
SLOW DISTRIBUTED DENIAL OF SERVICE DETECTION AND

MITIGATION IN SOFTWARE DEFINED NETWORKS USING SUPPORT

VECTOR MACHINE AND SELECTIVE ADAPTIVE BUBBLE BURST

ALGORITHM APPROACHES

BY

AKANJI, Oluwatobi Shadrach

MTECH/SICT/2018/8644

DEPARTMENT OF COMPUTER SCIENCE

FEDERAL UNIVERSITY OF TECHNOLOGY

MINNA

AUGUST, 2021

ii

SLOW DISTRIBUTED DENIAL OF SERVICE DETECTION AND

MITIGATION IN SOFTWARE DEFINED NETWORKS USING SUPPORT

VECTOR MACHINE AND SELECTIVE ADAPTIVE BUBBLE BURST

ALGORITHM APPROACHES

BY

AKANJI, Oluwatobi Shadrach

MTECH/SICT/2018/8644

A THESIS SUBMITTED TO THE POSTGRADUATE SCHOOL FEDERAL

UNIVERSITY OF TECHNOLOGY, MINNA, NIGERIA IN PARTIAL

FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE

DEGREE OF MASTER OF TECHNOLOGY IN COMPUTER SCIENCE

AUGUST, 2021

iii

ABSTRACT

Distributed Denial of Services (DDoS) has been used by attackers over the years to

disrupt the availability of services in a networked environment. However, the increased

attention in detecting and mitigating DDoS by security researchers has made attackers

resort to an application layer attack known as slow DDoS which mimics the behaviour of

a legitimate client using a slow connection or which has limited message window size

thus making the attack difficult to detect. Although some researchers have examined the

detection and mitigation of slow Hypertext Transfer Protocol (HTTP) DDoS, a form of

slow DDoS, their research focused on either slow read or slow post and get attacks only

without considering attack detection for the three types of slow HTTP DDoS.

Furthermore, other researchers who have achieved competitive results in detecting slow

read, post, and get attacks examined slow Denial of Service (DoS) attack which originates

from one attacker. Since the slow DoS originates from an attacker, it is relatively easy to

detect and, consequently, mitigate. Therefore, this research examined a machine learning-

based slow HTTP DDoS detection and a Selective Adaptive Bubble Burst (SABB)

mitigation of detected slow HTTP DDoS attacks, while considering slow read, post and

get attacks in a Software-Defined Network (SDN) environment. The SDN environment

was simulated in Graphical Network Simulator-3 (GNS3) where the Ryu controller was

used to collect attack and benign Netflow flowsets for feature selection using Genetic

Algorithm (GA) and attack detection using Radial Basis Function (RBF) kernel-based

Support Vector Machine (SVM). Consequently, the trained SVM model was uploaded to

the controller for real-time detection and activation of the SABB mitigation mechanism.

Results obtained showed that the SVM classification of Netflow flowsets into attack and

benign categories achieved an Area Under the Receiver Operating Characteristic Curve

(AUC), accuracy, True Positive Rate (TPR), False Positive Rate (FPR), and False

Negative Rate (FNR) of 99.89%, 99.89%, 99.95%, 0.18%, and 0.05% respectively.

Furthermore, the SABB mitigation mechanism achieved an average response time and

percentage of the completed request of 387.743 milliseconds (ms) and 92% respectively

when eight slow HTTP DDoS attackers launched the assault compared to an average

response time and percentage of the completed request of 1121.369 ms and 76%

respectively when SABB was not utilized with the same number of attackers. The

effectiveness of the SVM slow HTTP DDoS attack detection and the proposed SABB

mitigation mechanism contributes to ongoing research into the use of SDN to enhance

network security. Further studies into enhancing the average response time and the

percentage of completed requests through a multi-controller SDN setup is recommended.

iv

TABLE OF CONTENTS

Declaration iii

Certification iv

Dedication v

Acknowledgement vi

Abstract vii

Table of Contents viii

List of Tables xiii

List of Figures xiv

Abbreviations xv

CHAPTER ONE 1

1.0 INTRODUCTION 1

1.1 Background to the Study 1

1.2 Statement of the Research Problem 7

1.3 Aim and Objectives 10

1.4 Scope of the Study 10

1.5 Significance of the Study 10

1.6 Thesis Organisation 11

1.7 Definition of Terms 11

CHAPTER TWO 13

2.0 LITERATURE REVIEW 13

2.1 Introduction 13

v

2.2 Support Vector Machines (SVM) 13

2.3 Genetic Algorithm 15

2.3.1 Population 16

2.3.2 Fitness Function 17

2.3.3 Selection Criteria 17

2.3.3.1 Roulette Wheel Selection 17

2.3.3.2 Tournament Selection 18

2.3.3.3 Rank Selection 18

2.3.3.4 Random Selection 18

2.3.4 Crossover Operator 19

2.3.4.1 One-point Crossover 19

2.3.4.2 Multi-point Crossover 19

2.3.4.3 Uniform Crossover 19

2.3.5 Mutation Operator 19

2.4 Selective Adaptive Bubble Burst 20

2.5 Software Defined Network Simulation and Emulation Tools 22

2.5.1 Mininet 23

2.5.2 Network Simulator 3 (NS-3) 23

2.5.3 Objective Modular Network Testbed in C++ (OMNeT++) 23

2.5.4 Estinet 23

2.5.5 Graphical Network Simulator-3 (GNS3) 24

2.5 Review of Slow DDoS Mitigation Techniques 24

vi

2.6 Review of Slow DDoS Detection Techniques 29

2.7 Review of Optimization Techniques Applied to Machine Learning Approaches

Towards Intrusion Detection 38

2.8 Chapter Summary 46

CHAPTER THREE 47

3.0 RESEARCH METHODOLOGY 47

3.1 Introduction 47

3.2 Generate Dataset 48

3.3 Data Preprocessing 56

3.3.1 Dataset 56

3.3.2 Data Reduction 58

3.3.3 Data Normalization 60

3.4 Training and Testing of Slow DDoS RBF SVM Classifier 60

3.4.1 Feature Selection 61

3.4.2 RBF SVM Kernel Parameter Selection 61

3.4 Simulation of RBF SVM and Mitigation Mechanism 63

3.4.1 Selective Adaptive Bubble Burst (SABB) Module 64

3.5 Performance Evaluation 68

3.5.1 RBF SVM Performance Evaluation 68

3.5.1.1 Accuracy 68

3.5.1.2 False Positive Rate (FPR) 69

3.5.1.3 False Negative Rate (FNR) 69

vii

3.5.1.4 Area Under the Receiver Operating Characteristics Curve (AUC) 69

3.5.2 SABB Mitigation Performance Evaluation 70

3.5.2.1 Average Response Time 70

3.5.2.2 Ratio of Completed to Timed-out Requests 70

3.6 Chapter Summary 70

CHAPTER FOUR 72

4.0 RESULTS AND DISCUSSIONS 72

4.1 Introduction 72

4.1 Feature Selection Result 72

4.2 RBF SVM Parameter Selection Result 74

4.3 RBF SVM Classification Result 75

4.4 SABB Mitigation Process Result 78

4.5 Comparison with Other Published Work 84

4.6 Chapter Summary 85

CHAPTER FIVE 86

5.0 SUMMARY, CONCLUSION AND RECOMMENDATIONS 86

5.1 Introduction 86

5.2 Summary 86

5.3 Conclusion 87

5.4 Recommendations 88

5.5 Contribution to Knowledge 88

REFERENCES 89

viii

APPENDIX 97

ix

LIST OF TABLES

Table Page

2.1 Weaknesses and Strengths of Various DDoS and Slow DDoS Mitigation 28

Approaches

2.2 Weaknesses and Strengths of Various Slow DDoS Detection Machine 40

Learning Approaches

2.3 Review of related work 41

3.1 Slow Get Parameters and Flags 53

3.2 Slow Post Parameters and Flags 54

3.3 Slow Read Parameters and Flags 54

3.4 Netflow Version 5 Features 57

3.5 Constructed Features 58

3.6 Features Removed Manually 59

4.1 Genetic Algorithm Feature Selection Generation Accuracy 73

4.2 Selected Features 73

4.3 Genetic Algorithm RBF SVM Parameter Generation Accuracy 74

4.4 RBF SVM Classifier Performance Metric 75

4.5 Confusion Matrix Summary of RBF SVM Classification 76

4.6 Average Request Response Time with and without SABB 78

during slow HTTP DDoS attack

4.7 Completed to Timed-out Request Ratio without SABB 80

4.8 Completed to Timed-out Request Ratio with SABB 82

4.9 Classification Accuracy Comparison with other Published Work 85

x

LIST OF FIGURES

Figure Page

3.1 Proposed Solution Block Diagram 48

3.2 SDN Setup in GNS3 50

3.3 Block Diagram of the dataset creation 55

3.4 Training and Testing flowchart for RBF SVM 62

3.5 Simulation flowchart of RBF SVM in SDN 64

3.6 SABB Mitigation Module flowchart 65

4.1 RBF SVM Classification Confusion Matrix 76

4.2 Average Response Time of the Web Server 79

4.3 Completed to Timed-out Request Ratio without SABB 81

4.4 Completed to Timed-out Request Ratio with SABB 82

4.5 Comparison between Completed Requests of without and with SABB 83

xi

ABBREVIATIONS

Abbreviation Meaning

5-NN 5-Nearest Neighbour

ABB Adaptive Bubble Burst

ABC Artificial Bee Colony

ANN Artificial Neural Network

AUC Area Under the Curve

CPU Central Processing Unit

CSV Comma-Separated Values

DDoS Distributed Denial of Service

DNS Domain Name System

DoS Denial of Service

DT Decision Trees

FTP File Transfer Protocol

GA Genetic Algorithm

GNS 3 Graphical Network Simulator-3

GOA Grasshopper Optimization Algorithm

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

xii

IMAP Internet Message Access Protocol

IP Internet Protocol

KNN K-Nearest Neighbour

LR Logistics Regression

MLP Multilayer Perceptron

NS3 Network Simulator-3

OMNeT++ Objective Modular Network Testbed in C++

OSI Open Systems Interconnection

PSO Particle Swarm Optimization

RBF Radial Basis Function

RF Random Forest

SABB Selective Adaptive Bubble Burst

SDN Software Defined Networks

SMTP Simple Mail Transfer Protocol

SVM Support Vector Machine

SYN Synchronize

TCAM Ternary Content Addressable Memory

TCP Transmission Control Protocol

UDP User Datagram Protocol

1

CHAPTER ONE

1.0 INTRODUCTION

1.1 Background to the Study

Digital networks are formed when a group of digital devices are connected through a

medium that enables them to communicate using defined protocols. On such networks,

valuable information is resident and essential services are rendered to various clients who

need that information or services to complete diverse tasks. The valuable information and

essential services provided in the network are considered the assets of the network. Just

as legitimate clients need access to such services, illegitimate clients seek to either gain

access or deny the legitimate clients access to the services on the network (Jaafar et al.,

2019). Among the numerous schemes used by attackers to deny legitimate clients access

to the services provided in a network is the use of a Distributed Denial of Service (DDoS)

attack because of the difficulty to trace and stop a DDoS attack.

Distributed Denial of Service (DDoS), also known as flooding attacks, refers to an attack

on an asset or assets within a network that seeks to exhaust the limited resources of the

asset or assets by sending requests from several other network devices thereby

overwhelming the target’s capacity to respond to the malicious requests or any other

request (Rawat & Reddy, 2017; Swami et al., 2019a). The need to launch DDoS attacks

which overwhelms the target swiftly has made volumetric DDoS the attack of choice

among malicious network users. Most volumetric DDoS attacks target the network layer

of the Open Systems Interconnection (OSI) model. Next to volumetric DDoS attacks

which operates at the network layer of the OSI model is the application layer DDoS attack

of which Hypertext Transfer Protocol (HTTP) and Simple Mail Transfer Protocol

(SMTP) are the prominent application layer protocols being attacked in this category

(Swami et al., 2019a). As attackers establish new ways of launching volumetric DDoS

2

attacks, security researchers have been able to keep up with the trend and detect those

attacks because the detection of volumetric DDoS attacks is relatively easy since

volumetric attacks involve sending large requests from several devices simultaneously

(Cambiaso et al., 2013). Due to the pace with which security researchers have been able

to identify the gimmicks of volumetric DDoS attackers and since the goal of the attackers

is the disruption of service availability, the attackers now resort to launching slow DDoS

attacks which are hard to detect and mitigate. The difficulty in detecting and mitigating

slow DDoS attacks stems from the attack’s similarity to requests from slow legitimate

clients as opposed to the behaviour exhibited by volumetric attacks (Cambiaso et al.,

2017; Jaafar et al., 2019; Muraleedharan & Barnabas, 2018).

Slow DDoS is a low-rate attack which is mostly application layer attacks that are difficult

to detect because it behaves like legitimate traffic sent over a slow connection or from a

legitimately slow client (Cambiaso et al., 2013; Dhanapal & Nithyanandam, 2019;

Suroto, 2017; Swami et al., 2019b). Since the goal of a slow DDoS attack is to cause the

unavailability of the targeted service, the attacker seizes available connections at the

application layer which results in a busy service queue where legitimate traffic is dropped.

Furthermore, the attacker sustains the assault by sending data at a low rate per unit time

to keep the seized connections for as long as possible (Cambiaso et al., 2013). Since these

attacks affect the application layer, protocols such as HTTP, SMTP, Internet Message

Access Protocol (IMAP), and File Transfer Protocol (FTP) are also affected (Swami et

al., 2019b). Although launching a slow DDoS attack requires less bandwidth and

resources, it is capable of causing service disruption on a large scale (Cambiaso et al.,

2013; Shtern et al., 2014; Suroto, 2017). Given the wide spread use of web servers to

provide hypermedia, slow DDoS attackers have focused on attacking the application layer

of webservers by disrupting the operations of the HTTP using an attack known as slow

3

HTTP DDoS which causes the web server to be unable to respond to HTTP requests.

Slow HTTP DDoS are DDoS attacks launched against web servers by sending data or

forcing the server to send data in a manner that prolongs the connection requesting for

the resource thus denying legitimate clients access (Park, 2015). A slow HTTP attack is

launched after a Transmission Control Protocol (TCP) connection has been established

with the web server (Idhammad et al., 2018; Tayama & Tanaka, 2018). Based on the

operations obtainable in an HTTP request, there are three major types of slow HTTP

DDoS attacks namely: slow HTTP get, slow HTTP post, and slow read attack (Yevsieieva

& Helalat, 2017).

The slow HTTP get attack sends HTTP get requests to a victim server without

transmitting two carriage return and line feed characters to denote the end of the request

thus forcing the victim not to start processing until a complete header is received

(Muraleedharan & Barnabas, 2018; Suroto, 2017; Idhammad et al., 2018). Similarly, slow

HTTP post attacks take advantage of the adherence of web servers to the volume of data

defined in the Content-Length field by advertising a large value and then sending the post

message in several packets at a low rate to the server (Idhammad et al., 2018; Swami et

al., 2019a). Unlike the other two slow HTTP attacks, a slow read attack sends a normal

HTTP message to the web server but forces it to send a reply at a slow rate based on the

number of bytes the attacker specifies to be readable as defined by the TCP window size

(Kemp et al, 2018). Therefore, to protect web servers from this hard-to-detect form of

DDoS, emphasis is laid on the accuracy of the methods used in identifying such attacks.

Although researchers have been able to use deterministic methods, such as calculating

the distance-metrics, to detect the presence of slow HTTP DDoS traffic, the deterministic

methods have exhibited several drawbacks which includes being error prone and the

inability to perform real-time detection. Consequently, the focus on machine learning

4

detection of slow HTTP DDoS attacks has gained prominence in recent times because it

addresses the drawbacks of the deterministic detection method for slow HTTP DDoS

attacks.

Machine learning, a sub-field of artificial intelligence, has been used in different fields

including SDN in identifying different attributes of interest (Sen et al., 2020). A machine

is deemed as intelligent when it learns from its experience concerning the data available

in its domain and uses it to enhance decisions to be taken in the future (Latah & Toker,

2019). Four groups of machine learning formed according to the learning methods of their

constituent algorithms exist: supervised, unsupervised, reinforcement, and semi-

supervised learning. Supervised learning implies the use of predefined knowledge to

perform tasks such as classification on a new set of data that has not been analysed

previously of which Support Vector Machine (SVM), Artificial Neural Network (ANN),

and Decision Trees (DT) are algorithms developed on supervised learning concept

(Agarwal, 2014). Unlike supervised learning, unsupervised learning finds and maps the

relationships present among the data provided to make decisions based on those

relationships discovered whenever new data is introduced. While supervised learning

performs classification tasks on data, unsupervised learning performs clustering

operations (Latah & Toker, 2019). Aside from detection of malicious traffic by statistical

analysis, supervised machine learning algorithms on classification have been applied in

classifying traffic into normal and malicious categories thus resulting in higher accuracy

than statistical analysis but also increasing the computational cost compared to statistical

analysis (Swami et al., 2019a). For a machine learner to perform better, feature selection

and classifier parameter optimization are executed using algorithms such as genetic, ant

colony optimization, artificial bee colony, and particle swarm optimization algorithms

which are meta-heuristic algorithms (Alshamrani et al., 2017; Kamarudin et al., 2019;

5

Latah & Toker, 2019). Detection of attack traffic is not worthwhile unless it is backed up

with mechanisms that stop the attack and restores the service to normal levels for

legitimate users. Therefore, mitigation of slow HTTP DDoS attacks is paramount in

protecting the availability of the HTTP service offered by web servers (Sattar et al., 2016).

Mitigation of slow HTTP DDoS attacks entails the application of techniques which

protects the web server from service degradation and its resources from exhaustion by

slowing or stopping the attack entirely (Jaafar et al., 2019; Yeasir et al., 2015). When

slow HTTP DDoS attacks are launched, the processing power of the victim web server’s

Central Processing Unit (CPU) is the resource under the threat of exhaustion (Swami et

al., 2019b). Given the prominence of DDoS among malicious users as an attack of choice,

researchers have been able to develop several DDoS attack mitigation techniques. For

instance, Jaafar et al. (2019) and Shafieian et al. (2015) worked on mitigating DDoS

attacks by blocking the illegitimate traffic while Luo et al. (2014) examined increasing

the buffer size of the bottle-neck device under DDoS attack. Furthermore, Lukaseder et

al. (2018) explored the redirection of traffic to a Turing verification server. Similarly,

Schehlmann and Baier (2013) investigated the redirection of attack traffic to a honeypot

while a shark tank which is a separate cluster with full application capabilities designed

to monitor suspicious users was used by Beigi-Mohammadi et al. (2017) to mitigate

DDoS attacks. Also, Bhunia and Gurusamy (2017) researched into rate-limiting of

suspicious traffic while Fonseca and Nigam (2016) approached DDoS mitigation by

selectively dropping some attack traffic. Ameyed et al. (2015) and Sattar et al. (2016)

focused on spreading the attack traffic across multiple replicas while Yuan et al. (2017)

evaluated the queuing of requests using a scheduling algorithm and Yeasir et al. (2015)

used a reverse proxy server to curb DDoS attacks. Most slow DDoS mitigation techniques

rely on attack recognition measures implemented on the server such as connection

6

timeout and the number of a concurrent connection made from an Internet Protocol (IP)

address which cannot guarantee attack detection before reaching the target (Hong et al.,

2018). As a result, a robust attack recognition system detects the attack before it reaches

the target web server and applies an effective mitigation mechanism which is evident by

the response time to requests and the ratio of completed to timed-out requests of the web

server (Sattar et al., 2016). Furthermore, having a global view of the network enables and

enhances the slow HTTP DDoS detection and mitigation technique applied to the network

(Lukaseder et al., 2018).

The emergence of Software Defined Networks (SDN) addresses the absence of unified

network management and flexible device configuration observed in a traditional network

by combining logically centralized network management with network programmability

through the separation of the control plane from the data plane (Benzekki et al., 2016). In

SDN, the control plane is situated in a device called the controller which defines rules

that govern the forwarding of data and the data plane is situated in devices called the

switch. The switch receives and forwards data received based on the rules specified by

the controller (Dabbagh et al., 2015). Although the SDN now makes network monitoring

and updating easier, it is also prone to malicious attacks such as DDoS (Xu et al., 2017).

Devices within the SDN prone to DDoS attacks include servers, switch flow tables, and

the controller (Ali et al., 2015). However, researchers have identified that proactive

defence of networks against attacks including DDoS is achievable with SDN due to the

controller’s ability to collect traffic statistics from the switches (Ali et al., 2015). The

controller’s ability to gather traffic information is made possible with the OpenFlow

protocol which is one of the first SDN standards responsible for intercommunication

between the control and data planes (Hamad et al., 2016; Swami et al., 2019b). Although

OpenFlow is capable of sending flow statistics, the communication is not as lightweight

7

as Netflow considering the request and associated response format it follows

(Schehlmann & Baier, 2013). That is, obtaining flow statistics using OpenFlow entails

the request of flow statistics from the switch by the controller and the receipt of the

response from the switch by the controller. In a situation where flow statistics are needed

constantly, the flow request message from the controller serves as an overhead thereby

affecting the processing capability of the controller. To reduce the controller processing

overhead, Netflow has been the flow statistics aggregator of choice. Network flows

(Netflow), which is a Cisco Systems technology that monitors and exports network flows,

refer to a unidirectional stream of network packets between a source and destination

application (Schehlmann & Baier, 2013). Netflow is relatively efficient in terms of

storage as it groups packets into flow summaries making it easier to query large historical

traffic data sets (Kemp et al., 2018). A combination of SDN and Netflow gives a global

view of the network, aids in fast processing of the flow records, and easy propagation of

rules for slow HTTP DDoS attack mitigation.

1.2 Statement of the Research Problem

The increased attention given to DDoS by security researchers has forced attackers to

consider other attack methods which are less prone to detection and mitigation but are

capable of disrupting the availability of the targeted services. As a result, attackers have

been able to exploit the HTTP using slow HTTP DDoS attacks which requires low

bandwidth, fewer resources, and can originate from mobile phones which presently

connects about 3.5 billion people globally to the Internet (Farina et al., 2015). Given the

complexity of the HTTP, a slow HTTP DDoS attack could be any or a combination of

the following three types of attacks: slow read, slow get, or slow post DDoS attacks.

Although researchers have examined the detection of slow HTTP DDoS attacks, they

were able to explore only one or a combination of two types of slow HTTP DDoS attacks.

8

That is, some researchers explored the detection of slow read attacks only while others

explored the detection of slow get and slow post attacks only without evaluating the

detection of all the three types of slow HTTP DDoS attacks: slow read, slow get, and slow

post. It can be inferred that the researchers who examined the detection of slow get and

slow post HTTP DDoS attack pairs were able to perform the detection task seamlessly

because of the similarity between both attacks (Muraleedharan & Barnabas, 2018). That

is, both slow get and slow post HTTP DDoS attacks entail the sending of malicious

packets to the target at a slow rate, unlike slow read which involves reading the contents

of packets received from the webserver at a slow rate. Furthermore, the dissimilarity

between the slow read DDoS attack and the other two slow HTTP DDoS attacks has made

researchers evaluate its detection separately.

On the one hand, researchers who have examined the detection of slow HTTP DDoS

attacks explored either one or two of the slow HTTP DDoS attack types without

considering all three. On the other hand, however, researchers who have explored the

detection of the three types of slow HTTP attacks focused on Denial of Service (DoS)

without evaluating the effect of a DDoS. What this means is that the researchers who

explored the three types of slow HTTP attacks evaluated the attack from a single source

without checking the possibility of multiple attackers.

Furthermore, apart from the work by Ameyed et al. (2015) and Sattar et al. (2016) which

explored protecting the availability of the targeted service during slow read and

volumetric DDoS attacks respectively, other researchers focused on techniques that either

does not guarantee some level of service availability or will eventually degrade the

availability of services as the mitigation mechanisms become a bottle-neck. The methods

used by researchers which do not guarantee service availability are rate-limiting, reverse

proxy, traffic redirection, and time-out intervals mitigation techniques.

9

In this work, the detection of the three types of slow HTTP DDoS – slow read, slow get,

and slow post – which originates from multiple attackers was performed using Radial

Basis Function (RBF) kernel-based Support Vector Machine (SVM) which addresses the

dissimilar behaviour of slow HTTP DDoS types while relying on Genetic Algorithm

(GA) to select the appropriate features that signify the presence of attack traffic in a

Netflow export. Besides, GA was used to tune the RBF kernel parameters to obtain

optimal values that guarantee competitive classification. Unequivocally, the effectiveness

of the classifier in detecting the three types of slow HTTP DDoS is hinged on the optimal

selection of features that signify the presence or absence of attack traffic and robust

classification that addresses the nonlinearity of the three types of slow HTTP DDoS

attacks (Aziz et al., 2013; Barati et al., 2014; Li et al., 2015; Xingzhu, 2015; Kamarudin

et al., 2019). Once an attack is detected, it is mitigated using the Selective Adaptive

Bubble Burst (SABB) mitigation technique – a concept synthesized from the work by

Ameyed et al.(2015) and Sattar et al. (2016). SABB isolates the traffic flagged as

malicious onto a replica server for further observance while other legitimate traffic

continues communicating with the primary webserver. Once the isolated traffic is flagged

as malicious again, the selective adaptive bubble burst isolates the traffic onto another

replica webserver. This process is repeated until the number of times the traffic has been

flagged as malicious is greater than the number of replica webservers. Then, all traffic

from the malicious Internet Protocol (IP) address is blocked at the gateway switch. The

setup is tested in an SDN simulation environment such that detected attack traffic is

flagged for mitigation using the selective adaptive bubble burst technique. The use of the

mitigation technique highlights the effectiveness evaluation aspect suggested as a future

work by Ameyed et al.(2015).

10

1.3 Aim and Objectives

This research aims to mitigate slow HTTP DDoS attacks using selective adaptive bubble

burst approach while relying on radial basis function kernel support vector machine to

detect the attack based on the features of interest selected by the genetic algorithm. The

objectives are to:

i. Select features that signify the presence or absence of a slow DDoS attack using

genetic algorithm.

ii. Classify the traffic in the flowset into benign or anomalous using RBF SVM and

serialize the object obtained.

iii. Formulate a selective adaptive bubble burst model to ensure the availability of

web services to legitimate users whether slow or not.

iv. Simulate the RBF SVM serialized object obtained in (ii) with selective adaptive

bubble burst in an SDN environment.

v. Evaluate the performance of RBF SVM and the selective adaptive bubble burst

mitigation technique.

1.4 Scope of the Study

This research focuses on mitigating slow HTTP DDoS attacks of slow HTTP get, slow

post, and slow read attacks using genetic algorithm and support vector machine for attack

recognition and a selective adaptive bubble burst technique to curb the attack. Volumetric

or flooding attacks were not considered likewise slow attacks against other application

layer protocols were not explored.

1.5 Significance of the Study

This study would be of benefit to network professionals, cloud security professionals, and

researchers that are focused on improving the resilience of traditional and software-

11

defined networks against slow HTTP DDoS attacks. Furthermore, this study will aid

researchers in understanding the methods of DDoS mitigation which may be applicable

to slow HTTP DDoS thus enhancing the decision making process towards selecting the

appropriate mitigation technique to implement or to modify towards curbing slow HTTP

DDoS.

1.6 Thesis Organisation

This thesis is comprised of five chapters. The background to the study, statement of the

research problem, aims and objectives, and the significance of the study are covered in

Chapter One. Review of literature related to slow DDoS mitigation techniques, slow

DDoS machine-learning detection techniques, and optimization algorithms used to

improve the detection accuracy of the machine learning techniques are contained in

Chapter two. The methodology used for the research, the description of the dataset

generated, the use of Graphical Network Simulator-3 (GNS3) to simulate an SDN

network, and the metrics used to evaluate the performance of the RBF SVM approach to

detecting and the selective adaptive bubble burst approach to mitigating are examined in

Chapter three. Chapter four consists of the analysis of the results obtained from the

execution of the RBF SVM algorithm and the implementation of the selective adaptive

bubble burst mechanism. The thesis ends with chapter five which consists of the

conclusion, the recommendations, and the contribution to the knowledge of this work.

1.7 Definition of Terms

The terms used in this study are defined below:

Mitigation: Mitigation can be described as the act of making the effect of an action to be

less severe. Mitigation of slow DDoS as it applies to this work refers to the actions taken

or to be taken which will lessen the effect of the attack on resources on the network.

12

Simulation: Simulation refers to the use of representative objects, features, and

environments to describe another object, feature, or environment. Simulation of the SDN

using GNS3 creates a representational network on a computer.

OpenFlow: OpenFlow is an SDN communication protocol that enables the control plane

to communicate with other networking devices. This protocol can be used to define the

behaviour of networking devices by the controller in addition to monitoring the network

through flow statistics collection.

Netflow: Netflow is a flow collection protocol used to obtain aggregates of flows that

move through a network via a Netflow compatible switch using the source address, a

destination address, source port, destination port, and transport protocol to obtain an

aggregate known as a record. It gives an abstract view of network communications.

13

CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Introduction

The previous research on slow HTTP DDoS mitigation is presented in this chapter while

evaluating other topics of interest such as slow HTTP DDoS detection, support vector,

machines, genetic algorithm, and the origin of the selective adaptive bubble burst

mitigation approach being proposed. It is important to examine previous statements on

the methods and tools used in this research. A review of works regarding slow DDoS

detection, mitigation, and feature selection is presented at the end of the chapter.

2.2 Support Vector Machines (SVM)

SVM is an algorithm that classifies both linear and nonlinear data by searching for an

optimal linear hyperplane. A hyperplane refers to the boundary of decision that

effectively separates the tuples in one class from another (Agarwal, 2014). With the aid

of a hyperplane, SVM is used to separate training datasets. Each data item feature can be

represented in n-dimensional space and SVM can be used to discover the hyperplane that

splits the dataset into two classes (Singh & Rai, 2019). Also, it provides a maximum

distance (classifier margin) from itself to the closest training point. In working with

nonlinear data, a nonlinear mapping, kernel function, is utilized to transform the data

points into high dimensional space. Although the training time of SVM is slow, they

exhibit high accuracy due to the ability to model complex nonlinear hyperplanes and are

less susceptible to overfitting (Agarwal, 2014). Due to the similarity of the slow attack

traffic with benign traffic, the radial basis function kernel is applied to transform the

nonlinear data points into linear data points in a high dimensional space. An optimal

hyperplane gives better result and is represented mathematically under the condition of

linear separability and linear separable dataset of two points (𝑥𝑖, 𝑦𝑖), 𝑖 = 1,2, … , 𝑛 where

14

𝑖=1

𝑥𝑖 ∈ ℝ𝑛 and 𝑦𝑖 ∈ {+1, −1}. Equation 2.1 represents the correct classification of dataset

(Su et al., 2018; Singh & Rai, 2019; Ye et al., 2019),

𝑦𝑖((𝑤. 𝑥𝑖) + 𝑏) − 1 ≥ 0 𝑓𝑜𝑟 𝑖 = 1,2, … . . , 𝑛 (2.1)

where y represents two classes that have a binary value, w is a weight vector, x is an input

vector, and b is a threshold value. Generalized to n-dimensional space, minimizing the

structural risk of constructing the optimal classification hyperplane is equivalent to

solving the constrained optimization problem with the formula expressed in equation 2.2

(Liu et al., 2018; Ye et al., 2018):

 min[𝜑(𝑤, 𝜀] = 1 | |
2

∑𝑁

 𝜀) (2.2)
min(| 𝑤 |

2
+ 𝐶 𝑖=1 𝑖

𝑠. 𝑡. 𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) ≥ 1 − 𝜀𝑖, 𝜀𝑖 ≥ 0, 𝑖 = 1,2, … . , 𝑁

where the classifier margin is maximized by minimizing 1 ||𝑤||

2
and the variables 𝜀

2 𝑖

denote the extent to which the samples, 𝑥𝑖, violate the margin and the penalty parameter

C > 0 adjusts the trade-off between minimizing the sum of the slack violation errors and

maximizing the margin (Ma & Guo, 2014).

The optimization problem in equation 2.2 can be expressed through the introduction of

the Lagrange multiplier 𝛼𝑖and the kernel function by the formula in equation 2.3 (Liu et

al., 2018):

max[𝑄(𝛼)] = max[∑𝑁 𝛼 −
1

∑𝑁
 ∑𝑁 𝛼 𝛼 𝑦 𝑦 𝑘(𝑥 , 𝑥)] (2.3)

𝑖=1 𝑖 2 𝑖=1 𝑗=1 𝑖 𝑗 𝑖 𝑗 𝑖 𝑗

𝑠. 𝑡. ∑𝑁 𝛼𝑖𝑦𝑖 = 0; 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1,2, … , 𝑁

where 𝑘(𝑥𝑖, 𝑥𝑗) is the kernel function. Several kernel functions exist such as linear,

nonlinear, polynomial, radial basis function (RBF), and sigmoid. However, in this work,

15

2

RBF is selected for use because it works well and it is relatively easy to tune. Equation

2.4 describes the RBF kernel (Ma & Guo, 2014):

𝑘(𝑥𝑖, 𝑥𝑗) = exp(−𝛾|𝑥𝑖 − 𝑥𝑗|) (2.4)

where 𝛾 is a constant value to adjust the width of the Gaussian function.

2.3 Genetic Algorithm

Genetic algorithm is a stochastic algorithm that performs global search operations by

leveraging the concept of genetics and the natural selection process (Kannan, 2018). In

genetics, genes - the basic unit of heredity – are studied with their behaviours. Natural

selection, as developed by Charles Darwin, is the process by which living organisms

change and adapt within their population thus introducing variation among individuals in

the population. Consequently, genetic algorithm mimics biological processes of the

survival of the fittest to develop a solution to a problem. The basic building block of the

genetic algorithm is the gene. A collection of genes forms a chromosome (individual)

while a collection of chromosomes forms a population. Given a set of chromosomes

(initial population), genetic algorithm evolves the population into a new population using

selection operators while applying mutation and crossover operations to the selected

chromosomes. A new population contains the fittest individuals based on the fitness

function definition. The selection operator chooses the fittest individuals to form a new

population based on the fitness function defined while crossover and mutation introduce

diversity to the new population by swapping genes from chromosome pairs in the case of

crossover and inverting randomly selected genes in chromosomes in the case of mutation.

The crossover operation is also known as the mating operation where two chromosomes

that are of good fitness based on the fitness function undergo a gene exchange operation

to produce two more chromosomes that are assumed to be good. Genetic algorithm

16

assumes that mating two good chromosomes will yield two good chromosomes (Agarwal,

2014). The parameters of a genetic algorithm are: population, fitness function, selection

criteria, crossover operator, and mutation operator (Katoch et al., 2021; Mirjalili et al.,

2020).

2.3.1 Population

A population refers to a collection of chromosomes that are potential solutions to the

problem at hand (Aziz et al., 2013). Since a chromosome is formed from a gene, the

encoding of the individual genes is dependent on the type of problem to be solved and

has to be within the constrained values to have chromosomes that represent meaningful

solutions. To determine the genes, properties that affect the result of the problem at hand

are to be considered. For instance, in a feature selection problem, the features are the

properties that affect the result if selected or not. Therefore, every feature in the dataset

is regarded as a gene. In a dataset with 31 features, a chromosome is represented by 31

genes and the chromosome is said to be of length 31. Having determined the selected

genes, the representation of the genes is the next activity. Various forms of representing

a gene exist such as the use of decimal, binary, string, and float. In line with the feature

selection instance, determining the selection of a gene (feature) is the problem of interest

hence the need to encode it using two possible values. One value signifies that a gene

(feature) is selected while the other signifies that the gene is not selected. Hence, encoding

the genes using binary values is the best option based on the feature selection problem.

In a parameter optimization problem, the number of genes in a chromosome is defined by

the number of parameters to be optimized. That is if two parameters are to be optimized,

then, there will only be two genes per chromosome. Generally, defining the number of

chromosomes in a population is left to the researcher to decide (Kannan, 2018; Katoch et

al., 2021; Mirjalili et al., 2020).

17

2.3.2 Fitness Function

A fitness function refers to an algorithm or a method used to calculate the fitness value

of a solution (chromosome). The fitness value is an indicator that determines the ranking

of a solution among all other solutions. That is, the fitness value represents the closeness

of a solution to the expected result. The fitness value is used to differentiate good

solutions from bad solutions. In a feature selection problem, the accuracy of the classifier

based on the selected features can be used as the fitness value for the selected features

(chromosome) (Agarwal, 2014; Aziz et al., 2013; Kannan, 2018).

2.3.3 Selection Criteria

Selection is the process of choosing chromosomes from a population for later breeding

which will produce off-springs for the next generation (Anusha & Sathiyamoorthy, 2016).

The convergence rate, how fast an optimal solution is obtained, of genetic algorithm is

hinged on the ability to select good parents that produces better individuals. Also,

maintaining the diversity of the population is important in genetic algorithm to prevent

premature convergence. Premature convergence occurs when the entire population is over

shadowed by one extremely fit solution. The types of parent selection methods are:

roulette wheel selection, tournament selection, rank selection, and random selection

(Mirjalili et al., 2020). Selection is an exploitation process. Exploitation is the process of

accessing regions of a search space around the area of previously accessed points.

2.3.3.1 Roulette Wheel Selection

In roulette wheel parent selection method, a circular wheel is used which is divided into

pies equivalent to the number of individuals in the current population. Each space

occupied by each individual of the population is proportionate to the fitness value of that

individual. Then, a fixed point on the circumference of the wheel is chosen. The pie

section that stops in front of the fixed point when the wheel is rotated is then chosen to

18

be the first parent. The same process is repeated to choose the second parent. Given that

the size of the pie each individual occupies on the wheel is directly proportional to the

individual’s fitness value, the individual with the highest fitness value has a greater

probability to be selected as a parent compared to the other individuals (Mirjalili et al.,

2020).

2.3.3.2 Tournament Selection

In a tournament selection, a specified number of individuals is selected at random from

the population. Then, the best individual out of the selected individuals becomes a parent

(Katoch et al., 2021). That is if the specified way in the tournament selection is 3, then,

three individuals in the population are selected at random and the individual with the best

fitness value becomes a parent. The same process is repeated for selecting the second

parent. Tournament selection is well known for its low susceptibility to premature

convergence due to the presence of dominant individuals.

2.3.3.3 Rank Selection

Rank selection is most appropriate when individuals in the population have close fitness

values. Therefore, each individual is ranked based on their fitness. Then, the individuals

with higher rankings are selected for the breeding operation (Katoch et al., 2021; Mirjalili

et al., 2020).

2.3.3.4 Random Selection

In random selection, the parents are selected at random from the population. This strategy

does not consider the fitness of individuals hence the need to avoid this selection strategy.

This is because, the random selection of parents could yield sub-optimal or non-optimal

generations which will cause the solution search process to suffer (Katoch et al., 2021;

Mirjalili et al., 2020).

19

2.3.4 Crossover Operator

Genetic algorithm assumes that breeding two good parents will yield a good individual

for the next population. This breeding happens when the genes of both parents are

combined in a predefined manner to yield another individual (Mirjalili et al., 2020).

Therefore, a crossover operator is applied to two parents to create a new individual. The

types of crossover operators are: one-point crossover, multi-point crossover, and uniform

crossover. Crossover is an exploration process. Exploration is the process of gaining

access to entirely new areas of a search space (Crepinsek et al., 2013).

2.3.4.1 One-point Crossover

In one point crossover, a random point for crossover is picked and the other half of the

parents are exchanged to get two new off-springs. This is the most applied form of

crossover (Crepinsek et al., 2013; Mirjalili et al., 2020).

2.3.4.2 Multi-point Crossover

In a multi-point crossover, several points are selected on each parent based on the number

of points specified. Then, alternate parts of each parent are exchanged to yield new off-

springs (Crepinsek et al., 2013; Mirjalili et al., 2020).

2.3.4.3 Uniform Crossover

In a uniform crossover, each gene is treated separately by computing the probability of a

gene being part of an offspring. The probability may be biased towards a parent so that

the off-springs contain more genes from one parent than the other (Crepinsek et al., 2013;

Mirjalili et al., 2020).

2.3.5 Mutation Operator

To maintain diversity in a population, the mutation operation is performed after a

crossover operation. The mutation operation changes one or more genes in an individual

20

from its original state. A mutation probability is always defined and needs to be set to a

low value else the high mutation probability converts the search process to a random

search. Mutation is an exploration process (Agarwal, 2014; Crepinsek et al., 2013;

Kannan, 2018).

2.4 Selective Adaptive Bubble Burst

Selective Adaptive Bubble Burst (SABB) is a concept created from the work by Ameyed

et al. (2015) and Sattar et al. (2016). Since both works focused on ensuring the availability

of services, the advantages of attack connection deletion as observed in the work by

Ameyed et al. (2015) and the use of SDN to spread attack traffic as observed in the work

by Sattar et al. (2016) were merged and modified to yield the SABB slow HTTP DDoS

mitigation approach. In SABB, there is a primary webserver with at least one replica

webserver which hosts the same content as the primary webserver. Once the first

occurrence of a slow HTTP DDoS attack traffic is detected from an IP address, the

connections from the detected IP address are moved from the primary webserver to the

first replica server (in a situation where there are more than one replica servers). The

attack detection occurrence for the IP address is updated and SABB continues to monitor

the network. On subsequent flagging of the same IP address as an attacker, SABB

continues to update the attack detection occurrence and moves the attack traffic to the

next replica server until the attack detection occurrence exceeds the number of replica

servers in the setup. Once the attack detection occurrence for an IP address exceeds the

number of replica servers, the defaulting IP address is blocked from accessing any service

on the network. The movement of new connections from an IP address flagged as a slow

HTTP DDoS attack to replica servers is being performed so as to verify the detection

result multiple times given that traffic from slow legitimate traffic bears similarity with

21

slow HTTP DDoS attacks. The works from which the SABB was synthesized are

presented and comparisons drawn.

Ameyed et al. (2015) proposed an availability model to curb slow read DDoS having

considered the limitations of existing slow read DDoS mitigation models such as using

connection timeouts, total connections on a webserver, and the total number of attack

connections. The proposed availability model incorporated multiple web servers through

a failure isolation zone. The failure isolation zone involves the distribution of web

services on webservers among two zones. In the first zone, once the total number of

connections the webserver can process has reached its peak, new connections are sent to

the second webserver in another zone. Then, the connections on the first webserver are

analyzed and connections deemed to be slow which have originated from the same IP

address are deleted. The proposed model was not implemented. Similarly, SABB consists

of replica servers and it moves the flagged attack connections from the primary server to

the replica server. However, on the contrary, SABB is focused on mitigating slow get,

slow post and slow read HTTP DDoS attacks and it blocks the attack traffic completely

as opposed to deleting each connection established. The traffic SABB blocks would have

been flagged as a slow HTTP DDoS attack traffic multiple times as opposed to the

technique by Ameyed et al. (2015) where slow connections from the same IP address are

deleted while assuming that the multiple slow connections originated from an attacker.

Another availability model developed by Sattar et al. (2016) explored the use of SDN to

mitigate volumetric DDoS by ensuring the availability of services during an attack. The

approach used in the work was called Adaptive Bubble Burst (ABB). In the work, the

detection of volumetric DDoS was performed by setting a threshold on incoming traffic

based on the serving capacity of the webserver or file server. Once the threshold is

reached, the ABB bursts the DDoS attack bubble by spreading the traffic across several

22

nodes serving the same resource in the network. It was noted in the work that the attack

might still cause damage to some resources even after the ABB is activated. The

advantages of the ABB as highlighted by the authors are the reduction of the impact of

volumetric DDoS on a single node in the network and the boosting of service availability

during volumetric DDoS attacks. On the one hand, SABB bursts the slow HTTP DDoS

attack which is similar to the operations of ABB. On the other hand, however, SABB

does not spread all incoming traffic to replica servers. SABB selects the connections made

by the flagged IP address with subsequent connections from the flagged IP address and

maps their destination to be one of the replica servers without disrupting other legitimate

traffic traversing the network.

2.5 Software Defined Network Simulation and Emulation Tools

Simulation refers to the creation of a synthetic version of a real-world process or system

thereby mimicking the operation and behaviours of the system, especially at the software

level. In contrast, emulation refers to the development of a superficial environment that

mimics both the hardware and the software of the target environment. Due to the issues

around the access to a physical SDN topology, several simulators and emulators have

been developed to aid in performing research and experimental operations on SDN. A

simulator is a tool developed to mimic an environment that contains the necessary

software variables and configurations that will exist in an application production

environment. In contrast, an emulator attempts to mimic both hardware and software

features of the production environment. In this work, the production environment is SDN.

SDN simulators and emulators include Mininet, Network Simulator 3(NS-3), Objective

Modular Network Testbed in C++ (OMNeT++), Estinet, and Graphical Network

Simulator-3 (GNS3).

23

2.5.1 Mininet

Mininet is a virtual network emulator which creates a network of links, switches,

controllers, and virtual hosts. The operating system of the virtual hosts in a Mininet

network is based on the standard Linux network software. The switches in Mininet

support the OpenFlow protocol. Interaction with a network designed using Mininet is

performed using a Command Line Interface (CLI). Mininet provides a simple network

testbed for creating OpenFlow applications which are easily reconfigured and restarted

however, the settings and configurations on the virtual hosts are lost on exiting the

emulator (Li et al., 2020).

2.5.2 Network Simulator 3 (NS-3)

NS-3 is a discrete-event simulator for networks to model the behaviour of packet

networks. It is open-source and has a set of libraries that can be merged with other

libraries to provide visualization. It also supports the OpenFlow protocol (Jevtic et al.,

2018).

2.5.3 Objective Modular Network Testbed in C++ (OMNeT++)

Objective Modular Network Testbed in C++ (OMNeT++) is an extensible simulation

library in C++ for developing network simulations that support the OpenFlow protocol.

The OMNeT++ simulator supports SDN through an extension. It also consists of a

Graphical User Interface (GUI) which makes the simulation visible to the user.

2.5.4 Estinet

Estinet is a licensed OpenFlow network simulator and emulator that supports the creation,

testing, and evaluation of SDN. That is, Estinet combines the advantages of a simulator

which are low cost, flexibility, repeatability, and controllability with the real-time

24

execution advantage of an emulator. The free trial license of Estinet provides a network

with a maximum of 15 nodes with a five minute simulation time (Wang et al., 2013).

2.5.5 Graphical Network Simulator-3 (GNS3)

Graphical Network Simulator-3 (GNS3) is an emulator software for networks that

execute real operating system images in a network. Virtualisation of the host computer is

needed for GNS3 to run. It also has a GUI which makes it easy to configure and design

network topologies. Furthermore, GNS3 supports the persistence of data and commands

on the hosts in the network. This makes it easy to transfer external files into hosts for

execution and perform complex configurations on the hosts without losing the

configuration on shutdown. In this work, GNS3 was the simulator of choice because of

the data and command persistence it offers given the need to configure each host with a

real operating system image and load dependencies to support the simulation task.

Besides, since GNS3 is an emulator, experiments performed on it can be transferred easily

with little to no configuration onto a real-life system. Furthermore, the intuitive GUI

makes it easy to utilize (Polanco & Guerrero, 2020).

2.5 Review of Slow DDoS Mitigation Techniques

Slow read DDoS mitigation mechanism that ensures high availability of resources to

legitimate users was explored by Ameyed et al. (2015). In the work, an approach that

ensures high availability and redundancy in the cloud was proposed by implementing a

failure isolation zone in distributing web services instances across two zones. Once the

webserver in the first zone reaches its maximum number of connections, new connections

are redirected to the other zone. Then slow connections coming from the same IP address

in the first zone are deleted from the server. The main focus of this approach is ensuring

the availability of web services. Evaluating the effectiveness of their approach through its

implementation was outlined as an area of further research.

25

Park (2015) evaluated the strength of slow read DDoS against ModSecurity mitigation

mechanism which is based on limiting the number of connections made from an IP

address. Unlike the work by Ameyed et al. (2015), monitoring of the number of

connections from IP addresses was used to detect a slow read attack that stops the attacker

before the maximum number of available connections is reached. In a situation where the

number of connections made from an IP address exceeds the limit set, ModSecurity was

able to mitigate the attack effectively. However, in a situation where the number of

attackers was increased but the number of connections made was below the limit set,

ModSecurity was ineffective. Adaptively changing the number of connections made by

an attacker per second with the window size and deciding the value of window size based

on concurrent measurement of packet arrival time were marked for further studies on

attack propagation and attack mitigation.

Reverse proxy was used in the work by Yeasir et al. (2015) as a defence mechanism

against slow HTTP get DDoS. The concept employed in their work differs from that of

Ameyed et al. (2015) and Park (2015) because slow get attacks involve sending data to

the server as opposed to slow read which involves receiving data from the server. The

reverse proxy is a proxy server that handles requests for resources by clients by retrieving

the resource from the server then sending the resource to the client thus hiding the

existence of the main server. It also balances request load among available servers. Since

the reverse proxy server caches requests, unless properly configured with timeouts and

thresholds, its resources could also be exhausted thus causing a denial of service scenario.

Finding the appropriate timeout or threshold so as not to disconnect legitimate slow

clients is difficult. Extending their approach to other web servers which are not HTTP-

based was suggested as an aspect for future study.

26

Adaptive Bubble Burst (ABB) was used in SDN to mitigate DDoS attacks in the research

by Sattar et al. (2016). The work differed from that of Ameyed et al. (2015), Park (2015),

and Yeasir et al. (2015) as it focused on DDoS launched at a high or fast rate, not slow

DDoS. ABB takes advantage of the logically centralized nature of SDN to mitigate DDoS

by diffusing incoming traffic. ABB aims to ensure service availability lends web server

anonymity and DDoS mitigation in the network. Threshold based on the serving limit of

the webserver for incoming traffic rate measured at the gateway switch was used to trigger

the ABB mechanism which spreads the traffic across multiple replicas of the target node

in the network. Virtual IP addresses were used in ABB to enforce anonymity. High

response time with 4% legitimate request completion was recorded without ABB but

when ABB was activated, request completion rose to 81% because the traffic was spread

to two servers. When the traffic spread was increased to three servers, no timed-out

request was recorded. Although ABB increases web service availability, it comes with a

packet processing overhead. Without ABB, the average packet processing time was

542µs while when ABB was activated, processing time increased to 776µs per packet. A

faster method of collecting statistics to reduce packet processing overhead was suggested

by the researchers as the controller in the work collected statistics every one second.

Hong et al. (2018) examined the use of SDN in the defence against slow DDoS based on

connection threshold, similar to the method used by Park (2015), and timeout

mechanisms, similar to the method employed by Yeasir et al. (2015). Whenever the

number of connections made has exceeded the number of connections the web server can

handle, it alerts the controller that it is under attack so that the controller begins a slow

DDoS check on subsequent connections. Then continuation of the incomplete HTTP

requests is received by the controller. The controller determines that a client is an attacker

when the number of connections made does not complete the HTTP request within a

27

certain timeframe. Table 2.1 presents the various mitigation techniques used in mitigating

DDoS and slow DDoS.

Failure isolation zone, proposed by Ameyed et al. (2015), ensures the availability of web

services by splitting the traffic on the primary web server once it has reached its maximum

amount of connections to its replica in another zone. Then slow traffic on the primary

server is analyzed and deleted. The framework ensures availability for legitimate clients

of the web server however because it waits for the maximum connection limit of the web

server to be reached, web clients experience very slow data transfers in the buildup to the

threshold. Furthermore, the removal of traffic from the primary web server is executed at

a pace that may be considered slow compared to the way an attacker saturates the replica

with connections that send low rate requests. Rate limiting, a concept explored by Park

(2015) and Bhunia and Gurusamy (2017), limits the number of connections made by an

IP address thus stopping attack traffics but risks disconnecting benign slow clients. Yeasir

et al. (2015) used reverse proxy for mitigation of slow attacks by caching slow requests

until they are completed. The reverse proxy server acts as a buffer for slow request thus

shielding the webserver but risks becoming a target. Hong et al. (2018) used timeout

intervals to halt slow attacks by defining a time for request completion else the client,

benign or malicious, get disconnected from the server however, slow benign traffic is

affected by the timeout. Beigi-Mohammadi et al. (2017) and Lukaseder et al. (2018)

explored redirecting attack traffic to a scrubbing server, a shark tank - a copy of the

application’s topology - which ensures that more insight is obtained from the attack

although, it may also slow down the traffic of slow benign clients.

Table 2.1: Weaknesses and Strengths of Various DDoS and Slow DDoS Mitigation Approaches

MITIGATION

APPROACHES

Failure-

Isolation

Zone

Rate Limiting Reverse Proxy Timeout Intervals Redirection Adaptive Bubble

Burst

Characteristics Splits

traffic to a

replica

web server

Reducing the

number of

connections

made by an IP

address

Caches slow

requests until they

are completed

Disables a connection

once timeout for

request completion

has exceeded the

predefined value

Redirection of

traffic to a shark

tank

Splits the traffic to

replica servers

Strength Ensures

availability

Removes attack

traffic

Enhances

protection of web

server

Removes slow traffic Learns more from

attack scenario

Ensures availability

Weakness Removes

attack

traffic

slowly

May remove

slow client’s

connections

Reverse proxy

resources may

become exhausted

May remove slow

client’s connections

Slows down

connections made

by slow client’s

Does not remove

attack traffic

28

29

Sattar et al. (2016) utilized adaptive bubble burst in mitigating attacks by spreading all

new connection traffic to replica servers once a threshold is reached. The technique

ensures availability but does not remove attackers hence making it a matter of time before

all replica servers become saturated with connections.

2.6 Review of Slow DDoS Detection Techniques

The use of the web server’s performance was explored by Shtern et al. (2014) to detect

low and slow DDoS attacks in which the CPU utilization, disk utilization, disk time,

waiting time, throughput, workload, and CPU time of the server was measured in a non-

attack scenario. The application characteristics measured initially is then compared with

subsequent characteristics thus creating a discrepancy measure. Once the discrepancy

measure is greater than the discrepancy threshold, an attack is signalled. Offline

establishment of the performance model could yield high false positives while an online

establishment of the performance model could cause the bypass of the detection module

leading to high false negatives. A shark tank mitigation mechanism was employed as it

learns more from the attack. A shark tank is a copy of the application’s topology hosted

in an isolated environment which enables the observance of suspicious traffic. It is a

separate cluster with full application capabilities designed to monitor suspicious users.

For future research, a comparison of the offline and online establishment of the

performance model was identified.

Detection of slow read attacks in the cloud using machine learning technique, as opposed

to a performance measurement technique used by Shtern et al. (2014), was the basis of

research by Shafieian et al. (2015). The detection of an attack was based on the random

forest classifier trained on TCP logs of attack and benign traffic. Accuracy of 99.37% and

false negative rate of 1.90% was recorded when pre-pruning of trees was not applied

while when pre-pruning was applied, accuracy of 83.34% and false negative rate of

30

50.10% was recorded. A false positive rate of 0 % was recorded in both cases. It was

observed that an increase in the number of trees increases the true positive rate and

decreases the false positive rate. The stability of results obtained in the work makes the

method employed to be superior to the performance measurement model evaluated by

Shtern et al. (2014) although, detection may not be in real-time as it depends on TCP logs

for attack detection. Slow get and post attacks were not explored in their work.

Mobile devices are not spared in slow DDoS attacks as described by Cusack and Tian

(2016). Euclidean distance-based similarity metric was employed in the detection of an

attack by evaluating the similarity between a previous log file and the current log file to

determine whether an attack has occurred. The execution of the method is similar to the

performance-based method employed by Shtern et al. (2014) as the connection between

initially calculated values and the test values is determined. The accuracy and reliability

of their approach were not evaluated. However, it can be inferred that real-time detection

of a slow attack is not feasible as log files need to be collected and compared. This makes

the technique employed useful for auditing logs rather than monitoring. Use of the

algorithm proposed on a larger data set was included in their future work.

Kumar (2016) applied one-class SVM to protect virtual machines by detecting DoS

attacks in the cloud. The researcher did not use the Knowledge Discovery in Databases

(KDD) Cup 1999 dataset citing ageing factor and imbalance but opted to generate a

dataset on the Eucalyptus cloud platform. Attacks of Internet Control Message Protocol

(ICMP) flood, ping of death, User Datagram Protocol (UDP) flood, TCP SYN flood, TCP

Land, Domain Name System (DNS) flood and slowloris also known as slow HTTP get

were simulated. SVM classifier performed poorly in detecting slowloris with an accuracy

of 68% and sensitivity of 43% compared to ICMP flood, ping of death, UDP flood, TCP

SYN flood, TCP Land, and DNS flood which achieved accuracy values of 100%, 94%,

31

97%, 96%, 98%, and 99% respectively with sensitivity values of 100%, 100%, 97%,

100%, 100%, and 100% respectively. The researcher concluded that the weak

performance of the classifier was due to the nature of slow attacks that transmit HTTP

malicious flows at a slow rate without them being detected effectively. Also, it can be

noted that the slowloris attack is different from the other types of attacks in the work thus

the classifier’s accuracy must have been skewed due to the presence of flooding attacks

in the training dataset.

Tripathi et al. (2016) employed the measurement of the Hellinger distance between two

probability distributions of the normal and attack traffic generated during testing and

training phases. This method is similar to the method used by Cusack and Tian (2016)

and Shtern et al. (2014) which were based on the similarity between two metrics. The

SlowHTTPTest tool was used to generate attack traffic of which the Hellinger distance

in a DoS scenario was high compared to that of normal traffic. The Hellinger distances

of 0.0006/0.0118, 0.3980, and 0.3971 were recorded for normal, slow get, and slow

message body simulated HTTP traffic respectively while Hellinger distances of

0.0191/0.1273, 0.2812, 0.3562 were recorded for normal, slow get, and slow message

body traffic respectively using real traffic normal interval. The detection system proposed

can be evaded when an attacker generates HTTP requests with probability distributions

similar to that of the normal traffic used in the training phase.

The perspective of having a slow attack on an OpenFlow switch was examined by Dantas

et al. (2017) unlike the focus on web servers in the work of Kumar (2016), Shafieian et

al. (2015), Shtern et al. (2014) and Tripathi et al. (2016). Slow exhaustion of the Ternary

Content Addressable Memory (TCAM) of OpenFlow switches in SDN which involves

sending new flows to the switch and maintaining the flow entry in the table by sending

data at intervals smaller than the timeout interval was examined in the work. Rule

32

aggregation, dynamic timeouts, and improving TCAM usage by storing fewer data were

the mitigation schemes highlighted. 95.6% of clients connected were able to obtain a

response after the attacker launched an attack for every 100 packets per 10 seconds with

an attacking intensity of 5.8 unique packets per second. A median time to service of 2,454

milliseconds was recorded. The applicability of alternative defence mechanisms was

highlighted as future work.

Tripathi and Hubballi (2018) adopted the use of chi-square statistics to detect slow rate

HTTP/2 DoS attacks which was used as a distance measurement technique similar to their

earlier work (Tripathi et al., 2016). In the training phase, they collected legitimate traffic

over some time, ∆𝑇, and compared the traffic generated in the training phase with traffic

obtained in the testing phase using the chi-square distance measurement technique. The

challenge encountered was choosing the appropriate threshold significance level (𝛼) and

time interval (∆𝑇). Recall rate of 100% was recorded for ∆𝑇 = 20 and 25 minutes

independent of 𝛼 value but an increase in ∆𝑇 and 𝛼 results in a change in recall and false

positive rate. A large time interval provides better recall rate and a higher false positive

rate but a small time interval affects recall adversely and improves the false positive rate.

The technique used failed to detect slow get and slow post attacks because the attacks

behaved like legitimate clients. As observed in the research by Cusack and Tian (2016),

Tripathi and Hubballi (2018), and Tripathi et al. (2016), a distance-based measurement

for detection of slow DoS or DDoS attacks has a lot of drawbacks. DDoS was not taken

into account.

Kemp et al. (2018) used a generated dataset based on Netflow data and features which is

capable of handling a growing amount of traffic. Netflow was selected considering the

storage and resource-intensive nature of full packet captures. Another alternative was the

use of web server logs but the logs are created when TCP connections get closed which

33

means that logs are not available until the damage has been done and the attack called

off. A varying number of connections and connection time intervals were used to generate

the dataset using the SlowHTTPTest tool which was executed from a single machine with

each attack variation running for about an hour. Eight different classifiers were used to

model slow read DoS attack detection of which random forest, C4.5 N, 5-Nearest

Neighbour (5-NN), C4.5D, Multilayer Perceptron (MLP), JRip, SVM, and Naïve Bayes

achieved an Area Under the Curve (AUC) detection of 96.76%, 96.72%, 96.69%,

96.62%, 95.06%, 94.71%, 89.22%, and 88.94% respectively. The high AUC recorded in

the work has similarity with the high accuracy recorded in the research by Shafieian et

al. (2015). Evaluation of slow post attacks was suggested as an area for further

exploration.

Analysis of support vector machine techniques in detecting intrusion formed the crux of

the research by Singh and Rai (2019). NSL-KDD dataset was used in evaluating the

performance of linear SVM, quadratic SVM, fine gaussian SVM, and medium gaussian

SVM. Attacks evaluated were DoS, remote 2 user, user 2 root, and probing. Linear SVM,

quadratic SVM, fine gaussian SVM, and medium gaussian SVM produced an accuracy

of 96.1%, 98.6%, 98.7%, and 98.5% respectively with an overall error rate of 3.9%, 1.4%,

1.3%, and 1.5% respectively. The use of a real-time dataset and the use of SVM

optimization techniques to evaluate the SVM techniques outlined were highlighted for

further research.

Calvert & Khoshgoftaar (2019) worked on the use of machine learning techniques to

detect slow HTTP DoS get and post attacks and how class distribution affects detection

performance. The attacks ran on a single host machine for one hour. In the slow post

attack, a default content-length value of 1000 was used in executing the attack. Netflow

features were extracted from the full packet captures because it gives a high-level

34

summary of communications over the network and lessens resource impact if full packet

analysis were to be utilized. Eight classification algorithms which are K-Nearest

Neighbour (KNN), Naïve Bayes, MLP, SVM, C4.5 decision trees, Random Forest (RF),

JRip and Logistics Regression (LR) were used to build predictive models using five class

distribution ratio of normal to attack instances which are 99:1, 90:10, 75:25, 65:35, and

50:50. It was noted that most of the learners achieved high AUC which was attributed in

part to the feature set used by Netflow. RF achieved the highest AUC value of 0.99905

with a class ratio of 50:50. RF also achieved the second highest AUC of 0.99904 with a

class ratio of 65:35. The work by Calvert and Khoshgoftaar (2019) has shown that RF

detects slow attacks seamlessly with results similar to those obtained in the work by Kemp

et al. (2018) and Shafieian et al. (2015). Evaluation of the methodology proposed using

other datasets and performance metrics were marked down as aspects for future work.

Measurement of the average network delay was employed by Dhanapal and

Nithyanandam (2019) in detecting slow HTTP attacks. Since attackers feign slow

network as a reason for slow requests, the mechanism implemented in their paper

measures the network delay of a slow client by sending five ping requests to the client.

Once the time between HTTP requests exceeds the average network delay of the client,

the client is placed in the blocked list. Clients that persistently advertise a TCP window

size of zero and those that send out few bytes of HTTP post requests after 80% of the

connection keep-alive time interval is exceeded are treated as attackers and further

requests are blocked. Advertisement of TCP window sizes greater than 0 but small

enough to execute a slow read attack was not examined. The method employed showed

the real-time monitoring and detection capability it has compared to the methods used by

Cusack and Tian (2016) and Shafieian et al. (2015).

35

Rahman et al. (2019) evaluated machine learning techniques in the detection and

blockage of DDoS attacks in an SDN network. The authors applied J48, RF, SVM, and

KNN to detect flooding attacks. In obtaining the dataset, the hping3 tool was used in a

Python script and tshark was used to capture both malicious and benign traffic. Capture

for malicious traffic ran for 30 minutes while that of the normal traffic was for three hours.

Captured files were then converted to Comma-Separated Values (CSV) format in which

data preprocessing was performed using Weka. In their analysis, J48 performed better

than the other machine learning techniques considering the training time of 17.43 seconds

and testing time of 3.03 seconds which is accomplished. RF, SVM, and KNN had training

time of 171.11 seconds, 168.59 seconds, and 0.13 seconds respectively with a testing time

of 5.19 seconds, 1.97 seconds, and 1,5957.7 seconds respectively. The trained J48 model

was exported for online classification of traffic in their SDN network simulated using

Mininet. Detection and mitigation of attack using their approach take approximately 10-

15 seconds to complete. Reduction of attack detection time by minimizing the number of

steps in classifying traffic and use of a honeypot server to analyze the attack in an in-

depth manner were marked for further research.

Detection of attacks in cloud computing using machine learning techniques formed the

core of the work by Wani et al. (2019). The DDoS attack was launched against

OwnCloud, an open-source private server, using Tor Hammer as the attack tool and tshark

tool for recording both suspicious and normal traffic. Snort, an intrusion detection system,

was used to attach class attributes of “normal” and “suspicious” to the dataset generated

by tshark. Machine learning algorithms of RF, Naïve Bayes, and SVM were utilized for

data classification which was performed in Weka. SVM had the highest accuracy of 0.997

compared to random forest and Naïve Bayes that had an accuracy of 0.976 and 0.980

respectively. The results recorded buttresses the findings on the accuracy of SVM in the

36

research by Singh and Rai (2019) however, the result random forest obtained does not

dispel the conclusions reached about it as a good choice for DDoS detection as noted by

Calvert and Khoshgoftaar (2019), Kemp et al. (2018), and Shafieian et al. (2015). Further

research on the inclusion of more attack types and feature selection techniques was

highlighted. Selected methods of detecting slow DDoS is presented in Table 2.2.

In Table 2.2, the nonlinear data refers to data without a distinct difference between the

class’ different data points to be classified. The stability of a machine learning algorithm

refers to how well it fares when new data aside from the ones used in training and testing

is introduced. Table 2.2 lists the properties of the random forest algorithm as identified

by Ali et al. (2012) showing that it is less sensitive to outliers and it produces high

accuracy due to its ability to handle missing values. The random forest can be used for

both classification and regression (Calvert & Khoshgoftaar, 2019). Also, it produces high

accuracy as substantiated by the literature reviewed by Latah and Toker (2019). However,

Kemp et al. (2018) highlighted the long training times random forest requires due to the

number of the decision trees generated.

Similar to the random forest, the features of SVM enumerated in Table 2.2, as supported

by Latah and Toker (2019), shows that it can deal with non-linear data seamlessly

although using kernel functions. This makes SVM classification accuracy to be high but

in some cases, not as high as random forest. Also, it yields higher accuracy when a limited

dataset is involved (Bhunia & Gurusamy, 2017). However, the extensive time required to

create the models together with the problem of selecting the appropriate kernel function

were identified as some of SVM’s weaknesses (Bhunia & Gurusamy, 2017).

MLP as a choice of slow DDoS machine learning detection technique can handle non-

linear data properly through the use of its activation function which enables it to yield

37

high accuracy although the accuracy may not be as high as that of RF and SVM. It is also

suitable for classification and regression problems. However, the time to train the

algorithm which is dependent on the strength of the hardware it executes upon is a major

drawback (Latah & Toker, 2019; Ramchoun et al., 2016).

Unlike other machine learning techniques, Calvert and Khoshgoftaar (2019) noted that

the assumption that features are independent serves as a disadvantage in using Naïve

Bayes. However, it has been known to outperform some other machine learning

techniques. It is suitable for applications that are critical in terms of time and storage

(Kaviani & Dhotre, 2018).

Random forest is a collection of decision trees as opposed to C4.5N which is a decision

tree algorithm that represents the machine learning model as a single tree. C4.5N achieves

good accuracy as shown in Table 2.2 by making the completed decision tress generalized

through pruning. It generates a simple and accurate decision tree especially when a small

dataset is involved. However, when a large amount of data is involved, it can be expensive

to build (Ali et al., 2012; Lakshmi, 2015).

5-NN is a variation of KNN supervised machine learning algorithm where the value of K

is 5. In general, KNN does not require training of the dataset as it computes the distance

between instances in the dataset using predefined distance metrics. However, it is time

inefficient when new data is introduced because it computes the distances between all the

instances present in the dataset again which makes it less stable. Also, it cannot handle

data with high dimension properly as the distance may be dominated by unrelated

attributes. The optimal choice for K is 5 as substantiated in the finding by Calvert and

Khoshgoftaar (2019) and Najafabadi et al. (2016) as it gives the best result by avoiding

overfitting and bias.

38

Based on the properties defined in Table 2.2, logistics regression performs on an average

and has good training time with accuracy however, it cannot capture complex

relationships and cannot solve non-linear problems since its decision surface is linear

(Donges, 2018).

2.7 Review of Optimization Techniques Applied to Machine Learning

Approaches Towards Intrusion Detection

In optimizing the execution of detection algorithms, several algorithms such as genetic

algorithm (GA), artificial bee colony (ABC), particle swarm optimization (PSO), and

grasshopper optimization algorithm (GOA) have been used.

ABC is a population-based meta-heuristic optimization technique inspired by the foraging

behaviour of honeybee swarms. It was used to optimize SVM parameters and select

features to be used in an intrusion detection system by Wang et al. (2010). The SVM

parameters selected by the ABC algorithm were: C, 2238.2041; σ, 1.1037; and ε, 0.01275.

It was observed that the use of feature selection methods improved the overall accuracy

by 1.31% to 2.65%. ABC-SVM achieved an accuracy of 100% compared to PSO with

SVM and GA with SVM with an accuracy of 98.69% and 97.35% respectively.

Improvement of the feature selection algorithm on search strategy and evaluation criteria

was identified for further studies.

Detection of application layer attacks using MLP with GA to train the neural network and

select weights instead of using gradient descent was the basis of the work by Singh and

De (2017). GA is a meta-heuristic optimization algorithm inspired by the method of

natural selection and evolution with its roots in Charles Darwin’s theory. MLP with GA

had a high accuracy of 98.04% and false positive of 2.21% compared to that of MLP,

RBF, Naïve Bayes, J48, and C4.5 which had 96.92%, 89.64%, 82.91%, 97.75%, and

39

94.68% accuracy respectively and 2.95%, 7.38%, 22.14%, 2.57%, and 5.45% false

positive respectively. Singh et al. (2016) also used MLP to detect application layer attacks

using GA to train the network in which MLP with GA had an accuracy of 98.31%

compared to MLP which had an accuracy of 95.23%.

Su et al. (2018) used PSO to optimize SVM parameters in detecting illegal network access

in power monitoring systems. Since there is no predefined standard of choosing the

disciplinary factor C and other kernel function parameters on which the accuracy of SVM

is dependent, PSO was used to arrive at the optimal value. PSO is based on the social

behaviour of groups. The PSO with SVM algorithm achieved an average accuracy of

89.46% with an average error rate of 4.6% compared to SVM algorithm which achieved

an average accuracy of 80.67% with an average error rate of 9.2%.

GOA, a meta-heuristic algorithm, was used in the work by Ye et al. (2019) to identify the

optimal parameters to be used to improve the accuracy of SVM in detecting network

intrusions. GOA is inspired by the swarm intelligence behaviour exhibited by

grasshoppers. The fitness function of the optimization algorithm was based on the

classification accuracy of the SVM training sets. GOA-SVM had an average accuracy of

97.84% compared to the average accuracy of SVM of 91.31%. Their future work entails

the use of GOA with SVM to verify other intrusion detection data sets. The review of

related work is summarized in Table 2.3.

Table 2.2: Weaknesses and Strengths of Various Slow DDoS Detection Machine Learning Approaches

Machine

Learning

Methods

Random

Forest

Support

Vector

Machine

Multi-layer

Perceptron

Naïve Bayes C4.5N 5-Neural

Network

Logistic

Regression

Training Time Requires

longer

training due

to the

number of

trees

generated

Require long

training time

on large

datasets

Long training time Less training

time due to

less training

data

Time

efficient with

less data

Does not

require

training but is

time

inefficient for

every

prediction

Efficient

Classification

Accuracy

High High High but trails

behind support

vector machine

and random forest

Good as it

has chances

of loss of

accuracy

Good High than

other values of

K

Good

Nonlinear Data Handles it

properly

Handles it

efficiently

Handles it

efficiently based

on the activation

function

Handles it

inefficiently

Can discover

nonlinear

relationships

Can learn non-

linear

boundary

Handles it

inefficiently

Stability Stable Stable Stable Stable Not stable Not stable Stable

Problem Type Classification

and

regression

Classification

and regression

Classification and

regression

Classification

and

prediction

Classification Classification

and regression

Classification

and

regression

Weakness Complex Selecting

appropriate

kernel

function

Hardware

dependence and

unknown duration

of network

Assumes that

feature are

independent

Expensive in

complexity

when data is

large

Does not work

well in high

dimensions

Cannot

capture

complex

relationships

40

41

Table 2.3: Review of related work

S/N Author/Year Techniques Strengths Weaknesses

Mitigation Techniques

1 Ameyed et al. (2015) Failure isolation zone Ensures availability Slowly removes attacks

from the primary

webserver

2 Park (2015) Rate limiting Blocks attack traffic May cut off slow benign

traffic

3 Yeasir et al. (2015) Reverse proxy Enhances web server

security by serving as a

proxy

Reverse proxy server’s

resource depletion and

becoming a slow DDoS

target

4 Sattar et al. (2016) Adaptive bubble burst Ensures availability Does not block or stop

the attack.

Makes web services

available for a while

before all replica servers

become overwhelmed

5 Hong et al. (2018) Connection threshold and timeout Removes slow attacks Removes slow benign

clients whose connection

exceeds the timeout set

42

Table 2.3: Review of related work (continued)

 S/N Author/Year Techniques Strengths Weaknesses

Detection Techniques

6 Shtern et al. (2014) Web server performance Identifies changes in web

server resource usage

The dilemma of when to

establish web server

performance: offline or

online

7 Shafieian et al.

(2015)

RF with and without pre-pruning Without prepruning, RF

achieves an accuracy of

99.37%,

a false negative rate of

1.90%,

false positive rate of 0%

Expensive to deploy RF

with large numbers of

trees and cannot

differentiate between

DDoS types

8 Cusack and Tian

(2016)

Euclidean distance-based similarity metric Detects protocol used to

engage in attacks

Cannot detect DDoS

attacks in real-time

9 Kumar (2016) One class SVM SVM was able to detect

flooding attacks

Low performance in

detecting slowloris

attacks

10 Tripathi et al. (2016) Hellinger distance Utilizes simple probability

distributions and Hellinger

distances to detect attacks

Evasion of detection by

generating attack similar

to the HTTP profile

created during training is

possible

43

Table 2.3: Review of related work (continued)

S/N Author/Year Techniques Strengths Weaknesses

11 Dantas et al. (2017) Rule aggregation, dynamic timeouts, and

storing less data

Switch availability of 95.6%

when attack traffic is at 100

packets per ten second with

a median time to service of

2454ms

Unused legitimate rules

are also removed

12 Tripathi and Hubballi

(2018)

Chi-square statistics 100% recall rate for ∆𝑇 =

20 and 25 minutes and 0%

false positive rate for ∆𝑇 =

5 minutes

Large ∆𝑇 increases the

false positive rate and

low ∆𝑇 reduces recall

rate

13 Kemp et al. (2018) RF, C4.5N, 5NN, C4.5D, MLP, JRIP, SVM,

Naïve Bayes

RF achieved the highest

AUC, 96.76%, for detection

of DoS compared to the

other seven classifiers

Detection of DoS is easy

compared to DDoS

14 Singh and Rai (2019) Linear, Quadratic, Fine Gaussian, and

Medium Gaussian SVM

Fine Gaussian SVM

achieved high accuracy of

98.7% and a low error rate

of 1.3% compared to the

other four techniques.

No optimization of SVM

parameters

15 Calvert and

Khoshgoftaar (2019)

KNN, Naïve Bayes, MLP, SVM, C4.5D, RF,

JRIP, LR

RF achieved the highest and

second highest AUC values

of 0.99905 and 0.99904

respectively

Detection of DoS is

relatively easy compared

to DDoS

44

Table 2.3: Review of related work (continued)

S/N Author/Year Techniques Strengths Weaknesses

16 Dhanapal and

Nithyanandam (2019)

Network delay measurement using five pings

to slow client to determine the uniqueness of

the slow behaviour

Differentiates actual slow

clients from slow HTTP

DDoS attackers

Slow read attacks with

low TCP window greater

than 0 escapes detection

17 Rahman et al. (2019) J48, RF, SVM, KNN J48 had the lowest training

and testing time aggregate

One performance metric

of time was used

18 Wani et al. (2019) SVM, RF, Naïve Bayes High SVM accuracy of

0.997

Small datasets of few

megabytes can be

handled with Weka

Optimization Techniques

19 Wang et al. (2010) ABC with SVM, PSO with SVM, GA with

SVM

ABC with SVM achieved

an accuracy of 100%

Premature convergence

in later search period of

ABC

20 Singh and De (2017) MLP, RBF, NB, MLP with GA, J48, C4.5 MLP with GA achieved an

accuracy of 98.04%

Computationally

expensive nature of MLP

with GA

21 Su et al. (2018) SVM, LS with SVM, PSO with SVM An average accuracy of

89.46% with an average

error rate of 4.6% was

achieved with PSO with

SVM algorithm

Easy to fall into local

optimum in high

dimensional space of

PSO

Low convergence rate in

the iterative process of

PSO

45

Table 2.3: Review of related work (continued)

S/N Author/Year Techniques Strengths Weaknesses

22 Ye et al. (2019) SVM, PSO with SVM, GA with SVM, GOA

with SVM

GOA with SVM had an

average accuracy of 97.84%

Easy to fall into local

optimum and slow

convergence speed of

GOA

46

2.8 Chapter Summary

This chapter presents an overview of DDoS and slow DDoS mitigation techniques,

machine learning approaches for detecting slow DDoS, and optimization methods

employed to enhance the detection accuracy of the machine learning techniques. Various

machine learning approaches have been employed to detect slow DoS/DDoS attacks in

the literature reviewed and mitigation techniques were proffered and applied. Therefore,

this study is centred on the use of genetic algorithm for optimizing the kernel parameters

of support vector machine for slow HTTP DDoS detection and the use of selective

adaptive bubble burst, a variation of adaptive bubble burst, to mitigate the attack.

47

CHAPTER THREE

3.0 RESEARCH METHODOLOGY

3.1 Introduction

This chapter presents the methods used in performing this research. It provides a detailed

explanation of the steps used in achieving the outlined objectives. The process of

generating the Netflow dataset, preprocessing the generated dataset, training the SVM

classifier for feature selection, training the SVM classifier for RBF parameter tuning,

testing the performance of the classifier on the selected features and RBF parameters, and

simulating the SABB mitigation mechanism was described. The performance evaluation

metrics used to evaluate the performance of the RBF SVM slow HTTP DDoS attack

detection and the SABB slow HTTP DDoS attack mitigation were also discussed. The

proposed solution is presented in Figure 3.1. The diagram gives an overview of the major

steps that culminated in achieving the objectives of this research.

48

Figure 3.1: Proposed Solution Block Diagram

3.2 Generate Dataset

In this study, the GNS3 tool was used to set up the SDN environment. The network

topology in GNS3 contained 20 virtual machines, five switches, and 24 links. Of the 20

virtual machines, it is comprised of eight slow HTTP attackers, eight legitimate clients,

Performance evaluation of

mitigation mechanism

Simulate mitigation mechanism

in SDN

Testing of classifier and

classification performance

evaluation

Training by feature selection

and tuning of SVM parameters

Data preprocessing

Generate Dataset

49

three web servers, and a Ryu controller. The visualization of the SDN environment is

presented in Figure 3.2.

The five switches in the SDN topology is comprised of one OpenVSwitch and four

datalink layer switches. The OpenVSwitch supports both OpenFlow and Netflow. The

OpenFlow switch was configured to export Netflow records to the Ryu controller and

acts as the gateway switch. That is, the OpenVSwitch determines which traffic accesses

the internal network as it sits between the internal and external network. A Netflow record

is created on the OpenVSwitch when traffic that passes through it reaches the ageing

criteria for active and inactive flows. Unlike the OpenVSwitch, the datalink layer

switches connect multiple virtual machines for seamless communication. The datalink

switches minimized the use of several redundant network links in the setup. Once the

datalink switch receives a packet, it checks its Content Addressable Memory (CAM) table

for a mapping of the Media Access Control (MAC) address on the frame in the received

packet to an output port. If such mapping does not exist, it sends the frame out all ports

except the incoming port. If such a mapping exists, it sends the packet out of the port

associated with the MAC address.

The Ryu controller written in python was used. Apart from Ryu, another controller which

supports Netflow is the OpenDaylight controller which is written in Java. However,

compared to the OpenDaylight controller, the Ryu controller is agile and can handle a

higher traffic rate. Also, the development of applications for the Ryu controller is faster

given that Ryu uses python as opposed to OpenDaylight controller which is based on

Java. The Ryu controller was configured to receive Netflow exports from the

OpenVSwitch and store the Netflow records received in an excel file format (xlsx) on its

disk. The Netflow collector was implemented using python.

50

Figure 3.2: SDN Setup in GNS3

51

The three webservers consist of two replica servers and a primary server. The webservers

are based on Lighttpd which is a light-weight web server. The content hosted on the

webservers is a simple webpage written in Hypertext Markup Language (HTML) and

PHP Hypertext Preprocessor (PHP) which displays a text with an image. The primary

web server hosts all the content needed by the users of the network and it is the target of

the attack. The replica servers serve the same content present on the primary webserver.

However, they are not available to all the users of the network. An attack occurrence

count is maintained to determine which replica webserver flagged attack traffic should be

migrated to. A replica webserver is only available to an IP address that has been flagged

as malicious while communicating with another webserver. The previous webserver the

attacker was communicating with before the traffic was flagged as malicious could be the

primary if the attack occurrence count is zero or any other replica server based on the

attack occurrence count. Neither the attackers nor the legitimate clients are aware of the

replica servers.

The eight slow HTTP DDoS attacker virtual machines are comprised of two slow get

attackers and three slow post and slow read attackers each running Ubuntu 16.04 Long

Term Support (LTS) operating system. The SlowHTTPTest tool was selected as the tool

to generate attack traffic over Slowloris.py and PyLoris. As observed by Calvert and

Khoshgoftaar (2019), the traffic patterns across SlowHTTPTest, Slowloris.py, and

PyLoris attack generation tools are similar. However, Slowloris.py and PyLoris can only

launch slow get attacks whereas, SlowHTTPTest can launch slow get, slow post, and slow

read attacks. Furthermore, configuring the SlowHTTPTest tool from the command-line

is easy to perform.

The eight legitimate client virtual machines are comprised of two clients that send get,

post, and read requests each to the primary web server in a slow manner. In addition to

52

the slow clients, two legitimate clients that send requests and retrieve responses from the

primary web server at the rate allowed by the network bandwidth were included. The

custom python script which utilises the http.client library was used to send requests and

retrieve responses from the primary webserver. To simulate packet loss and delay, the

Linux traffic control tool was installed on the slow legitimate clients. The Linux traffic

control tool was used to change the configurations of the kernel packet scheduler to

simulate packet delay, loss, and limit the bandwidth usage to create scenarios legitimately

slow clients may be facing. The Linux traffic control mechanism was deployed from

within the python script through the use of the sub-process module in python which

allows the script to make operating system command calls and create new operating

system processes. The egress bandwidth, the bandwidth of the outgoing packets, of the

slow legitimate traffic clients was manipulated using the Linux traffic control tool by

defining the maximum bandwidth rate and the latency of each outgoing packet.

As shown in the first step in Figure 3.3, to generate the slow HTTP DDoS attack dataset,

slow read, get, and post attacks were launched from all the eight slow HTTP DDoS

attackers using the SlowHTTPTest tool. The parameters used in the attack tool varied

according to attack type as shown in Table 3.1, 3.2, and 3.3. The Ryu controller which

was configured to receive and store the exported Netflow records that originated from the

OpenVSwitch according to the second and third steps in Figure 3.3 was powered on

before the attack was launched. Once each attacker reached the attack duration

termination criteria specified in seconds, the attacker stopped sending malicious packets

to the primary webserver. Consequently, the saved Netflow records on the Ryu controller

were exported to the physical machine on which the simulation was performed. Next, the

dataset of legitimate client traffic – slow client and normal client – was generated.

53

Similarly, according to the first step in Figure 3.3 on the legitimate client dataset creation,

the legitimate clients first established a TCP connection with the primary web server using

a custom python script. Then, requests for the webpage on the web server were sent and

the responses received. Since the Ryu controller is still on, the resulting Netflow records

generated by the OpenVSwitch were transmitted to the controller which captured and

saved the records as an excel file according to the second and third steps in Figure 3.3

respectively. Consequently, the saved legitimate client Netflow records were also

exported to the physical machine on which the simulation was performed.

The final step towards generating the dataset was achieved by consolidating all attack and

legitimate client traffic records which were obtained independently. The client and attack

traffic were not executed together so as not to hamper easy identification and labelling of

attack and legitimate traffics in preparation for classification. The attack and legitimate

client traffic Netflow records which were exported to the physical machine on which the

simulation was performed were labelled as attack and legitimate traffic respectively. The

label “0” represented legitimate client traffic Netflow instances while the label “1”

represented the attack traffic Netflow instances. Consequently, the attack and legitimate

client traffic Netflow instances were manually combined into a single excel file and the

content of the resultant file was shuffled.

Table 3.1: Slow Get Parameters and Flags

Variable Value

Number of connections (-c) 1000

Test duration in seconds (-l) 1000

Interval in seconds between follow up data (-i) 10

Connections per second (-r) 5

54

Table 3.1: Slow Get Parameters and Flags (continued)

Variable Value

The maximum length of follow up data in bytes (-x) 10

Interval in seconds to wait for HTTP response onprobe

connection(-p)

2

Table 3.2: Slow Post Parameters and Flags

Variable Value

Number of connections (-c) 1000

Test duration in seconds (-l) 1000

Interval in seconds between follow up data (-i) 4

Connections per second (-r) 5

The maximum length of follow up data in bytes (-x) 24

Interval in seconds to wait for HTTP response onprobe

connection(-p)

3

Value of Content-length header in bytes (-s) 8192

Table 3.3: Slow Read Parameters and Flags

Variable Value

Number of connections (-c) 1000

Test duration in seconds (-l) 1000

Start of the range for the TCP window size in bytes (-w) 3

Connections per second (-r) 5

End of the TCP advertised window range in bytes (-y) 24

55

Simulated Dataset

Extract data from Netflow

records

Capture Netflow records for

each client

Simulate slow HTTP DDoS

attack, slow benign client, and

normal benign client traffic

separately

Table 3.3: Slow Read Parameters and Flags (continued)

Variable Value

Interval in seconds to wait for HTTP response onprobe connection

(-p)

3

The interval between read operations in seconds (-n) 5

Number of bytes to read from receive buffer (-z) 15

Number of times the resource would be requested per socket (-k) 3

Figure 3.3: Block Diagram of the dataset creation

56

3.3 Data Preprocessing

Data preprocessing refers to the transformation of data to a form suitable for the classifier

to utilize. Aside from the data transformation step of feature construction implemented

during Netflow export collection, other data preprocessing techniques were used to

improve the quality of results to be obtained and prevent the overfitting of data. The

correctness of any classifier depends on the quality of data supplied to it. A low-quality

dataset will yield a poor classifier in that it may not be able to generalize classification

when previously unseen data is introduced. Also, a low-quality dataset may cause the

classifier to overfit the training dataset. This means that the model obtained from the

classification process describes the training data too well which hampers its ability to

classify the untrained dataset. The dataset obtained is described in this section and

preprocessing operations performed on the dataset outlined.

3.3.1 Dataset

The Netflow dataset export in excel file contained 27 features which represents a high-

level abstraction of the packets in each flow as shown in Table 3.4 according to their

position in the dataset represented as the serial number. Feature construction was applied

to each Netflow export during capture which added four more features, as shown in Table

3.5, bringing the total number of features in the dataset to 31. Feature construction was

performed to improve the mining process given the features used by Calvert and

Khoshgoftaar (2019) and Kemp et al. (2018). The dataset contained a total of 56,892

tuples where a 50:50 ratio was adopted for the attack to legitimate client traffic. The total

amount of attack and legitimate client traffic tuples that constitute the dataset are 28,446

and 28,446 respectively. The 50:50 ratio adopted was aimed at ensuring the creation of a

balanced SVM model which is to be applied to the simulated network at the controller.

Also, Calvert and Khoshgoftaar (2019) in their work asserted that the 50:50 ratio of attack

57

to legitimate client traffic instances resulted in the highest AUC values across most of the

classifiers used including SVM.

Table 3.4: Netflow Version 5 Features

S/N Feature Name Description

1 Version Netflow export format version number

2 Count Number of flows exported (1-30)

3 Sys_Uptime Current time in milliseconds since the export device

booted

4 Unix_secs The current count of seconds since 0000 UTC 1970

5 Unix_nsecs Residual nanoseconds since 0000 UTC 1970

6 Flow_sequence Counter of total flow sequence seen

7 Engine type Type of flow switching engine

8 Engine_ID Slot number of the flow switching engine

9 Sampling Interval Interval of Netflow export sampling

10 Srcaddr Source IP address

11 Dstaddr Destination IP address

12 Nexthop IP address of next-hop router

13 Input Simple Network Management Protocol (SNMP) index of

the input interface

14 Output SNMP index of output interface

15 dPkts Packets in the flow

16 dOctets Total number of layer 3 bytes in the packets of the flow

17 First Sysuptime at start of the flow

18 Last SysUpTime at the time the last packet of the flow was

received

58

Table 3.4: Netflow Version 5 Features (continued)

S/N Feature Name Description

20 Srcport TCP/UDP source port number

21 Dstport TCP/UDP destination port number

22 Tcp_flags Cumulative OR of TCP flags

23 prot IP protocol type (TCP = 6; UDP =17)

24 tos IP type of service

25 Src_as Autonomous system number of the source

26 Dst_as Autonomous system number of the destination

27 Src_mask Source address prefix mask bits

28 Dst_mask Destination address prefix mask bits

Table 3.5: Constructed Features

S/N Feature Name Description

19 Diff. The time difference in seconds between the last and first

feature in the Netflow version 5 feature set

29 Packets/second The number of packets per second (dPkts divided by

diff.)

30 Bytes/second The number of bytes per second (dOctets divided by

diff)

31 Bytes/Packet The number of bytes per second (dOctets divided by

dPkts)

3.3.2 Data Reduction

Before feature selection, a form of data reduction, using genetic algorithm was performed,

some features were removed from the dataset manually. The removed features pose the

risk of model overfitting if the classifier were to be trained using a dataset that includes

them. Table 3.6 shows the features that were removed manually with their corresponding

59

position in the dataset represented as the serial number. Thirteen features were removed

manually either due to zero values contained in all the tuples for the feature or the

potential of the feature causing the classifier to overfit due to values that make a prediction

of an attack or legitimate client traffic trivial. After the data reduction, the remaining 18

features were normalized.

Table 3.6: Features Removed Manually

S/N Feature Names Rationale

3 Sys_Uptime The time interval between the start and end of attack traffic

can be generalized which would not always be the case

4 Unix_secs The time interval between the start and end of attack traffic

can be generalized which would not always be the case

5 Unix_nsecs The time interval between the start and end of attack traffic

can be generalized which would not always be the case

6 Flow_sequence The flow sequence numbers can be generalized which

would not always be the case

9 Sampling

Interval

All tuples contained zero value for the feature

10 Srcaddr The same set of attack and legitimate client traffic IP

address or from the same web server to a set of attack and

legitimate client IP address.

11 dstaddr Responses to the same set of attack and legitimate client

traffic IP address or the same web server from a set of

attack and legitimate client IP address.

12 Nexthop All tuples contained zero value for the feature

24 tos All tuples contained zero value for the feature

60

𝑖

Table 3.6: Features Removed Manually (continued)

S/N Feature Names Rationale

25 Src_as All tuples contained zero value for the feature

26 Dst_as All tuples contained zero value for the feature

27 Src_mask All tuples contained zero value for the feature

28 Dst_mask All tuples contained zero value for the feature

3.3.3 Data Normalization

The dataset with 18 features was normalized using the standard scaler of sklearn

preprocessing to give all features equal weight. Data normalization increases the training

speed of a classifier and also prevents any feature in the dataset from outweighing the

other features with smaller ranges. The standard scaler implementation, as shown in

equation 3.1, uses the zero-mean (z-score) normalization to standardize the values of each

feature in a tuple. In z-score normalization, the values of a feature are standardized based

on the mean and standard deviation of that feature. A value 𝑣𝑖 of a feature is normalized

to 𝑣′ by determining

𝑣′ =
𝑣𝑖−𝐴

(3.1)

𝑖 𝜎𝐴

where A and 𝜎𝐴 are the mean and standard deviation respectively (Agarwal, 2014).

3.4 Training and Testing of Slow DDoS RBF SVM Classifier

In Figure 3.4, the breakdown of the steps taken for the selection of relevant features from

the simulated dataset and the appropriate SVM regularization strength (C) and gamma

(𝛾) parameters is illustrated. The selection of relevant features and the Radial Basis

Function (RBF) SVM kernel parameters helps to provide a model that is suitable for

generalizing on datasets.

61

3.4.1 Feature Selection

Genetic algorithm was executed on the normalized dataset to extract features that are most

relevant to determining whether a flow in a Netflow record is attack traffic or legitimate

client traffic whether normal or slow due to the bandwidth of the network. The fitness

function of the features selected is determined by the accuracy of a linear SVM classifier

subjected to four-fold cross-validation. The rationale behind the usage of a linear SVM

classifier is that a linear SVM will ensure that the features selected are free from the bias

of a regularization parameter or gamma as evident in a radial basis function kernel-based

SVM classifier. The selected features were stored and used to determine the best

regularization parameter, C, and gamma for the radial basis function kernel-based SVM

used for the model creation.

3.4.2 RBF SVM Kernel Parameter Selection

The dataset containing tuples of the selected features was used with genetic algorithm to

determine the best parameters to use in creating the final SVM model which distinguishes

attack from legitimate client traffic. A range of possible parameter values was defined for

the SVM regularization parameter C and the gamma parameter. For the C parameter, a

range of integer values from 1 to 10 was defined while for the gamma parameter, a real-

valued range from 0.1 to 1 was defined using numpy’s arange function. The parameter

range was defined based on the research work by Kokila et al. (2015).

62

Stop

condition for

parameter

tuning?

No

Accuracy of

SVM as

fitness

function

Yes

Stop

condition

for feature

selection?

No

Yes

Save best features and SVM parameters obtained

SVM classifier training

SVM parameter selection using GA

Feature selection using GA

SVM classifier testing

End

Performance evaluation of SVM classifier

Figure 3.4: Training and Testing flowchart for RBF SVM

Start

Simulated

Dataset

Extract all dataset features

63

3.4 Simulation of RBF SVM and Mitigation Mechanism

Simulation of the RBF SVM detection model and selective adaptive bubble burst

mitigation mechanism is executed as shown in Figure 3.5. Internal operations of the

SABB mitigation module is described in Figure 3.6. The RBF kernel SVM model was

extracted using the python programming language object serialization package, pickle.

Object serialization is the conversion of an object, in a programming language, to a series

of bytes for storage or transmission over a network. The serialized SVM model was

transmitted to the RYU controller in the SDN simulation for deserialization and use to

analyze real-time Netflow records of traffic traversing the network. Deserialization is the

conversion of a series of bytes into a replica of the original object which was serialized.

64

Figure 3.5: Simulation flowchart of RBF SVM in SDN

3.4.1 Selective Adaptive Bubble Burst (SABB) Module

As shown in Figure 3.5, once the last IP address of the webserver replica set is the

destination address of the suspicious client, the IP address of the client gets blocked at the

gateway switch. Conversely, if the destination IP address is not the last in the replica set,

the next destination address in the replica set after the current destination address is

assigned as the new address for all new incoming connections from the suspicious IP

address.

Start

Load RBF SVM

model to

controller

End
No Is

network

online?
SABB

Module

Yes

 No Is attack

detected?

Yes
Source IP

address,

destination

IP address

RBF SVM classification

Data preprocessing

Capture Netflow records

65

Install destination IP address

change rule at gateway switch

Block suspicious IP

address at gateway

switch

End

Figure 3.6: SABB Mitigation Module flowchart

The operations of the SABB module is modelled mathematically by taking into

consideration the number and addresses of the web servers within the network and the

connections made to the primary server by various devices sending either legitimate or

attack traffic. The mathematical model of the SABB module is given in equation 3.9.

Since the webservers are the network asset being protected, they are represented as a set

in equation 3.2 as:

{𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛} (3.2)

where 𝑦1 is the primary web server and {𝑦2, 𝑦3, … , 𝑦𝑛} are the replica servers. In equation

3.2, 𝑛 represents the total number of web servers such that 𝑛 ≥ 2.

SABB

Module

Destination IP

address suspicious

source IP address

Destination

IP equals

last replica

IP address?
Yes

No

66

𝑥

Since the RBF SVM model handles attack detection, when an attack is not detected,

equation 3.3 holds while when an attack is detected, equation 3.4 holds.

𝛽𝑥 = 0 (3.3)

𝛽𝑥 = 𝛽𝑥 + 1 (3.4)

where 𝛽𝑥 is the attack occurrence count from IP address 𝑥.

Furthermore, the connection 𝑖 from the IP address 𝑥 to the webserver 𝑦1 when equation

3.3 holds is given in equation 3.5 as:

𝜎𝑐𝑖(𝑥) = (𝑥, 𝑦1) (3.5)

Similarly, for every new connection, 𝑗, from IP address 𝑥 when equation 3.4 holds is

given in equation 3.6 as:

𝜎𝑐𝑗(𝑥) = (𝑥, 𝑦𝛽𝑥+1) (3.6)

where 𝑗 = 𝑖 + 1, 𝑖 + 2, … , 𝑚.

Therefore, to block a connection, the connection block parameter represented as 𝜇𝛽𝑥 is a

function of the attack occurrence count, 𝛽𝑥, of a given IP address 𝑥. Equation 3.7 presents

the connection block parameter model as:

𝜇
𝛽𝑥 = {

1, 𝛽𝑥 > 𝑛 (3.7)
𝑥

where 1 means blocked and 0 means open.

0, 𝛽𝑥 ≤ 𝑛

The connections made from IP address 𝑥 which is visible to the system is given in

equation 3.8 as:

𝜌 = 𝜎

+ ∑𝛽𝑥

(1 − 𝜇𝑘) ∙ 𝜎

(3.8)

𝑥 𝑐𝑖(𝑥) 𝑘=0 𝑥 𝑐𝑗(𝑥)

The major function of the SABB module is to monitor the flow status from IP 𝑥 given

in equation 3.9 as:

𝛿 = 𝑚𝑖𝑛 (⋃
𝛽𝑥 (1 − 𝜇𝑘)) (3.9)

𝑥 𝑘=0 𝑥

67

When the flow is blocked, the flow status is zero. That is, 𝛿𝑥 = 0. But when the flow is

active, the flow status returns one. That is, 𝛿𝑥 = 1.

The algorithmic model for the execution of SABB is given as follows.

Algorithm 1: SABB Online Execution Model

Input: SVM Model 𝜃, Netflow record of IP source IP address 𝑥 is 𝑁𝑓𝑥, primary

webserver 𝑦1, replica set of webservers {𝑦𝜋} where {𝑦𝜋} = {𝑦2, 𝑦3, ⋯ , 𝑦𝑛} ∶

𝑛 ≥ 2 ⋀ 𝑛 = |𝑦1 𝖴 {𝑦𝜋}|

Output: Boolean block value 𝜇𝑥 for IP address 𝑥
Procedure 𝑜𝑛𝑙𝑖𝑛𝑒𝑆𝐴𝐵𝐵()

1 𝑤ℎ𝑖𝑙𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 is 𝑜𝑛𝑙𝑖𝑛𝑒 𝑑𝑜

2 Connection 𝑖 from 𝑥 is 𝜎𝑐𝑖(𝑥) ← (𝑥, 𝑦)

3 𝜇𝑥 ← 𝑓𝑎𝑙𝑠𝑒

4 Netflow class 𝑁𝑐 ← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝐶𝑙𝑎𝑠𝑠𝑆𝑉𝑀 𝜃(𝑁𝑓𝑥)

5 𝑖𝑓 𝑁𝑐 𝑖𝑠 𝑎𝑡𝑡𝑎𝑐𝑘

6 Sender-destination pair (𝑥, 𝑦) ← 𝑔𝑒𝑡𝑆𝑒𝑛𝑑𝑒𝑟𝐷𝑒𝑠𝑡𝑃𝑎𝑖𝑟(𝑁𝑓𝑥) ∶ 𝑥 ∉

 {𝑦1 𝖴 {𝑦𝜋}}

7 𝑖𝑓 𝑦 ≠ 𝑦𝑛

8 𝑦ʹ ← 𝑠𝑒𝑟𝑣𝑒𝑟𝐴𝑓𝑡𝑒𝑟(𝑦)

9 New connections 𝑗 from 𝑥 is 𝜎𝑐𝑗(𝑥) ← (𝑥, 𝑦ʹ)

10 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑦 = 𝑦𝑛

11 𝜇𝑥 ← 𝑡𝑟𝑢𝑒

12 𝑠𝑤𝑖𝑡𝑐ℎ𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒(𝜇𝑥)

The

Selective Adaptive Bubble Burst Mitigation Mechanism operations

given in

Algorithm 1 is a function of the number and IP addresses of the web servers (y1...yn) within

the network and the connection requests σci(x) (where σc is the connection symbol, i is the

connection number, and x is the client’s IP address), attack or legitimate, sent to the

primary web server (y1). Here, x is the client’s source IP address and the Netflow record

of source IP x is depicted by Nfx. The SVM model generated after the classification of the

dataset is denoted by θ. A change in the value of destination IP address y expressed as yˊ

occurs when the classification of Nfx, Netflow record of x, gives a class category Nc which

is an attack. Once the number of times Nc yields as attack traffic causes yˊ to equal the last

68

replica server yn, the block parameter μx for the defaulting IP address x is propagated to the

switch which blocks all traffic from IP address x.

3.5 Performance Evaluation

Performance evaluation of the methods employed to achieve the objectives outlined

measures the degree to which the classifier predicts the class labels of instances and the

extent to which web services are available to legitimate clients.

3.5.1 RBF SVM Performance Evaluation

Performance evaluation of RBF SVM represents the degree to which the RBF SVM

classifier detected the attack and legitimate client traffic instances. The performance was

measured using metrics of accuracy, False Positive Rate (FPR), False Negative Rate

(FNR), and Area Under the Receiver Operating Characteristics Curve (AUC).

3.5.1.1 Accuracy

The accuracy of a classifier refers to how well the classifier distinguishes attack traffic

from normal traffic. Mathematically, accuracy is represented in equation 3.10 (Agarwal,

2014).

Accuracy =

𝑇𝑃+𝑇𝑁

𝑃+𝑁

(3.10)

where True Positive (TP) corresponds to the number of attack instances in the dataset that

were correctly classified as attack traffic. Similarly, True Negative (TN) refers to the

number of legitimate traffic instances in the dataset that were correctly classified as

legitimate traffic. Positive (P) corresponds to the total number of instances in the dataset

which are attack traffic while Negative (N) corresponds to the total number of legitimate

traffic in the dataset.

69

3.5.1.2 False Positive Rate (FPR)

The False Positive Rate (FPR) of a classifier refers to the percentage of negative instances

incorrectly classified as positive. Here, since the positive instances are the attack traffic

instances and the negative instances are the legitimate traffic instances, FPR refers to the

percentage of normal traffic incorrectly classified as attack traffic. Mathematically, FPR

is expressed in equation 3.11.

FPR =

𝐹𝑃

𝐹𝑃+𝑇𝑁
× 100 (3.11)

where False Positive (FP) corresponds to the number of legitimate client instances

labelled by the classifier as attack instances.

3.5.1.3 False Negative Rate (FNR)

The False Negative Rate (FNR) of a classifier refers to the percentage of positive

instances incorrectly classified as negative. Here, since the positive instances are the

attack traffic instances and the negative instances are the legitimate traffic instances, FNR

defines the percentage of attack traffic labelled as normal traffic. FNR is mathematically

represented in equation 3.12 as:

FNR =

𝐹𝑁

𝐹𝑁+𝑇𝑃
× 100 (3.12)

where False Negative (FN) corresponds to the number of attack traffic instances labelled

by the classifier as legitimate client traffic instances.

3.5.1.4 Area Under the Receiver Operating Characteristics Curve (AUC)

Area Under the Receiver Operating Characteristics (AUC) refers to the degree of the

classifier’s separability based on the Receiver Operating Characteristic (ROC) curve.

ROC curves show the trade-off between true positive rate and false positive rate. The

70

AUC is defined by calculating the area under the curve created when the True Positive

Rate (TPR), the percentage of attack traffic classified as attack instances, is plotted against

the FPR.

3.5.2 SABB Mitigation Performance Evaluation

The performance of the SABB mitigation mechanism was measured using the average

response time of the webservers and the ratio of completed to timed-out requests for

legitimate clients.

3.5.2.1 Average Response Time

The web server’s response time refers to how fast it replies to requests from legitimate

clients during attack and non-attack scenarios. In this work, 100 requests are sent to the

primary web server and the average response time of the total requests is obtained. The

formula is expressed in equation 3.13 as:

Average Response Time=

𝑛
𝑖=1

𝑛

𝑅𝑡𝑖

(3.13)

where 𝑛 refers to the number of requests sent to the webserver and 𝑅𝑡𝑖 refers to the

response time of the ith request.

3.5.2.2 Ratio of Completed to Timed-out Requests

The ratio of completed to timed-out requests was used to measure the availability of

services to legitimate clients during attack and non-attack scenarios. In this work, requests

that receive an associated response is considered completed.

3.6 Chapter Summary

This chapter presents the methodology involved in dataset creation, classification, and

slow DDoS mitigation module in SDN. The dataset was generated in an SDN network

simulated in GNS3 using OpenVSwitch as the Netflow exporter and the Ryu controller

∑

71

as the Netflow collector. The dataset created was preprocessed using various

preprocessing methods. The preprocessed dataset was used to train an SVM classifier to

generate an SVM model. The SVM model was transferred to the Ryu controller on the

SDN network to carry out real-time slow DDoS detection. The performance analysis of

the slow DDoS classification and mitigation with the discussion of the results obtained

are presented in chapter four.

72

CHAPTER FOUR

4.0 RESULTS AND DISCUSSIONS

4.1 Introduction

This chapter presents the results obtained by the feature selection and RBF SVM

parameter tuning process by GA, the performance of the classifier, and the performance

of the SABB slow HTTP DDoS attack mitigation mechanism. The results obtained are

discussed and insights are drawn from each.

4.1 Feature Selection Result

In the dataset generated, 31 features were consisting of 27 Netflow version 5 specific

features and 4 constructed features. After performing data reduction and normalization

on the dataset which resulted in 18 features, genetic algorithm was used to select the best

features that aid in detecting a slow DDoS attack. The genetic algorithm was initialized

with population size and generation number of 10 using a tournament selection of size 3

after extensive experimentation. The accuracy obtained as a fitness function for all 10

generations is described in Table 4.1. Furthermore, eleven features out of the 18 features

were selected to have significance in aiding the detection of slow DDoS attacks. The

features selected are listed in Table 4.2 where the serial number represents the position of

the feature in the raw dataset of 31 features.

73

Table 4.1: Genetic Algorithm Feature Selection Generation Accuracy

Generation Maximum Accuracy per Generation

0 98.35%

1 98.64%

2 98.64%

3 98.64%

4 98.64%

5 98.67%

6 98.67%

7 98.72%

8 98.72%

9 98.72%

10 98.72%

Table 4.2: Selected Features

S/N Features

2 Count

13 Input

14 Output

15 dPkts

16 dOctets

18 Last

19 Diff

20 Srcport

22 Tcp_flags

74

Table 4.2: Selected Features (continued)

S/N Features

29 Packets/second

31 Bytes/packet

4.2 RBF SVM Parameter Selection Result

The regularisation and gamma parameters of the radial basis function kernel-based SVM

were selected using the chosen features with genetic algorithm. The accuracy of the

estimator, an SVM classifier, was used as the fitness function of the genetic algorithm. A

generation number of 5 was used with a population size of 10 and tournament size of 3

after extensive experimentation using other parameters. The accuracy of the estimator per

generation is described in Table 4.3. The initial generation had the best individual which

was selected by the genetic algorithm with an accuracy of 99.71% and SVM

regularization and gamma parameters of 8 and 0.798 respectively.

Table 4.3: Genetic Algorithm RBF SVM Parameter Generation Accuracy

Generation Maximum Accuracy

0 99.71%

1 99.68%

2 99.68%

3 99.68%

4 99.68%

5 99.68%

75

4.3 RBF SVM Classification Result

The 80:20 ratio of training to testing dataset was utilised in executing the classification

task. On training of the RBF SVM classifier using the kernel parameters C and gamma

as 8 and 0.798 respectively, the testing of the model was performed using the test dataset

ratio, which subsequently resulted in an accuracy of 99.89% with an AUC of 99.89%.

Table 4.4 shows the percentages recorded for the performance metrics of accuracy, AUC,

TPR, FNR, and FPR which were used to gauge the performance of the classifier. A total

of 11,379 tuples constituted the test dataset of which 5,650 tuples and 5,729 tuples were

legitimate client and attack traffic respectively. For the legitimate client traffic, 5,640

tuples were correctly classified as legitimate traffic while 10 tuples were misclassified as

attack traffic by the classifier model. For the attack traffic, 5,726 tuples were correctly

classified as attack traffic while 3 tuples were misclassified as legitimate client traffic.

Therefore, the true positive, true negative, false positive, and false negative tuple count

which is the summary of the confusion matrix are shown in Table 4.5. Figure 4.1 provides

the details presented by the summary in Table 4.5.

Table 4.4: RBF SVM Classifier Performance Metric

Performance Metric Percentage

Accuracy 99.89%

AUC 99.89%

TPR 99.95%

FPR 0.18%

FNR 0.05%

76

Table 4.5: Confusion Matrix Summary of RBF SVM Classification

TP TN FP FN Total

5,726 5,640 10 3 11,379

Figure 4.1: RBF SVM Classification Confusion Matrix

In Figure 4.1 which presents the details of the RBF SVM performance in a confusion

matrix, the horizontal axis represents the actual class while the vertical axis represents the

predicted class. The “0” on both axes represents actual and predicted legitimate client

instances while the “1” on both axes represents actual and predicted attack traffic

Actual Class

P
re

d
ic

te
d

 C
la

ss

77

instances. As shown in the confusion matrix in Figure 4.1, the classifier achieved a false

positive rate, false negative rate, true positive rate, and true negative rate percentage of

0.18%, 0.05%, 99.95%, and 99.82% respectively. The classifier’s false positive rate is

identified in the confusion matrix highlighting the point of intersection between the “1”

on the actual class horizontal axis and the “0” on the predicted class vertical axis.

Similarly, the classifier’s false negative rate is identified in the confusion matrix by

highlighting the point of intersection between the “0” on the actual class horizontal axis

and the “1” on the predicted class vertical axis. Furthermore, the classifier’s true positive

rate is identified in the confusion matrix by highlighting the point of intersection between

the “1” on the actual class horizontal axis and the “1” on the predicted class vertical axis

while the true negative rate is identified in the confusion matrix by highlighting the point

of intersection between the “0” on the actual class horizontal axis and the “0” on the

predicted class vertical axis.

For the FPR result of 0.18%, it implies that for every 10,000 records which are legitimate

client traffic, 18 out of the 10,000 tuples would be misclassified as attack traffic. In this

work, the RBF SVM classifier resident in the controller collects Netflow traffic in real-

time and processes them immediately thus, classifying each Netflow record of a particular

IP address. Each Netflow record can only contain a maximum of 30 flow records which

corresponds to 30 tuples in the dataset. Therefore, the possibility of misclassification of

traffic is negligible. Although in some exceptional cases, a flow in the record can be

classified as malicious, switching the flow traffic from one of the webservers to the other

provides room for better analysis of subsequent flows from the IP address to the newly

allocated webserver.

The FNR of 0.05% shows that it would be difficult for attack traffic, slow get, post, or

read, to circumvent the detection module. Since in every Netflow record export only 30

78

flows are transmitted to the controller based on the transmission criteria, the possibility

of misclassifying attack traffic to be a legitimate client’s traffic is negligible. With this

performance percentage, attackers are identified swiftly and the appropriate action is

performed.

4.4 SABB Mitigation Process Result

For the SABB slow HTTP DDoS mitigation process to function, the RBF SVM model

obtained from the training phase was saved and uploaded to the Ryu controller in the

GNS3 SDN simulated environment for real-time slow HTTP DDoS detection. The slow

HTTP DDoS attacks were launched using eight computers running on Ubuntu operating

system using the SlowHTTPTest tool as shown in Figure 3.2. The average response time

of the webservers to HTTP requests together with the ratio of completed to timed-out

requests were measured before and after the SABB module was activated. The average

response time of the webservers to 100 legitimate requests before and after the activation

of the SABB module during the attack is shown in Table 4.6.

Table 4.6: Average Request Response Time with and without SABB during slow

HTTP DDoS attack

Number of Attackers Average Response Time

without SABB (ms)

Average Response Time

with SABB (ms)

1 35.948 4.411

2 40.191 15.370

3 89.392 120.076

4 137.802 128.374

5 379.855 167.264

6 436.211 412.714

7 504.328 275.73

8 1121.369 387.743

79

As observed in Table 4.6, the average response time increased for scenarios when the

SABB module was active as well as when it was active. However, when the SABB

module is inactive during the attack, the average response time increased at a faster rate

than when the SABB module was active. This difference in average response time is

attributed to the activity of the SABB module which inspects the traffic received and

blocks malicious traffic promptly thereby freeing up the bandwidth occupied by the

attackers which reduce the response time. A graphical view of the average response time

presented in Table 4.6 is shown in figure 4.2.

1200

1000

800

600

400

200

0

1 2 3 4 5 6 7 8

Number of Attackers

Without SABB With SABB

Figure 4.2: Average Response Time of the webserver

In addition to measuring the effectiveness of the SABB module through the response time

of requests made by legitimate clients, the percentage ratio of requests completed by the

webserver to the percentage ratio of requests which timed-out was measured. A request

is completed if an associated response to the request is sent by the webserver and received

by the requesting client. Table 4.7 shows the percentage ratio of completed to timed-out

legitimate requests when the SABB module was inactive. It can be observed that as the

A
ve

ra
ge

 R
e

sp
o

n
se

 T
im

e
(m

s)

80

number of attackers increased, the percentage of completed requests reduced while the

percentage of timed-out requests increased. The reduction in the percentage of completed

requests is due to the utilization of the webserver’s resources by the attackers thus making

those resources unavailable to legitimate clients. The graphical illustration of the data

presented in Table 4.7 is shown in figure 4.3.

Table 4.7: Completed to Timed-out Request Ratio without SABB

Number of Attackers Completed Requests (%) Timed-out Requests (%)

1 100 0

2 100 0

3 98 2

4 98 2

5 91 9

6 93 7

7 91 9

8 76 24

81

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

1 2 3 4 5 6 7 8

Number of Attackers

CompletedRequests Timed-out Requests

Figure 4.3: Completed to Timed-out Request Ratio without SABB

Furthermore, the percentage ratio of completed to timed-out requests when SABB was

active was recorded. As shown in Table 4.8, it is observed that although the percentage

ratio of completed requests reduces with an increase in the number of slow HTTP DDoS

attackers, the rate of reduction is lower compared to when SABB was inactive. The lower

rate of reduction in completed requests as the number of attackers increase is a result of

the blocking and flow modification operations of the SABB module. Once an attacker is

detected, the SABB module modifies the flow of the attacker’s requests from the primary

webserver to another replica server in a manner transparent to the attacker. This frees up

the resources on the primary web server thereby reducing the number of incomplete

requests recorded by legitimate clients of the primary webserver. Figure 4.4 shows the

graphical representation of the data presented in Table 4.8.

R
eq

u
es

ts
 (

%
)

82

Table 4.8: Completed to Timed-out Request Ratio with SABB

Number of Attackers Completed Requests (%) Timed-out Requests (%)

1 100 0

2 100 0

3 99 1

4 98 2

5 97 3

6 95 5

7 94 6

8 92 8

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

1 2 3 4 5 6 7 8

Number of Attackers

CompletedRequests Timed-out Requests

Figure 4.4: Completed to Timed-out Request ratio with SABB

To further illustrate the significance of the SABB module in ensuring a high rate of

request completion, the percentage of completed requests when SABB was active as well

as when it was inactive were juxtaposed in Figure 4.5. As shown in Figure 4.5, the

percentage of completed requests when SABB was active supersedes the percentage of

completed requests when SABB was inactive for most attack scenarios. Attack scenarios

R
eq

u
es

ts
 (

%
)

83

where the number of slow HTTP DDoS attackers was either one or two recorded a 100%

completed legitimate request rate when SABB was active as well as when it was inactive.

This occurred because the capacity of the webserver’s resources had not been exhausted

by the attackers hence the legitimate clients were able to complete their requests.

However, the difference between both scenarios, when the number of attackers was either

one or two, is evident in the average response time recorded in Table 4.6.

110

100

90

80

70

60

50

40

30

20

10

0

1 2 3 4 5 6 7 8

Number of Attackers

Completed Requests without SABB Completed Requests with SABB

Figure 4.5: Comparison between Completed Requests of without and with SABB

In Table 4.6, when one attacker launched the slow HTTP DDoS attack on the webserver,

the average response time when SABB was inactive was eight times higher than the

average response time recorded when SABB was inactive. However, when two attackers

launched the slow HTTP DDoS attack, the average response time recorded when SABB

was inactive doubled the average response time recorded when SABB was active. As

much as this highlights the differences between the 100% completed request rate recorded

when either one or two attackers were launched when SABB was either active or inactive,

C
o

m
p

le
te

d
 R

eq
u

e
st

s
(%

)

84

it also points to the rate at which a webserver’s resource can be consumed with a unit

increase in the number of slow HTTP DDoS attackers.

4.5 Comparison with Other Published Work

Results and methods employed by other authors to detect and mitigate slow HTTP attacks

were compared in Table 4.9. The analysis of existing work on detecting and mitigating

slow HTTP attacks shows that this study, to the best of our knowledge, might be the first

application of Support Vector Machine with Genetic algorithm on slow HTTP DDoS

which consists of slow get, slow post, and slow read HTTP DDoS attacks. The studies

examined either explored slow HTTP DoS or a variation of slow HTTP DDoS which

consists of slow get and slow post HTTP DDoS attacks only. Also, the slow HTTP DDoS

mitigation technique of SABB used within this work has not been utilised in any of the

studies analysed. Only two studies, Calvert and Khoshgoftaar (2019) and Kemp et al.

(2018) utilised Netflow records as the dataset for analysis. This work further lends the

scholarly community insight into using Netflow records as a means of SDN dataset

collection for analysis.

85

Table 4.9: Classification Accuracy Comparison with other Published Work

Method Dataset Accuracy Reference

RBF SVM Netflow records 99.89% This study

RF Netflow records 99.90% Calvert and Khoshgoftaar

(2019) 5NN 99.88%

C4.5 99.87%

LR 99.34%

SVM 99.14%

JRIP 99.29%

MLP 98.92%

Naïve Bayes 97.46%

RF Netflow records 96.76% Kemp et al. (2018)

C4.5N 96.72%

5-NN 96.69%

C4.5D 96.62%

MLP 95.06%

JRip 94.71%

SVM 89.22%

Naïve Bayes 88.94%

RF TCP Logs 99.37% Shafieian et al. (2015)

4.6 Chapter Summary

The chapter presents the result of feature selection using Genetic Algorithm on the

Netflow dataset and selection of the appropriate Support Vector Machine parameter in

section 4.1 and 4.2. Section 4.3 presents the result of the classification task on the Netflow

dataset. The result obtained from using the SABB module to mitigate slow HTTP DDoS

attacks is shown in section 4.4 while section 4.5 shows the comparison of the slow HTTP

DDoS detection method used in this work with other methods used in previous studies.

86

CHAPTER FIVE

5.0 SUMMARY, CONCLUSION AND RECOMMENDATIONS

5.1 Introduction

This chapter concludes this research on mitigating slow HTTP DDoS in SDN. A summary

of the research is presented and conclusions are drawn from the results of the work.

Furthermore, recommendations were drawn from the results obtained and the research’s

contribution to knowledge was outlined.

5.2 Summary

This study developed the use of RBF SVM to detect slow HTTP DDoS attacks which

consists of slow get, slow post and slow read attacks. Besides, a unique approach to

mitigating the slow HTTP DDoS attacks named Selective Adaptive Bubble Burst was

also created. The first objective of selecting the relevant features that signify the presence

of attack traffic from a Netflow export generated in a simulated SDN environment in

GNS3 was achieved using Genetic Algorithm and Support Vector Machine. First, the

population was initialised and crossover operations performed on the parent population

to yield offsprings. Then, each offspring was tested against the fitness function defined

as the accuracy of the Support Vector Machine which was obtained by classifying the

instances whose features are defined by the offspring. Consequently, eleven features were

selected through this process out of the initial 31 features which consist of 27 Netflow

version 5 features and 4 constructed features. Also, the parameters of the radial basis

function kernel of the Support Vector Machine were tuned using Genetic Algorithm.

The classification of Netflow flowsets into benign and anomalous, the second objective,

was achieved through the extraction of instances in the Netflow flowset using the eleven

features selected and performing a standard scale normalization on the extracted flowsets.

87

Radial Basis Function kernel-based Support Vector Machine was used to classify the

extracted instances which resulted in a 99.89% accuracy. The high accuracy achieved was

instrumental in the functioning of the SABB module developed because the ability to

mitigate attacks effectively is dependent on the effectiveness of attack detection.

The mathematical and algorithmic models of the SABB module were formulated thus

achieving the third objective. Subsequently, the SABB models were translated into the

python programming language and uploaded to the controller for real-time attack

mitigation which achieved the fourth and fifth objectives. The performance of the real-

time mitigation of slow HTTP DDoS attack launched by eight attackers was measured

using the average response time and the percentage of completed to timed-out requests

sent by a legitimate client to the primary webserver. The result indicates the effectiveness

of the SABB module in achieving a fast average response time and a high percentage of

completed requests relative to when SABB was not utilised.

5.3 Conclusion

In conclusion, the accuracy of the RBF SVM slow HTTP DDoS classifier presented in

this work outperforms the accuracy of the classifiers used in the research by Calvert and

Khoshgoftaar (2019), Kemp et al. (2018), and Shafieian et al. (2015). However, the

accuracy of the random forest classifier used in the work by Calvert and Khoshgoftaar

(2019) exceeds the accuracy obtained in this work by 0.01. Therefore, RBF SVM is highly

competitive in detecting slow HTTP DDoS attacks in Netflow records.

For the SABB slow HTTP DDoS mitigation, the ratio of completed to timed-out requests

when SABB was activated exceeds the ratio of completed to timed-out requests when

SABB was not activated. Also, the average response time when SABB was activated

remained in the 102 milliseconds range while when SABB was not activated, the response

88

time reached the 103 milliseconds range. Therefore, SABB mitigates slow HTTP DDoS

attacks effectively by ensuring the availability of services evident in the high number of

completed requests and low response time.

5.4 Recommendations

This study utilised Genetic Algorithm with Radial Basis Function kernel-based Support

Vector Machine to detect slow HTTP DDoS attacks which consist of slow get, slow post

and slow read and also mitigate such attacks using a technique called Selective Adaptive

Bubble Burst. It is recommended that further research should explore the use of multiple

controllers for managing the flow of packets in the network to further reduce the latency

and increase the percentage of completed requests recorded when the SABB module is

activated.

5.5 Contribution to Knowledge

This study has achieved a two-fold contribution to knowledge. First, the study established

an effective two-staged approach to detecting slow HTTP DDoS attacks. Second, the

study developed a new method of mitigating slow HTTP DDoS attacks which can be

applied to various DDoS and DoS attack scenarios.

89

REFERENCES

Agarwal, S. (2014). Data mining: Data mining concepts and techniques. Proceedings -

2013 International Conference on Machine Intelligence Research and

Advancement, ICMIRA 2013, 203–207. https://doi.org/10.1109/ICMIRA.2013.45

Ali, J., Khan, R., Ahmad, N., & Maqsood, I. (2012). Random Forests and Decision Trees.

International Journal of Computer Science Issues, 9(5), 272–278. Retrieved from

https://www.ijcsi.org/articles/Random-forests-and-decision-trees.php

Ali, S. T., Sivaraman, V., Radford, A., & Jha, S. (2015). A Survey of Securing Networks

Using Software Defined Networking. IEEE Transactions on Reliability, vol. 64, no.

3, pp. 1086-1097. https://doi.org/10.1109/TR.2015.2421391

Alshamrani, A., Chowdhary, A., Pisharody, S., Lu, D., & Huang, D. (2017). A defense

system for defeating DDoS attacks in SDN based networks. MobiWac 2017 -

Proceedings of the 15th ACM International Symposium on Mobility Management

and Wireless Access, Co-Located with MSWiM 2017, 83–92. https://doi.org/10.11

45/3132062.3132074

Ameyed, D., Jaafar, F., & Fattahi, J. (2015). A slow read attack using cloud. Proceedings

of the 2015 7th International Conference on Electronics, Computers and Artificial

Intelligence, ECAI 2015, SSS33–SSS38. https://doi.org/10.1109/ECAI.2015.73012

02

Anusha, K., & Sathiyamoorthy, E. (2016). Comparative study for feature selection

algorithms in intrusion detection system. Automatic Control and Computer Sciences,

50(1), 1–9. https://doi.org/10.3103/S0146411616010028

Aziz, A. S. A., Azar, A. T., Salama, M. A., Hassanien, A. E., & Hanafy, S. E. O. (2013).

Genetic algorithm with different feature selection techniques for anomaly detectors

generation. 2013 Federated Conference on Computer Science and Information

Systems, FedCSIS 2013, 769–774. Retrieved from https://annals-csis.org/Volume_1

/pliks/106.pdf

Barati, M., Abdullah, A., Udzir, N. I., Mahmod, R., & Mustapha, N. (2014). Distributed

Denial of Service Detection Using Hybrid Machine Learning Technique. 2014

International Symposium on Biometrics and Security Technologies (ISBAST), Kuala

Lumpur, Malaysia, pp. 268–273. https://doi.org/ 10.1109/ISBAST.2014.7013133

Beigi-Mohammadi, N., Barna, C., Shtern, M., Khazaei, H., & Litoiu, M. (2017).

CAAMP: Completely automated DDoS attack mitigation platform in hybrid clouds.

International Workshop on Green ICT and Smart Networking, GISN 2016, 136–143.

https://doi.org/10.1109/CNSM.2016.7818409

Benzekki, K., El Fergougui, A., & Elbelrhiti Elalaoui, A. (2016). Software-defined

http://www.ijcsi.org/articles/Random-forests-and-decision-trees.php
http://www.ijcsi.org/articles/Random-forests-and-decision-trees.php

90

networking (SDN): a survey. Security and Communication Networks, 9(18), 5803–

5833. https://doi.org/10.1002/sec.1737

Bhunia, S. S., & Gurusamy, M. (2017). Dynamic attack mitigation using SDN. 2017 27th

International Telecommunication Networks and Applications Conference, ITNAC

2017, 1–6. https://doi.org/10.1109/ATNAC.2017.8215430

Calvert, C. L., & Khoshgoftaar, T. M. (2019). Impact of class distribution on the detection

of slow HTTP DoS attacks using Big Data. Journal of Big Data. https://doi.org/10

.1186/s40537-019-0230-3

Cambiaso, E., Papaleo, G., & Aiello, M. (2017). Slowcomm: Design, development and

performance evaluation of a new slow DoS attack. Journal of Information Security

and Applications, 35, 23–31. https://doi.org/10.1016/j.jisa.2017.05.005

Cambiaso, E., Papaleo, G., Chiola, G., & Aiello, M. (2013). Slow DoS attacks: definition

and categorisation. International Journal of Trust Management in Computing and

Communications, 1(3/4), 300. https://doi.org/10.1504/ijtmcc.2013.056440

Crepinsek, M., Liu, S. H., & Mernik, M. (2013). Exploration and exploitation in

evolutionary algorithms: A survey. ACM Computing Surveys, Vol. 45, pp. 1–33.

https://doi.org/10.1145/2480741.2480752

Cusack, B., & Tian, Z. (2016). Detecting and tracing slow attacks on mobile phone user

service. Proceedings of the 14th Australian Digital Forensics Conference, ADF

2016, 4–10. https://doi.org/10.4225/75/58a54b013185a

Dabbagh, M., Hamdaoui, B., Guizani, M., & Rayes, A. (2015). Software-defined

Networking Security: Pros and Cons. IEEE Communications Magazine, vol. 53, no.

6, pp. 73-79. https://doi.org/10.1109/MCOM.2015.7120048

Dantas, Y. G., Fonseca, I. E., & Nigam, V. (2017). Slow TCAM Exhaustion DDoS

Attack. IFIP International Conference on ICT Systems Security and Privacy

Protection, vol 502. pp. 17-31. https://doi.org/10.1007/978-3-319-58469-0_2

Dhanapal, A., & Nithyanandam, P. (2019). The slow http distributed denial of service

attack detection in cloud. Scalable Computing, 20(2), 285–298.

https://doi.org/10.12694/scpe.v20i2.1501

Donges, N. (2018). The Logistic Regression Algorithm. Retrieved April 21, 2020, from

https://machinelearning-blog.com/2018/04/23/logistic-regression-101/

Farina, P., Cambiaso, E., Papaleo, G., & Aiello, M. (2015). Understanding DDoS Attacks

From Mobile Devices. 3rd International Conference on Future Internet of Things

and Cloud, Rome, Italy, 2015, pp. 614-619, https://doi.org/10.1109/FiCloud.2015

.19

91

Fonseca, I. E., & Nigam, V. (2016). Mitigating High-Rate Application Layer DDoS

Attacks in Software Defined Networks. Retrieved from http://nigam.info/docs/sdn-

flooding.pdf

Hamad, D. J., Yalda, K. G., & Okumus, I. T. (2016). Getting traffic statistics from

network devices in an SDN environment using OpenFlow. Information Technology

and Systems 2015, (April), 951–956. Retrieved from https://itas2015.iitp.ru/pdf

/1570195931.pdf

Hong, K., Kim, Y., Choi, H., & Park, J. (2018). SDN-Assisted Slow HTTP DDoS Attack

Defense Method. IEEE Communications Letters, 22(4), 688–691.

https://doi.org/10.1109/LCOMM.2017.2766636

Idhammad, M., Afdel, K., & Belouch, M. (2018). Detection System of HTTP DDoS

Attacks in a Cloud Environment Based on Information Theoretic Entropy and

Random Forest. Security and Communication Networks, 2018. https://doi.org

/10.1155/2018/1263123

Jaafar, G. A., Abdullah, S. M., & Ismail, S. (2019). Review of Recent Detection Methods

for HTTP DDoS Attack. Journal of Computer Networks and Communications, Vol.

2019. https://doi.org/10.1155/2019/1283472

Jevtic, S., Lotfalizadeh, H., & Kim, D. S. (2018). Toward network-based DDoS detection

in software-defined networks. ACM International Conference Proceeding Series.

https://doi.org/10.1145/3164541.3164562

Kamarudin, M. H., Maple, C., & Watson, T. (2019). Hybrid feature selection technique

for intrusion detection system. International Journal of High Performance

Computing and Networking, 13(2), 232–240. https://doi.org/10.1504/IJHPCN.2019

.097503

Kannan, V. (2018). Feature Selection using Genetic Algorithms (Masters Thesis, San

Jose State University, California, United States). Retrieved from https://scholar

works.sjsu.edu/etd_projects/618

Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: past,

present, and future. Multimedia Tools and Applications Vol. 80.

https://doi.org/10.1007/s11042-020-10139-6

Kaviani, P., & Dhotre, S. (2018). Short Survey on Naive Bayes Algorithm. International

Journal of Advance Research in Computer Science and Management, 4(11).

Retrieved from https://www.researchgate.net/publication/323946641_Short_Survey

_on_Naive_Ba yes_Algorithm

Kemp, C., Calvert, C., & Khoshgoftaar, T. M. (2018). Utilizing netflow data to detect

slow read attacks. Proceedings - 2018 IEEE 19th International Conference on

http://nigam.info/docs/sdn-
http://www.researchgate.net/publication/323946641_Short_Survey
http://www.researchgate.net/publication/323946641_Short_Survey

92

Information Reuse and Integration for Data Science, IRI 2018, 108–116.

https://doi.org/10.1109/IRI.2018.00023

Kokila, R. T., Thamarai Selvi, S., & Govindarajan, K. (2015). DDoS detection and

analysis in SDN-based environment using support vector machine classifier. 6th

International Conference on Advanced Computing, ICoAC 2014, 205–210.

https://doi.org/10.1109/ICoAC.2014.7229711

Kumar, R. (2016). Detecting Denial of Service Attacks in the Cloud. 2nd Intl Conf on Big

Data Intelligence and Computing and Cyber Science and Technology

Congress(DASC/PiCom/DataCom/CyberSciTech), Auckland, New Zealand, 2016,

pp. 309-316, https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016

.70

Lakshmi, B. N. (2015). An Empherical Study on Decision Tree Classification

Algorithms. International Journal of Science, Engineering and Technology

Research, 4(11), 3705–3709. Retrieved from http://ijsetr.org/wp-content/uploads

/2015/11/IJSETR-VOL-4-ISSUE-11-3705-3709.pdf

Latah, M., & Toker, L. (2019). Artificial intelligence enabled software-defined

networking: A comprehensive overview. IET Networks, Vol. 8, pp. 79–99.

https://doi.org/10.1049/iet-net.2018.5082

Li, X., Yuan, D., Hu, H., Ran, J., & Li, S. (2015). DDoS Detection in SDN Switches using

Support Vector Machine Classifier. Proceedings of the 2015 Joint International,

Mechanical, Electronic and Information Technology Conference (JIMET-15), 344–

348. https://dx.doi.org/10.2991/jimet-15.2015.63

Li, Y., Guo, X., Pang, X., Peng, B., Li, X., & Zhang, P. (2020). Performance Analysis of

Floodlight and Ryu SDN Controllers under Mininet Simulator. 2020 IEEE/CIC

International Conference on Communications in China, ICCC Workshops 2020, 85–

90. https://doi.org/10.1109/ICCCWorkshops49972.2020.9209935

Liu, S., Wang, L., Qin, J., Guo, Y., & Zuo, H. (2018). An intrusion detection model based

on IPSO-SVM algorithm in wireless sensor network. Journal of Internet

Technology, 19(7), 2125–2134. https://doi.org/10.3966/160792642018121907015

Lukaseder, T., Maile, L., Erb, B., & Kargl, F. (2018). SDN-assisted network-based

mitigation of slow DDoS attacks. Lecture Notes of the Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 255,

102–121. https://doi.org/10.1007/978-3-030-01704-0_6

Luo, J., Yang, X., Member, S., Wang, J., & Xu, J. (2014). On a Mathematical Model for

Low-Rate Shrew DDoS. IEEE Transactions on Information Forensics and Security,

9(7), 1069–1083. https://doi.org/10.1109/TIFS.2014.2321034

http://ijsetr.org/wp-content/uploads

93

Ma, Y., & Guo, G. (2014). Support vector machines applications. Support Vector

Machines Applications (Vol. 9783319023). https://doi.org/10.1007/978-3-319-

02300-7

Mirjalili, S., Song Dong, J., Sadiq, A. S., & Faris, H. (2020). Genetic algorithm: Theory,

literature review, and application in image reconstruction. In Studies in

Computational Intelligence (Vol. 811). https://doi.org/10.1007/978-3-030-12127-

3_5

Muraleedharan, N., & Barnabas, J. (2018). Behaviour analysis of HTTP based slow denial

of service attack. Proceedings of the 2017 International Conference on Wireless

Communications, Signal Processing and Networking, WiSPNET 2017, 2018-Janua,

1851–1856. https://doi.org/10.1109/WiSPNET.2017.8300082

Najafabadi, M. M., Khoshgoftaar, T. M., Napolitano, A., & Wheelus, C. (2016). RUDY

attack: Detection at the network level and its important features. Proceedings of the

29th International Florida Artificial Intelligence Research Society Conference,

FLAIRS 2016, 282–287.

Park, J. (2015). Analysis of Slow Read DoS Attack and Countermeasures on Web servers.

International Journal of Cyber-Security and Digital Forensics, 4(2), 339–353.

https://doi.org/10.17781/p001550

Polanco, O., & Guerrero, F. G. (2020). Virtualised Environment for Learning SDN-based

Networking. IETE Journal of Education, 61(2), 90–100. https://doi.org/10.1080

/09747338.2020.1838337

Rahman, O., Quraishi, M. A. G., & Lung, C. H. (2019). DDoS attacks detection and

mitigation in SDN using machine learning. Proceedings - 2019 IEEE World

Congress on Services, SERVICES 2019, 2642-939X, 184–189. https://doi.org/10

.1109/SERVICES.2019.00051

Ramchoun, H., Amine, M., Idrissi, J., Ghanou, Y., & Ettaouil, M. (2016). Multilayer

Perceptron : Architecture Optimization and Training. International Journal of

Interactive Multimedia and Artificial Intelligence. https://doi.org/10.9781

/ijimai.2016.415

Rawat, D. B., & Reddy, S. R. (2017). Software Defined Networking Architecture,

Security and Energy Efficiency: A Survey. IEEE Communications Surveys and

Tutorials, Vol. 19, pp. 325–346. https://doi.org/10.1109/COMST.2016.2618874

Sattar, D., Matrawy, A., & Adeojo, O. (2016). Adaptive Bubble Burst (ABB): Mitigating

DDoS attacks in Software-Defined Networks. 2016 17th International

Telecommunications Network Strategy and Planning Symposium, Networks 2016 -

Conference Proceedings, 50–55. https://doi.org/10.1109/NETWKS.2016.7751152

94

Schehlmann, L., & Baier, H. (2013). COFFEE : a Concept based on OpenFlow to Filter

and Erase Events of botnet activity at high-speed nodes. Horbach, M. (Hrsg.),

INFORMATIK 2013 – Informatik angepasst an Mensch, Organisation und Umwelt.

Bonn: Gesellschaft für Informatik, 2225–2239. Retrieved from

https://dl.gi.de/bitstream/handle /20.500.12116/20651/2225.pdf

Sen, S., Gupta, K. D., & Ahsan, M. (2020). Leveraging Machine Learning Approach to

Setup Software-Defined Network (SDN) Controller Rules During DDoS Attack.

Proceedings of International Joint Conference on Computational Intelligence,

pp.49-60 https://doi.org/10.1007/978-981-13-7564-4_5

Shafieian, S., Zulkernine, M., & Haque, A. (2015). CloudZombie: Launching and

detecting slow-read distributed denial of service attacks from the Cloud.

Proceedings - 15th IEEE International Conference on Computer and Information

Technology, CIT 2015, 1733–1740. https://doi.org/10.1109/CIT/IUCC/DASC

/PICOM.2015.261

Shtern, M., Sandel, R., Litoiu, M., Bachalo, C., & Theodorou, V. (2014). Towards

mitigation of low and slow application DDoS attacks. Proceedings - 2014 IEEE

International Conference on Cloud Engineering, IC2E 2014, (Vm), 604–609.

https://doi.org/10.1109/IC2E.2014.38

Singh, B., & Rai, B. C. S. (2019). Analysis of Support Vector Machine-based Intrusion

Detection Techniques. Arabian Journal for Science and Engineering.

https://doi.org/10.1007/s13369-019-03970-z

Singh, K. J., & De, T. (2017). Journal of Information Security and Applications MLP-

GA based algorithm to detect application layer DDoS attack. Journal of Information

Security and Applications, 36, 145–153. https://doi.org/10.1016/j.jisa.2017.09.004

Singh, K. J., Thongam, K., & De, T. (2016). Entropy-based application layer DDoS attack

detection using artificial neural networks. Entropy, 18(10), 350.

https://doi.org/10.3390/e18100350

Su, Y., Zhang, W., Tao, W., & Qiao, Z. (2018). A Network Illegal Access Detection

Method Based on PSO-SVM Algorithm in Power Monitoring System. 4th

International Conference, International Conference on Cloud Computing and

Security, Vol. 2, pp.450-459. https://doi.org/10.1007/978-3-030-00009-7

Suroto, S. (2017). A Review of Defense Against Slow HTTP Attack. JOIV : International

Journal on Informatics Visualization, 1(4), 127. https://doi.org/10.30630/joiv.1.4.51

Swami, R., Dave, M., & Ranga, V. (2019a). Defending DDoS against Software Defined

Networks using Entropy. Proceedings - 2019 4th International Conference on

Internet of Things: Smart Innovation and Usages, IoT-SIU 2019, 1–5.

https://doi.org/10.1109/IoT-SIU.2019.8777688

95

Swami, R., Dave, M., & Ranga, V. (2019b). Software-defined Networking-based DDoS

Defense Mechanisms. ACM Computing Survey, 52(2), 36.

https://doi.org/10.1016/B978-0-12-375000-6.00124-5

Tayama, S., & Tanaka, H. (2018). Analysis of Slow Read DoS Attack. International

Conference on Mobile and Wireless Technology, pp. 350-359.

https://doi.org/10.1007/978-981-10-5281-1

Tripathi, N., & Hubballi, N. (2018). Slow rate denial of service attacks against HTTP/2

and detection. Computers and Security, 72, 255–272. https://doi.org/10.1016

/j.cose.2017.09.009

Tripathi, N., Hubballi, N., & Singh, Y. (2016). How Secure are Web Servers? An

empirical study of Slow HTTP DoS attacks and detection. Proceedings - 2016 11th

International Conference on Availability, Reliability and Security, ARES 2016, 454–

463. https://doi.org/10.1109/ARES.2016.20

Wang, J., Li, T., Ren, R. (2010). A Real Time IDSs Based on Artificial Bee Colony-

Support Vector Machine Algorithm. Third International Workshop on Advanced

Computational Intelligence, Suzhou, China, 2010, pp. 91-96.

https://doi.org/10.1109/IWACI.2010 .5585107

Wang, S.-Y., Chih-Liang, C., & Chun-Ming, Y. (2013). EstiNet Network Simulator and

Emulator. IEEE Communications Magazine, 51(9), 110–117. Retrieved from

http://www.estinet.com/products.php?lv1=1&sn=2

Wani, A. R., Rana, Q. P., Saxena, U., & Pandey, N. (2019). Analysis and Detection of

DDoS Attacks on Cloud Computing Environment using Machine Learning

Techniques. Proceedings - 2019 Amity International Conference on Artificial

Intelligence, AICAI 2019, 870–875. https://doi.org/10.1109/AICAI.2019.8701238

Xingzhu, W. (2015). ACO and SVM Selection Feature Weighting of Network Intrusion

Detection Method. International Journal of Security and its Applications, 9(4), 259-

270. https://doi.org/10.14257/ijsia.2015.9.4.24

Xu, X., Yu, H., & Yang, K. (2017). DDoS Attack in Software Defined Networks: A

Survey. Journal of Hunan University of Technology, 15(3). https://doi.org

/10.3969/j.issn.1673

Ye, J., Cheng, X., Zhu, J., Feng, L., & Song, L. (2018). A DDoS Attack Detection Method

Based on SVM in Software Defined Network. Security and Communication

Networks, 2018. https://doi.org/10.1155/2018/9804061

Ye, Z., Sun, Y., Sun, S., Zhan, S., Yu, H., & Yao, Q. (2019). Research on Network

Intrusion Detection Based on Support Vector Machine Optimized with Grasshopper

Optimization Algorithm. 2019 10th IEEE International Conference on Intelligent

http://www.estinet.com/products.php?lv1=1&sn=2

96

Data Acquisition and Advanced Computing Systems: Technology and Applications

(IDAACS), 1(41301371), 378–383. https://doi.org/10.1109/IDAACS.2019.8924234

Yeasir, M., Morshed, M., & Fakrul, M. (2015). A Practical Approach and Mitigation

Techniques on Application Layer DDoS Attack in Web Server. International

Journal of Computer Applications, 131(1), 13–20. https://doi.org/10.5120

/ijca2015907209

Yevsieieva, O., & Helalat, S. M. (2017). Analysis of the Impact of the Slow HTTP DoS

and DDoS Attacks on the Cloud Environment. 4th International Scientific-Practical

Conference Problems of Infocommunications. Science and Technology, pp. 519-

523. https://doi.org/10.1109/INFOCOMMST.2017.8246453

Yuan, B., Zou, D., Jin, H., Yu, S., & Yang, L. T. (2017). HostWatcher: Protecting hosts

in cloud data centers through software-defined networking. Future Generation

Computer Systems. https://doi.org/10.1016/j.future.2017.04.023

97

APPENDIX

Selective Adaptive Bubble Burst Implementation in Python

import eventlet

import math

import pickle

import socket

from Ryu.base import app_manager

from Ryu.controller import ofp_event

from Ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER

from Ryu.controller.handler import set_ev_cls

from Ryu.ofproto import ofproto_v1_3

from Ryu.lib.packet import packet

from Ryu.lib.packet import ipv4

from Ryu.lib.packet import ethernet

from Ryu.lib.packet import ether_types

from Ryu.lib.xflow import netflow

from Ryu.lib.ip import ipv4_to_str

from Ryu.lib.mac import haddr_to_str

from sklearn.preprocessing import StandardScaler

from sklearn.svm import SVC

from collections import Counter

class NetFlowSwitch(app_manager.RyuApp):

NETFLOW_UDP_PORT = 2055

@set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)

def switch_features_handler(self, ev):

datapath = ev.msg.datapath

ofproto = datapath.ofproto

parser = datapath.ofproto_parser

match = parser.OFPMatch()

actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,

ofproto.OFPCML_NO_BUFFER)]

self.add_flow(datapath, 0, match, actions)

def add_flow(self, datapath, priority, match, actions, buffer_id=None):

ofproto = datapath.ofproto

parser = datapath.ofproto_parser

inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,

actions)]

if buffer_id:

mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,

priority=priority, match=match,

instructions=inst)

else:

98

mod = parser.OFPFlowMod(datapath=datapath, priority=priority,

match=match, instructions=inst)

datapath.send_msg(mod)

#store values in a global dictionary to use for modifying flow instructions

def storeValues(self,ip_src, eth_src,in_port,dst,datapath,buffer_id=None):

#not a web server source packet

if (ip_src not in self.websvr_ip):

if (ip_src not in self.recordedAddr):

self.flowDetails[ip_src]={}

self.flowDetails[ip_src]['eth_src']=eth_src

self.flowDetails[ip_src]['in_port']=in_port

self.flowDetails[ip_src]['dst']=dst

self.flowDetails[ip_src]['datapath']=datapath

self.flowDetails[ip_src]['buffer_id']=buffer_id

self.recordedAddr.append(ip_src)

elif (self.flowDetails[ip_src]['buffer_id']!=buffer_id):

self.flowDetails[ip_src]['buffer_id']=buffer_id

return

@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)

def _packet_in_handler(self, ev):

If you hit this you might want to increase

the "miss_send_length" of your switch

if ev.msg.msg_len < ev.msg.total_len:

self.logger.debug("packet truncated: only %s of %s bytes",

ev.msg.msg_len, ev.msg.total_len)

msg = ev.msg

datapath = msg.datapath

ofproto = datapath.ofproto

parser = datapath.ofproto_parser

in_port = msg.match['in_port']

self.parser=parser

self.ofproto=ofproto

self.datapath=datapath

pkt = packet.Packet(msg.data)

ip_src = pkt.get_protocol(ipv4.ipv4)

if (ip_src):

ip_src=ip_src.src

else:

ip_src=None

eth = pkt.get_protocols(ethernet.ethernet)[0]

if eth.ethertype == ether_types.ETH_TYPE_LLDP:

ignore lldp packet

return

dst = eth.dst

src = eth.src

99

dpid = datapath.id

self.mac_to_port.setdefault(dpid, {})

self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)

learn a mac address to avoid FLOOD next time.

self.mac_to_port[dpid][src] = in_port

if dst in self.mac_to_port[dpid]:

out_port = self.mac_to_port[dpid][dst]

else:

out_port = ofproto.OFPP_FLOOD

actions = [parser.OFPActionOutput(out_port)]

install a flow to avoid packet_in next time

if out_port != ofproto.OFPP_FLOOD:
match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)

verify if we have a valid buffer_id, if yes avoid to send both

flow_mod & packet_out

if msg.buffer_id != ofproto.OFP_NO_BUFFER:

self.add_flow(datapath, 1, match, actions, msg.buffer_id)

eth_src = src

self.storeValues(ip_src, eth_src,in_port,dst,datapath,msg.buffer_id)

return

else:

self.add_flow(datapath, 1, match, actions)

self.storeValues(ip_src, eth_src,in_port,dst,datapath)

data = None

if msg.buffer_id == ofproto.OFP_NO_BUFFER:

data = msg.data

out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,

in_port=in_port, actions=actions, data=data)

datapath.send_msg(out)

def getFlowDataset(self, nfObj):

net_ip=""

flowCountFlag = 0

for nfMainFlowObj in nfObj.flows:

net_ip = ipv4_to_str(nfMainFlowObj.srcaddr)

if((net_ip in self.attackIP.keys()) and (self.attackIP[net_ip] > len(self.websvr_ip)-

1)):

print(net_ip + " BLOCKED!! ALREADY")

break

if ((net_ip not in self.websvr_ip) and (net_ip not in self.whitelist)):

#extract other necessary details

difference = nfMainFlowObj.last - nfMainFlowObj.first

diffSeconds = difference/1000 if difference != 0 else 0 #converts to seconds

from milliseconds

100

packetsPerSec = math.floor(nfMainFlowObj.dpkts/diffSeconds) if

diffSeconds!=0 else 0

bytesPerSec = math.floor(nfMainFlowObj.doctets/diffSeconds) if
diffSeconds!=0 else 0

bytesPerPacket = math.floor(nfMainFlowObj.doctets/nfMainFlowObj.dpkts)

nfMainFlowValues = [nfObj.count, nfMainFlowObj.input,

nfMainFlowObj.output, nfMainFlowObj.dpkts, nfMainFlowObj.doctets,

nfMainFlowObj.last, difference, nfMainFlowObj.srcport, nfMainFlowObj.tcp_flags,

packetsPerSec, bytesPerPacket]

initData=[]

if(net_ip not in self.netflow_dataset.keys()):

#create a new key in the netflow dataset

initData.append(nfMainFlowValues)

self.netflow_dataset[net_ip] = {"data": initData, "flowCount":

len(nfObj.flows)}

else:

#get previous data and flowCount values

#append to the netflow dataset dictionary

flowCountFlag = 1

prevData = self.netflow_dataset[net_ip]["data"]

prevData.append(nfMainFlowValues)

self.netflow_dataset[net_ip]["data"] = prevData

if((net_ip not in self.websvr_ip) and (net_ip not in self.whitelist)):

prevFlowCount = self.netflow_dataset[net_ip]["flowCount"]

self.netflow_dataset[net_ip]["flowCount"] = (len(nfObj.flows) + prevFlowCount

) if flowCountFlag else len(nfObj.flows)

flows = nfObj.flows

print("Message: ", vars(nfObj))

for flow in flows:

print("Flow Content:", vars(flow))

def normalizeDataset(self, dataset):

std_data = StandardScaler()

std_data.fit(dataset)

return std_data.transform(dataset)

def runSVM(self, model, normData):

y_pred=model.predict(normData)

return y_pred

def modifyFlow(self, attackCount, net_attackIP):

#modify flow to point to next server

#update attack count

ofp_parser=self.parser

ofp=self.ofproto

datapath=self.datapath

101

match = ofp_parser.OFPMatch(in_port=2,

ipv4_src=net_attackIP,

ipv4_dst=self.websvr_ip[0],

eth_type=0x0800)

dst_websvr = self.websvr_ip[attackCount]

actions = [ofp_parser.OFPActionSetField(ipv4_dst=dst_websvr),

ofp_parser.OFPActionSetField(eth_dst=self.websvr_mac[dst_websvr]),

ofp_parser.OFPActionOutput(self.websvr_ip_to_port[self.websvr_ip[attackCount]])]

inst = [ofp_parser.OFPInstructionActions(ofp.OFPIT_APPLY_ACTIONS,

actions)]

mod = ofp_parser.OFPFlowMod(

datapath=datapath,

priority=attackCount+1,

buffer_id=ofp.OFP_NO_BUFFER,

match=match,

instructions=inst)

datapath.send_msg(mod)

print("Modified flow from "+str(net_attackIP)+"to dst " + str(dst_websvr))

match =

ofp_parser.OFPMatch(in_port=self.websvr_ip_to_port[self.websvr_ip[attackCount]],

ipv4_src=self.websvr_ip[attackCount],

ipv4_dst=net_attackIP,

eth_type=0x0800)

actions = [ofp_parser.OFPActionSetField(ipv4_src=self.websvr_ip[0]),

ofp_parser.OFPActionSetField(eth_dst=self.flowDetails[net_attackIP]['eth_src']),

ofp_parser.OFPActionOutput(2)] #check here for input port for hosts

inst = [ofp_parser.OFPInstructionActions(ofp.OFPIT_APPLY_ACTIONS,

actions)]

mod = ofp_parser.OFPFlowMod(

datapath=datapath,

priority=attackCount+1,

buffer_id=ofp.OFP_NO_BUFFER,

match=match,

instructions=inst)

datapath.send_msg(mod)

def blockTraffic(self, attackCount, net_attackIP):

#modify flow to point to next server

#update attack count

ofp_parser=self.parser

ofp=self.ofproto

datapath=self.datapath

match = ofp_parser.OFPMatch(in_port=2,

ipv4_src=net_attackIP,

102

ipv4_dst=self.websvr_ip[0],

eth_type=0x0800)

actions = [ofp_parser.OFPActionOutput(2)]

inst = [ofp_parser.OFPInstructionActions(ofp.OFPIT_APPLY_ACTIONS,

actions)]

mod = ofp_parser.OFPFlowMod(

datapath=datapath,

priority=attackCount+1,

buffer_id=ofp.OFP_NO_BUFFER,

match=match,

instructions=inst)

print("Blocked flow from "+str(net_attackIP))

datapath.send_msg(mod)

def runServer(self):

try:

serverSock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

serverSock.bind(("192.168.0.18", 2055))

model = pickle.load(open("SVM_Model2.sav",'rb'))

while True:

data, addr = serverSock.recvfrom(6024)

netflowObj = netflow.NetFlow.parser(data)

self.getFlowDataset(netflowObj)

for net_dataset_ip in self.netflow_dataset:

if((net_dataset_ip in self.attackIP.keys()) and (self.attackIP[net_dataset_ip]

> len(self.websvr_ip)-1)):

continue

if(self.netflow_dataset[net_dataset_ip]["flowCount"] < 100):
continue

normalizeDataset =

self.normalizeDataset(self.netflow_dataset[net_dataset_ip]["data"])

predictionResult = self.runSVM(model,normalizeDataset)

#delete dataset present in a particular IP

del self.netflow_dataset[net_dataset_ip]["data"][:]

#modify flowCount to zero

self.netflow_dataset[net_dataset_ip]["flowCount"] = 0

print(Counter(predictionResult))

#count of prediction result

#if count of prediction result for 0 is grater than 30

else, it is an attack traffic

#propagate flow modification to openflow switch

103

if (Counter(predictionResult)[0] < 30):

if (net_dataset_ip in self.attackIP.keys()):

attackCount=self.attackIP[net_dataset_ip]

if (attackCount >= len(self.websvr_ip)-1):

#block traffic using flow modification

self.attackIP[net_dataset_ip] += 1

eventlet.spawn_n(self.blockTraffic,attackCount, net_dataset_ip)

else:

#modify flow to point to next server

#update attack count

self.attackIP[net_dataset_ip] += 1

attackCount=self.attackIP[net_dataset_ip]

eventlet.spawn_n(self.modifyFlow,attackCount, net_dataset_ip)

else:

#add the attack IP to attackIP and initialize to 1

#modify traffic to point to next server

self.attackIP[net_dataset_ip] = 1

attackCount=self.attackIP[net_dataset_ip]

self.modifyFlow(attackCount, net_dataset_ip)

print("Terminated")

except Exception as e:

print("Keyboard Interrupt recieved")

print(e)

finally:

print("Terminated 2")

def init (self, *args, **kwargs):

super(NetFlowSwitch, self). init (*args, **kwargs)

self.mac_to_port = {}

self.flowDetails = {}

self.netflow_dataset = {}

self.recordedAddr= []

self.websvr_ip = ["192.168.0.24", "192.168.0.22", "192.168.0.20"]

self.whitelist = []

self.websvr_mac = {"192.168.0.24":"",

"192.168.0.22":"",

"192.168.0.20":""}

self.websvr_ip_to_port = {"192.168.0.24":1,

"192.168.0.22":11,

"192.168.0.20":10}

self.attackIP={}

self.netflow_svrip=["24","22","20"]

self.parser=None

self.ofproto=None

self.datapath=None

eventlet.spawn_n(self.runServer)

