
i

IMPROVED 2-LEVEL DATA SECURITY APPROACH FOR UBER

TRANSPORT MANAGEMENT SYSTEM (UTMS)

Title Page

BY

ILIYASU, Mohammed Awwal

MTech/SICT/2018/8832

A THESIS SUBMITTED TO THE POSTGRADUATE SCHOOL

FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA, NIGERIA IN

PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

AWARD OF THE DEGREE OF MASTER OF TECHNOLOGY

IN COMPUTER SCIENCE

SEPTEMBER, 2021

ii

ABSTRACT

Transport Management Systems are application softwares designed to optimize and

manage various transport operations, including inbound and outbound transport

operations. Transport Management System has a wide range of features and functions,

these include booking rides, GPS vehicle trackers used to track the locations of vehicles

and their drivers, calculating transportation costs, optimizing travel routes and vehicle

loads, freight audits, creating and optimizing shipping plans. Uber is a Transport

Management Systems application that connects drivers with riders. Uber's rising travel

demand has led to several transportation safety issues and currently, users of Uber

Transport Management Systems (UTMS) are more concerned with data secrecy than

convenience of transportation services. This research aims to improve on a 2-level data

security approach to secure confidential information during communication between two

or more clients and data in a database of an Uber Transport Management System. The

research adopted DNA cryptography method to store, process and transmit information

in a mangled form using Shift Cipher and DNA One Time Pad encryption techniques. To

implement the 2 level data security approach, Shift Cipher technique was used as the first

security level and DNA One Time Pad (OTP) encryption technique for the second

security level. DNA OTP and Shift Cipher encryption approaches were used to secure

and unveil the meaning of information processed via Transport System Security module

for all operations (Encryption and Decryption). The research findings revealed that

Transport System Security module has better processing speed for both encryption and

decryption operation with an improve 2 level data security. The experimental result shows

that information below 200 characters can be encrypted in 0.02 millisecond while

information having less 300 characters can be decrypted in 0.02 millisecond.

iii

TABLE OF CONTENTS

Cover Page

Title Page i

Declaration Error! Bookmark not defined.

Certification Error! Bookmark not defined.

Acknowledgements Error! Bookmark not defined.

Abstract ii

Table of Contents iii

List of Tables vii

List of Figures viii

CHAPTER ONE 1

1.0 INTRODUCTION 1

1.1 Background to the Study 1

1.2 Statement of the Research Problem 3

1.3 Aim and Objectives 4

1.4 Scope of the Study 4

1.5 Significance of the Study 5

CHAPTER TWO 6

2.0 LITERATURE REVIEW 6

iv

2.1 Cryptography 6

2.2 Components of Cryptosystem 7

2.3 Types of cryptosystem 8

2.3.1 Symmetric Key Encryption 8

2.3.2 Asymmetric Key Encryption 8

2.4 Methodologies of cryptography 9

2.4.1 One-Time Pad (OTP) 9

2.4.2 Symmetric Key Cryptography 10

2.4.3 Asymmetric Key Cryptography 12

2.4.4 Steganography 14

2.4.5 Quantum Cryptography 14

2.4.6 DNA Cryptography 14

2.5 Related work 16

CHAPTER THREE 24

3.0 RESEARCH METHODOLOGY 24

3.1 Shift Cipher Encryption Technique 24

3.2 DNA One Time Pad (OTP) Encryption Technique 24

3.3 DNA Digital Coding 25

3.4 Proposed Uber Transport Management System (UTMS) Architecture 26

3.5 Proposed 2-level data security approach 27

3.6 Transport System Security (TSS) Design 28

3.6.1 Use Case Diagram 28

v

3.7 Performance Evaluation Techniques 29

3.7.1 Computational Complexity of the Algorithm 29

3.7.2 Confidential Level of the Algorithms 29

3.7.2.1 Cryptanalytic Attack 29

3.8 Time Evaluation Functions 29

3.9 Shannon Entropy 30

CHAPTER FOUR 31

4.0 RESULTS AND DISCUSSION 31

4.1 2-Level Data Security Algorithms 31

4.2 Transport System Security (TSS) Module 34

4.2.1 TSS Encryption Result 34

4.2.2 TSS Decryption Result 35

4.3 Performance Evaluation 36

4.3.1 Computational Complexity of the TSS algorithms 36

4.3.2 Security Level 41

4.3.2.1 Cryptanalytic Attacks 41

4.4 Experimental Results 43

4.4.1 Key Generation Result 44

4.4.2 Encryption Result 45

4.4.3 Decryption Experimental Result 46

4.5 Entropy Result 47

vi

CHAPTER FIVE 49

5.0 CONCLUSION AND RECOMMENDATION 49

5.1 Conclusion 49

5.2 Recommendation 49

5.3 Contributions to Knowledge 50

REFERENCES 51

APPENDIX 54

vii

LIST OF TABLES

Table Title page

3.1 Transformation of binary code format to a DNA sequence 26

4.1 TSS Encryption Algorithm 31

4.2 TSS Decryption Algorithm 32

4.3 TSS Key Generation Algorithm 33

4.4 Pseudo code of Key Generation, Encryption and Decryption operations 37

4.5 Measurements of the encryption runtime 38

4.6 Measurements of the Decryption Runtime 39

4.7 Key generation experimental result 44

4.8 Encryption experimental result 45

4.9 Decryption result 46

4.10 Shannon Entropy with Frequencies of alphabet symbols 47

viii

LIST OF FIGURES

Figure Title Page

2.1 Basic model of cryptosystem (Kumar, 2014) 7

2.2 One-Time Pad (OTP) algorithm (Purusothaman & Saravanan, 2016) 10

3.1 Proposed Uber Transport Management System Architecture 26

3.2 TSS Use Case Diagram 28

4.1 Encryption Experimental Result 34

4.2 Decryption Result Interface 35

4.3 Growing Rate of the Encryption Runtime 39

4.4 Growing Rate of the Encryption Runtime 39

4.5 Growing Rate of the Decryption Runtime A 40

4.6 Growing Rate of the Decryption Runtime 40

file:///C:/Users/AWWAL/Desktop/MOHAMMED%20AWWAL%20ILIYASU%20-%20MTECH-SICT-2018-8832.docx%23_Toc79405515
file:///C:/Users/AWWAL/Desktop/MOHAMMED%20AWWAL%20ILIYASU%20-%20MTECH-SICT-2018-8832.docx%23_Toc79405516
file:///C:/Users/AWWAL/Desktop/MOHAMMED%20AWWAL%20ILIYASU%20-%20MTECH-SICT-2018-8832.docx%23_Toc79405517
file:///C:/Users/AWWAL/Desktop/MOHAMMED%20AWWAL%20ILIYASU%20-%20MTECH-SICT-2018-8832.docx%23_Toc79405518

1

CHAPTER ONE

1.0 INTRODUCTION

1.1 Background to the Study

Transportation is a complex system that is a part of any city, state, or nation's critical

infrastructure. Any disruption of transport networks from highways to rail lines to rivers

and to the sky can have an immediate and significant impact on people and the economy

(Mark, 2019). The transport networks have the services needed to meet society's mobility

needs. In the end, the transport system's function is to resolve the tension associated with

the physical separation between land uses, goods, services and people. Rising travel

demand has led to a number of major transportation safety issues. This sector is now a

prime target for cybercriminals, hackers and other bad actors (Newton, 2016).

Transport Management Systems (TMS) are application softwares designed to optimize

and manage various transport system operations, including inbound and outbound

transport operations. TMS have a wide range of features and functions, these include

booking rides, GPS vehicle trackers used to track the locations of vehicles and their

drivers, calculating transportation costs, optimizing travel routes and vehicle loads,

freight audits, creating and optimizing shipping plans and so on (Beecroft, 2019).

Security is important for public transport as it has the ability to influence travel behavior

at any stage of a journey from pre-trip preparation to post-trip assessment through

undertaking the journey. There are major difficulties in assessing crime and disorder in

public transport, making it difficult to assess if there is a difference between the rates of

crime perceived and actual. This is a result of the restrictions on the collection of data on

real levels of public transport crime (Newton, 2004). It is also unclear to what degree

2

under-reporting of public transport crime is as an important factor. Hence data reliability

and availability in Transport System Applications is considerably unreliable (Findin,

2014).

At present, users of Uber Transport Management System (UTMS) are more concerned

with information privacy than convenience. Thanks to the incidence of data breach reports

of some TSA companies which includes Taxi, Lyft and Uber and cab riders, among

others; although these has limited the patronization of some transport system firms as

customers were acquainted of the data breaches in recent years (Stephen, 2019).

Uber is a TMS application that connect drivers with riders. The company had failed to

provide fair protections for users’ information stored in an Amazon Web Services (AWS)

third party cloud storage database called the Amazon Simple Storage System (Amazon

S3 Datastore). In May 2014 Uber's Amazon S3 Datastore was attacked using an access

key which was posted publicly and given full administrative rights to all data and

documents contained in Uber's Amazon S3 Datastore. The hacker accessed one file

containing confidential Uber Drivers personal information, including more than 100,000

unencrypted names and driver's license numbers, 215 unencrypted names and their bank

details and domestic routing numbers, and 84 unencrypted names and social security

numbers (Donald, 2018).

Another Intruder accessed the Uber's Amazon S3 Datastore between October and

November 2016 using an AWS access key that was posted to a private GitHub repository.

The intruders who perpetrated the intrusion in 2016 claimed they accessed Uber's GitHub

website using passwords already revealed in other major data breaches, whereupon they

identified the AWS access key they used to access and download files from Uber's

Amazon S3 Datastore. The intruders downloaded 16 files containing unencrypted user

3

personal data relating to the U.S. Riders and drivers which have 25.6 million names and

email addresses, 22.1 million names and cell phone numbers, and 607,000 names and

license numbers for drivers (Newton, 2016).

Lyft transport organization was previously suspected of both spying on consumers and

their own drivers, but now competitor Uber is facing similar accusations. The Uber

organization has informed customers that it is investigating an allegation that employees

have accessed customer data illegally (Stephen, 2019).

1.2 Statement of the Research Problem

Securing confidential information during communication between two or more clients

and data in a database of an Uber Transport Management System (UTMS) is a crucial

challenge in recent years. Transport Management Systems are convenient and easy to use

for transportation services, but they pose a significant amount of risks and concerns to all

active members. The ease of assessing information and services on UTMS has made

confidential information prone to cyber-attack.

In recent years, the occurrence of information security breaches in an Uber Transport

Management System (UTMS) has become frequent news which has led to financial

consequences, as well as identity fraud risk of innocent clients. Therefore, in this research,

DNA Cryptography is adopted using Shift Cipher and DNA One Time Pad encryption

techniques to secure the confidentiality of information during communication between

two or more clients and data in a database of an Uber Transport Management System

(UTMS).

4

1.3 Aim and Objectives

The aim of this research is to improve on a 2-level data security approach for Uber

Transport Management System (UTMS).

The research objectives are to:

• Design a 2-level data security algorithm using Shift Cipher and DNA One-Time-

Pad (OTP) encryption techniques

• Develop a Transport System Security module for securing the confidentiality of

communication between two or more clients

• Evaluate the performance of the developed DNA encryption technique with a

Shannon entropy theory

1.4 Scope of the Study

This study focused on developing an improved 2-level data encryption system using DNA

One-Time-Pad (OTP) and Shift Cipher encryption method for securing the confidentiality

of information during communication between parties (i.e. customers, drivers and

administrators) and for the confidentiality of data in archive (i.e. in a database) of an Uber

Transport Management System (UTMS). As a proof of concept, a 2-level data encryption

system was developed to evaluate the performance of the system. The first security level

used shift key value method to shift the plaintext characters’ position and the second

security level used OTP encryption method to generate the ciphertext of the shifted

plaintext obtained from the first security level. The runtime of the developed encryption

system was measured using Personal Home Page (PHP) Time Evaluation Function.

Shannon entropy theory was used to estimate the average minimum number of bits

required to encrypt an information, based on the occurrence of each character in an

encrypted information (ciphertext).

5

1.5 Significance of the Study

The findings of the study would help the stakeholders of Uber Transport Management in

providing security designs and algorithms that will improve the security level of the

current transportation system issues and minimize the occurrence of private data breach

of Uber Transport Management System (UTMS).

The information of customers, drivers and other related business partners who frequently

used UTMS will be secured and confidential.

Uber Transport Management System (UTMS) information will be secured and

confidential during communication between the parties and when the data is stored. This

will increase the reliability of customer’s and driver’s private information.

6

CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Cryptography

Cryptology is the study of cryptosystem and it is the science for information security

which converts ordinary plain text into human unreadable codes i.e. cipher text and vice-

versa. There are two subfields of cryptology, which are cryptography and cryptanalysis.

Cryptography is the science of using mathematics to encrypt and decrypt data, or it is the

ability to transmit information in a mangled format between participants that prevents

others from reading it. This allows for versatile storage of confidential information or

transmits it through vulnerable networks (such as the internet) so that nobody can read it

except the intended user (Darbari & Prakash, 2014).

Kumar (2014) describes cryptography as a technique developed by applying mathematics

and logic to store and transmit data in coded and protected form so that it can be read and

processed only by the intended recipient. The method of data securement is known as

encryption by generating cipher text from plain text. Cryptography protects data from

third parties i.e. adversaries and is often used for user authentication. The science or

technique for decoding the cipher text is cryptanalysis or decryption. The cryptosystem

basic model is depicted in Figure 2.1.

7

Figure 2.1: Basic model of cryptosystem (Kumar, 2014)

2.2 Components of Cryptosystem

The basic components of cryptosystem are (Gulati & Kalyani, 2016):

• Plain Text: Original data not coded computationally.

• Cipher Text: It is the plain text encoded or encrypted in the form of unreadable

human language.

• Encryption Algorithm: This is a mathematical procedure or algorithm which takes

plain text as the input and generates cipher text as the output using the encryption

key.

• Decryption Algorithm: A mathematical method to transform cipher text to plaintext

using decryption key. It is the inverse form of an algorithm for encryption.

• Encryption Key: This is the parameter specifically generated to produce the usable

output, i.e. using encryption algorithm to obtain cipher text.

• Decryption Key: This is the parameter needed to convert the encrypted data, i.e. the

ciphertext, to its original form, i.e. the plaintext of the intended recipient.

8

2.3 Types of cryptosystem

Cryptosystem consists mainly of two types, based on encryption and decryption

techniques (Babu et al, 2016).

• Symmetric key encryption

• Asymmetric key encryption

2.3.1 Symmetric Key Encryption

Symmetric key encryption or hidden key encryption uses the same key for encryption and

decryption of information. Encryption key is a mutual secret transmitted between senders

and receivers. Due to broad key size, symmetric encryption is difficult to crack and used

mainly for bulk encryption. Confidentiality is the only security benefit this methodology

makes available. Digital Encryption Standard (DES), Triple-DES (3DES), BLOWFISH

and IDEA are just a few examples of common methods for symmetric key encryption

(Gambhir & Rakesh, 2019).

2.3.2 Asymmetric Key Encryption

Asymmetric key encryption or public key cryptography is used to encrypt and decrypt

information using different keys. Every communication participant has two keys in this

methodology; one is public key that is shared with all participants, and the other is private

key that is confidential and that is known only to the intended receiver. Though there are

apparently different public and private keys, these are mathematically related. Each public

key has a private key which corresponds. It will provide honesty, authentication, and non-

repudiation. Rivest Shamir Adleman (RSA), Diffle and Elliptic Curve cryptography are

just a few common examples of Asymmetric key encryption algorithms (Raj & Panchami,

2015).

9

2.4 Methodologies of cryptography

Before the modern era, cryptography was only used by the military leaders, spies and

diplomats to keep the message secret. Six encryption technologies have been tested over

the past years to ensure safe computation, verify validity of documents, authenticate

identities of senders and recipients (kazazi & Torkaman, 2015).

Modern cryptography follows solid, scientific methods to design an adversary's

potentially unbreakable encryption algorithm. But sometimes, computationally efficient

methods are less feasible in practice to do so (Gulati & Kalyani, 2016).

2.4.1 One-Time Pad (OTP)

Towards the end of the 19th century Vernam Cipher developed a one-time pad algorithm.

If the key used in OTP is generated randomly and not used more than once, then the

algorithm is assumed to be entirely unbreakable. Previously, the randomly generated keys

were exchanged as a pad of papers so that after using the key, the sheets could be turn

off; thus, the algorithm was called a one-time pad (Gambhir et al., 2019). The algorithm's

secret key normally is a string of characters or numbers that is at least as long as the

longest message to be encrypted. This algorithm is explained using an example in Figure

2.2.

10

Figure 2.2: One-Time Pad (OTP) algorithm (Purusothaman & Saravanan, 2016)

Pseudo-random number generators (PRNGs) are the algorithms that generate sequences

of random numbers by using mathematical formulae. Some common PRNGs are; lagged

Fibonacci generators, linear congruential generators, linear feedback shift registers etc.

Cryptographically Stable Pseudo-Random Number Generators (CSPRNGs) are used for

cryptographic applications, and are safer in terms of protection than PRNGs

(Purusothaman & Saravanan, 2016).

2.4.2 Symmetric Key Cryptography

Symmetric key cryptography or hidden key cryptography was built mainly for bulk data

encryption or data streams. Uses the same key to encrypt and decrypt confidential

information. The block cipher is the symmetric encryption algorithm which encrypts a

group of bits with a fixed length, i.e. block of plain text at a time. Many types of

symmetric encryption algorithms and stream cipher, on the other hand, can encrypt a

single bit or byte of data at a time. Block ciphers are typically symmetric encryption

algorithms used frequently in recent years. The standard block sizes that can be encoded

by the block cipher at a time are 64 bits, 128 bits, and 256 bits. A 128-bit block cipher

11

usually encrypts 128 bits of plain text at a time, and produces 128-bit cipher text. DES,

Triple DES, AES, Blowfish, Twofish etc. are the most common block ciphers having a

wide range of applications. Other examples as listed (Sohal, 2018) are:

• DES: Data Encryption Standard (DES) is a common 64-bit block cipher developed in

1975 and standardized by ANSI (American National Standards Institute) in 1981 as

ANSI X.3.92. The key used in DES consists of 64 bits, the effective key length in 56

bits. The actual key size 8 bits are used to test parity, and then discarded.

• Triple DES: Triple DES focuses its basic approach on DES. It encrypts the plain text

three times. The total key length of Triple DES is 192 bits i.e. this block cipher uses

three 64-bit keys. Like DES each key has an effective length of 56 bits. The first

encrypted cipher text in Triple DES is again encrypted by the second key, and the

third key encrypts the resulting encrypted cipher text. Although this algorithm is much

safer in terms of surety than DES, for real-life applications the execution time is too

slow.

• Advanced Encryption Standard (AES): AES is the most widely common symmetric

block cipher with a wide range of applications in modern security systems, such as

financial transactions, e-business, wireless communication, encrypted data storage

etc.

In both hardware and software, it's more reliable and faster than triple DES. The

number of rounds is variable, as is the duration of the AES keys. 10 rounds are valid

for 128-bit key, 12 rounds for 192-bit key and 14 rounds for 256-bit key. For each

round different 128-bit round keys are used, determined from the original AES key.

AES algorithm handles data block in bytes; i.e., it handles 128 bits of plain text as 16

bytes. The production of AES, a clear successor to DES, started in 1997 by the

12

National Institute of Standards and Technology (NIST) and was more protected

against the attacks by brute force.

• Blowfish: Blowfish is another 64-bit block cipher that supports different key lengths

ranging from 32 to 448 bits. This function makes Blowfish algorithm suitable for both

domestic and exportable use. This algorithm can be used in software easily and is free

for all users, since Blowfish is unpatented and license free.

• Twofish: The 128-bit symmetric key block cipher supports up to 256 bits’ key length.

Twofish is similar to the block cipher Blowfish mentioned above, but is not as

common as Blowfish.

2.4.3 Asymmetric Key Cryptography

Asymmetric key cryptography or public key cryptography uses varying but

mathematically similar keys; widely distributed public encryption keys; and decryption

private keys known only to intended recipients. According to Jain et al. (2014), examples

of asymmetric key cryptography are:

• Diffie-Hellman Key Exchange Protocol: is a scheme for information exchange

through a vulnerable public channel. Let, two people Alice and Bob want to exchange

data securely via public web, as referred to in cryptographic literature. The main

concept for this protocol to create a safe communication network is that there are some

hidden details that Alice and Bob know only about. This information is used to deduce

an appropriate key for encoding or decoding the data (Taha et al., 2019).

• RSA Algorithm: The reliability of the RSA algorithm relies on the fact that it is too

difficult to solve the factorization of a large number, which is a combination of two

large prime numbers. This is a trapdoor function that is easy to calculate in one

direction but hard to calculate the reverse without any precise details. Let for instance,

13

P X Q = N, where P and Q are very large prime numbers. If P and Q are given, then

N can be easily determined. But when N is given, in polynomial time, the factorization

of N can’t be determined. But if Q is identified alongside N, then P can be easily

determined i.e. P = Q / N (Kumar, 2014).

• El-Gamal Cryptosystem: El-Gamal Cryptosystem is an asymmetric key encryption,

based on the Discrete Logarithm Problem for this algorithm. There is no current

algorithm for a given number that can find its discrete logarithm in polynomial time,

but the inverse operation of the power can be efficiently obtained. Another main

feature of the El-Gamal cryptosystem is encryption by randomization. This algorithm

can create a safe channel for key sharing and generally used as key protocol for

authentication. The key size of this algorithm should be in excess of 1024 bits for

stability. El-Gamal algorithm's big disadvantage is that it is fairly time-consuming

(Jain et al., 2014).

• Elliptic Curve Cryptography (ECC): it is the promising future of asymmetric key

encryption based on algebraic elliptic curve structure over finite fields. Similar to the

ElGamal cryptosystem, ECC protection also depends on the algorithmically difficult,

discrete logarithm problem. Although this algorithm follows the same technique as

the Diffie-Hellman key exchange protocol and the RSA algorithm, the unique feature

of Elliptic-curve cryptography is that the numbers are chosen to form a finite field

specified within an elliptic curve. This technique is much smaller in key size; For

example, 160-bit key-length ECC ensures the same level of safety as 1024-bit key-

length RSA algorithms. Since the processing power consumption and the necessary

memory sizes are significantly small, this relatively new algorithm has a huge

potential for applications on restricted devices. In real life, ECC has many

14

applications; for example, safe data transfer, digital signatures, shared authentication

(Harsh & Jae, 2018).

2.4.4 Steganography

The term "steganography" comes from the Greek words "stegano," meaning "covered"

and "graphie" means "writing." This approach guarantees data protection by ambiguity

rather than actual encryption. It transmits data via video, audio, document or image files,

by embedding it in an unnoticeable way (Taha et al., 2019).

2.4.5 Quantum Cryptography

Quantum cryptography is a thriving technique of encryption based on the principles of

quantum mechanics, literally the principle of Heisenberg Uncertainty, and the theory of

photon polarization. This approach takes advantage of the counterintuitive behavior of

atomic scale elementary particles, typically the mass of photons. Quantum bit, also called

qubit, transmits information in quantum cryptography and is just a single photon particle

(Gambhir & Rakesh, 2019).

2.4.6 DNA Cryptography

Another rapidly evolving approach within the cryptographic domain is focused on

sequences of DNA. The concept of DNA cryptography is inspired by the DNA molecule

which has the capacity to store, process and transmit information. It operates on the DNA

computing principle which uses 4 bases to conduct computation, i.e. Adenine (A),

Guanine (G), Cytosine (C), and Thymine (T), (Raj & Panchami, 2015).

DNA-based cryptography is the technique employing biological structure to hide data and

information. Scientists nowadays work in the area of DNA cryptography; are based on

using DNA code to represent binary information in one form or another. DNA encryption

15

is a method that involve the use of DNA sequence to transform plain text into cipher text.

There are four methods of DNA encryption (Pramanik & Kumar, 2012), these are:

I. DNA random One Time Pad Based

In this technique, a series of randomly ordered non-repeating characters are used

to enforce a one-time pad, if an input ciphertext is used once, it is not used again

to increase protection. The size of the plain text in this scheme maybe be equivalent

to the size of a one-time pad. DNA One-Time Pad method is used to transform the

short parts of plain text messages to ciphertext. To substitute the plain text, a

random and special codebook is taken into account. Due to hardware limitations

this strategy applies only to short messages. The large size of the message makes

DNA mapping more complicated (Singh & Kamaljit, 2015).

II. DNA chip-based cryptography

The Microarray is also called the DNA chip. This DNA chip, made of

semiconductor-designed nucleic acid and electronic circuit. This technology

represents excellent development in the field of cryptography based on DNA. A

DNA-chip is used to store, handle and maintain a significant volume of genome

and biological information. The text and photographs are encrypted using

biochemical processes. The drawback of this strategy is the sudden physical factor

shift which use to produces negative outcomes (Kumar, 2014).

III. DNA Fragmentation

This approach is used in the DNA sequence for library building. This splits the

DNA sequence into tiny bits. Most encryption algorithms use it as a second

protection layer. It's also being applied in key encryption (Darbari & Prakash,

2014).

16

IV. DNA Steganography

Steganography of the DNA is used to conceal one message inside another. Image, audio,

and video are reused to preserve vast volumes of data, but data can be lost due to sudden

environmental changes (Anwar et al., 2015).

2.5 Related work

Olga and Borda (2013) have suggested a cryptographic DNA strategy that uses indexing

of DNA. The researchers got accessed to the DNA code from the database random, the

database comprises information that are genetic in nature as the OTP key and this

sequence is transmitted via a protected information transmission medium to a recipient.

The plain text was encrypted by converting each character of the plain text to its

equivalence ASCII code and then transformed into the binary digits (code), then finally

converted to into A (Adenine), T (Thymine), C (Cytosine) and G (Guanine). This DNA

sequenced are checked in the main sequence and also noted with the index numbers. The

sequences of the obtained decimal values are the required cipher text. The receiver

decodes this cipher text via key and index pointer.

Kazazi and Torkaman (2015) designed a five-phase algorithm that is cryptography based

on DNA which is used for the encryption of an information. The five stages of this

technique includes: preprocessing of data, key generation, and encryption process which

is carried out at the source end and encoding or post processing of data at the receiver

end. This technique employed the principle of vigenere cipher which offers a double

safety layer. This is a hidden cryptographic key technique which takes a huge amount of

execution time.

Priyadarshani et al. (2014) suggested a system that uses DNA sequence and substitution

techniques. Substitution and DNA sequence techniques are used to encode simple text

17

which was chosen from 55 million DNA sequences. The DNA sequence selection and

substitution make the algorithm simple, efficient, secured and unbreakable. The algorithm

was developed and applied on an Electronic Medical Record System.

Raj and Panchami (2015) proposed a cryptography technique based on DNA that

employed permutation and random key generation algorithm. This approach makes

random use of the concept of creating DNA patterns. The input is converted into 7 bits

ASCII code then later transformed to its corresponding binary values. Binary Code where

represented with A, C, T, and G as the DNA Sequence of 00, 01, 10. 11 respectively. A

sequence of DNA is chosen as a key and stored in segments, each segment consists of

four characters which is based on the character’s positions in the segment table. Finally,

the random sequence of DNA picked from this table is translated into an encrypted

sequence. The encrypted sequence and the cipher key is send to the receiver via the media

communication channel. The sequences of the cipher are decrypted to get back the same

text by applying the reverse steps. This algorithm is different from others as it does not

use conventional mathematical operations or techniques for the manipulation of the data.

This approach cannot therefore be extended for protection at multilevel.

Mahalaxmi and Raj (2016) proposed a symmetric key cryptography based on DNA for

safe transmission of data via the channel of communication. Firstly, the input (data, image

or text) is converted to ASCII value and the ASCII values were transformed into their

corresponding binary digits. The binary digits are converted into DNA codes. The DNA

code are randomly allocated with a corresponding private key which further converted to

an advance ASCII codes. Finally, the ASCII codes are replaced using DNA sequence

table and clinical permutation is tested with private key. This symmetric key algorithm is

designed using Java for the transmission of data via a communication channel. The

limitation of this algorithm is that chromosome DNA is required.

18

A technique based on DNA cryptography was proposed by Gulati and Kalyani (2016),

using XOR operation and One Time Pad (OTP) for the safe transmission of information.

This algorithm is complementary to arithmetic operations, XOR operations, One-Time

Pad and DNA principle, it provides three levels of protection. The hacker does not

imagine this procedure to be very easy and safe to use because of certain preconditions

applied, this technique is not user-friendly, so you need to take the precautionary

preconditions when choosing the OTP.

Purusothaman and Saravanan (2016) proposed a technique based on the hidden algorithm

of the modified Shamir, and the technique of encryption and decryption based on DNA.

A big no. of consumer sits on the end of the receiver. In the algorithm some additional

protection is fused. Decryption is only possible when the entire client is active in the

decryption process, only then will it decipher the hidden message. Using Mathematical

Equations, the message is translated to ASCII values. Converted to DNA bases ASCII

value. The transmission of the message is done through the client party, and the

information is decrypted DNA encryption principle to improve the confidentiality of

information for multicast applications. The proposed technique was developed using Java

and Python technologies. The algorithm is very strong, because of the mutual principle,

if anyone is not interested in the decryption process, then decryption of the message is

impossible. This technique has high execution.

Bhavithara et al. (2016) suggested a double-layered, symmetric key algorithm. In this

method, plain text at the sender end is encoded twice with a key length 100, and the

procedure is reverse to obtain the result of the recipient. The algorithm first stage is

encryption were plain text is transformed to a ciphertext and decryption is the algorithm

second stage, used to obtain the original plain text. Here plain text is provided to the Field-

Programmable Gate Array (FPGA) via the PS2 keyboard that reads ASCII value using

19

the FPGA. Then, a codon table converts it to the codon, and Vigenere cipher is used for

codon encryption. Key distribution is not discussed here; therefore, the algorithm can

have a hectic problem.

Darbari and Prakash (2014) proposed a method that involves three stages, i.e. set of

proofs, estimate of the reputation factor, and faith in reputation. The trust-based

distributed systems are extremely reliable when it comes to managing security features.

DNA based cryptography improves distributed system based on confidence in security.

This strategy incorporates data post-processing approach to deal with a number of cyber-

attacks. This technique is suitable for distributed systems focused solely on trust-based

distributed systems but not acceptable for all.

Jain et al. (2014) suggested a technique for cryptographic DNA that uses XOR operations.

Simple text is selected and encrypted using randomly generated key in this technique.

Also a randomized codon list is generated, and the random key is XOR-ed. To encrypt an

information in this technique, the DNA mapping operation is applied. The key is made

from the properties of DNA and the biotechnology. This technique is high execution time

because of the XOR operation, and complexity of the algorithm is O (log N). But the

complexity of space is a big problem to the research, although this can be minimized in

the future research.

Babu et al. (2016) have suggested an inspired cryptography of the pseudo biotic DNA

that uses central biological dogmas. This is unlike DNA cryptography but uses only the

terminology and DNA process. In this process, the transcription, splicing, and translation

are used for encryption and decryption. These encryption measures are used to make

protection easier. In this method the key is obtained randomly to increase the confusion

and diffusion degree of the algorithm. This makes the algorithm strong and complex to

20

break the cipher text. Analysis of robustness was performed to demonstrate the security

level of the algorithm which is very secure against attacks. The algorithm implementation

requires advanced tech bio-computational laboratories.

Basha et al. (2015) proposed a secured advanced encryption algorithm which is based on

DNA for large data. Unauthorized person can only access the information in its cipher

form but cannot understand the meaning of the information. Big data was used to test the

performance of the algorithm by encrypting a numerous transaction data. The process of

the encryption involves using DNA sequence table and PHP language is used for the

implementation of the system. The proposed algorithm is limited to solving of big data

confidential problems.

Vidhya and Rathipriya (2018) developed a 2-level text data encryption using DNA

encryption cryptography to increase the confidentiality of an information by increasing

the security level of the algorithm which leads to increase in complexity of the sequence

DNA. The main objective of the research was to provide data with high level of security.

The research work was implemented in two security phases. The first converts the plain

text into an ASCII code using a shift key and then further converted to binary number.

The second phase employs insertion method, which fix some binary digits after

segmenting the resulting ASCII code. The new generated ASCII codes are converted to

their corresponding binary numbers and then replaced with the DNA sequence

representing the cipher text. The recipient has to apply insertion technique to decrypt the

information into plaintext. Shannon entropy was used to evaluate the degree of the

randomness of the algorithm, the data compression ratio and the algorithm complexity

was used to ascertain the average execution time of the two phase algorithm.

21

Aggarwal and Kanth (2014) suggested a complementary pairing technique that differs

from the conventional approach of encoding DNA. The four different DNA sequences A,

T, C and G are supplemented A with T, G with C, C with A and T with G in the first step.

After the reference sequence of DNA is selected in the second stage and called as sender

S and receiver is aware with S. S is then supplemented in the third stage and called as S'.

This S' will then be forwarded to the recipient using a stenographic communication

medium. The recipient, using S, must decode ciphertext S'. Steganography

implementation improves the confidentiality of the proposed algorithm. decrypting the

information required a proper guess of the sequence S that is randomly generated. There

are about 55 million DNA sequences available in public domain. Hence cracking S will

be major. This makes the algorithm sturdy and reliable.

Sohal (2018) introduced a new algorithm approach were data are encrypted from the

client-side until they are saved in a cloud database. This algorithm is a symmetric key

cryptographic approach that employed DNA sequence. Furthermore, the detailed findings

of this algorithm as contrasted with the existing symmetric key algorithms (DNA, AES,

DES, and Blowfish) show that this method performs better than the traditional algorithms

based on cipher ext size, encryption runtime, and confidentiality of information

transmitted. This method is effective and executes better but yet has limitation in times

of space management.

Yunpeng et al. (2017) suggested cryptographic technique which is based on DNA

sequence, hamming and a block cipher coding patterns are used to protect the algorithm

key. This technique is strong symmetric cryptography used to improve an existing

method. Length matching is deployed in the development process to protect data against

all kinds of attacks.

22

Tiwari and Hyung (2018) proposed an ECC algorithm for DNA mapping. This system

used DNA code randomly and alphabets of plaintext are dispersed without repetitive

feature. The encoding and decoding used the alphabets at both ends. The system was

implemented successfully and tested on internet of things applications in real-time.

El-Latif and Moussa (2019) proposed an encryption that execute in two rounds. This

technique is similar to the trending technique known as Data Encryption Standard (DES)

algorithm. This algorithm converts the plaintext using two different keys. These two keys

are constituted on the Gaussian kernel function (GKF) and elliptic curve cryptography

(ECC). The second key is generated based on the second characters that are replicated

from the first key using a random injection mapping. In the final stage, the DNA sequence

obtained is used to arbitrarily hides the message with the use of GKF numbers.

Tanaka et al. (2015) presented a DNA cryptography which used public Key. The

researchers discussed and depict an algorithm on how to produce two public keys via a

solid mixture which was used for key generation, the conversion of the data was based

on DNA code and the first key was synthesized public using a synthesizer of DNA, and

the encrypted information sequence was generated with second public key. The

immobilization procedure obtained the result and while the PCR amplification is

completed acquired using secret DNA sequence to decipher the converted DNA

sequence.

Anwar et al. (2015) proposed a method based on an XOR operation that used a symmetric

key approach to encode information. The algorithm is an extension of DNA hybridization

which was proposed by the researchers in the previous research domain. It was used to

secure transmission medium such as the internet of things applications. This technique is

simple and strong for DNA hybridization. The measurement of the matrix is used to

23

reduce running time of the technique. This algorithm is cost-effective in times of

implementation.

24

CHAPTER THREE

3.0 RESEARCH METHODOLOGY

3.1 Shift Cipher Encryption Technique

The general idea of shifting plaintext by k letters (or adding k modulo 26) is called a shift

cipher, with a key of k. Shift Cipher is a Symmetric key cipher where the plain text and

the pseudo-random key (key stream) are combined by XOR operation. In the encryption,

each byte of plain text is encrypted with the corresponding character of the key stream.

An alternate name is the cipher state, where the encryption of each character depends on

the current state (Sudhakara et al., 2016). The mathematical notation of Shift Cipher is

C ≡ P + k modulo 26

Where P stands for any number between 1 and 26 that represents a plaintext letter and C

stands for a number that represents a ciphertext letter and k is the key encryption.

3.2 DNA One Time Pad (OTP) Encryption Technique

DNA One-Time pad encryption technique is implemented using a set of randomly

arranged non repeating characters as the input. This set of random characters works as a

pad. It is considered highly secure because if an input cipher text used once, it is never

used for any other message, due to which it is named as One-time-pad. The length of the

pad should be equal to the length of the plain text in One-time-pad (Hazra et al., 2018).

In DNA Cryptography there is a method of DNA one-time pad substitution where One-

time-pad encryption process uses a random codebook to convert short segments of

original plaintext messages to cipher text, which provide a random mapping. Two

important points should be noted about codebooks, first a codebook must be truly random,

and second thing it must be used only once for any message.

25

One-time-pad encryption equation is generalized as

Ci = E (Pi, Ki) for I=1, 2, 3, …………………..., n

where, E is the encryption operation, Pi is the I-th character of the plaintext, Ki is the I-

th byte of the key used for this particular message, Ci is the I-th character of the resulting

ciphertext and n is the length of the key stream. Both the key stream K and the encryption

operation must be kept secret. For practical purposes, the key for a One-Tim-Pad cipher

is a string of random bits, usually generated by a Cryptographically Strong Pseudo

Random Number Generator (CSPRNG). The security of the one-time pad relies on

keeping the key 100% secret. It is implemented by using a modular addition (XOR) to

combine plaintext elements with key elements. The key used for encryption is also used

for decryption (Singh & Kamaljit, 2015).

3.3 DNA Digital Coding

DNA Digital Coding is a mapping technique for the 4 main DNA bases: Adenine (A),

Cytosine (C), Guanine (G) and Thymine (T) which are substituted with the combination

of 0s and 1s (Hazra et al., 2018).

Using this scheme, the plaintext message or information submitted (entered) via UTMS

form interface are encrypted and decrypted in TSS module. Table 3.1 shows the Binary

Form to DNA sequence conversion process, and vice versa.

26

Table 3.1: Transformation of binary code format to a DNA sequence

Binary Form DNA Sequence

00 A

01 C

10 G

11 T

3.4 Proposed Uber Transport Management System (UTMS) Architecture

Figure 3.1: Proposed Uber Transport Management System Architecture

The propose UTMS architecture consists of three components. These include: Transport

System Application (TSA), Transport System Security (TSS) module and a Database as

described in figure 3.1.

Transport System Application (TSA) is a software designed to perform transportation

services which include booking, tracking vehicle, navigating routes among other services.

It is used in accepting and processing of information submitted by client (user of the

software known as customer).

27

Transport System Security (TSS) module consist of functions and methods of the

proposed DNA cryptographic technique used to encrypt and decrypt plaintext and

ciphertext respectively. It is used as a middle agent for transmitting information between

the TSA and the database. Information retrieved from TSA interface must be process via

TSS module before reaching the database and vice versa.

Database is a TSA storage medium used to insert, update, delete and retrieve encrypted

information processed and transmitted via TSS.

3.5 Proposed 2-level data security approach

The proposed 2-level data security approach is designed to eliminate the limitations of

the existing information security methods of low confidentiality and high execution time.

The 2-level data security design are:

Level 1: Shift Cipher

•Plaintext to shift text with shift key

•Shift text to ASCII number

•ASCII Number to Binary number

•Binary Number to DNA Sequence

Level 2: DNA One Time Pad (OTP) Method

•Plaintext to ASCII Number

•ASCII Number to Binary number

•Binary Number to DNA Sequence

28

3.6 Transport System Security (TSS) Design

Transport System Security (TSS) design captures two kinds of views: the user point of

view and the TSS implementation point of view. It was accomplished through diagrams

in violet Unified Modeling Language (UML). UML provides graphical notations for

developing software application visual models. It provides the TSS development with

architectural structure and description of behaviors. Diagrams generated with this method

aid in the interpretation of system to avoid ambiguities.

3.6.1 Use Case Diagram

The capabilities expected from the system are described in Figure 3.2. Use case was used

to display typical user-to-system interactions under construction. The purpose was to

capture every possible task that a user may perform in a system with the use case. The

full functionality of the system is defined in the use case. Figures 3.2 presents TSS module

diagram.

 Figure 3.2: TSS Use Case Diagram

29

3.7 Performance Evaluation Techniques

3.7.1 Computational Complexity of the Algorithm

The analysis of the TSS Encryption, Key Generation and Decryption Algorithms

Complexity is important as it revealed the efficiency of the algorithms for real time

applications. In this work the computational time was evaluated for the algorithms using

methods of complexity theory. The conclusions obtained were tested through the results

of the implementation. The complexity of 3 important TSS model algorithm operations

was analyzed: key generation computation, encryption, and decryption.

3.7.2 Confidential Level of the Algorithms

Security of the algorithms was analyzed using cryptanalytic attacks.

3.7.2.1 Cryptanalytic Attack

The TSS key generation algorithm was based on the OTP principle to protect it against

vulnerability to most conventional attacks.

The resistance of the algorithms to Mathematical Analysis Attack, Only Ciphertext

Attack, Known Plaintext Attack, Chosen Plaintext Attack and Chosen Ciphertext Attack

are evaluated to ascertain the confidential level of the algorithms.

3.8 Time Evaluation Functions

Implementations were achieved in Sublime Text 2018 IDE using PHP language on the

computer with the following properties: Genuine Intel(R) CPU Dual Core 1.79 GHz, 1

GB RAM. In PHP there are different functions available to measure execution time.

Below is the chosen function for time measurements on this research.

30

$time_start = microtime_float();

//sleep for a while

usleep(100);

//Encryption or Decryption code

$time_end = microtime_float();

$time = $time_end - $time_start;

This procedure measures the length of time the process between the "start and end time"

has kept the CPU busy. It gives more consistent results as it does not calculate how much

time has passed, the time while the code is waiting (sleeping) is not counted, and other

processes that consume CPU do not skew the timings.

3.9 Shannon Entropy

Shannon entropy is the volume of information within a variable, which is the main

concept for the notation of information. In terms of probabilistic model, entropy is an

information theory which states that the modules with much reshuffle has high entropy

while systems with few reshuffles has low entropy. The Shannon entropy equation is used

to estimate the average minimum number of bits required to encrypt an information, based

on the occurrence of each character in an information (Vidhya & Rathipriya, 2018). The

Shannon entropy equation is

P denotes the Probability of a given symbol while b is the algorithm base.

31

CHAPTER FOUR

4.0 RESULTS AND DISCUSSION

4.1 2-Level Data Security Algorithms

The 2-level data security algorithms were designed to eliminate the limitations of the

existing information security methods of low confidentiality and high execution time.

Table 4.1 presents the encryption algorithm using Shift Cipher technique at the first

security level and OTP technique for the second security level.

Table 4.1: TSS Encryption Algorithm

Step Algorithm

 // First security level

1 Enter input Pi (where i=1, 2, 3,…………N characters) and input could be

(alphabet, numbers and special symbols)

2 Compute the length N of Pi

3 For each Pi, shift Pi using the shift key value and convert to its corresponding

decimal value PASCII

4 Convert PASCII to its equivalent binary string PB

5 Compute PB length L obtained from step 4

6 If L is less than 8-bits, convert PB to 8-bits string by inserting 0s at the prefix

of PB to generate 8-bit string PBytes, else goto step 7

PByte = [L / 8] if L mod 8 = 0

PByte = [L / 8] + 0 if L mod 8 ≠ 0

 //Second security level

7 Generate key KOTP using PByte and a pseudo random number R

8 Apply XOR operation on PBytes and its respective KOTP obtained from step 7 to

get the DNA binary form

9 Convert the result of the DNA binary form to DNA sequence PDNA

 Generate ciphertext CDNA

32

In Table 4.1, the input P represent the plaintext while I is the Ith position of a character

(symbol, number, alphabet) in P, each character is converted to its corresponding decimal

value, denoted as PASCII and further converted to binary numbers denoted as PB

respectively. The binary number for each character PB is transformed to 8 bits, denoted

as PByte. KOTP represent the key variable, it is generated using the key generation function

that accepts two parameters, these are: PByte of each character and a generated pseudo

random number. The encryption algorithm applied an XOR operation on the PByte and

KOTP. The binary result obtained is Converted to DNA sequence and the cipher text is

generated. Table 4.2 presents the decryption algorithm of the 2-level data security

approach.

Table 4.2: TSS Decryption Algorithm

Step Algorithm

 // Security level I

1 Enter input (DNA sequence Ci, where i=1, 2, 3,…………n characters)

2 Calculate the length of the DNA sequence N

3 For i=1 to N

4 Shift Ci using shift key value and Convert Ci to its corresponding binary string

CB

5 CBits = concat(CBits, CB)

6 Increment i

7 if i less than or equal N, repeat steps 4 to 6, else goto step 8

8 Compute CBits length L

9 Divide L by 8 to get new length m

m = L / 8

10 For j=1 to m, divide CB into m groups of 8-bit binary string CBytes

CBytes = substr(CB, j, 8)

 //Security level II

11 Generate keyOTP using m and the input corresponding pseudo random number

(i.e. obtained from the database)

12 Perform XOR on CBytes and keyOTP

13 Convert XOR 8-bit binary string result to its equivalent decimal value CASCII

14 Substitute CASCII to its corresponding plaintext character

15 Increment j

16 if j less than equal m, repeat steps 11 to 15 , else concatenate the plaintext

characters (i.e. obtained from step 10) and generate the plaintext P

33

In Table 4.2 the DNA sequence C is received from the sender and each character of the

DNA sequence Ci is transformed using Shift key value then converted into their

corresponding binary numbers CB. KOTP is generated using the length of the resulting

binary strings m and the input corresponding pseudo random number (i.e. obtained from

the database). The decryption function performs XOR operation on the CBytes with the

KOTP. The resulting binary strings are converted to an ASCII numbers. The numbers are

transformed to their corresponding characters as plaintext P. Table 4.3 depicts the

algorithm for generation of key.

Table 4.3: TSS Key Generation Algorithm

Step Algorithm

1 Enter input N and R (where N is the input length and R is a pseudo random

number)

2 Convert N and R to their corresponding binary sequence (i.e. NB and RB

respectively)

3 Compute the length of NB and RB

4 Find the difference D of NB and RB

5 If D is not equal zero and NB length is greater than RB length then add zero(s)

of size D to the prefix of RB else, add zeros of size D to the prefix of NB

6 Apply XNOR operation for the result of NB and RB (i.e. the result obtained in

step 5)

7 Generate key KOTP

In Table 4.3, the key generation function requires two parameters to process the key, the

first parameter is the length of the input to be encrypted and the second parameter is a

generated a pseudo random number. Both inputs/parameters are converted to their

corresponding binary strings. The length of both strings are compared by finding the

difference and then converted to 8-bit strings. After converting the two strings to 8-bit

string, XNOR operation is applied to generate the key denoted as KOTP.

34

4.2 Transport System Security (TSS) Module

Transport System Security (TSS) Module contains two function for the processing of an

information. These functions are encryption and decryption function, each of the function

requires an input before the information can be process and the inputs are plaintext and

DNA ciphertext respectively. The TSS module was developed using Personal Home Page

(PHP).

4.2.1 TSS Encryption Result

The interface presented in figure 4.1 displayed the experimental result for the encryption

of “DNA ENCRYPTION FOR TMS” as input.

Figure 4.1: Encryption Result Interface

The encryption result of the input “DNA ENCRYPTION FOR TMS” was executed in

0.00193 and the output of the encryption process was displayed at the output field as

35

“ATAAATGGATCCCCCAATACATGGATCTAGCGAGTCAGCAAGAAATTCAT

GTATGGCCCAATAGATGTAGCGCCCAAGAAATGCAGCT”.

4.2.2 TSS Decryption Result

Figure 4.2 depicts the decryption result of an input (DNA sequence) which was processed

using the decrypt button and the result was displayed in the output filed as plaintext

information. The decryption details as seen in Figure 4.2 are:

Decryption Input:

ATAAATGGATCCCCCAATACATGGATCTAGCGAGTCAGCAAGAAATTCATG

TATGGCCCAATAGATGTAGCGCCCAAGAAATGCAGCT

Decryption Output: DNA ENCRYPTION FOR TMS

Figure 4.2: Decryption Result Interface

36

4.3 Performance Evaluation

4.3.1 Computational Complexity of the TSS algorithms

An algorithm's execution time is deemed to be the sum of all the operations. The number

of operations can be either constant or variable and depend on input parameters.

According to the approximations from complexity theory, the smallest possible class of

functions is used to describe the increasing rate of the algorithm's runtime.

The researcher evaluated the complexity of the TSS algorithm in 3 essential operations:

key generation computation, encryption, and decryption. The key generation is calculated

in 2*256*n operations, where 256 is the number of possible values for a byte, and n is the

length of the key sequence. Encryption and decryption are carried out in m operations,

where m is the number of plaintext and ciphertext characters respectively. Taking the

smallest class of functions, the key generation computation complexity is O(n), and O(m)

for the encryption and decryption methods respectively. This means that the

computational time increases linearly, depending on the size of the input. The pseudo

code for those operations is provided in Table 4.4.

37

Table 4.4: Pseudo code of Key Generation, Encryption and Decryption operations

Key Generation Encryption Decryption

for ($i=0; $i <

$str_length; $i++) {

$p_var = substr($a, $i,

1);

$q_var = substr($b, $i,

1);

if ($p_var <> $q_var) {

$res_val = '0';

$XNOR_result =

$XNOR_result.$res_val;

 }

return

$XNOR_result_8bit;

for ($count=0; $count <

$string_length; $count++) {

$DNA_Nucleotide =

DNA_encryption($xor_bin_r

es);

$DNA_result =

$DNA_result.$DNA_Nucleot

ide;

}

return $DNA_result;

for ($i=0; $i <

$Cbin_string_length;

$i+=8) {

$character_bin =

substr($DNA_bin, $i, 8);

$c_XOR_bin8 =

xor_binary($c_key_bin8,

$character_bin);

$Decryption_res =

$Decryption_res.$decrypt_

char;

}

return $Decryption_res;

The experimental findings have proved the estimated complexity to be accurate. The

software was experimented at different, progressively increasing values of n and m in

order to see the progression of the runtime. Figure 4.3 to 4.6 present graphics of the

runtime growing rate for key generation, encryption and decryption processes while the

measurements of the execution time are described in Tables 4.5 and Table 4.6.

38

Table 4.5: Measurements of the encryption runtime

Plaintext size (chars) Runtime (ms)

3000 0.42

2500 0.37

2000 0.27

1500 0.19

1000 0.14

500 0.08

400 0.06

300 0.05

200 0.03

100 0.02

Table 4.5 present the measurements of the encryption runtime for plaintext characters of

size 100 to 3000 characters. Plaintext with 100 characters are executed within 0.02

milliseconds and plaintext with 3000 characters are executed within 0.42 milliseconds.

The result shows that the higher the number of characters of a plaintext the higher the

execution. The growing rate of the encryption runtime is presented in Figure 4.3 and

Figure 4.4 respectively

.

39

Figure 4.3 presents an encryption runtime of the plaintext characters between 0 to 500

characters. While Figure 4.4 presents an encryption runtime of the plaintext characters

between 500 to 3000 characters. Both Figure 4.3 and Figure 4.4 shows that the encryption

runtime against the plaintext character size are linear. Table 4.6 depicts the measurement

of the decryption runtime of the experimental result

Table 4.6: Measurements of the Decryption Runtime

Ciphertext size (chars) Runtime (ms)

3000 0.19

2500 0.14

2000 0.12

1500 0.09

1000 0.06

500 0.03

400 0.03

300 0.03

200 0.02

100 0.02

0

500

1000

1500

2000

2500

3000

3500

0.42 0.37 0.27 0.19 0.14 0.08 0.2

Encryption Runtime

Plaintext size (chars) Runtime (ms)

0

100

200

300

400

500

600

0.08 0.06 0.05 0.03 0.02

Encryption Runtime

Plaintext size (chars) Runtime (ms)

Figure 4.3: Growing Rate of the

Encryption Runtime

Figure 4.4: Growing Rate of the

Encryption Runtime

40

Table 4.6 presents the measurements of the decryption runtime for plaintext characters of

size 100 to 3000 characters. Plaintext with 100 characters’ length were encrypted within

0.02 milliseconds and plaintext with 3000 characters’ length were executed within 0.19

milliseconds. The result shows that the higher the number of characters of a DNA.

ciphertext the higher the execution time. Figure 4.6 presents the decryption runtime of

the plaintext characters between 0 to 500 characters. While Figure 4.5 presents a

decryption runtime of the plaintext characters between 500 to 3000 characters.

As depicted in Figure 4.3 and Figure 4.4, both result shows that the decryption runtime

against the plaintext characters’ size are linear.

0

100

200

300

400

500

600

0.03 0.03 0.03 0.02 0.02

Decryption Runtime

Ciphertext size (chars)

Figure 4.5: Growing Rate of the

Decryption Runtime

Figure 4.6: Growing Rate of the

Decryption Runtime A

0

1000

2000

3000

4000

0.19 0.14 0.12 0.09 0.06 0.03 0.02

Decryption Runtime

Ciphertext size (chars)

Runtime (ms)

41

4.3.2 Security Level

4.3.2.1 Cryptanalytic Attacks

In the developed 2-level data encryption technique, OTP technique produced a set of

randomly organized non-repeating characters used for implementing one-time-pad

because if an input ciphertext is used once it is not used again to increase the security.

In this scheme, the size of the plain text is equivalent to a One-Time-Pad. To convert the

short segments of a plain text messages to ciphertext, DNA One-Time-Pad process is

used. A random and unique codebook is taken into account for replacing the plain text.

This Resists to Mathematical Analysis Attack: Attackers can’t break the ciphertext by

solving it mathematically because of it uncertainty level in key generation. The data

encryption algorithm in 2-level data encryption includes not only the XOR operation from

binary plaintext to binary ciphertext, but also the confounding operation of Shift cipher

value to DNA binary sequence and to the DNA ciphertext. The whole process is random

and does not rely solely on mathematical calculation. Moreover, the parameter encryption

algorithm simulates the process of biological genetic information flowing from DNA to

protein without relying on mathematical difficulties and cryptographic characteristics.

Multistep confounding operations make the cryptographic algorithm more random.

Therefore, even if the attacker obtains the DNA ciphertext sequence, the security

parameters cannot be decrypted by mathematical analysis. Moreover, plaintext data

cannot be decrypted without security parameters. Assuming that the attacker knows all

encryption algorithms, the attack types of encryption system can be divided into four

types according to the attacker’s mastery of data resources such as plaintext and

ciphertext. In addition to the analysis of chosen plaintext attack, we also make a detailed

analysis of the other three types of attacks.

42

Resists Only Ciphertext Attack: The attacker can only analyze the intercepted ciphertext

to obtain plaintext or key. In this algorithm, the publicly transmitted ciphertext consists

of OTP key and a Shift Cipher value as parameters of the ciphertext. ciphertext is

generated using confounding encryption parameters, where the selection probability

provided by the encoding rules are determined based on the plaintext size and a pseudo

random number, to obtain the plaintext is completely impossible in this case because the

attacker has to analyze the cipher text before he can obtain the plaintext to enable him use

the plaintext size for the cryptanalysis. Therefore, the probability of cracking the DNA

ciphertext without considering the encryption algorithm is very small. It would also be

nearly impossible for an attacker to decipher DNA sequences. First, the attacker needs to

know the connected information of the DNA sequence. In addition, Shift Cipher value is

required and without knowing the Shift value it would be impossible to obtain the

plaintext from the DNA ciphertext.

Resists Known Plaintext Attack: The attacker intercepts some pairs of plaintexts and

ciphertext to break the key or algorithm. In this case that the attacker obtains some pairs

of plaintext data and corresponding DNA ciphertext sequences. Because data encryption

takes different security parameters in every session, each step of the plaintext data

generation DNA ciphertext sequence provides security. Therefore, it is unrealistic to

crack encryption algorithms and keys based on some corresponding plaintext data and

DNA ciphertext sequences. It is assumed that the attacker has obtained some pairs of

security parameter plaintexts and corresponding DNA cipher texts. Since each security

parameter encryption use different encoding mapping parameters key1, key2 for OTP

encryption level and Shift Cipher encryption level respectively, it not only has One-Time-

Pad characteristics, but also simulates the biological operation process to make the

algorithm more random. Therefore, it is relatively safe for known plaintext attacks.

43

Resists Chosen Plaintext Attack: Besides getting some corresponding ciphertext, the

attacker has analyzed and obtained more information related to the key. According to the

comparison of DNA ciphertext sequence and plaintext data, the operation processes of

data encryption and decryption algorithm are obtained. It is unable to get encryption

mapping parameters (OTP key and Shift Cipher value) through security parameters

because the parameters completely depend on the plaintext parameters which are

generated through a pseudo random number key as the OTP and a shift key value,

therefore it is difficult to decipher the DNA ciphertext sequence during the next

decryption.

Resists Chosen Ciphertext Attack: The attacker can select some ciphertext and get the

corresponding plaintext. It is assumed that the attacker has mastered the data encryption

algorithm, the selected DNA ciphertext sequence, the decrypted plaintext, and the key of

the selected part. This one-time-pad algorithm uses different Logistic map parameters to

generate the key for each encryption process. Even if the key is cracked this time, it cannot

be used for the next decryption. Besides the key, the mapping parameter key0 are also

different in every session and cannot be used in the next decryption. In addition, DNA

ciphertext sequences were segmented and primers were added at both ends. If you don’t

know the index order, you can’t splice the information correctly, which is a big obstacle

to decipher the DNA ciphertext.

4.4 Experimental Results

Validation for the encryption and decryption of the proposed method is demonstrated

below. The entire testing was done using the developed TSS module.

44

4.4.1 Key Generation Result

In the proposed algorithm, key K depend on plaintext P and pseudo rand number R. For

the experiment, a pseudo random number R is generated, the value of R obtained is 230

and the plaintext used for the experiment is “House 49”, i.e. a sample address. The

plaintext “House 49” has 8 characters. Therefore, the plaintext length N =8 and the pseudo

random number R = 230. Table 4.7 depicts the key generation experimental result.

Table 4.7: Key generation experimental result

Operations Input N Input R

Enter input N and R

respectively

8 230

Convert to binary NB

and RB
1000 11100110

Compute the resulted

binary lengths P and Q

respectively

4

8

Find the difference

 D = P - Q

D = abs(4-8) = 4

D != 0 && P < Q Yes

Add zero(s) of size D

to the prefix of NB

00001000 11100110

KXNOR = NB ʘ RB

0 0 0 0 1 0 0 0

1 1 1 0 0 1 1 0

1 1 1 0 1 1 1 0

Generate Key KOTP 11101110

45

4.4.2 Encryption Result

Table 4.8 depicts the encryption experimental result for the plaintext “House 49”. The

plaintext is used as a sample address to perform the experiment.

Table 4.8: Encryption experimental result

As presented in Table 4.8, the DNA ciphertext CDNA “GGATGAACGCCAGCCGGAC

ATATGTCGGTCCT” is the experimental result of the plaintext “House 49”.

Operation Experiment Result

Enter input P H o u s e 4 9

Shift Text

SK = 5
M t z x j 4 9

Calculate P

length i
i = 8

Convert Pi to

ASCII value

PASCII

77 111 122 120 106 32 52 57

Convert

PASCII to

binary PB

1001

101

1101

111

1111

010

1111

000

1101

010
1000

00

1101

00
111001

Compute PB

length L
7 7 7 7 7 6 6 6

L <= 8 yes yes yes yes yes yes yes yes

Add 0s to the

prefix of PB

until it’s 8

digit length

0100

1101

0110

1111

0111

1010

0111

1000

0110

1010

0010

0000

0011

0100

0011

1001

Generate /

Retrieve Key

KOTP

11101110

PXOR = PB Θ

KOTP

1010

0011

1000

0001

1001

0100

1001

0110

1000

0100

1100

1110

1101

1010

1101

0111

Convert PXOR

to DNA

sequence

CDNA

GGA

T

GAA

C

GCC

A

GCC

G

GAC

A

TAT

G

TCG

G
TCCT

Concatenate

CDNA

GGATGAACGCCAGCCGGACATATGTCGGTCCT

46

4.4.3 Decryption Experimental Result

Table 4.9 depicts the decryption experimental result for the ciphertext “GGATGAACG

CCAGCCGGAC ATATGTCGGTCCT”.

Table 4.9: Decryption result

Operation Operation Result

Enter input

CDNA
GGATGAACGCCAGCCGGACATATGTCGGTCCT

CDNA length N N = 32

Convert CDNA

to binary value

CB

101000111000000110010100100101101000010011001110110

1101011010111

Segment CB

into 8bits

1010

0011

1000

0001

1001

0100

1001

0110

1000

0100

1100

1110

1101

1010

1101

0111

Generate /

Retrieve Key

KOTP

11101110

CXOR = CB Θ

KOTP

1001

101

1101

111

1111

010

1111

000

1101

010
1000

00

1101

00

1110

01

Compute CB

length L
7 7 7 7 7 6 6 6

L <= 8 yes yes yes yes yes yes yes yes

Add 0s to the

prefix of PB

0100

1101

0110

1111

0111

1010

0111

1000

0110

1010

0010

0000

0011

0100

0011

1001

Convert CXOR

to ASCII value

CASCII

77 111 122 120 106 32 52 57

 M t z x j 4 9

Shift Text

(inverse)

SK = CASCII -

5

72 106 117 115 101 32 52 57

Convert to

plaintext

characters Pi

H o u s e 4 9

47

In Table 4.9, the decryption technique transformed the ciphertext CDNA to plaintext. The

decryption function used the KOTP and the CDNA to decrypt the information. Therefore;

KOTP = 11101110 and CDNA = GGATGAACGCCAGCCGGACATATGTCGGTCCT.

The CDNA “GGCGGAACGCGTGCTCGAGTTATGTCGGTCCT” decryption result is

“House 49D” as depicted in table 4.9.

4.5 Entropy Result

Table 4.7 depicts the comparative analysis on Two Level Text Data encryption (Vidhya

& Rathipriya, 2018) and improved 2-Level Data Security approach.

Table 4.10: Shannon Entropy with Frequencies of alphabet symbols

 Two Level Text Data encryption
Improved 2-Level Data Security

approach

Number

of

character

s

Entropy

Value

Frequencies of Alphabet

Symbols Entropy

Value

Frequencies of Alphabet

Symbols

A C T G A C T G

3 1.88 0.19 0.38 0.13 0.31 1.73 0.08 0.17 0.25 0.50

101 1.90 0.28 0.29 0.13 0.29 1.96 0.25 0.23 0.17 0.35

482 1.92 0.32 0.27 0.12 0.29 1.95 0.25 0.23 0.16 0.35

599 1.93 0.31 0.25 0.13 0.30 1.95 0.25 0.23 0.16 0.35

601 1.94 0.32 0.25 0.14 0.29 1.95 0.25 0.24 0.16 0.35

1809 1.93 0.32 0.27 0.13 0.29 1.95 0.25 0.24 0.16 0.35

Table 4.10 presents the comparative analysis on Two Level Text Data encryption (Vidhya

& Rathipriya, 2018) and an improved 2-Level Data Security approach. One measure

quality of cryptography is to measure the entropy of the output. The entropy result in

Table 4.10 shows that the improved 2-Level Data Security approach has high entropy

48

compared to the entropy values of Two Level Text Data encryption (Vidhya &

Rathipriya, 2018). Therefore, having and using data with high entropy is completely

random and no meaningful patterns can be found.

49

CHAPTER FIVE

5.0 CONCLUSION AND RECOMMENDATION

5.1 Conclusion

In the current era of technology, protecting the confidentiality of stored information as

well as transmitted data is extremely crucial. The concept of DNA cryptography is

inspired by DNA molecules which have the capacity to store, process and transmit

information in a mangled form.

This research used Shift Cipher in reshuffling the position of the text and OTP technique

in generating a Pseudo random number encryption key which makes the technique strong

enough to protect information from all attacks including brute force attacks. The XNOR

and XOR operation concepts used in generating key and encrypting information has make

the algorithm efficient and less complex.

Furthermore, the experimental result of the encryption and decryption runtime indicates

that the developed 2-level data security approach has high speed in times of operation and

this will open new horizons for researchers in the field of DNA computing and

information security to leverage upon.

5.2 Recommendation

Transport System Security (TSS) module can be deploy on a different server because it

has Object Oriented features. It contains functions and classes that can be invoke from

any platform once the script is linked. Therefore, the researcher recommends deployment

of Transport System Application and TSS module to be hosted on different server to

increase security of the encryption and decryption algorithm, confidentiality of

50

information and to prevent unwanted theft by unauthorized users who might get access to

the TSA server.

5.3 Contributions to Knowledge

One Time Pad (OTP) and XNOR concept used in generating key makes the TSS module

more secure and easy to use and the invention of TSS module for Uber Transport

Management Systems opens new horizons for other researchers in the field of DNA

computing and information security.

The result of the encryption and decryption algorithm tests indicates that the developed 2

level data encryption approach has good execution time compare to other researches on

2 level data security techniques.

The developed 2-level data security approach has proffered good algorithm for securing

the confidentiality of information between two or more clients during communication

using a symmetric encryption key.

51

REFERENCES

Aggarwal, A., & Kanth. P. (2014). Secure data transmission using DNA encryption.

International Journal of Advanced Research in Computer Science, vol. 5, no. 6, pp. 57-

61.

Anwar, T., Kumar, A., & Paul, S. (2015). DNA cryptography based on symmetric key exchange.

International Journal of Engineering and Technology (IJET’15), vol. 7, no. 3, pp. 938-

950.

Beecroft, M. (2019). The future security of travel by public transport: A review of evidence.

Journal Research in Transportation Business & Management. ISBN: 2210-5395.

Babu, E. S., Prasad, Mahit, M. K., & Raju, C. N. (2016). Inspired pseudo biotic DNA based

cryptographic mechanism against adaptive cryptographic attacks. International Journal of

Network Security, vol. 18, no. 2, pp. 291-303.

Bhavithara, M., Bhrintha, A. P., & Kamaraj, A. (2016). DNA based encryption and decryption

using FPGA. International Journal of Current Research and Modern Education

(IJCRME’16), pp. 89-94.

Basha, S. S., Emerson, I. A., & Kannadasan R. (2015). Survey on molecular cryptographic

network DNA (MCND) using big data. 2nd International Conference of Computer

Science on Big Data and Cloud Computing (ISBCC’15), vol. 50, pp. 3-9.

Donald S. C. (2018). Analysis of Proposed Consent Order to Aid Public Comment in the Matter

of Uber Technologies. Inc., File No. 1523054.

https://www.federalregister.gov/documents/2018/04/25/2018-08600/uber-technologies-

inc-analysis-to-aid-public-comment. Retrieved on 09/03/2020

Darbari, M., & Prakash, V. (2014). A new framework of distributed system security using DNA

cryptography and trust based approach. International Journal of Advancements in

Research and Technology, vol. 3, no. 3, pp. 1-4.

El-Latif & Moussa, M. I. (2019). Information hiding using artificial DNA sequences based on

Gaussian kernel function. Journal of Information and Optimization Sciences ISSN: 0252-

2667 (Print) 2169-0103 (Online).

Findin M. (2014). Security in Transportation: Preparing Defenses for a New Connected Era.

Talos, Security and Trust Organization, Active Threat Analytics, and Security Research

and Operations. https://www.cisco.com/c/dam/assets/docs/transportation-security.pdf.

Retrieved on 14/04/2020

Gambhir, S., & Rakesh, K. Y. (2019). DNA Based Cryptography Techniques with Applications

and Limitations. International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-8 Issue-6, August 2019.

Gulati, N., Kalyani, S. (2016). Pseudo DNA cryptography technique using OTP key for secure

data transfer. International Journal of Engineering Science and Computing, vol. 6, no. 5,

pp. 5657-5663.

Harsh, D. T., & Jae, H. K. (2018). Novel Method for DNA Based Elliptic Curve Cryptography

for IoT Devices. ETRI Journal, Volume 40, Number 3, June 2018.

https://www.federalregister.gov/documents/2018/04/25/2018-08600/uber-technologies-inc-analysis-to-aid-public-comment.%20Retrieved%20on%2009/03/2020
https://www.federalregister.gov/documents/2018/04/25/2018-08600/uber-technologies-inc-analysis-to-aid-public-comment.%20Retrieved%20on%2009/03/2020
https://www.cisco.com/c/dam/assets/docs/transportation-security.pdf

52

Hazra, A., Ghosh, S., & Jash, S. (2018). A Review on DNA Based Cryptographic Techniques.

20(6), International Journal of Engineering and Advanced Technology (IJEAT) 1093–

1104. https://doi.org/10.6633/IJNS.201811

Jain, S., Rani, M. & Asha N. (2014). Enhancing asymmetric encryption using DNA-based

cryptography. International Journal of Computer Science Trends and Technology

(IJCST’14), vol. 2, no. 3, pp. 7-11.

Kumar S. R. (2014). Review on DNA Cryptography. Research at Electronics and

Communication Science Unit Indian Statistical Institute. International Journal of

Engineering and Technology (IJET’15).

Kazazi, N. S., & Torkaman M. R. N. (2015). A method to encrypt information with DNA-based

cryptography. International Journal of Cyber Security and Digital Forensics

(IJCSDF’15), vol. 4, no. 3, pp. 417-426.

Mark B. (2019). The future security of travel by public transport: A review of evidence.

International Journal of Transportation Business and Management, vol. 32, 100388.

Mahalaxmi, T., Raj, B. B., & Vijay, J. F. (2016). Secure data transfer through DNA cryptography

using a symmetric algorithm. International Journal of Computer Applications, vol. 133,

no. 2, pp. 19-23.

Newton, A. (2004). Crime on public transport: “Static” and “non-static” (moving) crime events.

Western Criminology Review, 5(3), 25–42. Retrieved on 17/07/2020

https://www.westerncriminology.org/documents/WCR/v05n3/article_pds/newton.pdf.

Newton, Andrew D. (2016) Crime, Transport and Technology. In: The Routledge Handbook of

Technology, Crime and Justice. Routledge, London, UK, pp. 281-294. ISBN

9781138820135. Retrieved on 25/08/2020. https://coeminna.jspnode.com.ng/

Olga, T., & Borda, E. M. (2013). Security and complexity of a DNA-based cipher, In Roedunet

International Conference (RoEduNet), 11th IEEE International Conference, pp. 1-5.

Priyadarshani, K., Bama, R., & Deivanai, S. (2014). Secure data transmission using DNA

sequencing. IOSR Journal of Computer Engineering (IOSRJCE’14), vol. 16, no. 2, pp.

19-22.

Pramanik, S., & Kumar, S. S. (2012). DNA cryptography. Electrical & Computer Engineering

7th IEEE International Conference, pp. 551-554.

Purusothaman, T., Saravanan, K. (2016). DNA-based secret sharing algorithm for a multicast

group. Asian Journal of Information Technology, vol. 15, no. 15, pp. 2699-2701.

Raj, B. B., & Panchami, V. (2015). DNA-based cryptography using permutation and random key

generation method. International Journal of Innovative Research in Science, Engineering

and Technology, vol. 3, no. 5, pp. 263-267.

Singh, G. & Kamaljit K. (2015). A Review to an Invincible Cryptographic Approach: DNA

Cryptography. 4(1), 327–331. https://doi.org/10.17148/IJARCCE.2015.4175

Sohal S. (2018). BDNA-A DNA inspired symmetric key cryptographic technique to secure cloud

computing. Journal of King Saud University of Computer and Information Sciences.

https://www.westerncriminology.org/documents/WCR/v05n3/article_pds/newton.pdf

53

Stephen, E. (2019). Lyft Investigates Claim That Employees Improperly Accessed Customer

Data.

 https://www.thedrive.com/tech/17993/lyft-investigates-claim-that-employees-improperly

-accessed-customer-data. Retrieved on 09/03/2020.

Sudhakara, P. T., Aditi S., Chahat, K. & Prantik, B. (2016). An Extended Hybridization of

Vigenere and Caesar Cipher Techniques for Secure Communication. 2nd International

Conference on Intelligent Computing, Communication & Convergence (ICCC-2016).

Tanaka, K. Okamoto, A. and Saito I. (2015), Public-key system using DNA as a one-way function

for key distribution. Journal of Biosystems Engineering 81, 1, pp. 25-29

Taha, M. S., Shafry, M., & Rahim, M. (2019). Combination of Steganography and Cryptography:

A short Survey. IOP Conference Series: Materials Science and Engineering.

https://doi.org/10.1088/1757-899X/518/5/052003.

Tiwari, H. D., & Hyung, J. K. (2018). Novel Method for DNA-Based Elliptic Curve

Cryptography for IoT Devices. ETRI Journal, Volume 40(3), 396–409.

https://doi.org/10.4218/etrij.2017-0220

Vidhya, E., & Rathipriya, R. (2018). Two Level Text Data Encryption using DNA Cryptography.

International Journal of Computational Intelligence and Informatics, Vol. 8: No. 3, 8(3),

106–118.

Yunpeng, Z., Xin L., Yongqiang M., & Liang-Chieh, C. (2017). An Optimized DNA Based

Encryption Scheme with Enforced Secure Key Distribution. Springer Science Business

Media, LLC. DOI 10.1007/s10586-017-1009-y

https://www.thedrive.com/tech/17993/lyft-investigates-claim-that-employees-improperly
https://doi.org/10.1088/1757-899X/518/5/052003

54

APPENDIX

TSS module Source Code

<?php

include("key_generator.php");

include("xor_conversion.php");

include("DNA_encryption.php");

include("DNA_decryption.php");

include("ASCII_bin.php");

function TSS_encrypt($string_var, $rand_val) {

$string_length = strlen($string_var);

$count = '0';

$DNA_result = '';

//$id = random_bytes(8);

 for ($count=0; $count < $string_length; $count++) {

 //selection of char one at a time from the submitted string

 $character = substr($string_var, $count, 1);

 //convertion of character to ASCII code

55

 $char_ASCII = ord($character);

 //convertion of ASCII code to binary

 $ASCII_bin = decbin($char_ASCII);

 //convert each character ASCII_bin to base 8

 $char_bin8 = ASCII_bin8($ASCII_bin);

 //generate key for each character from the input string

 $k_bin8 = TSS_Key_Generator($string_length, $rand_val);

//copuute the XOR for each character binary and it's key

$xor_bin_res = xor_binary($k_bin8, $char_bin8);

//convert to DNA Neocliode (ATCG)

$DNA_Nucleotide = DNA_encryption($xor_bin_res);

//consolidate each character DNA Neocliode (ATCG)

$DNA_result = $DNA_result.$DNA_Nucleotide;

 }

56

return $DNA_result;

}

//Decryption Code

function TSS_decrypt($DNA_result, $rand_val){

//Assignment statement

$DNA_cipher = $DNA_result;

//compute cipher text string length

$DNA_string_length = strlen($DNA_cipher);

//convert DNA cipher text to binary

$DNA_bin = DNA_decryption($DNA_cipher, $DNA_string_length);

//compute string length of ciphertext (i.e in binary form)

$Cbin_string_length = strlen($DNA_bin);

57

//assign fix binary size to the variable "bit_size"

$bit_size = '8';

//initialization

$c_XOR_bin8 = '';

//initialization

$Decryption_res = '';

//divide cipher length obtained from the binary form by base 8

$Cbin_length = $Cbin_string_length / $bit_size;

//generate cipher text key

$c_key_bin8 = TSS_Key_Generator($Cbin_length, $rand_val);

 for ($i=0; $i < $Cbin_string_length; $i+=8) {

 $character_bin = substr($DNA_bin, $i, 8);

 $c_XOR_bin8 = xor_binary($c_key_bin8, $character_bin);

 //convert each binary digits in base 8 to decimal values

 $ascii_code = bindec($c_XOR_bin8);

58

 //convert each decimal value to it's corresponding character (plaintext)

 $decrypt_char = chr($ascii_code);

 //concatenate the characters

 $Decryption_res = $Decryption_res.$decrypt_char;

 //echo $c_XOR_bin8.'
';

}

//return plaintext result

return $Decryption_res;

}

?>

