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ABSTRACT 

In this research, a mathematical model for the transmission dynamics of Hepatitis B virus 

(HBV) incorporating treatment, using condom and vaccine as the control parameters, 

incorporating vaccinated compartment was formulated. It was assumed that a susceptible 

individual can get infected with HBV when there is an effective interaction with any of 

the three infectious classes: exposed, chronic or acute individuals. The basic reproduction 

number was obtained using the next generation matrix approach. The Jacobian stability 

technique and the Lyaponuv second method of stability were used to establish the local 

and global stabilities of the equilibrium states respectively. The stability analysis shows 

that HBV can be eradicated from the entire population when 0 1R  but will continue to 

persevere within the population when 0 1R  . The model was solved analytically using 

the homotopy perturbation method (HPM), and the stability analysis was verified with 

graphs using maple 18. The result shows that vaccination have a significant impact on all 

the compartments, but treatment only have effect on the infected compartments. It is 

therefore recommended that every susceptible individual to HBV should get vaccinated, 

and those who are acutely and chronically infected should receive early medical attention. 
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CHAPTER ONE 

1.0 INTRODUCTION                              

1.1   Background of Study       

Hepatitis B (HB) is an infectious disease initiated by the hepatitis B virus (HBV) that 

upsets the liver. It can result in both severe and prolonged infections. Many people have 

no symptoms during the early contagion. Some develop a speedy onset of sickness with 

vomiting, yellowish skin, tiredness, dark urine and abdominal pain. Frequently these 

indications last a few weeks and rarely does the primary infection result in death (Rapheal 

& David, 2008). It may take 30 to 180 days for symptoms to begin WHO (2014). In those 

who get infected around the time of birth 90% develop lingering hepatitis B while less 

than 10% of those infected after the age of five do. According to U.S. Centers for Disease 

Control and Prevention in 2011, most of those with chronic disease have no symptoms; 

however, cirrhosis and liver cancer may eventually develop. Cirrhosis or liver cancer 

occur in about 25% of those with chronic disease.  

About a third of the world population has been infected at one point in their lives, 

including 343 million who have chronic infections (Schilsky, 2013). Another 129 million 

new infections occurred in 2013. Over 750,000 people die of hepatitis B each year. About 

300,000 of these are due to liver cancer. The disease is now only common in East 

Asia and sub-Saharan Africa where between 5 and 10% of adults are chronically infected. 

Rates in Europe and North America are less than 1%. It was originally known as "serum 

hepatitis". Research is looking to create foods that contain HBV vaccine. The disease may 

affect other great apes as well. 

The virus is transmitted by exposure to infectious blood or body fluids. Infection around 

the time of birth or from contact with other people's blood during childhood is the most 

https://en.wikipedia.org/wiki/Infectious_disease
https://en.wikipedia.org/wiki/Hepatitis_B_virus
https://en.wikipedia.org/wiki/Liver
https://en.wikipedia.org/wiki/Chronic_infection
https://en.wikipedia.org/wiki/Jaundice
https://en.wikipedia.org/wiki/Fatigue_(medicine)
https://en.wikipedia.org/wiki/Abdominal_pain
https://en.wikipedia.org/wiki/Centers_for_Disease_Control_and_Prevention
https://en.wikipedia.org/wiki/Centers_for_Disease_Control_and_Prevention
https://en.wikipedia.org/wiki/Cirrhosis
https://en.wikipedia.org/wiki/Hepatocellular_carcinoma
https://en.wikipedia.org/wiki/Endemic_(epidemiology)
https://en.wikipedia.org/wiki/East_Asia
https://en.wikipedia.org/wiki/East_Asia
https://en.wikipedia.org/wiki/Sub-Saharan_Africa
https://en.wikipedia.org/wiki/Hominidae
https://en.wikipedia.org/wiki/Blood
https://en.wikipedia.org/wiki/Body_fluids
https://en.wikipedia.org/wiki/Perinatal_infection
https://en.wikipedia.org/wiki/Perinatal_infection
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frequent method by which hepatitis B is acquired in areas where the disease 

is common. In areas where the disease is rare, intravenous drug use and sexual 

intercourse are the most frequent routes of infection. Other risk factors include working 

in healthcare, blood transfusions, dialysis, living with an infected person, travel in 

countries where the infection rate is high, and living in an institution (Centers for Disease 

Control and Prevention 2011). Tattooing and acupuncture led to a significant number of 

cases in the 1980s; however, this has become less common with improved sterilization 

(Boyce, 2016). The hepatitis B viruses cannot be spread by holding hands, sharing eating 

utensils, kissing, hugging, coughing, sneezing, or breastfeeding. The infection can be 

diagnosed 30 to 60 days after exposure. The diagnosis is usually confirmed by testing the 

blood for parts of the virus and for antibodies against the virus. It is one of five 

main hepatitis viruses. 

In areas of high endemicity where at least 8% of the population are chronic HBV carriers,  

HBV is mainly contracted at birth and early childhood. Perinatal transmission from an 

infected mother to her baby is common. About 90% of those infected during the prenatal 

period, 30% of those infected in early childhood, and 6% of those infected after 5 years 

of age develop chronic infection. Transmission of HBV among adults occurs via contact 

with infected blood and body fluids such as semen, vaginal fluids, and saliva. Therefore 

transfusion of unscreened blood and its products, sexual activities, use of contaminated 

or inadequately sterilized instruments, sharing of sharp objects as could occur during 

some traditional or cultural practices, for example, local circumcision, are common means 

of spread. It could also occur by other means of iatrogenic or horizontal transmission such 

as long-term household contacts with no sexual involvements in regions of high 

endemicity. HBV infection is also recognized as an occupational health hazard for health-

care practitioners (Bhattarai et al., 2014). 

https://en.wikipedia.org/wiki/Endemic
https://en.wikipedia.org/wiki/Intravenous_drug_use
https://en.wikipedia.org/wiki/Sexual_intercourse
https://en.wikipedia.org/wiki/Sexual_intercourse
https://en.wikipedia.org/wiki/Routes_of_infection
https://en.wikipedia.org/wiki/Blood_transfusions
https://en.wikipedia.org/wiki/Dialysis
https://en.wikipedia.org/wiki/Centers_for_Disease_Control_and_Prevention
https://en.wikipedia.org/wiki/Centers_for_Disease_Control_and_Prevention
https://en.wikipedia.org/wiki/Tattoo
https://en.wikipedia.org/wiki/Acupuncture
https://en.wikipedia.org/wiki/Antibodies
https://en.wikipedia.org/wiki/Hepatitis
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The infection has been preventable by vaccination since 1982. Pungpapong and 

Poterucha (2007) Vaccination is recommended by the World Health Organization in the 

first day of life if possible. Two or three more doses are required at a later time for full 

effect. This vaccine works about 95% of the time. About 180 countries gave the vaccine 

as part of national programs as of 2006 (Williams, 2006). It is also recommended that all 

blood be tested for hepatitis B before transfusion, and that condoms be used to prevent 

infection. During an initial infection, care is based on the symptoms that a person has. In 

those who develop chronic disease, antiviral medication such 

as tenofovir or interferon may be useful; however, these drugs are expensive. Liver 

transplantation is sometimes used for cirrhosis.  

Acute hepatitis B infection does not usually require treatment and most adults clear the 

infection spontaneously (Hollinger & Lau, 2006).  Early antiviral treatment may be 

required in fewer than 1% of people, whose infection takes a very aggressive course 

(fulminant hepatitis) or who are immunocompromised. On the other hand, treatment of 

chronic infection may be necessary to reduce the risk of cirrhosis and liver cancer. 

Chronically infected individuals with persistently elevated serum alanine 

aminotransferase, a marker of liver damage, and HBV DNA levels are candidates for 

therapy (Lai & Yuen 2007) Treatment lasts from six months to a year, depending on 

medication and genotype  (Caporaso 2011). Treatment duration when medication is taken 

by mouth, however, is more variable and usually longer than one year.  

Although none of the available medications can clear the infection, they can stop the virus 

from replicating, thus minimizing liver damage. As of 2018, there are eight medications 

licensed for the treatment of hepatitis B infection in the United States. These 

include antiviral medications lamivudine, adefovir, tenofovir disoproxil, tenofovira 

lafenamide, telbivudine, and entecavir, and the two immune 

https://en.wikipedia.org/wiki/Hepatitis_B_vaccine
https://en.wikipedia.org/wiki/World_Health_Organization
https://en.wikipedia.org/wiki/Condoms
https://en.wikipedia.org/wiki/Antiviral_medication
https://en.wikipedia.org/wiki/Tenofovir
https://en.wikipedia.org/wiki/Interferon
https://en.wikipedia.org/wiki/Liver_transplantation
https://en.wikipedia.org/wiki/Liver_transplantation
https://en.wikipedia.org/wiki/Immunocompromised
https://en.wikipedia.org/wiki/Cirrhosis
https://en.wikipedia.org/wiki/Alanine_aminotransferase
https://en.wikipedia.org/wiki/Alanine_aminotransferase
https://en.wikipedia.org/wiki/Antiviral_drug
https://en.wikipedia.org/wiki/Lamivudine
https://en.wikipedia.org/wiki/Adefovir
https://en.wikipedia.org/wiki/Tenofovir_disoproxil
https://en.wikipedia.org/wiki/Tenofovir_alafenamide
https://en.wikipedia.org/wiki/Tenofovir_alafenamide
https://en.wikipedia.org/wiki/Telbivudine
https://en.wikipedia.org/wiki/Entecavir
https://en.wikipedia.org/wiki/Immune_system
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system modulators interferon alpha-2a and PEGylated interferon alpha-2a. In 2015 the 

World Health Organization recommended tenofovir or entecavir as first-line agents. 

Those with current cirrhosis are in most need of treatment.  

Mathematical modelling of virus-related infections has resulted to superior indulgent of 

virus dynamics and helped in suggesting and curbing the spread of viral diseases such as 

HIV, Hepatitis B Virus (HBV), Hepatitis C Virus (HCV), and Dengue Fever to a minimal 

level. Amongst the earliest models of HIV infection branded as the basic model was used 

by Nowak (2000) and by (Perelson et al., 1996) and was efficacious in mathematically 

imitating the dynamics of the early phases of HIV and its objective CD4+ cells resulting 

in an infection occurrence. Current works have concentrated on HIV viral and cellular 

infections integrating dynamics such as intracellular delays, latent infection and viral 

mutation, and spatial heterogeneity (Chen et.al., 2016) For example, Pourbashash et al. 

(2015) investigated the global stability of within host virus models with cell-to-cell viral 

transmission and achieved a comprehensive analytic explanation of equilibria. 

In this work, we suggest a transmission dynamics of HBV infection model, incorporating 

treatments of exposed class and vaccination of the susceptible class the two major control 

strategies. A mathematical analysis of the special effects of treatment on the infection 

dynamics of HBV incorporating effect of drugs sensitive strain is carried out. 

1.2 Statement of the Research Problem 

Even though there are various research and the handiness of effective HBV awareness 

programs and vaccines the mortality rate of the malady continue to increase drastically 

all around the world. HBV preventive measures has been made known to the society but 

due to ignorance or carelessness by some people the disease continues to spread. 

 HBV has persisted as a major peril to human race worldwide resulting in death of 

millions every year across the globe inspite of various research works and availability of 

https://en.wikipedia.org/wiki/Immune_system
https://en.wikipedia.org/wiki/Interferon
https://en.wikipedia.org/wiki/Peginterferon_alfa-2a
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some safe and effective vaccines and therapies even at an affordable price as means of 

fighting the virus. The need to model a good solution to this life threating virus and control 

measure which will assist in the controlling of this menace has remained a key issue in 

this research. 

Hence, this research formulated a mathematical model for Hepatitis B virus (HBV) 

transmission incorporating treatment as a means of combating the menace, we also put 

into consideration the individuals who are treatment sensitive.  

1.3 Aim and Objectives of the Study 

The aim of this research is to formulate a model for the spread and control of HBV 

incorporating condom, vaccine and treatment as control parameters. 

The objectives of the study are to: 

i. Obtain the disease free and endemic equilibrium points of the model 

ii. compute the effective reproduction number of the model 

iii. analyze the conditions for local and global stability of the equilibrium (DFE) 

state 

iv. analyze the conditions for local and global stability of the equilibrium (EE) state 

v. Obtain the analytical solution of the model using homotopy perturbation method 

vi. Carryout the model simulation using maple and present graphical profiles of the 

system responses 

1.4 Motivation of the study 

The author is motivated owing to the distinctive transmission dynamics of HBV and HBV 

being one of the most devastating disease globally, which cannot be eradicated 

completely but can be curbed to bearable minimum. 
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1.5 Scope and Limitation of Study 

The scope and limitations of the study include: 

1. The model uses systems of ordinary differential equations 

2. The study considered only sexual means of transmission 

3. It also consider drugs sensitive individuals 

4. The entire populations were splitted into six sub-populations. 

1.6 Justification of study 

HBV is on the rise though intervention from government and non-government agencies 

had been made. Although much work have been made, further studies to quantify and 

understand disease dynamics will help in the prevention and control of emerging 

infectious diseases. 

1.7 Definition of Terms 

Epidemiology: This deals with outlines, basis and the effects of healthy and unhealthy 

conditions in a well known population 

Pandemic: This refers to a stage of any infectious disease (which is endemic) that has 

infected a large population of humans. 

Mathematical modelling: Is a system of description of a system using mathematicl 

concepts and languages. They are used in natural sciences , physics, biology, earth 

sciences Susceptibility: likely or liable to be influenced or harmed by a particular thing 

, the dynamic state of being more likely or liable to be harmed by a health determinant.   

Hepatitis B (HB) is an infectious disease initiated by the hepatitis B virus (HBV) that 

upsets the liver  

Simulation is representation of the behaviour or characteristics of one system through 

the use of another system 

https://en.wikipedia.org/wiki/Infectious_disease
https://en.wikipedia.org/wiki/Hepatitis_B_virus
https://en.wikipedia.org/wiki/Liver
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Endemic is when an infection in a population is maintained in the population without the 

need for external inputs 

Primary infection stage is an infection period that is sudden, onset, brief, intense, short 

term; sometimes used to mean severe. 

Chronic infection is an infection lasting a long time, often of low intensity. 

Epidemiology is the study of occurrence, spread or distribution and control of diseases, 

viruses, concepts etc. throughout populations or systems. 

Equilibrium stability. An equilibrium is said to stable if the system always returns to it 

after small disturbances, otherwise the equilibrium is unstable. 

Mathematical model is a representation of a system, process, or relationship in 

mathematical form, in which equations are used to simulate the behaviour of the system 

or process under study. 

Mortality is the state of being alive, or susceptible to death. The measure of the number 

of deaths in a given population is mortality rate. 

Recovery is an act or process of returning to a normal state of health mind or strength 

. 
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CHAPTER TWO 

2.0          LITERATURE REVIEW 

2.1  Overview of HBV 

Hepatitis B (HB) is an infectious disease initiated by the hepatitis B virus (HBV) that 

upsets the liver. Countless individuals have no indications during the early infection. 

Some develop a speedy onset of sickness with vomiting, yellowish skin, tiredness, dark 

urine and abdominal pain. Frequently these indications last a few weeks and rarely does 

the primary infection result in death. These symptoms potency also result from the 

immune system combating other types of viruses. Nevertheless, people who noticed some 

of these symptoms and know of any reason they might have been at risk of contracting 

HBV over the last two months should get tested. 

2.2 Mathematical Model of HBV and Control. 

Mathematical models have been well-thought-out to judge the effect of public awareness 

programs, the use of anti-viral treatments and vaccination has provided long-time 

forecasts vis-à-vis HIV/AIDS prevalence and control in various regions. This destroyer 

virus still dawdles in developing countries and remains an important global health issue. 

Birke and Purnachandra (2019) developed HBV model in which the infected population 

is classified into two categories viz: chronic and acute and thus developed a seven 

compartmental SEICIAR model. Also, both vaccination and treatments are included and 

studied their impact on the spread of hepatitis B virus. The present model is biologically 

meaningful and mathematically well posed since the solutions are proved to be positive 

as well as bounded. The basic reproduction number of the model is derived using the next 

generation matrix method. Further, the equilibrium points of the model are identified and 

https://en.wikipedia.org/wiki/Infectious_disease
https://en.wikipedia.org/wiki/Hepatitis_B_virus
https://en.wikipedia.org/wiki/Liver
https://en.wikipedia.org/wiki/Jaundice
https://en.wikipedia.org/wiki/Fatigue_(medicine)
https://en.wikipedia.org/wiki/Abdominal_pain
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mathematical analysis pertaining to their stability is conducted using Routh – Hurtiz 

criteria. It is shown that the disease free equilibrium point is locally and globally stable If 

0 1R  . On the other hand, the endemic equilibrium point is proved to be stable if 0 1R 

. Also, the numerical simulation study of the model is carried out using ode45 of 

MATLAB: Rung – Kutta order four. It is observed that, if the vaccination and treatment 

rates are increased then the infective population size decreases and evenfall to zero over 

time. Hence, it is concluded that the use of vaccination and treatment at the highest 

possible rates is essential so as to control the spread hepatitis B virus. 

Wiah et al., (2011)  simplified the mathematical model of immune responds to Hepatitis 

B Virus (HBV) infection. The model focuses on the control of the infection by the 

interferons, the innate and adaptive immunity. The model was compartmentalized as 

appropriate and the resulting model equations were solved numerically. A mathematical 

analysis of the model shows that both disease-free and endemic equilibrium point exist 

and we derive conditions for their stability. We perform sensitivity analysis on the model 

parameters, to account for the variability and speed of adaptation. Our results show that 

although each component of innate and adaptive immune response contributes to the 

recovery of HBV infection, the simulations suggest that, in the absence of one component 

of innate immunity, the remaining two defense mechanisms are sufficient for viral 

clearance. 

Ruiqing et al., (2019) developed a fractional-order model to describe the transmission of 

Hepatitis B Virus (HBV). Firstly, the existence and uniqueness of positive solutions are 

proved. Secondly, the basic reproduction number and the sufcient conditions for the 

existence of two equilibriums are obtained. Thirdly, the stability of equilibriums are 

analyzed. Afer that, some numerical simulations are performed to verify the theoretical 
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prediction. they found out that the value of cure rate is very important for the dynamics 

of the system. If the value is relatively small, the disease will persist; while the disease 

will eradicate if the value of is relatively big. In addition, they also found out that the 

initial values are not sensitive to the dynamical behaviors. 

Avner and Nourridine (2018) considered the treatment of chronic HBV by a combination 

of IFN-α and adefovir, and raise the following question: What should be the optimal ratio 

between IFN-α and adefovir in order to achieve the best ‘efficacy’ under constraints on 

the total amount of the drugs; here the efficacy is measured by the reduction of the levels 

of inflammation and of fibrosis? We develop a mathematical model of HBV pathogenesis 

by a system of partial differential equations (PDEs) and use the model to simulate 

a‘synergy map’ which addresses the above question. 

Kadelka and Ciupe (2019) proposed a mathematical models of within-host interactions 

which provide insight into hepatitis B e antibody formation, its influence on hepatitis B e 

antigen seroclearance, and reversion of anergic cytotoxic immune responses. They predict 

that antibody expansion causes immune activation and hepatitis B e antigen 

seroclearance. Quantification of the time between antibody expansion and hepatitis B e 

antigen seroclearance in the presence and absence of treatment shows that potent short-

term treatment speeds up the time between antibody expansion and hepatitis B e antigen 

seroclearance. The monthly hepatocyte turnover during this time can be increased or 

decreased by treatment depending on the amount of core promoter or precore mutated 

virus produced. 

According to Emerenini and Inyama (2017) Hepatitis B is a potentially life-threatening 

liver infection caused by the hepatitis B virus (HBV). In their research, the transmission 
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dynamics of hepatitis B is formulated with a mathematical model with considerations of 

different classes of individuals, namely immunized, susceptible, latent,infected and 

recovered class. The role of vaccination of new born babies against hepatitis B and the 

treatment of both latently and actively infected individuals in controlling the spread are 

factored into the model. The model in this study is based on the standard SEIR mo del. 

The disease-free equilibrium state of the model was established and its stability analyzed 

using the Routh-Hurwitz theorem. The result of the analysis of the stability of the disease-

free equilibrium state shows that hepatitis B can totally be eradicated if effort is made to 

ensure that the sum of the rate of recovery of the latent class, the rate at which latently 

infected individuals become actively infected and the rate of natural death must have a 

lower bound. 

Liang & Zhuang (2018) in their research on HBV stated that mathematical model of the 

transmission dynamics of infectious disease is an important theoretical epidemiology 

method, which has been used to simulate the prevalence of hepatitis B and evaluate 

different immunization strategies. However, differences lie in the mathematical processes 

of modeling HBV transmission in published studies, not only in the model structure, but 

also in the estimation of certain parameters. This review reveals that the dynamics model 

of HBV transmission only simulates the spread of HBV in the population from the 

macroscopic point of view and highlights several main shortcomings in the model 

structure and parameter estimation. First, age-dependence is the most important 

characteristic in the transmission of HBV, but an age-structure model and related age-

dependent parameters were not adopted in some of the compartmental models describing 

HBV transmission. In addition, the numerical estimation of the force of HBV infection 

did not give sufficient weight to the age and time factors and is not suitable using the 

incidence data. Lastly, the current mathematical models did not well reflect the details of 
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the factors of HBV transmission, such as migration from high or intermediate HBV 

endemic areas to low endemic areas and the kind of HBV genotype. All of these 

shortcomings may lead to unreliable results. When the mathematical model closely 

reflects the fact of hepatitis B spread, the results of the model fit will provide valuable 

information for controlling the transmission of hepatitis B. 

Meltem (2019) noted that Hepatitis B infection is one of the serious viral infections that 

is threathening the global health. Turkey has an intermediate endemicity for hepatitis B. 

In their study, a classical SIR model for hepatitis B virus (HBV) transmission is proposed 

and analyzed. Based on the available data of Republic of Turkey Ministry of Health, 

associated parameters are estimated and the Ötted model is shown by appropriate 

simulations. The basic reproductive number is obtained by using the estimated 

parameters. Finally, we discuss the sensitivity of parameters and the effect of changes of 

parameters in the spread of disease. 

MacLachlan and Cowie (2015) in their research, analyzed Hepatitis B virus to find out 

the analytical solutions for reducing the HBV infection. They also found the analytical 

solutions using Homotopy Perturbation Method (HPM) to find out the solution of 

nonlinear ordinary differential equation systems. SEICR models have been used to 

control the viral infections. Thus, we concentrated on examining the dynamics of 

Hepatitis B viral infection and how it must be controlled by vaccination and treatment 

method. The exactness and effectiveness of two methods has been analyzed by solvable 

ordinary differential equation systems. We mainly concentrated on steady controls for 

both vaccination and treatment. Finally, their paper depicts the analytical results which 

show that optimal combination of vaccination and treatment that will be the most useful 

way to control Hepatitis B virus infection. 
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Aniji et al. (2020) In their research, analyzed Hepatitis B virus to find out the analytical 

solutions for reducing the HBV infection. They also found the analytical solutions using 

Homotopy Perturbation Method (HPM) to find out the solution of nonlinear ordinary 

differential equation systems. SEICR models have been used to control the viral 

infections. Thus, we concentrated on examining the dynamics of Hepatitis B viral 

infection and how it must be controlled by vaccination and treatment method. The 

exactness and effectiveness of two methods has been analyzed by solvable ordinary 

differential equation systems. We mainly concentrated on steady controls for both 

vaccination and treatment. Finally, their paper depicts the analytical results which show 

that optimal combination of vaccination and treatment that will be the most useful way to 

control Hepatitis B virus infection. 

Khan et al. (2013) presented characteristics of HBV virus transmission in the form of a 

mathematical model. They analyzed the effct of immigrants in the model to study the 

effct of immigrants for the host population. We added the following flw parameters: “the 

transmission between migrated and exposed class” and “the transmission between 

migrated and acute class.” With these new features, we obtained a compartment model of 

six differential equations. First, they found the basic threshold quantity Ro and then fid 

the local asymptotic stability of disease free equilibrium and endemic equilibrium. 

Furthermore, they found the global stability of the disease-free and endemic equilibria. 

Previous similar publications have not added the kind of information about the numerical 

results of the model. In our case, from numerical simulation, a detailed discussion of the 

parameters and their numerical results is presented. We claim that with these assumptions 

and by adding the migrated class, the model informs policy for governments, to be aware 

of the immigrants and subject them to tests about the disease status. Immigrants for short 
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visits and students should be subjected to tests to reduce the number of immigrants with 

disease. 

Titus et al. (2018) in their model they studied the dynamics and control of hepatitis B 

virus (HBV) infection which is a major health problem worldwide by considering 

condom, vaccination and treatment as control measures. Initially they determined the 

basic reproduction number R0 for the model and observe that once 0 1R  , the disease 

free equilibrium will be stable and HBV infection can be controlled using the three control 

measures and we also study the solution of the endemic equilibrium point of the model. 

Next they took the sensitivity analysis of the basic reproduction number of HBV infection 

and obtain that the endemicity of the infection will reduce with the controls. Finally, the 

numerical simulation result shows that combination of condom, vaccination and 

treatment is the most effective way to control hepatitis B infection. 

McNaughton et.al., (2019) evaluated the current and future role of HBV vaccination and 

prevention of mother to child transmission  (PMTCT) as tools for eliminating the deadly 

disease. They first investigated the current impact of paediatric vaccination in a cohort of 

children with and without HIV infection in Kimberley, South Africa. Second, they used 

these data to inform a new parsimonious model to simulate the ongoing impact of 

preventive interventions. By applying these two approaches in parallel, they were able to 

determine both the current impact of interventions, and the future projected outcome of 

ongoing preventive strategies over time. Their model predicted that, if consistently 

deployed, combination efforts of vaccination and PMTCT can significantly reduce 

population prevalence (HBsAg) by 2030, such that a major public health impact is 

possible even without achieving elimination. However, the prevalence of HBV e-antigen 

(HBeAg)-positive carriers will decline more slowly, representing a persistent population 
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reservoir. They showed that HIV co-infection significantly reduces titres of vaccine-

mediated antibody, but has a relatively minor role in influencing the projected time to 

elimination. Their model can also be applied to other settings in order to predict impact 

and time to elimination based on specific interventions. 

Abdulrahman et al. (2015) developed mathematical model for the transmission dynamics 

and control of Human Papillomavirus (HPV) incorporating the impact of vaccination and 

condom usage. The effective reproduction number was obtained and used to find the best 

recipe for curbing transmission of the disease. Using Nigerian demographic data, 

numerical simulations revealed that 20% HPV vaccination coverage of sexually active 

individuals is better than 75% condom usage on limiting the spread of HPV. Furthermore, 

it revealed that vaccinating 30% of individuals who are sexually active is a b etter way of 

curbing the disease than vaccinating 75% of individuals that are not yet sexually active. 

Birke and Purnachandra (2019) in their work, modified model and stability analysis of 

the spread of Hepatitis B Virus Disease classified the infected population into two 

categories viz: chronic and acute and thus developed a five compartmental SEICIAR 

model. Also, both vaccination and treatments are included and studied their impact on the 

spread of hepatitis B virus. The present model is biologically meaningful and 

mathematically well posed since the solutions are proved to be positive as well as 

bounded. The basic reproduction number RO of the model is derived using the next 

generation matrix method. Further, the equilibrium points of the model are identified and 

mathematical analysis pertaining to their stability is conducted using Routh – Hurtiz 

criteria. It is shown that the disease free equilibrium point is locally and globally stable If 

0 1R  . On the other hand, the endemic equilibrium point is proved to be stable if 0 1R 

. Also, the numerical simulation study of the model is carried out using ode45 of 



xxiv 
 

MATLAB: Rung – Kutta order four. It is observed that, if the vaccination and treatment 

rates are increased then the infective population size decreases and evenfall to zero over 

time. 

Hence, it is concluded that the use of vaccination and treatment at the highest possible 

rates is essential so as to control the spread hepatitis B virus. 

Sarah and Stanca (2019) proposed mathematical models of within-host interactions; 

which provide insight into hepatitis B antibody formation, its influence on hepatitis B e 

antigen seroclearance, and reversion of anergic cytotoxic immune responses. They predict 

that antibody expansion causes immune activation and hepatitis B e  antigen 

seroclearance. Quantification of the time between antibody expansion and hepatitis B e  

antigen seroclearance in the presence and absence of treatment shows that potent short-

term treatment speeds up the time between antibody expansion and hepatitis B e antigen 

seroclearance. The monthly hepatocyte turnover during this time can be increased or 

decreased by treatment depending on the amount of core promoter or precore mutated 

virus produced. The results can inform human interventions. 

 

 

 

 

 

 

 

CHAPTER THREE 
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3.0 MATERIAL AND METHODS 

3.1   Development of Model 

In this chapter, the mathematical model was formulated and analyzed to account for the 

transmission dynamics of HBV infection incorporating treatment and condom usage.  

Following Aniji et al. (2019), we divide the total human population into six 

compartments; Susceptible S, Vaccinated V, Exposed E, Chronic C, Acute A, and 

Recovered R. The schematic diagram of the model is as shown in the figure 3.1:   

   

                                                                                                                                                                                                         

  Figure 3.1: The schematic diagram of spread dynamics of HBV  with treatment and 

condom usage as control measures. 
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The susceptible individuals  S  are generated through constant recruitment of 

individuals by immigration at the rate  , waning of both the vaccines and the immunity 

developed from drugs treatment at the rate 1  and 2  respectively . They decreases due 

to effective contact with E ,C  and Agiven by the force of infection: 

( )[(1 ) (1 )]c cK E C A               (3.1) 

It  further decreases due to usage of effective vaccine at the rate   where  is the 

efficacy level of the vaccine and  is the compliance level to the usage of the vaccine, 

and usage of high protection condom at the rate c c   where c is the efficacy level of the 

condom and c is the compliance level to the usage of the condom. Finally, there is a 

further reduction in the compartment due to natural death at the rate  . 

The  vaccinated class (V) are generated when the susceptible class are given vaccine at 

the rate  . They decreases due to the waning of the vaccine at the rate 1 and further 

reduction occurs in the vaccinated compartment due to natural motarlity at the rate  . 

The exposed class (E ) are generated due to effective contact with E ,C  and A  given by 

the force of infection: 

( )[(1 ) (1 )]c cK E C A          

It decreases due to the progression to either chronic or acute stage at the rate 1c and 2c

respectively. It further decreases due to natural mortality at rate  . 

The chronic class (C ) are generated due to the progression of the exposed class at the rate 

1c . It decreases due to treatment at the rate 1 , the class experiences a further decline due 

to natural death or disease induced death at the rate  and  respectively. 
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The acute class (A ) are generated due to the progression of the exposed class at the rate 

2c . It decreases due to treatment at the rate 2 , the class experiences a further decline due 

to natural death or disease induced death at the rate  and  respectively. 

The recovered class (R ) are generated from the treatment of the chronic and acute classes 

at the 1 and 2 respectively. It decreases due to waning of the administered treatments at 

the rate 2  further reduction occurs in the class due to natural death at the rate  . 

The model equations are as shown below: 

1 2( )[(1 ) (1 )]c c

dS
E C A S S V R

dt
                  (3.2) 

1( )
dV

S V
dt

              (3.3) 

1 2( )[(1 ) (1 )] ( )c c

dE
E C A S c c E

dt
                            (3.4) 

1 1( )
dC

c E C
dt

              (3.5) 

2 2( )A
dA

c E
dt

              (3.6) 

1 2 2( )R
dR

C A
dt

               (3.7) 

        (3.8) 

 

  

N S V E C A R     
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3.2 Invariant Region of the Model 

The entire population size N may be determined by (3.8), 

Adding equations (3.2) to (3.7) gives 

dN
N C A

dt
              (3.9) 

In the absence of disease i.e 0  , (3.9) gives, 

dN
N

dt
                      (3.10) 

Birkhorff and Rota theorem. 

Theorem 3.1. 

The system (3.2) to (3.7) has solutions which are contained in the feasible region   for 

all 0t  . 

Proof: 

Let 6( , , , , , )S V E C A R    be any solution to the system (3.2) to (3.7) having non-

negative initial conditions. 

Using theorem on differential inequality, Birkoff and Rota (1982) on (3.10) 

dN
N

dt
                 (3.11) 

0 N



                 (3.12) 

Hence   

tN Be                  (3.13) 
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B  the constant   

Hence, all feasible solutions of the entire population of the model system are in the region: 

6[( , , , , , ) : , , , , , 0, ]S V E C A R S V E C A R N



        (3.14) 

Which is a positively invariant (i.e solutions remain positive for all time, t) and the model 

is epidemiologically meaningful and well pose mathematically. 

3.3 Positivity of Solutions 

 Lemma 3.1 

Let the initials be 

{( (0), (0), (0), (0), (0), (0)) 0}S V E C A R        (3.15) 

Then the solution set 

( (t), (t), (t), (t), (t), (t))S V E C A R       (3.16) 

of the system (3.2) to (3.7) is positive for all 0t  . 

Proof 

From (3.2) 

1 2( )[(1 ) (1 )]c c

dS
E C A S S V R

dt
                  (3.17) 

dS
S

dt
           (3.18) 

dS
dt

S
           (3.19) 

Integrating 
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dS
dt

S
            (3.20) 

lnS t k            (3.21) 

tS Ke           (3.22) 

0(0)S K S           (3.23) 

0( ) tS t S e           (3.24) 

From (3.3) 

1( )
dV

S V
dt

            (3.25) 

1( )
dV

V
dt

                     (3.26) 

1( )
dV

dt
V

            (3.27) 

Integrating 

1( )
dV

dt
V

              (3.28) 

1ln ( )V t k             (3.29) 

1( )t
V Ke

  
          (3.30) 

0(0)V K V           (3.31) 

1( )

0( )
t

V t V e
  

         (3.32) 

From (3.4) 
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1 2( )[(1 ) (1 )] ( )c c

dE
E C A S c c E

dt
                        (3.33) 

1 2( )
dE

c c E
dt

                    (3.34) 

1 2( )
dE

c c dt
E

                    (3.35) 

Integrating 

1 2( )
dE

c c dt
E

                   (3.36) 

1 2ln ( )E c c t k                   (3.37) 

1 2( )c c t
E Ke

  
                (3.38)  

0(0)E K E                  (3.39) 

1 2( )

0( )
c c t

E t E e
  

                (3.40) 

From (3.5) 

1 1( )
dC

c E C
dt

                    (3.41)  

1( )
dC

C
dt

                     (3.42) 

1( )
dC

dt
C

                     (3.43) 

integrating 

1( )
dC

dt
C

                    (3.44) 
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1ln ( )C t k                         (3.45) 

1( )t
C Ke

    
             (3.46) 

0(0)C K C           (3.47) 

1( )

0

t
C C e

    
          (3.48) 

From (3.6) 

2 2( )A
dA

c E
dt

               (3.49) 

2( )A
dA

dt
              (3.50) 

2( )
A

dA
dt              (3.51) 

Integrating 

2( )
A

dA
dt              (3.52) 

2lnA ( ) t k              (3.53) 

2( )t
A Ke

    
         (3.54) 

0A(0) K A           (3.55) 

2( ) t

0A(t) A e
    

         (3.56) 

From (3.7) 

1 2 2( )R
dR

C A
dt

              (3.57) 
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2( )R
dR

dt
            (3.58) 

2( )
R

dR
dt            (3.59) 

Integrate 

2( )
R

dR
dt             (3.60) 

2lnR ( )t k             (3.61) 

2( )
R

t
Ke

  
          (3.62) 

0R(0) K R           (3.63) 

2( )

0R(t)
t

R e
  

         (3.64) 

Hence, all the solution of the system (3.2) to (3.7) are positive for all 0t  . 

3.4 Equilibrium Points of the Model 

At equilibrium 

0
dS dV dE dC dA dR

dt dt dt dt dt dt
           (3.65) 

Let 

* * * * * *( , , , , , ) ( , , , , , )S V E C A R S V E C A R      (3.66) 

Be arbitrary equilibrium point 

Then (3.2) to (3.7) becomes; 

* * * * * * *

1 1 2( ) F 0E C A S S V R               (3.67) 
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* *

2 0S F V           (3.68) 

* * * * *

1 3( ) F 0E C A S F E           (3.69) 

* *

1 4 0c E F C          (3.70) 

* *

2 5 0c E F A          (3.71) 

* * *

1 2 6 R 0C A F           (3.72) 

Where, 

1 2 1 3 1 2

4 1 5 2 6 2

F (1 ) (1 ),F ( ),F ( ),

F ( ),F ( ),F ( )

c c c c     

       

        

       
   (3.73) 

From (3.71) 

*
* 2

5

c E
A

F
          (3.74) 

From (3.70) 

*
* 1

4

c E
C

F
          (3.75) 

Substituting (3.74) and (3.75) in (3.69) 

* *
* * *1 2

1 3

4 5

( ) F 0
c E c E

E S F E
F F

           (3.76) 

* * *1 2
1 3

4 5

(1 )F 0
c c

E S F E
F F


 

    
 

      (3.77) 

* *1 2
1 3

4 5

(1 )F 0
c c

S F E
F F


 

    
 

      (3.78) 
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* 0E            (3.79) 

Or 

*1 2
1 3

4 5

(1 )F 0
c c

S F
F F

            (3.80) 

Thus equation (3.78) gives the existence of two different equilibria; one satisfying 

(3.79) and the other satisfying (3.80) 

3.5 Disease Free Equilibrium (DFE) Point of the Model 

Let  

0 0 0 0 0 0 0E ( , , , , , ) ( , , , , , )S V E C A R S V E C A R      (3.81) 

Substituting (3.79) in (3.75) 

0 0C            (3.82) 

Substituting (3.79) in (3.74) 

0 0A            (3.83) 

Substituting (3.87) and (3.88) in (3.72) 

0 0R            (3.84) 

Substituting (3.79), (3.82), (3.83) and (3.84) in (3.67) 

0 0

1 0S V             (3.85) 

0 0

1S V            (3.86) 

0
0 1VS





 
         (3.87) 
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From (3.68) 

0 0

2 0S F V           (3.88) 

Substituting (3.87) in (3.88) 

0
01

2 0
V

F V





 
  

 
       (3.89) 

0 0

1 2 0V F V             (3.90) 

0 0

2 1F V V            (3.91) 

0

2 1( )F V            (3.92) 

0

2 1

V
F



 





        (3.93) 

Substituting (3.93) in (3.87) 

1

2 10
F

S




 



 
   

         (3.94) 

 0 2 1 1

2 1

( )

( )

F
S

F

  

  

   



      (3.95) 

0 2 1 1

2 1( )

F
S

F

  

  

   



       (3.96) 

0 2

7

F
S

F


          (3.97) 

where 

7 2 1F ( )F            (3.98) 
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Thus DFE exist at the points 

0 0 0 0 0 0 2

7 7

( , , , , , ) , ,0,0,0,0
F

S V E C A R
F F

  
  
 

    (3.99) 

3.6 Basic Reproduction Number, 0R   

The basic reproduction number is the average number of secondary infections caused by 

a single infectious individual during his/her entire infectious life time. Applying next 

generation matrix operator to compute the Basic Reproduction Number of the model as 

used by (Diekmann et al. 1990) and improved by (van den Driessche & Watmough, 

2002). The basic reproduction number is obtained by dividing the whole population into 

n compartments in which there are m n  infected compartments. Let , 1,2,3,...,ix i m  

be the number of infected individuals in the thi  infected compertment at time t . The 

largest eigenvalue or spectra radius of 1FV   is the basic reproduction number of the 

model. 

 

1
0 0

1 ( ) ( )i i

i i

F E V E
FV

x x



     
    

    
     (3.100) 

Where iF  is the rate of appearance of new infection in compartment i  to another and 0E  

is the disease-Free Equilibrium. 

1 1

2

3

( )

0

0

i

f E C A F S

f f

f

     
   

    
   
   

      (3.101) 
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1 1 1

2 2 2

3 3 3

f f f

E C A

f f f
J

E C A

f f f

E C A

   
   
 
   

   
 
   

 
   

        (3.102) 

0 0 0

1 1 1

0( ) 0 0 0

0 0 0

F S F S F S

F E

   
 

  
 
 

      (3.103) 

Recall, 

0 2

7

F
S

F


          (3.104) 

1 8 1 8 1 8

0( ) 0 0 0

0 0 0

F F F F F F

F E

   
 

  
 
 

      (3.105) 

2

8

7

F
F

F


          (3.106) 

1 3

2 4

3 5

i

v F E

v v F C

v F A

   
   
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then 
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or 

1 8

3

0
F F

F


          (3.120) 

1 8

3

F F

F


           (3.121) 

1 8

0

3

F F
R

F


          (3.122) 

Hence the basic reproduction number of our model is given by (3.122) which is the 

average number of secondary infections caused by a single infectious individual during 

his/her entire infectious life time. 

3.7 Local Stability of Disease Free Equilibrium (DFE), 
0E  

Following Deikmann and Heesterbeek (2000). theorem, the DFE is LAS if 
0R  exist, and 

the
0 1R  . We want to further establish the theorem using Jacobian methods for stability. 

Lemma 3.2: The Disease Free Equilibrium of the model is locally asymptotically 

stable (LAS) if 0 1R   . 
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Where  
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0 1R            (3.141)  

This implies  

5 0   if 1CR  . (3.142) 
 

Hence, DFE LAS. 

3.8 Global Stability of Disease Free Equilibrium (DFE), 
0E  

The restraint on the first lemma was gotten rid of by the Global stability of equilibrium. 

For all initial conditions in global asymptotic stability, solutions approach the 

equilibrium. Lyaponuv theorem and (Castilo-Chavez and Song 2004). global stability 

theorem are examples of ways in which we can test for the global stability of disease-free 

equilibrium; but this research uses the Lyapunov method.  

Lemma 3.3: The DFE E0, is globally asymptotically stable if 1cR   

Proof: To establish the global stability of the disease free equilibrium, we consider the 

Lyaponuv function. 
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0
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Thus, there is an asymptotical stability in the disease-free equilibrium point and thus, 

this completes the proof.  

3.9 Endemic Equilibrium (EE) Points of the Model 

The endemic equilibrium point (EEP) in terms of forces of infection are computed in this 

section 

Let 
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Using (3.156) in (3.68) 
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5 1 2 4 5 1 5 2 4 3 4 5 6 2 5 1 1 4 2 2

( F ( ) ))

F ( )( ( ))

c F F F F F F c F c F F F F F F F F
A

F F F F c F c F F F F F F c F c

   

   

    


   
 (3.168) 

From (3.75) 

**
** 1

4

c E
C

F
          (3.169) 

** 1 4 5 6 1 2 4 5 1 5 2 4 1 3 4 5 2 3 4 5

4 1 2 4 5 1 5 2 4 3 4 5 6 2 5 1 1 4 2 2

( F ( ) ))

F ( )( ( ))

c F F F F F F c F c F F F F F F F F
C

F F F F c F c F F F F F F c F c

   

   

    


   
 (3.170) 

From (3.160) 

** **5 1 1 4 2 2

4 5 6

F c F c
R E

F F F

  
  
 

       (3.171) 

** 5 1 1 4 2 2 4 5 6 1 2 4 5 1 5 2 4 1 3 4 5 2 3 4 5

4 5 6 1 2 4 5 1 5 2 4 3 4 5 6 2 5 1 1 4 2 2

( F ( ) ))

F ( )( ( ))

F c F c F F F F F F c F c F F F F F F F F
R

F F F F F F c F c F F F F F F c F c

     

   

      
  

    

 (3.172) 

Hence EEP is given by; 
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1 ** ** ** ** ** ** 3 4 5

1 4 5 1 5 2 4

3 4 5 4 5 6 1 2 4 5 1 5 2 4 1 3 4 5 2 3 4 5

1 2 4 5 1 5 2 4 1 2 4 5 1 5 2 4 3 4 5 6 2 5 1 1 4 2 2

E ( , , , , , ) ( , , , , , ) { ,
F ( )

( F ( ) ))
,

F ( ) F ( )( ( )

F F F
S V E C A R S V E C A R

F F c F c F

F F F F F F F F F c F c F F F F F F F F

F F F c F c F F F F c F c F F F F F F c F c



    

    

  
 

    

     

1 4 5 6 1 2 4 5 1 5 2 4 1 3 4 5 2 3 4 5

4 1 2 4 5 1 5 2 4 3 4 5 6 2 5 1 1 4 2 2

2 4 5 6 1 2 4 5 1 5 2 4 1 3 4 5 2 3 4 5

5 1 2 4 5 1 5 2 4 3 4 5 6 2 5

,
)

( F ( ) ))
,

F ( )( ( ))

( F ( ) ))

F ( )( (

c F F F F F F c F c F F F F F F F F

F F F F c F c F F F F F F c F c

c F F F F F F c F c F F F F F F F F

F F F F c F c F F F F F F

   

   

   

 

    

   

    

   1 1 4 2 2

5 1 1 4 2 2 4 5 6 1 2 4 5 1 5 2 4 1 3 4 5 2 3 4 5

4 5 6 1 2 4 5 1 5 2 4 3 4 5 6 2 5 1 1 4 2 2

,
))

( F ( ) ))
}

F ( )( ( ))

c F c

F c F c F F F F F F c F c F F F F F F F F

F F F F F F c F c F F F F F F c F c

 

     

   



      
 

    

(3.173) 

3.10 Analysis of Local Stability of Endemic Equilibrium Point 

An important criterion by Routh-Hurwitz gives the necessary and sufficient conditions 

for the all roots of the characteristics (with real coefficients) to lie in the left half of the 

complex plane. In other words, all the roots of the polynomial are negative or have real 

roots if and only if the determinant of all Hurwitz matrices is positive.  

Theorem 3.2 (Routh-Hurwitz Conditions) 

Let 
* * * *

* * * *

( , ) ( , )

( , ) ( , )

x y

x y

f x y f x y
J

g x y g x y

 
  
 

 be the Jacobian matrix of the non-linear system 

( , )
dx

f x y
dt


                     (3.174)

 

( , )
dy

g x y
dt


         (3.175)

 

Evaluated at the critical point * *( , )x y , then the critical point * *( , )x y ; 

1. Is locally asymptotically stable if trace (J)<0 and determinant>0 

2. Is stable but not asymptotically stable if trace (J)=0 and determinant (J)>0 

3. Is unstable if either, trace (J)>0 or determinant (J)<0 

Jacobian matrix of the system of equations at endemic equilibrium state is: 



xlix 
 

 * * * * *

1 2 3 4 5, , , , ,J x x x x x 

* * * * * *

1 1 1 1 1 2

2

* * * * * *

1 1 3 1 1

1 4

2 5

1 2 6

( ) F F F F

0 0 0 0

( ) F 0 F F F 0

0 0 0 0

0 0 0 0

0 0 0

E C A S S S

F

E C A S F S S

c F

c F

F

      



   

 

       
 

 
   
 

 
 
 
  

(3.176) 

The Trace is 

1 2 1 3 4 5 6( )E C A F F F S F F F F                 (3.177) 

Gives 

 1 2 3 4 5 6 1( )E C A F F F F F F F S                (3.178) 

Negative if 

 1 2 3 4 5 6 1( )E C A F F F F F F F S               (3.179) 

And the determinant is given by 

1 4 5 6 1 1 4 6 2 1 1 4 6 1 1

3 4 5 6 1 1 1 2 4 6 2

1 1 2 4 6 1 1 2 2 4 6

1 2 2 4 6 2 1 2 2 4 6 1 1 2 3 4 5 6

1 2

( ) ( ) ( )

2( )( (E C A) F ) F

2( )( (E C A) F ) F F

F F (E C A) F F

(E C A) F F

F S F F F F S F F c F S F F c

F F F F F S F F c

F S F F c F S F F F

F S F F F c F S F F F c F F F F

F

        

   

   

    



 

    

   

   

   4 2 2 2 1 2 5 1 1 2 2 3 4 5 6(E C A) F F Fc F c F F F F        

  (3.180) 

This gives 

1 4 6 1 5 2 1 3 4 5 6 1

1 1 2 4 6 2 1

2

1 2 4 6 2 1 1 2 3 4 5 6

1 2 2 4 2 2 5 1 1 2 3 4 5 6

( ) ( )

2( )( (E C A) F ) F ( )

(1 ) (E C A) F F

(E C A) F F ( ) F

F S F F F c c F F F F

F S F F c c

F S F F F c c F F F F

F c F c F F F F

    

 

  

    

  

   

     

    

    (3.181) 

1 4 6 1 5 2 1 1 2 3 4 5 6

2 3 4 5 6 3 4 5 6 1 1 1 2 4 6 2 1

2

1 2 4 6 2 1 1 2 2 4 2 2 5 1 1

( ) ( ) (E C A) F F

F 2( )( (E C A) F ) F ( )

(1 ) (E C A) F F ( )

F S F F F c c F F F F

F F F F F F F F F S F F c c

F S F F F c c F c F c

   

    

     

    

     

      

 (3.182) 
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1 4 6 1 5 2 1 1 2 3 4 5 6

2 3 4 5 6

3 4 5 6 1 1 1 2 4 6 2 1

2

1 2 4 6 2 1 1 2 2 4 2 2 5 1 1

( ) ( ) (E C A) F F

F

2( )( (E C A) F ) F ( )

(1 ) (E C A) F F ( )

F S F F F c c F F F F

F F F F

F F F F F S F F c c

F S F F F c c F c F c

   



   

     

     
 
 

     
 

        

  (3.183) 

The determinant is negative if 

M H           (3.184) 

Where 

1 4 6 1 5 2 1 1 2 3 4 5 6

2 3 4 5 6

( ) ( ) (E C A)F F

F

F S F F F c c F F F F
M

F F F F

   



     
  

 
  (3.185) 

3 4 5 6 1 1 1 2 4 6 2 1

2

1 2 4 6 2 1 1 2 2 4 2 2 5 1 1

2( )( (E C A) F ) F ( )

(1 ) (E C A) F F ( )

F F F F F S F F c c
H

F S F F F c c F c F c

   

     

     
  

        
 (3.186) 

The endemic equilibrium is locally asymptotically stable according to the first stability 

criteria as stated in the conditions for stability earlier, since the determinant is positive if 

(3.184) holds and the trace of the Jacobian is negative. 

3.11 Analytical Solution of the Model 

Analytical solution of the Model using Homotopy Perturbation Method (HPM) 

Ji-Haun (2000) discovered Homotopy Perturbation Method (HPM) of solution to systems 

of differential equations. The Homotopy Perturbation Method (HPM), which gives 

analytical estimated solution, is applied to various linear and non-linear equations. The 

homotopy perturbation method (HPM) is a series expansion method used in the solution 

of nonlinear partial differential equations (Jiya 2010). 

To show the simple concepts of this method, he considered the following non-linear 

differential equation: 

    3 0,B U G r  r    (3.185)  
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Subject to the boundary condition  

 3 , 0
U

D U
n

 
 

 
,      r    (3.186) 

Where B3 is a general differential operator, D3 a boundary operator,  G r  is a known 

analytical function and Γ is the boundary of the domain Ω. The operator A3 can be divided 

into two parts L and N, where L is the linear part, and N is the nonlinear part. Equation 

(3.202) can be written as: 

       0,L U N U G r   r ϵΩ     (3.187) 

The   Homotopy Perturbation structure is shown as follows 

                              0, p 1 0H V p L V L U p A V G r             (3.188) 

Where  

     RPrV  1,0:,    (3.189) 

In equation (3.188)  1,0P   is an embedding parameter and 0U is the approximation 

that satisfies the boundary condition. It can be assumed that the solution of the equation 

can be written as power series in h as follows: 

 2
0 1 2 ...V V pV p V        (3.190)     

And the best approximation for the solution is: 

 
2

0 1 2lim ...

1

U v v pv p v

h

    


   (3.191) 

The series  is convergent for most cases. However, the convergent rate depends on the 

nonlinear operator A (V) 
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Solution of the Model Equations 

1 2( )[(1 ) (1 )]c c

dS
E C A S S V R

dt
                                   (3.192) 

1( )
dV

S V
dt

            (3.193) 

1 2( )[(1 ) (1 )] ( )c c

dE
E C A S c c E

dt
                (3.194) 

1 1( )
dC

c E C
dt

             (3.195) 

2 2( )A
dA

c E
dt

             (3.196) 

1 2 2( )R
dR

C A
dt

              (3.197) 

With the following initial condition  

         0 0 0 0 0 0,V ,C ,A 0 0 ,E 0 0 0 , (0)S V E C AS R R       

 (3.198) 

Let 

2

0 1 2 ...S a pa p a   
      (3.199) 

 

2

0 1 2 ...V b pb p b   
      (3.200)  

2

0 1 2 ...E d pd p d          (3.201) 

2

0 1 2 ...eC pe p e   
      (3.202) 

 

2

0 1 2 ...A f pf p f   
      (3.203) 

 



liii 
 

2

0 1 2 ...R g pg p g   
      (3.204)  

Applying HPM to equation (3.192) 

  1 2(1 ) 0
dS dS

p p G E C A S S wV w R
dt dt


 

          
 

 (3.205) 

(1 ) (1 )c cG              (3.206) 

1 1 2 1

0 1 2

2

0 1 2

2 2

0 1 2 0 1 21 1 2 1

0 1 2 2

0 1 2

2

0 1 2

2 2

1 0 1 2 2 0 1 2

( ....)

(d ....)

(e ....) ( ....)
(1 )( ....)

(f ....)

( ....)

(b ....) w (g ....)

a pa p a

pd p d

G pe h e a pa p a
p a pa p a p

pf p f

a pa p a

w pb p b pg p g



   

    
 

        
      

   

    

        

0


 
 
 
  
 
 
 
 
  

  (3.207) 

Expanding and Collecting the coefficient power of p 

0 1

0: 0p a 
        (3.208) 

1 1

1 0 0 0 0 0 0 0 1 0 2 0: (d a ) 0p a G a e a f a w b w g        
 (3.209) 

 

2 1

2 1 0 1 0 1 0 0 1 0 1 0 1 1 1 1 2 1: (d a e a ) 0p a G a e a f d a f a a w b w g         
 (3.210) 

Also applying homotopy perturbation method to (3.193) 

 2(1 ) 0
dV dV

p p F V S
dt dt


 

     
      (3.211) 

1 1 2 1

0 1 2

1 1 2 1 2

0 1 2 2 0 1 2

2

0 1 2

(b ....)

(1 )(b ....) (b ....) 0

( ....)

pb p b

p pb p b p F pb p b

a pa p a

   
 

          
 
    

   (3.212) 

 

2

2 0 1 21 1 2 1

0 1 2 2

0 1 2

(b ....)
(b ....) 0

( ....)

F pb p b
pb p b p

a pa p a

   
     

     

    (3.213)
  

Expanding and Collecting the coefficient power of p
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0 1

0: b 0p          (3.214) 

 1 1

1 2 0 0: b 0p F b a  
      (3.215) 

 
2 1

2 2 1 1: b 0p F b a         (3.216)
 

Also applying homotopy perturbation method to (3.194) 

 3(1 ) ( ) 0
dE dE

p p F E G E C A S
dt dt

 
       

 
   (3.217) 

1 1 2 1

0 1 2

1 1 2 1 2

0 1 2 3 0 1 2

2

0 1 2

2 2

0 1 2 0 1 2

2

0 1 2

(d ....)

(1 )(d ....) (d ....) 0

(d ....)

(e ....) ( ....)

(f ....)

pd p d

p pd p d p F pd p d

pd p d

G pe p e a pa p a

pf p f

 
 
 
 

    
          
 
     
  
         
  

     

  (3.218) 

 

2

3 0 1 2

2

0 1 21 1 2 1

0 1 2 2 2

0 1 2 0 1 2

2

0 1 2

(d ....)

(d ....)
(d ....) 0

(e ....) ( ....)

(f ....)

F pd p d

pd p d
pd p d p

G he h e a pa p a

pf p f

    
 

     
      

        
      

 (3.219) 

 
Expanding and Collecting the coefficient power of p

 

 0 1

0: d 0p          (3.220) 

 1 1

1 3 0 0 0 0 0 0 0: d ( ) 0p F d G d a e a f a    
    (3.221) 

 
2 1

2 3 1 0 0 0 1 1 1 1 0: d (d ) ( ) 0p F d G e f a G d e f a          (3.222)
 

Also applying homotopy perturbation method to (3.195) 

 4 1(1 ) 0
dC dC

p p F C c E
dt dt

 
     

 
     (3.223)
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1 1 2 1

0 1 2

1 1 2 1 2

0 1 2 4 0 1 2

2

1 0 1 2

(e ....)

(1 )(e ....) (e ....) 0

(d ....)

pe p e

p pe p e p F pe p e

c pd p d

   
 

          
 
    

  (3.224) 

2

4 0 1 21 1 2 1

0 1 2 2

1 0 1 2

(e ....)
(e ....) 0

(d ....)

F pe p e
pe p e p

c pd p d

   
     

     

  (3.225) 

Expanding and Collecting the coefficient power of p
 

 0 1

0: e 0p          (3.226) 

 1 1

1 4 0 1 0: e 0p F e c d  
      (3.227) 

 
2 1

2 4 1 1 1: e 0p F e c d         (3.228) 

Also applying homotopy perturbation method to (3.196) 

 5 2(1 ) 0
dA dA

p p F A c E
dt dt

 
     

 
     (3.229)  

1 1 2 1

0 1 2

1 1 2 1 2

0 1 2 5 0 1 2

2

2 0 1 2

(f ....)

(1 )(f ....) (f ....) 0

(e ....)

pf p f

p pf p f p F pf p f

c pe p e

   
 

          
 
    

   (3.230) 

 

2

5 0 1 21 1 2 1

0 1 2 2

2 0 1 2

(f ....)
(f ....) 0

(e ....)

F pf p f
pf p f p

c pe p e

   
     

     

  (3.231) 

Expanding and Collecting the coefficient power of p
 

 0 1

0: f 0p          (3.232) 

 1 1

1 5 0 2 0: f 0p F f c e  
      (3.233) 

 
2 1

2 5 1 2 1: f 0p F f c e         (3.234) 
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Also applying homotopy perturbation method to (3.197) 

6 1 2(1 ) 0
dR dR

p p F R C A
dt dt

 
 

      
 

     (3.235) 

1 1 2 1

0 1 2

2

6 0 1 21 1 2 1

0 1 2 2

1 0 1 2

2

2 0 1 2

(g ....)

(g ....)
(1 p)(g ....) 0

(e ....)

(f ....)

pg p g

F pg p g
pg p g p

pe p e

pf p f





    
 

   
      

    
 
    

  (3.236) 

2

6 0 1 2

1 1 2 1 2

0 1 2 1 0 1 2

2

2 0 1 2

(g ....)

(g ....) (e ....) 0

(f ....)

F pg p g

pg p g p pe p e

pf p f





   
 

          
 

   

   (3.237) 

 0 1

0: g 0p          (3.238) 

 1 1

1 6 0 1 0 2 0: g 0p F g e f    
     (3.239) 

 
2 1

2 6 1 1 1 2 1: g 0p F g e f          (3.240) 

From (3.208) 

 0 1

0: 0p a          (3.241) 

Integrating (3.241) 

 0 1a C         (3.242) 

Applying initial condition 

 0 0(0) (0)a S S         (3.243) 

 0 0a S         (3.244) 

From (3.209) 
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 0 1

0: b 0p          (3.245) 

Integrating (3.245) 

 0 2b C         (3.246) 

Applying initial condition to (3.246) 

 0 0(0) (0)b V V         (3.247) 

 0 0b V         (3.248) 

From (3.220) 

0 1

0: d 0p          (3.249) 

 Integrating (3.249) 

 0 3d C         (3.250) 

Applying initial condition to (3.250)  

 0 0(0) (0)d E E         (3.251) 

 0 0d E         (3.252) 

From (3.242) 

 0 1

0: e 0p          (3.253) 

Integrating (3.253) 

 0 4e C         (3.254) 

Applying initial condition to (3.254) 
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0 0(0) (0)e C C          (3.255) 

 0 0e C         (3.256) 

From (3.232) 

 0 1

0: f 0p          (3.257) 

Integrating (3.257) 

 0 5f C         (3.258) 

Applying initial condition to (3.258) 

 0 0(0) (0)f A A         (3.259) 

 0 0f A         (3.260) 

From (3.238) 

 0 1

0: g 0p          (3.261) 

Integrating (3.261) 

 0 6g C         (3.262) 

Applying initial condition (3.262) 

 0 0(0) (0)g R R         (3.263) 

 0 0g R         (3.264) 

From (3.209) 

 
1

1 1 0 2 0 0 0 0 0 0 0 0(d a )a w b w g G a e a f a       
  (3.265) 
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 Integrating (3.265) 

 1 1 0 2 0 0 0 0 0 0 0 0[ (d a ) ]a w b w g G a e a f a t          (3.266) 

 1 1 0 2 0 0 0 0 0 0[ (E )S ]a wV w R G C A S t           (3.267) 

From (3.215) 

 1

1 0 2 0b a F b         (3.268) 

Integrating (3.268) 

 1 0 2 0b ( )a F b t         (3.269)
 

 1 0 2 0b ( )S F V t         (3.270) 

From (3.221) 

 
1

1 0 0 0 0 0 0 3 0d ( )G d a e a f a F d         (3.271) 

Integrating (3.271) 

1 0 0 0 0 0 0 3 0d [ ( ) ]G d a e a f a F d t         (3.272) 

 1 0 0 0 0 3 0d [ (E )S ]G C A F E t         (3.273) 

From (3.227) 

 1

1 1 0 4 0e c d F e         (3.274) 

Integrating (3.274) 

1 1 0 4 0e [ ]tc d F e         (3.275) 

 1 1 0 4 0e [ ]tc E F C         (3.276) 
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From (3.233) 

 1

1 2 0 5 0f c e F f         (3.277) 

Integrating (3.277) 

 1 2 0 5 0f [ ]c e F f t         (3.278)  

 1 2 0 5 0f [ ]c C F A t         (3.279) 

From (3.239) 

1

1 1 0 2 0 6 0g e f F g           (3.280) 

Integrating (3.280) 

1 1 0 2 0 6 0g [ ]e f F g t           (3.281) 

1 1 0 2 0 6 0g [ ]C A F R t           (3.282) 

From (3.210)  

 
1

2 1 1 1 0 0 0 0 1

1 1 1 2 1

(d )a G(e )

0

a G e f d f a

a w b w g

       

   
    (3.283) 

Substituting  (3.267), (3.270), (3.273) and (3.276), (3.279), and (3.282) into (3.283) 

1

2 0 0 0 0 3 0

1 0 4 0 2 0 5 0 0

0 0 0 1 0 2 0

0 0 0 0 0 1

1 0 2 0 0 0 0 0

0 1 0 2 0

2 1 0 2 0 6 0

([ (E )S ]

[ ] t [ ] )S

G(C )[

(E )S ]

[ (E )S

] ( )

[ ]

a G G C A F E t

c E F C c C F A t

E A w V w R

G C A S t

w V w R G C A

S t w S F V t

w C A F R t





 

 

     

   

     

   

      

   

 

     (3.284)
 

Integrating (3.284) 
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0 0 0 0 3 0

1 0 4 0 2 0 5 0 0

0 0 0 1 0 2 0 2

2 0 0 0 0 0

1 0 2 0 0 0 0 0

0 1 0 2 0

2 1 0 2 0 6 0

([ (E )S ]

[ ] [ ])S

G(C )[

(E )S ]
2

[ (E )S

] ( )

[ ]

G G C A F E

c E F C c C F A

E A wV w R
t

a G C A S

wV w R G C A

S w S F V

w C A F R





 

 

     
 

   
 
      
 

     
       
 
    
 

  

   (3.285) 

From (3.216) 

 1

2 1 2 1b a F b         (3.286) 

Substituting  (3.267), (3.270) into (3.286), 

 
1

2 1 0 2 0 0 0 0 0 0

2 0 2 0

[ (E )S ]

( )

b wV w R G C A S t

F S F V t

 



       

 
  (3.287) 

Integrating (3.287) 

 
2

1 0 2 0 0 0 0 0 0

2

2 0 2 0

[ (E )S ]

( ) 2

wV w R G C A S t
b

F S F V

 



       
  

  
  (3.288) 

From (3.289) 

 1

2 1 1 1 0 0 0 0 1 3 1d ( ) (d )G d e f a G e f a F d          (3.290) 

Substituting (3.267),(3.273),(3.276) and (3.279) into (3.290)  

1

2 0 0 0 0 3 0

1 0 4 0 1 0 0 0 0 1 0 2 0 0 0 0 0 0

3 0 0 0 0 3 0

d ([ (E )S ]

[ ] t ) (d )[ (E )S ]

[ (E )S ]

G G C A F E t

c E F C f a G e f wV w R G C A S t

F G C A F E t



    

           

   

(3.291) 

Integrating (3.291) 

0 0 0 0 3 0 2

2 1 0 4 0 1 0 0 0 0 1 0 2 0 0 0 0 0 0

3 0 0 0 0 3 0

([ (E )S ]

d [ ] )S (C )[ (E )S ]
2

[ (E )S ]

G G C A F E
t

c E F C f G E A wV w R G C A S

F G C A F E



    
 

             
     

 (3.292) 
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From (3.228) 

 1

2 1 1 4 1e c d F e         (3.293) 

Substituting (3.273) and (3.276) into (3.293) 

 1

2 1 0 0 0 0 3 0 4 1 0 4 0e [ (E )S ] [ ] tc G C A F E t F c E F C        (3.294) 

Integrating (3.294) 

  
2

2 1 0 0 0 0 3 0 4 1 0 4 0

t
e [ (E )S ] [ ]

2
c G C A F E F c E F C        (3.295) 

From (3.279) 

 1

2 2 1 5 1f c e F f         (3.296) 

Substituting (3.276) and (3.279) into (3.296) 

  1

2 2 1 0 4 0 5 2 0 5 0f [ ] [ ]c c E F C F c C F A t        (3.297) 

Integrating (3.297) 

  
2

2 2 1 0 4 0 5 2 0 5 0f [ ] [ ]
2

t
c c E F C F c C F A        (3.298) 

From (3.282) 

1

2 1 1 2 1 6 1g e f F g           (3.299) 

Substituting (3.276), (3.279) and (3.282) into (3.299) 

1

2 1 1 0 4 0 2 2 0 5 0

6 1 0 2 0 6 0

g [ ]t [ ]

[ ]

c E F C c C F A t

F C A F R t

 

 

   

  
     (3.300) 

Integrating (3.300) 
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2
1 1 0 4 0 2 2 0 5 0

2

6 1 0 2 0 6 0

[ ] [ ]
g

[ ] 2

c E F C c C F A t

F C A F R

 

 

   
  

   
     (3.301) 

But  

 2

0 1 2( ) ...S t a pa p a          (3.302) 

    2

0 1 2
1

lim ...
p

S t a pa p a


         (3.303) 

   0 1 2 ...S t a a a          (3.304) 

  0 1 0 2 0 0 0 0 0 0

0 0 0 0 3 0

1 0 4 0 2 0 5 0 0

0 0 0 1 0 2 0

0 0 0 0 0

1 0 2 0 0 0 0 0

0 1 0 2 0

2 1 0 2 0 6 0

[ (E )S ]

([ (E )S ]

[ ] [ ])S

G(C )[

(E )S ]

[ (E )S

] ( )

[ ]

S t S wV w R G C A S t

G G C A F E

c E F C c C F A

E A wV w R

G C A S

wV w R G C A

S w S F V

w C A F R







 

 

         

    

   

     

   

      

   

 

2

2

t


 
 
 
 
 
 
 
 
 
 

 (3.305) 

Also 

 2

0 1 2 ...V b pb p b          (3.306)  

   2

0 1 2
1

lim ...
p

V t b pb p b


         (3.307) 

0 1 2( ) ...V t b b b          (3.308) 

0 0 2 0

2
1 0 2 0 0 0 0 0 0

2 0 2 0

V( ) ( )

[ (E )S ]

( ) 2

t V S F V t

wV w R G C A S t

F S F V



 



   

       
 
  

  (3.309) 

also  

2

0 1 2 ...E d pd p d          (3.310) 
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    2

0 1 2
1

lim ...
p

E t c pc p c


         (3.311) 

 0 1 2 ...E d d d           (3.312)

0 0 0 0 0 3 0

0 0 0 0 3 0 2

1 0 4 0 1 0 0 0 0 1 0 2 0 0 0 0 0 0

3 0 0 0 0 3 0

E( ) [ (E )S ]

([ (E )S ]

[ ] )S (C )[ (E )S ]
2

[ (E )S ]

t E G C A F E t

G G C A F E
t

c E F C f G E A wV w R G C A S

F G C A F E



     

    
 

            
     

(3.313) 

Also   

2

0 1 2 ...C e pe p e          (3.314) 

    2

0 1 2
1

lim ...
p

C t e pe p e


         (3.315) 

 0 1 2 ...C e e e           (3.316) 

 
 

0 1 0 4 0

2

1 0 0 0 0 3 0 4 1 0 4 0

C( ) [ ] t

t
[ (E )S ] [ ]

2

t C c E F C

c G C A F E F c E F C

   

    
   (3.317) 

Also  

 2

0 1 2 ...A f pf p f          (3.318) 

    2

0 1 2
1

lim ...
p

A t f pf p f


         (3.319) 

0 1 2( ) ...A t f f f          (3.320) 

 
 

0 2 0 5 0

2

2 1 0 4 0 5 2 0 5 0

( ) [ ]

[ ] [ ]
2

A t A c C F A t

t
c c E F C F c C F A

   

  
    (3.321) 

Also 

 2

0 1 2 ...R g pg p g          (3.322) 



lxv 
 

    2

0 1 2
1

lim ...
p

R t g pg p g


         (3.323) 

0 1 2R( ) ...t g g g          (3.324) 

 

0 1 0 2 0 6 0

2
1 1 0 4 0 2 2 0 5 0

6 1 0 2 0 6 0

R( ) [ ]

[ ] [ ]

[ ] 2

t R C A F R

c E F C c C F A t

F C A F R

 

 

 

    

   
 
   

    (3.325) 
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CHAPTER FOUR 

4.0     RESULTS AND DISCUSSION 

4.1 Numerical Simulations 

In this section, we plot the graph of analytical solution of our model equations using 

maple software in order to view the effects of our control parameters on different 

compartment of the model population. 

4.2 Estimation of Variables and Parameters Value 

The values of the variables of the model were approximated based on the Nigeria 

demographic sketch and also on HBV epidemiology. Thus Table 4.1 is a referenced and 

hypothetical values for the variables of the model and the corresponding values of each 

of the model parameters are shown in table 4.2. 

Table 4.1 Baseline Values for Variables of the HBV in Nigeria 

 

 

 

 

 

 

 

 

 

 

Variable    Value Source 

S  135008399 Calculated 

V  105131190   WHO (2020) 

E   15000000 WHO (2020) 

C   3000000 WHO (2020) 

A
 

  1500000 WHO (2020) 

R     500000 Assumed 
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Table 4.2: Baseline Values for Parameters of HBV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters and State 

Variables 

  Value Source 

  2430151 Calculated    

  0.2 Assumed 

1  0.002 Assumed 

2  0.002 Assumed 

  (0-1) Varies 

  (0-1) Varies 

c  0.8 Assumed 

c  (0-1) Varies 

  0.018 Assumed 

1c  0.03 Assumed 

2c   0.01 Assumed 

1  (0-1) Varies 

2  (0-1) Varies 

  0.014 Assumed 
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Figure 4.1: Effect of Treatment on Chronic Infected Population 

From figure 4.1 the graph shows that the higher the treatment rate, the lower the 

chronically infected population. This shows that the treatment rate have a significant 

effect on the chronic infectious population. Although there is an initial increase in the 

population with treatment, but within 10years the population started declining. 
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Figure 4.2: Effect of Treatment on Acutely Infected Population 

From figure 4.2 the graph shows that the higher the treatment rate, the lower the acutely 

infected population. This shows that the treatment rate have a significant effect on the 

acutely infectious population. Although there is an initial increase in the population with 

treatment, but took between 10 to 20 years for the population to start declining. 
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Figure 4.3: Effect of Treatment on Recovered Population 

From figure 4.3 the graph shows that the higher the treatment rate, the higher the recovery 

population. This shows that the treatment rate have a significant effect on the recovery 

population.  
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Figure 4.4: Effect of Treatment on Exposed Population 

From figure 4.4 the graph shows that the treatment rate doesnot have a significant effect 

on the exposed population. For different level of treatment, the exposed population 

increased exponentially, before declining. 
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Figure 4.5: Effect of Treatment on Exposed Population 

From figure 4.5 the graph shows that the treatment rate doesnot have a significant effect 

on the exposed population. For different level of treatment, the exposed population 

declined. 
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Figure 4.6: Effect of Vaccination on Chronic Infected Population 

From figure 4.6 the graph shows that the higher the vaccination rate, the lower the 

chronically infected population. This shows that the vaccination rate have a significant 

effect on the chronic infectious population. Although there is an initial increase in the 

population with vaccination, but got to the peak within 20years, before the population 

started declining. 
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Figure 4.7: Effect of Vaccination on Acutely Infected Population 

From figure 4.7 the graph shows that the higher the vaccination rate, the lower the acutely 

infected population. This shows that the vaccination rate have a significant effect on the 

acute infectious population. Although there is an initial increase in the population with 

vaccination, but got to the peak within 20years, before the population started declining. 
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Figure 4.8: Effect of Vaccination on Exposed Population 

From figure 4.8 the graph shows that the higher the vaccination rate, the lower the 

exposed population. This shows that the vaccination rate have a significant effect on the 

exposed population. Although the is an initial increase in the population with vaccination 

was the same, but got to the peak within 20years, before the population started declining 

and the exponential drop reveals clearly the effect of the vaccination at different level. 
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Figure 4.9: Effect of Vaccination on Recovered Population 

From figure 4.9 the graph shows that the higher the vaccination rate, the higher the 

recovery population. This shows that the vaccination rate have a significant effect on the 

recovery population.  
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Figure 4.10: Effect of Condom Usage on Exposed Population 

From figure 4.10 the graph shows that the higher the condom usage rate, the lower the 

exposed population. This shows that the condom usgae rate have a significant effect on 

the exposed population.  
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4.3 Discussion of Results 

The result of the research shows that higher treatment rate, results in  the decline of the 

chronically and acutely infected population, also the higher the treatment rate, the lower 

the chronically and  acutely infected population, this in turn resulted in increase in the 

recovered population. This shows that the treatment rate have a significant effect on the 

infected and recovered populations, although the treatment rate does not have a 

significant effect on the exposed population. Also for different levels of treatment, the 

vaccination rate have a significant effect on the chronically infectious population. Finally 

the result also shows that the higher the condom usage rate, the lower the exposed 

population which means the risk of contacting HBV with usage of highly effective 

condom is very minimal. 
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CHAPTER FIVE 

5.0                            CONCLUSION AND RECOMMENDATIONS  

5.1 Conclusion 

This work, developed a mathematical model for the transmission dynamics and control 

of hepatitis B virus incorporating vaccinated class using ordinary differential equations.  

It can be concluded that the local stability analysis of the Disease Free Equilibrium State 

(DFE) of the model will be stable if 1CR   and globally stable if 1CR  . Also the analysis 

of the Endemic Equilibrium State (EE) shows that it is stable. 

5.2 Contribution to Knowledge 

(i) This research developed model for the transmission dynamics of HBV 

incorporating vaccinated class and treatment was used as the control 

parameter using ordinary differential equations. 

(ii)  The work has shown the criteria for the stability of the model equilibrium 

points 

(iii) The work has shown the effect of treatment and vaccination on all the 

compartments of the model 

5.3  Recommendations 

i. Early treatment of acute and chronic infected individuals is highly 

recommended.  

ii. Every individuals who are susceptible to HBV are stongly advised to get 

vaccinated. 
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iii. We also want to recommend to World Health Organization, CDC and 

NAFDAC that the efficacy level of the produced condoms should be at 

95% and above in order to reduced the risk of getting infected through sex. 

iii. One of the limitations of this study is the unavailability of valid and 

sufficient records of HBV cases; therefore health workers should make 

data available for researchers. 
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