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ABSTRACT 

 

Motor bearings have over the years been one of the components which aids efficiency in 

industries as it helps smooth running of rotary machines in industries. However, it is 

important to note that the rate of degradation of motor bearings vary from one machine 

to another. This phenomenon is unavoidable but vary as a result of operational and 

environmental factors such as the time of operation of machines where installed, ambient 

temperature, load factor and maintenance ethics like constant oiling. For sustainability of 

machines, safe points of these factors have to be considered to avoid anomaly of bearings 

that could lead to high maintenance cost such as bearing faults, fatigue and accelerated 

aging or even complete breakdown which accounts for 30% to 40% failures of machines. 

With this effect, production in industries could halt as a result of prolonged downtime due 

to anomaly. Furthermore, it is important to note that complete breakdown could be 

catastrophic especially in automobiles and heavy duty production machines which could 

as a result of sudden failure during operation, jet parts from the machine leading to 

accidents and sometimes death. This therefore suggests that consistent monitoring of the 

health status of bearings is important so as to ensure efficiency and avert complete 

breakdown. Aside that, it is also important to detect this anomaly much earlier via 

sensitive methods so as to be fore warned. However, to avoid downtime, it is a good 

practice to constantly monitor the component so as to aid early detection of anomaly 

before a break down. Over the years, a lot of researches has been done in the detection of 

anomaly in motor bearing using time sequence data which has evolved via the use of 

Artificial intelligence (AI) these days. However, since bearings can run for months or 

years without anomaly, there is a need to use an unsupervised AI model which could be 

trained with data characterized with normal bearing operation and can flag an anomaly 

when an outlier is detected. Despite the use of AI techniques, often times, anomaly is 

predicted at a high threshold signifying low sensitivity. This is because of the sequential 

data generated is often laced with noise from sensor and therefore characterized by low 

signal to noise ratio (SNR). Furthermore, for better accuracy, the noise within the data 

generated as a result of the sensors used has to be taken into consideration and worked 

upon using a digital signal processing technique such as Fast Fourier Transform (FFT) so 

as to aid fast computation and anomaly detection at low signal to noise ratio. To improve 

detection, this research work presents the Development of an Anomaly Detector for 

Motor Bearing Condition Monitoring using Fast Fourier Transform (FFT) and Long Short 

Term Memory (LSTM)-Autoencoder (AE). This was achieved via the use of Fast Fourier 

Transform (FFT) and Long Short Term Memory (LSTM)-Autoencoder which helped to 

detect the anomaly at a threshold less than 0.2 and also attain an accuracy of 91.3%. 
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CHAPTER ONE 

1.0 INTRODUCTION 

1.1 Background to the Study 

Motor bearings are regarded as one of the most important parts of rotating machines such 

as turbines, industrial machines and automobiles (Choudhary et al., 2020; Glowacz, 

2019; Jin et al., 2019; Novaes et al., 2019). The importance of this component cannot be 

over emphasized since they are responsible for the smooth running of the rotary parts of 

machines. Therefore, it is important to detect any anomaly behavior in such component. 

Before now, the traditional way of detecting anomaly is after complete breakdown. This 

however, is costly for industries. In the quest to reduce this cost, researchers have device 

a means of continuous monitoring of the machine via the use of sensors to convert 

physical occurrence into electronic signals (Jiang et al., 2019). In the analysis of the 

signals which is characterized with repeated patterns, there are instances when a 

particular pattern is off the regular pattern as shown in Figure 1.1. This is called anomaly 

or outlier (Chalapathy and Chawla, 2019). Therefore, anomaly detection is the process 

used to highlight signals that have patterns different from the regular pattern that are 

repeating. According to Hawkins in 1980, he defined anomaly as an observation that 

deviates with huge significance from other observations that have similar 

patterns.(Chalapathy and Chawla, 2019). 

 

Figure 1.1: Illustration of anomaly (Chalapathy and Chawla, 2019). 
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These days, outliers have been the intelligent way for early detection of anomaly carried 

out without the machine breaking down. Failure to detect anomaly early may lead to the 

total failure of such machine which is costly in an industrial outfit. (Lee et al., 2018; Jiang 

et al., 2019; Mohendra et al., 2018). This (early detection of anomaly) can only be 

ascertained via the continuous monitoring of the machine which is called in line 

monitoring (Jiang et al., 2019). Early anomaly detection also known as prognostic Health 

Management of machines, according to Lee et al. (2018) or condition monitoring 

according to Jiang et al. (2019) involves conventional anomaly detection and prediction 

model which has the ability to notice aging in machine parts. These make use of signals 

which are preprocessed to enhance feature extractions of the signal data (Jiang et al., 

2019). 

In recent times, Artificial Intelligence has been employed in the detection of anomaly in 

machines. Some techniques used includes the Support Vector Machine (SVM), Bayesian 

Classifier, Neural Networks and deep learning methods (Jiang et al., 2019). However, the 

imbalanced nature of the dataset which is generated from sensors poses challenges in 

accurate anomaly detection especially in terms of classification since the data isn’t 

labelled. However, it is important to note that these data in time series format is needed 

to predict time for anomaly and time for complete breakdown. 

According to Chalapathy and Chawla (2019), the reason why the use of Artificial 

Intelligence which includes the use of machine learning and deep learning is most 

preferred compared to the traditional methods of anomaly detection is that unlike the 

traditional method which data may not be available to suspect an anomaly, the use of 

Artificial intelligence (AI) makes use of data generated so as to detect variant. This 

however, aids detection before breakdown. Among these AI approaches, deep learning 

is observed to outperform the traditional machine learning because of its flexibility in 
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learning and representation of data in hierarchical form in a neural network thereby 

increasing good performance in detection (Chalapathy and Chawla, 2019). As a result, 

its applications have been boundless as it was used by Adewumi and Akinyelu (2017) to 

detect financial fraud, used to detect intrusion in cyber space by Kwon et al. (2019), used 

for Big data anomaly detection in the internet of things (IoT) (Mohammadi et al., 2018) 

and medical image analysis (Litjens et al., 2017). According to Lee et al. (2018) the use 

of deep learning for anomaly detection has been on the increase because of its ability to 

receive signal data and automatically preprocessing it before extracting features needed 

(Lee et al., 2018). This therefore validates the use of deep learning approach in this 

research. Generally Deep Learning Anomaly Detection is categorized based on the 

following: 

Type of Input Data: The type of DAD used in detection of anomaly could be dependent 

on the type of data used, there are two categories of data. They are sequential data which 

includes voice, text, time series data, and the non-sequential data. The later includes 

images and other kinds of data. According to Chalapathy and Chawla (2019), Deep 

Learning models known for detection of anomaly using sequential data includes 

Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Long 

Short Term Memory (LSTM). While the techniques often used for non-sequential data 

remains CNN, autoencoders and its variants. These data can further be categorized as 

high dimensional or low dimensional data depending on the number of attributes that is 

within it. 

Based on Label Availability: The target colon of Data can be labeled or unlabeled. This 

helps to categorize DAD into Supervised, Semi supervised and Unsupervised. 
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Supervised DAD involves the use of data with labeled data to train a binary or multi-class 

classifier so as to detect anomaly. The binary classification usually will have two classes 

which can be Normal and Abnormal. While the multi-class DAD data will have targets 

having more than two classes. However, it is important to note that this method of 

anomaly detection is not so popular because data are not often labelled in real life 

application. 

Semi Supervised DAD involves the use of data which are partially labelled. In this type 

of DAD, the data for the normal sequence is easily labeled. With this, outlier is detected. 

An example of such is the use of Autoencoders. In other words, the model is trained with 

normal data so that anomaly can be detected when abnormal data is detected. 

Unsupervised DAD uses the intrinsic properties of data to detect anomaly. In other words, 

this aids the automatic labelling of unlabeled data. This method has been observed to 

outperform the traditional Principal Component Analysis (PCA), SVM, Vapnik and 

Isolation Forest techniques which often is applied in health and cyber space. (Chalapathy 

and Chawla, 2019). 

With all these DAD approaches towards the detection of anomaly, the use of 

unsupervised learning especially autoencoders is chosen in this research because of its 

application in real life scenarios. Furthermore, the need for LSTM cannot be 

overemphasized since it is often used for large sequence data. 

In general, to use any deep learning technique for the detection of anomaly, huge data is 

needed. It is important to note that since the data generated is done from signals which 

comes from sensors, the actual signal or rather the raw signal may be characterized with 

electrical noise and low signal to noise ratio (SNR). According to Vo et. al. (2017), these 

raw signals are often times not suitable for outlier detection. This is because even though 
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deep learning has overwhelmed other methods such as the use of Support Vector 

Machine (SVM), Artificial Neural Network (ANN), and Adaptive Neuro Fuzzy 

Inference (ANFI), during the process, the variable dependencies can be used without 

indicating the outlier detection. Detection may be difficult as noise levels can give us 

false alarms or no alarm. In other words, the generation of weak signals by some of these 

sensors can hinder detection as the threshold which is calculated based on error margin 

of normalcy may have been set too high based on stronger signals. Therefore, the higher 

this threshold, the less effective the approach will be in detecting weak signals. 

Furthermore, the use of time stamped data directly may be cumbersome and slow in the 

process of anomaly detection. To achieve detection faster with better sensitivity and 

accuracy,  Jabczyńskę and Szczęśniak (1995)  proposed Fast Fourier transform (FFT) as 

a robust technique for data characterized by low SNR. This helps to convert sequence 

data from time domain to frequency domain. With the use of this technique, feature 

extraction can be done easily (Jabczyńskę and Szczęśniak, 1995; Vo et al., 2017) even 

though salient especially in low SNR characterized data. Other benefits of using the FFT 

technique is that, it aid anomaly detection faster as it reduces computational time by 

reducing complex multiplications and acts as a filter (Tan et al., 2017) to aid the cleaning 

up of the data. Therefore, this research presents the Development of Anomaly detector 

for motor bearing condition monitoring using Fast Fourier Transform and LSTM-

Autoencoder. 

1.2 Statement of the Research Problem 

Anomaly especially in bearings is one reason for the down time of machines. Recently, 

a lot of researchers have done extensive work towards anomaly detection. In their 

research which involves the use of data generated from sensors, large thresholds are 

observed as a result of the use of sensor data which is characterized by noise and therefore 
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characterized with low SNR irrespective of the technique used. This low SNR often times 

results into false alerts of anomaly and the inability for the deep learning models to sense 

anomaly of weak signals (low sensitivity). To improve detection of anomaly, it is 

important to clean up the data using digital signal processing techniques like FFT so as 

to be able to detect anomaly at lower thresholds which also indicates improved 

sensitivity.  

Thus, this research work aim to detect anomaly in the presence of noise and low SNR 

through development of anomaly detector for motor bearing condition monitoring using 

Fast Fourier Transform (FFT) and Long Short Term Memory (LSTM)-Autoencoder. 

1.3 Aim and Objectives 

The aim of this research work is to develop an Anomaly detector for motor bearing 

condition monitoring using Fast Fourier Transform and Long Short Term Memory 

(LSTM) - Autoencoder. This will be achieved via the following objectives. 

1. To clean the noise contained in the data and transform the data using Fast Fourier 

Transform (FFT). 

2. To develop anomaly detection model based on Long Short Term Memory 

(LSTM) – Autoencoder (AE). 

3. To hybridized the approach in (1) and (2) into the anomaly detection model. 

4. To evaluate the performance of the approach in (3) using threshold and accuracy 

performance metrics. 

1.4 Significance of the Study 

From literature, it is obvious that as a result of how important bearings are in machines, 

several approaches has been used to detect anomaly. This approaches ranges from the 

use of supervised learning to semi supervised learning to unsupervised learning. 



7 
 

However, as a result of imbalance dataset and difficulty in getting complete labeled 

datasets, unsupervised learning has been used more of late. In line with this, lot has been 

done using autoencoders. However, using autoencoders alone may be advantageous since 

it has the ability to capture datasets from low signal, but, owing to the fact that the 

features are temporal, one will need an autoencoder that will also be able to remember 

the immediate past features of the data. This therefore, justifies the reason why we use 

LSTM Autoencoder in this research. This however suggests that LSTM Autoencoders 

are preferred for these kinds of challenge. Despite the fact that many researches has been 

done on this, literatures reviewed did not consider improvement on sensitivity. They only 

focus on accuracy. However, as earlier mentioned, the use of this technique (LSTM 

Autoencoder) may not be fast in the detection of anomaly especially with time sequence 

data. For that reason, this research uses FFT with LSTM Autoencoder since it has been 

observed from reviews that the use of digital signal processing especially FFT could aid 

signal cleanup and faster computation. 

1.5 Scope of the Study 

The scope of this research is limited to the detection of anomaly in motor bearings at a 

threshold lower than 0.2 which was achieved by (Ahmad et al., 2021). 
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CHAPTER TWO 

2.0                                       LITERATURE REVIEW 

Over the years, as a result of the quest to run efficient industrial process involving the 

use of rotary machines, anomaly detection in motor bearing have been looked into by a 

lot of researchers. A lot of researchers have come up with techniques to detect impending 

defects in motor bearing before it becomes permanent damage. These efforts are 

reviewed in this chapter. 

2.1 Data Generation for Anomaly Detection 

Data generation has over the years been done from signals of different kinds. These 

signals includes acoustic signals, infrared thermograph method and, vibration signal 

(Choudhary et al., 2020; Glowacz, 2019; Jin et al., 2019). According to Glowacz (2019), 

the most efficient is infrared thermograph method. This is because, apart from it being a 

contactless method of generating data, the data generated is not affected by the load 

vibrations and speed fluctuations that affect the vibration method of data generation. 

Also, it is not affected by background noise which affects the acoustic method of data 

generation. The drawback of this method of data generation is it being too expensive to 

deploy. Also, the method may generate insignificant information and noise in the image 

generated which may affect accuracy of predictions.   

Another way to generate data is via acoustic signals (Glowacz, 2019). This method which 

makes use of a pickup microphone is contactless. However, its limitation is that, it picks 

up background noise which may not be useful. These noises could lead to false trigger or 

no trigger if not properly handled.  
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The use of vibration remains the most widely used (Jin et al., 2018). Though, it is a 

cheaper medium and can analyze electrical fault and mechanical fault (including bearing 

anomaly) in machines, it is limited as it is affected by random noise, speed fluctuations, 

load vibrations and background noise (Glowacz, 2019; Hruntovich et al., 2019). 

However, because of its cheap nature this kind of data generation is considered in this 

research.  

2.2 Fault Detection in Motor Bearing via Vibration Analysis 

For better industry, by providing smart ways of operation, many scientist and researchers 

have come up with ways to evaluate the most crucial part of the industrial machine. One 

of such machines is the motor bearing which aids the smooth running of the machine to 

provide efficient services. The reason for the analysis of the part remains to avert down 

time which may result from the brake down of this component. 

In literatures, a lot of method have been employed to aid the analysis of this part. One of 

the methods includes the use of vibration analysis (Khadersab and Shivakumar, 2018). 

This analysis involves the collection of vibrational data which is analyzed using different 

techniques which includes the use of Fourier Transform, (FT), Fast Fourier Transform 

(FFT), Inverse Fast Fourier Transform (IFFT), Short Time Fourier Transform (STFT) 

and Wavelet Transform (WT). 

 Khadersab and Shivakumar, (2018) presented how FFT and IFFT was used to analyze 

failure in bearings. In their submissions, the healthy vibration data and the data 

characterized with faults were compared using these techniques to accurately access the 

failure in the bearing. In their experiment a piezo-electric accelerometer sensor was used 

to take vibration data. The data acquired is interfaced with an FFT algorithm called EL-
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Calc. Afterwards, the FFT signal was used to generate IFFT and spectrogram. At the end 

of the experiment, defects were effectively identified. 

According to Sulka et al. (2019) causes of unwanted vibration and the extent of fault can 

be estimated. In their presentation, FFT and STFT was used to determine defect in 

bearings. The difference between these two techniques is that unlike FFT that makes no 

use of a time window, STFT uses a time window to achieve analysis of a particular 

vibration data. After using both techniques, it was observed that FFT shows larger 

amplitude in the vibration signal analyzed. Also, the amplitude depends on the depth of 

damage.  

In treating vibrational signal which are non-periodic, Abouelanouar et al. (2018) worked 

on fault detection via the use of wavelet transform. In their review, WT was used to detect 

faults in gears and bearings. In his conclusion, WT is a powerful tool for detection of 

faults (Abouelanouar et al., 2018). 

Other applications where digital signal processing has been used include detection of 

tampering in images used in multimedia. This was presented by Kanwal (2019). In their 

presentation, the method used to aid the detection of tampering was FFT with local 

texture descriptors together with SVM classifier. At the end of the research, detection 

accuracy was increased. 

In a review done by Barot and Kulkarni (2021), detailed presentation was done on the 

different techniques needed to aid the detection of anomaly. Generally, it was 

emphasized that there is a need to use digital signal processing which involves the use of 

FFT, WT, Discrete Wavelet Transform (DWT) and Wavelet Packet Transform (WPT). 

Furthermore, it was stated that the need for denoising cannot be over emphasized. Also, 

weak signals have to be extracted since the signals are always masked with noise. One 
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way to do this includes the use of wavelet-based signal denoising which aids the increase 

of the signal to noise ratio. Aside the signal processing, the author presented a review of 

artificial intelligent methods used in diagnosing faults in bearings. According to the 

author, diagnosis could be to determine whether there is fault in a machine or not, to find 

the exact position of the fault and lastly to predict the trending of fault development. For 

fault recognition, the author presented convex optimization, mathematical optimization 

as well as classification, statistical learning and probability-based methods. Types of 

classifiers that can be used includes the k-Nearest Neighbor, Bayesian classifiers, 

Support Vector Machine and Artificial Neural Network which are all part of artificial 

intelligence. 

All these are diagnostic measures to machine health as described by Lee et al. (2018). 

This however, will not aid the vision of smart industry which involves data gathering via 

internet of things (IoT), cloud computing and big Data analysis to aid prognostic 

measures to avoid break down. This industry is also known as industry 4.0 (Lee et al., 

2018). In their presentation, a lot was reviewed on the different machine health 

maintenance and the different technique used, some of which includes the use of 

analytical models, experimental model, fuzzy logic, Time domain analysis, Fourier 

series, Numerical model, Artificial Neural Network, WT and much more. To achieve 

this, different type of data gathering techniques were reviewed. This includes vibrational 

signals, Acoustic signals via the use of acoustic emission sensor, force signal, 

temperature, and electric signals. Furthermore, techniques used to detect anomaly was 

reviewed. These techniques includes the use of Big Data, Hybrid algorithms, machine 

learning algorithm such as support vector machine (SVM), statistical model, neural 

networks and Empirical mode decomposition. 

 



12 
 

2.3 Machine Learning used in Anomaly Detection 

Machine learning is an aspect of data science that aids machine intelligence. This 

paradigm describes the ability for machines to take decisions based on past experiences 

which is represented as data. The implementation of machine learning is achieved in three 

models as shown in Figure 2.1. This includes supervised learning, semi supervised 

learning and unsupervised learning (Pittino et al., 2020; Chalapathy and Chawla, 2019; 

Shen et al., 2019). 

 

 

 

 

Figure 2.1: Type of machine learning models. 

Supervised learning involves the use of data that is labeled. Usually, this method of 

machine learning is used for classification problems. As described in many literatures this 

method seems to be the easiest way to detect bearing fault anomalies (Shen et al., 2019). 

However, in real life it may be challenging to get such data (Shen et al., 2019; Chalapathy 

and Chawla, 2019; Shen et al., 2020). Furthermore, according to Shen et al. (2019), 

during anomaly detection, it is difficult to state when the fault started and how long it 

lasted. In other words, it may be easy to get time series data which indicates healthy 

condition of the bearing but one may not be able to tell when the defect started since it 

takes hours, days or months before motor bearings are characterized by defects which 

may not be noticed (Meire and Karsmakers, 2019; Shen et al., 2020). Furthermore, the 

data collected can be imbalanced (Meire and Karsmakers, 2019) since much of data will 

Machine learning models 

Supervised learning 

Semi supervised learning 

Unsupervised learning 
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not be collected at fault state. Also, for systems that could be catastrophic in nature, it is 

not advisable to run such for a long time so as to avoid accidents (Shen et al., 2020). This 

however, makes supervised learning less attractive for automatic anomaly detection in 

motor bearing. 

Semi supervised learning describes machine intelligence based on data which are not all 

labeled. This is typical of time series data from motor bearing. This is because the healthy 

state can be labeled, the point where the fault or anomaly is detected can be labeled and 

the point of machine failure can be labeled. However, the point between the point where 

anomaly was detected and the point of failure may be difficult to label (Shen et al., 2019). 

As a result, this data can be used for semi supervised learning (Liu et al., 2019) since 

models like autoencoders can take advantage of labeled data to highlight outliers (Ren, 

2019). The challenge of using the semi supervised learning is that it involves complex 

procedures as discussed by Shen et al. (2019). This however makes semi supervised 

learning less attractive for this research. 

Unsupervised learning is machine learning model that deals with unlabeled data which is 

the characteristic of data generated from motor bearing. This model detects outliers as 

anomaly based on intrinsic properties of the data (Ren, 2019). As a result, it is considered 

more flexible and easier to use to the automatic anomaly detection in motor bearing. This 

method does not need time wasting and cumbersome process of labeling nor do some 

cumbersome data wrangling. Instead, regression models are built to aid prediction of 

anomaly. However, since the imbalance nature of the data can’t be avoided, it is better to 

train a regression model with the normal data and look for outliers (Chalapathy and 

Chawla, 2019). One way to achieve this is to compress the data to a small representation 

and regenerate the output from the compressed data. The output data is expected to look 

like the input data. However, the difference in these will give an alert of an anomaly. The 
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process in which the data is compressed is called encoding which is a function of 

autoencoders. Furthermore, the process of regenerating the input data from compressed 

data is called decoding. Generally, autoencoders are neural networks that deduce features 

of low-level signals by comparing the differences between the input data and the output 

data. To achieve this, the data is first compressed (or under goes encoding) and then from 

the compressed data the output is generated or decoded. According to Meire and 

Karsmakers (2019), autoencoders are efficient tools for low level signals which is the 

characteristics of bearing signals. As shown in Figure 2.2, XT is inputted and compressed 

to be ZT. Afterwards, it is decoded or the output is generated as ϕ. If the output deviates 

from the input then, an outlier is detected hence an anomaly. 

 

Figure 2.2: Diagram of an autoencoder network (Meire and Karsmakers, 2019) 

It is important to note that the data from the motor bearing is characterized with time 

sequence. Therefore, it can be regarded as time sequence data. To handle such data, 

Recurrent Neural Networks (RNN) are usually used (Ren, 2019). However, it does not 

have the ability retain information of former time stamp. To overcome this, Long Short 

Time Memory (LSTM) algorithm was built. This has the ability to retain information of 

former time stamp. 

Having studied the nature of the data generated by motor bearing, characterized with time 

stamp which can be encoded or compressed and reconstructed to solve anomaly issues; 
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this research therefore focuses on automatic anomaly detection in motor bearing using 

LSTM-Autoencoder. 

2.4 Related Works on Artificial Intelligence  

In reducing the downtime of machines in industries, authors in (Jin et al., 2018) and (Jin 

et al., 2019) proposed a data driven approach for bearing prognostic based on 

Kolmogorov-Smirnov test, self-organizing map and unscented Kalman filter as shown in 

Figure 2.3. In their approach, the first step taken was to detect bearing degradation 

process also known as anomaly detection by learning the historical data generated via 

vibration sensors. The second process involves the prediction of the remaining useful life 

(RUL) of the bearing with the aid of degradation model and unscented Kalman filter. 

 

Figure 2.3: Data driven approach for bearing prognostic based on Kolmogorov- 

Smirnov test, self-organizing map and unscented Kalman filter 

(Jin et al., 2019) 

 

Usually, in many research, many anomaly detection is achieved via the use of large data 

generated by setup similar to Figure 2.4. However in real life these data may not be 

available in the quantity required for detection. For that reason, authors in (Shen et al., 

2020) proposed a few shot learning approach based on model-agnostic meta-learning. 

This approach aids classification using limited data. Compared to Siamese-network 

based benchmark study approach, their approach improved in accuracy by 25%. 
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Figure 2.4: Experimental set up of machine for data collection. (1) electric motor (2) 

          torque measurement shaft (3) rolling bearing test module (4) fly wheel (5) 

load motor (Shen et al., 2020). 

 

Shen et al. (2019), in their presentation emphasized the use of internet of things (IoT) for 

data gathering in preparation to detect anomaly in bearing. Their work which aims at 

ensuring adequate maintenance before a complete breakdown of machines, gave an 

expose of different techniques used to track the degradation of the system. Such 

technique involves the use of signal processing for better performance in degradation 

tracking. Cyclic Spectral Correlation (CSC) and Cyclic Spectral Coherence (CSCoh) has 

been proven to be powerful tool for signal processing. Furthermore, as a result of the 

strain or difficulty in getting labeled data via experimental setup in Figure 2.5, fault 

detection was done via the used of semi supervised learning and Support data 

Description.

 

Figure 2.5: Experimental set up for data gathering used for semi supervised learning 

(Liu et al., 2019). 

After the run to fail experiment, result indicated that bearing anomaly detection can be 

done accurately via the use of a semi supervised vector detecting device and CSCoh. 
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Syan et al. (2020) presented a case study which utilizes Conditional Based Maintenance 

(CBM) for centrifugal pumps as part of safety for critical water system used to mitigate 

fire hazard (Syan et al., 2020). This was done so as to monitor the operational condition 

of centrifugal pumps. To achieve this, vibration data was gathered so as to investigate if 

the conditional based maintenance will identify different faults in the centrifugal pump. 

The work flow of the research as shown in Figure 2.6 involves the determination of best 

practice or approach of CBM in the lab compared to the CBM approach in the industry. 

Furthermore, they determine a research gap and design an experimental study to fill such 

gap. Afterwards, data is being collected, results analyzed and limitation highlighted. 

 
Figure 2.6: Work flow of the research (Syan et al., 2020). 

Results show that, in a place where single fault was studied, the accuracy of detection 

was 100%. For multiple faults, the accuracy was 67%. However, the overall classification 

accuracy is 76.5%. To improve classification accuracy, it was suggested that artificial 

intelligence should be used in fault detection. 

Detecting anomaly using current approach has been described by authors in (Boniol et 

al., 2020) as cumbersome and expensive especially when having recurrent anomaly. 

Also, the prior knowledge of the domain is important so as to aid effective detection. To 
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solve this difficult and cumbersome trait, they used NorM: a technique used for domain-

agnostic anomaly detection. The technique detects recurring anomaly when compared to 

a model that represents normal behavior. The result of this technique shows high 

performance (Boniol et al., 2020). 

In industry 4.0, the advent of smart meters and IoT has improved the gathering of data 

which is instrumental to the detection of anomaly in industrial machines (Pittino et al., 

2020). According to authors in (Pittino et al., 2020), even though machine learning has 

been used over the years to extract information from the dataset which seems impossible 

for humans to do, the important aspect of anomaly detection remains the derivation of 

models which aids the detection of faults in the bearing. This aids detection of 

malfunctioning bearing before complete breakdown of machines. 

The authors in Ren (2019) emphasized the need of deep learning techniques in detecting 

anomaly in unmanned vehicles. This is done so as to ensure safety of the unmanned 

vehicle. Among several techniques, deep learning was chosen because of the high 

dimension of enormous data which is used for auld determination especially in bearings. 

Furthermore, the method adopted for this research is the use of X-ray images for 

classification which is rather expensive. 

Saeki (2019) used visualization techniques specifically Convolutional Neural Network 

(CNN) for the detection of motor bearing anomaly. In his work, vibration dataset was 

captured and predictions were made to state the health status of the bearings. These 

predictions were compared with analysis done by experts. Results show that the 

technique is helpful in providing useful information as regards to the health status of 

motor bearings. 
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Aside motor bearing, anomaly detection has been applied to gears as stated in (Schmidt 

and Heyns, 2019). In their presentation, they argued that many technique used for 

anomaly detection involves the use of historic fault data which may not be available. 

According to them, in situations like this, techniques such as discrepancy analysis are 

used. This technique assumes that machine condition is the same throughout the signal 

in the model optimization process. In other words, no localized damage is present. To 

determine or identify localized fault, continues wavelet transform and principal 

component analysis is used to determine the divergence of gear under consideration. 

Afterwards, Bayesian data analysis technique was used to infer the presence of localized 

anomaly. 

Mahalanobis-Taguchi, a method used to ascertain the extent of damage in a logical 

system as elaborated by Asakura et al. (2020) was used to detect anomaly in logical 

systems. In their work, the technique was applied on a large scale vertical transfer system. 

Calculations to achieve proper values for the technique was developed based on simple 

excitation using shaker (Asakura et al., 2020). Other researchers such as authors of 

Cooper et al. (2020) worked on anomaly detection in milling tools. The method used for 

the work is generative adversarial networks. The data used was acoustic based. Authors 

in Wang et al. (2020) used K-nearest neighbor to detect anomaly for machineries. 

The author in Nath (2020) disclosed one major problem in anomaly detection. In his 

presentation, the abrupt change in sequential data is a problem in most anomaly detection. 

To solve this, low latency anomaly detection based on Quick Change Detection (QCD) 

is needed for effective detection. This minimizes the delay in detection of anomaly 

observed in sequential data. This is useful since in most models, Post Change Distribution 

model may not be available. This however, has been used for bearing fault detection in 

turbines. 
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Authors in Sohaib and Kim (2019) proposed the use of bi-spectrum analysis and  

Convolutional Neural Network (CNN) to be able to detect faults in bearings. In the work, 

the bi-spectra of the vibrational signal was first extracted. Afterwards, CNN based on 

stochastic optimization function (Sohaib and Kim, 2019) was proposed to extract the 

interclass of the bi-spectra. At the end of the research, detection was done more 

accurately than previous work. 

In the quest to deal with sequence data, the author in (Pandarakone, 2018) used an online 

detection based on deep learning approach. In his work, Fast Fourier Transform was used 

in spectral analysis on data generated from load current of the stator coil so as to aid 

feature extraction. Afterwards, Convolutional Neural Network (CNN) was trained with 

the extracted features to aid classification. This method which has extended applications 

was also used to detect multiple faults in bearings such as Single Scratch (SS), and Full 

Scratch (FS). The average accuracy of the system was 88.17%.  

Authors in Abid et.al. (2019), in their study, presented a technique to aid the detection of 

faults in bearings and the extent at which the damage was done. In other words, the 

method used in the study detects the fault and the severity of the fault. The technique 

used in their study is called the Optimized Stationary Wavelet Packet Transform (OP-

SWPT); an advanced form of a digital signal processing technique called Wavelet 

Transform. Even though Wavelet Transform was used for signal processing, the authors 

attested to the need to process the signals because of the noise which could emanate from 

the sensors ( Lee et. al., 2020). This can be done via the use of Fast Fourier Transform 

(FFT) which is used to analyze the signal in the spectral domain. Another signal 

processing identified by the author is the Short Time Fourier Transform which often 

times is used when the location to the feature extracted is needed. Lastly, the Wavelet 

Transform (WT) is used for none stationary signal. Results show that the technique is 
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efficient in detecting different types of bearing faults. Also, it was reported that the 

technique detected faults faster. 

Authors in (Pourpanah et. al., 2018) applied anomaly detection on Unmanned Aerial 

Vehicle (UAV) motors and propeller. The current signal was used with fuzzy adaptive 

resonance neural network which is an unsupervised learning scheme to aid early 

detection of faults in UAV motors. A vibration signal was used to detect anomaly in 

propellers using Q-learning based Fuzzy ARTMAP neural network. For the selection of 

subset of features, the Genetic algorithm was used. 

Authors in (Egaji et. al., 2020) emphasized on the need to use available data (usually 

vibration data) to aid avoidance of downtime in industries. In their presentation, as a 

result of noise in data which results from sensor inefficiency, it was suggested that digital 

signal processing methods such as FFT could be used to aid better output. In their 

approach, features were extracted from the data. These features were used to train the 

neural network. For ease of detection, Principal Component Analysis (PCA) was used to 

reduce the dimension of the data from 24 to 1 dimensional space. The output from PCA 

is then used as an input to a regression model which reconstructs the input. The error 

between the input and the reconstructed output reveals anomaly detection. The regression 

models used in this presentation includes Support Vector Machine (SVM), Random 

Forest (RF) and K-Nearest Neighbors (KNN).  

To aid proper functioning of industrial machines, industrial fans have been used to aid 

cooling. However, authors in (Gong et al., 2018) presented an online solution to detect 

anomaly in industrial fans. To achieve this, acoustic signals was used with an intelligent 

prediction integrated system with the internet. Furthermore, Acoustic Signal 
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Enhancement Filter and Adaptive Kalman Filter was used for feature extraction and 

detection. 

In the quest to improve the concept of industry 4.0, Neupane and Seok (2020) set up an 

experimental platform shown in Figure 2.7. In their presentation, vibration data was 

collected and a machine learning algorithm was used to detect anomaly. The process 

involved is shown in Figure 2.8. However, it is important to note that signal processing 

had to be done with the machine learning so as to get efficient result. 

 
Figure 2.7: (a) Experimental set up of Case Western Reserve University to 

    generate data set. (b) the cross sectional view of the bearing. 
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Figure 2.8: Process of detection used by the CWRU 

In their presentation, the vibration data gathered was worked on using FFT among other 

digital signal processing techniques. The reason for choosing FFT is because it can serve 

for both stationary and none stationary signals. 

Sohaib and Kim (2018) presented the use of Complex Envelope Spectra and Stacked 

Sparse Autoencoder based Deep Neural Network for the detection of anomaly in bearings 

of machines. To aid the detection, a fault diagnostic scheme was developed so as to 

overcome the fluctuations of the shaft speed. The detection was made easy via the use of 

the Complex Envelope Spectra. 

Authors in (Malla and Panigrahi, 2019) presented how vibration signals was used to 

determine bearing failure which may result from lack of lubrication, contamination, 

inaccurate mounting and dismounting, misalignment, false brinelling, corrosion, electric 

damage and much more. The method used include time domain, frequency domain and 

time-frequency domain analysis. From the results, the use of Wavelet Transform with 

ANN and fuzzy logic gave favorable result. 
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All these contributions of different researchers are enumerated in Table 2.1, none, to the 

best of our knowledge did work on the improved sensitivity of LSTM-Autoencoder used 

for anomaly detection in motor bearing. This therefore justifies the research work. 
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2.5 Summary Table for the Related Works 

Table 2.1: Summary table for the related works 

S/N Title of paper Author (s)/Year Method Result/Remark 

1. Vibration Analysis Techniques 

for Rotating Machinery and its 

effect on Bearing. 

Khadersab and 

Shivakumar (2018) 

Fast Fourier Transform (FFT) and 

Inverse Fast Fourier Transform 

(IFFT). 

FFT was seen to aid better 

detection of faults. 

2. Vibration analysis and 

comparison of the damaged and 

undamaged of rolling ball 

bearing. 

Sulka et. al. (2019) FFT and STFT. FFT was observed to have 

more amplitude difference 

making it easier to detect 

anomaly. 

3. Application of wavelet analysis 

and its interpretation in rotating 

machines monitoring and fault 

diagnosis. 

Abouelanouar et. al. 

(2018) 

WT. The conclusion is that 

wavelet transform is a 

powerful tool for anomaly 

detection. 

4. Detection of Digital Image 

Forgery using Fast Fourier 

Transform and Local Features. 

Kanwal (2019) FFT with local texture descriptor 

together with SVM classifier. 

Detection accuracy of 

anomaly was increased. 
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Table 2.1: Summary table for the related works continue … 

S/N Title of paper Author (s)/Year Method Result/Remark 

5. Technological Evolution in the 

Fault Diagnosis of Rotating 

Machinery: A Review. 

Barot and Kulkarni 

(2021) 

Review on FFT, WT, DWT, Wavelet 

Packet Transform (WPT). 

Furthermore, Deep learning 

techniques such as KNN, SVM, and 

ANN was reviewed. 

 

     

6. Machine health management in 

smart factory: A review. 

Lee et al. (2018) Review on analytical models, 

experimental model, Fuzzy logic, 

Time domain analysis, Fourier series, 

Numerical model, Artificial Neural 

Network and WT to detect anomaly. 

Furthermore, Big Data, Hybrid 

algorithms, Machine learning 

algorithm such as Support Vector 

Machine (SVM), Statistical model, 

Neural networks and Empirical mode 

decomposition was reviewed for the 

purpose of diagnosis of anomaly. 

 

     



27 
 

Table 2.1: Summary table for the related works continue … 

S/N Title of paper Author (s)/Year Method Result/Remark 

7. A Data-Driven Approach for 

Bearing Fault Prognostics. 

Jin et. al. (2018) Kolmogorov-Smirnov test, self-

organizing map and unscented 

Kalman filter 

The degradation of bearing 

and the remaining useful 

life of the bearing was 

predicted. 

8 A Data-Driven Approach for 

Bearing Fault Prognostics. 

Jin et. al. (2019) Kolmogorov-Smirnov test, self-

organizing map and unscented 

Kalman filter. 

The degradation of bearing 

and the remaining useful 

life of the bearing was 

predicted. 

9. Few-Shot Bearing Anomaly 

Detection. 

Shen et al. (2020) A few shot learning approach based 

on model-agnostic meta-learning. 

Detection was made 

possible with little available 

data which may not be easy 

with other approaches with 

an improved accuracy of 

25%. 
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Table 2.1: Summary table for the related works continue … 

S/N Title of paper Author (s)/Year Method Result/Remark 

10. Semi-Supervised Learning of 

Bearing Anomaly Detection via 

Deep Variational Autoencoders. 

Shen et al. (2019) Cyclic Spectral Correlation (CSC) 

and Cyclic Spectral Coherence 

(CSCoh). Also auto encoders were 

used for prognostics. 

Semi-supervised vector 

detecting device and CSCoh 

was emphasized as a tool 

for anomaly detection in 

bearing. 

11. A Case Study for Improving 

Maintenance Planning of 

Centrifugal Pumps Using 

Condition-Based Maintenance. 

Syan et al. (2020) Conditional Based Maintenance 

(CBM) for centrifugal pumps. 

Although, very good 

classification accuracy was 

observed, but it was 

suggested that artificial 

intelligence should be used 

for better performance. 

12. Automatic anomaly detection in 

large sequence. 

Boniol et. al. (2020) NorM: a technique used for domain-

agnostic anomaly detection 

The technique shows high 

accuracy in detecting 

recurring anomaly. 

13. Deep Learning Methods Applied 

to Anomaly Detection in Vehicle 

Manufacturing and Operation. 

Ren (2019) Deep Neural Network Though expensive but 

shows impressive results 

which overcomes the 

problem of the use of few 

data for anomaly detection. 
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Table 2.1: Summary table for the related works continue … 

S/N Title of paper Author (s)/Year Method Result/Remark 

14. Low Latency Anomaly Detection 

with Imperfect Models. 

Nath (2020) Low latency anomaly detection 

algorithm, which is based on the 

framework of Quickest Change 

Detection (QCD). 

The author achieved a 

reduction in the delay of 

detection. 

15. Visual explanation of neural 

network based rotation 

machinery anomaly detection 

system. 

Saeki (2019) Convolutional Neural Network 

(CNN). 

The technique was proven 

to be useful in detection of 

anomaly. 

16. Localised gear anomaly detection 

without historical data for 

reference density estimation. 

Schmidt and Heyns 

(2019) 

Continuous wavelet transform, 

principal component analysis, was 

used to determine localized faults 

while Bayesian data analysis 

technique was used to infer the 

presence of localized anomaly. 

Localization of anomaly 

was achieved. 

17. Anomaly Detection in a Logistic 

Operating System Using the 

Mahalanobis– Taguchi Method. 

Asakura et al. (2020) Mahalanobis-Taguchi. Anomaly detection was 

achieved in machines tools. 
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Table 2.1: Summary table for the related works continue … 

S/N Title of paper Author (s)/Year Method Result/Remark 

18. Anomaly detection in milling 

milling tools tools using using 

acoustic signals and generative 

generative adversarial networks. 

Cooper et al. (2020) Generative Adversarial Networks as 

Anomaly Detector. 

Increase in classification 

accuracy with about 

24.49%. 

19. Anomaly detection for 

machinery by using Big Data 

Real- Time processing and 

clustering technique. 

Wang  et al. (2020) KNN. The results shows that the 

technique detect anomaly in 

machinery. 

20. Fault Diagnosis of Rotary 

Machine Bearings Under 

Inconsistent Working 

Conditions. 

Sohaib and Kim 

(2019) 

Bi-spectrum analysis and 

Convolutional Neural Network 

(CNN). 

A better detection of 

anomaly was achieved. 

21. Bearing Fault Detection and 

Diagnosis Using Case Western 

Reserve University Dataset With 

Deep Learning Approaches. 

Neupane and Seok 

(2020) 

FFT. FFT proves to be efficient 

in anomaly detection. 
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Table 2.1: Summary table for the related works continue … 

S/N Title of paper Author (s)/Year Method Result/Remark 

22. Reliable Fault Diagnosis of 

Rotary Machine Bearings Using 

a Stacked Sparse Autoencoder-

Based Deep Neural Network. 

Sohaib and Kim 

(2018) 

Complex Envelope Spectra and 

Stacked Sparse Autoencoder based 

Deep Neural Network. 

Complex Envelope Spectra 

helped to achieve detection 

of anomaly easily. 

 

23. Review of Condition Monitoring 

of Rolling Element Bearing 

Using Vibration Analysis and 

Other Techniques. 

Malla and Panigrahi 

(2019) 

Wavelet Transform with ANN and 

Fuzzy logic. 

Better detection compared 

to existing techniques. 
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From the review, it is observed that researchers either used only digital signal processing 

or only machine learning. However, from the search no one has improved detection using 

FFT and LSTM autoencoders as we used in this research. 
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CHAPTER THREE 

3.0                                     RESEARCH METHODOLOGY 

3.1 Overview  

This chapter presents the method used to achieve the aim an objective of this research. 

This includes the use of National Aeronautics and Space Administration (NASA) data 

on motor bearings, the use of FFT, LSTM-Autoencoder technique to achieve anomaly 

detection. To achieve this, Python was used as a tool to write the code. Also, the work 

flow in Figure 3.1 was followed. In the work, the data was collected, preprocessed with 

pandas. Furthermore, it was then processed with FFT. To aid detection, the model was 

then developed. The structured data characterized with normalcy was then fed into the 

model and was trained. Afterwards, the model was tested with abnormal data and the 

performance of the model was then evaluated using two metrics; threshold also known 

as anomaly score and accuracy. 

 

 

 

` 
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Figure 3.1: Model Diagram. 

3.2 Data Collection 

The data used in this research is sensor reading obtained from vibration sensor fastened 

to the motor bearing by NASA Acoustics. These data were generated from four bearings 

that were run till failure with constant load. The data which was taken at 10-minutes 

interval contains 20800 data points per bearing read at sampling rate of 20 kHz.  

Start 

Data Collection 

Data Preprocessing using Pandas 

Further Data Preprocessing 

Splitting of Data into Test and 

Train Data 

Data Transformation 

Develop LSTM Autoencoder 

Network Model  

Train the Model with Data 

Evaluation of the Model 

Compare Result with Existing 

results.  

End 

Data Preprocessing using FFT 



35 
 

Plate I shows part of the data collected in files named with dates of collection. Opening 

the first file, the content within similar to others is shown in Plate II. 

 

Plate I. Raw data collected in files named with date time stamp. 

 

 

Plate II. Unorganized data before processing within the file for just one file. 
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3.3 Data Preprocessing 

The data used in this work was from four motor bearing. The vibration data obtained was 

collected for each of the bearing, tagged in different files named with dates of collection. 

However, to keep the data together, pandas was used to bring the four data together as 

shown in Plate III after all the dependencies (Libraries) were imported. Furthermore, the 

data was quarried to verify if there are missing data. Also, the data type and the shape of 

the data was checked so as to ensure that the data conforms to the format which is 

required for the deep learning algorithm. 

 
Plate III: Dataset of the motor bearing after preprocessing 

 

3.4  Data Preprocessing using FFT 

 

Fast Fourier Transform is a technique which employs the transformation of time 

sequence signals to their frequency domain so as to extract latent behavior of the signal 

source. In other words, the FFT decomposes ‘N’ points time domain signal to ‘N’ time 

domain signal composing of a singular point. Afterwards, the FFT algorithm calculates 

the ‘N’ frequency spectral which is corresponding to ‘N’ time domain. Lastly, the ‘N’ 

spectral will then be synthesized in one frequency spectrum. This algorithm is guided by 

the equation: 

𝑋𝑘 = ∑ 𝑥𝑛𝑒
𝑖2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

                                                                                                                    (1) 

Where 𝑁 is is the size of the domain and 𝑋𝑘 = 𝑋0, 𝑋1 … … 𝑋𝑁−1 is converted to another 

sequence number 𝑥𝑛 = 𝑥0, 𝑥1 … … 𝑥𝑁−1   is the signal. In other words, 𝑥𝑛 sinusoid with 
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frequency of 
𝑘

𝑛
 is a cross correlation sequence of  𝑋𝑘. Furthermore, it must be noted that 

the ‘N’ points must be in the form of 2n. This means the N time points must be within 

this range else it won’t be able to capture the whole data. During the decomposition, the 

levels of decomposition is given as 𝑙𝑜𝑔2𝑁. For example, a 16-point signal also 

represented as (24) is broken down into 𝑥 stages where 𝑥 = 𝑙𝑜𝑔224. This results to a 

break down into 4 stages. During the break down, the original samples are re-ordered via 

bit reversal. Table 3.1 shows a sample re-ordering. 

Table 3.1: Data re-ordering table 

Normal 

sample 

Binary 

representation 

Decomposed 

outcome 

Binary 

representation 

0 0000 0 0000 

1 0001 8 1000 

2 0010 4 0100 

3 0011 12 1100 

4 0100 2 0010 

5 0101 10 1010 

6 0110 6 0110 

7 0111 14 1110 

8 1000 1 0001 

9 1001 9 1001 

10 1010 5 0101 

11 1011 13 1101 

12 1100 3 0011 

13 1101 11 1011 

14 1110 7 0111 

15 1111 15 1111 
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Furthermore, the algorithm then finds the frequency spectrum of 1 point time domain 

which is equal to itself. The last thing the algorithm did was to combine the N frequency 

spectral in the reverse order of the time domain decomposed into. This combination, 

results into the frequency spectrum of the time domain signal. All this is represented in 

the following pseudocode: 

Fast Fourier Transform (FFT) Algorithm 

//For general case let the input G of any case have a sequenced  

// 
0 1 1( , ...., )NG a a a −=  

//Note that N is a power of 2. Also, we want to return output values of H given as: 

//

1

0

( )
N

j

j

j

H A x a x
−

=

= =  

//where H is a polynomial similar to equation 1, evaluated at Nth root of unity and 
//a is the coefficient of the polynomial. 

if 1N =  then return 
0( )a  

if 1N   then //calling the Fourier transforms recursively. 
2

0 1 0 2 21
2

( , ,...., ) (( , ,...., ) )n Ns s s FFT a a a w−−
=  // this deals with even sequence. 

2

0 1 1 3 11
2

( , ,...., ) (( , ,...., ) )n Ns s s FFT a a a w−−
   =  // this deals with odd sequence. 

for 0j =  to 1
2

N
−  

j

j j N jr s w s= +    

2

j

N j N j
j

r s w s
+

= −  // the negative sign is from the odd. 

 

//Note that w  is the primitive Nth root of unity if 
0 1,...... Nw w −

 are root 

//of the unity  

return 
0 1 1( , ,...., )Nr r r −

 

end for 
end if 
end if 
//How long will it take to do this computation? 

( ) 2 ( / 2) ( )T N T N O N= +  

//N is the size of the problem and O(N) is the order of N as solved in the equation 
//above. 

// ( log )NO N=   

//which is much better if the system is to run for 
2( )O N . 

 

The use of this technique aids fast computation and the extraction of salient 

characteristics in the signal of the data collected. 
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3.5 Further Data Preprocessing 

To ensure that any data point doesn’t look so odd from the others, a further preprocessing 

was done to normalize the data. The normalization process ensures that all data points is 

converted to numbers within 0 to 1. Furthermore, since LSTM usually uses a three-

dimensional tensor form of data, it is important to reshape the data which is two (date 

time stamp, feature) dimensional to three dimensional (date-sample, time-sample, 

features). 

3.6 Data Splitting 

To aid the use of autoencoder network for the purpose of anomaly detection, the data has 

to be subdivided to train and test data. Usually, using the autoencoder model, there are 

two ways in which the data can be split into test and train dataset. One way is to get all 

the data set characterized with both normal and abnormal data and then split it the 

traditional way using ratios which can be 60% training data 40% test data. Some other 

researchers use 70% training data and 30% test data. Basically, the ratio of split it based 

on the researcher’s instinct. The challenge with this approach is that it is used for labeled 

dataset. The second method is the use of only the normal data to detect anomaly. This is 

the approach used since the data used is unlabeled. This leaves the data with faulty 

characterization as the test data. In this research, the train dataset was obtained after a 

plot of the data was observed to get both the normal and faulty signal. 

3.7       Model Description 

As intended, the technique used in this research after data clean up via FFT remains 

LSTM Autoencoder. To be able to use this, it is important to understand the concept. 
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3.7.1 Autoencoder 

Autoencoder is a neural network that aid the replication of the input at the output. The 

model which consists of an encoder with an encoding function E(x) and a decoder with 

a decoding function of D(x) first compresses the input into a latent space. Afterwards, 

the input is recreated at the output via the decoder, Figure 3.2 and Figure 3.3 shows the 

architecture of the model. As a result of its use, the model is used for the detection of 

anomaly. To do that, the output sequence is compared to the input sequence to see if there 

is an error in the replication. To detect anomaly, a threshold also known as anomaly score 

is used as a bench mark for allowable error. Beyond the threshold, anomaly is flagged. 

For this reason, it is used for speech recognition and face recognition. 

 

Figure 3.2: Architecture of an autoencoder model. 

 

 

Figure 3.3: Representation of an autoencoder (Mac et al., 2018) 

If the encoder and decoder transition is represented as α and β respectively. The transition 

can be represented as α: X F→ this shows the transition of series data X transformed 

Input 

sequence 
Encoder Encoded 

sequence 
Decoder 

Output 

sequence 
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to a compressed data F which is reconstructed by β: F X→ Therefore, the encoder 

decoder transition can be represented as 
2

,

, ( )argmin X
 

   = − . In other words, 

if dx X =R at the input is to be reconstructed at the output, it will first be mapped to 

p F =Rħ where ħ= (Wx+b).  is the activation function,W is the weight and the 

bios is b at the encoder. The output is then reconstructed as   x = (Wħ+b )  at the 

decoder. The process is presented in the pseudocode below: 

Autoencoder Algorithm 

//INPUT: Normal dataset X  

// ( )jV x=  1,2....j N=  this is the abnormal data sequence 

//Considering a threshold µ 

//OUTPUT: reconstruction error x x=  

//Let the factors for training the autoencoder be   and ŋ 

for j =0 to N do 

 reconstruct the input at the output as ( ( ))jg f x ŋ  

 ( ) ( ) ( ( ) )j jreconstruction error x g f xj = − ŋ
 

 if   reconstruction error   then 

  ( )jx is an anomaly 
  else 

  ( )jx is not an anomaly 
end if 

end for 

 

3.7.2 Long Short-Term Memory Network (LSTM) 

LSTM is a form of Recurrent Neural Network (RNN) that aids the retention of long term 

dependent variables between data at given time in past records (Nguyen et al., 2020). 

The neural network which is characterized with three control gates such as input gate, 

output gate and forget gate obtained from sigmoid neural net layer and point wise 

multiplication, exists, as a form of chain repeated module of neural networks. Note that 

since RNN is used for time series vector, unlike the traditional neural network that cannot 

handle sequence data that relate with each other both past and present, the RNN can help 
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handle these sequence data. In other words, traditional neural network which is to 

produce y when x is inputted, does so and will never use y again. This makes it forgetful. 

However, this is not so for RNN as it can still use past data in the future giving the deep 

learning model its own memory. This means that the output of RNN is a function of past 

data as shown in Figure 3.4: 

 

                              =                                                                

            …………                   

Figure 3.4: RNN network. 

However, as a result of the network learning every single detail in the sequence, a 

problem called varnishing gradient occurs. This means when the network learns all, it 

will forget because its weight becomes too small for learning to occur. This is what 

necessitated the development of RNN. 

LSTM, a form of RNN as shown in Figure 3.5 has the ability to read data sequentially as 

vectors 1 2 3{ , , ..., .....}ts s s s s=  where 
x

ts  k represents vector readings of x having x 

dimensions at time t.  

 
Figure 3.5: Symbolic representation of LSTM (Varsamopoulos et al., 2018) 
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This neural network consists of four gates that helps it to store relevant information and 

forget irrelevant ones. These gates include the forget gate, remember gate, learn gate and 

use gate.  

The principle of operation of the model is thus: The transport system through which the 

sequence travel through the neural network is called a cell state (𝐶𝑡). This helps to move 

information all through the sequence chain as information gets added or removed along 

the journey. This is achieved via the sigmoid function (σ) which is at the forget gate. The 

sigmoid function scales the information from 0 to 1. Whichever information is closed to 

0 is to be forgotten. While those close to 1 are to be remembered. Therefore as (𝑋𝑡) is 

made available at time t, the network passes through the sigmoid activation function to 

decide whether the information is important or not. The model decides what old 

information is to be forgotten by outputting the number between 0 and 1. In other words, 

when signal (𝑋𝑡) and the previous hidden state (ℎ𝑡−1) is inputted into the model, it passes 

through the forget gate which uses the sigmoid function given in equation (2). 

 𝑓𝑡 = 𝜎(𝑊𝑓ˑ[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓        (2) 

Where, 𝑓𝑡 is the forget gate function, (ℎ𝑡−1) is the previous hidden state, 𝑊𝑓 is the weight 

of the function, (𝑏𝑓) is the bias vector parameter the subscript 𝑓 is the forget gate and 𝑡 

time. This equation checks if this new information outweighs old information. If it is 

close to 1 as discoursed, it will forget old information and retain the new one. However, 

if not, it will retain the old information and discard the new information. The retained 

value is then used to create the input value as expressed in equation (3).  

𝑖𝑡 = 𝜎(𝑊𝑖ˑ[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑖         (3) 

where 𝑖 is the input. This is then used to form the candidate value (Ĉ) using the tanh 

function as shown in equation (4). 
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Ĉ𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐ˑ[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑐                         (4) 

Where 𝑐 is the cell state. Afterwards, the new cell state will be updated with the old cell 

state, forget gate value, input value and candidate value as shown in equation (5). 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ Ĉ𝑡         (5) 

Finally, an output has to be decided. This will be based on the cell state. To do this, a 

sigmoid function runs to decided what part of the cell state needs to be outputted. This is 

then multiplied by the output of the tanh function of the candidate value. This is expressed 

in equation (6) and (7). 

𝑜𝑡 = 𝜎(𝑊𝑜ˑ[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑜)         (6) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡)         (7) 

Where o is the output and ℎ𝑡 is the new hidden state. In summary, three parameters are 

passed to the model. This includes the hidden state (ℎ𝑡), previous cell state and the input 

data (𝑋𝑡). The hidden state and the input data are combined together and are fed to the 

forget layer. Here relevant data are remembered and irrelevant once are forgotten. As a 

result of this, a candidate layer is created, this layer contains variable values that are 

added to the cell state. The combine is then fed into the input layer after which the 

information in the combine is needed to be added to the new cell state. After the 

computations of the forget layer, input layer and the combine layer, the cell sate is 

computed using the vector and the previous cell state. This is now used to compute the 

output. All these are described in the pseudocode below: 
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Long Short-Term Memory (LSTM) Algorithm 

// pseudo code for LSTM 
//Input pct = previous cell state, phst= previous hidden state, x=input 
Def lstm(pct, phst, x): 
               Cm=phst+x // Cm is combine 
               Forget = fl(Cm) // fl is the forget layer 
               candidate= cl(Cm) // cl is the candidate layer 
              x= inputlayer(Cm) 
              cell_state=pct * Forget * candidate * x 
              out_put= outputlayer(Cm) 
              ht=out_put*tanh*  cell_state            
              return ht and cell_state. 
 
cell_state=[0, 0, 0] 
ht=[0. 0. 0] 
for x in x: 
            cell_state, ht= lstm(cell_state, ht, x)  
end for 

 

3.7.3 LSTM Autoencoder 

Having known the use of an auto encoder as a model that aid the detection of anomaly 

via the compression of large data into a smaller vector space, it is important to note that 

the use of this model alone may be challenging as time series data which is used in the 

model will with time get large and the computation will be cumbersome even though not 

all information in the time series data is needed. To solve this problem, it is important to 

use the LSTM with the autoencoder to give LSTM-Autoencoder. The LSTM will aid the 

learning and keeping of important part of the data and forget the irrelevant part of the 

data. This will reduce the amount of data consumed by the model. To create this model, 

the LSTM is used after the encoding in the autoencoder. The representation of LSTM 

autoencoder is shown in Figure 3.6. In the illustration, the input data which is a time 

series data ,u dx x is fed into the autoencoder for compression to Z . This compressed data 

is then fed into the LSTM which helps to select the most important features of the data 

to be remembered. This help to reduce the amount of data needed for reconstruction 

further reducing computation. During reconstruction, a threshold is selected. If the error 

is above a certain point, anomaly is detected. 
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Figure 3.6: LSTM-Autoencoder model diagram (Wei et al., 2019). 

All the process and equations of the LSTM autoencoder is presented in pseudocode by 

Wei et al. (2019) as shown below: 

𝐿 =
1

2
∑ ‖𝑠 − 𝑠^‖ × ‖𝑠 − 𝑠^‖

𝑠

                                                                        (8) 

 

LSTM Autoencoder Algorithm 

//INPUT: the training set Xu, //Xu is the dataset 
//OUTPUT: prediction result X.  
//Preprocess the data Xu to give Xuu 
//Split Xuu to AutoEncoder training set XAE and XAD validation dataset.  
//Initialize the weight matrices of AutoEncoder randomly.  
//Put XAE into AutoEncoder.  
if L(X, Y) < d then 

Calculate the error L(X, Y)  
Use the back propagation training the AutoEncoder.  

else 
End the training.  

end if 
//Generate the characteristics of the input dataset Zt.  
for t = 0 to epoch do 

Put Zt into the LSTM, and do for forward propagation.  
Generate output 
Calculate error. 
Use the back propagation to update parameters.  
Use forward propagation to update network status ht,  

end for  
//Add LSTM after the encoder of AutoEncoder to form AE-LSTM.  
//Fine-tuning the whole network, training initialization parameters.  
//Input XAD test data in AE-LSTM to generate the predicted value X.  
Return X. 
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3.8 Development of LSTM Autoencoder Network with FFT 

The model used in this research is the LSTM autoencoder with FFT. The LSTM 

autoencoder was used so as to aid the detection of anomaly of time series data. The FFT 

technique also was used to extract latent feature of a signal in a frequency spectrum. This 

can be seen in the pseudocode below: 

Model Algorithm (LSTM Autoencoder with FFT) 

//INPUT: the training set Xu, // Xu is the dataset 
//OUTPUT: prediction result X.  
//Preprocess the data Xu to give Xuu 
//process the data using FFT to give Xuu’ 
//Split Xuu’ to AutoEncoder training set XAE and XAD validation dataset.  
//Initialize the weight matrices of AutoEncoder randomly.  
//Put XAE’ into AutoEncoder.  
if L(X, Y) < d then 

Calculate the error L(X, Y)  
Use the back propagation training the AutoEncoder.  

else 
End the training.  

end if 
//Generate the characteristics of the input dataset Zt.  
for t = 0 to epoch do 

Put Zt into the LSTM, and do for forward propagation.  
Generate output 
Calculate error. 
Use the back propagation to update parameters.  
Use forward propagation to update network status ht,  

end for  
//Add LSTM after the encoder of AutoEncoder to form AE-LSTM.  
//Fine-tuning the whole network, training initialization parameters.  
//Input XAD’ test data in AE-LSTM to generate the predicted value X.  
Return X. 

 

3.9 Training and Testing 

The model was then trained with normal ball bearing data using 100 epochs at batch size 

of 10. Afterwards, it was tested with data characterized with anomaly. The training loss 

and loss distribution was computed and plotted so as to serve as a guide to select a 

threshold. After the threshold was selected, the bearing fail plot was presented. 
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CHAPTER FOUR 

4.0                                    RESULTS AND DISCUSSION 

4.1 Overview 

This chapter presents the results of the research. This includes the description of the data, 

the preprocessing of the data, conversion of the data from time domain to frequency 

domain and the feature extraction from the data. Afterwards, the LSTM autoencoder 

network was built and the loss computed. From the loss distribution, the threshold was 

computed and the anomaly observed graphically. 

4.2 Data Description 

The data used was obtained from NASA repository. The data contains four files that 

contain 20800 data point each read at a sampling rate of 20 kHz. Plate IV below shows 

the characteristics of the data.  

 

Plate IV: Description of the dataset. 

From the description, it is observed that the data has a shape of 982 by 4 with a mean 

between 0.048 to 0.081. The standard deviation of the dataset is within 0.009 to 0.040, 

the minimum value captured is 0.0007 and the maximum is 0.453. 
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4.3 Data Preprocessing  

The data gathered may naturally come with some irregularities which makes it unfit for 

direct use as shown earlier in Plate I and Plate II. For this reason, there is need for data 

pre-processing. During the process of preprocessing, first, the dataset which comes in 

numerous files labeled according to date time stamp was merged. This merging, featured 

in Plate V helps to gather the data in one file so as to be used in the proposed model.  In 

the merged files, it is observed that the data was captured with date time stamp which 

qualifies it to be a sequence data and hence can be used for LSTM autoencoder.  

 

Plate V: Data representation of the four bearings merged into one file. 

Furthermore, the data was divided into test data and train data.  Note that the train data 

is the data of the normal working bearing. Also, the split was done so that in the validation 

dataset, both the normal and the anomaly is captured so as to observe the point when the 

anomaly occurred. While the training data is mainly the normal data. However, from the 

raw data, it is not possible to observe the normal data and the point of abnormality. Also, 

since the data may be characterized with noise, FFT was employed to clean up the data 

and to observe the point suspected as anomaly. 
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4.4 Data Transformation using FFT 

The need for frequency domain signal cannot be overemphasized as it exposes latent 

characteristics of the signal. To achieve this, FFT was used.  

From Figure 4.1a below, it is difficult to deduce if there are anomaly because of the 

random nature of the signals as mentioned before. As observed in Figure 4.1b the normal 

data signal (Training data set) is less random and therefore no suspicion of anomaly. 

 

Figure 4.1a: Graphical representation of the normal data (train data set) in time 

domain. 

Figure 4.1b: Graphical representation of the train data set in frequency domain. 
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Also, in Figure 4.2a below, although there are signs of anomaly in Bearing 1 and Bearing 

4. However, it is difficult to ascertain where the anomaly of Bearing 2 and Bearing 3 

starts from. This is not same with the abnormal data set (Test data set) in frequency 

domain shown in Figure 4.2b. This therefore validate the need of the frequency domain 

using FFT to transform the signals. 

 

Figure 4.2a: Graphical representation of the abnormal data (test data set) in time 

domain. 

 

 
Figure 4.2b: Graphical representation of the test data set in frequency domain. 
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4.5  Further Preprocessing 

Since the data to be fed into the LSTM Autoencoder is a three-dimensional data, there is 

need to transform the data from two dimension shown in plate VI to a three-dimensional 

data. This was achieved as shown in plate VII. 

 
Plate VI: Shape of the data originally collected. 

 

 

Plate VII: Shape of the data generated from the two-dimensional data originally 

collected. 

 

4.6 LSTM Autoencoder Network Used 

After the reshaping of the data as required by the LSTM autoencoder, the model was 

built and the data fed into it. The structure of the model is shown in Plate VIII below with 

LSTM layers taking the shape of an autoencoder. 

 

Plate VIII: The summary of the LSTM Autoencoder network. 
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From the Plate VIII above, the dimension of the input data to be trained is [1, 4]. At the 

first layer of the LSTM network, as intended, it is observed that the number of nodes is 

200. This then further reduces to 25 nodes at the next layer. This layer is repeated as the 

encoder layer of the autoencoder. Furthermore, the number of nodes at the decoding layer 

which aids reconstruction of the data is 200. At the end of the training, the output yields 

a [1, 4] dimensional data which is a replica of what is at the input layer. Generally, the 

number of nodes was used so as to achieve lower threshold which is one of the objectives 

of the research. 

4.7 Loss Model 

To evaluate the performance of the model, the loss is computed. This was done when the 

network was trained at 100 epochs. Figure 4.3 shows how much the training dataset is 

different from the validation dataset.  

 

Figure 4.3: Graphical representation of Loss Model. 
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4.8 Loss Distribution 

This parameter is needed so as to be able to calculate the threshold. Figure 4.4 shows the 

loss distribution plot. From the plot it is observed that the threshold can be below 0.126. 

 
Figure 4.4: Graphical representation of loss distribution. 

From the above, it is observed that a lower threshold can be selected based on the plot. 

Therefore, a threshold of 0.126 was chosen based on the result of the plot. 

4.9 Anomaly Detection 

The figure 4.5 below shows that, at the selected threshold the model was able to detect 

anomaly as the red line is the threshold. Every signal above the red line is considered 

anomaly. 
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Figure 4.5: Graphical illustration of anomaly detection. 

4.10 Comparison of Results 

As shown in Figure 4.6 below the threshold observed by authors in (Ahmad et al., 2021) 

using similar dataset with LSTM autoencoder without the use of digital processing 

techniques is above 0.2. This is also described as the anomaly score. In their work, each 

dataset (RM2, RM3, RM4, RM5) was treated separately and various anomaly score was 

observed. However, comparing it with the method adopted in this research, it is observed 

that the use of FFT reduces the threshold to 0.126. This means the use of FFT with 

LSTM-Autoencoder is capable to detect weak signals compared to the use of the same 

model without digital signal processing. Furthermore, compared to existing methods 

reviewed by authors in (Sohaib and Kim, 2018), the model used in this research tends to 

perform competitively well in terms of accuracy. Figure 4.7 below shows the comparison 

of the existing methods with the method in this research. Compared to Virtual Spectrum 

Imaging (VSI), Artificial Neural Network (ANN) and Stacked Denoising Autoencoder, 
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LSTM autoencoder with FFT performs better in terms of accuracy. However, its 

performance is low compared to Sparse Stack Autoencoder (SSAE). 

 
Figure 4.6: Threshold (anomaly score) of bearing data. 

 

 
Figure 4.7: Graphical representation of the accuracy score. 
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CHAPTER FIVE 

5.0                      CONCLUSION AND RECOMMENDATION 

5.1 Summary 

From this research work, it is observed that lower threshold of 0.126 and even below 

this can be selected to detect anomaly in motor bearing compared to the various 

threshold (anomaly score) observed by authors in Ahmad et al. 2021 using similar 

dataset with same LSTM autoencoder but without the use of digital signal processing 

techniques. 

 

5.2 Conclusion 

In this research, the focus has been to detect anomaly in motor bearing. Although, several 

researches has been done in terms of finding techniques which will aid the detection of 

anomaly better, however, the aim of the research is to detect such anomaly in weak 

signals. To achieve this, the LSTM autoencoder with FFT was employed. The FFT was 

used to clean up and transform the data so as to reduce complex multiplications, aid faster 

computation and diagnose if anomaly exist while the LSTM autoencoder was used to 

validate and detect the anomaly before it happens. As a result of the use of Fast Fourier 

Transform (FFT), the technique used LSTM Autoencoder was able to detect anomaly 

at low threshold of 0.126 compared to every other techniques that has been used. Also, 

the technique in this research work tends to compete favorably with existing techniques 

as discoursed in previous chapters. 
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5.3 Contribution to Knowledge 

The research work done has been able to contribute to knowledge by hybridizing FFT 

and LSTM-Autoencoder to improve the sensitivity in detecting anomaly in motor 

bearing. 

 

5.4 Recommendation 

Since Sparse Stack Autoencoder appears to be better in terms of accuracy, it is 

recommended that FFT could be used with the technique to see if there can be 

improvement in terms of early detection at a lower threshold and better accuracy. 

 

5.5 Future work 

In the future, aside detection, localization of the detected anomaly can be achieved via 

the use of machine learning and also statistical models. This is to aid fast maintenance 

process. 
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APPENDIX 

import os 

import pandas as pd 

import numpy as np 

from sklearn.preprocessing import MinMaxScaler 

 

#from sklearn.externals import joblib 

import joblib 

import seaborn as sns 

sns.set(color_codes=True) 

import matplotlib.pyplot as plt 

%matplotlib inline 

 

from numpy.random import seed 

from tensorflow import set_random_seed 

import tensorflow as tf 

tf.logging.set_verbosity(tf.logging.ERROR) 

 

from keras.layers import Input, Dropout, Dense, LSTM, TimeDistributed, RepeatVector 

from keras.models import Model 

from keras import regularizers 

###################################################################### 

seed(10) 

set_random_seed(10) 

 

data_dir='data/bearing_data' 

merged_data=pd.DataFrame() 

 

for filename in os.listdir(data_dir): 

     dataset = pd.read_csv(os.path.join(data_dir, filename), sep='\t') 

     dataset_mean_abs = np.array(dataset.abs().mean()) 

     dataset_mean_abs = pd.DataFrame(dataset_mean_abs.reshape(1,4)) 

     dataset_mean_abs.index = [filename] 

     merged_data = merged_data.append(dataset_mean_abs) 

 

merged_data.columns = ['Bearing 1', 'Bearing 2', 'Bearing 3', 'Bearing 4'] 

###################################################################### 

merged_data.index.=.pd.to_datetime(merged_data.index,  

format='%Y.%m.%d.%H.%M.%S') 

merged_data = merged_data.sort_index() 

merged_data.to_csv('Averaged_BearingTest_Dataset.csv') 

print("Dataset shape:", merged_data.shape) 

merged_data.head() 

###################################################################### 

merged_data.describe() 

###################################################################### 

train = merged_data['2004-02-12 10:52:39': '2004-02-15 12:52:39'] 

test = merged_data['2004-02-15 12:52:39':] 

print("Training dataset shape:", train.shape) 
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print("Test dataset shape:", test.shape) 

###################################################################### 

fig, ax = plt.subplots(figsize=(14, 6), dpi=80) 

ax.plot(train['Bearing 1'], label='Bearing 1', color='blue', animated =True, linewidth=1) 

ax.plot(train['Bearing 2'], label='Bearing 2', color='red', animated = True, linewidth=1) 

ax.plot(train['Bearing 3'], label='Bearing 3', color='green', animated =True, linewidth=1) 

ax.plot(train['Bearing 4'], label='Bearing 4', color='black', animated =True, linewidth=1) 

plt.legend(loc='lower left') 

ax.set_title('Normal Bearing Data set in time domain', fontsize=16) 

plt.show() 

###################################################################### 

# transforming data from the time domain to the frequency domain using fast fourier 

transform 

train_fft = np.fft.fft(train) 

test_fft = np.fft.fft(test) 

###################################################################### 

# frequencies of the healthy sensor signal 

fig, ax = plt.subplots(figsize=(14, 6), dpi=80) 

ax.plot(test['Bearing 1'], label='Bearing 1', color='blue', animated =True, linewidth=1) 

ax.plot(test['Bearing 2'], label='Bearing 2', color='red', animated = True, linewidth=1) 

ax.plot(test['Bearing 3'], label='Bearing 3', color='green', animated =True, linewidth=1) 

ax.plot(test['Bearing 4'], label='Bearing 4', color='black', animated =True, linewidth=1) 

plt.legend(loc='lower left') 

ax.set_title('Normal Bearing Data set in frequency domain', fontsize=16) 

plt.show() 

###################################################################### 

fig, ax = plt.subplots(figsize=(14, 6), dpi=80) 

ax.plot(test['Bearing 1'], label='Bearing 1', color='blue', animated =True, linewidth=1) 

ax.plot(test['Bearing 2'], label='Bearing 2', color='red', animated = True, linewidth=1) 

ax.plot(test['Bearing 3'], label='Bearing 3', color='green', animated =True, linewidth=1) 

ax.plot(test['Bearing 4'], label='Bearing 4', color='black', animated =True, linewidth=1) 

plt.legend(loc='lower left') 

ax.set_title('Abnormal Bearing Data set in time domain', fontsize=16) 

plt.show() 

###################################################################### 

# frequencies of the degrading sensor signal 

fig, ax = plt.subplots(figsize=(14, 6), dpi=80) 

ax.plot(test_fft[:,0].real, label='Bearing 1', color='blue', animated =True, linewidth=1) 

ax.plot(test_fft[:,1].imag, label='Bearing 2', color='red', animated = True, linewidth=1) 

ax.plot(test_fft[:,2].real, label='Bearing 3', color='green', animated =True, linewidth=1) 

ax.plot(test_fft[:,3].real, label='Bearing 4', color='black', animated =True, linewidth=1) 

plt.legend(loc='lower left') 

ax.set_title('Abnormal Bearing Data set in frequency domain', fontsize=16) 

plt.show() 

###################################################################### 

# normalize the data 

scaler = MinMaxScaler() 

X_train = scaler.fit_transform(train) 

X_test = scaler.transform(test) 

scaler_filename = "scaler_data" 
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joblib.dump(scaler, scaler_filename) 

###################################################################### 

X_train 

###################################################################### 

X_test 

###################################################################### 

# reshape inputs for LSTM [samples, timesteps, features] 

X_train = X_train.reshape(X_train.shape[0], 1, X_train.shape[1]) 

print("Training data shape:", X_train.shape) 

X_test = X_test.reshape(X_test.shape[0], 1, X_test.shape[1]) 

print("Test data shape:", X_test.shape) 

###################################################################### 

# define the autoencoder network model 

def autoencoder_model(X): 

 inputs = Input(shape=(X.shape[1], X.shape[2])) 

 L1.=..LSTM(200,..activation=..'relu',.return_sequences=True, 

kernel_regularizer=regularizers.l2(0.00))(inputs) 

 L2 = LSTM(25, activation='relu', return_sequences=False)(L1) 

 L3 = RepeatVector(X.shape[1])(L2) 

 L4 = LSTM(25, activation='sigmoid', return_sequences=True)(L3) 

 L5 = LSTM(200, activation='relu', return_sequences=True)(L4) 

 output = TimeDistributed(Dense(X.shape[2]))(L5) 

 model = Model(inputs=inputs, outputs=output) 

 return model 

 

# create the autoencoder model 

model = autoencoder_model(X_train) 

model.compile(optimizer='adam', loss='mae', metrics=['accuracy']) 

model.summary() 

###################################################################### 

# fit the model to the data 

nb_epochs = 100 

batch_size = 10 

history = model.fit(X_train, X_train, epochs=nb_epochs, batch_size=batch_size, 

 validation_split=0.05).history 

###################################################################### 

predict=model.predict(X_test) 

###################################################################### 

# plot the training loss 

fig, ax = plt.subplots(figsize=(14, 6), dpi=80) 

ax.plot(history['loss'], 'b', label='Train', linewidth=2) 

ax.plot(history['val_loss'], 'r', label='Validation', linewidth=2) 

ax.set_title('Model loss', fontsize=16) 

ax.set_ylabel('Loss (mae)') 

ax.set_xlabel('Epoch') 

ax.legend(loc='upper right') 

plt.show() 

###################################################################### 

# plot the loss distribution of the training set 

X_pred = model.predict(X_train) 
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X_pred = X_pred.reshape(X_pred.shape[0], X_pred.shape[2]) 

X_pred = pd.DataFrame(X_pred, columns=train.columns) 

X_pred.index = train.index 

scored = pd.DataFrame(index=train.index) 

Xtrain = X_train.reshape(X_train.shape[0], X_train.shape[2]) 

scored['Loss_mae'] = np.mean(np.abs(X_pred-Xtrain), axis = 1) 

plt.figure(figsize=(16,9), dpi=80) 

plt.title('Loss Distribution', fontsize=16) 

sns.distplot(scored['Loss_mae'], bins = 20, kde= True, color = 'blue'); 

plt.xlim([0.0,.5]) 

###################################################################### 

# calculate the loss on the test set 

X_pred = model.predict(X_test) 

X_pred = X_pred.reshape(X_pred.shape[0], X_pred.shape[2]) 

X_pred = pd.DataFrame(X_pred, columns=test.columns) 

X_pred.index = test.index 

scored = pd.DataFrame(index=test.index) 

Xtest = X_test.reshape(X_test.shape[0], X_test.shape[2]) 

scored['Loss_mae'] = np.mean(np.abs(X_pred-Xtest), axis = 1) 

scored['Threshold'] = 0.16 

scored['Anomaly'] = scored['Loss_mae'] > scored['Threshold'] 

scored.head() 

###################################################################### 

# plot bearing failure time plot 

scored.plot(logy=True, figsize=(16,9), ylim=[1e-3,1e2], color=['blue','red']) 

###################################################################### 

# calculate the same metrics for the training set 

# and merge all data in a single dataframe for plotting 

X_pred_train = model.predict(X_train) 

X_pred_train = X_pred_train.reshape(X_pred_train.shape[0], X_pred_train.shape[2]) 

X_pred_train = pd.DataFrame(X_pred_train, columns=train.columns) 

X_pred_train.index = train.index 

scored_train = pd.DataFrame(index=train.index) 

scored_train['Loss_mae'] = np.mean(np.abs(X_pred_train-Xtrain), axis = 1) 

scored_train['Threshold'] = 0.16 

#scored_train['Anomaly'] = scored_train['Loss_mae'] > scored_train['Threshold'] 

scored = pd.concat([scored_train, scored]) 

###################################################################### 

# plot bearing failure time plot 

scored.plot(logy=True, figsize=(16,9), ylim=[1e-2,1e2], color=['blue','red']) 

###################################################################### 

# save all model information, including weights, in h5 format 

model.save("Cloud_model.h5") 

print("Model saved") 


