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In this work, a Mathematical Model for the Transmission Dynamics of Covid-19 Pandemic 

with Contact Tracing and Full Recovery was formulated and carefully analyzed. The total 

population is divided into six compartments that reflects Covid-19 dynamics. The 

equilibrium points of the model were determined and analyzed for stability. The analysis of 

the disease-free equilibrium state shows that it is stable under certain conditions.  The 

equilibrium states were obtained and analyzed for their stability relatively to the effective 

reproduction number. The result shows that, the disease-free equilibrium state was stable and 

the criteria for stability of the endemic equilibrium state are established. The study showed 

that the Covid-19 infectious free equilibrium is locally and globally asymptotically stable

0 1R  . The analytical solution was obtained using Homotopy perturbation Method (HPM) 

and effective reproduction number was computed in order to measure the relative impact for 

individual or combined intervention for effective disease control. The result of the numerical 

simulation shows that at high vaccination rate of the Human the Covid-19 virus can be 

eradicated completely which will also eradicate the tracing of the disease from Human. 
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CHAPTER ONE 

1.0                                                    INTRODUCTION   

1.1  Background to the Study 

Coronavirus disease 2019 (COVID-19) is defined as illness caused by a novel coronavirus 

now called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; formerly called 

2019-nCoV), which was first identified amid an outbreak of respiratory illness cases in 

Wuhan City, Hubei Province, China Center for Disease Control (CDC, 2019a). Since 

December 2019, many unexplained cases of pneumonia with cough, dyspnea, fatigue, and 

fever as the main symptoms have occurred in Wuhan, China in a short period of time, (Huang 

et al. 2020). 

China’s health authorities and CDC quickly identified the pathogen of such cases as a new 

type of coronavirus, which the World Health Organization (WHO) named COVID-19 on 

January 10, 2020, (WHO, 2020). On January 22, 2020, the Information Office of the State 

Council of the People's Republic of China held a press conference introduced the relevant 

situation of pneumonia prevention and control of new coronavirus infection. On the same 

day, the People's Republic of China's CDC released a plan for the prevention and control of 

pneumonitis of new coronavirus infection, including the COVID-19 epidemic Research, 

specimen collection and testing, tracking and management of close contacts, and propaganda, 

education and risk communication to the public National Health Commission of the People’s 

Republic of China. 2020. 

Wuhan, China is the origin of COVID-19 and one of the Cities most affected by it. The 

Mayor of Wuhan stated at a press conference on January 31, 2020 that Wuhan is urgently 

building Vulcan Mountain Hospital and Thunder Mountain Hospital patients will be 
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officially admitted on February 3 and February 6, (Health Commission of Hubei Province. 

2020).  

February 6, 2020, a total of 31,161 confirmed cases, including 636 deaths, were reported in 

the Chinese mainland, 22,112 confirmed cases, including 618 deaths, were reported in Hubei 

province, and 11,618 confirmed cases, including 478 deaths, and were reported in Wuhan 

city. The spread of COVID-19 and various interventions have had an incalculable negative 

impact on People's daily lives and the normal functioning of society. Cities in China's Hubei 

Province have issued varying degrees of closures and traffic restrictions (Chan et al., 2020). 

The coronavirus disease 2019 (COVID-19) has led to high morbidity and mortality in China, 

Europe, America and the Africa, triggering unprecedented public health crises throughout 

the world. On March 11, 2020, the World Health Organization (WHO) declared COVID-19 

as a global pandemic. COVID-19 is caused by a novel coronavirus which is now named 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is regarded 

as the third zoonotic human coronavirus emerging in the current century, after SARS-CoV 

in 2002 and the Middle East respiratory syndrome coronavirus (MERSCoV) in 2012. 

Nigeria, a country with approximately 207 000 000 populace located in West Africa recorded 

its first case of COVID-19 in February 27, 2020 (NCDC, 2020) and as at 30th of March, 

2020 (22:00 WAT) 131 individuals have been infected with the virus. The total number of 

recoveries being 8 and deaths, 2. Lagos State (Nigeria) has a larger number of infected 

persons followed by the country’s capital Abuja.  Meanwhile lock down was declared in 

major cities of the country (Mbah, 2020), and entry flights from countries with over 1000 

cases have been banned (Stephanie & Adebayo, 2020). 
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In fact, there are many imminent questions about the spread of COVID-19. How many people 

will be infected tomorrow? When will the inflection point of the infection rate appear? How 

many people will be infected during the peak period? Can existing interventions effectively 

control the COVID-19?  What mathematical models are available to help us answer these 

questions? The COVID-19 is a novel coronavirus that was only discovered in December 

2019, so data on the outbreak is still insufficient, and medical means such as clinical trials 

are still in a difficult exploratory stage (Wang et al., 2020). So far, epidemic data have been 

difficult to apply directly to existing mathematical models, and questions need to be 

addressed as to how effective the existing emergency response has been and how to invest 

medical resources more scientifically in the future and so on.  

1.2  Statement of the Research Problem 

COVID-19 is one of the world infectious virus. According to World Health Organization 

WHO (2020), the morbidity is estimated to be above 26,000,000 cases and the mortality is 

above 1,000,000 globally, of which 30% are in Africa. There is a need to understand the 

transmission, prevention and prediction of the outbreak of the virus and the fact that the 

population growth is an important factor that contributes to the increase of spread of some 

vector-borne virus in developing countries. Most of the mathematical modelling of COVID-

19 considered spreading with asymptomatic infected and interacting people, but in this 

research work, tracing and full Recovery will be consider. 

1.3  Aim and Objectives of the Study 

The aim of this research work is to develop and analyze a mathematical model for the 

transmission dynamics of COVID-19 pandemic with contact tracing and full recovery. 

The objectives are to: 
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i. formulate a mathematical model for the transmission dynamics of the COVID-19 

virus. 

ii. examine the epidemiological well posesness of the model. 

iii. obtain the Disease-Free Equilibrium (DFE) and the Endemic Equilibrium (EE).  

iv. compute the basic reproduction number of the model 

v. analyze the stability of DFE and EE by using basic reproduction number 

vi. solve the model equations analytically use (HPM) to solve the system of six ordinary 

differential equations. 

vii. obtain the numerical simulations of the model using computer software  

1.4  Motivation for the Study 

This research work is motivated owing to the unique spread dynamics of COVID-19 and 

seeks to look for the prevention of the virus through Mathematical Modeling. The researcher 

is also inspired to make vital information available for policy makers in the fight against 

COVID-19 virus in Nigeria. 

1.5  Justification of the Study 

The need for detailed and qualitative scholarly work on COVID-19 virus justifies the study. 

The thesis may also aid mathematicians and research scientists to further develop suitable 

models to help public health professionals to make better strategies for controlling the virus. 

1.6  Scope and Limitations of the Study 

The model subdivides the population into six mutually-exclusive classes namely; Susceptible 

( )S , Traced individuals who are exposed to COVID-19 ( )Q , Untraced individuals who are 

exposed to COVID-19 ( )E , Infected ( )I , Hospitalized ( )H and Full Recovered ( )R  
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Limitations; 

The study is limited to the mathematical modeling of the COVID-19 pandemic with contact 

tracing and full recovery individual class. 

1.7  Definition of Terms 

Equilibrium: means a state of rest or balancing due to equal action of opposing force of a 

body. 

Stable Equilibrium: is the state of a system such that when slightly moved tends to come 

back to its original state of rest. 

Susceptible: These are individuals who are not yet infected but can still be infected. 

Infected: These are group of persons who have Covid-19 infection. 

Recovered: These are group of persons who have been treated and recovered from the  

Covid-19 illness. 

Epidemiology: is the study of Disease in population. 

Mathematical Model: is the process of representing a phenomenon in mathematical  

term. 

Differential Equation: is a mathematical equation that relates some function with its 

derivatives. 

Disease Free Equilibrium (D.F.E): is globally asymptotically stable when the reproduction 

number is less than one. 

Endemic Equilibrium (E.E): is globally asymptotically stable when the reproduction 

number is greater than one. 
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Endemic: is when an infection in a population is maintained in the population without the 

need for external input. 
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CHAPETR TWO 

2.0          LITERATURE REVIEW 

2.1  Overview of COVID-19 Virus 

Coronavirus disease 2019 (COVID-19) is defined as illness caused by a novel coronavirus 

now called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; formerly called 

2019-nCoV), which was first identified amid an outbreak of respiratory illness cases in 

Wuhan City, Hubei Province, China (CDC, 2019b). 

It was initially reported to the WHO on December 31, 2019. On January 30, 2020, the WHO 

declared the COVID-19 outbreak a global health emergency (Ramzy, 2020). On March 11, 

2020, the WHO declared COVID-19 a global pandemic, its first such designation since 

declaring H1N1 influenza a pandemic in 2009 (WHO, 2020). Illness caused by SARS-CoV-

2 was termed COVID-19 by the WHO, the acronym derived from " coronavirus disease 2019. 

" The name was chosen to avoid stigmatizing the virus's origins in terms of populations, 

geography, or animal associations. 

On February 11, 2020, the Coronavirus Study Group of the International Committee on 

Taxonomy of Viruses issued a statement announcing an official designation for the novel 

virus: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), (Gorbalenya et al., 

2020). 

The Centers for Disease Control and Prevention (CDC) has estimated that SARS-CoV-2 

entered the United States in late January or early February, establishing low-level community 

spread before being noticed (CDC, 2020). Since that time, the United States has experienced 

widespread infections, with nearly 200,000 deaths reported as of September 20, 2020. 
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On April 3, 2020, the CDC issued a recommendation that the general public, even those 

without symptoms, should begin wearing face coverings in public settings where social-

distancing measures are difficult to maintain in order to abate the spread of COVID-19.  

The CDC had postulated that this situation could result in large numbers of patients requiring 

medical care concurrently, resulting in overloaded public health and healthcare systems and, 

potentially, elevated rates of hospitalizations and deaths. The CDC advised that non-

pharmaceutical inter venations (NPIs) will serve as the most important response strategy in 

attempting to delay viral spread and to reduce disease impact (CDC, 2020). 

2.1.1  Signs and symptoms of COVID-19 

Presentations of COVID-19 have ranged from asymptomatic/mild symptoms to severe illness 

and mortality. Symptoms may develop 2 days to 2 weeks following exposure to the virus.  

A pooled analysis of 181 confirmed cases of COVID-19 outside Wuhan, China, found the 

mean incubation period to be 5.1 days and that 97.5% of individuals who developed 

symptoms did so within 11.5 days of infection, (Lauer et al., 2020) 

Wu and McGoogan reported that, among 72,314 COVID-19 cases reported to the Chinese 

Center for disease Control and Prevention (CCDC), 81% were mild (absent or mild 

pneumonia), 14% were severe (hypoxia, dyspnea, >50% lung involvement within 24-48 

hours), 5% were critical (shock, respiratory failure, multi organ dysfunction), and 2.3% were 

fatal, (Wu and McGoogan, 2020). 

The following symptoms may indicate COVID-19 

i. Fever or chills 

ii. Cough 
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iii. Shortness of breath or difficulty breathing 

iv. Fatigue 

v. Muscle or body aches 

vi. Headache 

vii. New loss of taste or smell 

viii. Sore throat 

ix. Congestion or runny nose 

x. Nausea or vomiting 

xi. Diarrhea 

Other reported symptoms have included the following: 

a. Sputum production 

b. Malaise 

c. Respiratory distress 

d. Neurologic (eg, headache, altered mentality) 

The most common serious manifestation of COVID-19 appears to be pneumonia. 

A complete or full loss of the sense of smell (anosmia) has been reported as a potential history 

finding in patients eventually diagnosed with COVID-19, (Rabin, 2020). A phone survey of 

outpatients with mildly symptomatic COVID-19 found that 64.4% (130 of 202) reported any 

altered sense of smell or taste (Spinato et al., 2020) 

2.1.2 Diagnosis of COVID-19 

COVID-19 should be considered a possibility in (1) patients with respiratory tract symptoms 

and newly onset fever or (2) in patients with severe lower respiratory tract symptoms with 
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no clear cause. Suspicion is increased if such patients have been in an area with community 

transmission of SARSCoV-2 or have been in close contact with an individual with confirmed 

or suspected COVID-19 in the preceding 14 days. 

Microbiologic (PCR) testing is required for definitive diagnosis. At present, such testing is 

of limited availability. 

Patients who do not require emergency care are encouraged to contact their healthcare 

provider over the phone. Patients with suspected COVID-19 who present to a healthcare 

facility should prompt infection-control measures. They should be evaluated in a private 

room with the door closed (an airborne infection isolation room is ideal) and asked to wear a 

surgical mask. All other standard contact and airborne precautions should be observed, and 

treating healthcare personnel should wear eye protection (CDC, 2020). 

2.1.3  Prevention of infection of COVID-19 

Amid human COVID-19 outbreaks, close contact with different patients is the most 

noteworthy hazard factor for COVID-19 infection disease. Without particular treatment or 

vaccine, the best way to diminish contamination in individuals is by bringing issues to light 

of the hazard factors and instructing individuals about the measures they can take to lessen 

presentation to the infection. Surveillance measures and rapid identification of new cases is 

critical for outbreak containment (WHO, 2020). 

Public health educational messages should focus on the following risks: 

i. Clean your hand often. Use soap and water, or an alcohol-based hand rub. 

ii. Maintain a safe distance from anyone who is coughing or sneezing. 

iii. Wear a mask when physical distancing is not possible 

iv. Don’t touch your eyes, nose or mouth. 
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v. Cover your nose and mouth with your bent elbow or a tissue when you cough or 

sneeze. 

vi. Stay home if you feel unwell 

vii. If you have a fever, cough and difficulty breathing, seek medical attention. 

2.1.4  Treatment of COVID-19 positive patients 

There are now series of vaccines among these are AstraZeneca, Covaxin, Sinovac, 

Sinopharm, Johnson and Johnson (J&J), Janssen and Moderna, Pfizer which are found 

appropriate to control COVID-19 (WHO, 2021). 

2.2  Mathematical Models of COVID-19 

Mustapha and Hanane (2020) developed a Mathematical modeling of COVID-19 spreading 

with asymptomatic infected and interacting peoples. It takes account on the asymptomatic 

people and the strategies involving hospital isolation of the confirmed infected person, 

quarantine of people contacting them, and the home containment of all population to restrict 

mobility. They establish a relationship between the containment control coefficient  0c and 

the basic reproduction number 0R . Different scenarios are tested with different values of 0c

, for which the stability of a Disease Free Equilibrium (DFE) point is correlated with the 

condition linking 0R and 0c  

The model Equations is given as Equations (2.1) to (2.6) 

( )
dS

S A I Q
dt

  = − + +         (2.1) 

( )I

dI
Q A d I

dt
  = + − +         (2.2) 
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( )
dA

SA A
dt

  = − +         (2.3) 

( )
dQ

SI Q
dt

  = − +   on 0, ft        (2.4) 

dR
I A

dt
 = +          (2.5) 

I

dD
d I

dt
=           (2.6) 

Yichi et al. (2020), developed a Mathematical Modeling and Epidemic Prediction of COVID-

19 and Its Significance to Epidemic Prevention and Control Measures. They establish the 

dynamics model of infectious diseases and time series model to predict the trend and short-

term prediction of the transmission of COVID-19, which will be conducive to the 

intervention and prevention of COVID-19 by departments at all levels in mainland China and 

buy more time for clinical trials. 

Based on the transmission mechanism of COVID-19 in the population and the implemented 

prevention and control measures, they establish the dynamic models of the six chambers, and 

establish the time series models based on different mathematical formulas according to the 

variation law of the original data. 

The model equations is given as equations (2.7) to (2.12) 

qs sq

dS
d Q f d S

dt
= − −          (2.7) 

eq

dE
f E d E

dt
= − − −         (2.8) 
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( )qd id

dD
d Q d I D

dt
 = + − +        (2.9) 

eq sq qs qd

dQ
d E d S d Q d Q

dt
= + − −        (2.10) 

id

dI
E d I I

dt
 = − −          (2.11) 

dR
D

dt
=           (2.12) 

Ivorra et al. (2020) developed a mathematical model for the spread of the coronavirus disease 

2019 (COVID-19). It is a new SEIHRD −  model (not a SIR, SEIR or other general purpose 

model), which takes into account the known special characteristics of this disease, as the 

existence of infectious undetected cases and the different sanitary and infectiousness 

conditions of hospitalized people. In particular, it includes a novel approach that considers 

the fraction   of detected cases over the real total infected cases, which allows to study the 

importance of this ratio on the impact of COVID-19. The model is also able to estimate the 

needs of beds in hospitals. It is complex enough to capture the most important effects, but 

also simple enough to allow an affordable identification of its parameters, using the data that 

authorities report on this pandemic. 

They study the particular case of China (including Chinese Mainland, Macao, Hong-Kong 

and Taiwan, as done by the World Health Organization in its reports on COVID-19), the 

country spreading the disease, and use its reported data to identify the model parameters, 

which can be of interest for estimating the spread of COVID-19 in other countries. They 

show a good agreement between the reported data and the estimations given by our model. 

They also study the behavior of the outputs returned by our model when considering 
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incomplete reported data (by truncating them at some dates before and after the peak of daily 

reported cases). By comparing those results, we can estimate the error produced by the model 

when identifying the parameters at early stages of the pandemic. Finally, taking into account 

the advantages of the novelties introduced by our model, we study different scenarios to show 

how different values of the percentage of detected cases would have changed the global 

magnitude of COVID-19 in China, which can be of interest for policy makers. 

Berge et al. (2018) proposed a simple mathematical model that incorporates imperfect 

contact tracing, quarantine and hospitalization (or isolation). The control reproduction 

number cR  of each sub-model and for the full model are computed. Theoretically, they prove 

that when cR  is less than one, the corresponding model has a unique globally asymptotically 

stable disease-free equilibrium. Conversely, when cR  is greater than one, the disease-free 

equilibrium becomes unstable and a unique globally asymptotically stable endemic 

equilibrium arises. Furthermore, we numerically support the analytical results and assess the 

efficiency of different control strategies. Our main observation is that, to eradicate EVD, the 

combination of high contact tracing (up to 90%) and effective isolation is better than all other 

control measures, namely: (1) perfect contact tracing, (2) effective isolation or full 

hospitalization, (3) combination of medium contact tracing and medium isolation. 

The model Equations is given as Equations (2.13) to (2.18) 

( )0 qs q us

dS
S I H p Q p U S

dt
     = − + + + −      (2.13) 

( )0 q

dQ
p S I H Q Q

dt
   = + − −        (2.14) 



28 
 

( ) ( )01 u

dU
p S I H U U

dt
   = − + − −       (2.15) 

( ) ( )1 us u i i

dI
p U d I

dt
  = − − + +        (2.16) 

( ) ( )1 qs q i h

dH
p Q I d H

dt
   = − + − + +       (2.17) 

dR
H R

dt
 = −          (2.18) 
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CHAPTER THREE
 

3.0          MATERIALS AND METHODS 

3.1           Development of the Model 

In this chapter, we developed and analyzed a mathematical model of transmission dynamics 

of COVID-19 pandemic with contact tracing and full recovery. Hence, the mathematical 

model for human transmission dynamics of COVID-19 pandemic were formulated. 

Following Berge et al. (2018), we denote  as the number of Susceptible recruited per unit 

time (day) as result of birth or immigration and  the common natural death rate of all 

individuals. The disease is transmitted through direct contact between Susceptible 

Individuals ( )S , Infected Individuals ( )I , Hospitalized Individuals ( )H , Untraced 

Individuals who are exposed to COVID-19 ( )E , Traced Individuals who are exposed to 

COVID-19 ( )Q   and Fully Recovered Individuals ( )R . Let  be the contact rate between 

Susceptible Individuals and Infected Individuals ( )I and H  modification factor represent 

the reduction of contact between Susceptible Individuals and hospitalized Individuals ( )H . 

Since Hospitalized Individuals are isolated, it is reasonable to assume that 0 1H  . After 

contact between Susceptible and Infective, q q   is proportion of Individuals Quarantined 

who leave the compartment to Susceptible class. Based on the medical tests, these 

quarantined individuals are either hospitalized (positive test) or considered Susceptible after 

14 days (negative test). Let q q   be the exit rate from the quarantine class Q to both classes 

S and H . A proportion q q   of the quarantined goes back to the S - Compartment, whereas 
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the remaining proportion ( )1 q q − enters class H . Similarly ( )1 −  is the proportion of 

untraced individuals who enter the E -Compartment individuals exits the E − compartment 

so that e eE  and ( )1 e eE −  are the number of untraced individuals who enter classes S

and I , respectively. Individuals in class I move to class H at rate H  and die due to COVID-

19 at rate I . Note that H  can increase as the number of traced people increases. Since the 

infected individuals who die out of the hospital can still transmit the disease, we assume that 

among the ( )I I + dead individuals, a proportion   is safely buried, while the remaining 

proportion ( )1 − can transmit the infection during funerals. Let  be the effective contact 

rate between Susceptible and COVID-19 virus. We assume 
' =  where ( )0 1    is 

modification parameter which accounts for the fact that the number of contacts with a dead 

individuals is less than that with an active person. Individuals of class H die to COVID-19 

virus at rate H and recover at rate I  per unit time. We assume that the model parameters 

are non-negative.  

Basic Assumptions 

a. We assumed that a susceptible individual can only contact COVID-19 through human 

to human transmission. 

b. We assumed that the population of the infected can be hospitalized at the rate  H  

c. The natural death rate is time constant, that is at any point in time any individual can 

die naturally. 

d. The recovered individuals after being vaccinated cannot have COVID-19 again  
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e. There is permanent immunity on recovery 

f. Treatment is introduced to the infected population  

g. Controls are implemented continuously. 
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3.2  Model Formulation 

We combine the Basic assumptions, model parameters, state the variables and the COVID-

19 infection processes to formulate a schematic diagram for COVID-19 infection as show in 

Figure 3.1. 

 

Figure 3.1: Schematic Diagram of the Model 

From Figure 3.1 above, we represent this mathematically; we have the following system of 

differential Equations is given as Equations (3.1) to (3.6). 
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( )H e e q q

dS
I H S E Q S

dt
      =  − + + + −      (3.1) 

( ) ( )( ) 1H q q q q

dQ
S I H Q Q

dt
      = + − − − +      (3.2)  

( ) ( )(1 ) ( ) 1H e e e e

dE
S I H E E

dt
       = − + − − − +     (3.3) 

(1 ) ( )e e H I

dI
E I

dt
    = − − + +        (3.4)  

1(1 ) ( )q q H H

dH
Q H I

dt
     = − − + + +       (3.5) 

1

dR
H R

dt
 = −          (3.6)  

3.3  The Positive Invariant Region 

The entire population size N  can be determined from Equations (3.1) to (3.6) which yield 

(3.7) 

The total population size is N S Q E I H R= + + + + +     (3.7)  

Adding equation (3.1) into equation (3.6), yield (3.8) and (3.9) 

dN dS dQ dE dI dH dR

dt dt dt dt dt dt dt
= + + + + +        (3.8) 

I H

dN
S Q I H R I H

dt
      =  − − − − − − −      (3.9) 

In the absence of the disease ( )0I HI H = = , then equations (3.8) gives the positive invariant 

region can be obtained by using the following theorem. 
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Theorem 3.1 

The solutions of the system of Equations (3.1) to  (3.6) are feasible for 0t   if they are 

within the invariant region D  as in (3.10). 

Proof  

Let ( ) 6,Q, , ,H,D S E I R R +=         (3.10) 

be any solution of the system of Equations (3.1) to (3.6) with non- zero initial conditions. 

Assuming there is no disease – induced deaths, Equation (3.9) yield (3.11) 

dN
N

dt
  −   

                                                  (3.11) 
dN

N
dt

+             

The integrating factor for Equation (3.11) gives (3.12) and (3.13) 

t tdN
Ne e

dt

 +               (3.12) 

dN

dt
               (3.13) 

Integrating both sides (3.13), yielded (3.14) and (3.15) 

( )N t                (3.14) 

( )N t c



= +                (3.15) 
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Applying the initial condition ( ) 00, 0t N N= =  gives (3.16) and (3.17) 

0 0N c N c
 

 
 +  −          (3.16) 

0

tN N e 

 

−  
  + − 

 
        (3.17) 

Therefore, as t →  in (3.17) the humans N  approaches  K



=  (That is, N )




=→ K  

the parameter



=K is called the carrying capacity. Hence all feasible solution set of the 

humans of the model Equation (3.1) to Equation (3.6) enter the region, which yield for (3.18) 

( ) 6,Q,E ,H, , : 0,Q 0,E 0, 0,H 0, 0,D S I R R S R N


 
=         
 

  (3.18)
 

 

Therefore, where ( )0N   are initial population of non- human primates and humans 

respectively. Therefore 0 N



    as t → .This implies that, 


  are upper bounds for 

( )N t  respectively, as long ( )0N



 . Hence, the feasible solution of the model Equations 

in (3.1)-(3.6) enters the region D which is a positively invariant set. Thus, the system is 

mathematically and epidemiologically well-posed. Therefore, for an initial starting point

x D , the trajectory lies in D , and so it is sufficient to restrict our analysis on D . Clearly, 

under the dynamics described by the model equations, the closed set D is hence a positively 

invariant set. 
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3.4  Positivity of Solutions 

Since Equations (3.5) - (3.6) represent the population in each compartment and all model 

parameters are all positive, then if lies in a region D defined by 

Theorem 3.2 Let the initial data for the model Equation be given as (3.19) 

( ) ( ) ( ) ( ) ( ) ( )0 0,Q 0 0, 0 0, 0 0,H 0 0, 0 0S E I R          (3.19)
 

Then the solutions ( ) ( ) ( ) ( ) ( ) ( )( ),Q , , ,H ,S t t E t I t t R t  of the model equation with non-

negative initial data will remain non-negative for all time 0t  . 

 

Proof  

From the first Equation (3.1)  

( )H e e q q

dS
SI S H E Q S S t

dt
        =  − − + + −      (3.20) 

( )
dS

S S t
dt

  −          (3.21) 

Separating the variables and integrating both side we have 

dS
dt

S
 −           (3.22) 

( )InS t t c − +          (3.23) 

( ) t cS t e − +=           (3.24) 
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( ) tS t e −=           (3.25) 

Where cK e=  

Using the initial condition ( )0 0t S K=    

Therefore, ( ) ( ) ( )
0 0

t
S t S e

−
         (3.26) 

From equation (3.2) 

( ) ( ) ( ) ( ) ( ) ( )( ) 1H q q q q

dQ
S I H Q t Q t Q t

dt
       = + − − − +  − +   (3.27) 

( ) ( )( ) ( )q q

dQ
Q t Q t

dt
    − + +        (3.28) 

Separating the variable and integrating both side 

( )
( )q

dQ
dt

Q t
  − +          (3.29) 

( ) ( )qInQ t t c  − + +         (3.30) 

( ) ( )q t c
Q t e

 − + +
=          (3.31)  

( ) ( )q t
Q t e

 − +
=          (3.32) 

Where ck e=           (3.33) 

Using the initial condition ( )0 0t Q k=    

Therefore, ( ) ( ) ( )
0 0q t

Q t Q e
 − +

         (3.34)  
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From equation (3.3) 

( ) ( ) ( )(1 ) ( ) 1H e e e e

dE
S I H E E E

dt
        = − + − − − +  − +   (3.35) 

( ) ( ) ( )e e

dE
E E t

dt
    − + +        (3.36) 

Separating the variable and integrating both side 

( )e

dE
dt

E
  − +          (3.37) 

( ) ( )eInE t t c  − + +         (3.38) 

( ) ( )e t c
E t e

 − + +
=          (3.39) 

( ) ( )e t
E t e

 − +
=          (3.40) 

Where ck e=           (3.41) 

Using the initial condition ( )0t E t k=    

Therefore, ( ) ( ) ( )
0 0e t

E t E e
 − +

         (3.42) 

From equation (3.4) 

( ) ( ) ( )1 e e H I H I

dI
E I I

dt
       = − − + +  − + +     (3.43) 

( ) ( ) ( )H I H I

dI
I I t

dt
      − + + + +       (3.44) 
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( )
( )H I

dI
dt

I t
   − + +         (3.45) 

Integrating 

( ) ( )ln H II t t c   − + + +        (3.46) 

( ) ( )
ln H I t c

I t ke
  − + + +

        (3.47) 

Applying the initial condition ( ) ( )0 0I t I k=    

Therefore, ( ) ( ) ( )
0 0H I t

I t I e
  − + +

         (3.48) 

From equation (3.5) 

( ) ( ) ( )1 q q H I H I H

dH
Q I H H

dt
        = − + − + +  − + +    (3.49) 

( ) ( ) ( )I H I H

dH
H H t

dt
      − + + + +       (3.50) 

( )I H

dH
dt

H
   − + +         (3.51) 

integrating 

( ) ( )ln H IH t t c   − + + +        (3.52) 

( ) ( )H I t c
H t ke

  − + + +
          (3.53) 

Applying the initial condition ( ) ( )0 0H t H k=       (3.54) 
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Therefore, ( ) ( ) ( )
0 0H I t

H t H e
  − + +

        (3.55) 

From equation (3.6) 

I

dR
H R R

dt
  = −  −         (3.56) 

dR
R

dt
 −           (3.57) 

( )

dR
dt

R t
 −           (3.58) 

integrating 

( )ln R t t c − +          (3.59) 

( ) t cR t ke − +           (3.60) 

Appling the initial condition ( ) ( )0 0R t R k=    

Therefore, ( ) ( )0 0tR t R e −         (3.61) 

3.5  Equilibrium Point  

An equilibrium point (fixed point) is a steady state, that is, a rest state, of a system. Thus, at 

any given equilibrium point, the rate of change of the model variables are equal. 

That is, 

0
dS dQ dE dI dH dR

dt dt dt dt dt dt
= = = = = =        (3.62) 

Let  

( ) ( )* * * * * *,Q, , ,H, ,Q , , ,H ,S E I R S E I R=       (3.63) 
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Therefore, the system Equations (3.1) to (3.6) become 

* * * * * * * 0H e e q qS I S H E Q S       − − + + − =      (3.64) 

( ) ( )* * * * *( ) 1 0H q q q qS I H Q Q      + − − − + =     (3.65)  

( ) ( )* * * * *(1 ) ( ) 1 0H e e e eS I H E E       − + − − − + =     (3.66) 

* *(1 ) ( ) 0e e H IE I    − − + + =        (3.67)  

* * *

1(1 ) ( ) 0q q H HQ H I     − − + + + =       (3.68) 

* *

1 0H R − =          (3.69)  

From equation (3.69) 

*

* I H
R




=           (3.70) 

From equation (3.68) 

( )

( )

* *

1*

1

H H

q q

H I
Q

   

 

+ + +
=

−
                  (3.71) 

From equation (3.67) 

( )

( )

*

*

1

H I

e e

I
E

  

 

+ +
=

−
        

 (3.72) 

From equation (3.66) 

( ) ( )( )
( )

*

* *

*

1

1

e e e e

H

E
I H

S

    


 

− − +
+ =

−
      (3.73) 
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  

( ) ( )( )
( )

*

* *

*

1

1

e e e e

H

E
I H

S

    


 

− − +
= −

−
      (3.74) 

Putting equation (3.72) into equation (3.74) 

( )( )

( ) ( )

*

* *

*1 1

e H I

H

e e

I
I H

S

    


   

 + + + 
= −

− −
      (3.75) 

( ) ( )( )( )

( ) ( )

*

* *

*

1

1 1

e e e e H I

H

e

I
I H

S

       


   

− − + + +
= −

− −
                 (3.76) 

For Simplicity 

( ) ( )( )( )

( )( )*

1

1 1

e e e e H I

eS

       


   

− − + + +
=

− −
       (3.77) 

Then, we have 

( ) * *1 HI H − =          (3.78) 

( )

*

*

1

H H
I




=

−
          (3.79) 

Also 

Let 
1

HA



=

−
          (3.81) 

* *I AH=           (3.82) 

From equation (3.65) 
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( ) ( ) ( )( )
( ) * *

* * * 1 0
(1 )

I H H

H q q q q

q q

H AH
S AH H

   
      

 

 + + +
+ − − + + =  − 

 (3.83) 

  

( )
( ) ( )( )( )

* * *
1

0
(1 )

q q q q I H H

H

q q

A
S A H

        
 

 

 − + + + + +
 + − =

− 
 

  (3.84) 

Thus, there exists two equilibrium points from (3.84) 

3.5.1 Disease-free equilibrium 

At this equilibrium state, there is a nonexistence of infection. Hence, the total population will 

contain the susceptible individuals only, since the infected classes will be zero. 

Lemma 1: A DFE of the model exists at the point: 

( )0 0 0 0 0 0

1

, , , ,H , ,0,0,0,0,0S Q E I R


 
=  
        (3.85) 

Proof 

Let ( ) ( )0 0 0 0 0 0,Q, , ,H, ,Q , , ,H ,S E I R S E I R= at disease free equilibrium 

Suppose 0 0H =          (3.86) 

Substitute equation (3.86) into equation (3.82) 

( )0 0I A=           (3.87) 

0 0I =           

 (3.88) 
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Substitute equation (3.88) into equation (3.72) 

( )( )

( )
0

0

1

H I

e e

E
  

 

+ +
=

−
        (3.89) 

0 0E =           

 (3.90) 

Substitute equation (3.85) into equation (3.73) 

( )0
0I

R



=           (3.91) 

0 0R =           

 (3.92) 

From equation (3.71) we have 

0 0Q =           

 (3.93) 

From equation (3.67) we have 

0 0S − =           (3.94) 

0S =           (3.95) 

0S



=           (3.96) 

Thus, the lemma is proved. 

3 .5.2 The Endemic Equilibrium State 
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At the endemic equilibrium state, the virus cannot be totally eradicated but it must remain in 

the population of interest. For the virus to persist in the population all the compartments are 

greater than zero. 

Let ( ) ( )** ** ** ** ** **' , , , , , , , , , ,E S Q E I H R S Q E I H R= =  be the Endemic Equilibrium point, 

Suppose 0H  from (3.84) 

( )
( ) ( )( )( )

**
1

0
(1 )

q q q q I H H

H

q q

A
S A

        
 

 

 − + + + + +
 + − =

− 
 

  (3.97) 

( )
( ) ( )( )( )

**
1

(1 )

q q q q I H H

H

q q

A
S A

        
 

 

− + + + + +
+ =

−
   (3.98) 

( ) ( )( )( )

( )
**

1

(1 )

q q q q I H H

H q q

A
S

A

        

   

− + + + + +
=

+ −
     (3.99) 

Let  

( )*

HB I H= +          (3.100) 

From equation (3.65) 

( ) ( )( )** * **1 0q q q qS B Q     − − − + =       (3.101) 

Substitute equation (3.99) into equation (3.101) 

( ) ( )( )( )

( )
( ) ( )( )* **

1
1 0

(1 )

q q q q I H H

q q q q

H q q

A
B Q

A

        
     

   

− + + + + +
− − − + =

+ −
 (3.102) 
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( ) ( )( )( )

( ) ( ) ( )( )

*

**
1

(1 ) 1

q q q q I H H

H q q q q q q

B A
Q

A

         

        

 − + + + + +
 =

+ − − − +
   

 (3.103) 

Substitute equation (3.103) into equation (3.66) we have 

( ) ( )** ** ** ** **(1 ) ( ) 1 0H e e e eS I H E E       − + − − − + =     (3.104)

( ) ( ) ( )( )

( )
( ) ( )

*

** **
1 1

1
(1 )

e e e e I H H

e e e e

H q q

B A
E E

A

          
    

   

− − − + + + +   = − − +
+ −

(3.105) 

( ) ( ) ( )( )

( ) ( ) ( )

*

**
1 1

(1 ) 1

q q q q I H H

H q q e e e e

B A
E

A

          

        

 − − + + + + +
 

=
+ − − − +

   (3.106) 

** *E C=  and 
** *Q D=         (3.107) 

Substitute equation (3.107) into equation (3.72) 

 

( )

( )

*

**
1 e e

I H

C
I

 

  

−
=

+ +
         (3.107) 

Substitute equation (3.106) and (3.105) into equation (3.68) 

( ) ( )
( )

( )

*

* **
1

1 0
H e e

q q I H

I H

C
D H

  
    

  

−
− − + + + =

+ +
    (3.108) 

( )( ) ( )( )

( )

* **

*

1

1 0

I H q q I H H I

e e

D H

C

          

 

+ + − − + + + +

+ − =
   (3.109) 
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( )( ) ( )

( )( )

* *

**
1 1H I q q H e e

H I I H

D C
H

       

     

+ + − − −
=

+ + + +
    (3.110) 

Substitute equation (3.110) into equation (3.72) we have 

( )( ) ( )

( )( )

* *

**
1 1H I q q H e e

I

H I I H

D C
R

       


      

+ + − − −
=

+ + + +
    (3.111) 

3.6 Effective Reproduction Number 

One of the most imperative concerns about every infectious disease is its ability to spread 

across a population. The basic reproduction number, 0R  is the extent of the probable for 

disease spread in a population, and is inarguably one of the foremost and most valuable ideas 

that mathematical thinking has brought to epidemic theory (Heesterbeek & Dietz, 1996). It 

represents the average number of secondary cases generated by an infected individual if 

introduced into a susceptible population with no immunity to the disease in the absence of 

interventions to control the infection. If 0R < 1, then on average, an infected individual 

produces less than one newly infected individual over the course of its infection period. In 

this case, the infection may die out in the long run. Conversely, if 0R  > 1, each infected 

individual produces, on average more than one new infection, the infection will be able to 

spread in a population. A large value of 0R  may indicate the possibility of a major epidemic. 

Similarly, the effective reproduction number, CR  represent the average number of secondary 

cases generated by an infected individual if introduced into a susceptible population where 

control strategies are used. 



48 
 

Using the next generation operator technique described by Diekmann and Heesterbek (2000) 

and subsequently analysed by Van de Driessche and Watmough (2002), we obtained the 

effective reproduction number, CR  of our model which is the spectral radius of the next 

generation matrix 1FV − .  

i.e 

1

CR FV −=          (3.112) 

Where 

  is the spectral radius 

F  is matrix of infection term at disease free equilibrium 

V  is matrix of transmission term at disease free equilibrium 

1
0 0

1 ( ) ( )i i

i i

F E V E
FV

x x

−

−
   

=   
   

       (3.113)  

Thus 

From equation (3.1) to equation (3.6), the infection term matrix of the jacobian at disease 

free equilibrium is given as

 

1

2

3

4

( )

(1 ) ( )

0

0

H

H

i

f S I H

f S I H
f

f

f

 

  

+   
   

− +   = =
   
   

  

       (3.114) 
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1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

f f f f

Q E I H

f f f f

Q E I H
F

f f f f

Q E I H

f f f f

Q E I H

    
 
   

 
    
 
    =

    
 
    

    
 
    

        (3.115) 

 

( ) ( )

0 0

0 0 1 1

0 0 0 0

0 0 0 0

H

H

DFE

S S

S S
F

 

   

 
 

− − =
 
 
 

      (3.116) 

1 1

2 2

3 3

4 4

(1 )
i

e e

H

v A Q

v A E
v

v A I

v A H I

 



   
   
   = =
   − −
   

−   

       (3.117) 

1

2

3

4

0 0 0

0 0 0

0 (1 ) 0

0 0

DFE

e e

H

A

A
V

A

A

 



 
 
 =
 − −
 

− 

      (3.118) 

where 

( ) ( ) ( ) ( )

( ) ( )

1 2

3 1 4 1

1 , 1 ,

,

q q q q e e e e

H H

A A

A A

         

     

= − + + = − + +

= + + = + +
    (3.119) 

1 int

det min

adjo
V

er ant

− =          (3.120)
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1

21

2 3 3

2 3 4 3 4 4

1
0 0 0

1
0 0 0

(1 ) 1
0 0

(1 ) 1
0

e e

H e e H

A

A
V

A A A

A A A A A A

 

   

−

 
 
 
 
 
 =
 −
 
 
 −
  
 

      (3.121) 

   

( ) ( )

1

21

2 3 3

2 3 4 3 4 4

1
0 0 0

0 01
0 0 0

0 0 1 1

(1 ) 1 0 0 0 0
0 0

0 0 0 0

(1 ) 1
0

H

H

e e

H e e H

A

S S

A S S
FV

A A A

A A A A A A

 

   

 

   

−

 
 
 
  
  

− −  =
  −
  

  
 −
  
 

   (3.122) 

        

( ) ( )

( ) ( )( ) ( )
2 3 2 3 3 3 4 4

1

2 3 2 3 4 3

1 1
0

(1 ) 1 1 1 1
0

0 0 0 0

0 0 0 0

e e H H e e H H H

e e e e H H

S S S SS

A A A A A A A A

S S S
FV

A A A A A A

           

           −

 − −
+ + 

 
 − − − − −
 =
 
 
 
 
 

 (3.123)  

( ) ( )

( ) ( )( ) ( )
2 3 2 3 3 3 4 4

1

2 3 2 3 4 3

1 1
0

(1 ) 1 1 1 1
0

0 0 0 0

0 0 0 0

e e H H e e H H H

e e e e H H

S S S SS

A A A A A A A A

S S S
FV

A A A A A A

           

           −

 − −
+ + 

 
 − − − − −
 =
 
 
 
 
 

 (3.124) 

solving the eigen values using maple 18. 
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1

4

1 2 3 4

0

0

0

(1 ) (1 ) (1 )e e H H

FV

S SA

A A A A

       

−

 
 
 
 =
 

− − + − 
 
 

     (3.125) 

thus 

1 2 3 0  = = =          (3.126) 

4

4

1 2 3 4

(1 ) (1 ) (1 )e e H HS SA

A A A A

       


− − + −
=      (3.127) 

 

Therefore  

4

1 2 3 4

(1 ) (1 ) (1 )e e H H

C

S SA
R

A A A A

       − − + −
=      (3.128) 

At DFE 

4

1 2 3 4

(1 ) (1 ) (1 )e e H H

C

A
R

A A A A

       



− −  + − 
=      (3.129) 

3.7  Local Stability of Disease-Free Equilibrium  

According to Deikmann and Heesterbeek (1990) theorem, the DFE is LAS if there exist 
CR  

and 1CR  . We want to further justify the theorem using Jacobian techniques for stability. 

Lemma 3.3: The Disease Free Equilibrium of the model is locally asymptotically stable 

(LAS) if 1CR   . 

Proof: 
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( ) ( )

( )

( )

1

2

3

4

0

0 0 0

0 0 1 1 0
0

0 0 1 0 0

0 1 0 0

0 0 0 0

q q e e H

H

H

e e

q q H

H

S S

A S S

A S S
J

A

A

      

  

   

 

  

 

− − − 
 

−
 
 − − −
 = =

− − 
 − −
 
 − 

   (3.130) 

Reducing to upper triangular matrix  

( ) ( )

( )

1

2

2 3

2 2

4 1 2 3 4

0

0 0 0

0 0 1 1 0

(1 ) (1 ) (1 ) (1 )
00 0 0 0

1
0 0 0 0 (1 ) (1 ) (1 ) 0

0 0 0 0 0

q q e e H

H

H

e e e e H

e e H H

S S

A S S

A S S

S S
J A A

A A

A A A A A
M

      

  

   

       

        



− − − 
 

−
 
 − − −
 

− − − − = =−
 
 
 − −  + −  −
 
 

− 

 (3.131) 

Where 

1 2 3((1 ) (1 ) )e eM A S A A   = − − −        (3.132) 

( ) ( )

( )

1

1 2

2 3

2 3 4

2 2

4 1 2 3 4 5

6

0

0 0 0

0 0 1 1 0

(1 ) (1 ) (1 ) (1 )
00 0 0 0

1
0 0 0 0 (1 ) (1 ) (1 ) 0

0 0 0 0 0

q q e e H

H

H

e e e e H

e e H H

S S

A S S

A S S

S S
J A A

A A

A A A A A
M

       

   

    

       


         

 

− − − 
 

− −
 
 − − − −
 

− − − − = =− −
 
 
 − −  + −  − −
 
 

− − 

(3.133) 

Therefore 
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1 2 1 3 2 4 2 3 6

2

(1 ) (1 )
, , , ,e e S

A A A A
A

   
      

− −
= − = − = − = − = −    (3.134) 

All negative since 

2 3

2

(1 ) (1 )e e S
A A

A

   − −
         (3.135) 

5 0   if 1CR            (3.136) 

( )5 4 1 2 3 4

1
(1 ) (1 ) (1 ) 0e e H H A A A A A

M
         = − −  + −  −    (3.137) 

4

5

1 2 3 4

(1 ) (1 ) (1 )1
1 0e e H H A

M A A A A

       




 − −  + − 
= −  

 
    (3.138) 

 ( )
1

1 0CR
M

−          (3.139) 

 ( )1 0CR −           (3.140) 

1CR           

 (3.141) 

Hence, the disease free equilibrium is locally assymptotically stable since 1CR  .   

3.8 Global Stability of the Disease-Free Equilibrium Point 

Theorem: The D.F.E (
0E ) of the model system is globally asymptotically stable (GAS) in 

the feasible region   if 1CR   and unstable if 1CR  . 
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Proof: To establish the global stability of the D.F.E, the two conditions for the global stability 

of D.F.E as in (Castillo-Chavez and Feng, 1997) for 1CR   was used for the model system. 

We can write the model system as: 

                      1( )
S

S

S DFE i

dX
A X X A X

dt
= − +      (3.142) 

                   2

i

i

dX
A X

dt
=         (3.143) 

Where 

                  
0 0( ,R )T

SX S=         (3.144) 

denote the non-infectious compartments, 

                   
0 0 0 0(Q , , , )T

iX E I H=        (3.145) 

denote the infectious compartments. The disease-free equilibrium is denoted as 

                    
0 *( ,0)sE X=         (3.146) 

Where 

                   
* 0( ,0)sX N=         (3.147) 

                  
( ,0)S

S

dX
F X

dt
=

        (3.148) 

                      S −          (3.149) 
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                      R−          (3.150) 

Solving the differential equations 

                 
0 0R ( ) (0) tt R e −=

        (3.151) 

Hence  

 
0 0 0( ) ( ) ( )S t R t N t+ →

 as 0t →       (3.152) 

Irrespective of the value of  

 
0 0(0),R (0)S

.          (3.153) 

Thus 

             
* 0( ,0)sX N=           (3.154) 

Is globally asymptotically stable. 

Next, 

             ( , ) ( , )s i i s iG X X AX G X X
−

= −       (3.155) 

                 

1

2

3

4

0

0 (1 ) (1 )

0 (1 ) 0

(1 ) 0

H

H

i

e e

q H

A S S

A S S
AX

A

A

 

   

 

  

− 
 

− − − =
 − −
  − − − 

  (3.156) 

Where 
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It is obvious that this is an M-matrix (Metzler also called quasi positive matrix in which all 

the off diagonal elements are non-negative i.e greater than or equal to zero

* * *

1

* * *

2

* *

3

* * *

4

0

0 (1 ) (1 )
( , )

0 (1 ) 0

(1 ) 0

H

H

s i i

e e

q H

A Q SI SH

A E SI SH
G X X AX

E A I

Q I A H

 

   

 

  

 −
 

− − − = =
 − −
 
 − − − 

 

 (3.157) 

Then  

                 ( , ) ( , )s i i s iG X X AX G X X
−

= − =

0

0

0

0

T

 
 
 
 
 
 

     (3.158) 

That is, 

                ( )( , ) 0 0 0 0 0 0s iG X X
−

=       (3.159) 

Thus,  

             ( , ) 0s iG X X
−

=         (3.160) 

The theorem is complete. 

3.9 Stability analysis of the Endemic Equilibrium (EES) 

The characteristics equation becomes  
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* *

1

2 3 4 5

6 7 8 9

10 11

12 13

0

0 0

0 0

0 0 0 0

0 0 0

0 0 0 0

q q e e H

H

I

S Sa l q r q r b be

a a l a a

a a l a a

a a l

a g a l

g m l

é ù- - - -
ê ú
ê ú- -ê ú
ê ú-ê ú
ê ú

-ê ú
ê ú

-ê ú
ê ú

- -ê úë û

    (3.161) 

The characteristics equation obtained from the Jacobian determinant with the Eigen value 

of   

Where 
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We can now apply the result of Bellman and Cooke’s theorem of stability, 

( ) ( )2,H Z P z e=  where ( ), wP z  is a polynomial with principal term. 

Suppose ( ) ( ) ( )H y F y iG y= +        (3.163) 

If all zero of ( )H y  have negatives real parts, then zeros of ( )H y  and ( )G y  are real, simple 

and alternate and  

( ) ( ) ( ) ( )0 0 0 0 0F G F G−   for all y  belongs to real numbers   (3.164) 

Conversely,  all zeros of ( )H z  will be in the left hand plane provided that it is in either of 

the following conditions. 

1. All zeros of ( )F y  and ( )G y  are real, simple and the inequality (3.164) is satisfied 

for at least one y  

2. All the zeros of ( )F y  are real and for each zero the relation (3.163) is satisfied  

3.  All the zeros of ( )G y  are real and for each zero the relation (3.163) is satisfied  

Let the equation (3.162) take the form 
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(3.165) 

Now set iw =  into equation  (3.165) and apply the of Bellman and cooke’s theorem 

(1963) 
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(3.166) 

Resolving into real and imaginary parts we have 
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( ) ( ) ( )H iw F w iG w= +         (3.167) 
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Differentiating equation (3.168) and (3.169) with respect to w  and setting w 0=  we 

have ( )' 0 0F =  
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       (3.170) 

Also set 0w=  into equation (3.168) and (3.169)  
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r a a a q r a a a q

r a a a q r a a a q a r a a q a r a a q a r a a q a r a a q

a ba a ba a a e ba a a e ba a e g

üïïïïïïïï+ + ý
ïïï+ - + - + + ïïï- - - ïïþ

e e e e

q q q q e e q q q q q q

μ

 (3.171) 

( )0 0G =              (3.172) 

Since 

( ) ( ) ( )' '0 0, 0 0, 0 0F F G=    and ( )0 0G =      (3.173) 

Hence 

( ) ( ) ( ) ( )' '0 0 0 0 0F G F G−         (3.174) 

Therefore, the nonzero equilibrium state is stable  

3.10 Analytical Solution of the Model 

3.10.1 Semi- Analytical solution of the model using homotopy perturbation method  

The fundamental of Homotopy Perturbation Method (HPM) was first proposed by Ji-Haun 

(2000). The Homotopy Perturbation Method (HPM), which provides analytical approximate 

solution, is applied to various linear and non-linear equations (Abubakar et al., 2013). The 
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homotopy perturbation method (HPM) is a series expansion method used in the solution of 

nonlinear full differential equations (Jiya, 2010). 

To show the simple concepts of this method, he considered the following non-linear 

differential equation given as Equation (3.132) to Equation (3.133) (Somma et al. 2017): 

( ) ( )3 0,A U f r− = r          (3.175) 

Subject to the boundary condition  

3 , 0
U

B U
n

 
= 

 
,      r          (3.176) 

Where A3 is a general differential operator, B3 a boundary operator, ( )rf  is a known 

analytical function and Γ is the boundary of the domain Ω. The operator A3 can be divided 

into two parts L and N, where L is the linear part, and N is the nonlinear part. Equation 

(3.119) can be written as: 

( ) ( ) ( ) ,0=−+ rfUNUL r ϵΩ                                                               (3.177) 

The   Homotopy Perturbation structure is shown as follows 

( ) ( ) ( ) ( )  ( ) ( )  01, 0 =−+−−= rfVAhULVLhhVH      (3.178) 

Where ( )   RPrV → 1,0:,
       (3.179) 

In Equation (3.117)  1,0P   is an embedding parameter and 0U is the approximation that 

satisfies the boundary condition. It can be assumed that the solution of the equation (3.177) 

can be written as power series in h given as Equation (3.180) to Equation (3.181): 
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2
0 1 2 ...V V hV h V= + + +          (3.180)     

And the best approximation for the solution is: 

2
0 1 2lim ...

1

U v v hv h v

h

= = + + +

→
         (3.181) 

The series (3.181) is convergent for most cases. However, the convergent rate depends on 

the nonlinear operator A (V) 

3.10.2 Solution of the model equations 

From differentiation Equation given as Equation (3.1) to Equation (3.5)  

0H e e q q

dS
SI S H S E Q

dt
       + + + − − − =      (3.182) 

( ) ( )1 ( ) 0q q q q H

dQ
Q Q S I H

dt
      + − + + − + =     (3.183)  

( ) ( )1 (1 ) ( ) 0e e e e H

dE
E E S I H

dt
       + − + + − − + =     (3.184) 

( ) (1 ) 0H I e e

dI
I E

dt
    + + + − − =        (3.185)  

1( ) (1 ) 0H q q H

dH
H Q I

dt
     + + + − − − =      (3.186) 

1 0
dR

R H
dt

 + − =          (3.187) 

With the initial condition given as equation 

Let 
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( ) 2

0 1 1 ...S t u hu h u= + + +         (3.188) 

( ) 2

0 1 1 ...Q t v hv h v= + + +         (3.189) 

( ) 2

0 1 1 ...E t w hw h w= + + +         (3.190) 

( ) 2

0 1 1 ...I t x hx h x= + + +         (3.191) 

( ) 2

0 1 1 ...H t y hy h y= + + +         (3.192) 

( ) 2

0 1 1 ...R t z hz h z= + + +         (3.193) 

Applying HPM into equation (3.139) 

( )1 0H q q e e

dS dS
p p SI SH S Q E

dt dt
      

 
− + + + + − − = 

 
   (3.194) 

Substitute equation (3.145), (3.148), (3.149), (3.146), (3.147) and into (3.151) 

( )

( )( )

( )( )

( ) ( )

( )

2 2

0 1 1 0 1 1

2 2

0 1 1 0 1 1
1 1 2 1

0 1 1
2 2

0 1 1 0 1 1

2

0 1 1

... ...

... ...
... 0

... ...

...

H

q q

e e

u hu h u x hx h x

u hu h u y hy h y
u hu h u p

u hu h u v hv h v

w hw h w

 



 

 

 + + + + + + +
 
 + + + + + + +
 + + + =
 + + + − + + + −
 
 + + +
 

 (3.195) 

Collecting the coefficient of power p given as equation 

0 1

0: u 0p =           (3.196) 

1 1

1 0 0 0 0 0 0 0: 0H q q e ep u u x u y u v w      + + + − − − =     (3.197) 
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( ) ( )2 1

2 1 0 0 1 1 0 0 1 1 1 1: 0H q q e ep u u x u x u y u y u v w      + + + + + − − =   (3.198) 

Applying HPM to equation (3.183) 

( ) ( ) ( )1 1 ( ) 0q q q q H

dQ dQ
p p Q Q S I H

dt dt
      

 
− + + − + + − + = 

 
  (3.199) 

Substitute equation (3.188), (3.189), (3.190), (3.191), (3.192) and (3.193) into (3.199) 

( )

( ) ( )( )( ) ( )

( ) ( )

( )

2 2

0 1 1 0 1 1

1 1 2 1 2 2

0 1 1 0 1 1 0 1 1

2

0 1 1

1 ... ...

... ... ... 0

...

q q q q

H

v hv h v u hu h u

v hv h v p x hx h x u hu h u

y hy h y

     



 − + + + + + − + + +
 
 + + + + + + − + + + =
 
 + + +
 

(3.200) 

Collecting the coefficient of power p given as equation 

0 1

0: v 0p =           (3.201) 

( ) ( )( )1 1

1 0 0 0 0 0: v 1 0q q q q Hp v u x u y      + − + + − − =    

 (3.202) 

( ) ( )( ) ( ) ( )2 1

2 1 1 0 0 1 1 0 0 1: v 1 0q q q q Hp v u x u x u y u y      + − + + − + − + =  (3.203) 

Applying HPM to equation (3.184) 

( ) ( ) ( )1 1 (1 ) ( ) 0e e e e H

dE dE
p p E E S I H

dt dt
       

 
− + + − + + − − + = 

 
  (3.204) 

Substitute equation (3.188), (3.189), (3.190), (3.191), (3.192) and (3.193) into (3.204) 
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( )

( ) ( )( )( ) ( ) ( )

( ) ( ) ( )

( )

2 2

0 1 2 0 1 1

1 1 2 1 2 2

0 1 1 0 1 1 0 1 1

2

0 1 1

1 ... 1 ...

... ... 1 ... 0

...

e e e e

H

w hw h w u hu h u

w hw h w p x hx h x u hu h u

y hy h y

      

 

 − + + + + + − − + + +
 
 + + + + + + − − + + + =
 
 + + +
 

 (3.205) 

Collecting the coefficient of power p given as equation 

0 1

0: w 0p =           (3.206) 

( ) ( )( ) ( ) ( )1 1

1 0 0 0 0 0: w 1 1 1 0e e e e Hp w u x u y        + − + + − − − − =   (3.207) 

( ) ( )( ) ( ) ( ) ( ) ( )2 1

2 1 1 0 0 1 1 0 0 1: w 1 1 1 0e e e e Hp w u x u x u y u y        + − + + − − + − − + =  (3.208) 

Applying HPM to equation (3.185) 

( )1 ( ) (1 ) 0H I e e

dI dI
p p I E

dt dt
    

 
− + + + + − − = 

 
   (3.209) 

Substitute equation (3.188), (3.189), (3.190), (3.191), (3.192) and (3.193) into (3.209) 

( ) ( ) ( ) ( )1 1 2 1 2 2

0 1 2 0 1 2 0 1 2... ( ) ... 1 ... 0H I e ex hx h x p x hx h x w hw h w     + + + + + + + + − − + + + =
 

  (3.210) 

Collecting the coefficient of power p given as equation 

0 1

0: x 0p =           (3.211) 

( )1 1

1 0 0: x ( ) x 1 0H I e ep w    + + + − − =       (3.212) 

( )2 1

2 1 1: x ( ) x 1 0H I e ep w    + + + − − =       (3.213) 

Applying HPM to equation (3.186) 
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( ) 11 ( ) (1 ) 0H q q H

dH dH
p p H Q I

dt dt
     

 
− + + + + − − − = 

 
   (3.214) 

Substitute equation (3.188), (3.189), (3.190), (3.191), (3.192) and (3.193) into (3.214) 

( )
( ) ( )

( ) ( )

2 2

0 1 2 0 1 21 1 2 1

0 1 2
2

0 1 2

( ) ... ...
... 0

1 ...

I H H

q q

y hy h y x hx h x
y hy h y p

v hv h v

   

 

 + + + + + − + + + −
 + + + =
 − + + +
 

    (3.215) 

Collecting the coefficient of power p given as equation 

0 1

0: y 0p =           (3.216) 

( )1 1

1 0 0 0: y ( ) y 1 0I H H q qp x v     + + + − − − =      (3.217) 

( )2 1

2 1 1 1: y ( ) y 1 0I H H q qp x v     + + + − − − =      (3.218) 

Applying HPM to equation (3.187) 

( ) 11 0
dR dR

p p R H
dt dt

 
 

− + + − = 
 

       (3.219) 

Substitute equation (3.188), (3.189), (3.190), (3.191), (3.192) and (3.193) into (3.219) 

( ) ( ) ( )1 1 2 1 2 2

0 1 2 0 1 2 0 1 2... ... ... 0Iz hz h z p z hz h z y hy h y  + + + + + + − + + + =
 

 (3.220) 

Collecting the coefficient of power p given as equation 

                                                                                                                                      (3.221) 

                                                                          (3.222) 

2 1

2 1 1: z 0Ip z y + − =           (3.223) 

1 1

1 0 0: z 0Ip z y + − =

0 1

0: z 0p =  
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From equation (3.196) 

0 1

0: u 0p =              (3.224) 

Integration both sides 

0 1u T=           (3.225) 

Applying the initial condition 

( )0 0 00u S u= =          (3.226) 

1 0T S=           

 (3.227) 

0 0u S=           (3.228) 

From equation (3.201) 

0 1

0: v 0p =           (3.229) 

Integration both sides 

0 2v T=           

 (3.230) 

Applying the initial condition 

( )0 0 00v Q v= =          (3.231) 
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2 0T Q=           (3.232) 

0 0v Q=           (3.233) 

From equation (3.206) 

0 1

0: w 0p =           (3.234) 

Integration both sides 

0 3w T=           (3.235) 

Applying the initial condition 

( )0 0 00w E w= =          (3.236) 

3 0T E=           (3.237) 

0 0w E=                       (3.238) 

From equation (3.211) 

0 1

0: x 0p =           (3.239) 

Integration both sides 

0 4x T=           (3.240) 

Applying the initial condition 
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( )0 0 00x I x= =          (3.241) 

4 0T I=           (3.242) 

0 0x I=           (3.243) 

From equation (3.216) 

0 1

0: y 0p =           (3.244) 

Integration both sides 

0 5y T=           (3.245) 

Applying the initial condition 

( )0 0 00y H y= =          (3.246) 

5 0T H=                      (3.247) 

0 0y H=           (3.248) 

From equation (3.221) 

0 1

0: z 0p =           (3.249) 

Integration both sides 

  



73 
 

0 6z T=                         (3.250) 

Applying the initial condition 

( )0 0 00z R z= =          (3.251) 

6 0T R=           (3.252) 

0 0z R=           (3.253) 

From equation (3.197) 

1

1 0 0 0 0 0 0 0: 0H q q e eu u x u y u v w      + + + − − − =     (3.254) 

1

1 0 0 0 0 0 0 0q q e e Hu v w u x u y u      = + + − − −      (3.255) 

Integrating both sides 

( )1

1 0 0 0 0 0 0 0q q e e Hdu v w u x u y u dt      = + + − − −      (3.256) 

( )1 0 0 0 0 0 0 0 7q q e e Hu v w u x u y u t T      = + + − − − +     (3.257) 

Applying the initial condition 

 7 0T =            (3.258) 

( )1 0 0 0 0 0 0 0q q e e Hu v w u x u y u t      = + + − − −                 (3.259) 

Substitute equation (3.228), (3.233), (3.238), (3.243) and (3.248) into (3.259) 
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( )1 0 0 0 0 0 0 0q q e e Hu Q E S I S H S t      = + + − − −     (3.217) 

From equation (3.202) 

( ) ( )( )1

1 0 0 0 0 0v 1 0q q q q Hv u x u y      + − + + − − =     (3.261) 

( ) ( )( )1

1 0 0 0 0 0v 1H q q q qu x u y v      = + − − + +                 (3.262) 

Integrating both sides 

( ) ( )( )( )
1

0 0 0 0 0
1

1H q q q qdv u x u y v dt      = + − − + +     (3.263) 

( ) ( ) ( )( )( )1 0 0 0 0 0 81H q q q qv t u x u y v t T      = + − − + + +    (3.264) 

Applying the initial condition  

8 0T =            (3.265) 

( ) ( ) ( )( )( )1 0 0 0 0 01H q q q qv t u x u y v t      = + − − + +     (3.266) 

Substitute equation (3.228), (3.233), (3.238), (3.243), (3.248) and (3.253) into (3.266) 

( ) ( ) ( )( )( )1 0 0 0 0 01H q q q qv t S I S H Q t      = + − − + +               (3.267) 

From equation (3.207) 

( ) ( )( ) ( ) ( )1

1 0 0 0 0 0w 1 1 1 0e e e e Hw u x u y        + − + + − − − − =   (3.268) 

( ) ( ) ( ) ( )( )1

1 0 0 0 0 01 1 1H e e e ew u x u y w        = − + − − − + +    (3.269) 
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Integrating both sides 

( ) ( ) ( ) ( )( )( )1

1 0 0 0 0 01 1 1H e e e edw u x u y w dt        = − + − − − + +    (3.270) 

( ) ( ) ( ) ( ) ( )( )( )1 0 0 0 0 0 91 1 1H e e e ew t u x u y w t T        = − + − − − + + +  

 (3.271) 

Applying the initial condition  

9 0T =            (3.272) 

( ) ( ) ( ) ( ) ( )( )( )1 0 0 0 0 01 1 1H e e e ew t u x u y w t        = − + − − − + +   (3.273) 

Substitute equation (3.228), (3.233), (3.238), (3.243), (3.248) and (3.253) into (3.273) 

( ) ( ) ( ) ( ) ( )( )( )1 0 0 0 0 01 1 1H e e e ew t S I S H E t        = − + − − − + +   (3.274) 

From equation (3.212) 

( )1

1 0 0x ( ) x 1 0H I e ew    + + + − − =       (3.275) 

( )1

1 0 0x 1 ( ) xe e H Iw    = − − + +        (3.276) 

Integrating both sides 

( )( )1

1 0 01 ( ) xe e H Idx w dt    = − − + +        (3.277) 

( ) ( )( )1 0 0 101 ( ) xe e H Ix t w t T    = − − + + +      (3.278) 

Applying the initial condition 
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10 0T =           (3.279) 

( ) ( )( )1 0 01 ( ) xe e H Ix t w t    = − − + +       (3.280) 

Substitute equation (3.228), (3.233), (3.238), (3.243), (3.248) and (3.253) into (3.280) 

( ) ( )( )1 0 01 ( ) Ie e H Ix t E t    = − − + +       (3.281) 

From equation (3.217) 

( )1

1 0 0 0( ) y 1 0I H H q qy x v     + + + − − − =                  (3.282) 

( )1

1 0 0 01 ( ) yq q H I Hy v x     = − + − + +       (3.283) 

Integrating both sides 

( )( )1

1 0 0 01 ( ) yq q H I Hdy v x dt     = − + − + +       (3.284) 

( ) ( )( )1 0 0 0 111 ( ) yq q H I Hy t v x t T     = − + − + + +                (3.285) 

Applying the initial condition  

11 0T =           (3.286) 

( ) ( )( )1 0 0 01 ( ) yq q H I Hy t v x t     = − + − + +      (3.287) 

Substitute equation (3.228), (3.233), (3.238), (3.243), (3.248) and (3.253) into (3.287) 

( ) ( )( )1 0 0 01 ( ) Hq q H I Hy t Q I t     = − + − + +      (3.288) 

  



77 
 

From equation (3.222) 

1

1 0 0 0Iz z y + − =          (3.289) 

1

1 0 0Iz y z = −          (3.290) 

Integrating both sides 

( )1

1 0 0Idz y z dt = −          (3.291) 

( ) ( )1 0 0 12Iz t y z t T = − +         (3.292) 

Applying the initial condition 

12 0T =           (3.293) 

( ) ( )1 0 0Iz t y z t = −          (3.294) 

Substitute equation (3.228), (3.233), (3.238), (3.243), (3.248) and (3.253) into (3.294) 

( ) ( )1 0 0Iz t H R t = −         (3.295) 

From equation (3.198) 

From equation (3.155) 

( ) ( )1

2 1 0 0 1 1 0 0 1 1 1 1 0H q q e eu u x u x u y u y u v w      + + + + + − − =    (3.296) 

( ) ( )1

2 1 1 1 0 0 1 1 0 0 1 1q q e e Hu v w u x u x u y u y u      = + − + − + −    (3.297) 

Substitute equation (3.260), (3.267), (3.274), (3.281),(3.288) and (3.295)  into (3.297) 
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( )( )
( )

( ) ( )

( )

( )( )

( )

( )

0 01

2 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0

0 0 0

1

1

1 ( ) I
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Applying the initial condition 

13 0T =           (3.302) 
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Substitute equation (3.228), (3.260) and (3.303) into (3.188) 

( ) ( )2

0 1 2 ...S t u hu h u t= + + +         (3.304) 

( ) ( )2

0 1 2
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lim ...
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= + + +        (3.305) 

( ) ( )0 1 2 ...S t u u u t= + + +         (3.306) 
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Hence 
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From equation (3.203) 
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Substitute equation (3.260), (3.267), (3.274), (3.281),(3.288), and (3.295) into (3.309) 
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Integrating both sides 
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 (3.313) 

Applying the initial condition 

14 0T =                   (3.314) 
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From (3.183) 

( ) ( )2

0 1 2 ...Q t v hv h v t= + + +         (3.316) 
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From equation (3.208) 
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Substitute equation (3.260), (3.267), (3.274), (3.281),(3.288), and (3.295) into (3.321) 
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+ 
 − −
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(3.322) 
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Integrating both sides 
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 
 
 

 (3.324) 
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(3.325) 

Applying the initial condition 

15 0T =           (3.326) 
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 
 
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 
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 

 (3.327) 

Substitute equation (3.228), (3.274) and (3.327) into (3.327) 

 

( ) ( )2

0 1 2 ...E t w hw h w t= + + +        (3.328) 

( ) ( )2

0 1 2
1

lim ...
h

E t w hw h w t
→

= + + +        (3.329) 

( ) ( )0 1 2 ...E t w w w t= + + +         (3.330) 
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Hence 
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 (3.331) 

From equation (3.213) 

( )1

2 1 1( ) x 1 0H I e ex w    + + + − − =       (3.332) 

( )1

2 1 11 ( ) xe e H Ix w    = − − + +        (3.333) 

Substitute equation (3.260), (3.267), (3.274), (3.281),(3.288), and (3.295) into (3.333) 

( ) ( ) ( ) ( ) ( )( )( )
( )( )

1

2 0 0 0 0 0

0 0

1 1 1 1

( ) 1 ( ) I

e e H e e e e

H I e e H I

x S I S H E t

E t

          

       

= − − + − − − + + −

+ + − − + +
 (3.334) 
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(3.335) 

Integrating both sides 
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  (3.336) 
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Applying the initial condition 

16 0T =           (3.338) 
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From (3.185) 
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From equation (3.218) 
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2 1 1 1( ) y 1 0I H H q qy x v     + + + − − − =       (3.344) 

( )1
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Substitute equation (3.260), (3.267), (3.274), (3.281),(3.288), and (3.295) into (3.345) 
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Integrating both sides 
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Applying the initial condition 

17 0T =           (3.350) 
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From (3.186) 
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( ) ( )2

0 1 2 ...H t y hy h y t= + + +        

 (3.352) 

Setting h=1, i.e 

( ) ( )2

0 1 2
1

lim ...
h

H t y hy h y t
→

= + + +        (3.353) 

( ) ( )0 1 2 ...H t y y y t= + + +         (3.354) 

Hence 
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 (3.355) 

From equation (3.223) 

1

2 1 1 0Iz z y + − =          (3.356) 

1

2 1 1Iz y z = −          (3.357) 

Substitute equation (3.260), (3.267), (3.274), (3.281),(3.288), and (3.295) into (3.357) 

( )( ) ( )1

2 0 0 0 0 01 ( ) HI q q H I H Iz Q I t H R t         = − + − + + − −   (3.358) 

( )( ) ( )( )( )1

2 0 0 0 0 01 ( ) HI q q H I H Iz Q I H R t         = − + − + + − −   (3.359) 

Integrating both sides 



89 
 

( )( ) ( )1

2 0 0 0 0 01 ( ) HI q q H I H Idz Q I t H R tdt         = − + − + + − −    (3.360) 
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z t Q I H R T         = − + − + + − − +  (3.361)  

Applying the initial condition 

18 0T =           

 (3.362) 
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From (3.187) 

( ) ( )2

0 1 2 ...R t z hz h z t= + + +         (3.364) 

Setting h=1, i.e 

( ) ( )2

0 1 2
1

lim ...
h

R t z hz h z t
→

= + + +        (3.365) 

( ) ( )0 1 2 ...R t z z z t= + + +         (3.366) 
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 (3.367) 
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CHAPTER FOUR 

4.0     RESULTS AND DISCUSSION 

4.1 Simulations 

It is difficult to get a reliable data, we estimated the parameter value based on the available 

data from the Nigerian Centre for Disease Control (NCDC) and reliable literature. The 

estimates are clearly explained in the following sub-sections as shown in Table 4.1. 

Table 4.1 Initial conditions for each plot and parameters values  

Parameters and State Variables   Value Source  

0N  

0S  

   200000000 

 

   199887700 

Assumed 

 

 NCDC (2020) 

 

0Q  

0I  

   3300 

 

   19000 

NCDC (2020) 

 

NCDC (2020) 

 

0E     88000 NCDC (2020) 

 

0H      1200 NCDC (2020) 

0R
 

  

    800 

 

   0.000300 

 

NCDC (2020) 

 

Fitted 

     0.00000350 Estimated 

 
      0.000015 NCDC (2020) 

 
     0.1 to 0.9 NCDC (2020) 

 

H     0.000005 Estimated 

 

q     0.000300 Estimated 

 

q     0.020 Fitted 
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e    0.000400 Estimated 

 

e    0.040 Fitted 

 

H     0.060 NCDC (2020) 

 

I     81.0 10−  NCDC (2020) 

 

H     71.0 10−  NCDC (2020) 

 

1     0.30 NCDC (2020) 
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4.2 Graphical Representation of Solutions of Model Equations 

The graphical representation are from the analytical solutions of the model equations. 

They are plotted using MAPLE software. 

 
Time (Days) 

 

Figure 4.1: Graph of Susceptible Individual Against Time for Different Values of 

Contact Rate Between Susceptible Individuals and Infected Individuals. 

Figure 4.1 is the graph of susceptible individuals against time for different contact rate. It is 

observed that the population of susceptible individuals decreases with different values of 

contact rate. The higher the contact rate between the susceptible and the infected, the higher 

the decrease in susceptible population. 

 

 



93 
 

 

Time (Days) 

 

Figure 4.2: Graph of Untraced Individuals Who Are Exposed to COVID-19 Against 

Time for Different Values of Contact Rate Between Susceptible Individuals And 

Infected Individuals. 

Figure 4.2 is the graph of untraced individuals who are exposed to COVID over time. It is 

observed that the population of untraced individuals who are exposed to COVID increases 

with different values of contact rate. The higher the contact rate between the susceptible and 

the infected, the higher the increases in the untraced exposed population. 
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Time (Days) 

 

Figure 4.3: Graph of Infected Individuals against Time for Different Values of Rate at 

which Infected Individuals are Hospitalized. 

Figure 4.3 is the graph of Infected individuals against time. That the number of infected 

individual increases as the of rate at which infected individuals are hospitalized decreases. 
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Time (Days) 

 

Figure 4.4: Graph of Hospitalized Individuals Against Time for Different Values of 

Rate at which Infected Individuals are Hospitalized. 

Figure 4.4 is the graph of hospitalized individuals against time. It is observed that the 

population of hospitalized individuals increases as the rate of infected individuals being 

hospitalized increases. 
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Time (Days) 

 Figure 4.5: Graph of Recovered Individuals against time for Different Values of 

Proportion of Hospitalized Individuals who leave the Compartment to Recovered Class. 

Figure 4.5 is the graph of recovered individuals against time for different at proportion of 

hospitalized individuals who leave the compartment to recovered class. It is observed that 

the population of the recovered human increases as the proportion of hospitalized individuals 

who leave the compartment to recovered class increases. 
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Time (Days) 

Figure 4.6: Graph of Quarantined Individuals Against time for Different Values of 

Individuals who Leaves Quarantine Class to Susceptible Class. 

Figure 4.6 is the graph of quarantined individuals against time. it is observed that the number 

of quarantine individuals increases with time and letter decease as a proportion of individuals 

quarantined who leave the compartment to susceptible class increases. 
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Time (Days) 

Figure 4.7: Graph of Hospitalized Individuals against Time for Different Proportion of 

Hospitalized Individuals who Leaves the Class to Recovery Class. 

Figure 4.7 is the graph of hospitalized individuals against time. It is observed that the 

population of hospitalized individuals increases as the proportion of individuals who leaves 

to the recovered class increases. 

4.8 Comparison of Results 

In Figure 4.1, it was observed that the population of Susceptible individuals decreases with 

different values of contact rate. The higher the contact rate between the susceptible and the 

infected, the higher the decrease in susceptible population. It is also seen in Mustapha and 

Hanane (2020). 

Also in Figure 4.2, it was observed that the population of untraced individuals who are 

exposed to COVID-19 increases with different values of contact rate. The higher the contact 
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rate between the susceptible and the infected, the higher the increases in the untraced exposed 

population. It is also seen in Mustapha and Hanane (2020). 

Figure 4.3, also revealed that the graph of infected individuals against time. That the number 

of infected individual increases as the of rate at which Infected Individuals are hospitalized 

decreases. In Figure 4.4, it was observed that the population of hospitalized individuals 

increases as the rate of infected individuals being hospitalized increases. In Figure 4.5, it was 

observed that the population of the recovered human increases as the proportion of 

hospitalized individuals who leave the compartment to recovered class increases. It is also 

seen in Mustapha and Hanane (2020). 

Also, in Figure 4.6 it was observed that the number of quarantine individuals increases with 

time and letter decease as a proportion of individuals quarantined who leave the compartment 

to susceptible class increases. And finally, Figure 4.7, it was observed that the population of 

hospitalized individuals increases as the Proportion of individuals who leaves to the 

recovered class increases. 
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CHAPTER FIVE 

5.0                            CONCLUSION AND RECOMMENDATIONS  

5.1 Conclusion 

In this study, a mathematical model for the transmission dynamics of COVID-19 pandemic 

with contact tracing and full recovery was developed and analyzed using system of first order 

ordinary differential equations. It was discovered that model has two equilibrium state; we 

carried analysis on the developed model. The equilibrium states were obtained and analyzed 

for their stability relatively to the effective reproduction number. The result shows that, the 

disease-free equilibrium was stable and the criteria for stability of the endemic equilibrium 

are established. We were able to show that the COVID-19 infectious free equilibrium is 

locally and globally asymptotically stable if 0 1R  . The analytical solution was obtained using 

Homotopy Perturbation Method (HPM) and effective reproduction number was computed in 

order to measure the relative impact for individual or combined intervention for effective 

disease control. Numerical simulations of the model show that, the disease will be eradicated 

from both humans and the non-human primates with the proposed interventions of the model 

in due time.  

5.2 Recommendations 

(i) The model shows that the spread of COVID-19 infection depends largely on the 

contact rate, hence the National hospital should emphasize on the improvement 

in early detection of COVID-19 infection cases so that transmission can be 

minimized. 
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(ii) Infectious human’s individuals should be isolated and treated 

immediately.Individuals infected with COVID-19 should be given antiretroviral 

drugs immediately.  

(iii) We also want to recommend to World Health Organization, CDC and NAFDAC 

that the efficacy COVID-19 drugs should be at 0.015 and above respectively to 

have a stable population. 

(iv) One of the limitations of this study is the unavailability of records of COVID-19 

case; therefore, health workers should make data available for researchers. 

(v) Optimal control strategy can be incorporated into the model for greater insight 

into the dynamics. 

5.3 Contributions to Knowledge 

The study has developed: 

(a) Developed and validated a mathematical model for the transmission dynamics of 

COVID-19 pandemic with contact tracing and full recovery. 

(b)  The model incorporates the mathematical model for the human to human 

transmission. 

(c)  The work has shown the positivity criteria for the endemic equilibrium state to be 

stable. 

(d)  The work has also shown that humans population will be reduced when the treatment 

rates and their effectiveness are high.      
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