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ABSTRACT 

 

Distributed Denial of Services (DDoS) has been used by attackers over the years to 

disrupt the availability of services in a networked environment. However, the increased 

attention in detecting and mitigating DDoS by security researchers has made attackers 

resort to an application layer attack known as slow DDoS which mimics the behaviour of 

a legitimate client using a slow connection or which has limited message window size 

thus making the attack difficult to detect. Although some researchers have examined the 

detection and mitigation of slow Hypertext Transfer Protocol (HTTP) DDoS, a form of 

slow DDoS, their research focused on either slow read or slow post and get attacks only 

without considering attack detection for the three types of slow HTTP DDoS. 

Furthermore, other researchers who have achieved competitive results in detecting slow 

read, post, and get attacks examined slow Denial of Service (DoS) attack which originates 

from one attacker. Since the slow DoS originates from an attacker, it is relatively easy to 

detect and, consequently, mitigate. Therefore, this research examined a machine learning- 

based slow HTTP DDoS detection and a Selective Adaptive Bubble Burst (SABB) 

mitigation of detected slow HTTP DDoS attacks, while considering slow read, post and 

get attacks in a Software-Defined Network (SDN) environment. The SDN environment 

was simulated in Graphical Network Simulator-3 (GNS3) where the Ryu controller was 

used to collect attack and benign Netflow flowsets for feature selection using Genetic 

Algorithm (GA) and attack detection using Radial Basis Function (RBF) kernel-based 

Support Vector Machine (SVM). Consequently, the trained SVM model was uploaded to 

the controller for real-time detection and activation of the SABB mitigation mechanism. 

Results obtained showed that the SVM classification of Netflow flowsets into attack and 

benign categories achieved an Area Under the Receiver Operating Characteristic Curve 

(AUC), accuracy, True Positive Rate (TPR), False Positive Rate (FPR), and False 

Negative Rate (FNR) of 99.89%, 99.89%, 99.95%, 0.18%, and 0.05% respectively. 

Furthermore, the SABB mitigation mechanism achieved an average response time and 

percentage of the completed request of 387.743 milliseconds (ms) and 92% respectively 

when eight slow HTTP DDoS attackers launched the assault compared to an average 

response time and percentage of the completed request of 1121.369 ms and 76% 

respectively when SABB was not utilized with the same number of attackers. The 

effectiveness of the SVM slow HTTP DDoS attack detection and the proposed SABB 

mitigation mechanism contributes to ongoing research into the use of SDN to enhance 

network security. Further studies into enhancing the average response time and the 

percentage of completed requests through a multi-controller SDN setup is recommended. 
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CHAPTER ONE 

 

1.0 INTRODUCTION 

 
1.1 Background to the Study 

 

Digital networks are formed when a group of digital devices are connected through a 

medium that enables them to communicate using defined protocols. On such networks, 

valuable information is resident and essential services are rendered to various clients who 

need that information or services to complete diverse tasks. The valuable information and 

essential services provided in the network are considered the assets of the network. Just 

as legitimate clients need access to such services, illegitimate clients seek to either gain 

access or deny the legitimate clients access to the services on the network (Jaafar et al., 

2019). Among the numerous schemes used by attackers to deny legitimate clients access 

to the services provided in a network is the use of a Distributed Denial of Service (DDoS) 

attack because of the difficulty to trace and stop a DDoS attack. 

Distributed Denial of Service (DDoS), also known as flooding attacks, refers to an attack 

on an asset or assets within a network that seeks to exhaust the limited resources of the 

asset or assets by sending requests from several other network devices thereby 

overwhelming the target’s capacity to respond to the malicious requests or any other 

request (Rawat & Reddy, 2017; Swami et al., 2019a). The need to launch DDoS attacks 

which overwhelms the target swiftly has made volumetric DDoS the attack of choice 

among malicious network users. Most volumetric DDoS attacks target the network layer 

of the Open Systems Interconnection (OSI) model. Next to volumetric DDoS attacks 

which operates at the network layer of the OSI model is the application layer DDoS attack 

of which Hypertext Transfer Protocol (HTTP) and Simple Mail Transfer Protocol 

(SMTP) are the prominent application layer protocols being attacked in this category 

(Swami et al., 2019a). As attackers establish new ways of launching volumetric DDoS 
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attacks, security researchers have been able to keep up with the trend and detect those 

attacks because the detection of volumetric DDoS attacks is relatively easy since 

volumetric attacks involve sending large requests from several devices simultaneously 

(Cambiaso et al., 2013). Due to the pace with which security researchers have been able 

to identify the gimmicks of volumetric DDoS attackers and since the goal of the attackers 

is the disruption of service availability, the attackers now resort to launching slow DDoS 

attacks which are hard to detect and mitigate. The difficulty in detecting and mitigating 

slow DDoS attacks stems from the attack’s similarity to requests from slow legitimate 

clients as opposed to the behaviour exhibited by volumetric attacks (Cambiaso et al., 

2017; Jaafar et al., 2019; Muraleedharan & Barnabas, 2018). 

Slow DDoS is a low-rate attack which is mostly application layer attacks that are difficult 

to detect because it behaves like legitimate traffic sent over a slow connection or from a 

legitimately slow client (Cambiaso et al., 2013; Dhanapal & Nithyanandam, 2019; 

Suroto, 2017; Swami et al., 2019b). Since the goal of a slow DDoS attack is to cause the 

unavailability of the targeted service, the attacker seizes available connections at the 

application layer which results in a busy service queue where legitimate traffic is dropped. 

Furthermore, the attacker sustains the assault by sending data at a low rate per unit time 

to keep the seized connections for as long as possible (Cambiaso et al., 2013). Since these 

attacks affect the application layer, protocols such as HTTP, SMTP, Internet Message 

Access Protocol (IMAP), and File Transfer Protocol (FTP) are also affected (Swami et 

al., 2019b). Although launching a slow DDoS attack requires less bandwidth and 

resources, it is capable of causing service disruption on a large scale (Cambiaso et al., 

2013; Shtern et al., 2014; Suroto, 2017). Given the wide spread use of web servers to 

provide hypermedia, slow DDoS attackers have focused on attacking the application layer 

of webservers by disrupting the operations of the HTTP using an attack known as slow 
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HTTP DDoS which causes the web server to be unable to respond to HTTP requests. 

Slow HTTP DDoS are DDoS attacks launched against web servers by sending data or 

forcing the server to send data in a manner that prolongs the connection requesting for 

the resource thus denying legitimate clients access (Park, 2015). A slow HTTP attack is 

launched after a Transmission Control Protocol (TCP) connection has been established 

with the web server ( Idhammad et al., 2018; Tayama & Tanaka, 2018). Based on the 

operations obtainable in an HTTP request, there are three major types of slow HTTP 

DDoS attacks namely: slow HTTP get, slow HTTP post, and slow read attack (Yevsieieva 

& Helalat, 2017). 

The slow HTTP get attack sends HTTP get requests to a victim server without 

transmitting two carriage return and line feed characters to denote the end of the request 

thus forcing the victim not to start processing until a complete header is received 

(Muraleedharan & Barnabas, 2018; Suroto, 2017; Idhammad et al., 2018). Similarly, slow 

HTTP post attacks take advantage of the adherence of web servers to the volume of data 

defined in the Content-Length field by advertising a large value and then sending the post 

message in several packets at a low rate to the server (Idhammad et al., 2018; Swami et 

al., 2019a). Unlike the other two slow HTTP attacks, a slow read attack sends a normal 

HTTP message to the web server but forces it to send a reply at a slow rate based on the 

number of bytes the attacker specifies to be readable as defined by the TCP window size 

(Kemp et al, 2018). Therefore, to protect web servers from this hard-to-detect form of 

DDoS, emphasis is laid on the accuracy of the methods used in identifying such attacks. 

Although researchers have been able to use deterministic methods, such as calculating 

the distance-metrics, to detect the presence of slow HTTP DDoS traffic, the deterministic 

methods have exhibited several drawbacks which includes being error prone and the 

inability to perform real-time detection. Consequently, the focus on machine learning 
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detection of slow HTTP DDoS attacks has gained prominence in recent times because it 

addresses the drawbacks of the deterministic detection method for slow HTTP DDoS 

attacks. 

Machine learning, a sub-field of artificial intelligence, has been used in different fields 

including SDN in identifying different attributes of interest (Sen et al., 2020). A machine 

is deemed as intelligent when it learns from its experience concerning the data available 

in its domain and uses it to enhance decisions to be taken in the future (Latah & Toker, 

2019). Four groups of machine learning formed according to the learning methods of their 

constituent algorithms exist: supervised, unsupervised, reinforcement, and semi- 

supervised learning. Supervised learning implies the use of predefined knowledge to 

perform tasks such as classification on a new set of data that has not been analysed 

previously of which Support Vector Machine (SVM), Artificial Neural Network (ANN), 

and Decision Trees (DT) are algorithms developed on supervised learning concept 

(Agarwal, 2014). Unlike supervised learning, unsupervised learning finds and maps the 

relationships present among the data provided to make decisions based on those 

relationships discovered whenever new data is introduced. While supervised learning 

performs classification tasks on data, unsupervised learning performs clustering 

operations (Latah & Toker, 2019). Aside from detection of malicious traffic by statistical 

analysis, supervised machine learning algorithms on classification have been applied in 

classifying traffic into normal and malicious categories thus resulting in higher accuracy 

than statistical analysis but also increasing the computational cost compared to statistical 

analysis (Swami et al., 2019a). For a machine learner to perform better, feature selection 

and classifier parameter optimization are executed using algorithms such as genetic, ant 

colony optimization, artificial bee colony, and particle swarm optimization algorithms 

which are meta-heuristic algorithms (Alshamrani et al., 2017; Kamarudin et al., 2019; 
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Latah & Toker, 2019). Detection of attack traffic is not worthwhile unless it is backed up 

with mechanisms that stop the attack and restores the service to normal levels for 

legitimate users. Therefore, mitigation of slow HTTP DDoS attacks is paramount in 

protecting the availability of the HTTP service offered by web servers (Sattar et al., 2016). 

Mitigation of slow HTTP DDoS attacks entails the application of techniques which 

protects the web server from service degradation and its resources from exhaustion by 

slowing or stopping the attack entirely (Jaafar et al., 2019; Yeasir et al., 2015). When 

slow HTTP DDoS attacks are launched, the processing power of the victim web server’s 

Central Processing Unit (CPU) is the resource under the threat of exhaustion (Swami et 

al., 2019b). Given the prominence of DDoS among malicious users as an attack of choice, 

researchers have been able to develop several DDoS attack mitigation techniques. For 

instance, Jaafar et al. (2019) and Shafieian et al. (2015) worked on mitigating DDoS 

attacks by blocking the illegitimate traffic while Luo et al. (2014) examined increasing 

the buffer size of the bottle-neck device under DDoS attack. Furthermore, Lukaseder et 

al. (2018) explored the redirection of traffic to a Turing verification server. Similarly, 

Schehlmann and Baier (2013) investigated the redirection of attack traffic to a honeypot 

while a shark tank which is a separate cluster with full application capabilities designed 

to monitor suspicious users was used by Beigi-Mohammadi et al. (2017) to mitigate 

DDoS attacks. Also, Bhunia and Gurusamy (2017) researched into rate-limiting of 

suspicious traffic while Fonseca and Nigam (2016) approached DDoS mitigation by 

selectively dropping some attack traffic. Ameyed et al. (2015) and Sattar et al. (2016) 

focused on spreading the attack traffic across multiple replicas while Yuan et al. (2017) 

evaluated the queuing of requests using a scheduling algorithm and Yeasir et al. (2015) 

used a reverse proxy server to curb DDoS attacks. Most slow DDoS mitigation techniques 

rely on attack recognition measures implemented on the server such as connection 
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timeout and the number of a concurrent connection made from an Internet Protocol (IP) 

address which cannot guarantee attack detection before reaching the target (Hong et al., 

2018). As a result, a robust attack recognition system detects the attack before it reaches 

the target web server and applies an effective mitigation mechanism which is evident by 

the response time to requests and the ratio of completed to timed-out requests of the web 

server (Sattar et al., 2016). Furthermore, having a global view of the network enables and 

enhances the slow HTTP DDoS detection and mitigation technique applied to the network 

(Lukaseder et al., 2018). 

The emergence of Software Defined Networks (SDN) addresses the absence of unified 

network management and flexible device configuration observed in a traditional network 

by combining logically centralized network management with network programmability 

through the separation of the control plane from the data plane (Benzekki et al., 2016). In 

SDN, the control plane is situated in a device called the controller which defines rules 

that govern the forwarding of data and the data plane is situated in devices called the 

switch. The switch receives and forwards data received based on the rules specified by 

the controller (Dabbagh et al., 2015). Although the SDN now makes network monitoring 

and updating easier, it is also prone to malicious attacks such as DDoS (Xu et al., 2017). 

Devices within the SDN prone to DDoS attacks include servers, switch flow tables, and 

the controller (Ali et al., 2015). However, researchers have identified that proactive 

defence of networks against attacks including DDoS is achievable with SDN due to the 

controller’s ability to collect traffic statistics from the switches (Ali et al., 2015). The 

controller’s ability to gather traffic information is made possible with the OpenFlow 

protocol which is one of the first SDN standards responsible for intercommunication 

between the control and data planes (Hamad et al., 2016; Swami et al., 2019b). Although 

OpenFlow is capable of sending flow statistics, the communication is not as lightweight 
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as Netflow considering the request and associated response format it follows 

(Schehlmann & Baier, 2013). That is, obtaining flow statistics using OpenFlow entails 

the request of flow statistics from the switch by the controller and the receipt of the 

response from the switch by the controller. In a situation where flow statistics are needed 

constantly, the flow request message from the controller serves as an overhead thereby 

affecting the processing capability of the controller. To reduce the controller processing 

overhead, Netflow has been the flow statistics aggregator of choice. Network flows 

(Netflow), which is a Cisco Systems technology that monitors and exports network flows, 

refer to a unidirectional stream of network packets between a source and destination 

application (Schehlmann & Baier, 2013). Netflow is relatively efficient in terms of 

storage as it groups packets into flow summaries making it easier to query large historical 

traffic data sets (Kemp et al., 2018). A combination of SDN and Netflow gives a global 

view of the network, aids in fast processing of the flow records, and easy propagation of 

rules for slow HTTP DDoS attack mitigation. 

1.2 Statement of the Research Problem 

 

The increased attention given to DDoS by security researchers has forced attackers to 

consider other attack methods which are less prone to detection and mitigation but are 

capable of disrupting the availability of the targeted services. As a result, attackers have 

been able to exploit the HTTP using slow HTTP DDoS attacks which requires low 

bandwidth, fewer resources, and can originate from mobile phones which presently 

connects about 3.5 billion people globally to the Internet (Farina et al., 2015). Given the 

complexity of the HTTP, a slow HTTP DDoS attack could be any or a combination of 

the following three types of attacks: slow read, slow get, or slow post DDoS attacks. 

Although researchers have examined the detection of slow HTTP DDoS attacks, they 

were able to explore only one or a combination of two types of slow HTTP DDoS attacks. 
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That is, some researchers explored the detection of slow read attacks only while others 

explored the detection of slow get and slow post attacks only without evaluating the 

detection of all the three types of slow HTTP DDoS attacks: slow read, slow get, and slow 

post. It can be inferred that the researchers who examined the detection of slow get and 

slow post HTTP DDoS attack pairs were able to perform the detection task seamlessly 

because of the similarity between both attacks (Muraleedharan & Barnabas, 2018). That 

is, both slow get and slow post HTTP DDoS attacks entail the sending of malicious 

packets to the target at a slow rate, unlike slow read which involves reading the contents 

of packets received from the webserver at a slow rate. Furthermore, the dissimilarity 

between the slow read DDoS attack and the other two slow HTTP DDoS attacks has made 

researchers evaluate its detection separately. 

On the one hand, researchers who have examined the detection of slow HTTP DDoS 

attacks explored either one or two of the slow HTTP DDoS attack types without 

considering all three. On the other hand, however, researchers who have explored the 

detection of the three types of slow HTTP attacks focused on Denial of Service (DoS) 

without evaluating the effect of a DDoS. What this means is that the researchers who 

explored the three types of slow HTTP attacks evaluated the attack from a single source 

without checking the possibility of multiple attackers. 

Furthermore, apart from the work by Ameyed et al. (2015) and Sattar et al. (2016) which 

explored protecting the availability of the targeted service during slow read and 

volumetric DDoS attacks respectively, other researchers focused on techniques that either 

does not guarantee some level of service availability or will eventually degrade the 

availability of services as the mitigation mechanisms become a bottle-neck. The methods 

used by researchers which do not guarantee service availability are rate-limiting, reverse 

proxy, traffic redirection, and time-out intervals mitigation techniques. 
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In this work, the detection of the three types of slow HTTP DDoS – slow read, slow get, 

and slow post – which originates from multiple attackers was performed using Radial 

Basis Function (RBF) kernel-based Support Vector Machine (SVM) which addresses the 

dissimilar behaviour of slow HTTP DDoS types while relying on Genetic Algorithm 

(GA) to select the appropriate features that signify the presence of attack traffic in a 

Netflow export. Besides, GA was used to tune the RBF kernel parameters to obtain 

optimal values that guarantee competitive classification. Unequivocally, the effectiveness 

of the classifier in detecting the three types of slow HTTP DDoS is hinged on the optimal 

selection of features that signify the presence or absence of attack traffic and robust 

classification that addresses the nonlinearity of the three types of slow HTTP DDoS 

attacks (Aziz et al., 2013; Barati et al., 2014; Li et al., 2015; Xingzhu, 2015; Kamarudin 

et al., 2019). Once an attack is detected, it is mitigated using the Selective Adaptive 

Bubble Burst (SABB) mitigation technique – a concept synthesized from the work by 

Ameyed et al.(2015) and Sattar et al. (2016). SABB isolates the traffic flagged as 

malicious onto a replica server for further observance while other legitimate traffic 

continues communicating with the primary webserver. Once the isolated traffic is flagged 

as malicious again, the selective adaptive bubble burst isolates the traffic onto another 

replica webserver. This process is repeated until the number of times the traffic has been 

flagged as malicious is greater than the number of replica webservers. Then, all traffic 

from the malicious Internet Protocol (IP) address is blocked at the gateway switch. The 

setup is tested in an SDN simulation environment such that detected attack traffic is 

flagged for mitigation using the selective adaptive bubble burst technique. The use of the 

mitigation technique highlights the effectiveness evaluation aspect suggested as a future 

work by Ameyed et al.(2015). 
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1.3 Aim and Objectives 

 

This research aims to mitigate slow HTTP DDoS attacks using selective adaptive bubble 

burst approach while relying on radial basis function kernel support vector machine to 

detect the attack based on the features of interest selected by the genetic algorithm. The 

objectives are to: 

i. Select features that signify the presence or absence of a slow DDoS attack using 

genetic algorithm. 

ii. Classify the traffic in the flowset into benign or anomalous using RBF SVM and 

serialize the object obtained. 

iii. Formulate a selective adaptive bubble burst model to ensure the availability of 

web services to legitimate users whether slow or not. 

iv. Simulate the RBF SVM serialized object obtained in (ii) with selective adaptive 

bubble burst in an SDN environment. 

v. Evaluate the performance of RBF SVM and the selective adaptive bubble burst 

mitigation technique. 

1.4 Scope of the Study 

 

This research focuses on mitigating slow HTTP DDoS attacks of slow HTTP get, slow 

post, and slow read attacks using genetic algorithm and support vector machine for attack 

recognition and a selective adaptive bubble burst technique to curb the attack. Volumetric 

or flooding attacks were not considered likewise slow attacks against other application 

layer protocols were not explored. 

1.5 Significance of the Study 

 

This study would be of benefit to network professionals, cloud security professionals, and 

researchers that are focused on improving the resilience of traditional and software- 



11  

defined networks against slow HTTP DDoS attacks. Furthermore, this study will aid 

researchers in understanding the methods of DDoS mitigation which may be applicable 

to slow HTTP DDoS thus enhancing the decision making process towards selecting the 

appropriate mitigation technique to implement or to modify towards curbing slow HTTP 

DDoS. 

1.6 Thesis Organisation 

 

This thesis is comprised of five chapters. The background to the study, statement of the 

research problem, aims and objectives, and the significance of the study are covered in 

Chapter One. Review of literature related to slow DDoS mitigation techniques, slow 

DDoS machine-learning detection techniques, and optimization algorithms used to 

improve the detection accuracy of the machine learning techniques are contained in 

Chapter two. The methodology used for the research, the description of the dataset 

generated, the use of Graphical Network Simulator-3 (GNS3) to simulate an SDN 

network, and the metrics used to evaluate the performance of the RBF SVM approach to 

detecting and the selective adaptive bubble burst approach to mitigating are examined in 

Chapter three. Chapter four consists of the analysis of the results obtained from the 

execution of the RBF SVM algorithm and the implementation of the selective adaptive 

bubble burst mechanism. The thesis ends with chapter five which consists of the 

conclusion, the recommendations, and the contribution to the knowledge of this work. 

1.7 Definition of Terms 

 

The terms used in this study are defined below: 

 
Mitigation: Mitigation can be described as the act of making the effect of an action to be 

less severe. Mitigation of slow DDoS as it applies to this work refers to the actions taken 

or to be taken which will lessen the effect of the attack on resources on the network. 
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Simulation: Simulation refers to the use of representative objects, features, and 

environments to describe another object, feature, or environment. Simulation of the SDN 

using GNS3 creates a representational network on a computer. 

OpenFlow: OpenFlow is an SDN communication protocol that enables the control plane 

to communicate with other networking devices. This protocol can be used to define the 

behaviour of networking devices by the controller in addition to monitoring the network 

through flow statistics collection. 

Netflow: Netflow is a flow collection protocol used to obtain aggregates of flows that 

move through a network via a Netflow compatible switch using the source address, a 

destination address, source port, destination port, and transport protocol to obtain an 

aggregate known as a record. It gives an abstract view of network communications. 
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CHAPTER TWO 

 

2.0 LITERATURE REVIEW 

 
2.1 Introduction 

 

The previous research on slow HTTP DDoS mitigation is presented in this chapter while 

evaluating other topics of interest such as slow HTTP DDoS detection, support vector, 

machines, genetic algorithm, and the origin of the selective adaptive bubble burst 

mitigation approach being proposed. It is important to examine previous statements on 

the methods and tools used in this research. A review of works regarding slow DDoS 

detection, mitigation, and feature selection is presented at the end of the chapter. 

2.2 Support Vector Machines (SVM) 

 

SVM is an algorithm that classifies both linear and nonlinear data by searching for an 

optimal linear hyperplane. A hyperplane refers to the boundary of decision that 

effectively separates the tuples in one class from another (Agarwal, 2014). With the aid 

of a hyperplane, SVM is used to separate training datasets. Each data item feature can be 

represented in n-dimensional space and SVM can be used to discover the hyperplane that 

splits the dataset into two classes (Singh & Rai, 2019). Also, it provides a maximum 

distance (classifier margin) from itself to the closest training point. In working with 

nonlinear data, a nonlinear mapping, kernel function, is utilized to transform the data 

points into high dimensional space. Although the training time of SVM is slow, they 

exhibit high accuracy due to the ability to model complex nonlinear hyperplanes and are 

less susceptible to overfitting (Agarwal, 2014). Due to the similarity of the slow attack 

traffic with benign traffic, the radial basis function kernel is applied to transform the 

nonlinear data points into linear data points in a high dimensional space. An optimal 

hyperplane gives better result and is represented mathematically under the condition of 

linear separability and linear separable dataset of two points (𝑥𝑖, 𝑦𝑖), 𝑖 = 1,2, … , 𝑛 where 
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𝑖=1 

𝑥𝑖 ∈ ℝ𝑛 and 𝑦𝑖 ∈ {+1, −1}. Equation 2.1 represents the correct classification of dataset 

(Su et al., 2018; Singh & Rai, 2019; Ye et al., 2019), 

𝑦𝑖((𝑤. 𝑥𝑖) + 𝑏) − 1 ≥ 0 𝑓𝑜𝑟 𝑖 = 1,2, … . . , 𝑛 (2.1) 

 
where y represents two classes that have a binary value, w is a weight vector, x is an input 

vector, and b is a threshold value. Generalized to n-dimensional space, minimizing the 

structural risk of constructing the optimal classification hyperplane is equivalent to 

solving the constrained optimization problem with the formula expressed in equation 2.2 

(Liu et al., 2018; Ye et al., 2018): 

 min[𝜑(𝑤, 𝜀] = 1  |   | 
2 

∑𝑁 
 

 

 𝜀 )  (2.2) 
min( | 𝑤 | 

2 
+ 𝐶 𝑖=1   𝑖 

 

𝑠. 𝑡. 𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) ≥ 1 − 𝜀𝑖, 𝜀𝑖 ≥ 0, 𝑖 = 1,2, … . , 𝑁 

 
where the classifier margin is maximized by minimizing 1 ||𝑤||

2 
and the variables 𝜀 

 

2 𝑖 
 

denote the extent to which the samples, 𝑥𝑖, violate the margin and the penalty parameter 

C > 0 adjusts the trade-off between minimizing the sum of the slack violation errors and 

maximizing the margin (Ma & Guo, 2014). 

The optimization problem in equation 2.2 can be expressed through the introduction of 

the Lagrange multiplier 𝛼𝑖and the kernel function by the formula in equation 2.3 (Liu et 

al., 2018): 

max[𝑄(𝛼)] = max[∑𝑁 𝛼  − 
1 

∑𝑁 
 ∑𝑁 𝛼 𝛼 𝑦 𝑦 𝑘(𝑥 , 𝑥 )] (2.3) 

𝑖=1     𝑖 2 𝑖=1 𝑗=1 𝑖   𝑗 𝑖   𝑗 𝑖 𝑗 

 

𝑠. 𝑡. ∑𝑁 𝛼𝑖𝑦𝑖 = 0; 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1,2, … , 𝑁 
 

where 𝑘(𝑥𝑖, 𝑥𝑗) is the kernel function. Several kernel functions exist such as linear, 

nonlinear, polynomial, radial basis function (RBF), and sigmoid. However, in this work, 
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2 

RBF is selected for use because it works well and it is relatively easy to tune. Equation 

 

2.4 describes the RBF kernel (Ma & Guo, 2014): 

 

𝑘(𝑥𝑖, 𝑥𝑗) = exp(−𝛾|𝑥𝑖 − 𝑥𝑗| ) (2.4) 

 
where 𝛾 is a constant value to adjust the width of the Gaussian function. 

 
2.3 Genetic Algorithm 

 

Genetic algorithm is a stochastic algorithm that performs global search operations by 

leveraging the concept of genetics and the natural selection process (Kannan, 2018). In 

genetics, genes - the basic unit of heredity – are studied with their behaviours. Natural 

selection, as developed by Charles Darwin, is the process by which living organisms 

change and adapt within their population thus introducing variation among individuals in 

the population. Consequently, genetic algorithm mimics biological processes of the 

survival of the fittest to develop a solution to a problem. The basic building block of the 

genetic algorithm is the gene. A collection of genes forms a chromosome (individual) 

while a collection of chromosomes forms a population. Given a set of chromosomes 

(initial population), genetic algorithm evolves the population into a new population using 

selection operators while applying mutation and crossover operations to the selected 

chromosomes. A new population contains the fittest individuals based on the fitness 

function definition. The selection operator chooses the fittest individuals to form a new 

population based on the fitness function defined while crossover and mutation introduce 

diversity to the new population by swapping genes from chromosome pairs in the case of 

crossover and inverting randomly selected genes in chromosomes in the case of mutation. 

The crossover operation is also known as the mating operation where two chromosomes 

that are of good fitness based on the fitness function undergo a gene exchange operation 

to produce two more chromosomes that are assumed to be good. Genetic algorithm 
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assumes that mating two good chromosomes will yield two good chromosomes (Agarwal, 

2014). The parameters of a genetic algorithm are: population, fitness function, selection 

criteria, crossover operator, and mutation operator (Katoch et al., 2021; Mirjalili et al., 

2020). 

2.3.1 Population 

 

A population refers to a collection of chromosomes that are potential solutions to the 

problem at hand (Aziz et al., 2013). Since a chromosome is formed from a gene, the 

encoding of the individual genes is dependent on the type of problem to be solved and 

has to be within the constrained values to have chromosomes that represent meaningful 

solutions. To determine the genes, properties that affect the result of the problem at hand 

are to be considered. For instance, in a feature selection problem, the features are the 

properties that affect the result if selected or not. Therefore, every feature in the dataset 

is regarded as a gene. In a dataset with 31 features, a chromosome is represented by 31 

genes and the chromosome is said to be of length 31. Having determined the selected 

genes, the representation of the genes is the next activity. Various forms of representing 

a gene exist such as the use of decimal, binary, string, and float. In line with the feature 

selection instance, determining the selection of a gene (feature) is the problem of interest 

hence the need to encode it using two possible values. One value signifies that a gene 

(feature) is selected while the other signifies that the gene is not selected. Hence, encoding 

the genes using binary values is the best option based on the feature selection problem. 

In a parameter optimization problem, the number of genes in a chromosome is defined by 

the number of parameters to be optimized. That is if two parameters are to be optimized, 

then, there will only be two genes per chromosome. Generally, defining the number of 

chromosomes in a population is left to the researcher to decide (Kannan, 2018; Katoch et 

al., 2021; Mirjalili et al., 2020). 
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2.3.2 Fitness Function 

 

A fitness function refers to an algorithm or a method used to calculate the fitness value 

of a solution (chromosome). The fitness value is an indicator that determines the ranking 

of a solution among all other solutions. That is, the fitness value represents the closeness 

of a solution to the expected result. The fitness value is used to differentiate good 

solutions from bad solutions. In a feature selection problem, the accuracy of the classifier 

based on the selected features can be used as the fitness value for the selected features 

(chromosome) (Agarwal, 2014; Aziz et al., 2013; Kannan, 2018). 

2.3.3 Selection Criteria 

 

Selection is the process of choosing chromosomes from a population for later breeding 

which will produce off-springs for the next generation (Anusha & Sathiyamoorthy, 2016). 

The convergence rate, how fast an optimal solution is obtained, of genetic algorithm is 

hinged on the ability to select good parents that produces better individuals. Also, 

maintaining the diversity of the population is important in genetic algorithm to prevent 

premature convergence. Premature convergence occurs when the entire population is over 

shadowed by one extremely fit solution. The types of parent selection methods are: 

roulette wheel selection, tournament selection, rank selection, and random selection 

(Mirjalili et al., 2020). Selection is an exploitation process. Exploitation is the process of 

accessing regions of a search space around the area of previously accessed points. 

2.3.3.1 Roulette Wheel Selection 

 

In roulette wheel parent selection method, a circular wheel is used which is divided into 

pies equivalent to the number of individuals in the current population. Each space 

occupied by each individual of the population is proportionate to the fitness value of that 

individual. Then, a fixed point on the circumference of the wheel is chosen. The pie 

section that stops in front of the fixed point when the wheel is rotated is then chosen to 
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be the first parent. The same process is repeated to choose the second parent. Given that 

the size of the pie each individual occupies on the wheel is directly proportional to the 

individual’s fitness value, the individual with the highest fitness value has a greater 

probability to be selected as a parent compared to the other individuals (Mirjalili et al., 

2020). 

2.3.3.2 Tournament Selection 

 

In a tournament selection, a specified number of individuals is selected at random from 

the population. Then, the best individual out of the selected individuals becomes a parent 

(Katoch et al., 2021). That is if the specified way in the tournament selection is 3, then, 

three individuals in the population are selected at random and the individual with the best 

fitness value becomes a parent. The same process is repeated for selecting the second 

parent. Tournament selection is well known for its low susceptibility to premature 

convergence due to the presence of dominant individuals. 

2.3.3.3 Rank Selection 

 

Rank selection is most appropriate when individuals in the population have close fitness 

values. Therefore, each individual is ranked based on their fitness. Then, the individuals 

with higher rankings are selected for the breeding operation (Katoch et al., 2021; Mirjalili 

et al., 2020). 

2.3.3.4 Random Selection 

 

In random selection, the parents are selected at random from the population. This strategy 

does not consider the fitness of individuals hence the need to avoid this selection strategy. 

This is because, the random selection of parents could yield sub-optimal or non-optimal 

generations which will cause the solution search process to suffer (Katoch et al., 2021; 

Mirjalili et al., 2020). 
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2.3.4 Crossover Operator 

 

Genetic algorithm assumes that breeding two good parents will yield a good individual 

for the next population. This breeding happens when the genes of both parents are 

combined in a predefined manner to yield another individual (Mirjalili et al., 2020). 

Therefore, a crossover operator is applied to two parents to create a new individual. The 

types of crossover operators are: one-point crossover, multi-point crossover, and uniform 

crossover. Crossover is an exploration process. Exploration is the process of gaining 

access to entirely new areas of a search space (Crepinsek et al., 2013). 

2.3.4.1 One-point Crossover 

 

In one point crossover, a random point for crossover is picked and the other half of the 

parents are exchanged to get two new off-springs. This is the most applied form of 

crossover (Crepinsek et al., 2013; Mirjalili et al., 2020). 

2.3.4.2 Multi-point Crossover 

 

In a multi-point crossover, several points are selected on each parent based on the number 

of points specified. Then, alternate parts of each parent are exchanged to yield new off- 

springs (Crepinsek et al., 2013; Mirjalili et al., 2020). 

2.3.4.3 Uniform Crossover 

 

In a uniform crossover, each gene is treated separately by computing the probability of a 

gene being part of an offspring. The probability may be biased towards a parent so that 

the off-springs contain more genes from one parent than the other (Crepinsek et al., 2013; 

Mirjalili et al., 2020). 

2.3.5 Mutation Operator 

 

To maintain diversity in a population, the mutation operation is performed after a 

crossover operation. The mutation operation changes one or more genes in an individual 
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from its original state. A mutation probability is always defined and needs to be set to a 

low value else the high mutation probability converts the search process to a random 

search. Mutation is an exploration process (Agarwal, 2014; Crepinsek et al., 2013; 

Kannan, 2018). 

2.4 Selective Adaptive Bubble Burst 

 

Selective Adaptive Bubble Burst (SABB) is a concept created from the work by Ameyed 

et al. (2015) and Sattar et al. (2016). Since both works focused on ensuring the availability 

of services, the advantages of attack connection deletion as observed in the work by 

Ameyed et al. (2015) and the use of SDN to spread attack traffic as observed in the work 

by Sattar et al. (2016) were merged and modified to yield the SABB slow HTTP DDoS 

mitigation approach. In SABB, there is a primary webserver with at least one replica 

webserver which hosts the same content as the primary webserver. Once the first 

occurrence of a slow HTTP DDoS attack traffic is detected from an IP address, the 

connections from the detected IP address are moved from the primary webserver to the 

first replica server (in a situation where there are more than one replica servers). The 

attack detection occurrence for the IP address is updated and SABB continues to monitor 

the network. On subsequent flagging of the same IP address as an attacker, SABB 

continues to update the attack detection occurrence and moves the attack traffic to the 

next replica server until the attack detection occurrence exceeds the number of replica 

servers in the setup. Once the attack detection occurrence for an IP address exceeds the 

number of replica servers, the defaulting IP address is blocked from accessing any service 

on the network. The movement of new connections from an IP address flagged as a slow 

HTTP DDoS attack to replica servers is being performed so as to verify the detection 

result multiple times given that traffic from slow legitimate traffic bears similarity with 
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slow HTTP DDoS attacks. The works from which the SABB was synthesized are 

presented and comparisons drawn. 

Ameyed et al. (2015) proposed an availability model to curb slow read DDoS having 

considered the limitations of existing slow read DDoS mitigation models such as using 

connection timeouts, total connections on a webserver, and the total number of attack 

connections. The proposed availability model incorporated multiple web servers through 

a failure isolation zone. The failure isolation zone involves the distribution of web 

services on webservers among two zones. In the first zone, once the total number of 

connections the webserver can process has reached its peak, new connections are sent to 

the second webserver in another zone. Then, the connections on the first webserver are 

analyzed and connections deemed to be slow which have originated from the same IP 

address are deleted. The proposed model was not implemented. Similarly, SABB consists 

of replica servers and it moves the flagged attack connections from the primary server to 

the replica server. However, on the contrary, SABB is focused on mitigating slow get, 

slow post and slow read HTTP DDoS attacks and it blocks the attack traffic completely 

as opposed to deleting each connection established. The traffic SABB blocks would have 

been flagged as a slow HTTP DDoS attack traffic multiple times as opposed to the 

technique by Ameyed et al. (2015) where slow connections from the same IP address are 

deleted while assuming that the multiple slow connections originated from an attacker. 

Another availability model developed by Sattar et al. (2016) explored the use of SDN to 

mitigate volumetric DDoS by ensuring the availability of services during an attack. The 

approach used in the work was called Adaptive Bubble Burst (ABB). In the work, the 

detection of volumetric DDoS was performed by setting a threshold on incoming traffic 

based on the serving capacity of the webserver or file server. Once the threshold is 

reached, the ABB bursts the DDoS attack bubble by spreading the traffic across several 
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nodes serving the same resource in the network. It was noted in the work that the attack 

might still cause damage to some resources even after the ABB is activated. The 

advantages of the ABB as highlighted by the authors are the reduction of the impact of 

volumetric DDoS on a single node in the network and the boosting of service availability 

during volumetric DDoS attacks. On the one hand, SABB bursts the slow HTTP DDoS 

attack which is similar to the operations of ABB. On the other hand, however, SABB 

does not spread all incoming traffic to replica servers. SABB selects the connections made 

by the flagged IP address with subsequent connections from the flagged IP address and 

maps their destination to be one of the replica servers without disrupting other legitimate 

traffic traversing the network. 

2.5 Software Defined Network Simulation and Emulation Tools 

 

Simulation refers to the creation of a synthetic version of a real-world process or system 

thereby mimicking the operation and behaviours of the system, especially at the software 

level. In contrast, emulation refers to the development of a superficial environment that 

mimics both the hardware and the software of the target environment. Due to the issues 

around the access to a physical SDN topology, several simulators and emulators have 

been developed to aid in performing research and experimental operations on SDN. A 

simulator is a tool developed to mimic an environment that contains the necessary 

software variables and configurations that will exist in an application production 

environment. In contrast, an emulator attempts to mimic both hardware and software 

features of the production environment. In this work, the production environment is SDN. 

SDN simulators and emulators include Mininet, Network Simulator 3(NS-3), Objective 

Modular Network Testbed in C++ (OMNeT++), Estinet, and Graphical Network 

Simulator-3 (GNS3). 
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2.5.1 Mininet 

 

Mininet is a virtual network emulator which creates a network of links, switches, 

controllers, and virtual hosts. The operating system of the virtual hosts in a Mininet 

network is based on the standard Linux network software. The switches in Mininet 

support the OpenFlow protocol. Interaction with a network designed using Mininet is 

performed using a Command Line Interface (CLI). Mininet provides a simple network 

testbed for creating OpenFlow applications which are easily reconfigured and restarted 

however, the settings and configurations on the virtual hosts are lost on exiting the 

emulator (Li et al., 2020). 

2.5.2 Network Simulator 3 (NS-3) 

 

NS-3 is a discrete-event simulator for networks to model the behaviour of packet 

networks. It is open-source and has a set of libraries that can be merged with other 

libraries to provide visualization. It also supports the OpenFlow protocol (Jevtic et al., 

2018). 

2.5.3 Objective Modular Network Testbed in C++ (OMNeT++) 

 

Objective Modular Network Testbed in C++ (OMNeT++) is an extensible simulation 

library in C++ for developing network simulations that support the OpenFlow protocol. 

The OMNeT++ simulator supports SDN through an extension. It also consists of a 

Graphical User Interface (GUI) which makes the simulation visible to the user. 

2.5.4 Estinet 

 

Estinet is a licensed OpenFlow network simulator and emulator that supports the creation, 

testing, and evaluation of SDN. That is, Estinet combines the advantages of a simulator 

which are low cost, flexibility, repeatability, and controllability with the real-time 
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execution advantage of an emulator. The free trial license of Estinet provides a network 

with a maximum of 15 nodes with a five minute simulation time (Wang et al., 2013). 

2.5.5 Graphical Network Simulator-3 (GNS3) 

 

Graphical Network Simulator-3 (GNS3) is an emulator software for networks that 

execute real operating system images in a network. Virtualisation of the host computer is 

needed for GNS3 to run. It also has a GUI which makes it easy to configure and design 

network topologies. Furthermore, GNS3 supports the persistence of data and commands 

on the hosts in the network. This makes it easy to transfer external files into hosts for 

execution and perform complex configurations on the hosts without losing the 

configuration on shutdown. In this work, GNS3 was the simulator of choice because of 

the data and command persistence it offers given the need to configure each host with a 

real operating system image and load dependencies to support the simulation task. 

Besides, since GNS3 is an emulator, experiments performed on it can be transferred easily 

with little to no configuration onto a real-life system. Furthermore, the intuitive GUI 

makes it easy to utilize (Polanco & Guerrero, 2020). 

2.5 Review of Slow DDoS Mitigation Techniques 

 

Slow read DDoS mitigation mechanism that ensures high availability of resources to 

legitimate users was explored by Ameyed et al. (2015). In the work, an approach that 

ensures high availability and redundancy in the cloud was proposed by implementing a 

failure isolation zone in distributing web services instances across two zones. Once the 

webserver in the first zone reaches its maximum number of connections, new connections 

are redirected to the other zone. Then slow connections coming from the same IP address 

in the first zone are deleted from the server. The main focus of this approach is ensuring 

the availability of web services. Evaluating the effectiveness of their approach through its 

implementation was outlined as an area of further research. 
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Park (2015) evaluated the strength of slow read DDoS against ModSecurity mitigation 

mechanism which is based on limiting the number of connections made from an IP 

address. Unlike the work by Ameyed et al. (2015), monitoring of the number of 

connections from IP addresses was used to detect a slow read attack that stops the attacker 

before the maximum number of available connections is reached. In a situation where the 

number of connections made from an IP address exceeds the limit set, ModSecurity was 

able to mitigate the attack effectively. However, in a situation where the number of 

attackers was increased but the number of connections made was below the limit set, 

ModSecurity was ineffective. Adaptively changing the number of connections made by 

an attacker per second with the window size and deciding the value of window size based 

on concurrent measurement of packet arrival time were marked for further studies on 

attack propagation and attack mitigation. 

Reverse proxy was used in the work by Yeasir et al. (2015) as a defence mechanism 

against slow HTTP get DDoS. The concept employed in their work differs from that of 

Ameyed et al. (2015) and Park (2015) because slow get attacks involve sending data to 

the server as opposed to slow read which involves receiving data from the server. The 

reverse proxy is a proxy server that handles requests for resources by clients by retrieving 

the resource from the server then sending the resource to the client thus hiding the 

existence of the main server. It also balances request load among available servers. Since 

the reverse proxy server caches requests, unless properly configured with timeouts and 

thresholds, its resources could also be exhausted thus causing a denial of service scenario. 

Finding the appropriate timeout or threshold so as not to disconnect legitimate slow 

clients is difficult. Extending their approach to other web servers which are not HTTP- 

based was suggested as an aspect for future study. 
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Adaptive Bubble Burst (ABB) was used in SDN to mitigate DDoS attacks in the research 

by Sattar et al. (2016). The work differed from that of Ameyed et al. (2015), Park (2015), 

and Yeasir et al. (2015) as it focused on DDoS launched at a high or fast rate, not slow 

DDoS. ABB takes advantage of the logically centralized nature of SDN to mitigate DDoS 

by diffusing incoming traffic. ABB aims to ensure service availability lends web server 

anonymity and DDoS mitigation in the network. Threshold based on the serving limit of 

the webserver for incoming traffic rate measured at the gateway switch was used to trigger 

the ABB mechanism which spreads the traffic across multiple replicas of the target node 

in the network. Virtual IP addresses were used in ABB to enforce anonymity. High 

response time with 4% legitimate request completion was recorded without ABB but 

when ABB was activated, request completion rose to 81% because the traffic was spread 

to two servers. When the traffic spread was increased to three servers, no timed-out 

request was recorded. Although ABB increases web service availability, it comes with a 

packet processing overhead. Without ABB, the average packet processing time was 

542µs while when ABB was activated, processing time increased to 776µs per packet. A 

faster method of collecting statistics to reduce packet processing overhead was suggested 

by the researchers as the controller in the work collected statistics every one second. 

Hong et al. (2018) examined the use of SDN in the defence against slow DDoS based on 

connection threshold, similar to the method used by Park (2015), and timeout 

mechanisms, similar to the method employed by Yeasir et al. (2015). Whenever the 

number of connections made has exceeded the number of connections the web server can 

handle, it alerts the controller that it is under attack so that the controller begins a slow 

DDoS check on subsequent connections. Then continuation of the incomplete HTTP 

requests is received by the controller. The controller determines that a client is an attacker 

when the number of connections made does not complete the HTTP request within a 
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certain timeframe. Table 2.1 presents the various mitigation techniques used in mitigating 

DDoS and slow DDoS. 

Failure isolation zone, proposed by Ameyed et al. (2015), ensures the availability of web 

services by splitting the traffic on the primary web server once it has reached its maximum 

amount of connections to its replica in another zone. Then slow traffic on the primary 

server is analyzed and deleted. The framework ensures availability for legitimate clients 

of the web server however because it waits for the maximum connection limit of the web 

server to be reached, web clients experience very slow data transfers in the buildup to the 

threshold. Furthermore, the removal of traffic from the primary web server is executed at 

a pace that may be considered slow compared to the way an attacker saturates the replica 

with connections that send low rate requests. Rate limiting, a concept explored by Park 

(2015) and Bhunia and Gurusamy (2017), limits the number of connections made by an 

IP address thus stopping attack traffics but risks disconnecting benign slow clients. Yeasir 

et al. (2015) used reverse proxy for mitigation of slow attacks by caching slow requests 

until they are completed. The reverse proxy server acts as a buffer for slow request thus 

shielding the webserver but risks becoming a target. Hong et al. (2018) used timeout 

intervals to halt slow attacks by defining a time for request completion else the client, 

benign or malicious, get disconnected from the server however, slow benign traffic is 

affected by the timeout. Beigi-Mohammadi et al. (2017) and Lukaseder et al. (2018) 

explored redirecting attack traffic to a scrubbing server, a shark tank - a copy of the 

application’s topology - which ensures that more insight is obtained from the attack 

although, it may also slow down the traffic of slow benign clients. 



 

 

Table 2.1: Weaknesses and Strengths of Various DDoS and Slow DDoS Mitigation Approaches 
 
 

MITIGATION 

APPROACHES 

Failure- 

Isolation 

Zone 

Rate Limiting Reverse Proxy Timeout Intervals Redirection Adaptive Bubble 

Burst 

Characteristics Splits 

traffic to a 

replica 

web server 

Reducing the 

number of 

connections 

made by an IP 

address 

Caches slow 

requests until they 

are completed 

Disables a connection 

once timeout for 

request completion 

has exceeded the 

predefined value 

Redirection of 

traffic to a shark 

tank 

Splits the traffic to 

replica servers 

Strength Ensures 

availability 

Removes attack 

traffic 

Enhances 

protection of web 

server 

Removes slow traffic Learns more from 

attack scenario 

Ensures availability 

Weakness Removes 

attack 

traffic 

slowly 

May remove 

slow client’s 

connections 

Reverse proxy 

resources may 

become exhausted 

May remove slow 

client’s connections 

Slows down 

connections made 

by slow client’s 

Does not remove 

attack traffic 
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Sattar et al. (2016) utilized adaptive bubble burst in mitigating attacks by spreading all 

new connection traffic to replica servers once a threshold is reached. The technique 

ensures availability but does not remove attackers hence making it a matter of time before 

all replica servers become saturated with connections. 

2.6 Review of Slow DDoS Detection Techniques 

 

The use of the web server’s performance was explored by Shtern et al. (2014) to detect 

low and slow DDoS attacks in which the CPU utilization, disk utilization, disk time, 

waiting time, throughput, workload, and CPU time of the server was measured in a non- 

attack scenario. The application characteristics measured initially is then compared with 

subsequent characteristics thus creating a discrepancy measure. Once the discrepancy 

measure is greater than the discrepancy threshold, an attack is signalled. Offline 

establishment of the performance model could yield high false positives while an online 

establishment of the performance model could cause the bypass of the detection module 

leading to high false negatives. A shark tank mitigation mechanism was employed as it 

learns more from the attack. A shark tank is a copy of the application’s topology hosted 

in an isolated environment which enables the observance of suspicious traffic. It is a 

separate cluster with full application capabilities designed to monitor suspicious users. 

For future research, a comparison of the offline and online establishment of the 

performance model was identified. 

Detection of slow read attacks in the cloud using machine learning technique, as opposed 

to a performance measurement technique used by Shtern et al. (2014), was the basis of 

research by Shafieian et al. (2015). The detection of an attack was based on the random 

forest classifier trained on TCP logs of attack and benign traffic. Accuracy of 99.37% and 

false negative rate of 1.90% was recorded when pre-pruning of trees was not applied 

while when pre-pruning was applied, accuracy of 83.34% and false negative rate of 
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50.10% was recorded. A false positive rate of 0 % was recorded in both cases. It was 

observed that an increase in the number of trees increases the true positive rate and 

decreases the false positive rate. The stability of results obtained in the work makes the 

method employed to be superior to the performance measurement model evaluated by 

Shtern et al. (2014) although, detection may not be in real-time as it depends on TCP logs 

for attack detection. Slow get and post attacks were not explored in their work. 

Mobile devices are not spared in slow DDoS attacks as described by Cusack and Tian 

(2016). Euclidean distance-based similarity metric was employed in the detection of an 

attack by evaluating the similarity between a previous log file and the current log file to 

determine whether an attack has occurred. The execution of the method is similar to the 

performance-based method employed by Shtern et al. (2014) as the connection between 

initially calculated values and the test values is determined. The accuracy and reliability 

of their approach were not evaluated. However, it can be inferred that real-time detection 

of a slow attack is not feasible as log files need to be collected and compared. This makes 

the technique employed useful for auditing logs rather than monitoring. Use of the 

algorithm proposed on a larger data set was included in their future work. 

Kumar (2016) applied one-class SVM to protect virtual machines by detecting DoS 

attacks in the cloud. The researcher did not use the Knowledge Discovery in Databases 

(KDD) Cup 1999 dataset citing ageing factor and imbalance but opted to generate a 

dataset on the Eucalyptus cloud platform. Attacks of Internet Control Message Protocol 

(ICMP) flood, ping of death, User Datagram Protocol (UDP) flood, TCP SYN flood, TCP 

Land, Domain Name System (DNS) flood and slowloris also known as slow HTTP get 

were simulated. SVM classifier performed poorly in detecting slowloris with an accuracy 

of 68% and sensitivity of 43% compared to ICMP flood, ping of death, UDP flood, TCP 

SYN flood, TCP Land, and DNS flood which achieved accuracy values of 100%, 94%, 



31  

97%, 96%, 98%, and 99% respectively with sensitivity values of 100%, 100%, 97%, 

100%, 100%, and 100% respectively. The researcher concluded that the weak 

performance of the classifier was due to the nature of slow attacks that transmit HTTP 

malicious flows at a slow rate without them being detected effectively. Also, it can be 

noted that the slowloris attack is different from the other types of attacks in the work thus 

the classifier’s accuracy must have been skewed due to the presence of flooding attacks 

in the training dataset. 

Tripathi et al. (2016) employed the measurement of the Hellinger distance between two 

probability distributions of the normal and attack traffic generated during testing and 

training phases. This method is similar to the method used by Cusack and Tian (2016) 

and Shtern et al. (2014) which were based on the similarity between two metrics. The 

SlowHTTPTest tool was used to generate attack traffic of which the Hellinger distance 

in a DoS scenario was high compared to that of normal traffic. The Hellinger distances 

of 0.0006/0.0118, 0.3980, and 0.3971 were recorded for normal, slow get, and slow 

message body simulated HTTP traffic respectively while Hellinger distances of 

0.0191/0.1273, 0.2812, 0.3562 were recorded for normal, slow get, and slow message 

body traffic respectively using real traffic normal interval. The detection system proposed 

can be evaded when an attacker generates HTTP requests with probability distributions 

similar to that of the normal traffic used in the training phase. 

The perspective of having a slow attack on an OpenFlow switch was examined by Dantas 

et al. (2017) unlike the focus on web servers in the work of Kumar (2016), Shafieian et 

al. (2015), Shtern et al. (2014) and Tripathi et al. (2016). Slow exhaustion of the Ternary 

Content Addressable Memory (TCAM) of OpenFlow switches in SDN which involves 

sending new flows to the switch and maintaining the flow entry in the table by sending 

data at intervals smaller than the timeout interval was examined in the work. Rule 
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aggregation, dynamic timeouts, and improving TCAM usage by storing fewer data were 

the mitigation schemes highlighted. 95.6% of clients connected were able to obtain a 

response after the attacker launched an attack for every 100 packets per 10 seconds with 

an attacking intensity of 5.8 unique packets per second. A median time to service of 2,454 

milliseconds was recorded. The applicability of alternative defence mechanisms was 

highlighted as future work. 

Tripathi and Hubballi (2018) adopted the use of chi-square statistics to detect slow rate 

HTTP/2 DoS attacks which was used as a distance measurement technique similar to their 

earlier work (Tripathi et al., 2016). In the training phase, they collected legitimate traffic 

over some time, ∆𝑇, and compared the traffic generated in the training phase with traffic 

obtained in the testing phase using the chi-square distance measurement technique. The 

challenge encountered was choosing the appropriate threshold significance level (𝛼) and 

time interval (∆𝑇). Recall rate of 100% was recorded for ∆𝑇 = 20 and 25 minutes 

independent of 𝛼 value but an increase in ∆𝑇 and 𝛼 results in a change in recall and false 

positive rate. A large time interval provides better recall rate and a higher false positive 

rate but a small time interval affects recall adversely and improves the false positive rate. 

The technique used failed to detect slow get and slow post attacks because the attacks 

behaved like legitimate clients. As observed in the research by Cusack and Tian (2016), 

Tripathi and Hubballi (2018), and Tripathi et al. (2016), a distance-based measurement 

for detection of slow DoS or DDoS attacks has a lot of drawbacks. DDoS was not taken 

into account. 

Kemp et al. (2018) used a generated dataset based on Netflow data and features which is 

capable of handling a growing amount of traffic. Netflow was selected considering the 

storage and resource-intensive nature of full packet captures. Another alternative was the 

use of web server logs but the logs are created when TCP connections get closed which 
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means that logs are not available until the damage has been done and the attack called 

off. A varying number of connections and connection time intervals were used to generate 

the dataset using the SlowHTTPTest tool which was executed from a single machine with 

each attack variation running for about an hour. Eight different classifiers were used to 

model slow read DoS attack detection of which random forest, C4.5 N, 5-Nearest 

Neighbour (5-NN), C4.5D, Multilayer Perceptron (MLP), JRip, SVM, and Naïve Bayes 

achieved an Area Under the Curve (AUC) detection of 96.76%, 96.72%, 96.69%, 

96.62%, 95.06%, 94.71%, 89.22%, and 88.94% respectively. The high AUC recorded in 

the work has similarity with the high accuracy recorded in the research by Shafieian et 

al. (2015). Evaluation of slow post attacks was suggested as an area for further 

exploration. 

Analysis of support vector machine techniques in detecting intrusion formed the crux of 

the research by Singh and Rai (2019). NSL-KDD dataset was used in evaluating the 

performance of linear SVM, quadratic SVM, fine gaussian SVM, and medium gaussian 

SVM. Attacks evaluated were DoS, remote 2 user, user 2 root, and probing. Linear SVM, 

quadratic SVM, fine gaussian SVM, and medium gaussian SVM produced an accuracy 

of 96.1%, 98.6%, 98.7%, and 98.5% respectively with an overall error rate of 3.9%, 1.4%, 

1.3%, and 1.5% respectively. The use of a real-time dataset and the use of SVM 

optimization techniques to evaluate the SVM techniques outlined were highlighted for 

further research. 

Calvert & Khoshgoftaar (2019) worked on the use of machine learning techniques to 

detect slow HTTP DoS get and post attacks and how class distribution affects detection 

performance. The attacks ran on a single host machine for one hour. In the slow post 

attack, a default content-length value of 1000 was used in executing the attack. Netflow 

features were extracted from the full packet captures because it gives a high-level 
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summary of communications over the network and lessens resource impact if full packet 

analysis were to be utilized. Eight classification algorithms which are K-Nearest 

Neighbour (KNN), Naïve Bayes, MLP, SVM, C4.5 decision trees, Random Forest (RF), 

JRip and Logistics Regression (LR) were used to build predictive models using five class 

distribution ratio of normal to attack instances which are 99:1, 90:10, 75:25, 65:35, and 

50:50. It was noted that most of the learners achieved high AUC which was attributed in 

part to the feature set used by Netflow. RF achieved the highest AUC value of 0.99905 

with a class ratio of 50:50. RF also achieved the second highest AUC of 0.99904 with a 

class ratio of 65:35. The work by Calvert and Khoshgoftaar (2019) has shown that RF 

detects slow attacks seamlessly with results similar to those obtained in the work by Kemp 

et al. (2018) and Shafieian et al. (2015). Evaluation of the methodology proposed using 

other datasets and performance metrics were marked down as aspects for future work. 

Measurement of the average network delay was employed by Dhanapal and 

Nithyanandam (2019) in detecting slow HTTP attacks. Since attackers feign slow 

network as a reason for slow requests, the mechanism implemented in their paper 

measures the network delay of a slow client by sending five ping requests to the client. 

Once the time between HTTP requests exceeds the average network delay of the client, 

the client is placed in the blocked list. Clients that persistently advertise a TCP window 

size of zero and those that send out few bytes of HTTP post requests after 80% of the 

connection keep-alive time interval is exceeded are treated as attackers and further 

requests are blocked. Advertisement of TCP window sizes greater than 0 but small 

enough to execute a slow read attack was not examined. The method employed showed 

the real-time monitoring and detection capability it has compared to the methods used by 

Cusack and Tian (2016) and Shafieian et al. (2015). 
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Rahman et al. (2019) evaluated machine learning techniques in the detection and 

blockage of DDoS attacks in an SDN network. The authors applied J48, RF, SVM, and 

KNN to detect flooding attacks. In obtaining the dataset, the hping3 tool was used in a 

Python script and tshark was used to capture both malicious and benign traffic. Capture 

for malicious traffic ran for 30 minutes while that of the normal traffic was for three hours. 

Captured files were then converted to Comma-Separated Values (CSV) format in which 

data preprocessing was performed using Weka. In their analysis, J48 performed better 

than the other machine learning techniques considering the training time of 17.43 seconds 

and testing time of 3.03 seconds which is accomplished. RF, SVM, and KNN had training 

time of 171.11 seconds, 168.59 seconds, and 0.13 seconds respectively with a testing time 

of 5.19 seconds, 1.97 seconds, and 1,5957.7 seconds respectively. The trained J48 model 

was exported for online classification of traffic in their SDN network simulated using 

Mininet. Detection and mitigation of attack using their approach take approximately 10- 

15 seconds to complete. Reduction of attack detection time by minimizing the number of 

steps in classifying traffic and use of a honeypot server to analyze the attack in an in- 

depth manner were marked for further research. 

Detection of attacks in cloud computing using machine learning techniques formed the 

core of the work by Wani et al. (2019). The DDoS attack was launched against 

OwnCloud, an open-source private server, using Tor Hammer as the attack tool and tshark 

tool for recording both suspicious and normal traffic. Snort, an intrusion detection system, 

was used to attach class attributes of “normal” and “suspicious” to the dataset generated 

by tshark. Machine learning algorithms of RF, Naïve Bayes, and SVM were utilized for 

data classification which was performed in Weka. SVM had the highest accuracy of 0.997 

compared to random forest and Naïve Bayes that had an accuracy of 0.976 and 0.980 

respectively. The results recorded buttresses the findings on the accuracy of SVM in the 
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research by Singh and Rai (2019) however, the result random forest obtained does not 

dispel the conclusions reached about it as a good choice for DDoS detection as noted by 

Calvert and Khoshgoftaar (2019), Kemp et al. (2018), and Shafieian et al. (2015). Further 

research on the inclusion of more attack types and feature selection techniques was 

highlighted. Selected methods of detecting slow DDoS is presented in Table 2.2. 

In Table 2.2, the nonlinear data refers to data without a distinct difference between the 

class’ different data points to be classified. The stability of a machine learning algorithm 

refers to how well it fares when new data aside from the ones used in training and testing 

is introduced. Table 2.2 lists the properties of the random forest algorithm as identified 

by Ali et al. (2012) showing that it is less sensitive to outliers and it produces high 

accuracy due to its ability to handle missing values. The random forest can be used for 

both classification and regression (Calvert & Khoshgoftaar, 2019). Also, it produces high 

accuracy as substantiated by the literature reviewed by Latah and Toker (2019). However, 

Kemp et al. (2018) highlighted the long training times random forest requires due to the 

number of the decision trees generated. 

Similar to the random forest, the features of SVM enumerated in Table 2.2, as supported 

by Latah and Toker (2019), shows that it can deal with non-linear data seamlessly 

although using kernel functions. This makes SVM classification accuracy to be high but 

in some cases, not as high as random forest. Also, it yields higher accuracy when a limited 

dataset is involved (Bhunia & Gurusamy, 2017). However, the extensive time required to 

create the models together with the problem of selecting the appropriate kernel function 

were identified as some of SVM’s weaknesses (Bhunia & Gurusamy, 2017). 

MLP as a choice of slow DDoS machine learning detection technique can handle non- 

linear data properly through the use of its activation function which enables it to yield 
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high accuracy although the accuracy may not be as high as that of RF and SVM. It is also 

suitable for classification and regression problems. However, the time to train the 

algorithm which is dependent on the strength of the hardware it executes upon is a major 

drawback (Latah & Toker, 2019; Ramchoun et al., 2016). 

Unlike other machine learning techniques, Calvert and Khoshgoftaar (2019) noted that 

the assumption that features are independent serves as a disadvantage in using Naïve 

Bayes. However, it has been known to outperform some other machine learning 

techniques. It is suitable for applications that are critical in terms of time and storage 

(Kaviani & Dhotre, 2018). 

Random forest is a collection of decision trees as opposed to C4.5N which is a decision 

tree algorithm that represents the machine learning model as a single tree. C4.5N achieves 

good accuracy as shown in Table 2.2 by making the completed decision tress generalized 

through pruning. It generates a simple and accurate decision tree especially when a small 

dataset is involved. However, when a large amount of data is involved, it can be expensive 

to build (Ali et al., 2012; Lakshmi, 2015). 

5-NN is a variation of KNN supervised machine learning algorithm where the value of K 

is 5. In general, KNN does not require training of the dataset as it computes the distance 

between instances in the dataset using predefined distance metrics. However, it is time 

inefficient when new data is introduced because it computes the distances between all the 

instances present in the dataset again which makes it less stable. Also, it cannot handle 

data with high dimension properly as the distance may be dominated by unrelated 

attributes. The optimal choice for K is 5 as substantiated in the finding by Calvert and 

Khoshgoftaar (2019) and Najafabadi et al. (2016) as it gives the best result by avoiding 

overfitting and bias. 
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Based on the properties defined in Table 2.2, logistics regression performs on an average 

and has good training time with accuracy however, it cannot capture complex 

relationships and cannot solve non-linear problems since its decision surface is linear 

(Donges, 2018). 

2.7 Review of Optimization Techniques Applied to Machine Learning 

Approaches Towards Intrusion Detection 

In optimizing the execution of detection algorithms, several algorithms such as genetic 

algorithm (GA), artificial bee colony (ABC), particle swarm optimization (PSO), and 

grasshopper optimization algorithm (GOA) have been used. 

ABC is a population-based meta-heuristic optimization technique inspired by the foraging 

behaviour of honeybee swarms. It was used to optimize SVM parameters and select 

features to be used in an intrusion detection system by Wang et al. (2010). The SVM 

parameters selected by the ABC algorithm were: C, 2238.2041; σ, 1.1037; and ε, 0.01275. 

It was observed that the use of feature selection methods improved the overall accuracy 

by 1.31% to 2.65%. ABC-SVM achieved an accuracy of 100% compared to PSO with 

SVM and GA with SVM with an accuracy of 98.69% and 97.35% respectively. 

Improvement of the feature selection algorithm on search strategy and evaluation criteria 

was identified for further studies. 

Detection of application layer attacks using MLP with GA to train the neural network and 

select weights instead of using gradient descent was the basis of the work by Singh and 

De (2017). GA is a meta-heuristic optimization algorithm inspired by the method of 

natural selection and evolution with its roots in Charles Darwin’s theory. MLP with GA 

had a high accuracy of 98.04% and false positive of 2.21% compared to that of MLP, 

RBF, Naïve Bayes, J48, and C4.5 which had 96.92%, 89.64%, 82.91%, 97.75%, and 
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94.68% accuracy respectively and 2.95%, 7.38%, 22.14%, 2.57%, and 5.45% false 

positive respectively. Singh et al. (2016) also used MLP to detect application layer attacks 

using GA to train the network in which MLP with GA had an accuracy of 98.31% 

compared to MLP which had an accuracy of 95.23%. 

Su et al. (2018) used PSO to optimize SVM parameters in detecting illegal network access 

in power monitoring systems. Since there is no predefined standard of choosing the 

disciplinary factor C and other kernel function parameters on which the accuracy of SVM 

is dependent, PSO was used to arrive at the optimal value. PSO is based on the social 

behaviour of groups. The PSO with SVM algorithm achieved an average accuracy of 

89.46% with an average error rate of 4.6% compared to SVM algorithm which achieved 

an average accuracy of 80.67% with an average error rate of 9.2%. 

GOA, a meta-heuristic algorithm, was used in the work by Ye et al. (2019) to identify the 

optimal parameters to be used to improve the accuracy of SVM in detecting network 

intrusions. GOA is inspired by the swarm intelligence behaviour exhibited by 

grasshoppers. The fitness function of the optimization algorithm was based on the 

classification accuracy of the SVM training sets. GOA-SVM had an average accuracy of 

97.84% compared to the average accuracy of SVM of 91.31%. Their future work entails 

the use of GOA with SVM to verify other intrusion detection data sets. The review of 

related work is summarized in Table 2.3. 



 

 

Table 2.2: Weaknesses and Strengths of Various Slow DDoS Detection Machine Learning Approaches 
 

Machine 

Learning 

Methods 

Random 

Forest 

Support 

Vector 

Machine 

Multi-layer 

Perceptron 

Naïve Bayes C4.5N 5-Neural 

Network 

Logistic 

Regression 

Training Time Requires 

longer 

training due 

to the 

number of 

trees 

generated 

Require long 

training time 

on large 

datasets 

Long training time Less training 

time due to 

less training 

data 

Time 

efficient with 

less data 

Does not 

require 

training but is 

time 

inefficient for 

every 

prediction 

Efficient 

Classification 

Accuracy 

High High High but trails 

behind support 

vector machine 

and random forest 

Good as it 

has chances 

of loss of 

accuracy 

Good High than 

other values of 

K 

Good 

Nonlinear Data Handles it 

properly 

Handles it 

efficiently 

Handles it 

efficiently based 

on the activation 

function 

Handles it 

inefficiently 

Can discover 

nonlinear 

relationships 

Can learn non- 

linear 

boundary 

Handles it 

inefficiently 

Stability Stable Stable Stable Stable Not stable Not stable Stable 

Problem Type Classification 

and 

regression 

Classification 

and regression 

Classification and 

regression 

Classification 

and 

prediction 

Classification Classification 

and regression 

Classification 

and 

regression 

Weakness Complex Selecting 

appropriate 

kernel 

function 

Hardware 

dependence and 

unknown duration 

of network 

Assumes that 

feature are 

independent 

Expensive in 

complexity 

when data is 

large 

Does not work 

well in high 

dimensions 

Cannot 

capture 

complex 

relationships 

40 
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Table 2.3: Review of related work 

 

S/N Author/Year Techniques Strengths Weaknesses 

Mitigation Techniques 

1 Ameyed et al. (2015) Failure isolation zone Ensures availability Slowly removes attacks 

from the primary 

webserver 

2 Park (2015) Rate limiting Blocks attack traffic May cut off slow benign 

traffic 

3 Yeasir et al. (2015) Reverse proxy Enhances web server 

security by serving as a 

proxy 

Reverse proxy server’s 

resource depletion and 

becoming a slow DDoS 

target 

4 Sattar et al. (2016) Adaptive bubble burst Ensures availability Does not block or stop 

the attack. 

Makes web services 

available for a while 

before all replica servers 

become overwhelmed 

5 Hong et al. (2018) Connection threshold and timeout Removes slow attacks Removes slow benign 

clients whose connection 

exceeds the timeout set 
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Table 2.3: Review of related work (continued) 

 S/N Author/Year Techniques Strengths Weaknesses 

Detection Techniques 

6 Shtern et al. (2014) Web server performance  Identifies changes in web 

server resource usage 

The dilemma of when to 

establish web server 

performance: offline or 

online 

7 Shafieian et al. 

(2015) 

RF with and without pre-pruning Without prepruning, RF 

achieves an accuracy of 

99.37%, 

a false negative rate of 

1.90%, 

false positive rate of 0% 

Expensive to deploy RF 

with large numbers of 

trees and cannot 

differentiate between 

DDoS types 

8 Cusack and Tian 

(2016) 

Euclidean distance-based similarity metric Detects protocol used to 

engage in attacks 

Cannot detect DDoS 

attacks in real-time 

9 Kumar (2016) One class SVM  SVM was able to detect 

flooding attacks 

Low performance in 

detecting slowloris 

attacks 

10 Tripathi et al. (2016) Hellinger distance  Utilizes simple probability 

distributions and Hellinger 

distances to detect attacks 

Evasion of detection by 

generating attack similar 

to the HTTP profile 

created during training is 

possible 
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Table 2.3: Review of related work (continued) 

S/N Author/Year Techniques Strengths Weaknesses 

11 Dantas et al. (2017) Rule aggregation, dynamic timeouts, and 

storing less data 

Switch availability of 95.6% 

when attack traffic is at 100 

packets per ten second with 

a median time to service of 

2454ms 

Unused legitimate rules 

are also removed 

12 Tripathi and Hubballi 

(2018) 

Chi-square statistics 100% recall rate for ∆𝑇 = 

20 and 25 minutes and 0% 

false positive rate for ∆𝑇 = 

5 minutes 

Large ∆𝑇 increases the 

false positive rate and 

low ∆𝑇 reduces recall 

rate 

13 Kemp et al. (2018) RF, C4.5N, 5NN, C4.5D, MLP, JRIP, SVM, 

Naïve Bayes 

RF achieved the highest 

AUC, 96.76%, for detection 

of DoS compared to the 

other seven classifiers 

Detection of DoS is easy 

compared to DDoS 

14 Singh and Rai (2019) Linear, Quadratic, Fine Gaussian, and 

Medium Gaussian SVM 

Fine Gaussian SVM 

achieved high accuracy of 

98.7% and a low error rate 

of 1.3% compared to the 

other four techniques. 

No optimization of SVM 

parameters 

15 Calvert and 

Khoshgoftaar (2019) 

KNN, Naïve Bayes, MLP, SVM, C4.5D, RF, 

JRIP, LR 

RF achieved the highest and 

second highest AUC values 

of 0.99905 and 0.99904 

respectively 

Detection of DoS is 

relatively easy compared 

to DDoS 



44  

 
Table 2.3: Review of related work (continued) 

S/N Author/Year Techniques Strengths Weaknesses 

16 Dhanapal and 

Nithyanandam (2019) 

Network delay measurement using five pings 

to slow client to determine the uniqueness of 

the slow behaviour 

Differentiates actual slow 

clients from slow HTTP 

DDoS attackers 

Slow read attacks with 

low TCP window greater 

than 0 escapes detection 

17 Rahman et al. (2019) J48, RF, SVM, KNN J48 had the lowest training 

and testing time aggregate 

One performance metric 

of time was used 

18 Wani et al. (2019) SVM, RF, Naïve Bayes High SVM accuracy of 

0.997 

Small datasets of few 

megabytes can be 

handled with Weka 

Optimization Techniques 

19 Wang et al. (2010) ABC with SVM, PSO with SVM, GA with 

SVM 

ABC with SVM achieved 

an accuracy of 100% 

Premature convergence 

in later search period of 

ABC 

20 Singh and De (2017) MLP, RBF, NB, MLP with GA, J48, C4.5 MLP with GA achieved an 

accuracy of 98.04% 

Computationally 

expensive nature of MLP 

with GA 

21 Su et al. (2018) SVM, LS with SVM, PSO with SVM An average accuracy of 

89.46% with an average 

error rate of 4.6% was 

achieved with PSO with 

SVM algorithm 

Easy to fall into local 

optimum in high 

dimensional space of 

PSO 

Low convergence rate in 

the iterative process of 

PSO 
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Table 2.3: Review of related work (continued) 

S/N Author/Year Techniques Strengths Weaknesses 

22 Ye et al. (2019) SVM, PSO with SVM, GA with SVM, GOA 

with SVM 

GOA with SVM had an 

average accuracy of 97.84% 

Easy to fall into local 

optimum and slow 

convergence speed of 

GOA 
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2.8      Chapter Summary 

 

This chapter presents an overview of DDoS and slow DDoS mitigation techniques, 

machine learning approaches for detecting slow DDoS, and optimization methods 

employed to enhance the detection accuracy of the machine learning techniques. Various 

machine learning approaches have been employed to detect slow DoS/DDoS attacks in 

the literature reviewed and mitigation techniques were proffered and applied. Therefore, 

this study is centred on the use of genetic algorithm for optimizing the kernel parameters 

of support vector machine for slow HTTP DDoS detection and the use of selective 

adaptive bubble burst, a variation of adaptive bubble burst, to mitigate the attack. 
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CHAPTER THREE 

 

3.0 RESEARCH METHODOLOGY 

 
3.1 Introduction 

 

This chapter presents the methods used in performing this research. It provides a detailed 

explanation of the steps used in achieving the outlined objectives. The process of 

generating the Netflow dataset, preprocessing the generated dataset, training the SVM 

classifier for feature selection, training the SVM classifier for RBF parameter tuning, 

testing the performance of the classifier on the selected features and RBF parameters, and 

simulating the SABB mitigation mechanism was described. The performance evaluation 

metrics used to evaluate the performance of the RBF SVM slow HTTP DDoS attack 

detection and the SABB slow HTTP DDoS attack mitigation were also discussed. The 

proposed solution is presented in Figure 3.1. The diagram gives an overview of the major 

steps that culminated in achieving the objectives of this research. 
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Figure 3.1: Proposed Solution Block Diagram 

 
3.2 Generate Dataset 

 

In this study, the GNS3 tool was used to set up the SDN environment. The network 

topology in GNS3 contained 20 virtual machines, five switches, and 24 links. Of the 20 

virtual machines, it is comprised of eight slow HTTP attackers, eight legitimate clients, 

Performance evaluation of 

mitigation mechanism 

Simulate mitigation mechanism 

in SDN 

Testing of classifier and 

classification performance 

evaluation 

Training by feature selection 

and tuning of SVM parameters 

 

Data preprocessing 

 

Generate Dataset 
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three web servers, and a Ryu controller. The visualization of the SDN environment is 

presented in Figure 3.2. 

The five switches in the SDN topology is comprised of one OpenVSwitch and four 

datalink layer switches. The OpenVSwitch supports both OpenFlow and Netflow. The 

OpenFlow switch was configured to export Netflow records to the Ryu controller and 

acts as the gateway switch. That is, the OpenVSwitch determines which traffic accesses 

the internal network as it sits between the internal and external network. A Netflow record 

is created on the OpenVSwitch when traffic that passes through it reaches the ageing 

criteria for active and inactive flows. Unlike the OpenVSwitch, the datalink layer 

switches connect multiple virtual machines for seamless communication. The datalink 

switches minimized the use of several redundant network links in the setup. Once the 

datalink switch receives a packet, it checks its Content Addressable Memory (CAM) table 

for a mapping of the Media Access Control (MAC) address on the frame in the received 

packet to an output port. If such mapping does not exist, it sends the frame out all ports 

except the incoming port. If such a mapping exists, it sends the packet out of the port 

associated with the MAC address. 

The Ryu controller written in python was used. Apart from Ryu, another controller which 

supports Netflow is the OpenDaylight controller which is written in Java. However, 

compared to the OpenDaylight controller, the Ryu controller is agile and can handle a 

higher traffic rate. Also, the development of applications for the Ryu controller is faster 

given that Ryu uses python as opposed to OpenDaylight controller which is based on 

Java. The Ryu controller was configured to receive Netflow exports from the 

OpenVSwitch and store the Netflow records received in an excel file format (xlsx) on its 

disk. The Netflow collector was implemented using python. 
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Figure 3.2: SDN Setup in GNS3 
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The three webservers consist of two replica servers and a primary server. The webservers 

are based on Lighttpd which is a light-weight web server. The content hosted on the 

webservers is a simple webpage written in Hypertext Markup Language (HTML) and 

PHP Hypertext Preprocessor (PHP) which displays a text with an image. The primary 

web server hosts all the content needed by the users of the network and it is the target of 

the attack. The replica servers serve the same content present on the primary webserver. 

However, they are not available to all the users of the network. An attack occurrence 

count is maintained to determine which replica webserver flagged attack traffic should be 

migrated to. A replica webserver is only available to an IP address that has been flagged 

as malicious while communicating with another webserver. The previous webserver the 

attacker was communicating with before the traffic was flagged as malicious could be the 

primary if the attack occurrence count is zero or any other replica server based on the 

attack occurrence count. Neither the attackers nor the legitimate clients are aware of the 

replica servers. 

The eight slow HTTP DDoS attacker virtual machines are comprised of two slow get 

attackers and three slow post and slow read attackers each running Ubuntu 16.04 Long 

Term Support (LTS) operating system. The SlowHTTPTest tool was selected as the tool 

to generate attack traffic over Slowloris.py and PyLoris. As observed by Calvert and 

Khoshgoftaar (2019), the traffic patterns across SlowHTTPTest, Slowloris.py, and 

PyLoris attack generation tools are similar. However, Slowloris.py and PyLoris can only 

launch slow get attacks whereas, SlowHTTPTest can launch slow get, slow post, and slow 

read attacks. Furthermore, configuring the SlowHTTPTest tool from the command-line 

is easy to perform. 

The eight legitimate client virtual machines are comprised of two clients that send get, 

post, and read requests each to the primary web server in a slow manner. In addition to 
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the slow clients, two legitimate clients that send requests and retrieve responses from the 

primary web server at the rate allowed by the network bandwidth were included. The 

custom python script which utilises the http.client library was used to send requests and 

retrieve responses from the primary webserver. To simulate packet loss and delay, the 

Linux traffic control tool was installed on the slow legitimate clients. The Linux traffic 

control tool was used to change the configurations of the kernel packet scheduler to 

simulate packet delay, loss, and limit the bandwidth usage to create scenarios legitimately 

slow clients may be facing. The Linux traffic control mechanism was deployed from 

within the python script through the use of the sub-process module in python which 

allows the script to make operating system command calls and create new operating 

system processes. The egress bandwidth, the bandwidth of the outgoing packets, of the 

slow legitimate traffic clients was manipulated using the Linux traffic control tool by 

defining the maximum bandwidth rate and the latency of each outgoing packet. 

As shown in the first step in Figure 3.3, to generate the slow HTTP DDoS attack dataset, 

slow read, get, and post attacks were launched from all the eight slow HTTP DDoS 

attackers using the SlowHTTPTest tool. The parameters used in the attack tool varied 

according to attack type as shown in Table 3.1, 3.2, and 3.3. The Ryu controller which 

was configured to receive and store the exported Netflow records that originated from the 

OpenVSwitch according to the second and third steps in Figure 3.3 was powered on 

before the attack was launched. Once each attacker reached the attack duration 

termination criteria specified in seconds, the attacker stopped sending malicious packets 

to the primary webserver. Consequently, the saved Netflow records on the Ryu controller 

were exported to the physical machine on which the simulation was performed. Next, the 

dataset of legitimate client traffic – slow client and normal client – was generated. 
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Similarly, according to the first step in Figure 3.3 on the legitimate client dataset creation, 

the legitimate clients first established a TCP connection with the primary web server using 

a custom python script. Then, requests for the webpage on the web server were sent and 

the responses received. Since the Ryu controller is still on, the resulting Netflow records 

generated by the OpenVSwitch were transmitted to the controller which captured and 

saved the records as an excel file according to the second and third steps in Figure 3.3 

respectively. Consequently, the saved legitimate client Netflow records were also 

exported to the physical machine on which the simulation was performed. 

The final step towards generating the dataset was achieved by consolidating all attack and 

legitimate client traffic records which were obtained independently. The client and attack 

traffic were not executed together so as not to hamper easy identification and labelling of 

attack and legitimate traffics in preparation for classification. The attack and legitimate 

client traffic Netflow records which were exported to the physical machine on which the 

simulation was performed were labelled as attack and legitimate traffic respectively. The 

label “0” represented legitimate client traffic Netflow instances while the label “1” 

represented the attack traffic Netflow instances. Consequently, the attack and legitimate 

client traffic Netflow instances were manually combined into a single excel file and the 

content of the resultant file was shuffled. 

Table 3.1: Slow Get Parameters and Flags 

 

Variable Value 

Number of connections (-c) 1000 

Test duration in seconds (-l) 1000 

Interval in seconds between follow up data (-i) 10 

Connections per second (-r) 5 
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Table 3.1: Slow Get Parameters and Flags (continued)  

Variable Value 

The maximum length of follow up data in bytes (-x) 10 

Interval in seconds to wait for HTTP response onprobe 

 

connection(-p) 

2 

 

 

 

Table 3.2: Slow Post Parameters and Flags 

 

Variable Value 

Number of connections (-c) 1000 

Test duration in seconds (-l) 1000 

Interval in seconds between follow up data (-i) 4 

Connections per second (-r) 5 

The maximum length of follow up data in bytes (-x) 24 

Interval in seconds to wait for HTTP response onprobe 

 

connection(-p) 

3 

Value of Content-length header in bytes (-s) 8192 

 

 
Table 3.3: Slow Read Parameters and Flags 

 

Variable Value 

Number of connections (-c) 1000 

Test duration in seconds (-l) 1000 

Start of the range for the TCP window size in bytes (-w) 3 

Connections per second (-r) 5 

End of the TCP advertised window range in bytes (-y) 24 
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Table 3.3: Slow Read Parameters and Flags (continued)  

Variable Value 

Interval in seconds to wait for HTTP response onprobe connection 

 

(-p) 

3 

The interval between read operations in seconds (-n) 5 

Number of bytes to read from receive buffer (-z) 15 

Number of times the resource would be requested per socket (-k) 3 

 

 

Figure 3.3: Block Diagram of the dataset creation 
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3.3 Data Preprocessing 

 

Data preprocessing refers to the transformation of data to a form suitable for the classifier 

to utilize. Aside from the data transformation step of feature construction implemented 

during Netflow export collection, other data preprocessing techniques were used to 

improve the quality of results to be obtained and prevent the overfitting of data. The 

correctness of any classifier depends on the quality of data supplied to it. A low-quality 

dataset will yield a poor classifier in that it may not be able to generalize classification 

when previously unseen data is introduced. Also, a low-quality dataset may cause the 

classifier to overfit the training dataset. This means that the model obtained from the 

classification process describes the training data too well which hampers its ability to 

classify the untrained dataset. The dataset obtained is described in this section and 

preprocessing operations performed on the dataset outlined. 

3.3.1 Dataset 

 

The Netflow dataset export in excel file contained 27 features which represents a high- 

level abstraction of the packets in each flow as shown in Table 3.4 according to their 

position in the dataset represented as the serial number. Feature construction was applied 

to each Netflow export during capture which added four more features, as shown in Table 

3.5, bringing the total number of features in the dataset to 31. Feature construction was 

performed to improve the mining process given the features used by Calvert and 

Khoshgoftaar (2019) and Kemp et al. (2018). The dataset contained a total of 56,892 

tuples where a 50:50 ratio was adopted for the attack to legitimate client traffic. The total 

amount of attack and legitimate client traffic tuples that constitute the dataset are 28,446 

and 28,446 respectively. The 50:50 ratio adopted was aimed at ensuring the creation of a 

balanced SVM model which is to be applied to the simulated network at the controller. 

Also, Calvert and Khoshgoftaar (2019) in their work asserted that the 50:50 ratio of attack 
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to legitimate client traffic instances resulted in the highest AUC values across most of the 

classifiers used including SVM. 

Table 3.4: Netflow Version 5 Features 

 

S/N Feature Name Description 

1 Version Netflow export format version number 

2 Count Number of flows exported (1-30) 

3 Sys_Uptime Current time in milliseconds since the export device 

 

booted 

4 Unix_secs The current count of seconds since 0000 UTC 1970 

5 Unix_nsecs Residual nanoseconds since 0000 UTC 1970 

6 Flow_sequence Counter of total flow sequence seen 

7 Engine type Type of flow switching engine 

8 Engine_ID Slot number of the flow switching engine 

9 Sampling Interval Interval of Netflow export sampling 

10 Srcaddr Source IP address 

11 Dstaddr Destination IP address 

12 Nexthop IP address of next-hop router 

13 Input Simple Network Management Protocol (SNMP) index of 

 

the input interface 

14 Output SNMP index of output interface 

15 dPkts Packets in the flow 

16 dOctets Total number of layer 3 bytes in the packets of the flow 

17 First Sysuptime at start of the flow 

18 Last SysUpTime at the time the last packet of the flow was 

 
received 
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Table 3.4: Netflow Version 5 Features (continued) 

S/N Feature Name Description 

20 Srcport TCP/UDP source port number 

21 Dstport TCP/UDP destination port number 

22 Tcp_flags Cumulative OR of TCP flags 

23 prot IP protocol type (TCP = 6; UDP =17) 

24 tos IP type of service 

25 Src_as Autonomous system number of the source 

26 Dst_as Autonomous system number of the destination 

27 Src_mask Source address prefix mask bits 

28 Dst_mask Destination address prefix mask bits 

 

Table 3.5: Constructed Features 

 

S/N Feature Name Description 

19 Diff. The time difference in seconds between the last and first 

feature in the Netflow version 5 feature set 

29 Packets/second The number of packets per second (dPkts divided by 

diff.) 

30 Bytes/second The number of bytes per second (dOctets divided by 

diff) 

31 Bytes/Packet The number of bytes per second (dOctets divided by 

dPkts) 

 

 
3.3.2 Data Reduction 

 

Before feature selection, a form of data reduction, using genetic algorithm was performed, 

some features were removed from the dataset manually. The removed features pose the 

risk of model overfitting if the classifier were to be trained using a dataset that includes 

them. Table 3.6 shows the features that were removed manually with their corresponding 



59  

position in the dataset represented as the serial number. Thirteen features were removed 

manually either due to zero values contained in all the tuples for the feature or the 

potential of the feature causing the classifier to overfit due to values that make a prediction 

of an attack or legitimate client traffic trivial. After the data reduction, the remaining 18 

features were normalized. 

Table 3.6: Features Removed Manually 

 

S/N Feature Names Rationale 

3 Sys_Uptime The time interval between the start and end of attack traffic 

 

can be generalized which would not always be the case 

4 Unix_secs The time interval between the start and end of attack traffic 

 

can be generalized which would not always be the case 

5 Unix_nsecs The time interval between the start and end of attack traffic 

 

can be generalized which would not always be the case 

6 Flow_sequence The flow sequence numbers can be generalized which 

 

would not always be the case 

9 Sampling 

 

Interval 

All tuples contained zero value for the feature 

10 Srcaddr The same set of attack and legitimate client traffic IP 

address or from the same web server to a set of attack and 

legitimate client IP address. 

11 dstaddr Responses to the same set of attack and legitimate client 

traffic IP address or the same web server from a set of 

attack and legitimate client IP address. 

12 Nexthop All tuples contained zero value for the feature 

24 tos All tuples contained zero value for the feature 



60  

𝑖 

Table 3.6: Features Removed Manually (continued) 

S/N Feature Names Rationale 

25 Src_as All tuples contained zero value for the feature 

26 Dst_as All tuples contained zero value for the feature 

27 Src_mask All tuples contained zero value for the feature 

28 Dst_mask All tuples contained zero value for the feature 

3.3.3 Data Normalization 

 

The dataset with 18 features was normalized using the standard scaler of sklearn 

preprocessing to give all features equal weight. Data normalization increases the training 

speed of a classifier and also prevents any feature in the dataset from outweighing the 

other features with smaller ranges. The standard scaler implementation, as shown in 

equation 3.1, uses the zero-mean (z-score) normalization to standardize the values of each 

feature in a tuple. In z-score normalization, the values of a feature are standardized based 

on the mean and standard deviation of that feature. A value 𝑣𝑖 of a feature is normalized 

to 𝑣′ by determining 

𝑣′ = 
𝑣𝑖−𝐴 

 
(3.1) 

𝑖 𝜎𝐴
 

 

where A and 𝜎𝐴 are the mean and standard deviation respectively (Agarwal, 2014). 

 
3.4 Training and Testing of Slow DDoS RBF SVM Classifier 

 

In Figure 3.4, the breakdown of the steps taken for the selection of relevant features from 

the simulated dataset and the appropriate SVM regularization strength (C) and gamma 

(𝛾) parameters is illustrated. The selection of relevant features and the Radial Basis 

Function (RBF) SVM kernel parameters helps to provide a model that is suitable for 

generalizing on datasets. 
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3.4.1 Feature Selection 

 

Genetic algorithm was executed on the normalized dataset to extract features that are most 

relevant to determining whether a flow in a Netflow record is attack traffic or legitimate 

client traffic whether normal or slow due to the bandwidth of the network. The fitness 

function of the features selected is determined by the accuracy of a linear SVM classifier 

subjected to four-fold cross-validation. The rationale behind the usage of a linear SVM 

classifier is that a linear SVM will ensure that the features selected are free from the bias 

of a regularization parameter or gamma as evident in a radial basis function kernel-based 

SVM classifier. The selected features were stored and used to determine the best 

regularization parameter, C, and gamma for the radial basis function kernel-based SVM 

used for the model creation. 

3.4.2 RBF SVM Kernel Parameter Selection 

 

The dataset containing tuples of the selected features was used with genetic algorithm to 

determine the best parameters to use in creating the final SVM model which distinguishes 

attack from legitimate client traffic. A range of possible parameter values was defined for 

the SVM regularization parameter C and the gamma parameter. For the C parameter, a 

range of integer values from 1 to 10 was defined while for the gamma parameter, a real- 

valued range from 0.1 to 1 was defined using numpy’s arange function. The parameter 

range was defined based on the research work by Kokila et al. (2015). 
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3.4 Simulation of RBF SVM and Mitigation Mechanism 

 

Simulation of the RBF SVM detection model and selective adaptive bubble burst 

mitigation mechanism is executed as shown in Figure 3.5. Internal operations of the 

SABB mitigation module is described in Figure 3.6. The RBF kernel SVM model was 

extracted using the python programming language object serialization package, pickle. 

Object serialization is the conversion of an object, in a programming language, to a series 

of bytes for storage or transmission over a network. The serialized SVM model was 

transmitted to the RYU controller in the SDN simulation for deserialization and use to 

analyze real-time Netflow records of traffic traversing the network. Deserialization is the 

conversion of a series of bytes into a replica of the original object which was serialized. 
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Figure 3.5: Simulation flowchart of RBF SVM in SDN 

 
3.4.1 Selective Adaptive Bubble Burst (SABB) Module 

 

As shown in Figure 3.5, once the last IP address of the webserver replica set is the 

destination address of the suspicious client, the IP address of the client gets blocked at the 

gateway switch. Conversely, if the destination IP address is not the last in the replica set, 

the next destination address in the replica set after the current destination address is 

assigned as the new address for all new incoming connections from the suspicious IP 

address. 
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Figure 3.6: SABB Mitigation Module flowchart 

 
The operations of the SABB module is modelled mathematically by taking into 

consideration the number and addresses of the web servers within the network and the 

connections made to the primary server by various devices sending either legitimate or 

attack traffic. The mathematical model of the SABB module is given in equation 3.9. 

Since the webservers are the network asset being protected, they are represented as a set 

in equation 3.2 as:  

{𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛} (3.2) 
 

where 𝑦1 is the primary web server and {𝑦2, 𝑦3, … , 𝑦𝑛} are the replica servers. In equation 

3.2, 𝑛 represents the total number of web servers such that 𝑛 ≥ 2. 
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𝑥 

Since the RBF SVM model handles attack detection, when an attack is not detected, 

equation 3.3 holds while when an attack is detected, equation 3.4 holds. 

𝛽𝑥 = 0 (3.3) 

 

𝛽𝑥 = 𝛽𝑥 + 1 (3.4) 

 

where 𝛽𝑥 is the attack occurrence count from IP address 𝑥. 

 

Furthermore, the connection 𝑖 from the IP address 𝑥 to the webserver 𝑦1 when equation 

 

3.3 holds is given in equation 3.5 as: 
 

𝜎𝑐𝑖(𝑥) = (𝑥, 𝑦1) (3.5) 

 
Similarly, for every new connection, 𝑗, from IP address 𝑥 when equation 3.4 holds is 

 

given in equation 3.6 as:  
 

𝜎𝑐𝑗(𝑥) =  (𝑥, 𝑦𝛽𝑥+1) (3.6) 
 

where 𝑗 = 𝑖 + 1, 𝑖 + 2, … , 𝑚. 

 
Therefore, to block a connection, the connection block parameter represented as 𝜇𝛽𝑥 is a 

function of the attack occurrence count, 𝛽𝑥, of a given IP address 𝑥. Equation 3.7 presents 

the connection block parameter model as: 

𝜇
𝛽𝑥 = {

1, 𝛽𝑥 > 𝑛 (3.7) 
𝑥 

 
 

where 1 means blocked and 0 means open. 

0, 𝛽𝑥 ≤ 𝑛 

 

The connections made from IP address 𝑥 which is visible to the system is given in 
 

equation 3.8 as:  

 

𝜌   = 𝜎 

 
 

+ ∑𝛽𝑥 

 

 
(1 − 𝜇𝑘) ∙ 𝜎 

 

 
(3.8) 

𝑥 𝑐𝑖(𝑥) 𝑘=0 𝑥 𝑐𝑗(𝑥) 
 

The major function of the SABB module is to monitor the flow status from IP 𝑥 given 

in equation 3.9 as: 

𝛿   = 𝑚𝑖𝑛 (⋃
𝛽𝑥    (1 − 𝜇𝑘)) (3.9) 

𝑥 𝑘=0 𝑥 
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When the flow is blocked, the flow status is zero. That is, 𝛿𝑥 = 0. But when the flow is 

active, the flow status returns one. That is, 𝛿𝑥 = 1. 

The algorithmic model for the execution of SABB is given as follows. 

 

Algorithm 1: SABB Online Execution Model 
 

Input: SVM Model 𝜃, Netflow record of IP source IP address 𝑥 is 𝑁𝑓𝑥, primary 

webserver 𝑦1, replica set of webservers {𝑦𝜋} where {𝑦𝜋} = {𝑦2, 𝑦3, ⋯ , 𝑦𝑛} ∶ 

𝑛 ≥ 2 ⋀ 𝑛 = |𝑦1 𝖴 {𝑦𝜋}| 

Output: Boolean block value 𝜇𝑥 for IP address 𝑥 
Procedure 𝑜𝑛𝑙𝑖𝑛𝑒𝑆𝐴𝐵𝐵() 

1 𝑤ℎ𝑖𝑙𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 is 𝑜𝑛𝑙𝑖𝑛𝑒 𝑑𝑜  

2 Connection 𝑖 from 𝑥 is 𝜎𝑐𝑖(𝑥) ← (𝑥, 𝑦) 
 

3 𝜇𝑥 ← 𝑓𝑎𝑙𝑠𝑒  

4 Netflow class 𝑁𝑐 ← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝐶𝑙𝑎𝑠𝑠𝑆𝑉𝑀 𝜃(𝑁𝑓𝑥)  

5 𝑖𝑓 𝑁𝑐 𝑖𝑠 𝑎𝑡𝑡𝑎𝑐𝑘 
 

6 Sender-destination pair (𝑥, 𝑦) ← 𝑔𝑒𝑡𝑆𝑒𝑛𝑑𝑒𝑟𝐷𝑒𝑠𝑡𝑃𝑎𝑖𝑟(𝑁𝑓𝑥) ∶ 𝑥 ∉ 

 {𝑦1 𝖴 {𝑦𝜋}}  

7 𝑖𝑓 𝑦 ≠ 𝑦𝑛 
 

8 𝑦ʹ ← 𝑠𝑒𝑟𝑣𝑒𝑟𝐴𝑓𝑡𝑒𝑟(𝑦)  

9 New connections 𝑗 from 𝑥 is 𝜎𝑐𝑗(𝑥) ← (𝑥, 𝑦ʹ)  

10 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑦 = 𝑦𝑛  

11 𝜇𝑥 ← 𝑡𝑟𝑢𝑒  

12 𝑠𝑤𝑖𝑡𝑐ℎ𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒(𝜇𝑥) 
 

 

The 
 

Selective Adaptive Bubble Burst Mitigation Mechanism operations 
 

given in 

 

Algorithm 1 is a function of the number and IP addresses of the web servers (y1...yn) within 

the network and the connection requests σci(x) (where σc is the connection symbol, i is the 

connection number, and x is the client’s IP address), attack or legitimate, sent to the 

primary web server (y1). Here, x is the client’s source IP address and the Netflow record 

of source IP x is depicted by Nfx. The SVM model generated after the classification of the 

dataset is denoted by θ. A change in the value of destination IP address y expressed as yˊ 

occurs when the classification of Nfx, Netflow record of x, gives a class category Nc which 

is an attack. Once the number of times Nc yields as attack traffic causes yˊ to equal the last 
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replica server yn, the block parameter μx for the defaulting IP address x is propagated to the 

switch which blocks all traffic from IP address x. 

3.5 Performance Evaluation 

 

Performance evaluation of the methods employed to achieve the objectives outlined 

measures the degree to which the classifier predicts the class labels of instances and the 

extent to which web services are available to legitimate clients. 

3.5.1 RBF SVM Performance Evaluation 

 

Performance evaluation of RBF SVM represents the degree to which the RBF SVM 

classifier detected the attack and legitimate client traffic instances. The performance was 

measured using metrics of accuracy, False Positive Rate (FPR), False Negative Rate 

(FNR), and Area Under the Receiver Operating Characteristics Curve (AUC). 

3.5.1.1 Accuracy 

 

The accuracy of a classifier refers to how well the classifier distinguishes attack traffic 

from normal traffic. Mathematically, accuracy is represented in equation 3.10 (Agarwal, 

2014). 

 
Accuracy = 

𝑇𝑃+𝑇𝑁 
 

 

𝑃+𝑁 

 
(3.10) 

 

 

where True Positive (TP) corresponds to the number of attack instances in the dataset that 

were correctly classified as attack traffic. Similarly, True Negative (TN) refers to the 

number of legitimate traffic instances in the dataset that were correctly classified as 

legitimate traffic. Positive (P) corresponds to the total number of instances in the dataset 

which are attack traffic while Negative (N) corresponds to the total number of legitimate 

traffic in the dataset. 
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3.5.1.2 False Positive Rate (FPR) 

 

The False Positive Rate (FPR) of a classifier refers to the percentage of negative instances 

incorrectly classified as positive. Here, since the positive instances are the attack traffic 

instances and the negative instances are the legitimate traffic instances, FPR refers to the 

percentage of normal traffic incorrectly classified as attack traffic. Mathematically, FPR 

is expressed in equation 3.11. 

 
FPR = 

𝐹𝑃 
 

 

𝐹𝑃+𝑇𝑁 
× 100 (3.11) 

 

 

where False Positive (FP) corresponds to the number of legitimate client instances 

labelled by the classifier as attack instances. 

3.5.1.3 False Negative Rate (FNR) 

 

The False Negative Rate (FNR) of a classifier refers to the percentage of positive 

instances incorrectly classified as negative. Here, since the positive instances are the 

attack traffic instances and the negative instances are the legitimate traffic instances, FNR 

defines the percentage of attack traffic labelled as normal traffic. FNR is mathematically 

represented in equation 3.12 as: 

 
FNR = 

𝐹𝑁 
 

 

𝐹𝑁+𝑇𝑃 
× 100 (3.12) 

 

 

where False Negative (FN) corresponds to the number of attack traffic instances labelled 

by the classifier as legitimate client traffic instances. 

3.5.1.4 Area Under the Receiver Operating Characteristics Curve (AUC) 

 

Area Under the Receiver Operating Characteristics (AUC) refers to the degree of the 

classifier’s separability based on the Receiver Operating Characteristic (ROC) curve. 

ROC curves show the trade-off between true positive rate and false positive rate. The 
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AUC is defined by calculating the area under the curve created when the True Positive 

Rate (TPR), the percentage of attack traffic classified as attack instances, is plotted against 

the FPR. 

3.5.2 SABB Mitigation Performance Evaluation 

 

The performance of the SABB mitigation mechanism was measured using the average 

response time of the webservers and the ratio of completed to timed-out requests for 

legitimate clients. 

3.5.2.1 Average Response Time 

 

The web server’s response time refers to how fast it replies to requests from legitimate 

clients during attack and non-attack scenarios. In this work, 100 requests are sent to the 

primary web server and the average response time of the total requests is obtained. The 

formula is expressed in equation 3.13 as: 

 
Average Response Time= 

𝑛 
𝑖=1 

𝑛 

𝑅𝑡𝑖 
 

(3.13) 

 

 

where 𝑛 refers to the number of requests sent to the webserver and 𝑅𝑡𝑖 refers to the 

response time of the ith request. 

3.5.2.2 Ratio of Completed to Timed-out Requests 

 

The ratio of completed to timed-out requests was used to measure the availability of 

services to legitimate clients during attack and non-attack scenarios. In this work, requests 

that receive an associated response is considered completed. 

3.6 Chapter Summary 

 

This chapter presents the methodology involved in dataset creation, classification, and 

slow DDoS mitigation module in SDN. The dataset was generated in an SDN network 

simulated in GNS3 using OpenVSwitch as the Netflow exporter and the Ryu controller 

∑ 
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as the Netflow collector. The dataset created was preprocessed using various 

preprocessing methods. The preprocessed dataset was used to train an SVM classifier to 

generate an SVM model. The SVM model was transferred to the Ryu controller on the 

SDN network to carry out real-time slow DDoS detection. The performance analysis of 

the slow DDoS classification and mitigation with the discussion of the results obtained 

are presented in chapter four. 
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CHAPTER FOUR 

 

4.0 RESULTS AND DISCUSSIONS 

 
4.1 Introduction 

 

This chapter presents the results obtained by the feature selection and RBF SVM 

parameter tuning process by GA, the performance of the classifier, and the performance 

of the SABB slow HTTP DDoS attack mitigation mechanism. The results obtained are 

discussed and insights are drawn from each. 

4.1 Feature Selection Result 

 

In the dataset generated, 31 features were consisting of 27 Netflow version 5 specific 

features and 4 constructed features. After performing data reduction and normalization 

on the dataset which resulted in 18 features, genetic algorithm was used to select the best 

features that aid in detecting a slow DDoS attack. The genetic algorithm was initialized 

with population size and generation number of 10 using a tournament selection of size 3 

after extensive experimentation. The accuracy obtained as a fitness function for all 10 

generations is described in Table 4.1. Furthermore, eleven features out of the 18 features 

were selected to have significance in aiding the detection of slow DDoS attacks. The 

features selected are listed in Table 4.2 where the serial number represents the position of 

the feature in the raw dataset of 31 features. 
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Table 4.1: Genetic Algorithm Feature Selection Generation Accuracy 

 

Generation Maximum Accuracy per Generation 

0 98.35% 

1 98.64% 

2 98.64% 

3 98.64% 

4 98.64% 

5 98.67% 

6 98.67% 

7 98.72% 

8 98.72% 

9 98.72% 

10 98.72% 

 
 

Table 4.2: Selected Features 

 

S/N Features 

2 Count 

13 Input 

14 Output 

15 dPkts 

16 dOctets 

18 Last 

19 Diff 

20 Srcport 

22 Tcp_flags 
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Table 4.2: Selected Features (continued) 

S/N Features 

29 Packets/second 

31 Bytes/packet 

 

 

4.2 RBF SVM Parameter Selection Result 

 

The regularisation and gamma parameters of the radial basis function kernel-based SVM 

were selected using the chosen features with genetic algorithm. The accuracy of the 

estimator, an SVM classifier, was used as the fitness function of the genetic algorithm. A 

generation number of 5 was used with a population size of 10 and tournament size of 3 

after extensive experimentation using other parameters. The accuracy of the estimator per 

generation is described in Table 4.3. The initial generation had the best individual which 

was selected by the genetic algorithm with an accuracy of 99.71% and SVM 

regularization and gamma parameters of 8 and 0.798 respectively. 

Table 4.3: Genetic Algorithm RBF SVM Parameter Generation Accuracy 

 

Generation Maximum Accuracy 

0 99.71% 

1 99.68% 

2 99.68% 

3 99.68% 

4 99.68% 

5 99.68% 
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4.3 RBF SVM Classification Result 

 

The 80:20 ratio of training to testing dataset was utilised in executing the classification 

task. On training of the RBF SVM classifier using the kernel parameters C and gamma 

as 8 and 0.798 respectively, the testing of the model was performed using the test dataset 

ratio, which subsequently resulted in an accuracy of 99.89% with an AUC of 99.89%. 

Table 4.4 shows the percentages recorded for the performance metrics of accuracy, AUC, 

TPR, FNR, and FPR which were used to gauge the performance of the classifier. A total 

of 11,379 tuples constituted the test dataset of which 5,650 tuples and 5,729 tuples were 

legitimate client and attack traffic respectively. For the legitimate client traffic, 5,640 

tuples were correctly classified as legitimate traffic while 10 tuples were misclassified as 

attack traffic by the classifier model. For the attack traffic, 5,726 tuples were correctly 

classified as attack traffic while 3 tuples were misclassified as legitimate client traffic. 

Therefore, the true positive, true negative, false positive, and false negative tuple count 

which is the summary of the confusion matrix are shown in Table 4.5. Figure 4.1 provides 

the details presented by the summary in Table 4.5. 

Table 4.4: RBF SVM Classifier Performance Metric 

 

Performance Metric Percentage 

Accuracy 99.89% 

AUC 99.89% 

TPR 99.95% 

FPR 0.18% 

FNR 0.05% 
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Table 4.5: Confusion Matrix Summary of RBF SVM Classification 

 

TP TN FP FN Total 

5,726 5,640 10 3 11,379 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1: RBF SVM Classification Confusion Matrix 

 
In Figure 4.1 which presents the details of the RBF SVM performance in a confusion 

matrix, the horizontal axis represents the actual class while the vertical axis represents the 

predicted class. The “0” on both axes represents actual and predicted legitimate client 

instances while the “1” on both axes represents actual and predicted attack traffic 
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instances. As shown in the confusion matrix in Figure 4.1, the classifier achieved a false 

positive rate, false negative rate, true positive rate, and true negative rate percentage of 

0.18%, 0.05%, 99.95%, and 99.82% respectively. The classifier’s false positive rate is 

identified in the confusion matrix highlighting the point of intersection between the “1” 

on the actual class horizontal axis and the “0” on the predicted class vertical axis. 

Similarly, the classifier’s false negative rate is identified in the confusion matrix by 

highlighting the point of intersection between the “0” on the actual class horizontal axis 

and the “1” on the predicted class vertical axis. Furthermore, the classifier’s true positive 

rate is identified in the confusion matrix by highlighting the point of intersection between 

the “1” on the actual class horizontal axis and the “1” on the predicted class vertical axis 

while the true negative rate is identified in the confusion matrix by highlighting the point 

of intersection between the “0” on the actual class horizontal axis and the “0” on the 

predicted class vertical axis. 

For the FPR result of 0.18%, it implies that for every 10,000 records which are legitimate 

client traffic, 18 out of the 10,000 tuples would be misclassified as attack traffic. In this 

work, the RBF SVM classifier resident in the controller collects Netflow traffic in real- 

time and processes them immediately thus, classifying each Netflow record of a particular 

IP address. Each Netflow record can only contain a maximum of 30 flow records which 

corresponds to 30 tuples in the dataset. Therefore, the possibility of misclassification of 

traffic is negligible. Although in some exceptional cases, a flow in the record can be 

classified as malicious, switching the flow traffic from one of the webservers to the other 

provides room for better analysis of subsequent flows from the IP address to the newly 

allocated webserver. 

The FNR of 0.05% shows that it would be difficult for attack traffic, slow get, post, or 

read, to circumvent the detection module. Since in every Netflow record export only 30 
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flows are transmitted to the controller based on the transmission criteria, the possibility 

of misclassifying attack traffic to be a legitimate client’s traffic is negligible. With this 

performance percentage, attackers are identified swiftly and the appropriate action is 

performed. 

4.4 SABB Mitigation Process Result 

 

For the SABB slow HTTP DDoS mitigation process to function, the RBF SVM model 

obtained from the training phase was saved and uploaded to the Ryu controller in the 

GNS3 SDN simulated environment for real-time slow HTTP DDoS detection. The slow 

HTTP DDoS attacks were launched using eight computers running on Ubuntu operating 

system using the SlowHTTPTest tool as shown in Figure 3.2. The average response time 

of the webservers to HTTP requests together with the ratio of completed to timed-out 

requests were measured before and after the SABB module was activated. The average 

response time of the webservers to 100 legitimate requests before and after the activation 

of the SABB module during the attack is shown in Table 4.6. 

Table 4.6: Average Request Response Time with and without SABB during slow 

HTTP DDoS attack 

 

Number of Attackers Average Response Time 

without SABB (ms) 

Average Response Time 

with SABB (ms) 

1 35.948 4.411 

2 40.191 15.370 

3 89.392 120.076 

4 137.802 128.374 

5 379.855 167.264 

6 436.211 412.714 

7 504.328 275.73 

8 1121.369 387.743 
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As observed in Table 4.6, the average response time increased for scenarios when the 

SABB module was active as well as when it was active. However, when the SABB 

module is inactive during the attack, the average response time increased at a faster rate 

than when the SABB module was active. This difference in average response time is 

attributed to the activity of the SABB module which inspects the traffic received and 

blocks malicious traffic promptly thereby freeing up the bandwidth occupied by the 

attackers which reduce the response time. A graphical view of the average response time 

presented in Table 4.6 is shown in figure 4.2. 
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Figure 4.2: Average Response Time of the webserver 

In addition to measuring the effectiveness of the SABB module through the response time 

of requests made by legitimate clients, the percentage ratio of requests completed by the 

webserver to the percentage ratio of requests which timed-out was measured. A request 

is completed if an associated response to the request is sent by the webserver and received 

by the requesting client. Table 4.7 shows the percentage ratio of completed to timed-out 

legitimate requests when the SABB module was inactive. It can be observed that as the 
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number of attackers increased, the percentage of completed requests reduced while the 

percentage of timed-out requests increased. The reduction in the percentage of completed 

requests is due to the utilization of the webserver’s resources by the attackers thus making 

those resources unavailable to legitimate clients. The graphical illustration of the data 

presented in Table 4.7 is shown in figure 4.3. 

Table 4.7: Completed to Timed-out Request Ratio without SABB 

 

Number of Attackers Completed Requests (%) Timed-out Requests (%) 

1 100 0 

2 100 0 

3 98 2 

4 98 2 

5 91 9 

6 93 7 

7 91 9 

8 76 24 
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Figure 4.3: Completed to Timed-out Request Ratio without SABB 

 
Furthermore, the percentage ratio of completed to timed-out requests when SABB was 

active was recorded. As shown in Table 4.8, it is observed that although the percentage 

ratio of completed requests reduces with an increase in the number of slow HTTP DDoS 

attackers, the rate of reduction is lower compared to when SABB was inactive. The lower 

rate of reduction in completed requests as the number of attackers increase is a result of 

the blocking and flow modification operations of the SABB module. Once an attacker is 

detected, the SABB module modifies the flow of the attacker’s requests from the primary 

webserver to another replica server in a manner transparent to the attacker. This frees up 

the resources on the primary web server thereby reducing the number of incomplete 

requests recorded by legitimate clients of the primary webserver. Figure 4.4 shows the 

graphical representation of the data presented in Table 4.8. 
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Table 4.8: Completed to Timed-out Request Ratio with SABB 

 

Number of Attackers Completed Requests (%) Timed-out Requests (%) 

1 100 0 

2 100 0 

3 99 1 

4 98 2 

5 97 3 

6 95 5 

7 94 6 

8 92 8 
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Figure 4.4: Completed to Timed-out Request ratio with SABB 

 
To further illustrate the significance of the SABB module in ensuring a high rate of 

request completion, the percentage of completed requests when SABB was active as well 

as when it was inactive were juxtaposed in Figure 4.5. As shown in Figure 4.5, the 

percentage of completed requests when SABB was active supersedes the percentage of 

completed requests when SABB was inactive for most attack scenarios. Attack scenarios 
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where the number of slow HTTP DDoS attackers was either one or two recorded a 100% 

completed legitimate request rate when SABB was active as well as when it was inactive. 

This occurred because the capacity of the webserver’s resources had not been exhausted 

by the attackers hence the legitimate clients were able to complete their requests. 

However, the difference between both scenarios, when the number of attackers was either 

one or two, is evident in the average response time recorded in Table 4.6. 
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Figure 4.5: Comparison between Completed Requests of without and with SABB 

 
In Table 4.6, when one attacker launched the slow HTTP DDoS attack on the webserver, 

the average response time when SABB was inactive was eight times higher than the 

average response time recorded when SABB was inactive. However, when two attackers 

launched the slow HTTP DDoS attack, the average response time recorded when SABB 

was inactive doubled the average response time recorded when SABB was active. As 

much as this highlights the differences between the 100% completed request rate recorded 

when either one or two attackers were launched when SABB was either active or inactive, 
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it also points to the rate at which a webserver’s resource can be consumed with a unit 

increase in the number of slow HTTP DDoS attackers. 

4.5 Comparison with Other Published Work 

 

Results and methods employed by other authors to detect and mitigate slow HTTP attacks 

were compared in Table 4.9. The analysis of existing work on detecting and mitigating 

slow HTTP attacks shows that this study, to the best of our knowledge, might be the first 

application of Support Vector Machine with Genetic algorithm on slow HTTP DDoS 

which consists of slow get, slow post, and slow read HTTP DDoS attacks. The studies 

examined either explored slow HTTP DoS or a variation of slow HTTP DDoS which 

consists of slow get and slow post HTTP DDoS attacks only. Also, the slow HTTP DDoS 

mitigation technique of SABB used within this work has not been utilised in any of the 

studies analysed. Only two studies, Calvert and Khoshgoftaar (2019) and Kemp et al. 

(2018) utilised Netflow records as the dataset for analysis. This work further lends the 

scholarly community insight into using Netflow records as a means of SDN dataset 

collection for analysis. 
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Table 4.9: Classification Accuracy Comparison with other Published Work 

 

Method Dataset Accuracy Reference 

RBF SVM Netflow records 99.89% This study 

RF Netflow records 99.90% Calvert and Khoshgoftaar 

(2019) 5NN  99.88% 

C4.5  99.87%  

LR  99.34%  

SVM  99.14%  

JRIP  99.29%  

MLP  98.92%  

Naïve Bayes  97.46%  

RF Netflow records 96.76% Kemp et al. (2018) 

C4.5N  96.72%  

5-NN  96.69%  

C4.5D  96.62%  

MLP  95.06%  

JRip  94.71%  

SVM  89.22%  

Naïve Bayes  88.94%  

RF TCP Logs 99.37% Shafieian et al. (2015) 

 

 
4.6 Chapter Summary 

 

The chapter presents the result of feature selection using Genetic Algorithm on the 

Netflow dataset and selection of the appropriate Support Vector Machine parameter in 

section 4.1 and 4.2. Section 4.3 presents the result of the classification task on the Netflow 

dataset. The result obtained from using the SABB module to mitigate slow HTTP DDoS 

attacks is shown in section 4.4 while section 4.5 shows the comparison of the slow HTTP 

DDoS detection method used in this work with other methods used in previous studies. 
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CHAPTER FIVE 

 

5.0 SUMMARY, CONCLUSION AND RECOMMENDATIONS 

 
5.1 Introduction 

 

This chapter concludes this research on mitigating slow HTTP DDoS in SDN. A summary 

of the research is presented and conclusions are drawn from the results of the work. 

Furthermore, recommendations were drawn from the results obtained and the research’s 

contribution to knowledge was outlined. 

5.2 Summary 

 

This study developed the use of RBF SVM to detect slow HTTP DDoS attacks which 

consists of slow get, slow post and slow read attacks. Besides, a unique approach to 

mitigating the slow HTTP DDoS attacks named Selective Adaptive Bubble Burst was 

also created. The first objective of selecting the relevant features that signify the presence 

of attack traffic from a Netflow export generated in a simulated SDN environment in 

GNS3 was achieved using Genetic Algorithm and Support Vector Machine. First, the 

population was initialised and crossover operations performed on the parent population 

to yield offsprings. Then, each offspring was tested against the fitness function defined 

as the accuracy of the Support Vector Machine which was obtained by classifying the 

instances whose features are defined by the offspring. Consequently, eleven features were 

selected through this process out of the initial 31 features which consist of 27 Netflow 

version 5 features and 4 constructed features. Also, the parameters of the radial basis 

function kernel of the Support Vector Machine were tuned using Genetic Algorithm. 

The classification of Netflow flowsets into benign and anomalous, the second objective, 

was achieved through the extraction of instances in the Netflow flowset using the eleven 

features selected and performing a standard scale normalization on the extracted flowsets. 
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Radial Basis Function kernel-based Support Vector Machine was used to classify the 

extracted instances which resulted in a 99.89% accuracy. The high accuracy achieved was 

instrumental in the functioning of the SABB module developed because the ability to 

mitigate attacks effectively is dependent on the effectiveness of attack detection. 

The mathematical and algorithmic models of the SABB module were formulated thus 

achieving the third objective. Subsequently, the SABB models were translated into the 

python programming language and uploaded to the controller for real-time attack 

mitigation which achieved the fourth and fifth objectives. The performance of the real- 

time mitigation of slow HTTP DDoS attack launched by eight attackers was measured 

using the average response time and the percentage of completed to timed-out requests 

sent by a legitimate client to the primary webserver. The result indicates the effectiveness 

of the SABB module in achieving a fast average response time and a high percentage of 

completed requests relative to when SABB was not utilised. 

5.3 Conclusion 

 

In conclusion, the accuracy of the RBF SVM slow HTTP DDoS classifier presented in 

this work outperforms the accuracy of the classifiers used in the research by Calvert and 

Khoshgoftaar (2019), Kemp et al. (2018), and Shafieian et al. (2015). However, the 

accuracy of the random forest classifier used in the work by Calvert and Khoshgoftaar 

(2019) exceeds the accuracy obtained in this work by 0.01. Therefore, RBF SVM is highly 

competitive in detecting slow HTTP DDoS attacks in Netflow records. 

For the SABB slow HTTP DDoS mitigation, the ratio of completed to timed-out requests 

when SABB was activated exceeds the ratio of completed to timed-out requests when 

SABB was not activated. Also, the average response time when SABB was activated 

remained in the 102 milliseconds range while when SABB was not activated, the response 
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time reached the 103 milliseconds range. Therefore, SABB mitigates slow HTTP DDoS 

attacks effectively by ensuring the availability of services evident in the high number of 

completed requests and low response time. 

5.4 Recommendations 

 

This study utilised Genetic Algorithm with Radial Basis Function kernel-based Support 

Vector Machine to detect slow HTTP DDoS attacks which consist of slow get, slow post 

and slow read and also mitigate such attacks using a technique called Selective Adaptive 

Bubble Burst. It is recommended that further research should explore the use of multiple 

controllers for managing the flow of packets in the network to further reduce the latency 

and increase the percentage of completed requests recorded when the SABB module is 

activated. 

5.5 Contribution to Knowledge 

 

This study has achieved a two-fold contribution to knowledge. First, the study established 

an effective two-staged approach to detecting slow HTTP DDoS attacks. Second, the 

study developed a new method of mitigating slow HTTP DDoS attacks which can be 

applied to various DDoS and DoS attack scenarios. 
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APPENDIX 

 
Selective Adaptive Bubble Burst Implementation in Python 

 

import eventlet 

import math 

import pickle 

import socket 

from Ryu.base import app_manager 

from Ryu.controller import ofp_event 

from Ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER 

from Ryu.controller.handler import set_ev_cls 

from Ryu.ofproto import ofproto_v1_3 

from Ryu.lib.packet import packet 

from Ryu.lib.packet import ipv4 

from Ryu.lib.packet import ethernet 

from Ryu.lib.packet import ether_types 

from Ryu.lib.xflow import netflow 

from Ryu.lib.ip import ipv4_to_str 

from Ryu.lib.mac import haddr_to_str 

from sklearn.preprocessing import StandardScaler 

from sklearn.svm import SVC 

from collections import Counter 

 

class NetFlowSwitch(app_manager.RyuApp): 

 

NETFLOW_UDP_PORT = 2055 

 

@set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER) 

def switch_features_handler(self, ev): 

datapath = ev.msg.datapath 

ofproto = datapath.ofproto 

parser = datapath.ofproto_parser 

 

match = parser.OFPMatch() 

actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, 

ofproto.OFPCML_NO_BUFFER)] 

self.add_flow(datapath, 0, match, actions) 

 

def add_flow(self, datapath, priority, match, actions, buffer_id=None): 

ofproto = datapath.ofproto 

parser = datapath.ofproto_parser 

 

inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, 

actions)] 

if buffer_id: 

mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id, 

priority=priority, match=match, 

instructions=inst) 

else: 
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mod = parser.OFPFlowMod(datapath=datapath, priority=priority, 

match=match, instructions=inst) 

datapath.send_msg(mod) 

 

#store values in a global dictionary to use for modifying flow instructions 

def storeValues(self,ip_src, eth_src,in_port,dst,datapath,buffer_id=None): 

#not a web server source packet 

if (ip_src not in self.websvr_ip): 

if (ip_src not in self.recordedAddr): 

self.flowDetails[ip_src]={} 

self.flowDetails[ip_src]['eth_src']=eth_src 

self.flowDetails[ip_src]['in_port']=in_port 

self.flowDetails[ip_src]['dst']=dst 

self.flowDetails[ip_src]['datapath']=datapath 

self.flowDetails[ip_src]['buffer_id']=buffer_id 

self.recordedAddr.append(ip_src) 

elif (self.flowDetails[ip_src]['buffer_id']!=buffer_id): 

self.flowDetails[ip_src]['buffer_id']=buffer_id 

return 

 

@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) 

def _packet_in_handler(self, ev): 

# If you hit this you might want to increase 

# the "miss_send_length" of your switch 

if ev.msg.msg_len < ev.msg.total_len: 

self.logger.debug("packet truncated: only %s of %s bytes", 

ev.msg.msg_len, ev.msg.total_len) 

msg = ev.msg 

datapath = msg.datapath 

ofproto = datapath.ofproto 

parser = datapath.ofproto_parser 

in_port = msg.match['in_port'] 

 

self.parser=parser 

self.ofproto=ofproto 

self.datapath=datapath 

 

pkt = packet.Packet(msg.data) 

ip_src = pkt.get_protocol(ipv4.ipv4) 

if (ip_src): 

ip_src=ip_src.src 

else: 

ip_src=None 

eth = pkt.get_protocols(ethernet.ethernet)[0] 

 

if eth.ethertype == ether_types.ETH_TYPE_LLDP: 

# ignore lldp packet 

return 

dst = eth.dst 

src = eth.src 
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dpid = datapath.id 

self.mac_to_port.setdefault(dpid, {}) 

self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port) 

# learn a mac address to avoid FLOOD next time. 

self.mac_to_port[dpid][src] = in_port 

 

if dst in self.mac_to_port[dpid]: 

out_port = self.mac_to_port[dpid][dst] 

else: 

out_port = ofproto.OFPP_FLOOD 

actions = [parser.OFPActionOutput(out_port)] 

# install a flow to avoid packet_in next time 

if out_port != ofproto.OFPP_FLOOD: 
match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src) 

# verify if we have a valid buffer_id, if yes avoid to send both 

# flow_mod & packet_out 

if msg.buffer_id != ofproto.OFP_NO_BUFFER: 

self.add_flow(datapath, 1, match, actions, msg.buffer_id) 

eth_src = src 

self.storeValues(ip_src, eth_src,in_port,dst,datapath,msg.buffer_id) 

 

return 

else: 

self.add_flow(datapath, 1, match, actions) 

self.storeValues(ip_src, eth_src,in_port,dst,datapath) 

 

data = None 

if msg.buffer_id == ofproto.OFP_NO_BUFFER: 

data = msg.data 

out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id, 

in_port=in_port, actions=actions, data=data) 

datapath.send_msg(out) 

 

def getFlowDataset(self, nfObj): 

net_ip="" 

flowCountFlag = 0 

for nfMainFlowObj in nfObj.flows: 

net_ip = ipv4_to_str(nfMainFlowObj.srcaddr) 

if((net_ip in self.attackIP.keys()) and (self.attackIP[net_ip] > len(self.websvr_ip)- 

1)):  

print(net_ip + " BLOCKED!! ALREADY") 

break 

if ((net_ip not in self.websvr_ip) and (net_ip not in self.whitelist)): 

#extract other necessary details 

difference = nfMainFlowObj.last - nfMainFlowObj.first 

diffSeconds = difference/1000 if difference != 0 else 0 #converts to seconds 

from milliseconds 
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packetsPerSec  = math.floor(nfMainFlowObj.dpkts/diffSeconds) if 

diffSeconds!=0 else 0     

bytesPerSec =  math.floor(nfMainFlowObj.doctets/diffSeconds) if 
diffSeconds!=0 else 0     

bytesPerPacket = math.floor(nfMainFlowObj.doctets/nfMainFlowObj.dpkts) 

 

nfMainFlowValues  = [nfObj.count,  nfMainFlowObj.input, 

nfMainFlowObj.output, nfMainFlowObj.dpkts, nfMainFlowObj.doctets, 

nfMainFlowObj.last, difference, nfMainFlowObj.srcport, nfMainFlowObj.tcp_flags, 

packetsPerSec, bytesPerPacket] 

 

initData=[] 

if(net_ip not in self.netflow_dataset.keys()): 

#create a new key in the netflow dataset 

initData.append(nfMainFlowValues) 

self.netflow_dataset[net_ip] = {"data": initData, "flowCount": 

len(nfObj.flows)} 

else: 

#get previous data and flowCount values 

#append to the netflow dataset dictionary 

flowCountFlag = 1 

prevData = self.netflow_dataset[net_ip]["data"] 

prevData.append(nfMainFlowValues) 

self.netflow_dataset[net_ip]["data"] = prevData 

 

if((net_ip not in self.websvr_ip) and (net_ip not in self.whitelist)): 

prevFlowCount = self.netflow_dataset[net_ip]["flowCount"] 

self.netflow_dataset[net_ip]["flowCount"] = (len(nfObj.flows) + prevFlowCount 

) if flowCountFlag else len(nfObj.flows) 

 

flows = nfObj.flows 

print("Message: ", vars(nfObj)) 

for flow in flows: 

print("Flow Content:", vars(flow)) 

 

def normalizeDataset(self, dataset): 

std_data = StandardScaler() 

std_data.fit(dataset) 

return std_data.transform(dataset) 

 

def runSVM(self, model, normData): 

y_pred=model.predict(normData) 

return y_pred 

 

def modifyFlow(self, attackCount, net_attackIP): 

#modify flow to point to next server 

#update attack count 

ofp_parser=self.parser 

ofp=self.ofproto 

datapath=self.datapath 
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match = ofp_parser.OFPMatch(in_port=2, 

ipv4_src=net_attackIP, 

ipv4_dst=self.websvr_ip[0], 

eth_type=0x0800) 

dst_websvr = self.websvr_ip[attackCount] 

actions = [ofp_parser.OFPActionSetField(ipv4_dst=dst_websvr), 

ofp_parser.OFPActionSetField(eth_dst=self.websvr_mac[dst_websvr]), 

 

ofp_parser.OFPActionOutput(self.websvr_ip_to_port[self.websvr_ip[attackCount]])] 

inst = [ofp_parser.OFPInstructionActions(ofp.OFPIT_APPLY_ACTIONS, 

actions)] 

mod = ofp_parser.OFPFlowMod( 

datapath=datapath, 

priority=attackCount+1, 

buffer_id=ofp.OFP_NO_BUFFER, 

match=match, 

instructions=inst) 

datapath.send_msg(mod) 

print("Modified flow from "+str(net_attackIP)+"to dst " + str(dst_websvr)) 

match = 

ofp_parser.OFPMatch(in_port=self.websvr_ip_to_port[self.websvr_ip[attackCount]], 

ipv4_src=self.websvr_ip[attackCount], 

ipv4_dst=net_attackIP, 

eth_type=0x0800) 

actions = [ofp_parser.OFPActionSetField(ipv4_src=self.websvr_ip[0]), 

 

ofp_parser.OFPActionSetField(eth_dst=self.flowDetails[net_attackIP]['eth_src']), 

ofp_parser.OFPActionOutput(2)] #check here for input port for hosts 

inst = [ofp_parser.OFPInstructionActions(ofp.OFPIT_APPLY_ACTIONS, 

actions)] 

 

mod = ofp_parser.OFPFlowMod( 

datapath=datapath, 

priority=attackCount+1, 

buffer_id=ofp.OFP_NO_BUFFER, 

match=match, 

instructions=inst) 

datapath.send_msg(mod) 

def blockTraffic(self, attackCount, net_attackIP): 

#modify flow to point to next server 

#update attack count 

ofp_parser=self.parser 

ofp=self.ofproto 

datapath=self.datapath 

 

match = ofp_parser.OFPMatch(in_port=2, 

ipv4_src=net_attackIP, 
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ipv4_dst=self.websvr_ip[0], 

eth_type=0x0800) 

 

actions = [ofp_parser.OFPActionOutput(2)] 

inst = [ofp_parser.OFPInstructionActions(ofp.OFPIT_APPLY_ACTIONS, 

actions)] 

 

mod = ofp_parser.OFPFlowMod( 

datapath=datapath, 

priority=attackCount+1, 

buffer_id=ofp.OFP_NO_BUFFER, 

match=match, 

instructions=inst) 

print("Blocked flow from "+str(net_attackIP)) 

datapath.send_msg(mod) 

def runServer(self): 

try: 

serverSock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 

serverSock.bind(("192.168.0.18", 2055)) 

model = pickle.load(open("SVM_Model2.sav",'rb')) 

 

while True: 

data, addr = serverSock.recvfrom(6024) 

netflowObj = netflow.NetFlow.parser(data) 

 

self.getFlowDataset(netflowObj) 

 

for net_dataset_ip in self.netflow_dataset: 

 

if((net_dataset_ip in self.attackIP.keys()) and (self.attackIP[net_dataset_ip] 

> len(self.websvr_ip)-1)): 

continue 

if(self.netflow_dataset[net_dataset_ip]["flowCount"] < 100): 
continue 

 

normalizeDataset = 

self.normalizeDataset(self.netflow_dataset[net_dataset_ip]["data"]) 

predictionResult = self.runSVM(model,normalizeDataset) 

#delete dataset present in a particular IP 

del self.netflow_dataset[net_dataset_ip]["data"][:] 

#modify flowCount to zero 

self.netflow_dataset[net_dataset_ip]["flowCount"] = 0 

print(Counter(predictionResult)) 

 

#count of prediction result 

#if count of prediction result for 0 is grater than 30 

# else, it is an attack traffic 

#propagate flow modification to openflow switch 
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if (Counter(predictionResult)[0] < 30): 

if (net_dataset_ip in self.attackIP.keys()): 

attackCount=self.attackIP[net_dataset_ip] 

if (attackCount >= len(self.websvr_ip)-1): 

#block traffic using flow modification 

self.attackIP[net_dataset_ip] += 1 

eventlet.spawn_n(self.blockTraffic,attackCount, net_dataset_ip) 

else: 

#modify flow to point to next server 

#update attack count 

self.attackIP[net_dataset_ip] += 1 

attackCount=self.attackIP[net_dataset_ip] 

eventlet.spawn_n(self.modifyFlow,attackCount, net_dataset_ip) 

else: 

#add the attack IP to attackIP and initialize to 1 

#modify traffic to point to next server 

self.attackIP[net_dataset_ip] = 1 

attackCount=self.attackIP[net_dataset_ip] 

self.modifyFlow(attackCount, net_dataset_ip) 

 

print("Terminated") 

except Exception as e: 

print("Keyboard Interrupt recieved") 

print(e) 

finally: 

print("Terminated 2") 

 

def  init (self, *args, **kwargs): 

super(NetFlowSwitch, self). init (*args, **kwargs) 

self.mac_to_port = {} 

self.flowDetails = {} 

self.netflow_dataset = {} 

self.recordedAddr= [] 

self.websvr_ip = ["192.168.0.24", "192.168.0.22", "192.168.0.20"] 

self.whitelist = [] 

self.websvr_mac = {"192.168.0.24":"", 

"192.168.0.22":"", 

"192.168.0.20":""} 

self.websvr_ip_to_port = {"192.168.0.24":1, 

"192.168.0.22":11, 

"192.168.0.20":10} 

 

self.attackIP={} 

self.netflow_svrip=["24","22","20"] 

self.parser=None 

self.ofproto=None 

self.datapath=None 

eventlet.spawn_n(self.runServer) 


