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ABSTRACT

Highly sensitive and specific malaria diagnosis methods that are satisfactory for point-of-care
testing in high burden areas are essential for productive treatment and monitoring of the disease.
Microscopists often examine thick and thin blood smears which are the gold standard to diagnose
malaria disease and compute parasitemia, Hence, the need for highly trained experts to interpret
the data. In this study, machine learning algorithms for the detection of malaria parasite in thin
blood smear images have been developed to reduce reliance on human proficiency, especially in
the situations where experts are unavailable. The datasets containing 27558 cell images was
obtained from National Library of Medicine, National Institute of Health (NIH) and used for
both supervised and unsupervised machine learning models development. For supervised
learning, logistic regression and random forest classifiers were used to predict the classes of thin
blood smear images. These models classified the images as either uninfected or parasitised.
Logistic regression returned a classification accuracy of 93.5% for parasitised images and 96.5%
for uninfected smears. Random forest returned a classification accuracy of 90.5% for parasitised
and 90.4% for uninfected smears. For unsupervised machine learning, hierarchical clustering and
k-means models were implemented. Hierarchical clustering grouped parasitised images in one
cluster and uninfected in another cluster and k-means gave a value of 0.218, discovered two
clusters from the dataset. These results showed that logistic regression model produced the best
performance for classification of thin blood smears of malaria. In cases where the classes of the
smears are not known, the unsupervised machine learning models can be used to detect malaria
infections in the smears. These models can be combined as backend programs for the design of a
robust computerised malaria detection computer program. It is important to note that, although
this method may not fully abolish the need for trained experts, the model implementations can be
of great assistance in aiding the diagnostic decision-making process.
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CHAPTER ONE

1.0 INTRODUCTION

1.1 Background to the Study

A female anopheles mosquito bite can spread the Plasmodium parasite, which causes malaria,
a serious and potentially fatal disease. The red blood cells (RBCs) are infected by the
parasites, which develop in the liver before being discharged directly into the blood and
causing symptoms that can be fatal. Plasmodium falciparum, Plasmodium vivax, Plasmodium
ovale, Plasmodium Knowlesi, and Plasmodium malariae are among the parasite species that
exist; however, Plasmodium falciparum can be fatal and affects the majority of the global
population (WHO, 2018). The World Health Organization (WHO) latest report on global
malaria estimates that there will be 241,000,000 instances of malaria and 627,000 fatalities
from malaria worldwide in year 2020 (WHO, 2021). According to reports, children that are
under five years of age are the most in danger; they make up 61% of the anticipated mortality
tolls (WHO, 2018). Africa has the highest prevalence of the illness brought on by
Plasmodium falciparum, South-East Asia and the Eastern Mediterranean come next (WHO,
2018). Malaria control and elimination methods have reportedly received a global investment
of US $3.1 billion from disease-endemic nations (WHO, 2018). Malaria typically causes
fever, exhaustion, headaches, as well as unconsciousness and convulsions in extreme
situations, which can be fatal. The global case incidence rate for malaria is displayed in Figure
1.1. Sub-Saharan African nations and India bear a disproportionately heavy burden of the
disease. Collectively, they are responsible for 85% of fatal cases. Among all fatalities,

children under five years of age made up two thirds. A delay in diagnosis and treatment is one



of the leading causes of death in malaria patients. The most reliable and widely used method

for illness diagnosis continues to be microscopic thick/thin-film blood analysis (CDC, 2018).

Malario inddence, 2018
P

Figure 1.1: Map of malaria cases in 2018 (per 1000 population at risk) (WHO, 2019).

However, manual diagnosis is a laborious operation; the obligation imposed by elements like
Inter- and intra-observer variation and widespread screening, especially in disease endemic
nations in resource-limited circumstances, has a significant negative impact on the diagnostic

accuracy (Mitiku et al., 2003).

Risk assessment and medical diagnosis using images, computer-aided diagnostic (CADX)
tools have become increasingly popular. These technologies analyze medical images for
common manifestations and spotlights problematic abnormalities to support making medical

decisions (Poostchi et al., 2018). Nevertheless, most of these approaches to diagnosing



malaria employ manually created methods for feature extraction are tailored for specific
datasets and instruction for variations in the region of interest (ROI)'s size, location, and

orientation in the source machinery (Ross et al., 2006).

By supporting triage and disease diagnosis, computer-aided diagnostic (CADx) tools
incorporating machine learning (ML) algorithms on microscopic blood smear pictures
significantly lessen the clinical burden (Poostchi et al., 2018). By self-discovering the
properties, data-driven deep learning (DL) approaches currently outperform handcrafted
feature extraction methods when working with raw pixel data and performing end-to-end
feature extraction and classification (LeCun et al., 2015). In particular, a family of DL models
called convolutional neural networks (CNN) have demonstrated promising outcomes when

classifying and recognizing images, and localization tasks (Redmon et al., 2016).

1.2 Statement of the Research Problem

Exact parasite numbers are crucial for more than just diagnosing malaria. They are essential
for determining the efficacy of medications, determining drug resistance, and categorizing
disease severity (WHO, 2016). Microscopic diagnosis significantly is dependent on
knowledge and expertise of the microscopist. In low-resource settings, microscopists usually
labor by themselves because there isn't a strict system in place to assure their skill
maintenance, which lowers the accuracy of diagnoses. This results in the field making
inaccurate diagnostic conclusions (WHO, 2016). False negative results, or classifying an
infected person as uninfected, result in the needless prescription of antibiotics, a second
consultation, missed workdays, and in certain circumstances, the development of severe
malaria as the illness progresses (Shillcutt et al., 2008). False positive findings, or classifying

an uninfected individual as infected, result in the inappropriate use of anti-malaria



medications and the possibility of experiencing side effects such as nausea, abdominal
discomfort, diarrhea, and occasionally serious problems. Only 82% and 85%, respectively, are
the best estimates for the sensitivity and specificity of microscopic diagnosis at district
hospitals and health care centers in sub-Saharan countries (Shillcutt et al., 2008). An attempt
to perform malaria diagnosis automatically has been made in response to this sober study of
the disease that is having sensitivity and specificity of less than 85%. When opposed to

manual counting, automatic parasite counting offers the following benefits:

1. It gives blood films a more consistent and trustworthy interpretation.

2. By lessening the number of hours worked by malaria field workers, more patients can
be served. Manual inspection is a challenging which takes time approach of
identifying malaria and requires the pathologist's complete attention. Therefore, the
creation of automated methods is essential for the quick and precise diagnosis of
malaria. It can help in the early detection of disease so that it can be effectively treated
and minimize the risk of false negatives (Mustafa et al., 2021).

3. It can lower the price of diagnostics. Malaria parasites can be found using a variety of
techniques. The automated parasite identification algorithm addresses the
shortcomings of conventional approaches, such as high per-test costs, as compared to

conventional diagnostic processes (Mustafa et al., 2021).

1.3 Aim and Objectives of the Study

The aim of this study is to develop a supervised and unsupervised machine learning
algorithms for detection of malaria parasite in thin blood smear images using Orange
software.

The objectives of the study are to:



I. design k-nearest neighbours (KNN), support vector machine (SVM), random forest
and logistic regression classifier algorithms for 27558 Giemsa-stained images.

ii. design and train a hierarchical clustering and k-means algorithms for classification
of thin-smear Giemsa-stained images.

hi. evaluate model performance under supervised and unsupervised conditions.

1.4 Significance of the Study

Every year, millions of blood smear films are painstakingly inspected by skilled pathologists,
and diagnosing malaria requires a significant human and financial investment. Additionally,
reliable parasite counts from blood films are necessary for a proper diagnosis and grading of
disease severity. If a patient did not have malaria cells but the doctor wrongly gave
antibiotics, the patient would unnecessarily go through nausea or stomach pain (Grabias and
Kumar, 2016). The ability to identify parasites throughout all stages of the malaria life cycle
requires a robust malaria diagnosis with high sensitivity (fewer false negatives). Early,
accurate diagnosis of malaria is fundamental in providing appropriate treatment and possibly
reduce mortality rate.

1.5 Scope and Limitation of the Study

In this study, algorithms will be designed and trained using malaria datasets containing 27558
cell images with equal instances of parasitised and uninfected with malaria parasite obtained
from National Library of Medicine, NIH. Lister Hill National Center for Biomedical
Communications to detect malaria parasite in thin blood smears, this Giemsa-stained thin
blood smears datasets are infected with Plasmodium falciparum. This is achieved using

Orange software.



CHAPTER TWO
2.0 LITERATURE REVIEW
2.1 Malaria Infection
The protozoan parasites of the genus Plasmodium that cause malaria attack, red blood cells
and spread through bites from infected female Anopheles mosquitoes (Poostch et al., 2018).
Specifically in Africa, where a child dies from malaria virtually each minute and where the
disease is a major contributor to pediatric neurodisabilities, children die at a
disproportionately high rate (WHO, 2016). The World Malaria Data 2016 estimates that 95
countries and territories, home to 3.2 billion people, are at risk of contracting malaria and
becoming unwell, with over 1 billion of them at particularly high risk (more than one in one
thousand probabilities of contracting the disease annually). In 2016, there were over 214
million cases of malaria worldwide, resulting in 438,000 fatalities. Africa bore the brunt of the
load, accounting for 92% of all malaria deaths, according to estimates.
2.2 Malaria Causing Parasites
Human malaria is caused by five different Plasmodium species: Plasmodium falciparum,
Plasmodium vivax, Plasmodium malariae, Plasmodium ovale, and Plasmodium knowlesi. The
two species that are most common are P. vivax and P. falciparum. Most deaths associated
with malaria globally are caused by the most severe strain, P. falciparum. (WHO, 2016). In
sub-Saharan Africa, P. falciparum is the most common malaria parasite and was thought to be
responsible for 99% of all cases in 2016. The majority of malaria cases outside of Africa are
caused by P. vivax, which is responsible for 64% of those instances in Americas, as well as

over 30% in Southeast Asia and 40% in the Eastern Mediterranean (WHO, 2017).



Each of these parasite species undergoes phases during their growth cycle (which lasts 48
hours), giving the parasites a different visual appearance that may be observed under a
microscope. In chronological order, these stages are the ring stage, trophozoite stage, schizont
stage, and gametocyte stage. Figure 2.1 displays typical illustrations of every stage for every
species. Most P. falciparum juvenile stage parasites are present in peripheral blood in non-
severe malaria, however all stages may be present in severe malaria. Red blood cells infected
with P. falciparum trophozoites are isolated from peripheral blood circulation by sticking to
the capillary walls of critical organs. If the capillaries are blocked for newly infected cells by
already infected cells, more advanced parasite stages (trophozoites and schizonts) will be
visible in the peripheral circulation, which indicates a significant infection and a poor
prognosis. (CDC, 2013).

2.3 Malaria Diagnosis

When traveling to regions where malaria is endemic, there are medications available to treat
and even prevent infections. The sickness of malaria is curable. There is still no effective
malaria vaccine, despite extensive research and field study in this area. When malaria is
contracted, it spreads quickly, offers a serious risk of becoming severe and cerebral, and is
often accompanied by neurologic symptoms brought on by P. falciparum infections. It is
imperative to obtain a malaria diagnosis as soon as possible. Although there are several ways
to detect malaria, there is still need for improvement in the cost, specificity, and ease of use

the diagnostic assays that are currently available.



Human Malaria

Stages
Species

Ring

Schizont

Gametocyte

P. falciparum

Parasitised red cells (pRBCs) not
enlarged.

RBCs containing mature
trophozoites sequestered in deep
vessels.

Total parasite biomass =
circulating parasites +
sequestered parasites.

P. vivax

Parasites prefer young red cells
PRBCs enlarged.

Trophozoites are amoeboid in
shape.

All stages present in peripheral
blood.

P. malariae

Parasites prefer old red cells.

PRBCs not enlarged.
Trophozoites tend to have a band

shape.
All stages present in peripheral
blood

P. ovale

PRBCs slightly enlarged and have
an oval shape, with tufted ends.

All stages present in peripheral
blood.

P. knowlesi

PRBCs not enlarged.

+ Trophozoites, pigment spreads

inside cytoplasm, like P. malariae,
band form may be seen

Multiple invasion & high
parasitaemia can be seen like P.
falciparum

All stages present in peripheral
blood.

Figure 2.1: Five distinct Plasmodium species that cause human malaria and their various life

phases in thin blood films (Silamut and White, 1993).
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The first step in diagnosing malaria is to look for parasites. Identification of the parasite
species, the existence of possibly combining infections, and watching of the stage of parasite
development in connection to how bad the illness is are also crucial. Not only is counting
parasites crucial for diagnosing infections and gauging their severity, but it also enables for
patient monitoring by assessing therapeutic effectiveness as well as possible medication

resistance.

2.3.1 Light microscopy

Although various methods of diagnosis exist and have recently gained popularity, light
microscopy of blood films is the present industry-standard approach for diagnosing malaria in
the field. Microscopy can be used to identify all parasite species since it can estimate the
parasitemia level, clear a patient after a successful therapy, to monitor medication resistance.
Additionally, it is more affordable and easily available than alternative methods. But its major
limitations are the rigorous training required for a microscopist to become a skilled malaria
slide reader, the expensive cost of both training and employment, along with the substantial
amount of physical labor required. In order to diagnose malaria, a drop of the patient's blood
is applied to a glass slide, which is then dipped in a staining solution to make parasites easier
to see under a conventional light microscope, frequently with a 100 oil objective. Thin and
thick blood smears are the two types of blood smears that are routinely prepared for the

diagnosis of malaria (Poostchi et al., 2018).

A thick smear is necessary to identify parasites in a drop of blood. Thick smears, which have
an 11 times higher sensitivity than thin smears, allow for a more accurate detection of

parasites. The blood drop is dispersed throughout the glass slide; however, this results in

11



narrow streaks that have additional advantages. They make it simpler for the examiner to

recognize different malaria types and different stages of the parasite (Jan et al., 2018).

2.3.1.1 The Physics of Light Microscope

The eye is amazing at seeing objects both big and small, but it is plainly restricted in the
tiniest details it can pick up. The use of optical devices was motivated by the desire to see
beyond the limit of the naked eye could see. The light microscope is a device for seeing an
object's tiny features. It achieves this by using a sequence of glass lenses to first focus a light
beam onto or through an object, then convex objective lenses to expand the image created. A
straightforward convex lens can magnify an image, but it is challenging to achieve high
magnification with such a lens. It is challenging to magnify an image by more than 5 without
the image becoming distorted. We can add one or more extra lenses to the basic magnifying

glass to achieve a higher magnification.

In the Netherlands and Denmark, eyeglass manufacturers invented the first microscopes in the
early 1600s. Figure 2.2 illustrates the construction of the most basic compound microscope,
which consists of two convex lenses. With a typical magnification range of 5 to 100, the
objective lens is a convex lens with a short focal length and high power. A convex lens with a
larger focal length is used in the eyepiece, which is also known as the ocular. The goal of a
microscope is to enlarge little objects, and both lenses work together to achieve this goal. The
eye cannot focus on objects or images that are too close, the final enlarged image is also
produced adequately distance from the viewer to be easily perceived (closer than the near
point of the eye). An objective and an eyepiece are the two lenses that make up a compound

microscope. The object which is larger in the first image, is formed by the objective. The

12



eyepiece's focal length is occupied by the first image, which also acts as the eyepiece’s target.

The eyepiece creates the final, enlarged image (Ling et al., 2016).

Eyepiece

Object - "t

' . 7 First N

a_~ Final Objective’SJ ,m'gzej’
image lens

= d -

Figure 2.2: A compound microscope with two lenses, an objective, and an eyepiece. (Ling et

al., 2016)

Consider the two lenses on the microscope in Figure 2.2 in turn to observe how a picture is
created. The objective lens's focal length fobi is just past the object, creating a true, inverted
image that is bigger than the actual thing. The subject of the second lens or eyepiece forms
initial image. The first image is placed within the eyepiece's focal length feve, so that it can
be further magnified. It therefore enhances the intermediate image created by the objective,
like a magnifying glass. A magnified virtual image is what the eyepiece creates. The resulting

image is still inverted but is visible since it is farther away from the viewer than the object.
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The eye sees a virtual image that is projected by the eyepiece, which acts as the object for the
eye's lens. Because the virtual image produced by the eyepiece is far outside of the eye's focus

length, the eye produces a real image on the retina.

The linear magnification mob/ by the objective and the angular magnification Meve by the
eyepiece combine to provide the microscope's overall magnification. These are respectively

given in Equation 2.1 and 2.2:

obj obj
mebj = d;bj, x~ — _;i_b;(linear magnification by objective) (2.1)
d, °
Meye =1 + chm (angular magnification by eyepiece) (2.2)
eye

Here, the focal lengths of the objective and eyepiece are, respectively, foband feve We
assume that the near spot of the eye, which provides the greatest magnification, is where the
final image is generated. The eyepiece's angular magnification is the same as that of a
standard magnifying glass. This shouldn't come as a surprise because the eyepiece functions
similarly to a magnifying glass in terms of physics. The compound microscope's net
magnification Mne: is the sum of the angular and linear magnifications of the eyepiece and

objective, respectively, the net magnification is given in Equation 2.3:

obj
d; 7 ( f&°+25cm)

— objprgeye —
Mnet = moIM¢ = fobjfeye

(2.3)
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2.3.2 Rapid diagnostic tests

The fundamental benefit of microscopic malaria diagnosis is its cheap direct cost, which
makes it stand out in environments with limited resources (WHO, 2016). Given the limited
financial resources that are often available in regions where malaria is prevalent, other
diagnostic techniques that are currently in use as well as any new techniques must
demonstrate that they can offer the same simplicity of use and affordability as microscopy.
Rapid diagnostic tests (RDTs) may be the sole and primary rival in this regard. They take
around 10-15 minutes to process and look for antibodies, which are the parasites' telltale
signs. They do not need any special equipment and merely need minimal training. Their
detection responsiveness is lower but similar to manual microscopy. However, in high-burden
locations, RDTs are now more expensive than microscopy (WHO, 2018). RDTs are utilized
more commonly in rural areas without access to microscopy. RDT was used to conduct

roughly 47% of tests for malaria in nations where the disease is endemic (WHO, 2016).

2.3.3 Other malaria tests

There are numerous ways to diagnose malaria. Prices for tests, as well as their sensitivity and
specificity, duration per test, and the necessary user level competence are crucial factors.
Additionally, counting the amount of infected red blood cells is crucial as a prognostic sign

(Vink et al., 2013).

i.  Polymerase chain reaction (PCR): Compared to traditional microscopic inspection of
stained peripheral blood smears, PCR has demonstrated improved sensitivity and
specificity. In fact, it is thought to be the most accurate test out of all of them. It can
distinguish between different species and very low parasite detection quantities in

blood. However, PCR is a time-consuming, expensive, and sophisticated technology

15



that requires skilled personnel to process. The difficulty due to testing and the lack of
resources to carry out these tests properly and regularly, according to Tangpukdee et
al. (2009), are the main reasons that PCR is not commonly used in developing nations.
The PCR method also requires quality assurance and equipment upkeep; therefore, it
might not be appropriate for determining the presence of malaria in remote rural areas
or even in standard clinical diagnostic settings.

Fluorescent microscopy: A laboratory test called quantitative buffy coat uses
fluorescence microscopy to find blood parasites like malaria. Parasites are visible
under UV light thanks to a fluorescent dye. Adeoye and Nga (2007) claim that This
test entails more accuracy than the typical thick smear. Commercially available
fluorescent dye-infused portable microscopes used to identify parasites are now
available. Nevertheless, the quantitative buffy coat method is straightforward,
dependable, and user-friendly. It is less effective at identifying the types and numbers
of parasites and necessitates specialized equipment that is more expensive than
traditional light microscopy (Tangpukdee et al., 2009).

Flow cytometry: This technique for counting and detecting cells uses lasers and can
profile hundreds of cells each second. Although automated parasitemia counts are
available with flow cytometry, the sensitivity is very limited. When a clear answer is
needed to make treatment decisions, In the real world, flow cytometry is less useful as
a diagnostic technique. However, it can be used in a therapeutic environment in
affluent nations to accurately measure the number of parasites, for example, in the

follow-up of pharmacological therapy (Janse and Van Vianen, 1994).
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2.4 Staining Methods

Giemsa's stain was used for the first time to diagnose malaria in 1902, more than a century
ago. Since then, it has drawn further attention. It is being utilized often in microscopical
malaria investigations because to its inexpensive cost, excellent sensitivity, and specificity
(Keister et al., 2002). However, Giemsa staining is labour-intensive, time-consuming, and
requires many chemicals and experienced personnel (it typically requires at least 45 minutes
to stain a slide).

Other stains have also been used, such as Field stain, which considerably shortens staining
time but necessitates drying samples both before and during staining (Houwen, 2002). Field's
stain can have drawbacks, particularly in health facilities with limited resources where it
might be applied. Poor blood preparation frequently produces artifacts like bacteria, fungi,
stain precipitation, dirt, and cell debris that are frequently misinterpreted for malaria parasites.

False-positive readings can commonly be brought on by these.

High sensitivity Leishman's stain was discovered in 1901. It is affordable, and rather simple to
use. One of the other stains in use is the Wright-Giemsa stain, which combines the Wright and
Giemsa stains and allows for easier distinction of different blood cell types. Shute and
Sodeman (1973) looked at the utility of fluorochrome staining for detecting malaria parasites
in low-infection samples in the 1970s. Romanowsky and Giemsa staining techniques have
been demonstrated to be less accurate and time-consuming than fluorochrome staining
(Suwalka et al., 2012). It has drawbacks such photo bleaching and phototoxicity, as well as
requiring a lot of work and training. Additionally, the cost of fluorescence microscopes is
more than a conventional light microscope, which is a problem in tropical areas with limited

resources and high rates of malaria (Kawamoto et al., 1971).
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2.5 Introduction to Machine Learning

Machine learning, one of the most promising and rapidly expanding fields of computer
technology, is the study of algorithms that enhance the effectiveness of machines or
computers automatically by the training and testing of the machine or computers with
undoubtedly varied variables (Smola et al., 2008). Machine learning is the process of teaching
a computer to use various algorithms to process data intelligently and automatically. Machine
learning improves the accuracy and efficiency of data processing and is utilized in many
different industries. Effective algorithms are used to create machine learning, which uses a
specific collection of tools and functions to handle complicated and massive data problems.
Machine learning is assisting in a wide range of industries. These applications of artificial
intelligence are typically utilized for recognition and prediction in fields like computer
engineering and medicine. Machine learning has reduced manual work for those who might

be prone to mistakes and inaccuracy (Smola et al., 2008).

Machine learning techniques can either be supervised or unsupervised, despite the fact that
some authors also refer to other algorithms as reinforcement learning since they learn data and
uncover patterns in order to respond to an environment. But the majority of publications
acknowledge both supervised and unsupervised machine learning techniques. These two main

classes are distinguished by labels present in the training data subset (Kotsiantis, 2007).

2.5.1 Supervised learning

A set of paired input-output training samples are used in the supervised learning machine
learning paradigm to understand the details of a system's input-output connection. Because

the output is regarded as the label of the input data or the supervision, an input-output training
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sample is sometimes referred to as labelled training data or supervised data. On occasion, it
may also be referred to as "Learning with a Teacher" (Haykin, 1998), The input-output
connection knowledge of a system is learned using a collection of paired input-output training

samples in the supervised learning machine learning paradigm.

Learning from Labeled Data or Inductive Machine Learning (Kotsiantis, 2007). The goal of
supervised learning is to create an artificial system that can understand the relationship
between the input and the output and predict the system's output given new inputs. If the
output accepts a finite number of discrete values that represent the class labels of the input,
the learned mapping categorizes the incoming data. The input is regressed as a result if the

output is continuous.

2.5.2 Unsupervised learning

Unsupervised learning makes use of training data that are not labeled, classed, or categorized
(also known as knowledge discovery). Unsupervised learning's main objective is to explore
unlabeled data for intriguing and hidden patterns. Unsupervised learning techniques, in
contrast to supervised learning, cannot be used to solve a regression or classification problem
directly because it is unknown what the output values will be. The most popular unsupervised
learning approach for exploring data analysis to uncover hidden patterns or groupings in the
data is clustering (El Bouchefry and de Souza, 2020). Applications for cluster analysis include
market research, object identification, and DNA sequence analysis. neural networks,
clustering, anomaly detection and methods for learning latent variable models are typical

unsupervised learning techniques (El Bouchefry and de Souza, 2020).
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2.6 Conventional Malaria Image Analysis Techniques

Most algorithms suggested in the literature are centered on the categorization of thin-smear
Giemsa-stained pictures obtained using stained blood smears during light microscopy. They
frequently take the following steps to accomplish their goal of automatically counting all
uninfected and parasitized erythrocytes: (1) pre-processing the blood smear image; (2)
segmenting the erythrocytes from the background; (3) extracting parasite features; and (4)
categorizing the erythrocytes mathematically. Figure 2.3 provides a graphic representation of

this strategy. Below are examples of the methods utilized for each phase.
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Figure 2.3: Schematic illustration of the fundamental image processing process used by the
majority of (conventional) automated systems for diagnosing malaria. (van Driel, 2020).

1. Pre-processing

Pre-processing is frequently the initial step when undertaking digital analysis on any type of
image data with the goal of reducing noise and improving image quality. There are many
well-known filters for noise removal, including median and Gaussian. Each pixel value in
median filters is simply replaced by the median of pixels in a radius around it. In Gaussian
filters, a neighbourhood-weighted average of each pixel is calculated using a Gaussian
distribution function in two dimensions, and that value is then substituted for the original

pixel value. Though more complex filtering techniques have also been used, these
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fundamental filters are frequently used in proposed automated malaria detection systems

because they effectively eliminate noise (Linder et al., 2014).

Low contrast is another frequent issue that is typically resolved using techniques like contrast
stretching or histogram equalization. Contrast stretching is a linear normalization that enlarges
the goal interval for an image's intensity range. The non-linear normalization known as
"histogram equalization” enlarges the histogram regions where intensities are concentrated
and shrinks the regions with low abundance intensities (Nasir et al., 2012). Uneven lighting
and differences in staining colour are additional issues common to Giemsa stained thick and
thin film microscopic pictures. Gray world assumption is one of the colour normalization

methods that can be used to fix this (Lam., 2005).

2. Segmentation

Segmenting the individual erythrocytes is quite simple when the thin smear is of acceptable
quality, The image is sharp and well-lit, with important cells completely separated. It can be
done using simple thresholding methods, such as Otsu's, which separates pixel values into two
bins in an ideal way. When the image is highly bimodal, which is partially obtained through
pre-processing, this works well (Anggraini et al., 2011).

K-means clustering is an excellent substitute to iteratively assign pixels to foreground or
background when bimodality cannot be obtained through pre-processing or when the image is
blurred. Its drawback is that thresholding approaches are less computationally complex
(Savkare et al., 2015). When cells are contacting or overlapping, both approaches have issues.
Many techniques have been suggested to separate individual erythrocytes when this is the
case. Some simply thresholds the larger things repeatedly until only those that are roughly the

right size are left. Under certain conditions, this approach can be effective, but it is not very
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reliable (Mushabe et al., 2013). Another well-liked cell segmentation approach is water
shedding, however for it to work, the objects’ boundary gradients must not be too weak
(Sharif et al., 2012). Circle Hough Transforms have also been utilized and can be effective,
but they err when erythrocytes wander too much from their fixed size and circular shape

assumptions (Zou et al., 2010).

3. Feature extraction

The term "feature extraction™ in pattern recognition refers to the process of calculating values
from the raw data (pixel) data that will best give information for the classification you wish to
do, without information loss or duplication. Colour values of pixels are evidently informative
aspects for diagnosing infection in blood slides containing stained parasites. These can be
used to compute features including co-occurrence matrices, local binary patterns, and
histograms of oriented gradients. Given that there is the greatest contrast between the stained
parasite and the erythrocyte within the green channel of an image in RGB color space, some
authors have expressly suggested solely collecting color data from this channel. Others have
recommended utilizing a combination of the two or converting the image to HSB-space
before extracting the color features. To assist in classification, morphological features can
also compute measurements like relative form measures and granulometry (Devi et al., 2016).
4. Classification

When dividing objects over classes, the objective is to minimise Interclass disparity, based on
the object features supplied. Essentially, an approximate mapping f from the input features x
to the output class y is produced by a classification algorithm, such that f(x)~y. An example
of a simple classification method is the earlier mentioned ‘thresholding’, where objects are

divided into classes based on whether its value falls or rises above a specific level. More
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complicated classification methods often use a training set of previously categorized objects
to discover a classification method with the lowest error rate, which is called ‘supervised
learning’.

‘Unsupervised learning’, where all that is known are the input data and the cost function. a
priori, is also possible. A great number of learning algorithms have been developed, such as
Support Vector Machine (SVM), Bayesian classifiers, K-nearest neighbour classifiers, logistic
regression trees, artificial neural networks, among other things. These have all been used in
the analysis of thin smears containing malaria. A typical goal is binary classification, which
divides objects into parasitized and parasitic erythrocytes. However, attempts have also been
made to further categorize parasitized cells into 20 types (Tek et al., 2010). The standard and
distinguishability of the features that were retrieved from the parasites and erythrocytes are

key factors in the efficacy of these approaches.

2.7 Neural Networks and Malaria Image Analysis

There is currently no standardised comparison for malaria picture classification, therefore
identifying the state-of-the-art is incredibly challenging. Such comparisons are however
feasible in more general picture classification research. It is abundantly obvious from image
classification competitions like the ImageNet Large Scale Visual Recognition Challenge
(INLSVRC) that Artificial Neural Network (ANN)-based deep learning techniques have taken

over the field in recent years (Krizhevsky et al., 2017).
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2.8 Mathematical Principles

2.8.1 Basic principle

An ANN is a classifier that combines feature extraction and classification into a single
algorithm. It was inspired by biological neural networks. The most basic kind of ANN is a

feed forward neural network, commonly referred to as a multilayer perceptron.

Figure 2.4: A feed-forward neural network with three inputs, two outputs, and one hidden
layer is shown schematically (van Driel, 2020).

They consist of an input layer that contains all the data input points, an output layer that maps
inputs to outputs, and (optionally) any number of hidden layers. The ANN is said to be
"completely linked" if all nodes in all layer’s pass outputs to one another, as shown in figure
2.4. Deep neural networks are frequently referred to as such when numerous hidden layers are
incorporated into the network's architecture, and deep learning is the term used to describe
both the network's training and use. Artificial neurons make up the buried layers. The inputs

are transformed in each of these neurons using a non-linear activation function in conjunction
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with an affine transformation. Let the result of a single neuron k in layer I, be denoted a,.
Each neuron uses the vector of outputs of the previous layer al-! as inputs, the first step is to
compute a weighted sum zj, of these as given in Equation 2.4
AT B W) 24

where n denotes the dimension of the preceding layer wi1 ...wkn are weights of the neuron. A
bias bk is added, and the output is then computed by applying some non-linear activation
function g given in Equation 2.5

ai{z g(Z;{ + b;{) (2.5)
This output is then propagated to the neurons in the next layer, where they the same type of
transformation. The total mapping of the inputs x to outputs y is thus a function of all the
weights and biases; "y = f(x,W,b). The correct mapping from the inputs to the outputs is
approximated such that %y =~ y by adjusting the weights and biases during learning. Neural
networks have demonstrated their universality function approximators, meaning that any
mapping can be approximated arbitrarily well, given enough hidden units are used (Chen and
Chen, 1995).
2.8.2 Convolutional layers
A Convolutional Neural Network (CNN) is a type of deep neural network that was developed
specifically with the aim of image classification. A core concept in the architecture of CNNs
is the introduction of convolutional layers. The input of each neuron is a function of only a
small region of the outputs of the previous layer. This input is produced by convolving the
previous layer with a small matrix of weight called the kernel. The kernel slides over the
original image and the convolution of the kernel with the region surrounding the input pixel is

computed by as given in Equation 2.6
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Zij = W Xij = ZaZb Wab . X(i—q)(j—b) (26)
where wap € woo...wnn are the weights in the kernel W ofsize N X N and xi; € xo0 ... Xmn
are the values of the input matrix X with size n X n. The convolution z; is then used to

activate a function, which results in the output y;; as shown in Equation 2.7:
yii = g(zij +b) (2.7)

Equations 2.6 and 2.7 replace equations 2.4 and 2.5. Besides this, the convolutional layers are
implemented in the same way as the standard network layers described above. The neurons in
convolutional layers are structured in a grid, this makes convolutional layer especially suitable
for categorizing structured data, such image data. The kernel essentially acts as a feature
extraction filter, where the learnable weights converge towards features in the image. By
using the same kernel with the same weights on the entirety of the input, an activation map of
these features is produced. Therefore, a feature map is the name given to the convolutional

layer's output. The convolutional layer operation is shown schematically in figure 2.5

| * LT, . ’
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Figure 2.5: Convolution of a 3x3 kernel and a 6x6 input picture is shown schematically.

Padding is utilized to create a 6x6 feature map (van Driel, 2020).
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Givenann x n image X as input,anda N x N kernel W, which slides over the input matrix
with stride 1 (meaning it moves 1 pixel for each convolution), the size of the feature map will
ben — N + 1 x n — N + 1. When a feature map of equal size to the input is desired,
padding can be used around the input matrix. This is also depicted in figure 2.5. Often,
multiple kernels are used in one convolutional layer to produce multiple feature maps. If M
kernels are used, the size of the output (with padding) will be n X n X M. The convolution
described above assumes a single channel input. It is possible to have a multi-channel input to

a convolutional layer. In this case, the convolution can be described as in Equation 2.8:

zij =W=x xk =Y Qadpwk .xk (2.8)
ij k=1 ab  (i—a)(j—b)

Here, x}; refer to the pixels in the kth input channel, the total the quantity of input channels is
K. The kernel in this case takes the size N X N x K, but the output remains two dimensional.
Even though the kernel is now 3D, this is still referred to as a 2D convolution, mainly because
the kernel obstructs the input only in horizontal and vertical direction. It can be thought of as
a stack of filters, where each filter is convolved with one input channel, and the outputs of the
convolution are summed.

The dimensionality should be minimized to avoid over-fitting in CNNs, pooling layers are
often added after convolutional layers. In these, the convolutional layer outputs are

downsampled. The n x n feature map is reduced in size to = x Z, by dividing the feature
pr pr

map in p X p patches and taking some function of the values in this patch as the output. In
average pooling layers, the average of the values is passed, while Max pooling layers pass the
largest value. It is also possible to up-sample through convolution, when a feature map of a

bigger size than the input is desired. This concept was introduced as ‘deconvolution’, but
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‘transposed convolution’ has since been suggested to be a more accurate name (Zeiler et al.,
2010).

2.8.3 Model training

The first step in training the ANN is initialisation. In order to ensure convergence of the
network it is important that the outputs of layers don’t explode or vanish after the first pass.
Initialising the weights and biases in such a way that the standard deviation of the activation
outputs of each layer is normalized is a good way to prevent this. In order to achieve this, the

‘Xavier initialisation’ was proposed, where the weights of a layer are drawn from a uniform

set, which is bounded between +__ v° incomi
(el where n  refers to the number of incoming

network connections, and ni+1 the number of outgoing connections (Glorot and Bengio,
2010). This strategy works well for continuous activation functions that are symmetric about
zero, such as tanh. For asymmetric functions such as ReLU, an initialization dubbed the

‘Kaiming initialization’, in which weights are randomly drawn from a standard normal

distribution and scaled by—Y2 was shown to lead to faster convergence (Dong et al., 2017).

ng
Each training iteration of the network can be divided into three phases: forward propagation
of the data, backward propagation and optimisation. During forward propagation, the
prediction "y of the current network on the data is computed, by computing equation 2.5 for
every neuron in every layer. This prediction is used to determine the loss function's value J,
which is some measure of the total error in the system. Often the Mean Squared Error (MSE)

given in Equation 2.9 is used,

J= 3 & =Yy (2.9)

n
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where y is a vector containing the ground truth of the network. Other options for loss
functions that are commonly used are the Root Mean Squared Error and the Mean Absolute
Error. These loss functions are effective when the targeted output is a continuous value. When
dealing with classification, the target output is one of integer classes. In this case, cross
entropy is a more effective measure of the error in the system, and therefore often used as
loss-function. When dealing with a two class classification problem, the binary cross-entropy

loss function is given by Equation 2.10:

J= =137 y logk) +(1— y).log(1 - (2.10)

n =1

It is possible to add additional terms to the loss function to influence the outcome, for
example, a regularization term that penalizes large weights, which can help reduce over-fitting
can be added. When extra terms are added, the objective function is no longer only a function
of the loss and is therefore referred to as cost function. The next phase is back propagation,
during which the gradient of the cost function is calculated. This is done by computing an
error function 8! at each layer, by calculating the cost function's derivative with respect to the
weighted inputs z&

L9 _ 3 da j_ o
8 =77 = Thggi g = Vd ° 912 (211)

where Vg is a vector of derivatives of / with respect to the components of al. In the output
layer L, these components are known (y= al), making it easy to compute the error of the
output layer. The error of each neuron can then be calculated by propagating this back
through the network. An equation for the error at a layer [ — 1, in terms of its succeeding
layer is given by Equation 2.12

6=t = ((WHréh © g(z-1) (2.12)
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This can be used to compute the errors all the way through the network efficiently. When
errors are known, these can be used to compute the gradient of the network by realizing that

Equation 2.13:

9] :
o = St 5%2{_- = al 16 (2.13)

The gradient is finally used to update the weights and biases during optimization. A gradient
descent method is used for this; since the gradient gives the direction of the largest increase of
the cost function, to minimize it, a step in the opposite direction of the gradient is taken as

given in Equation 2.14:

whewl—a ? b b—a?y (2.14)
ki ki k k ab;(

oWy
This step's dimensions a is called the ‘learning rate’ and it is a tuneable parameter in training
the network. Often, the training samples are divided into batches, and the gradient is
determined for all training samples in the batch before updating the weights. The size of this
batch is a hyper-parameter of the network which can be tuned to achieve the desired
performance. Small batch size leads to stochastic weight updates, while large batch size leads
to slow learning. An epoch is defined as the number of iterations after which all training data
has been passed through the network exactly once.

2.9 Review of Related Works

The use of neural networks to categorize Giemsa-stained, malaria-infected blood smears has
been studied in some publications.

Savkare et al. (2011) gathered Red, Blue, Green (RGB) images and performed typical
histogram equalization, median, and Laplacian pre-processing. They made the image
grayscale, applied Otsu thresholding on the grayscale and green channel, and then blended the
two independent binary masks into one. An average erythrocyte size was determined, and
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items that did not fit this standard were deleted as artifacts or leukocytes, leaving behind a
binary mask of background and erythrocyte objects. Erythrocyte recognition was reported to
have a success rate of 99.43%; however, in calculating this number, objects made up of
several erythrocytes were considered correctly recognized. These items were divided using

water shedding, and any fragments that were too small to be erythrocytes were eliminated.

The eliminated objects were probably the consequence of over-segmentation given the high
accuracy recorded before to the water shedding, but as no separate accuracy is reported
following this step, it is hard to determine how many split erythrocytes were successfully
discovered using this technique. The third moment, the mean, and the standard deviation of
the green channel histogram for the produced objects were computed, along with their shape
and textural characteristics. These were used to employ an SVM to determine whether
erythrocytes were infected; the classification's stated sensitivity and specificity were 93.12%

and 93.17%, respectively.

Plasmodium vivax and Plasmodium falciparum-infected thin blood smears were studied by
Das et al. (2013) to determine their classification. Prior to applying marker-controlled water
shedding to segment erythrocytes, they used gray world assumption to correct illumination
and a geometric mean filter to eliminate noise from their images. There were no specific
performance metrics supplied for the segmentation. The most important features were chosen
by statistical analysis after they computed 96 textural and morphological features altogether.
After that, erythrocytes were classified as infected or non-infected as well as distinguishing

between the 5P. vivax and P. falciparum life stages using a Bayesian classifier and an SVM.
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The Bayesian classifier was able to complete this task with accuracy of 84% (Das et al.,

2013).

A modest dataset of segmented erythrocytes was used, objects were collected by thresholding
and then applying a Hough circle transform to blood slide pictures, Dong et al. (2017) trained
three distinct CNN architectures. They did this to produce equal-sized training and testing
sets, each containing 517 infected cells and 765 uninfected cells, respectively. The
segmentation’s performance data were not provided. On these photos, the LeNet-5, AlexNet,
and GoogLeNet architectures were trained, and accuracy results were reported for each
network as 96.18%, 95.97%, and 98.17%, respectively. This was contrasted with an SVM that
was trained using the same data and methods as (Das et al., 2013) which had an accuracy of

91.66%.

The classification of Giemsa-stained thin films was another area of research for Rajamaran et
al. (2018). They started by using a standard cell segmentation technique to separate the
erythrocytes from blood slide images.

They compiled a collection of 27,558 images of cells, equally split between those with
parasites and those without them, made it available to the public, and then created a CNN-
based classifier for it.

They suggested a three-block, two-convolutional layer network architecture, with the first
block having a max pooling layer, the second having an average pooling layer, and the third
block having three fully linked layers straight after. They attained sensitivity and specificity

of 93.11 and 95.12 on the object level. Later, the effectiveness of their suggested network
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architecture was compared with that of already-used network architectures like VGG-16 and

ResNet-50, and these performed somewhat better.

Instead of using just one image per cell object, Gopakumar et al. (2018) suggested training a
network on a focus stack of RGB cell images. It was asserted that this would enhance
performance in separating parasites from artifacts like dust grains. A two-stage threshold-
based acquisition technique was used to acquire segmented cells. There were no specifics
given regarding the CNN's architecture. There were reported values for sensitivity and
specificity of 96.98% and 98.50%, respectively. However, at 173% of the actual parasitemia,
the estimated parasitemia generated by their entire suggested method was not particularly
close to the truth. In every study so far, a straightforward segmentation technique was paired

with a classifier built on the CNN. With CNN, erythrocyte segmentation is also feasible.

Using a network design where convolutional layers are followed by deconvolutional layers to
build a segmentation mask for slide images, Delgado-Ortet et al. (2020) applied this to the
classification of thin smear images. They used this with an eight-layer CNN to classify the
segmentation output, resulting in a segmentation accuracy more than the test set of 93.72%
and a specificity for malaria identification of 87.04%. The Caffe CNN architecture, which
employs 3 fully linked layers come after 5 convolutional layers is used as a feature extractor
in Mehanian et al. (2017), a technique for the classification of Giemsa-stained thick blood
smear pictures. After being fed into a logistic regression classifier, the network's candidate
objects are divided into parasites and non-parasites with a sensitivity of 91.6% and a

specificity of 94.1%.
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Table 2.1 Summary of previous results

ML Segmentation Performance Classification Performance References
Method Method Method
Supervised  Otsu Accuracy SVM Sensitivity=93.12  Savkare et
Learning thresholding + 99.43% % al (2018).
watershed Specificity=93.17
%
Supervised  Marker - SVM with  Accuracy=84% Das. et al.
Learning controlled feature (2013)
watershed selection,
classification
of
species/stage
Supervised Threshold + - CNN: Accuracy= Dong et al.
Learning Hough circle GoogLeNet 98.17% (2017)
transform
Supervised  Level-set - Custom CNN  Sensitivity=93.12 Rajamaran
Learning based % et al.
algorithm Specificity=95.12 (2018)

%

34



Supervised

Learning

Supervised

Learning

Two stage - CNN
thresholds

Convolutional  Accuracy Custom CNN
+ 93.72%

Deconvolutio

nal NN

Sensitivity=96.98
%
Specificity=98.50

%

Specificity=87.04

%

Gopakumar
et al.

(2018)

Delgado-
Ortet et al.

(2020)

35



CHAPTER THREE

3.0 MATERIALS AND METHODS
3.1 Materials
The equipment and software utilized during this work are listed below:

1 A laptop (64-bit operating system, 4.00 GB RAM, 1.10GHz)

2 Orange Software (Version 3.23.0)
3.1.1 Malaria datasets
The performance of the comparison models was assessed using the NIH Malaria dataset,
which is publicly available on the National Library of Medicine, National Institutes of Health
(NIH). Lister Hill National Center for Biomedical Communications site at

https://Ihncbc.nlm.nih.gov/LHC-downloads/downloads.html. There are 27,558 cell pictures in

the dataset, 13,779 of which were parasitised and 13,779 of which are uninfected.
Plasmodium-containing cells are referred to as parasitized, whilst healthy cells devoid of
Plasmodium are referred to as uninfected. The colour distributions of the cell pictures vary as
a result of various bloodstains that appeared during the data collection process. From the
malaria dataset, examples of segmented images of infected and uninfected red blood cells are
displayed in Figures 3.4 and 3.5.

3.2 Methods

3.2.1 Segmentation method

The Giemsa-stained thin films images were embedded using Artificial Neural Network based
segmentation method: SqueezeNet, a deep model for image recognition that uses 50 times less

parameters than AlexNet to attain accuracy on ImageNet, it automatically retrieves image
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vectors from the server, the image embedding widget was connected to the import images
widget.

3.2.2 Classification methods

In this study, four supervised learning classifiers were used, Logistic Regression, Random
Forest, SVM and KNN and two unsupervised learning classifiers were used namely
hierarchical clustering and K-means. They are succinctly explained as follows:

Random Forest Algorithm: During the classification process, it is aimed to increase the
classification value by using more than one decision tree. Instead of producing a single
decision tree, Breiman (2001) suggested integrating the judgments instead of building a single
decision tree, of a huge number of multivariate trees, each trained with a separate training set.
Training sets are produced from the initial training set using bootstrapping and random feature
selection. The class that receives the most votes in the decision forest was taken to be the final
conclusion, and it includes the entering test data. Each choice tree then offers its own
conclusion.

K-Nearest Neighbors Classifier (KNN): A fresh sample is classified using this supervised
learning technique based on the adjacent training samples that were already present in the
feature field. The test data is mapped to the class that the k neighbors share most when it is
given (Acharya et al., 2012).

Support Vector Machines (SVM): This supervised classification method produces a
separating hyperplane in high dimensional space that was used for classification. For any
class, the hyperplane that was farthest from the nearest training data point gets a respectable

separation (Acharya et al., 2012).
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Logistic regression: is a technique for calculating the likelihood of a discrete output given an
input variable. One with a binary result, such as true or false or yes or no, is the most common
type of logistic regression model. (Edgar and Manz, 2017).

k-means: is employed to divide the cases or variables in a dataset into non-overlapping
groups, or clusters, in accordance with the traits discovered. It is preferred that groupings of
cases or variables have a high degree of similarity within each group and a low degree of
similarity between them. (Friedman et al., 2001).

Hierarchical clustering: creates a tree over the data, frequently in binary. The leaves are
individual data objects, while the root is a single cluster that contains all of the data. Between
the root and the leaves are intermediary clusters that contain subsets of the data. The
fundamental purpose of hierarchical clustering is to produce "clusters of clusters” that
advance higher in order to construct a tree.

3.3 Supervised learning

The methodology flow chart for supervised learning used for this study is presented in figure
3.1. This presents an outline of the steps that will be followed to address the problem to be

solved in this study.
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Figure 3.1: Methodology flow chart for supervised learning
The specific steps followed in implementing supervised machine learning are outline as
follows.
STEP I:
1. Orange Software was downloaded from Google.
STEP II:
1. The Orange Software was launched on the system by clicking on the Orange

application downloaded from Google
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Figure 3.2: Orange canvas.

STEP IlI:
This stage describes how the images were imported
1. Toimport images, the import image widget on the orange canvas was clicked on.

2. The import image widget was double clicked to import the labelled images for the

supervised learning.

3. The image viewer was connected to the import image to check the content of the

directory.
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Figure 3.4: Samples of parasitised images.
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Figure 3.5: Sample of uninfected images.

STEP IV:

The image embedding widget is the most important for the image analytics; Classification
and regressions tasks requires data in the form of numbers. Image Embedding widget
works by converting images to vectors of numbers.

1. Import images was connected to the image embedding widget for the server to
push image through a pre-trained deep neural network and return number vectors
to the widget.

2. Image Embedding widget was connected to Data Table widget to see vector

representation of the images.
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STEP V:
Sampling the data to split data into test and training data sets
1. The Image Embedding widget was connected to the Data Sampler widget
2. The data was divided into equal segments keeping 70% of the data instances in the
sample.
3. Sample Data was clicked on to process the output.
4. Two outputs of Data Table were connected to Data Sampler: Data Sample -> Data and
Remaining Data -> Test Data.

5. The Data Table was renamed as Test Data and Train Data.
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Figure 3.8: Data sampler.
The complete amount of data was split into training and test data for the purpose of training.

The remaining 30% of the data 8267 images is included in the test data, leaving the training
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data with 70% of the total data of 19291 images.
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Figure 3.11: Test data.
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STEP VI:
The learners responsible for classification and regression were introduced.
1. The train data widget was connected to Test and Score widget.
2. Data Sampler was connected to Models.
3. Logistic Regression was connected to Data Sampler widget and output to Test and
Score widget.
4. K-Nearest Neighbours (KNN) was connected to Data Sampler widget and output to
Test and Score widget.
5. Support Vector Machine (SVM) was connected to Data Sampler widget and output to
Test and Score widget.

6. Random Forest was connected to Data Sampler widget and output to Test and Score

widget.
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Figure 3.12: Connecting Logistic regression as classifier
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STEP VII:
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To obtain prediction using the Test Data
1. Test Data was connected to the Prediction widget.

2. Logistic Regression was connected to the Prediction widget.

3. Random Forest was connected to the Prediction widget.
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Figure 3.18: Prediction result.

3.3.1 Model evaluation metrics

The Test and Score performs a tenfold cross validation on images and reports on accuracy, It
assesses the accuracy of each model by comparing the results of the target variables to the
actual data. The Area Under Receiver-Operator Curve (AUC), Classification Accuracy (CA),
F1, Precision, and Recall measures a model's performance.

AUC: AUC's value ranges from 0 to 1. The AUC of a model with 100% erroneous
predictions is 0.0, while the AUC of a model with 100% correct predictions is 1.0.

Accuracy: is the percentage of accurate predictions made by the model. The official

definition of accuracy is as given in equation 3.1:

Accuracy = Number of correct prediction (3 1)
y Total number of prediction '

For binary classification, accuracy can also be assessed in terms of positives and negatives, as

shown below:
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TP+TN
Accuracy = (3.2)
TP+TN+FP+FN

Precision: efforts to determine what percentage of affirmative identifications were actually

accurate. Following is a definition of precision:

TP

Precision = (3.3)

TP+FP

Recall tries to address the following query: What percentage of real positives were

successfully identified? Recall is defined mathematically as follows:

TP

Recall = (3.4)

TP+FN

F1 score demonstrates how precision and recall are balanced. F1 score is described

mathematically as shown in Equation 3.5:

(precisionsrecall) (3 5)

F1 score = 2 % —
(precision+recall)

Sensitivity is a statistic used to assess how well a model can forecast true positives for each

accessible category as shown in Equation 3.6.

TP

sensitivity = (3.6)

TP+FN
Specificity is the statistic used to determine how well a model predicts true positives for each

important category as shown in Equation 3.7.

e TN
specificity =

TN+FP (3.7)

where TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False

Negatives.
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3.4 Unsupervised Learning

The methodology flowchart for unsupervised machine learning to be implemented in this

study is presented in Figure 3.19
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/ N | Hierarchical !
Unlabelled Data -l Model | . : |
\ | Clustering
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Figure 3.19: Methodology flowchart for unsupervised learning.

The following specific steps were employed in performing unsupervised machine learning on
the images.
STEP I:
1. Unlabelled data were used.
STEP II:
1. The Orange Software was launched on the system
STEP Il
This stage is where the image is imported

1. The import image widget was clicked on the orange canvas to import images.
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2. the unlabelled images were imported using the import image widget.
3. The image viewer was connected to the import image to check the content of the

directory.
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Figure 3.20: Import unlabelled images.

STEP IV:

i. step IV of section 3.2.1 was repeated.
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Figure 3.22:

Data table
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STEP V:

To find clusters using the method of k-means

1. The Image Embedding widget was connected to K-means

STEP VI:

To discover groups or subgroups using Hierarchical Clustering

1. Distances widget was connected to Image Embedding

2. Hierarchical Clustering widget was connected to Distances widget.
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Figure 3.23: k-means implementation.
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Figure 3.26: Dendogram implementation.
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CHAPTER FOUR
4.0 RESULTS AND DISCUSSION
4.1 Supervised Learning
Four alternative methods were looked into in order to identify the best and most effective
model. The models include KNN, SVM, Random Forest, and Logistic Regression.
Considering the percentage of correctly categorized target variables in our model's
classification accuracy. Table 4.1 shows that the accuracy of the KNN is 92%, that of SVM is
78%, that of the Random Forest is 99%, and that of Logistic Regression is 95%. The most
accurate machine learning models for this dataset are produced by Random Forest techniques

(99%) followed by Logistic Regression (95%).

Table 4.1: Evaluation Results for different model used (KNN, SVM, Random Forest and

Logistic Regression) for 27558 images

Model AUC CA F1 Precision Recall
kNN 0.985 0.921 0.920 0.925 0.921
SVM 0.918 0.788 0.782 0.821 0.788
Random forest 1.00 0.993 0.993 0.993 0.993

Logistic Regression 0.990 0.955 0.955 0.955 0.955

To obtain the prediction with the remaining 30% test data, we connect our classifiers that are

the logistic regression and the random forest to the prediction widget.
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Figure 4.1: Prediction results for the test data using 30% of the remaining data from 27558

images.

Figure 4.1 shows the prediction results of the test data using 30% of the remaining data, the
data consist of 8267 instances, 2 predictors (Logistic Regression and Random Forest), from the
prediction result it was observed that Logistic Regression and Random Forest classifier were
able to predict correctly most parasitised and uninfected images, however there are few cases

in which misclassification occurred. To get the proportion of instances between the predicted

and actual class, the confusion matrix was introduced.

Confusion matrix reports on actual image classes and predicted classes and provides a data
instance count for each combination. True Positive and True Negative is highlighted with blue

while the misclassified which are False Positive and False Negative are reported with pink.
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From the confusion matrix in Figure 4.2a, while using logistic regression as the classifier, it
shows that 3.5% of the data was actually uninfected but was predicted as parasitised (False
Positive) while 6.5% of the data that was actually parasitised was labelled as uninfected (False
Negative). However, 93.5% of parasitised images were correctly predicted (True Positive)
and 96.5% of the uninfected images were correctly predicted (True Negative). While from
Figure 4.2b using random forest as the classifier, it shows that 9.6% of the data was actually
uninfected but was predicted as parasitised (False Positive) while 9.5% of the data that was
actually parasitised was labelled as uninfected (False Negative). However, 90.5% of
parasitised images were correctly predicted (True Positive) and 90.4% of the uninfected

images were correctly predicted (True Negative).
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Parasitzed Uninfected Parasitized Uninfected ]

Bsited  05%  63% 40N Prsed 05% 05% 4006

Uninfected ~ 33%  %d% 4171 Uninfected ~~ 96% 4% 471

Soctual
Moctual

1N a4 qe
(a) (b)

T Ag o AN Rt

Figure 4.2: Predicted and actual parasitised red blood cells as shown in Confusion matrix of
27558 images using (a) logistic regression (b) Random Forest as classifier.

For Logistic Regression:

sensitivity = 1+ — _ 95 = 55— 9649, (4.1)
TP+FN 935435 97
specificity = W _ %65 _ %5 94% (4.2)

TN+FP 96.5+6.5 103
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For Random Forest:

piae o TP 90.5 90.5
sensitivity = - - —
Y TPTFN . 905196 ~ 1001 — J0-4% (4.3)
specificity = = 04— 17— 9059 (4.4)

TN+FP  90.4+95 999

The logistic regression was observed to have reached sensitivity and specificity. of 96.4% and
94% respectively in predicting parasitised cells and uninfected cells and significantly
outperformed the random forest classifier that obtained sensitivity of 90.4% and specificity of
90.5%. Comparing with methods that were described in Table 2.1, this method outperforms
the one that was proposed by Rajaraman et al. (2018) (sensitivity 93.12%), and the one
proposed by Savkare et al. (2016) (sensitivity = 93.12% and specificity = 93.17%), and the

one proposed by Delgado et al. (2020) (specificity 87.04%)
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Figure 4.3: Scatter plot displaying a 2 dimensional scatter plot visualisation of the whole
dataset.
Figure 4.3 displays a 2 dimensional scatter plot visualisation of the 27558 thin smear Geimsa-

stained images, The data is represented as a set of points, where each point's size value on the
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x-axis determines its location on the horizontal axis and its width value on the y-axis
determines its position on the vertical axis. The data points for parasitised images are

represented in blue and data points for uninfected images are represented in red.
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Figure 4.4: True positive rate against false positive rate shown in the ROC analysis for (a)
parasitised (b) and uninfected photos (whole dataset).

On the x-axis of Figure 4.4 (a,b) curve are graphs of the false positive rate (1-specificity;
likelihood that the target is 1 when the true value is 0). Sensitivity (probability that the goal
equals 1 when the true value equals 0) is plotted against the true positive rate on the y-axis.
The proximity of the curve to the top and left borders shows how precise the classifiers are.
The ROC analysis for Logistic Regression is represented by the green curve, and the ROC
analysis for Random Forest is represented by the orange curve. The graph shows that the

Logistic Regression classifier performed better than the Random Forest classifier.
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Figure 4.5: Mosaic display for two-way frequency table of the entire dataset.

Figure 4.5 shows a mosaic display for the malaria dataset, observing two variables (category
and size) with an interior colouring as either parasitised or uninfected. The diagram shows
that the category parasitised was mostly correctly predicted with few instances of incorrect
prediction that is predicting parasitised images as uninfected images and also the category
uninfected was mostly predicted with few instances of incorrect prediction that is predicting
uninfected images as parasitised. The blue frequency represents parasitised images while red

frequency represents uninfected images.
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Figure 4.6: Lift curve for (a) parasitized (b) uninfected images (whole dataset).

The relationship between the number of cases that were expected to be positive and those that
really are positive is depicted by the graph in figure 4.6. The cumulative number of cases is
plotted on the x-axis, while the cumulative number of true positives is plotted on the y-axis.
We examined two different classifiers—Logistic Regression and Random Forest classifiers—
as well as their performance against a random model were examined by sending them to a lift
curve. The green line shows the performance of Logistic Regression, while the orange line
shows that of Random Forest. It can be seen from the graph that Logistic Regression is the

best classifier.
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Figure 4.7: Frequency distribution for each attribute value in the whole dataset.

The graph in Figure 4.7 shows the frequency with which each attribute value appears in the
dataset while using Logistic Regression classifier. The first bar shows the distributions for
parasitised images, the bar in blue which shows higher frequency represents the parasitized
images predictions that are actually correct, while the bar in red which shows very low
frequency represents uninfected images that were predicted as parasitised. The second bar
shows the distributions for uninfected images. The bar in blue which shows a lower frequency
represents parasitised images that were predicted as uninfected, while the bar in red which

shows a higher frequency represent the uninfected images predictions that are correct.
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Figure 4.8: Linear projection showing a projection of the Malaria dataset.

From Figure 4.8 it was observed that width, size, and height are the best attributes separating
parasitised images from uninfected images. The blue point represents parasitised images
while the red points represent uninfected images.

Now reducing the images to 5000 and running the images to 5000 and running test and score,
the accuracy of KNN is 90%, SVM is 79%, Random Forest is 99% and Logistic Regression
returned an accuracy of 96%. These results are summarised in Table 4.2. By analysing this,
we can see that Logistic Regression and Random Forest algorithms for this dataset, develop

the most precise machine learning models.
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Table 4.2: Evaluation Results using test and score for 5000 images

Model AUC CA F1 Precision Recall
Knn 0.976 0.908 0.908 0.912 0.908
SVM 0.926 0.796 0.794 0.816 0.796
Random forest 1.000 0.994 0.994 0.994 0.994

Logistic Regression 0.995 0.968 0.968 0.968 0.968

Due to their impressive performances, the models we are using for this study is the Logistic
Regression and Random Forest. Using the remaining data to test our models, we have an

illustration given in Figure 4.9.
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Figure 4.9: Prediction result of the test data (selected 5000 images) for logistic regression and

random forest.
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Figure 4.9 shows the prediction results of the test data using 30% of the remaining data, the
data consist of 1500 instances, 2 predictors (Logistic Regression and Random Forest), from the
prediction result it is observed that Logistic Regression and Random Forest classifier were able
to predict correctly most parasitised and uninfected images, however there are few cases in

which misclassification occurred.

Predicted Predicted
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g
] 667 833 1500 13 1500
(@) (b) !

Figure 4.10: Predicted and actual parasitised red blood cells as shown in Confusion matrix of

5000 images using (a) logistic regression (b) Random Forest as classifier.

Confusion matrix reports on actual image classes and predicted classes and provides a data
instance count for each combination. What was gotten right is highlighted with blue while the
misclassified are reported with pink in Figure 4.10.

From the confusion matrix in Figure 4.10a, while using logistic regression as the classifier, it
shows that 4.8% of the data was uninfected but was predicted as parasitised while 12.2% of
the data that was parasitised was labelled as uninfected. However, 87.8% of parasitised
images were correctly predicted and 95.2% of the uninfected images were correctly predicted

while from Figure 4.10b, using random forest as the classifier, it shows that 13.8% of the data
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was uninfected but was predicted as parasitised while 14.1% of the data that was parasitised
was labelled as uninfected. However, 85.9% of parasitised images were correctly predicted

and 86.2% of the uninfected images were correctly predicted.
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Figure 4.11: Scatter plot showing a 2 dimensional scatter plot visualisation for the 5000-

image data.

Figure 4.11 displays a 2 dimensional scatter plot visualisation of the 5000 thin smear Geimsa-
stained images, The data is represented as a set of points, where each point's size value on the
x-axis determines its location on the horizontal axis and its width value on the y-axis
determines its position on the vertical axis. The data points for parasitised images are

represented in blue and data points for uninfected images are represented in red.
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Figure 4.12: ROC Analysis for (a) parasitised images (b) uninfected images showing plots of

true positive rate against false positive rate for 5000-image data.

On the x-axis of Figure 4.12 (a,b) curve are graphs of the false positive rate (1-specificity;
likelihood that the target is 1 when the true value is 0). sensitivity (probability that the goal
equals 1 when the true value equals) is plotted against the true positive rate on the y-axis. The
proximity of the curve to the top and left borders shows how precise the classifiers are. The
ROC analysis for Logistic Regression is represented by the green curve, and the ROC analysis
for Random Forest is represented by the orange curve. The graph shows that the Logistic

Regression classifier performed better than the Random Forest classifier.
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Figure 4.13: Mosaic display showing a two-way frequency table for the 5000-image data.

Figure 4.13 shows a mosaic display for the malaria dataset, observing two variables (category
and size) with an interior colouring as either parasitised or uninfected. The diagram shows
that the category parasitised was mostly correctly predicted with few instances of incorrect
prediction that was predicting parasitised images as uninfected images and also the category
uninfected was mostly predicted with few instances of incorrect prediction that was predicting
uninfected images as parasitised. The blue frequency represents parasitised images while red

frequency represents uninfected images.

72



(a) - | (b) |
Figure 4.14: Lift curve for (a) parasitised (b) uninfected images (5000-image data) showing

the relation between predicted positive and actual positive.

The relationship between the number of cases that were expected to be positive and those that
really are positive is depicted by the graph in Figure 4.14. The cumulative number of cases is
plotted on the x-axis, while the cumulative number of true positives is plotted on the y-axis.
Two different classifiers—Logistic Regression and Random Forest classifiers—as well as
their performance against a random model were examined by sending them to a lift curve.
The green line shows the performance of Logistic Regression, while the orange line shows
that of Random Forest. It can be seen from the graph that Logistic Regression is the best

classifier.
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Figure 4.15: Frequency distribution for each attribute value appears in the 5000-image data.

The graph in Figure 4.15 shows how many times each attribute value appears in the dataset
while using Logistic Regression classifier. The first bar showed the distributions for
parasitised images, the bar in blue which shows higher frequency represents the parasitized
images predictions that are correct, while the bar in red which shows very low frequency
represents uninfected images that were predicted as parasitised. The second bar showed the
distributions for uninfected images. The bar in blue which shows a lower frequency represents
parasitized images that were predicted as uninfected, while the bar in red which shows a

higher frequency represent the uninfected images predictions that are correct.

74



size

) Parasitized

© Uninfected

Figure 4.16: Linear projection showing a projection of the Malaria dataset (5000-image data).

From Figure 4.16 it is observed that width, size and height are the best attributes separating
parasitised images from uninfected images. The blue points represent parasitised images

while the red points represent uninfected images.

4.2 Unsupervised Learning

4.2.1 Hierarchical clustering

To put the data into logical groups, hierarchical clustering was used to discover groups or
subgroups, the images distance was used to create hierarchical clustering, Dendograms, which
are trees that show the structure of the identified clusters and the separation between them, are
displayed because of hierarchical clustering. To make the dendogram more telling. The image
viewer was connected to the dendogram to see images in each cluster.

It identifies clusters that are closest to each other and merge the most similar clusters as

illustrated in figure 4.17.
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Figure 4.17: Hierarchical clustering displaying the dendogram. Hierarchical clustering was

established using the cosine distance.
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Figure 4.18: Image viewer showing uninfected images clustered together.

I Image Viewer

Info

15 of 16 images displayed.

Image Filename Attribute

[

M | Send Automaticalty

C39P4thinF_origin
al_IMG_20150622
_110900_cell_19

C

39P4thinF_origin

C39P4thinF_origin
al_IMG_20150622
_105102_cell_83

C39P4thinF_origin
al_IMG_20150622
_105335_cell_20

C39P4thinF _origin
al_IMG_20150622
_110900_cell_&

C39P4thinF_origi

C39P4thinF_origin
al_IMG_20150622
7105559 _cell_1

-
C33P4thinF _origin

al_IMG_20150622
_111206_cell_78

C39P4thinF_origi

C39P4thinF_origin
al_IMG_20150622
_110115_cell_112

C39P4thinF_origin
al_IMG_20150622
_111206_cell_87

C39P4thinF_origin
al_IMG_20150622
_110115_cell_138

C39P4thinF_origin
al_IMG_20150622
_111206_cell_92

oy

? B

C39P4thinF_origi

Figure 4.19: Image viewer showing infected images clustered together.
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Figure 4.17 shows a hierarchical cluster analysis displaying a dendogram, Hierarchical
clustering was established using the cosine distance. It grouped similar images from the
malaria datasets into groups known as clusters. The dendogram shows several clusters, each
of which is distinct from the others and contains objects that are generally like one another.
Figure 4.18 shows the results from selecting a cluster, it is observed that all the images in that
cluster are like each other as they are all parasitised images. Figure 4.19 shows the results
from selecting another cluster, it is also observed that all images are homogenous and
heterogeneous from the images in the other cluster. This shows that the clusters indeed make
sense as images that are parasitised are clustered together while those that are uninfected are

also clustered together.

4.2.2 k-means algorithm implementation

k-means algorithm is often used to find interesting groups of data instances such as
segmentation of customers based on their shopping habit, finding similar documents, or
grouping tweets based on the contents. k-means can also be used to find clusters, the k-means
discovered two clusters as expected. To confirm that silhouette score was used, and it gave the

choice of two clusters as the best.
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Figure 4.20: Silhouette scores giving choice of two clusters.

From Figure 4.20, k-means algorithm was implemented, to evaluate the result, the best choice
of number of clusters for the dataset was investigated using k-means, a choice of the best
number of clusters from 2 to 8 was requested and the Silhouette scores gave a choice of two
clusters, which is the expected result since we are grouping the images into two groups that is
either parasitised or uninfected. To visualize this implementation, k means could be connected

to any visualization. A scatter plot for this implementation is given in Figure 4.21.
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Figure 4.21: Scatter plot showing the two clusters.

In Figure 4.21, a two-dimensional scatter plot visualization of the k-means algorithm is
shown. The data is represented as a set of points, with each point's size value on the x-axis
determining its position on the horizontal axis and its width value on the y-axis determining
its position on the vertical axis. Due to the usage of an unlabelled dataset and the algorithm's
inability to determine the classes of the photos, the data points were represented as clusters 1

and 2, respectively.
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Figure 4.22: Multidimensional scaling (MDS) showing two-dimensional projection of points.

Figure 4.22 shows a multidimensional scaling (MDS) displaying a two-dimensional
projection of points, it iteratively moves around in a simulation of a physical model, there is a
force which push two points that are too close to each other together and pulling points that
are too far apart away. The data points are represented as cluster 1 and cluster 2 since
unlabelled dataset was used and the algorithm have no way of knowing the classes of the

images.
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CHAPTER FIVE
5.0 CONCLUSION AND RECOMMENDATIONS
5.1 Conclusion
The aim of this work was to contribute to the development of supervised and unsupervised
machine learning algorithms for detecting malaria parasites in thin blood smear images using
Orange software. Through review of previous work on this subject, the use of neural networks

was made as a promising technique for automated image interpretation.

Two methods of machine learning algorithm were used, supervised and unsupervised. For
supervised learning, four classifiers were used which include Logistic Regression, Random
Forest, KNN and SVM. These classifiers were used to train 70% of the datasets, a cross
validation of the dataset was done and an accuracy of 95% for logistic regression, 99% for
random forest, 92% for KNN and 78% for SVM was obtained. Since logistic regression and

random forest had the highest accuracy, they were used to test the remaining 30% of the data.

Using logistic regression as the classifier, it shows that 3.5% of the data was uninfected but
was predicted as parasitised (False Positive) while 6.5% of the data that was parasitised was
labelled as uninfected (False Negative). However, 93.5% of parasitised images were correctly
predicted (True Positive) and 96.5% of the uninfected images were correctly predicted (True

Negative).

Using random forest as the classifier, it showed that 9.5% of the data was actually uninfected

but was predicted as parasitised (False Positive) while 9.6% of the data that was actually
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parasitised was labelled as uninfected (False Negative). However, 90.5% of parasitised
images were correctly predicted (True Positive) and 90.4% of the uninfected images were
correctly predicted (True Negative). A sensitivity and specificity of 96% and 94%
respectively was achieved with Logistic regression classifier while a sensitivity and
specificity of 90.4% and 90.5% was achieved with Random Forest Classifier. All the

classifiers correctly predicted more than 90%.

For unsupervised learning, Hierarchical clustering and k-means was used to cluster similar
images together, hierarchical clustering was able to group parasitised images in one cluster
and uninfected in another cluster although there were few instances where parasitised and
uninfected were clustered together. While k-means also discovered two clusters from the data

sets.

As a result, it is concluded that the developed machine learning algorithm cannot entirely
replace the requirement for experienced professionals in the interpretation of thin blood
smears for malaria diagnosis. But greater than 90% accuracy in automatic determination is a
major step in the right direction. Furthermore, when the results of the classification are
presented to an expert in the visual way that was shown here, this expert can easily determine
the true infection status of the objects predicted as infected. This would greatly reduce the
number of cells that need to be evaluated. It is therefore believed that the method can
contribute to reducing the diagnostic burden and increasing the availability of malaria

diagnostics globally.
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5.2 Recommendations

The following recommendations are made:

This study's focus was only on the interpretation of P. Falciparum Giemsa-stained
thin blood smears. This was chosen, as it is commonly the most widely accepted
technique for the microscopic diagnosis of malaria, as well as the diagnostic
method most limited by the time consumed to interpret the data. The choice to use
only P. Falciparum infected samples was made based on availability, and because
this is the most predominant species and most deadly species in the world. Since
no attempts have been made to automatically distinguish between different
species in this experiment, we strongly suggest that this be a focus of future study.
Future study in this field is highly encouraged. To automatically interpret blood
films, a modest computing device or mobile application platform that runs the
algorithms can be integrated into the microscope design.

Additionally, fluorescence microscopy is another malaria microscopy technique
that is already used and could benefit from automation. However, this was not
tested because there was no such data available; as a result, it is suggested that this

be the subject of future research.

5.3 Contribution to Knowledge

This study established that supervised and unsupervised machine learning algorithms for

detection of malaria parasites in thin blood smears. Using 27558 thin Giemsa-stained images

from the National Institute of Health, USA, k-nearest neighbour (KNN), support vector

machine (SVM), random forest (RF) and logistic regression (LR) were employed in training

the data. Classification accuracy of 90.8%, 78.8%, 99.3% and 95.5% for kNN, SVM, RF and

84



LR respectively. Hierarchical and k-means clustering algorithms were used for unsupervised
model training of the dataset. Silhouette score of 0.218 was found for two clusters during
implementation of k-means clustering. These results showed that random forest algorithm
produced the best classification results when malaria disease state is known while k-means
clustering performed well for cases in which malaria disease state is unknown. This algorithm
when integrated into the microscope design can automatically detect malaria parasite, thus,
give automatic interpretation of images for malaria diseases. That has several advantages
compared with manual diagnosis, such as providing a more reliable interpretation of blood
films, allowing more patients to be attended with more precision and accuracy, finally it

would leads to the reduction in diagnostic costs.
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