1 26 3 6

n n n n

n

n n nh h h

n n nh h h

a y hf hf hf

a f

a f f f

a f f f

+ + +

−
+ +

+ +

= − − + 


= 


= + − 
= − + 

      (3.23) 

Substituting (3.23) into (3.20) and collecting like terms gives the continuous scheme 

3 2 3 2 3 2

2 2 2

3 51 1 2 1 1 1
1 1 26 4 12 3 3 6 4 12

( ) ( ) ( )x x x x x x
n n n nh h hh h h

y x h f h f h f+ + ++ − + − + − + − + − +    (3.23) 

Evaluating (3.23) at 1,n nx x x +=  and 2nx +  gives the block members of the 2 step Adams Moulton 
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5 2 1
1 1 212 3 12

51 2
2 1 1 212 3 12

n n n n n

n n n n n

y y hf hf hf

y y hf hf hf

+ + +

+ + + +

= + + − 


= − + + 
     (3.24) 

3.3.2 Three-step Block Adams Moulton Method 

For this method one interpolation point and four collocation points are considered, 1r =  and 4s =  

and a polynomial of degree 4 is obtained as follows; 

4

0

( )         j

j

j

y x a x
=

=           (3.25) 

The derivative is given as 

4
1

1

( ) j

j

j

y x ja x −

=

 =           (3.26) 

Interpolating (3.25) at 2nx + and collocating (3.26) at nx , 1 2,n nx x+ +  and 3nx +  and representing in 

matrix form: 

2 3 4
202 2 2 2

2 3
1

2 3
121 1 1

2 3
232 2 2

2 3
342 3 3

1

0 1 2 3 4

0 1 2( ) 3( ) 4( )

0 1 2( ) 3( ) 4( )

0 1 2( ) 3( ) 4( )

nn n n n

nn n n

nn n n

nn n n

nn n n

yax x x x

fax x x

fax x x

fax x x

fax x x

++ + + +

++ + +

++ + +

++ + +

    
    
    
     =
    
    

    
    

  (3.27) 

Using matrix inversion the values of 'ja s  are given as 

1 2

1 2 3

1 2 3

2 2 2 2

1 2 3

3 3 3 3

1 4 1
0 2 3 3 3

1

3 311 1
2 12 2 4 6

51 2 1
3 3 6 3 6

1 1 1 1
4 24 8 8 24

n n

n n n n

n n n n

n n n n

n n

n

f f f f

h h h h

f f f f

h h h h

f f f f

h h h h

a y hf hf hf

a f

a

a

a

+ +

+ + +

+ + +

+ + +

+
= − − −

=


= − + − + 


= − + − 


= − + − + 

    (3.28) 
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Substituting (3.28) into (3.25) and collecting like terms gives the continuous scheme 

( )
4 3 2 4 3 2

3 2 3 2

4 3 2 4 3 2

3 2 2 3 2

5 31 1 11 1 1 4
2 124 3 12 3 8 6 2 3

31 2 1 1 1 1
2 38 3 4 3 24 6 6

( ) ( )

( ) ( )

x x x x x x
n n nh hh h h h

x x x x x x
n nhh h h h h

y x y x h f h f

h f f

+ +

+ +

= + − + − + − + − + −

+ − + − − + − +
 (3.29) 

Evaluating  (3.29) at 1 2, ,n n nx x x x+ +=  and 3nx +  gives the block members of the 3 step Adams 

Moulton 

13 131 1
1 2 1 2 324 24 24 24

1 4 1
2 1 23 3 3

5 19 31
3 2 1 2 324 24 24 8

n n n n n n

n n n n n

n n n n n n

y y hf hf hf hf

y y hf hf hf

y y hf hf hf hf

+ + + + +

+ + +

+ + + + +

= + − − + 


= + + + 


= + − + + 

    (3.30) 

3.3.3 Four-step block Adams Moulton method 

Following similar procedure in the above two methods derived, the four-step block Adams 

Moulton method is presented as follows: 

17 19 171 1
1 3 1 2 3 490 45 15 45 90

37 19 173 1911
2 3 1 2 3 4720 360 30 360 720

27 51 9 321
3 1 2 3 480 40 10 40 80

19 53
4 3 1720 360

n n n n n n n

n n n n n n n

n n n n n n n

n n n n

y y hf hf hf hf hf

y y hf hf hf hf hf

y y hf hf hf hf hf

y y hf hf

+ + + + + +

+ + + + + +

+ + + + +

+ + +

= + − − − +

= − + − − +

= + + + + −

= − + − 323 25111
2 3 430 360 720n n nhf hf hf+ + +






+ + 

 (3.31) 

3.3.4 Five-step block Adams Moulton method 

Similarly, the five-step block Adams Moulton method is presented as follows: 

3 69 87 87 69 3
1 4 1 2 3 4 5160 160 80 80 160 160

17 19 171 1
2 4 1 2 3 4 590 45 15 45 90

77 43 511 637 311
3 4 1 2 3 41440 1440 240 720 1440 160

n n n n n n n n

n n n n n n n

n n n n n n n

y y hf hf hf hf hf hf

y y hf hf hf hf hf

y y hf hf hf hf hf hf

+ + + + + + +

+ + + + + + +

+ + + + + +

= + − − − − +

= + − − − +

= + − + − − + 5

64 8 6414 14
4 1 2 3 445 45 15 45 45

3 173 133 1427 95241
5 4 1 2 3 4 5160 1440 720 240 1440 288

n

n n n n n n n

n n n n n n n n

y y hf hf hf hf hf

y y hf hf hf hf hf hf

+

+ + + + +

+ + + + + + +








= + + + + +

= + − + − + + 

 (3.32) 
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3.4 Block Error Analysis of Adams Methods 

Following Nwachukwu and Okor (2018), the individual scheme of a linear multistep method can 

be written as: 

( ) ( )( ) ( )
0 0

;
k k

j j

j j

L y x h y x jh h y x jh 
= =

 
= + + +    

 
      (3.33) 

Expanding (3.33) in Taylor series, the local truncation error associated with (3.5) is the linear 

difference operator 

( ) ( )( ) ( )
0 0

;
k k

j j

j j

L y x h y x jh h y x jh 
= =

 
= + − +    

 
      (3.34) 

Assuming that ( )y x  is sufficiently differentiable, we can expand the terms in (3.34) as a Taylor 

series about the point x  to obtain the expression  

( ) ( ) ( ) ( )( )

0 1; ... ...q q

qL y x h c y x c hy x c h y x= + + + +        (3.35) 

where the constant , 0,1,...qc q =  are given as follows 

( )

( )
( )

0

0

1

1 0

2

2

1 1

1

1 1

1

2!

1 1

q! 1 !

k

j

j

k k

j j

j j

k k

j j

j j

k k
q q

q j j

j j

c

c j

c j j

c j j
q



 

 

 

=

= =

= =

−

= =


= 




= + 



= + 





= + −





 

 

 

      (3.36) 

A linear multistep method is said to be of order of accuracy p  if 
0 1 1 1...c 0, 0.p p pc c c c+ += = =   

is called the error constant (Akinfenwa et al., 2015). However, this approach is normally used to 

determine the order of the individual members of the block. This approach is extended to determine 
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the order of the entire block. To achieve this, the block linear multi-step method is expressed in 

the form: 

0 0

k k

ij n j ij n j

i j

y h f + +

= =

=          (3.37) 

Equation (3.37) is expanded to give the following system of equation.  

01 11 21 1 01 11 21 1

02 12 22 2 1 02 12 22 2 1

03 12 23 3 2 03 12 23 3 2

0 1 2 0 1 2

k n k n

k n k n

k n k n

k k k kk n k k k k kk n k

y f

y f

y h f

y f

       

       

       

       

+ +

+ +

+ +

    
    
    
    =
    
    
    
    







 
 



  (3.38) 

where  

0 1

01 11 1

02 12 2

,03 13 3

0 1

k

k

k

k

k k kk

  

     
     
     
     = = =
     
     
     
     

 and  
0 1

01 11 1

02 12 2

,03 13 3

0 1

k

k

k

k

k k kk

  

     
     
     
     = = =
     
     
     
     

  

Extending (3.34) to the vector form in (3.38),  

( ) ( ) ( )( )
0

; ,
k

j j

j

L y x h y x jh h y x jh y y jh 
=

 = + − + +         (3.39) 

where, ( )y x  is the exact solution satisfying ( ) ( )( ),y x f x y x = .  Taking the Taylor’s series 

expansion of (3.39), about x  yields  

( ) ( ) ( ) ( ) ( ) ( )2

0 1 2; ...
qq

qL y x h C y x C hy x C h y x C h y x = + + + +      (3.40) 

where    
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     
     
     
     

       (3.41) 

The block linear multistep method is said to be of order p  if 0 1 2 1... 0, 0p pC C C C C += = = = =   

and the local truncation error is expressed as ( )1 1

1

p p

n p nT C h y x+ +

+=  (Chollom et al., 2007).  

3.4.1 Local truncation error of two-step Adams Bashforth block method 

Applying the procedure described above, the order and error constant of the two-step Adams 

Bashforth block method is presented as thus: 

0 0 1 2

1 1 0 0

0 1 1 0
C   

−       
= + + = + + =       

−       
      (3.42) 
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         
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−           −    
    

   (3.43) 

( )2 2

2 1 2 1

1

1 0 01 1 2
2 2

1 1 3 02! 2!

2

C   

 
       

= + − = + − =       
−        
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      (3.44) 
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   
   

   (3.45) 

Hence the two-step Adams Bashforth block method is of order ( )2,2
T

 and the error constant is 

1 5
,

12 12

T

 
− 
 
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3.4.2 Local truncation error of Three-step Adams Bashforth block method 

The order and error constant of the three-step Adams Bashforth block method in equation (3.17) 

is presented as thus: 

0
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       (3.46) 
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   (3.51) 

Hence the three-step Adams Bashforth block method is of order ( )3,4,3
T

 and the error constant is 

1 1 3
, ,

24 90 8

T

 
− 

 
       

3.4.3 Local truncation error of four-step Adams Bashforth block method 

The order and error constant of the four-step Adams Bashforth block method in equation (3.18) is 

presented as thus: 

0

0 1 0 1 0

0 0 1 1 0

1 0 0 1 0

0 0 0 1 0

C

−         
         

−         = + + + =
         −
         

−         

       (3.52) 

1

11 4
0

33 3
11 0 1 35 19
240 1 1 824 24

2 3 3
0 0 1 9 9 3

8
8 8 80 0 1

3
37 59 55

8
24 24 24

C

   
−− −     

      −        −     −−         −            = + + − + + +                            −             −     − 
    

0

0

0

0

 
 
 

  
 

 
 = 
 

 
 

   
 
  

 

  (3.53) 

2 2

2

11 4

33 3
1 0 1 35 19

0 1 11 824 24
2 3 2 3

0 0 1 9 9 32!

8 8 80 0 1

37 59 55

24 24 24

C

     
−− −     

      −             −−      
  −          = + + − + +           
           
     −       
     
     −
     

0

0

0

0




 
 


 =
 


 

  




  (3.54) 



 

37 
 

3 3 2 2

3

11 4

33 3
1 0 1 35 19

0 1 11 1 824 24
2 3 2 3

0 0 1 9 9 33! 2!

8 8 80 0 1

37 59 55

24 24 24

C

     
−− −     

      −             −−      
  −          = + + − + +           

          
    −       
    
    −

     

0

0

0

0





 
 


 =
 

 
 

   
 
 



  (3.55) 

4 4 3 3

4

11 4

33 3
1 0 1 35 19

0 1 11 1 824 24
2 3 2 3

0 0 1 9 9 34! 3!

8 8 80 0 1

37 59 55

24 24 24

C

     
−− −     

      −             −−      
  −          = + + − + +           

          
    −       
    
    −

     

0

0

0

0





 
 


 =
 

 
 

   
 
 



  (3.56) 

5 5 4 4

5

11 4

33 3
1 0 1 35 19

0 1 11 1 824 24
2 3 2 3

0 0 1 9 9 35! 4!

8 8 80 0 1

37 59 55

24 24 24

C

     
−− −     

      −             −−      
  −          = + + − + +           

          
    −       
    
    −

     

1

90

19

720

3

80

251

720

  
  
  
  
  
=  

   −
   
   
   

 

 (3.57) 

Hence the four-step Adams Bashforth block method is of order ( )4,4,4
T

 and the error constant is 
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3.4.4 Local truncation error of five-step Adams Bashforth block method 

The order and error constant of the four-step Adams Bashforth block method in equation (3.19) is 

presented as thus: 
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Hence the five-step Adams Bashforth block method is of order ( )5,5,5,6,5
T

 and the error constant 

is 
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. Table 3.1 present the summary of Order and Error Constants of 

Block Adams Bashforth Methods. 

Table 3.1: Summary of Order and Error Constants of Block Adams Bashforth Methods 

Step Number Order Error constants 
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3.4.5 Local truncation error of two-step Adams Moulton block method 

Applying the procedure described above, the order and error constant of the two-step Adams 

Moulton block method in (3.24) is presented as thus: 
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  = + − + = + − + =           −            −     
     

  (3.69) 

Hence the two-step Adams Moulton block method is of order ( )3,3
T

 and the error constant is 

1 1
,

24 24

T

 
− 

 
 

3.4.6 Local truncation error of three-step Adams Moulton block method 

The order and error constant of the three-step Adams Moulton block method in (3.30) is presented 

as thus: 
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  (3.71) 

2 2

2

13 13
1

24 241 1 0 024
1 4 1

0 2 1 3 0 2 3 0 0
2! 3 3

0 1 1 3 0
5 19

8
24 24

C

    
− −      

  −            
             = + + − + + =             

           −                  −     
     

  (3.72) 

3 3 2 2

3

13 13
1

24 241 1 0 024
1 1 4 1

0 2 1 3 0 2 3 0 0
3! 2! 3 3

0 1 1 3 0
5 19

8
24 24

C

    
− −      

  −            
             = + + − + + =             

           −                  −     
     

  (3.73) 

4 4 3 3

4

13 13
1

24 241 1 0 024
1 1 4 1

0 2 1 3 0 2 3 0 0
4! 3! 3 3

0 1 1 3 0
5 19

8
24 24

C

    
− −      

  −            
             = + + − + + =             

           −                  −     
     

  (3.74) 

5 5 4 4

5

1113 13
1

72024 241 1 0 24
1 1 4 1 1

0 2 1 3 0 2 3 0
5! 4! 3 3 90

0 1 1 3
5 19 19

8
24 24 720

C

      
−− −        

  −             
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 (3.75) 
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Hence the three-step Adams Moulton block method is of order ( )4,4,4
T

 and the error constant is 

11 1 10
, ,

720 90 720

T

 
− − − 
 

 

3.4.7 Local truncation error of four-step Adams Moulton block method 

The order and error constant of the four-step Adams Moulton block method in (3.31) is presented 

as thus: 
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       (3.76) 
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 Hence the four-step Adams Moulton block method is of order ( )6,5,5,5
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3.4.8 Local truncation error of five-step Adams Moulton block method 

The order and error constant of the five-step Adams Moulton block method in (3.32) is presented 

as thus: 
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720 240 1440

     
− − −     

     
     − − −
     
     
     + + + +− − −
     
     

      
      
      

−      
     

13

2240

1

756

271

60480

8

945

863
8

60480

   
−    

    
    −    
    
    = −    
    
    −
    
      −    

  

 (3.91) 

Hence the five-step Adams Moulton block method is of order ( )6,6,6,6,6
T

 and the error constant 

is 
13 1 271 8 863

, , , ,
2240 756 60480 945 60480

T

 
− − − − − 
 

. Table 3.2 present the summary of order and error 

constants of block Adams Moulton methods. 
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Table 3.2: Summary of Order and Error Constants of Block Adams Moulton Methods 

Step Number Order Error constants 

K=2 ( )3,3
T

 1 1
,

24 24

T

 
− 

 
 

K=3 ( )4,4,4
T

 11 1 10
, ,

720 90 720

T

 
− − − 
 

 

K=4 ( )6,5,5,5
T

 1 11 3 3
, , ,

756 1440 160 160

T

 
− − − 
 

 

K=5 ( )6,6,6,6,6
T

 13 1 271 8 863
, , , ,

2240 756 60480 945 60480

T

 
− − − − − 
 

 

 

3.5 Zero Stability of the Block Adams Methods 

In what follows, the block Adams Bashforth and Adams Moulton methods can generally be written 

as a matrix difference equation as follows  

( ) ( ) ( ) ( )1 0 0 1

1 1w w w wA Y A Y h B F B F− −
 = + +
 

       (3.92) 

where  

( )

( )

( )

( )

1 2

1 1 2 1

1 2

1 1 2 1

, ,...,

, ,..., ,

, ,...,

, ,..., ,

T

w n n n k

T

w n k n k n n

T

w n n n k

T

w n k n k n n

Y y y y

Y y y y y

F f f f

F f f f f

+ + +

− − + − + −

+ + +

− − + − + −

=

= 


= 


= 

       (3.93) 

and the matrices 
( ) ( ) ( )1 0 1

, , BA A  and 
( )0

B are matrices whose entries are given by the coefficients of 

the methods. In order to find the zero stability of the derived methods, we only consider the first 

characteristic polynomial of the method,  
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( ) ( )1 0R RA A = −           (3.93) 

Definition 3.1  A linear multistep method is said to be zero-stable if the first characteristic 

polynomial ( )r satisfies  1r  and if every root satisfying 1r = have multiplicity not be greater 

than one (Skwame et al., 2018). 

It is however, worth noting that the first characteristic polynomials of both Adams Bashforth and 

Adams Moulton k-step methods are the same. Therefore, we generally analyze the zero-stability 

of the Block Adams methods for the k-steps considered in this project.  

3.5.1 Zero stability of 2-step Adams method 

Writing the two-step Adams method in the form (3.93),  

1 0 0 1
( ) 0

1 1 0 0
P R R

   
= − =   

−   
       (3.94) 

( )

 

( 1) 0

0,1

P R R R

R

= − =

=
         (3.95) 

Therefore, the method is zero stable since it satisfies 1.jR    

3.5.2 Zero stability of 3-step Adams method 

Writing the three-step Adams method in the form (3.93),  

1 1 0 0 0 0

( ) 0 1 0 0 0 1 0

0 1 1 0 0 0

P R R

−   
   

= − =
   
   −   

      (3.96) 

( )

 

2 ( 1) 0

0,0,1

P R R R

R

= − =

=
         (3.97) 

Therefore, the method is zero stable since it satisfies 1.jR    
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3.5.3 Zero stability of 4-step Adams method 

Writing the four-step Adams method in the form (3.93),  

1 0 1 0 0 0 0 0

0 1 1 0 0 0 0 0
( )

0 0 1 0 0 0 0 1

0 0 1 1 0 0 0 0

P R R

−   
   

−
   = −
   
   

−   

      (3.98) 

( )

 

3( 1) 0

0,0,0,1

P R R R

R

= − =

=
         (3.99) 

Therefore, the method is zero stable since it satisfies 1.jR    

3.5.4 Zero stability of 5-step Adams method 

Writing the five-step Adams method in the form (3.93),  

1 0 0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0

( )  0 0 1 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1

0 0 0 1 1 0 0 0 0 0

P R R

−   
   

−
   
   = −−
   
   
   −   

     (3.100) 

( )

 

4 ( 1) 0

0,0,0,0,1

P R R R

R

= − =

=
         (3.101) 

Therefore, the method is zero stable since it satisfies 1.jR    

3.6 Convergence 

The necessary and sufficient condition for linear multistep method to be convergent is for it to be 

consistent and zero stable (Ngwane and Jator, 2012). Following this theorem, each of the block 

Adams methods developed are convergent. 
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3.7 Absolute Stability Properties of the Adams Methods 

The stability characteristic of the block Adams methods is analyzed using the linear general 

method. Applying the scaler test equation , 0y y  =   to the methods, and arranging the block 

members of the Adams methods in matrix form as given in (3.92), the stability polynomial of the 

methods can be compute following Akinfenwa et al. (2014) as: 

( ) ( ) ( )( ) ( ) ( )( )
1

1 1 0 0
z A zB A zB

−

= − +         (3.102) 

where z h=   

The matrix ( )z  has eigenvalues  0,0,0,..., k , and the dominant eigenvalue :k → is a 

rational function (called the stability function) with real coefficients. 

Definition 3.2: A numerical method is said to be A-Stable if the region of absolute stability 

contains the left half plane (Akinfenwa et al., 2014). 

3.7.1 Absolute Stability Properties of the Two-step Adams Bashforth Method 

Computing the characteristic polynomial as given in (3.102) 

( )

1

1 1
0 0

1 0 0 12 2

1 1 3 0 0 1
0 0

2 2

z z z

−

      
         
   = − +      
−         −            

    (3.103) 

and the stability function is given as:  

( )
22 3 2

2

z z
z

z


+ +
= −

−
         (3.104) 
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Figure 3.1: Stability Region of Two-step Block Adams Bashforth Method 

Figure 3.1 shows the region of absolute stability of the two-step block Adams Bashforth method. 

The method  is not A-stable as the unstable region covers the entire plane as shown in the figure 

3.7.2 Absolute Stability Properties of the Three-step Adams Bashforth Method 

Computing the characteristic polynomial as given in (3.102). 
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( )

1

2 5 1
0 0 0

3 12 121 1 0 0 0 0
4 1 1

0 1 0 0 0 0 1 0 0
3 3 3

0 1 1 0 0 0
4 23 5

0 0 0
3 12 12

z z z

−

      
− −      

−         
         = − +
         
      −       
      −            

  (3.105) 

and the stability function is given as  

( )
3 2

2

1 6 11 12 6

2 3 3

z z z
z

z z


+ + +
=

− +
       (3.106) 

 

 

 

 

 

 

 

 

 

Figure 3.2: Stability Region of Three-step Block Adams Bashforth Method 

Figure 3.2 shows the region of absolute stability of the three-step block Adams Bashforth method. 

The method  is not A-stable as the unstable region covers the entire plane as shown in the figure 
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3.7.3 Absolute Stability Properties of the Four-step Adams Bashforth Method 

Computing the characteristic polynomial as given in (3.102) 

( )

1

1 1 1
0 0 0 00

3 4 3
11 0 1 0 0 0 0 05 19 3 0 0 0

0 240 1 1 0 0 0 0 024 24 8
3

0 0 1 0 0 0 0 19 9 3 0 0 0
0 8

8 8 80 0 1 1 0 0 0 0
3

37 59 55 0 0 0
0 8

24 24 24

z z z

−

  
− − −    

   −     −  − −      −  
     = − +  
       
       −        −   −   

  


 
 
 
 
 
 
 
 
 

  (3.107) 

and the stability function is given as  

( )
4 3 2

3 2

12 25 35 30 12

3 11 18 12

z z z z
z

z z z


+ + + +
= −

− + −
      (3.108) 

 

 

 

 

 

 

 

 

 

Figure 3.3: Stability Region of Four-step Block Adams Bashforth Method 
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Figure 3.3 shows the region of absolute stability of the four-step block Adams Bashforth method. 

The method is not A-stable as the unstable region covers the entire plane as shown in the figure 

3.7.4 Absolute Stability Properties of the Five-step Adams Bashforth Method 

Computing the characteristic polynomial as given in (3.102) 

( )

21 9 51 27
0

40 10 40 80

2 4 62 291 0 0 1 0 0
45 15 45 900 1 0 1 0
53 11 62 251

0 0 1 1 0 0
360 30 45 720

0 0 0 1 0
64 8 64 14

00 0 0 1 1
45 15 45 45

637 109 1387 1901
0

360 30 360 720

z z

  
− − − −  

  
  −  − − − −
   

−   
   = −− − − −
   
   
   −   
  

− − −  
 

1

3
0 0 0 0

80

10 0 0 0 0 0 0 0 0
900 0 0 0 0
19

0 0 0 0 0 0 0 0 0
720

0 0 0 0 1
14

0 0 0 00 0 0 0 0
45

251
0 0 0 0

720

z

−






 








  
  
  
   
   
   
    +
   
   
      
  
  

  

  (3.109) 

and the stability function is given as  

( )
5 4 3 2

4 3 2

2 54420 194324 418941 460856 225540 64800

3 3796 12126 44979 65640 43200

z z z z z
z

z z z z


+ + + + +
=

− + − +
  (3.110) 
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Figure 3.4: Stability Region of Four-step Block Adams Bashforth Method 

Figure 3.4 shows the region of absolute stability of the five-step block Adams Bashforth method. 

The method is not A-stable as the unstable region covers the entire plane as shown in the figure 

3.7.5 Absolute Stability Properties of the Two-step Adams Moulton Method 

Computing the characteristic polynomial as given in (3.102) 

( )

1

3 1 5
0

1 0 0 12 12 12

1 1 3 5 0 0 1
0

2 12 12

z z z

−

      
−         

   = − +      
−         −            

    (3.111) 

and the stability function is given as:  

( )
2

2

9 22 12

9 22 12

z z
z

z z


+ +
=

− +
        (3.112) 
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Figure 3.5: Stability Region of Two-step Block Adams Moulton Method 

Figure 3.5 shows the region of absolute stability of the two-step block Adams Moulton method. 

However, the method is A-stable as the region of its absolute stability covers the entire half left 

plane as shown in the figure. 

3.7.6 Absolute Stability Properties of the Three-step Adams Moulton Method 

Computing the characteristic polynomial as given in (3.102) 

( )

1

13 13 1 1
0 0

24 24 24 241 1 0 0 0 0
4 1 1

0 1 0 0 0 0 1 0 0
3 3 3

0 1 1 0 0 0
5 19 3 1

0 0
24 24 8 24

z z z

−

      
− −      

−         
         = − +
         
      −       
      −            

 (3.113) 

and the stability function is given as  
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( )
3 2

3 2

3 11 18 12

3 11 18 12

z z z
z

z z z


+ + +
= −

− + −
       (3.114) 

 

 

 

 

 

 

 

 

Figure 3.6: Stability Region of Three-step Block Adams Moulton Method 

Figure 3.6 shows the region of absolute stability of the three-step block Adams Moulton method. 

The method  is A-stable as the region of its absolute stability covers the entire half left plane as 

shown in the figure. 

3.7.7 Absolute Stability Properties of the Four-step Adams Bashforth Method 

Computing the characteristic polynomial as given in (3.102) 

( )

1

17 19 17 1 1
0 0 0

45 15 45 90 90
1 0 1 0 0 0 0 037 19 173 19

0 0 0
0 1 1 0 0 0 0 0360 30 360 720

0 0 1 0 51 9 21 3 0 0 0 1

40 10 40 800 0 1 1 0 0 0 0

53 11 323 251

360 30 360 720

z z z

−

  
− − −  

  −     − −    −  
   = − +  
     −     −   
  
  − 

  

11

720

27
0 0 0

80

19
0 0 0

720

  
  
  
  −
  
  
  
  
  
  − 

  

 (3.115) 
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and the stability function is given as  

( )
4 3 2

4 3 2

12 50 105 120 60

12 50 105 120 60

z z z z
z

z z z z


+ + + +
=

− + − +
      (3.116) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Stability Region of Four-step Block Adams Moulton Method 

Figure 3.7 shows the region of absolute stability of the four-step block Adams Moulton method. 

The method is A-stable as the region of its absolute stability covers the entire half left plane as 

shown in the figure. 

3.7.8 Absolute Stability Properties of the Five-step Adams Bashforth Method 

Computing the characteristic polynomial as given in (3.102) 
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( )

69 87 87 69 3

160 80 80 160 160

1 17 19 17 11 0 0 1 0
90 45 15 45 900 1 0 1 0
77 43 511 637 3

0 0 1 1 0
1440 240 720 1440 160

0 0 0 1 0
64 8 64 14

00 0 0 1 1
45 15 45 45

173 241 133 1427 95

1440 720 240 1440 288

z z

 
− − − − 

 
 −  − − −
  

−   
  = −− − − −
 
 
 −  

− −
 

1

3
0 0 0 0

160
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 11
0 0 0 0

0 0 0 0 0 1440

0 0 0 0 1 14
0 0 0 0

450 0 0 0 0

3
0 0 0 0

360

z

−

 
 
 
 
 
 
  
 
 
 
 
 
 
 

  
  
  
   
   
   
  +  
   
   
     
  
    

  (3.117) 

and the stability function is given as  

( )
5 4 3 2

5 4 3 2

60 274 675 1020 900 360

60 274 675 1020 900 360

z z z z z
z

z z z z z


+ + + + +
= −

− + − + −
   (3.110) 
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Figure 3.8: Stability Region of Five-step Block Adams Moulton Method 

Figure 3.8 shows the region of absolute stability of the three-step block Adams Moulton method. 

The method is A-stable as the region of its absolute stability covers the entire half left plane as 

shown in the figure. 
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CHAPTER FOUR  

4.0    RESULTS AND DISCUSSIONS 

4.1 Numerical Experiments 

In this section, some numerical examples are given to illustrate the accuracy of the Adams 

Bashforth and Adams Moulton methods considered in this project. We find the absolute errors of 

the approximate solution on the partition N  as ( ) ( )ny x y x− . 

Problem 1: consider a linear stiff problem  

y y = −   

(0) 1,0 1y x=     

Exact solution is given as 

( ) xy x e−=   

Problem 2: we consider the nonlinear problem: (Musa et al., 2012) 

(1 )

2 1

y y

y
y

−

−
 =  

5
6

(0) , 0 1y x=     

Exact solution is given as 

51 1
2 4 6

( ) xy x e−= + −   

Problem 3: (Sunday et al. 2014). 

2)0()1(10 2' =−−= yyy  
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Exact solution:  
1

1
1 10x

+
+

 

Problem 4: Consider the oscillatory problem (Mohammad et al., 2018). 

,1)0(cossin2020' =++−= yxxyy  

With exact solution  

xexxy 20sin)( −+=     

Problem 5: Consider the linear stiff problem (Ehiemua and Agbeboh, 2019). 

( )8 8 1 0 2y y x y = − + + =  

Exact solution: ( ) 82 xy x x e−= +  
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Table 4.1:  Comparison of Adams Bashforth Schemes for Problem 1 (h=0.1) 

X Exact Solution Error in 

k=2 

Error in 

k=3 

Error in 

k=4 

Error in 

k=5 

0.1 0.90483741803595957316 7.55× 510−  3.59× 610−  2.15× 710−  1.45× 810−  

0.2 0.81873075307798185867 3.17× 410−  3.65× 710−  6.95× 810−  7.21× 910−  

0.3 0.74081822068171786607 2.25× 410−  3.27× 510−  2.81× 710−  1.25× 810−  

0.4 0.67032004603563930074 5.19× 410−  3.23× 510−  2.67× 610−  3.43× 910−  

0.5 0.60653065971263342360 4.19× 410−  2.65× 510−  2.27× 610−  2.61× 710−  

0.6 0.54881163609402643263 6.37× 410−  4.85× 510−  2.14× 610−  2.45× 710−  

0.7 0.49658530379140951470 5.35× 410−  4.58× 510−  1.79× 610−  2.18× 710−  

0.8 0.44932896411722159143 6.96× 410−  3.95× 510−  3.58× 610−  2.01× 710−  

0.9 0.40656965974059911188 5.96× 410−  5.39× 510−  3.15× 610−  1.73× 710−  

1.0 0.36787944117144232160 7.12× 410−  5.02× 510−  2.90× 610−  3.15× 710−  

 

The numerical results for problem 1 obtained from the Adams Bashforth methods are displayed in 

Table 4.1. The absolute errors are compared between the step numbers considered for the Adams 

Bashforth, it is however observed that as the step number k increases the accuracy of the methods 

increases.  
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Table 4.2:  Comparison of Adams Moulton Schemes for Problem 1 (h=0.1) 

x Exact Solution Error in 

k=2 

Error in 

k=3 

Error in 

k=4 

Error in 

k=5 

0.1 0.90483741803595957316 3.58× 610−  2.15× 710−  1.45× 810−  1.05× 910−  

0.2 0.81873075307798185867 3.65× 710−  6.95× 810−  7.21× 910−  6.20× 1010−  

0.3 0.74081822068171786607 2.60× 610−  2.81× 710−  1.25× 810−  7.96× 1010−  

0.4 0.67032004603563930074 6.00× 710−  2.14× 710−  3.43× 910−  3.86× 1010−  

0.5 0.60653065971263342360 1.86× 610−  2.81× 710−  6.65× 910−  1.42× 910−  

0.6 0.54881163609402643263 7.33× 710−  4.16× 710−  2.02× 910−  1.92× 910−  

0.7 0.49658530379140951470 1.30× 610−  4.94× 710−  5.84× 910−  1.54× 910−  

0.8 0.44932896411722159143 8.01× 710−  3.79× 710−  4.60× 910−  1.53× 910−  

0.9 0.40656965974059911188 8.85× 710−  4.62× 710−  2.38× 910−  1.18× 910−  

1.0 0.36787944117144232160 8.19× 710−  5.06× 710−  5.26× 1010−  1.72× 910−  

 

The numerical results for problem 1 obtained from the Adams Moulton methods are displayed in 

Table 4.2. The absolute errors are compared between the step numbers considered for the Adams 

Moulton, it is observed that as the step number k increases the accuracy of the methods increases. 

More so, the Adams Moulton methods perform better than the Adams Basforth methods when 

compared with the corresponding step numbers.  
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Table 4.3:  Comparison of Adams Bashforth Schemes for Problem 2 (h=0.1) 

x Exact Solution Error in 

k=2 

Error in 

k=3 

Error in 

k=4 

Error in 

k=5 

0.1 0.85260195175848715618 5.42× 510−  8.12× 610−  1.99× 610−  6.43× 710−  

0.2 0.86917122776001362287 2.13× 410−  5.11× 710−  6.65× 710−  3.18× 710−  

0.3 0.88354736403848810521 1.56× 410−  6.35× 510−  2.26× 610−  4.95× 710−  

0.4 0.89610603833589965639 2.79× 410−  5.81× 510−  1.89× 610−  6.21× 810−  

0.5 0.90713588713778054775 2.28× 410−  4.88× 510−  1.63× 510−  8.15× 610−  

0.6 0.91686468026639944627 2.89× 410−  6.32× 510−  1.46× 510−  7.25× 610−  

0.7 0.92547599100050262368 2.45× 410−  5.70× 510−  1.27× 510−  6.41× 610−  

0.8 0.93312030595224194344 2.77× 410−  4.97× 510−  1.46× 510−  5.71× 610−  

0.9 0.93992271105581099311 2.38× 410−  5.30× 510−  1.29× 510−  5.05× 610−  

1.0 0.94598837784255433542 2.54× 410−  4.78× 510−  1.16× 510−  5.12× 610−  

 

The numerical results for  problem 2 obtained from the Adams Bashforth methods are displayed 

in Table 4.3.The absolute errors are compared between the step numbers considered for the Adams 

Bashforth, it is however observed that as the step number k increases the accuracy of the methods 

increases.  
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Table 4.4:  Comparison of Adams Moulton Schemes for Problem 2 (h=0.1) 

x Exact Solution Error in 

k=2 

Error in 

k=3 

Error in 

k=4 

Error in 

k=5 

0.1 0.85260195175848715618 8.12× 610−  1.99× 610−  6.43× 710−  2.50× 710−  

0.2 0.86917122776001362287 5.11× 710−  6.65× 710−  3.18× 710−  1.45× 710−  

0.3 0.88354736403848810521 2.98× 610−  2.26× 610−  4.95× 710−  1.72× 710−  

0.4 0.89610603833589965639 6.42× 710−  2.40× 610−  6.21× 810−  9.10× 810−  

0.5 0.90713588713778054775 1.18× 610−  1.88× 610−  9.13× 910−  2.56× 710−  

0.6 0.91686468026639944627 6.40× 710−  2.05× 610−  1.65× 810−  2.37× 710−  

0.7 0.92547599100050262368 4.37× 710−  1.96× 610−  8.72× 910−  2.07× 710−  

0.8 0.93312030595224194344 5.90× 710−  1.66× 610−  4.70× 810−  1.86× 710−  

0.9 0.93992271105581099311 1.03× 710−  1.61× 610−  2.88× 810−  1.63× 710−  

1.0 0.94598837784255433542 5.25× 710−  1.50× 610−  3.09× 810−  1.54× 710−  

 

The numerical results for problem 2 obtained from the Adams Moulton methods are displayed in 

Table 4.4. The absolute errors are compared between the step numbers considered for the Adams 

Moulton, it is observed that as the step number k increases the accuracy of the methods increases. 

More so, the Adams Moulton methods perform better than the Adams Basforth methods when 

compared with the corresponding step numbers.  
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Table 4.5:  Comparison of Adams Bashforth Schemes for Problem 3 (h=0.01) 

x Exact Solution Error in 

k=2 

Error in 

k=3 

Error in 

k=4 

Error in 

k=5 

0.01 1.9090909090909090909 3.79× 410−  5.96× 510−  1.38× 510−  4.04× 610−  

0.02 1.8333333333333333333 1.52× 310−  6.45× 610−  4.07× 610−  1.85× 610−  

0.03 1.7692307692307692308 1.10× 310−  4.83× 410−  1.58× 510−  3.03× 610−  

0.04 1.7142857142857142857 1.88× 310−  4.35× 410−  1.43× 410−  7.71× 710−  

0.05 1.6666666666666666667 1.53× 310−  3.61× 410−  1.22× 410−  5.63× 510−  

0.06 1.6250000000000000000 1.87× 310−  4.67× 410−  1.08× 410−  4.99× 510−  

0.07 1.5882352941176470588 1.59× 310−  4.20× 410−  9.39× 410−  4.40× 510−  

0.08 1.5555555555555555556 1.73× 310−  3.61× 410−  1.11× 410−  3.94× 510−  

0.09 1.5263157894736842105 1.52× 310−  3.88× 410−  9.87× 510−  3.51× 510−  

0.1 1.5000000000000000000 1.57× 310−  3.53× 410−  8.94× 510−  3.68× 510−  

 

The numerical results for problem 3 obtained from the Adams Bashforth methods are displayed in 

Table 4.5. The absolute errors are compared between the step numbers considered for the Adams 

Bashforth, it is however observed that as the step number k increases the accuracy of the methods 

increases.  
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Table 4.6:  Comparison of Adams Moulton Schemes for Problem 3 (h=0.01) 

x Exact Solution Error in 

k=2 

Error in 

k=3 

Error in 

k=4 

Error in 

k=5 

0.01 1.9090909090909090909 5.96× 610−  5.96× 510−  4.04× 610−  1.38× 610−  

0.02 1.8333333333333333333 6.45× 610−  6.45× 610−  1.85× 610−  7.52× 710−  

0.03 1.7692307692307692308 2.05× 510−  4.83× 410−  3.03× 610−  9.11× 710−  

0.04 1.7142857142857142857 7.15× 610−  4.35× 410−  7.71× 710−  4.24× 710−  

0.05 1.6666666666666666667 6.51× 610−  3.61× 410−  1.48× 710−  1.46× 610−  

0.06 1.6250000000000000000 6.51× 610−  4.67× 410−  3.34× 710−  1.37× 610−  

0.07 1.5882352941176470588 1.06× 610−  4.20× 410−  1.01× 710−  1.19× 610−  

0.08 1.5555555555555555556 5.64× 610−  3.61× 410−  5.48× 710−  1.08× 610−  

0.09 1.5263157894736842105 1.14× 610−  3.88× 410−  3.83× 710−  9.42× 710−  

0.1 1.5000000000000000000 4.83× 610−  3.53× 410−  3.88× 710−  9.24× 710−  

 

The numerical results for problem 3 obtained from the Adams Moulton methods are displayed in 

Table 4.6. The absolute errors are compared between the step numbers considered for the Adams 

Moulton, it is observed that as the step number k increases the accuracy of the methods increases. 

More so, the Adams Moulton methods perform better than the Adams Basforth methods when 

compared with the corresponding step numbers.  
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Table 4.7:  Comparison of Adams Bashforth Schemes for Problem 4 (h=0.01) 

x Exact Solution Error in 

k=2 

Error in 

k=3 

Error in 

k=4 

Error in 

k=5 

0.2 0.216984969683795 6.70× 410−  9.17× 510−  1.50× 510−  2.66× 610−  

0.4 0.389753804936553 2.60× 510−  3.66× 610−  5.49× 710−  9.73× 810−  

0.6 0.564648617607388 1.64× 610−  1.07× 710−  1.50× 810−  2.67× 910−  

0.8 0.717356203434698 8.30× 710−  6.10× 910−  3.23× 1010−  6.49× 1110−  

1.0 0.841470986869051 6.47× 710−  5.90× 910−  2.73× 1110−  1.07× 1210−  

1.2 0.932039086004977 4.55× 710−  7.65× 910−  2.50× 1110−  4.52× 1310−  

1.4 0.985449729989151 2.45× 710−  5.36× 910−  1.36× 1110−  5.38× 1310−  

1.6 0.999573603041518 2.47× 710−  7.23× 910−  1.47× 1210−  5.25× 1310−  

1.8 0.973847630878195 1.96× 710−  8.25× 910−  1.07× 1110−  5.25× 1310−  

2.0 0.909297426825682 4.09× 710−  5.18× 910−  2.25× 1110−  4.93× 1310−  

 

The numerical results for problem 4 obtained from the Adams Bashforth methods are displayed in 

Table 4.7. The absolute errors are compared between the step numbers considered for the Adams 

Bashforth, it is however observed that as the step number k increases the accuracy of the methods 

increases.  
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Table 4.8:  Comparison of Adams Moulton Schemes for Problem 4 (h=0.01) 

x Exact Solution Error in 

k=2 

Error in 

k=3 

Error in 

k=4 

Error in 

k=5 

0.2 0.216984969683795 2.63× 610−  1.40× 610−  6.13× 810−  2.38× 810−  

0.4 0.389753804936553 9.64× 810−  5.68× 810−  2.25× 910−  8.71× 1010−  

0.6 0.564648617607388 2.79× 910−  1.53× 910−  6.17× 1110−  2.39× 1110−  

0.8 0.717356203434698 2.56× 1010−  3.32× 1110−  1.50× 1210−  5.86× 1310−  

1.0 0.841470986869051 2.29× 1010−  3.47× 1210−  2.90× 1410−  5.00× 1510−  

1.2 0.932039086004977 2.54× 1010−  2.62× 1210−  2.00× 1510−  3.00× 1510−  

1.4 0.985449729989151 2.71× 1010−  1.13× 1210−  2.00× 1510−  1.30× 1410−  

1.6 0.999573603041518 2.77× 1010−  8.60× 1410−  4.00× 1510−  3.00× 1510−  

1.8 0.973847630878195 2.73× 1010−  1.14× 1210−  5.00× 1510−  1.00× 1510−  

2.0 0.909297426825682 2.57× 1010−  1.71× 1210−  1.20× 1410−  1.00× 1410−  

 

The numerical results for problem 4 obtained from the Adams Moulton methods are displayed in 

Table 4.8. The absolute errors are compared between the step numbers considered for the Adams 

Moulton, it is observed that as the step number k increases the accuracy of the methods increases. 

More so, the Adams Moulton methods perform better than the Adams Basforth methods when 

compared with the corresponding step numbers.  
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Table 4.9:  Comparison of Adams Bashforth Schemes for Problem 5 (h=0.1) 

x Exact Solution Error in 

k=2 

Error in 

k=3 

Error in 

k=4 

Error in 

k=5 

0.1 0.998657928234444 4.14× 210−  1.12× 210−  3.87× 310−  1.50× 310−  

0.2 0.603793035989310 2.25× 110−  6.80× 310−  5.99× 410−  3.95× 510−  

0.3 0.481435906578825 8.80× 210−  1.21× 110−  3.94× 310−  6.73× 410−  

0.4 0.481524407956732 1.16× 110−  5.45× 210−  6.23× 210−  1.37× 310−  

0.5 0.536631277777468 4.80× 210−  2.41× 210−  2.77× 210−  3.30× 210−  

0.6 0.616459494098040 4.56× 210−  1.46× 210−  1.26× 210−  1.49× 210−  

0.7 0.707395727432966 1.92× 210−  6.57× 310−  5.37× 310−  6.67× 310−  

0.8 0.803323114546348 1.62× 210−  2.94× 310−  7.02× 310−  3.00× 310−  

0.9 0.901493171616753 6.87× 310−  1.44× 310−  3.13× 310−  1.34× 310−  

1.0 1.00067092525581 5.46× 310−  6.46× 410−  1.42× 310−  6.64× 410−  

 

The numerical results for problem 5 obtained from the Adams Bashforth methods are displayed in 

Table 4.9. The absolute errors are compared between the step numbers considered for the Adams 

Bashforth, it is however observed that as the step number k increases the accuracy of the methods 

also increases.  
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Table 4.10:  Comparison of Adams Moulton Schemes for Problem 5 (h=0.1) 

x Exact Solution Error in 

k=2 

Error in 

k=3 

Error in 

k=4 

Error in 

k=5 

0.1 0.998657928234444 1.12× 210−  3.87× 310−  1.50× 310−  6.24× 410−  

0.2 0.603793035989310 6.80× 310−  5.99× 410−  3.95× 510−  7.74× 510−  

0.3 0.481435906578825 7.49× 410−  3.94× 310−  6.73× 410−  1.82× 410−  

0.4 0.481524407956732 2.77× 310−  2.12× 310−  1.37× 310−  1.32× 410−  

0.5 0.536631277777468 7.71× 410−  7.43× 410−  5.51× 410−  6.45× 410−  

0.6 0.616459494098040 8.46× 410−  7.08× 410−  2.74× 410−  3.01× 410−  

0.7 0.707395727432966 2.83× 410−  3.48× 410−  9.60× 510−  1.32× 410−  

0.8 0.803323114546348 2.30× 410−  1.38× 410−  1.12× 410−  6.18× 510−  

0.9 0.901493171616753 8.32× 510−  9.52× 510−  4.79× 510−  2.39× 510−  

1.0 1.00067092525581 5.85× 510−  4.55× 510−  2.26× 510−  2.34× 510−  

 

The numerical results for problem 5 obtained from the Adams Moulton methods are displayed in 

Table 4.10. The absolute errors are compared between the step numbers considered for the Adams 

Moulton, it is observed that as the step number k increases the accuracy of the methods increases. 

More so, the Adams Moulton methods perform better than the Adams Basforth methods when 

compared with the corresponding step numbers.  
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CHAPTER FIVE 

5.0   CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

In this project, an efficient approach of carrying out the analysis of order and error constants of 

linear multistep methods is proposed. To demonstrate this, some class of Adams Bashforth and 

Adams Moulton schemes were considered. The derivation of the continuous formulation of both 

Adams Bashforth and Adams Moulton schemes for cases when k =2,3,4 and 5 are done through 

the collocation technique using power series as the basis function. The continuous schemes of each 

step number of the Adams class derived enable us to generate the sufficient number of discrete 

schemes which are combined for implementation in each method as a block form thus addressing 

the setback associated with the predictor-corrector methods of linear multistep methods. The 

convergence analysis of each method is carried out on the entire block which reveal the order and 

error constants of each block method and the zero-stability. The new approach is faster than the 

conventional approach of analyzing the individual member of a block method. The stability 

analysis also reveals that all the explicit Adams class are not A-stable but the implicit Adams class 

are A-stable. Furthermore, numerical experiments on some initial value problems of first order 

ODEs were carried on each block method; results reveal that as the step number of the Adams 

class increases, the accuracy also increases. Also, the Adams Moulton methods have relatively 

higher accuracy than the corresponding step number of the Adams Bashforth methods.  
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5.2 Recommendations  

As research is continuum of which numerical analysis will not be an exception, further research is 

therefore recommended to be carried out in the following areas. 

1. Adams class can also be extended to higher order differential equations 

2. The step length of Adams method can be extended 

3. The new approach of carrying out the analysis of the order and error constants of a   block 

linear multistep method is highly recommended for general use. 

4. The other classes of existing linear multistep methods (including the hybrid methods) can be 

considered to further ascertain the efficiency of the new approach of block analysis.  

5.3 Contributions to Knowledge 

1. The block members of the Adams Bashforth and Adams Moulton when 2,3,4,5k = were 

derived. 

2. Rather than using the conventional approach of obtaining order and error constants of 

individual members in the block method, this work proposed block analysis that yielded the 

error constants of all the members at once, thereby saving computing time.  

3. The work further established that all Adams Bashforth classes of methods considered are not 

A-stable, while the Adams Moulton methods are A-stable 

4. All the cases considered also validate the notion that as the step number increases, the order 

also increases and thus produce better and more accurate results. 

 

 

‘ 
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