
i

OPTIMISED SUPPORT VECTOR MACHINE (SVM) FOR DETECTION OF

ANDROID MALWARE WITH NEIGHBOURHOOD COMPONENT ANALYSIS

ALGORITHM

BY

EFEFIONG INYANG UDO-NYA

MTECH/SICT/2017/7617

DEPARTMENT OF CYBER SECURITY SCIENCE

FEDERAL UNIVERSITY OF TECHNOLOGY

MINNA

SEPTEMBER 2021

ii

OPTIMISED SUPPORT VECTOR MACHINE(SVM) FOR

DETECTION OF ANDROID MALWARE WITH NEIGHBOURHOOD

COMPONENT ANALYSIS ALGORITHM

BY

EFEFIONG INYANG UDO-NYA

MTECH/SICT/2017/7617

A THESIS SUBMITTED TO THE POSTGRADUATE SCHOOL FEDERAL

UNIVERSITY OF TECHNOLOGY, MINNA, NIGERIA IN PARTIAL

FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE

DEGREE OF MASTER OF TECHNOLOGY IN CYBER SECURITY SCIENCE

SEPTEMBER 2021

iii

ABSTRACT

The exponential surge in android malware has continued to increase with new variants of

the malware surfacing daily. This is due to the ubiquitous nature of mobile platforms and

internet technology which are almost inevitable in today’s digital age. One of the

approaches used in detecting malware is the use of machine learning algorithm. SVM is

a machine learning (ML) classifier that has demonstrated promising strength to be used

as a tool for the detection of android malware. The goal of this study was to build an

optimised SVM model for detection of android malware using the neighbourhood

component analysis (NCA) algorithm. The research work adopted the neighbourhood

component analysis (NCA) algorithm to sieve out irrelevant features which guaranteed

excellent model performance. The Bayesian optimization method was used to optimally

combine the various SVM hyperparameters and their values to have a super and optimised

NCA-BOM-SVM model for the detection of android malware. The results of the

proposed model (NCA-SVM) show an accuracy of 97.8%, false alarm rate of 0.021,

precision of 97.9%, error rate of 0.02, recall of 97.9%, and f1_score of 97.9%. These

results show an enhanced performance of malware classification with higher accuracy

and precision, alongside reduced false alarm rate and error rate, thus demonstrating an

improvement on existing literature. This implies that the Bayesian optimization of SVM

alongside the neighbourhood component analysis algorithm provides a more robust tool

for the detection of android malware.
{

iv

TABLE OF CONTENTS

Content Page

Title Page i

Declaration ii

Certification iii

Acknowledgement iv

Abstract v

Table of Contents vi

List of Tables x

List of Figures xi

1.0 CHAPTER ONE: INTRODUCTION

1.1 Background to the Study 1

1.2 Statement of the Problem 4

1.3 Aim and Objectives of the Study 4

1.4 Scope of the Study 4

1.5 Significance of the Study 5

2.0 CHAPTER TWO: LITERATURE REVIEW

2.1 Related Literature 6

2.2 Android Architecture 12

2.2.1 The Kernel 12

2.2.2 The Libraries 13

2.2.3 The Dalvik Virtual Machine 13

2.2.4 Android Application Framework 14

2.3 Android Security Architecture 14

2.4 Machine Learning (ML) 15

2.5 Supervised Learning 16

2.5.1 Logistics Regression 16

2.5.2 Decision Tree 17

2.5.3 Bayes Classification 17

2.5.4 K-Nearest Neighbour (KNN) 17

v

2.5.5 Support Vector Machine 18

2.6 Malware Classification 18

2.7 Types of Malware Analysis 18

2.8 Malwares 19

2.8.1 Classification of Mobile Malware 21

2.8.1.1 Worms 21

2.8.1.2 Virus 21

2.8.1.3 Bots and Botnets 22

2.8.1.4 Trojan Horse 22

2.8.1.5 Ransomware 23

2.8.1.6 Adware and Scams 23

2.8.1.7 Spyware 24

2.9 Feature Selection 24

2.9.1 Filter Type Feature Selection 25

2.9.2 Wrapper Type Feature Selection 25

2.9.3 Embedded Type Feature Selection 25

2.10 Feature Selection Algorithm 25

2.10.1 Maximum Relevance Minimum Redundancy Algorithm 26

2.11 Bayesian Optimization Method 26

2.12 Research Gap from Literature 27

3.0 CHAPTER THREE: RESEARCH METHODOLOGY

3.1 Proposed Model 29

3.2 Data Collection 32

3.3 Data Model 34

3.4 Feature Selection 34

3.4.1 Sequential Feature Selection Algorithm 35

3.4.2 MRMR Algorithm Implementation 39

3.5 Selection of the Training and Validation Data 40

3.6 Training and Testing of Classifier 40

3.7 Optimization of the Model 41

vi

3.8 Optimised NCA-BOM-SVM Model 43

3.9 Evaluation of Classification Metrices 44

3.9.1 Confusion Matrix 45

3.9.2 Accuracy 46

3.9.3 Precision 46

3.9.4 Recall or Sensitivity 46

3.9.5 F1_Score 47

3.9.6 Specificity 47

3.9.7 Receiver Operator Characteristics (ROC) Curve 47

4.0 CHAPTER FOUR: RESULTS AND DISCUSSION

4.1 Feature Selection Results 48

4.1.1 Feature Selection - MRMR 48

4.1.2 Feature Selection – NCA 49

4.1.3 Feature Selection – Sequential Feature Selection (SFS) 51

4.2 Results of Optimised NCA-BOM-SVM Model 52

4.3 Results Discussion 56

5.0 CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion 58

5.2 Recommendations 59

5.3 Contribution to Knowledge 59

REFERENCES 60

vii

LIST OF TABLES

Table Title Page

2.1 Summary of Result Performance for Related Literature 28

3.1 Sample of Features Category 32

4.1 Feature Ranking Based on Weight by MRMR Algorithm 48

4.2 Feature Ranking Based on Weight by NCA 50

4.3 Chosen Features by SFS Based on Criterion Value 52

4.4 Optimised SVM Hyperparameters that were Tuned and Values 52

4.5 Default SVM Parameters and Values 52

4.6 Performance Analysis of SVM and Optimised SVM (BOM-SVM) 55

4.7 Comparison of Proposed Optimized SVM Classifier with Baseline

Literatures 55

viii

LIST OF FIGURES

Figure Title Page

3.1 Detection Model 31

3.2 Data Model 33

3.3 Feature Selection Flowchart 38

3.4 SVM Classifier Pseudocode for Android malware Detection 41

3.5 BOM-SVM Classifier Pseudocode for Android Malware detection 43

3.6 Confusion Matrix for the Proposed Model 45

4.1 Feature Ranking by MRMR 49

4.2 Feature Ranking by MRMR 49

4.3 Feature Ranking by NCA Algorithm 51

4.4 Minimum Classification Error Graph for Optimised SFS-BOM-SVM 53

4.5 Minimum Classification Error Graph for Optimised NCA-BOM-SVM 54

4.6 Minimum Classification Error Graph for Optimised MRMR-BOM-SVM 54

1

CHAPTER ONE

1.0 INTRODUCTION

1.1 Background to the Study

Smartphones remain one of the most popular technologies in high demand, due to their

ubiquitous nature as a result of their adaptable functionalities and diverse usage. The use

of mobile phones has spread across different facets and spheres of life and it is almost

indispensable in the present technological, modern and digital world. The functionalities

of mobile platforms have widened, with an increasing scope of acceptance which tends

to outpace laptops and personal computers. In fact, there is no gainsaying that the advent

and sophistication of mobile technology has enhanced better efficiency and effectiveness

of human life and activity.

The sophistication and increased functionalities of mobile platform have not just

increased their complexities, vulnerabilities and risks, but have drawn attention of hackers

and cybercriminals, culminating in the violation of users’ privacy in barrage of ways, and

in various cyberattacks. Smartphones have become primary target of hacking activities,

with various devastating or degree of loss, as some malware developers catch in on these

vulnerabilities to gain unauthorised access and privilege thus posing as security threats.

Suffice it to say that cutting-edge technology via Internet of things (IoT), and proliferation

of information technology (IT) devices and infrastructures like smart phones, computers,

tablets, has created the leeway and a quite conducive environment and platform for

creation and proliferation of malware. As such, research in the security of smartphone

technology has become an issue of great and global concern and its interest not just to the

smartphone research community, but the entire tech-world.

2

Android is considered a leader with an overwhelming market share in the world of

smartphones operating system (OS), having gained or acquired superb or very large

market share on smartphones and tablets as billions of devices are used around the world.

This can be attributed to the market openness, ease of operability, and easy access

compared to other mobile OS. Research shows that android platform remains one of the

most patronised or used mobile platform in the present digital age. Consequently, android

applications have exponentially grown. It was reported that Google Play had more than

2.99 million apps as at 2020. Similarly, malicious apps are rapidly increasing as it was

reported that almost two million new apps that are malicious, were noticed as at the third

quarter of 2020.

Malwares are malicious software or applications designed to target OSs, computer

systems, or network infrastructures for the purpose of financial gains, information or data

disruption, destruction, or theft; distorting the normal workings of the system or probably

grind them to a halt. Most of these malwares have specific targets which could be

smartphones or specific mobile OS; network, banking systems, manufacturing systems

like the stuxnet. As such, there are mobile malwares designed to target smartphones,

while some are specifically designed to target mobile platforms in particular like the

Android OS. Interestingly, software vulnerabilities on Android smartphones is

undoubtedly on the increase and quite challenging to detect or identify, due to complexity

of the smartphone platforms. This exploitation triggers unusual or unexpected behaviours

in the system. Android mobile OS is reported as the most targeted and affected mobile

OS by malware threats. Malicious applications leverage on opportunity from the openness

of the Android platform to carry out attacks. Pertinent to note that hackers now attack

android mobile platforms with a sophistication that beats the security mechanism of those

devices. While anti-malware developers are creating algorithms to contain and avert

3

existing malwares, malware developers on their part are re-strategizing and enhancing

new techniques to help them perpetrate their nefarious activities, thus making these two

sets of persons to constantly be at their heels to outsmart the other. It is expedient to note

that despite the security mechanism embedded in android mobile platform and the

security awareness of the users, the rate of malware attacks on android devices is still on

the increase.

The security architecture of Android projects a primary line of defence which restricts

applications from running outside an isolated environment alongside with restricted

privileges to the apps from the permission system. Despite the isolation and restricted

privileges, apps still exploit the system and kernel vulnerabilities to bypass the Android

defence. This is affirmed by the tremendous threat cases over the past years. There is

tremendous increase in the size or number of malwares with so much improvement in

sophistication of attack. This motivates the unrelenting concern in the research on

smartphone security.

Though several efforts have been made by several researchers, heralded with remarkable

success, in stemming the activities, attacks, and effects of malwares on smartphones and

other mobile targets, new or recent malware attack vectors are emerging every day and

some have eluded these anti-malware detection systems. This remains the reason for

continuous research in this problem domain. Researches to counter malware attacks using

machine learning have been on-going. Thus, developing an efficient model or system that

can robustly efficiently detect android malware is quite expedient, as it will offer

protection to the device and further evade cyberattacks on android platform. Though

Support Vector Machine (SVM) have been used in various researches to build models for

android malware classification, this research work will focus on developing an optimised

SVM for android malware classification, that will offer a more optimal performance than

4

existing ones. SVM based models and frameworks have considered by researchers as

being to deal with code location and applications that are malicious and to handle labels

with multiclass (Wu et. al. (2021).

1.2 Statement of the Research Problem

The existing malware detection data models are not good enough (Wu et. al. (2021) in

the selection of representative features, therefore a need to improve on the selection

technique to achieve better feature selection. In addition, the existing android malware

detection models are still subjected to unacceptable accuracy rate and false alarm rate

such as developed by Rana et. al. (2018) and Li et. al. (2018), and therefore need

improvement.

1.3 Aim and Objectives of the Study

The aim of this research is to develop an optimised SVM model for detection of android

malware with neighbourhood component analysis (NCA) algorithm.

The objectives of this research are to:

i. Develop data model to obtain representative features with Neighbourhood

component analysis algorithm.

ii. Develop an optimised SVM model with Bayesian optimisation method for

detection of android malware.

iii. Evaluate the performance of the model in (ii) using the relevant machine learning

performance evaluation metrics

1.4 Scope of the Study

The focus of this research is to develop an optimised support vector machine model using

the Bayesian optimization method, and train it with an optimised data features obtained

5

from feature selection algorithms, which will consequently produce a model with optimal

predicting capacity. More so, the research work will utilise the android malware and

benign datasets from drebin data source. The technological tool for implementation,

optimisation, and evaluation is the Matlab 9.6.0 platform.

1.5 Significance of the Study

The data model will ensure the elimination of the curse of dimensionality on the data

consequent upon which there will be reduction in the features to a manageable and

accurate data while the detection model will assist to detect android malware in

applications. The evaluation will ensure better performance for the detection model. This

will be of great benefit to the academic/research world alongside every other sector of

life as the risks and threats associated with android malware will significantly reduce.

6

CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 RELATED LITERATURE

Adebayo and Aziz (2014) carried out a static code analysis on android malware where

they examined the different attack vectors on mobile android platforms for the purpose

of identifying and obtaining useful features for further analysis and classification. They

also researched into several attack vectors that target android operating system. This

research, by analysing the Zertsecurity, highlighted the various step for statically

analysing of android malware and came to conclusion that Zertsecurity is a Trojan that

steals login information.

Adebayo and AbdulAziz (2014) proposed the classification of android malware using the

Apriori algorithm with an improvement with the particle swarm optimization and static

code analysis. They used the static code analysis to extract features from android

applications bytecode which was used to train supervised classifier. The improved apriori

algorithm was used as the selection technique. In the course of the research work, they

carried out both supervised and unsupervised classification and the results maximised and

minimised the true positive rate as well as the false positive rate respectively.

Khan et. al. (2017) researched and proposed a solution and method of malware

classification and detection using the interceptor that sits in between the web browser and

the server. The research engaged in the static analysis of JavaScript code for feature

extraction. They further reduced the dimensionality of the datasets through wrapper

method of feature selection where a sizeable feature subset was obtained and deployed

for classification.

7

Dataset used for the research work had 1924 instances of 409 and 1515 malicious and

benign JavaScript respectively. They had 3 different experiments with different levels of

partitions. In experiment 1, the entire subset of the dataset after feature selection was

used for the training, whereas, in experiment 2 and 3, the hold-out method with eighty

percent to twenty percent; and 10-fold cross-validation respectively. The following

machine learning classifiers were engaged in the research work – Naïve Bayes, KNN,

svm, and J48. SVM in all the three experiments achieved accuracy of 94.55% and

95.42%, compared to other classifiers like Naïve Bayes which had 95.06% and 97.99%;

J48 with 99.22% and 98.64%, in the second and third experiments respectively.

Khan et. al. (2017) proposed an intelligent framework that profiles android users, which

use multi-layer technology to communicate with the control sever and monitor their

mobile devices. This framework assists in detecting malware application and activities of

botnet on those devices. The proposed system creates user profiles which will be used for

behavioural analysis, by monitoring resources used by the devices and all incoming and

outgoing text messages.

Wen and Yu (2017) extracted several Android features using both the static analysis and

dynamic analysis methods. Considered the relief method for feature selection algorithm

though with some weakness of inability to eliminate redundant features; alongside the

PCA which is a dimensional redundant algorithm, capable of transforming features

linearly into a low dimensional (or capable of reducing the dimensionality of the data).

They proposed a new feature selection method called the PCA-RELEIF, which they used

to dispose off redundant features and further carried out dimensionality reduction on the

data. SVM was used to build a classifier. According to them, the experimental result

obtained from the comparative analysis of using Relief, PCA, and PCA-RELIEF as

8

feature selection methods with SVM classifier, shows that PCA-RELIEF produced the

best accuracy, highest TPR, and the lowest FPR.

Yuan et. al. (2016) researched and proposed the DroidDectector, which depends on deep

learning (DL) and also runs on the web, designed to detect malware on android devices.

The DroidDetector produced a DL model which was thoroughly validated, tested and

evaluated by performing in-depth analysis on features from real-world apps obtained

from Google Play Store, and several malwares datasets from Contagio community and

Genome projects. The researcher commended the strength of Deep Belief Network

(DBN) in Android malware characterization and further reported and accuracy of

96.76%. They asserted that their accuracy rate significantly outperforms some ML

techniques such as Multi-layer Perceptron, Logistic Regression and support vector

machine.

Traditional malware detection method/techniques have gone obsolete due to the

sophisticated nature of Android malware obfuscation and detection avoidance method, as

these malwares continue outsmart several detection methods and further inflict harm to

devices and system resources, Alzaylaee et. al (2020) proposed a deep learning solution

called the DL-Droid which has the capacity through dynamic analysis to detect malware

in Android applications. This study trained a deep learning algorithm which produced a

DL model. Over 30,000 malicious and benign real-life applications on mobile devices

were used to perform the experiments.

Rana et. al. (2018) proposed a string-based feature selection approach to remove

irrelevant predictors and subsequently deployed the resulting dataset to train some

machine learning algorithms which include decision tree, gradient tree boosting, random

forest, extremely randomised tree algorithms. The dataset for the experiment was

9

obtained from the Drebin dataset. Upon evaluation of these various classifiers, random

forest classifier outperformed others with an accuracy of 97.24%, recall of 96.88%,

fi_score of 97.23% and precision of 97.58%.

Rana et. al. (2018) evaluated different machine learning algorithms for the detection of

malware on android devices. They achieved the purpose of their research by carrying out

an analysis on drebin dataset. According to them, in order to ascertain what happened

after decompiling Android Apk file and to check the permission and API functions, they

took a swap at the AndroidManifest.xml file. The metrics evaluation on the classification

on the static analysis showed random forest classifier outperforming others with an

accuracy of 94.33% and recall of 94.27%. More so, the SVM had an accuracy of 90.74%,

precision of 91%and recall of 91%.

 Alzaylaee et. al (2020) researched and proposed DL-Droid, which is a framework for the

detection of android malware. Their research carried out a comparative analysis involving

dataset with dynamic features and one that has both dynamic and static features.

According to their study, they achieved 97.8% detection for the former, and 99.6%

detection rate for the latter. After extensive comparison of their results with seven popular

traditional machine learning techniques, they asserted that their proposed system

outperforms those ML classifiers.

Li et. al. (2016) researched and proposed the DroidDeepLearner which is a malware

detection approach that is based weight adjustment. This weight adjusted approach which

according to the research has the capacity to automatically detect and distinguish between

malware and benign samples, deploys both the risky permission and API calls to build a

Deep Belief Network model. The experiment utilised the dremin dataset with 237 features

and the evaluation showed an accuracy of 90% accuracy.

10

Adebayo and Abdul Aziz (2019) proposed a novel solution for the detection of android

malware with a knowledge-based database discovery model obtained from android

benign and malware. These researchers gathered and extracted benign and malicious

android applications after they had analysed the sample of the code. They utilised triple

feature selection approaches for ranking the features in the order of importance further

had an association rule based on the features. The combination of the parameters

associated with apriori algorithm and the optimised generation of candidate detectors was

used for feature selection. The detection of malicious android applications was made with

extraction algorithm and rule models which was obtained from the candidate detectors

from particle swarm optimisation with apriori association rule. The proposed method

demonstrated a remarkable improvement over the existing contemporary android

detection methods.

Chavan et al (2019) carried out a research on the comparative analysis on the

classification of statically extracted features from Android applications. The research

work covered both the binary classification and multi-class classification with family of

Android malwares and their focus was on the permission requests by application. The

research work used the Android malware Genome project dataset which consist of apk

files which they obtained from various malware forums as well as Android applications.

The benign dataset was obtained from the PlayDrone project. The researchers dealt with

the challenge of high feature dimensionality using the information gain approach to

reduce the features of the dataset and further used the RFE based on a linear SVM get the

feature weights which was the criterion for feature elimination based on this approach.

Subsequently, they deployed some machine learning classifiers (Adaboost, ANN, J48,

LMT, linear SVM, random tree, and random forest on each of the resulting data subset

from the information gain approach and the RFE with svm approach for malware

11

classification and detection, alongside the cross-validation strategy. Evaluation and

comparison of the created models was made with the precision and AUC. For information

gain approach, the best precision value came from ANN and random tree with score of

0.97. The AUC for them in the information gained approach remain 0.94, 0.96, 0.96, 0.97,

0.97, and 0.99 respectively. Similarly, the precision for linear svm and J48 using the RFE

with svm feature selection are 0.96 and 0.96.

Wang et al (2019) postulated the quality of datasets largely determines the dependency

of malware detection models. This entails that some performances of some models may

be unsatisfactory due to poor training datasets and can lead to failures of these models.

They proposed SEdroid is an ensemble-based system with genetic algorithm. The

SEdroid, which is an Android malware detection engine that is quite robust and engaging.

They reported that SEdroid demonstrated 98.3% precision and 98.1% recall ratio. The

research posits that designing SEdroid with consideration to diversity of the ensemble

and accuracy, facilitate and fast-track the process of finding optimal ensemble

combination, thus providing the model with super robustness and very strong

generalization ability.

Yang et. al (2020) researched into means of improving on the accuracy and efficiency of

Android malware classification/ detection and came up with an approach which is an

ensemble of decision tree and support vector machine algorithm (DT-SVM). According

to the researchers, this DT-SVM machine learning advanced algorithm which they

designed extracted the Dalvik opcode of sample using the reversing Android software,

the n-gram model was used to generate the eigenvectors of the sample. They trained the

samples and consequently generated a decision tree. Subsequently, using the bottom up

approach, the decision nodes were updated as SVM nodes. This research deployed the

strength of both the DT and SVM especially overfitting reduction by SVMs, to have high

12

accuracy. Their work achieved an all-time precision of 96% using the DT-SVM

algorithm, for the Android malware apps classification/detection with a relatively low

time consumption.

2.2 Android Architecture

Android was founded with the intention of developing the Android OS for mobile. It

remained under the radar, until it was purchased by Google, Inc. in 2005. Android

development incredibly soared higher as it captured almost 50% of mobile operating

system market share. The 1.0 version of android OS was officially launched on September

23, 2008 and it ran on HTC Dream device. The Android OS experienced a rapid growth

is attributed to one of its unique features of open source since the binaries source codes

were released. This open source gesture makes it possible for design and building of

mobile phones that runs on Android OS by any interacting person. Android OS takes

approximately 2.6GB of disk space, as such the entire source code can be downloaded.

Android left its Android Operating System as open source software until version 3.0 and

above, and have remained closed source since then. The Android architecture has four

main components

❖ The kernel

❖ The libraries and Dalvik machine

❖ The application framework

❖ The applications

2.2.1 The kernel

The kernel is one of the components of the Android architecture for its mobile platform

that communicates and interfaces with the hardware device that it sits on. Alongside other

functions, it takes care of device drivers, networking, security, process management as

13

well as power, and memory management. It is accessible at http://android.git.kernel.org/

Application developers build applications in conformity with the Android kernel while

the hardware or device manufacturer may have the leverage of kernel modification such

that the Android OS is composite or works well with their particular hardware.

2.2.2 The libraries

The libraries component interfaces between the kernel and framework of the application

as a translation layer. Developers can access these libraries which are written in C/C++

using the Java application framework via Java API.

Below are the core libraries though not limited to the list.

❖ LibWebCore; gives access to the web browser

❖ Media libraries – which makes it possible to access to audio and video

❖ Graphics libraries – which provides access to 2D and 3D graphics drawing

engines

The Dalvik virtual machine is one of the runtime components that interact with and

applications.

2.2.3 The dalvik virtual machine

The Dalvik Virtual Machine was designed and build to primarily make it possible for

applications to execute in devices with very limited resources. This is quite typical of

mobile phones. Virtual machine functions as a guest operating system that runs within

another host operating system and operates by executing applications in a manner that

portrays it as physically running in that machine. It is highly portable. This feature allows

the developer to execute one code on any hardware platform that runs a compatible VM.

“The Dalvik VM executes .dex files.

http://android.git.kernel.org/

14

2.2.4 Android application framework

This layer is always known as the application programming interface (API) component,

which make available to application developer a suite of services. It gives the developer

access to user interface components, privileges of apps showing data between them via

the common content providers, access to notification manager which alerts the device

owners of events, and ability to manage the lifecycle of application through the activity

manager in the framework. Application layer provides the space through which apps

executes. This is the closest component that interfaces with the end user and it is place

that the contact, phone, messaging, as well as the Angry Birds apps resides. There is a

high tendency of mobile device users to lose their sensitive data or have the data mutilated

or destroyed or have the privacy compromised, in addition to losing or having their

devices stolen. The focus of the developer should be to develop applications with best

functionalities as well as offer adequate protection for users’ data.

2.3 Android Security Architecture

The Android security architecture through the Android kernel adopts or ensure the

implementation of the privilege separation model during application execution. This

entails that all running applications has its own user identifier as well as the group

identifier. By this security feature, applications are forbidden from reading or writing to

other applications or processes. More so, it also forbids applications from arbitrarily

connecting to remote servers using the device’s networking stack. Two applications

running on sandboxes can only access the data of the other through an explicit request

and permission granted accordingly. All applications that will eventually require to access

other components of the systems must have this designed and built into the application

by the developers. Android security architecture gives the end user the privilege of

15

performing the final approval process and the prompt for permissions is expected to come

at install time. The Android application code signing feature makes use of the certificate

of individual developers in the identification and establishment of trust relationships

amongst the different applications that runs in the Android OS. Android OS run only

applications that has been signed with a self-signed certificate. Android security focuses

on Android built-in security end permission and architecture. The Android platform is

endowed with several security mechanisms which provides control over the security of

the system and applications. This mechanism also implements the principle of application

isolation as well as compartmentalizing every stage. Every process within Android has

its own set of privileges. Except there is an explicit permission provided by the end user,

other application can access this application or its data. APIs cannot be use without

obtaining access from end user. Each process runs in its own isolated environment. Unless

there is an explicit permission from end user, there is no interaction possible between

applications. Interactions between applications is only made possible via permissions.

2.4 Machine Learning

Machine learning is a technique that provide systems’ ability to autonomously make

decisions from a set of provided data, without any external support. ML makes such

decisions by first learning from the dataset and further understanding its patterns. “The

big data giants like Google, Facebook, Amazon are using Machine Learning to gain

maximum benefits from data and compete their rivalries”. There exist various ML

algorithms which are the support vector machine, decision tree, logistic regression, and

random forest. The choice of

16

2.5 Supervised Learning

Supervised learning, is used for data modelling where there is a precise mapping between

input and output data. The algorithm for supervised learning has the capacity to recognise

and identify the relationships between the two variables in order to have a prediction for

a new outcome. The following are supervised learning algorithms – Support Vector

Machine (SVM), Gradient Bootstring, Artificial neural networks, Random Forest (RF),

Linear Regression, and Logistic Regression amongst others. Classification is the process

of recognising and grouping ideas and items into pre-defined categories or sub-classes. It

is the process of deploying algorithm which use pattern recognition in the training dataset

in order to spot the various patterns which could be number sequences, sentiments or

similar words in future or new datasets. Classification is a type of supervised learning. In

classification, algorithms make predictions on the likelihood of a subsequent dataset

falling into predetermined categories, using input training data. This is made possible by

the strength of an algorithm to analyse the sets of training data. Machine learning program

deploy different algorithms to classify dataset into various categories using already

categorised training datasets. Structured data can be classified as well as unstructured

data. A supervised learning is mostly used for classification problems, considering the

versatile features which help to actualise both categorical or its independent variable.

Binary classification has two possible results or outcomes.

There are several types of classification algorithms and their usage depends on a dataset.

2.5.1 Logistic regression

Logistic regression gives an estimate discrete values which is based on given set of

independent variables. It fits data into a logit function and consequently give the

prediction of the probability of occurrence of an event. Regression values fall between 0

17

and 1. Steps like interaction terms, removing features, use of non-linear models and

regularising of techniques can be deployed to improve the model. This is the analysis for

independent variable to predict the binary outcome whose result falls into of the two

categories. The dependent variable which is the outcome is always categorical while the

independent variables can be categorical or numeric.

2.5.2 Decision trees

Decision tree is a machine learning algorithm that splits population of items into two or

more homogeneous sets, taking cognisance of the most significant attributes which makes

the group as distinct as possible. In decision tree classification, data points or sets are

separated into two similar categories per time and such trickles down from the trunk to

branches and to the leaves, where the categories are assumed to become more finitely

alike.

2.5.3 Bayes classification

Naïve Bayes classification is a technique of classification, which is based on Bayes’

theorem as well as independence between the samples or predictors. It portrays non-

correlations or non-relations between features of the same class. Naïve Bayes has strength

that can make it to outperform some sophisticated classifiers depending on the type of

data set.

2.5.4 K-nearest neighbour (KNN)

KNN classifies new classes by searching for the k-nearest neighbour sample of the same

category and attributes. It uses the various distance functions like Hamming, Manhattan,

Minkwoski and Euclidean to calculate the distance of the k neighbour. While the three

former distance functions are used for continuous variables, hamming distance function

is used for categorical variable. At times, selecting the value of k might be a big challenge

18

while performing KNN modelling. It is expedient to note that KNN is quite expensive

with regards to computation. The variables are expected to be normalised to avoid higher

range of values from being biased. More so, KNN provides optimal result when much

work has been done at pre-processing stage like dealing with outliers and removing noise.

KNN classifier uses the pattern recognition technique on a training dataset to find the k

closest relatives in future datasets. It determines the place data within the category of its

nearest neighbour.

2.5.5 Support vector machine (SVM)

SVM is a simple and robust classifier that works by creating a line which is the hyper

plane that falls between two different sets of classes. This line is the classifier. This

classifier classifies new data based on where the testing data falls which can be on either

side of the line. SVM uses algorithm to train and classify data within decrees of polarity,

taking it to a degree beyond X/Y predicts. It performs a non-linear classification by using

the kernel to transform the data into higher dimension.

2.6 Malware Classification

Malware classification is the process that assigns a malware sample based on some factor

into some specific malware families. Common attributes and properties are what

malwares share in common and this makes it possible for the creation of signatures which

could be used for their detection or classification. Malware within a family, shares similar

properties that can be used to create signatures for detection and classification. Depending

on the method of extraction, malware can either static or dynamic.

2.7 Types of Malware Analysis

Static and Dynamic analysis are two approaches for analysing malware files. The static

analysis approach does not run the program, rather, it directly extracts features from the

19

byte-code or disassembled instruction. It has an advantage of using less resources and

ability to follow all possible execution path. However, this approach is quite sensible “to

packing technologies, encryptions, compression, garbage code insertion, and code

permutation”, thus making it possible to bypass malware detection systems based on

static analysis using obfuscation technique.

The Dynamics Analysis approach monitors the various behaviours of malware which

include but not limited to tracking the flow of information, file system, process

monitoring, instruction tracing, detection of system change, monitoring of registers,

network monitoring, auto-start extensibility points, function parameter analysis, and the

monitoring of function call. This approach is not sensitive to packing or obfuscation

techniques. This implies that this approach cannot be bypassed by packing or obfuscation

techniques, due to insensitivity to packing or obfuscation.

2.8 Malwares

Malware is a malicious software designed and implemented by hackers/attackers to meet

the harmful or malicious intent or to carry out certain nefarious activities. The intent is to

spread itself and remain undetectable, cause changes or damages, disrupt or gain

unauthorised access to users’ devices and inflict harm to data, infected system or network

and or people in different ways. These nefarious activities range from fraudulent

penetration of networks; compromise of computer and smart devices and bringing down

devices’ performance to knees; destruction and crippling of critical information systems

and infrastructures, stealing of confidential information, amongst others Ransomware,

rootkits, viruses, bots, spyware, Trojans, worms amongst others are some of the

programs/malware designed or used by attackers.

20

Mobile malwares are specifically written to attack mobile platforms whose devices

include smartphones, tablets, smartwatches and other wearable devices. It explores and

exploits vulnerabilities of the mobile OS and phone technology It remains a growing

threat to consumer devices. Malware remains one the biggest and toughest threats to

mobile devices, information systems and in the internet at large. Each malware operates

in a bewildering variety of forms with different attack vectors. There is a tremendously

and significant increase in the varieties of mobile malware programs whose targets are

smartphones and tablet, and the growth rate is highly alarming. The emergence of mobile

malware experienced a significant explosion in 2011 at the reported of new incidents in

the Android platform. Cybercriminals design malwares with the capacity to install

themselves or are installed on the various devices by unwitting mobile users. The mode

of distribution of malicious mobile programs are through the internet; downloads; and

installation through device messaging functions.

The sophistication of malware attacks has increased as cybercriminals have turned to file-

less now. This level of sophistication where a malicious code does not require an

executable file in the endpoints, has made it more difficult and challenging for detection

by the traditional antivirus (AV), due to low footprint as well as the absence of files to

scan. Cybercriminals carry out these acts by injecting these malwares into some processes

and execute only in the RAM. Detection in this case can only be achieved by studying

the behaviours and malicious patterns of the processes. The world experiences mega

breach of cybersecurity attacks which are always calibrated yearly based on the level of

impact or devastation. In 2016, there was an alarming wave of wannacry ransomware

attacks which attacked millions of computers across the globe. There exist different types

of mobile malware variation with varying attack vectors, different methods of distribution

and infection, and impacts on mobile devices.

21

In order to get optional protection of devices and business system, and further forestall or

avert compromise of these systems, it is quite crucial and expedite for users to recognise

the different types of malware and their operational procedures. According to IT security

professionals, several generic, mobile-specific and other device-specific malwares have

been designed by hackers/cybercriminals to prey on IT infrastructures’ features and

vulnerabilities like ones on smartphones and tablets.

2.8.1 Classification of mobile malware

2.8.1.1 Worms

Worms are malicious software which upon installing itself into the computer memory,

replicate itself and infect the entire device or network. It spreads through software

vulnerabilities or phishing attacks. Worms can perpetrate serious harm depending on the

type of worm and possibly the security measures established on the device or network. It

can modify and delete files; inject malicious software into IT devices or electronics

infrastructures; replicate themselves severally to deplete and overwhelm the system

resources; steal data; and install a convenient backdoor for hackers, amongst others. It

spreads very fast, consumes network bandwidth, and overload as well as overwhelm a

web server.

2.8.1.2 Virus

Virus is a malicious software which operates by attaching itself to an executable file. It

needs an infected active OS or program to function and remains dormant, and can only

be activated by launching the host file or program that it is attached to. It spreads to the

entire system via this means. It can spread through websites, file sharing, email

attachment downloads, and other downloads from unreliable websites. A computer or

22

mobile virus can hijack applications, use these applications on the system to sneeze all

over everywhere, by sending out files that are infected to other systems, clients, or friends

2.8.1.3 Bots and botnets

A bot is an IT device like computers or mobile device that is infected with malware such

that it can be remotely controlled by cybercriminals and could be used to launch cyber-

attacks. A collection of these bots also referred to as zombie, form a botnet which is

limitless. Botnets can control millions of devices even as it continues to spread without

being detected. Hackers through the master servant commands, use the botnets to carry

out several malicious activities including sending spam and phishing messages;

screenshots key logs and webcam access; and DDOS attacks. The sophistication of

mobile malware has increased to the level that programs can operate secretly run without

notice in the background on the user device and watching out for certain behaviours like

online banking session.

2.8.1.4 Trojan horses

Trojan horse disguises itself as a real and trustworthy file or program. Mobile Trojan finds

itself into devices by attaching itself to legitimate programs that does not look harmful

and get installed alongside with the apps after which it will infect the device or perpetrate

malicious actions. It is activated by users. Cybercriminals typically embed Trojans into

files or apps in the mobile devices that does looks legitimate. The Trojan is activated by

the user as they open a file and it can infect and deactivate other applications and the

mobile device itself as soon as it is activated. It can also paralyse the device after a certain

period of time or a certain number of operations. These malicious programs hijack the

browser and captures user login details. Trojans themselves are a doorway. It can spy on

devices or systems; capture or steal data; delete or modify data; harvest devices and make

23

it part of botnet; and gain unauthorised access to devices and networks. Banking Trojans

target vulnerable users by distributing fake version of legitimate mobile apps.

2.8.1.5 Ransomware

Ransomware is a malicious software that uses encryption principle to lock the victim’s

data on their device or locks the hardware devices, thus restricting devices or users access

to their hardware devices, files or data with a demand for a payment of ransom which

most times are with cryptocurrencies such as bitcoin, before the data or device is

decrypted. In a ransomware attack, the victim is usually notified of an exploit on his

device and instructions are further provided on how to recover the encrypted item, while

the identity of the cybercriminal remains unknown. This makes it different from other

attacks. In May 2017, a ransomware named Wanncry attacked and compromised

thousands of computers across the globe. This attacked individuals and corporate bodies

with monumental damages and losses.

2.8.1.6 Adware and scams

These are malwares that automatically deliver advertisements which serves pop-ups and

display unsolicited or illegal ads which often does not have relevance to the users. Adware

is often annoying, pose as nuisance to users and can slow down the devices. It can redirect

or link users to malicious sites. A device that has it installed can deliver spywares, which

most often are easily hacked, thus making the devices to be soft target for hackers,

phishers, and scammers. Most adware is authored by advertising firms as a means of

generating revenue. Though some adware is meant to only deliver ads, some of them to

be bundled with spyware to track user activities as well as steal personal and confidential

information.

24

2.8.1.7 Spyware

Malicious software with a common threat which secretly keep records of all activities of

the users (both online and offline), harvest the users’ data and collect personal and

confidential information such as contacts, usernames, passwords, location, downloads,

user preferences, messaging habits, browser history and surfing habits/ behaviour and

relays these data to a third party. It can also collect device information like the IMSI

number, product ID, IMEI number, and OS version, which can be used by the third party

to launch future cyber-attacks. Spyware is often installed or distributed on user device

without the user’s consent as a freeware or shareware with a disguised or appealing

function at the front end as a legitimate app, with covert, nefarious and unknown mission

running in the background. This means is often use for perpetrating identity theft and

credit card fraud. Spyware at times are referred to as adware because they may be

advertisers or marketing firms. Cybercriminals or advertisers have access to users’ data

through spyware and some of them can further install additional malware that make

changes to the settings of devices.

2.9 Feature Selection

Feature selection is a technique and ML process in which the dimensionality of data is

reduced by sequentially selecting a subset of the input features that are most relevant to

the predicted or target class (variable), to develop a model. Subject to some evaluation

criterion or constraints which includes the size of the subset, required features, and

excluded features, the feature selection algorithms search and select a subset of the

features that are highly representative of the original dataset and will optimally model the

measured responses. Despite the importance of irrelevant or redundant predictor or input

variable, they can mislead and add more stress to the learning algorithm, which possibly

25

can result in lower prediction performance. Though all features of the dataset can contain

some level of information about the response class or variable, too many features will

obviously degrade the model prediction performance. The main reasons or benefits for

deploying feature selection algorithms in ML are to offer better or improve prediction

performance with regards to accuracy and other evaluation metrics, facilitate or enhance

faster and cost-effective predictions, and offer a better insight. These algorithms can be

categorised into three types or methods

2.9.1 Filter feature selection

This method gives adequate measure of the importance of the features using the univariate

statistics, entropy or correlation. The characteristics of the features like the variance and

its relevance to the response class provide the basis for the measuring the feature

importance. This method does not have any correlation with the training algorithm as

important and relevant features based on the algorithm are selected as part of the data pre-

processing step, and subsequently used to train a classifier.

2.9.2 Wrapper feature selection

This method selects a subset of the features and through training, sequentially adds or

removes additional features with reference to a selection criterion. The removal and

addition of features due to the change in model performance is as a result of the selection

criterion which actually measures the change in model. Trainings and improvements are

repeated by the algorithm and stops when its halting criteria is satisfied.

2.9.3 Embedded feature selection

In the embedded type feature selection method, the features importance is learnt as part

of the model learning process. The importance of the features are obtained while training

26

a model and the algorithm select the features that work well with a particular learning

process.

2.10 Feature Selection Algorithms

Neighbourhood Component Analysis (NCA)- NCA is a non-parametric method which

selects features with the hallmark goal of maximising prediction accuracy of regression

and classification algorithms. The NCA feature selection with regularization learns

features weights for minimization of an objective function that measures the average

leave-one-out classification or regression loss over the training data. It learns the feature

weights by using a diagonal adaptation with regularization. The feature selection is

performed using the predictions and response variables. It learns feature weights for

minimization of an objective function that measure the average leave-one-out

classification loss over the training data.

2.10.1 Maximum relevance minimum redundancy (MRMR) algorithm

The MRMR algorithm’s ultimate goal is to search for relevant set of features that are

dissimilar and can represent the response variable effectively. It maximizes the

relevance of a feature set and further minimizes the redundancy of a feature set to the

response class. The MRMR uses the mutual information of variable-pairwise mutual

information of features, alongside mutual information of the response class to quantify

the redundancy and relevance of features.

2.11 Bayesian Optimization

Optimization is the process where a point is located that has the capacity to minimise the

objective function which is a real-valued function known. The Bayesian optimization uses

the Gaussian kernel function in the process model of the objective function, which is used

for training the model. The acquisition function is a function use by Bayesian

27

optimization to determine the next point to evaluate during optimization. The acquisition

function as use in Bayesian optimisation explores areas and points that need to be

remodelled and can also balance sampling at points that have low modelled objective

functions. The Bayesian optimization algorithm seeks to minimize a scaler objective

function in a bounded domain.

2.12 Research Gap from Literature

Table 2.1 provides a summary of related literature that were reviewed. This points to the

fact that different researchers have carried out researches on the detection of Android

malware using different methods and obtained various levels of performance results.

Pertinent to mention that some of the performance recorded indicate insufficient accuracy

rate and high error rates. More so, in some of the reviewed works, relevant metrics like

accuracy rate, precision, error rate and false alarm rate were not reported. Despite these

efforts, malware has continued to exponentially penetrate the mobile Android platform.

Hence, the need for an enhanced and better performed machine learning algorithm that

will provide better performance using the relevant evaluation metrics. This research work

demonstrates strength in bridging these limitations using the Bayesian optimized SVM

alongside the neighbourhood component analysis algorithm for detection of Android

malware. All the relevant performance evaluation metrics which includes accuracy rate,

false alarm rate, precision, error rate, recall, and f1_score are reported in this research

work.

28

Table 2.1 Summary of Result Performance for Related Literature

Reference Method Accuracy

(%)

False

Alarm

Rate (%)

Precision

(%)

Recall

(%)

F1_

Score

(%)

Yuan et al

(2016)

Deep

Learning

96.76

Khan et al

(2017)

SVM

NB

95.42

97.99

NR

NR

Rana et al

(2018)

Random

Forest SV

DT

ERT

BAGG

94.33

90.74

91.78

93.66

93.71

Not

Reported

(NR)

94

91

88

93

94

95

91

94

93

94

94

91

91

93

94

Rana et al

(2018)

DT

RF

Gradient

Boosting

Ext.

Randomized

96.13

97.24

93.68

96.97

NR 96

98

94

97

96

97

93

97

96

97

94

97

Li et al

(2018)

Deep

Learning

90 NR NR NR NR

Wang et al

(2019)

Ensemble

Learning

 98.3 98.1

Alzaylaee

et al (2020)

Deep

Learning

97.8

Yang et al

(2020)

 96

29

CHAPTER `THREE

3.0 RESEARCH METHODOLOGY

This section of the research work encapsulates and outlines in detail the various steps and

procedures for achieving the aim and objectives of the proposed research work. The

dataset was optimised to reduce the curse of dimensionality using the sequential feature

selection (SFS) algorithm alongside three other feature selection algorithms. This

optimised dataset was divided into training and test sets. The training set was used to train

the SVM classifier, using the k-fold cross validation strategy to avoid overfitting.

An optimised SVM was tuned, trained and validated using the Bayesian optimisation

method. The optimised, and the first SVM model alongside other classifiers were tested

with the test dataset, and their predictive performance were evaluated using the standard

evaluation metrics. The detailed description of the above procedures is given in the

sections below.

3.1 Proposed Model

The proposed model involves collection of android applications (malicious and benign)

for the design of the model. The features were extracted from the applications to form the

n by n dimensional data vectors for the training and testing of data model. The features

were optimised after the feature selection using the neighbourhood component analysis

(NCA), maximum relevant minimum redundant (MRMR), and the sequential feature

selection. The dataset with optimised features were divided into two parts in the ratio of

eighty percent to twenty percent for training and testing datasets respectively. The

training dataset was used to train an SVM classifier with the strategy of 10-fold cross

validation which resulted in an SVM model. The Bayesian optimisation method was used

to optimise the model by retraining and further selecting all possible values of the

30

hyperparameters. This resulted in an optimised model. The SVM and the optimised SVM

were tested with the testing dataset separately and further evaluated using the standard

evaluation metrics.

31

Figure 3.1 Detection Model

Yes

No

Apply NCA Feature Selection

on dataset

Load Android

Dataset

Is dataset

Normalised?

Start

Train and apply NCA –SVM

(1)

model

Normalise

dataset

Train and apply NCA-BOM-

SVM (2)

model

Is Android

Malware? (3)
Malware

(4)

Benign

(5)

Stop (6)

Yes No

32

3.2 Data Collection

This research work adopted and deployed a standard and multi-dimensional android

dataset from drebin which consist of thousands of data points arranged in rows and

columns. The dataset has feature vectors of 215 attributes with 15,036 observations. The

dataset was extracted from Drebin project with 5,560 malware apps and another 9,476

benign apps, all totalling 15,036 applications. Invariably, the dataset has 15,036 rows and

215 columns or features, in addition to the class label whose entries are either malware

or benign. The dataset came with a supporting file that has the description of the feature

vectors (attributes) which was extracted from the static code analysis of the Android apps.

In order to have a balanced dataset to work with, the research work used the 5560 malware

instances alongside the 5561 benign that was randomly selected from the 9476.

Table 3.1 Sample of features Category

onServiceConnected API call signature

Transact API call signature

bindService API call signature

SEND_SMS Manifest Permission

READ_PHONE_STATE Manifest Permission

33

Figure 3.2 Data Model

Drebin Dataset

Train and apply

SVM model

Apply NCA

algorithm

 Detect Malware

Balanced dataset

Input dataset with

reduced features

Testing dataset
Training dataset

Apply test dataset

Partition data

Benign

Dataset
No Malware

Dataset

Yes

Start

Is

Malware

Stop

34

3.3 Data Model

The data model as captured in figure 3.2 shows the flow of the data all through the

research work. The original dataset was obtained bogus from drebin with large number

of features and instances as explained in section 3.2. This drebin dataset had its curse of

dimensionality reduced with the neighbourhood component analysis (NCA). It was

reduced to 37 relevant and manageable features. This NCA dataset was divided into

training and testing datasets in the ratio 80 to 20 respectively. NCA training dataset was

used to the NCASVM model and the NCA-BOM-SVM model. While the NCA testing

dataset was used to test the performance of two models. After this classification process,

subsequent detection, the malware data formed another dataset and same for benign

dataset.

3.4 Feature Selection

Feature selection is the technique deployed in machine learning for selecting a subset of

input features that are most relevant to which is to be predicted. Apparently, most dataset

come with less important, irrelevant, and redundant features which often distract and

mislead machine learning algorithms, possibly resulting in lower or reduced prediction

performance. Feature selection algorithms deploys techniques that reduces the curse of

data dimensionality by searching for and selecting subset of predictor variables (measured

features), that will optimally model the predicting class or the measured responses,

subject to constraints like the size of the subset, or the excluded or required features.

Invariably, it is quite desirable to expunge these irrelevant and redundant features before

building models, and only utilise features that will result in best performing models.

Applying feature selection algorithm comes with several benefits including removing

irrelevant and less important features that have little or no contribution to building the

35

model. It discards the non-trivial features thus reducing the complexity of the data. It is

expedient to note that even when all features may contain information about the response

variable and relevant, engaging in model building using all the features can denigrate the

prediction performance.

These processes will start with the generation of several subsets from the original dataset,

evaluations of each of the subsets based on the stopping criterion or criteria, and the

validation of result, which will be the resulting optimised features. The subset generation

covers the search by the feature selection algorithm for optimised features. The search

direction could be backward or forward or bidirectional, depending on the algorithm

deployed. The subset evaluation process entails defining fitness functions to determine

the optimal features, and computing the fitness value. The best or appropriate fitness

value, depending on the earlier set criterion will be chosen, having met the condition for

stopping the subset generation process.

Sequential Feature Selection (SFS) algorithm, Neighbourhood Component Analysis

(NCA) algorithm, Maximum relevance minimum redundant (MRMR) algorithm, and the

relief algorithm were deployed on the dataset to carry out feature selection, in order to

obtain the optimised features. Depending on the algorithms per time, the feature selection

involved several processes and iteration and four separate optimised datasets were

obtained from each of the algorithms.

3.4.1 Sequential feature selection algorithm implementation

The sequential feature selection is one of the feature selection algorithms that was

deployed in this research work. On the Matlab platform where this algorithm was

implemented, the function sequentialfs was used to achieve the purpose of the algorithm.

36

The function md = sequentialfs(fun,A B) selects a subset of the features from the predictor

data matrix A, that best predict the class values or response class in B, by sequentially

selecting features until there no improvement in the prediction. The A is a data matrix

with 215 features and 10,121 observations, while B is a column vector which is the class

variable, with 10,121 observations. The criterion value is defined by a function handle

called the fun and it is used to select features and also determine when to halt the process.

The features which are finally chosen are indicated or output by the logical vector called

the md.

The algorithm begins with the sequentialfs creating a candidate or potential feature

subsets by sequentially adding each feature that is not yet selected. A k-fold cross-

validation is carried out on the selected subset by the sequentialfs which repeatedly calls

the function handler fun with different training and testing subsets of A and B, obtained

from the cross-validation. The criterion value which determine the chances of choosing a

feature is obtained as –

 Criterion = fun(ATrain, BTrain, Atest, Btest)

Criterion is a scaler value which the function handler fun returns each time it is called.

Fun uses ATrain and BTrain to train and fit a model, then predicts the values of Atest

using the model, and eventually returns some measure of distance or loss, of these

predicted values from Btest. The criterion value for each selected feature set is obtained

from the cross-validation by sequentialfs summing the values returned by fun and

dividing it by the total number of test observations. From the mean criterion value of each

selected feature subset, the sequentialfs picks the feature subset that minimises this value.

This process is repeated until adding more features does not devrease the criterion value.

37

The flowchart of the feature selection obtained from the sequential feature selection

algorithm is given in figure 3.3.

38

Figure 3.3 Feature Selection Flowchart

 Start

 Feature set Fn

Subset So = {}

 Add Features

 Si+1, Fn-1

Train subset

Is criterion value

minimized

Calculate Criterion

Value

Permanently add

feature to Subset

nFeatures reached

Permanently

Exclude the feature
No

No
B

Optimised

Features

End
stop

39

3.4.2 MRMR algorithm implementation

The MRMR was implemented with the Matlab in this research work. The fscmrmr is the

function that was used to achieve its purpose. This function ranks all the features in the

predicting dataset using the response class. The function [idx, scores] = fscmrmr(X,Y,

Name, Value) has the predictor variable as X, the response variable as Y, Name specifies

additional options as name-value pair arguments, and returns idx which contains the

indices of predictors ordered by predictor importance, alongside the predictor scores. The

importance of the predictor is determined by the score. More so, a drop in the feature

importance score shows the confident of the feature selection. This entails that when value

of the next important feature is much smaller than the score value of x, the algorithm is

confident of selecting the preceding feature. The optimal set is obtained by selecting

features in the order of importance from the score values of the various features.

Using fscmrmr function, MRMR algorithm can be implementation and rank features

importantly through the following steps.

1) The feature with the largest relevance is selected and added to an empty set S.

2) Search for the features that have non-zero relevance and zero redundancy from

the compliment of S, Sc.

a. If there is no non-zero relevance and zero redundancy in Sc, jump to step

4

b. Else pick the feature that has the largest relevance, and add to the set S.

3) Do step two again until the redundancy is not zero for all features in Sc.

4) Select the feature with the largest MIQ values with nonzero relevance and non-

zero redundancy in Sc, and add the selected features to the set, S.

5) Do step 4 again until the relevance is zero for all features in Sc.

40

6) Add the features with zero relevance to S in random order.

3.5 Selection of the Training and Validation Data

The optimised dataset that was obtained from the feature selection process were treated

separately since the essence of the feature selection is to test the strength and viability of

the feature selection algorithms in generating a representative subset capable of

enhancing model performance. Each of the datasets were divided to two part in the ratio

of eighty percent to twenty percent for training dataset and test dataset respectively. The

training dataset was used for the training of the classifiers with the k-fold cross-validation

strategy. A 10-fold cross-validation was used which split the training dataset into 10

splits. Each split was further divided into 10. During this process, each data subset for

each split had an opportunity of being a test/ validation set while the other nine was used

was used for training. This entails that this particular process will be repeated until each

of the groups has a chance to be used as the test set. Invariably, for ‘k’-fold cross-

validation, the process will be repeated for ‘k’ unique times.

3.6 Training and Testing of the Classifier

The SVM classifier was trained and validated with the optimised datasets from the feature

selection algorithms. The 10-fold cross-validation strategy was used in order avoid the

challenge of overfitting. More so, the cross-validation gave the model the generalizing to

unseen data before the testing phase. The model was tested with the test dataset and its

performance thoroughly evaluated using the standard classification metrics. Considering

the aim and objectives of this research, the focus of evaluation of the model’s performance

was on its ability to seamlessly detect malware presence.

41

1: Start

2: Initialize data (yTraining, xTraining, yTesting, xTesting)

3: Set partition as k = 10-fold cross-validation

4: Initialize SVM default parameters

 Set BoxConstraint = 1

 Set Standardize = true

 Set kernel = linear

5: Train SVM model with xTraining, yTraining

 For k= 1to 10

 Train & validate SVM

 Return SVMModel

6: Test SVMModel with yTesting, xTesting

 Return metric results

7: Compute & evaluate metrics results

8: Visualise metric results

9: Stop

Figure 3.4 SVM Classifier Pseudocode for Android malware Detection

 3.7 Optimisation of the Model

This research work deployed Bayesian optimization method for optimization on the

resulting SVM model, where several internal parameters and hyperparameters were

combinatorically tried and modelled. These variations provided the necessary tunings to

the optimised SVM. The following parameter are the optimizable hyperparameters that

were tuned

❖ Kernel – values varies from Gaussian, Linear. Quadratic and Cubic

❖ Box Constraint Level - values varies between [0.001 and 1000]

❖ Kernel Scale -values varies between [0.001 and 1000]

42

❖ Multiclass method – Either one-vs-one or one-vs-all

❖ Standardise data – Either true or false

Other important optimisation options that were used include-

❖ Acquisition function

❖ Training time limit

❖ Iterations

❖ Maximum training time I seconds

1: Start

2: Initialize data (xTraining, yTraining, xTesting, yTesting)

3: Set partition as k=10 fold cross-validation

4: Initialize & pre-set some SVM parameters & hyperparameters

5: Set Acquisition function = expected-improvement plus

6: Set Optimize Hyperparameters = auto

7: Set Standardize = true

8: Set kernel = gaussian

9: While best feasible point is not obtained

10: Train & validate BOMSVM model

11: Get feasible points

12: Get BoxConstraint values

13: Get KernelScale values

14: Get objective function value

15: Get estimated objective function values

16: Get function evaluation time

17: If estimated best feasible point is reached

18: Get optimal BoxConstraint value

19: Get optimal KernelScale values

20: Else continue training & optimization

22: End while

43

23: Return pre-set parameters & hyperparameters, optimal BoxConstraint value,

optimal…

24: KernelScale value, optimal objective function value, estimated objective…

25: value, function evaluation time

26: Test BOM-SVM model with xTesting, yTesting

27: Return metric results

28: Compute & evaluate metrics results

29: Visualize metric results

30: Stop

Figure 3.5 BOM-SVM Classifier Pseudocode for Android Malware detection

3.8 Optimised NCA-BOM-SVM Model

The optimization of SVM with Bayesian optimization method is the NCA-BOM-SVM.

The sequential implementation of this model is followed from the flow chart in figure 3.1

and the pseudocode in figure 3.5. The android dataset with 215 features was trained on

the neighbourhood component analysis for the feature selection process. This process

resulted in a dataset (NCA Dataset) with 37 highly relevant features. The NCA dataset is

divided into the training and testing data in the ratio of 80 to 20.

The essence of optimising SVM is to minimize the cross-validation loss and optimize

some hyperparameters at the best feasible points that will develop a model with optimal

performance. However, some parameters and hyperparameters of SVM were pre-set to

some value. The kernel was pre-set to gaussian since the Bayesian optimization method

makes use of the gaussian function. Apart from the pre-set parameters and

hyperparameters, other hyperparameters referred to as the optimizable hyperparameters

were set to auto. This include the box constraint and the kernel scale. With these selected

values of these parameters and hyperparameters, an objective function was created and

was varied all through the experiment until the best feasible points were obtained for auto

44

hyperparameters. The SVM was trained using the NCA training dataset with recourse to

the hyperparameters adopting the 10-fold cross-validation strategy. The acquisition

function which is one of the parameters determines the values and points of the auto

hyperparameters that have not been modelled and further picks the next possible values

to be modelled. The training and optimisation of SVM came to an end when the best

feasible points for the auto-set hyperparameters were obtained These points are captured

in table 4.4. This is the optimised SVM model called the NCA-BOM-SVM model. The

performance of the optimised model is further tested with the NCA testing dataset and

the results were obtained and evaluated as captured on table 4.6 while the minimum

classification error graph for the optimisation is figure 4.5. The evaluation of the NCA-

BOM-SVM performance was done based the standard evaluation metrics and the results

are capture on table 4.6.

 3.9 Evaluation of Classification Metrices

Performance evaluation of a classification while developing a machine learning model is

undeniably a key step and essential part that cannot be evaded. As such, measuring the

performance of a trained model, is absolutely very important. Both the adaptive and non-

adaptive capacity of a machine learning model is determined by the ability of the model

to perfectly generalise on the unseen data.

Performance evaluation metrics is the tool deployed or medium through which

improvement could be done on the overall predictive power of a model. This metrics,

which provides information concerning model performance, is used to monitor and

further measure the performance of the model. The proper evaluation of the ML model,

builds in confident and strength in the model’s generalisation accuracy in subsequent

45

predictive capacity. It evaluates the model’s performance which tells how good or bad

the classification is. Each of the evaluation metric evaluates the model in different ways.

3.9.1 Confusion matrix

This is a matrix representation, with tabular visualisation of the real classification labels

and the model predictions, being the prediction result of classification that is often used

to describe the performance of the model on a stipulated set of test data at a known time.

This is a simple matrix to decipher, whose row represents the instances in an actual class.

 Actual

 Predicted

 Positive Negative

 Positive True Positive (TP) False Negative (FN)

 Negative False Positive (FP) True Negative (TN)

Figure 3.6 Confusion Matrix for the proposed model

Each prediction in the confusion matrix represents an evaluation factor and can be one of

the following outcomes-

❖ True positive (TP) – Predicted and actual values are positive.

❖ True negative (TN) - Predicted and actual values are negative.

❖ False positive (FP) – Predicted value is positive whereas actual value

is negative. This is equivalent to type I error.

❖ False negative (FN) – Predicted value is negative whereas actual value

is positive. This is equivalent to type II error.

46

3.9.2 Accuracy

This is the ratio of the number of the correct or right predictions to total predictions. So,

it tells how the classifier often make correct prediction. Accuracy is put to use mainly and

works well when the classes are equal in size, that is, number of samples belonging to

each class are equal.

 Accuracy = (TP+TN)/total number of predictions

Misclassification Rate (Error Rate) – This tells how often the classifier predicts

incorrectly or misclassify. This is a measure of the failure rate in terms of classification

by the classifier.

 Misclassification Rate = (FP+FN)/total of predictions made

3.9.3 Precision

Precision stipulates the ratio of right or correct predictions to overall actual positive

prediction. It tells how often is it correct, when the classifier predicts true or yes.

 Precision=TP/predicted yes; Precision = TP/TP+FP

Precision is often put to use when there is a class imbalance, thus, accuracy becomes

unreliable metric for measuring the model performance.

3.9.4 Recall or sensitivity

Recall offers the measurement metrics that stipulates how often a model predict positive

or yes, when the actual value is positive. This metric is a measure of the true positive rate

(TPR).

 Recall (TPR) = TP/Actual positive

47

It is best used when the sample dataset is imbalance.

3.9.5 F1_score

This is the harmonic mean of the precision and recall.

 F1_Score = 2 x (Precision x Recall)/(Precision + Recall)

3.9.6 Specificity

Specificity is the true negative rate (TNR) or the proportion of true negatives to

everything that should have been classified as negative.

 Specificity (TNR) = TN/Actual negative

3.9.7 Receiver operating characteristics (ROC) curve

ROC measures the area under the ROC curve. This measurement is done by plotting the

true positive rate against the false positive rate. This plot produces the ROC curve, which

allows the model designer to visualise the trade-off between the true positive rate and the

false positive rate.

48

CHAPTER FOUR

4.0 RESULTS AND DISCUSSIONS

4.1 Feature Selection Results

4.1.1 Feature selection -MRMR

The Table 4.1 displays the result of feature selection by MRMR algorithm ranking the

predictors and their corresponding weights.

 Table 4.1 Feature ranking based on weight by MRMR algorithm.

Predictors ranking Weight of

Predictor

Predictors ranking Weight of Predictor

1 0.2099 60 0.0028

127 0.2011 63 0.0028

169 0.1247 15 0.0027

99 0.0192 159 0.0027

80 0.0190 73 0.0025

42 0.0098 23 0.0025

86 0.0096 61 0.0023

109 0.0078 46 0.0022

14 0.0075 56 0.0020

75 0.0056 54 0.0020

27 0.0042 24 0.0019

106 0.0036 9 0.0019

13 0.0035 31 0.0019

51 0.0032 7 0.0019

126 0.0029 66 0.0018

The Figure 4.1 is the graphical representation of the predictors ranking and their

corresponding weights obtained from the MRMR algorithm.

49

 Figure 4.1 Feature ranking by MRMR

 Figure 4.2 Feature ranking by MRMR

4.1.2 Feature selection - NCA

The Table 4.2 is the result of the selected predictors according to their columns and their

corresponding feature weights using the neighbourhood component analysis.

50

Table 4.2 Feature ranking based on weight by NCA

Predictors Feature Weights Predictors Feature Weights

X7 2.70384 X23 1.31786

X16 2.55435 X26 1.35393

X29 1.69903 X22 1.4987

X35 1.97921 X33 1.24626

X43 1.79244 X42 1.10225

X47 1.59551 X48 1.20294

X95 1.70993 X51 1.14678

X102 1.79552 X62 1.1376

X122 1.92739 X64 1.45422

X138 1.151621 X69 1.30107

X172 1.8032 X76 1.37174

X181 1.60786 X85 1.12156

X207 1.66404 X93 1,29766

X211 1.65918 X97 1.20723

X9 1.01797 X100 1.228

X8 1.09952 X123 1.28589

X13 1.10374 X197 1.20545

X15 1.19292 X203 1.03951

 X212 1.20908

The Figure 4.3 gives the graphical representation of the predictors ranking and their

corresponding feature weights by the neighbourhood component analysis algorithm.

51

 Figure 4.3 Feature ranking by NCA algorithm

4.1.3 Feature Selection -Sequential Feature Selection (SFS)

The Table 4.3 shows the result of the Sequential Feature Selection algorithm where some

predictors were chosen based on their criterion value.

52

Table 4.3 Chosen features by SFS based on criterion value

Chosen Features Criterion Value Chosen Features Criterion Value

1 0.000206714 106 5.81947e-05

14 0.000134753 86 5.75111e-05

7 0.000113757 27 5.71202e-05

8 9.61817e-05 62 5.68277e-05

69 8.94436e-05 61 5.64369e-05

60 8.3585e-05 135 5.62415e-05

56 7.92889e-05 24 5.61438e-05

42 7.58702e-0.5 43 5.3994e-05

94 7.22563e-05 155 5.2822e-05

202 6.80572e-05 80 5.25308e-05

28 6.62992e-0.05 11 4.93086e-05

67 6.52257e-05 5 4.67681e-05

37 6.41518e-05 70 4.52059e-05

66 6.31748e-05 172 4.38396e-05

82 6.22962e-05 53 4.30591e-05

119 6.13201e-05 49 3.97366e-05

139 5.98552e-05 192 3.90537e-05

145 5.8976e-05 194 3.87615e-05

4.2 Results of Optimised NCA-BOM-SVM

Table 4. 4 Optimised SVM hyperparameters that were tuned and values

Kernel

function

Box

constraint

level

Kernel

Scale

Acquisition

Function

Standardize

Data

Optimiser

Gaussian 68.1216 Auto Expected

improvement per

second plus

true Bayesian

Opt

Gaussian 1.7529 Auto Expected

improvement per

second plus

true Bayesian

Opt

Gaussian 0.5212 Auto Expected

improvement per

second plus

false Bayesian

Opt

53

Pertinent to mention that the correct combination of the various hyperparameters

alongside the modelling of the different values of the hyperparameters led to the

optimisation of the SVM classifier. The Bayesian Optimization method made it possible

for the different values to be modelled.

Table 4.5 Default SVM Parameters and values

Kernel Box Constraint Kernel Scale Standardize

data

Linear, rbc 1 0 False

 Figure 4.4 Minimum classification error graph for optimised SFS-BOM-SVM

54

Figure 4.5 Minimum classification error graph for optimised NCA-BOM-SVM

Figure 4.6 Minimum classification error graph for optimised MRMR-BOM-SVM

55

Table 4.6 Performance Analysis of SVM and Optimised SVM (BOM-SVM)

Algorithm Accuracy

 %

False

Alarm

Rate

Precision Error

Rate

Recall F1_Score

SFS-SVM-

Linear

95.1 0.05 94,5 0.048 96.2 95.34

SFS-BOM-

SVM

96.3 0.036 96.4 0.036 96.6 96.49

NCA-SVM

Quadratic

95.8 0.037 96.3 0.04 95.6 95.9

NCA-BOM-

SVM

97.8 0.021 97.9 0.02 97.9 97.9

MRMR-

SVM- -

Quadratic

94.4 0.067 93.3 0.055 96.2 94.7

MRMRBOM-

SVM

94.9 0.065 93.5 0.05 96.9 95.2

Table 4.7 Comparison of Proposed Optimized SVM Classifier with Baseline

Literatures

Reference Classifier/Method Accurac

y

 %

False

Alarm

Precisio

n

Recal

l

F1_Scor

e

Proposed

Optimise

d SVM

NCA-Optimised

SVM

 97.8 0.021 97.9 97.9 97.9

Rana et.

al. (2018)

Random Forest

SVM

DT

ERT

BAGG

94.33

90.74

91.78

93.66

93.71

Not

reporte

d

(NR)

 94

 91

 88

 93

 94

 95

 91

 94

 93

 94

 94

 91

 91

 93

 94

Rana et.

al.

(2018)

DT

RF

Gradient Boosting

Ext Randomised

96.13

97.24

93.68

96.97

Not

reporte

d

(NR)

 96

 98

 94

 97

 96

 97

 93

 97

 96

 97

 94

 97

56

Li et. al.

(2018)

DroidDeepLearner

/

Deep Learning

90 (NR) (NR)

(NR)

 (NR)

Further, the table 4.7 is a comparative analysis between the proposed solution and

solutions from the base line literatures with reference to accuracy, precision, recall,

fi_score and possibly the false alarm rate as the standard evaluation metrics. From Table

4.9, the proposed solution displays mastery and strength over the methods in the base line

literatures considering the accuracy, recall, precision and f1_score.

4.3 Results Discussion

Table 4.1 displays the thirty features with their corresponding weights, that were selected

for the experiment as ranked by the MRMR algorithm from the 215 features from the

original dataset based on their order of importance. Similarly, Table 4.2 and table 4.3

show the selected features with corresponding weights and criterion values by the NCA

and SFS algorithms respectively, from the 215 features from the original datasets. The

weights in Table 4.2 show the importance of the features whereas the criterion value is

the selection criteria for the feature to be added to the subset solution. For every selected

feature in Table 4.3, its criterion must have been minimised else would have been dropped

by the SFS algorithm. Figures 4.3 and 4.4 show the graphical representations of the

features based on their ranking by the MRMR algorithm. Similarly, Figure 4.5 shows the

scattered plots of the features based on their weights by NCA algorithm. The plots points

with zero weights show how less relevant the features are.

The results show that there is considerable benefit for deploying feature selection on

datasets for classification purpose. The various feature selection algorithms used their

methods to rank and select features they felt were representative of the original dataset.

The algorithms were able to reduce the features from 215 to the numbers mentioned

above. Only the SFS algorithm selected a certain number of features which was 36, while

57

others only ranked the features and gave the researcher the discretion of the number of

features to be chosen.

Table 4.4 shows the optimal points that the Bayesian optimization method chose as the

points that optimised the SVM model which gave better performance. These optimal

points were chosen after several combinations and modelling of all the possible values of

the hyperparameters. Figures 4.6, 4.7 and 4.8 shows the minimum estimation graphs for

the MRMR, NCA and SFS optimised dataset. The red points on the graphs represents the

minimum error rates for the optimised SVM model. Table 4.6 shows the performance

analysis of the SVM and optimised SVM, with consideration to the dataset from the

feature selection algorithms.

 It was observed that the datasets from the feature selections performed above acceptable

level but the NCA outperformed all others as it produced alongside the optimised SVM a

higher accuracy rate of 97.8%, precision of 97.9% and recall of 97.9, with lower error

rate of 0.02 and false alarm rate of 0.021 compared to the combination of other feature

selection algorithm with the optimised SVM as shown in table 4.8. NCA-SVM optimised

model gives the proposed solution which is better that the result obtained from the SVM

model without feature selection.

Table 4.7 shows the comparative analysis of the proposed solution with some baseline

literature that used the same original dataset for their experiment. The results as displayed

from the table shows the proposed solution outperforming the results from the baseline

literatures. The proposed solution has an accuracy of 97.8%, precision of 97.9%, recall

97.9% and f1_score of 97.9%, compared with the best result from the baseline literature

from Rana et. al. (2018) that obtained accuracy of 97.24%, precision of 98%, recall of

97% and f1_score of 97%.

58

CHAPTER FIVE

5.0 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

There is no doubt that there is an exponential increase in the reported cases of Android

malware. More so, worthy of concern is the level of sophistication in malware

development which adopts different means including the code obfuscation. However, this

research work was proposed to stem this menace by developing an ML model that will

detect Android malware on mobile Android platforms. The research work deployed

different feature selection algorithms which were the sequential feature selection

algorithm, relief algorithm, neighbourhood component algorithm and the minimum

redundant maximum relevant algorithm for feature selection process. These algorithms

used their different methods and operations to rank, provide weights and criterion values

to the features, which were considered for evaluation and selection and eventually used

for training, validation and testing the SVM and optimised SVM. The process of feature

selection indeed helped to reduce the curse of dimensionality of the dataset while still

keeping its representation properties. This process saw the number of features reduced in

each case from 215 in the original dataset.

During the training and validation, the strategy of k-fold cross-validation helped to reduce

overfitting and to enhance the generalization ability of the model to predicting unseen

data. This is because there was testing in each split of the cross-validation process. SVM

has some default values that are used while developing the model. But the Bayesian

optimization method offered the opportunity to model almost every point in the

optimisable hyperparameters and also provided the optimal values for the

hyperparameters where the best solution was obtained. However, based on the displayed

59

results obtained from the evaluation of the performance of the model, there is no doubt

that the proposed solution has demonstrated strength in the detection of android malware.

5.2 Recommendations

The following recommendations are made in furtherance any future from the spinoff of

this research work.

1. SVM is a promising ML classifier that can be enhanced for super accuracy for

malware detection and similar challenges

2. Possibilities of exploring a means of having an ensemble of two or more feature

selection algorithms for more optimal output.

5.3 Contribution to Knowledge

This research work made the following contributions to knowledge-

1. Development of a tool for detection of Android malware using Bayesian

optimised SVM with neighbourhood component analysis algorithm.

60

REFERENCES

Adebayo, O. S., & Abdul Aziz, N. (2019). Improved Malware Detection Model with

Apriori Association Rule and Particle Swarm Optimization. Security and

Communication Networks, 2019, 1–13. https://doi.org/10.1155/2019/2850932

Adebayo, O. S., & Aziz, N. A. (2014). Techniques for analysing Android malware. The

5th International Conference on Information and Communication Technology for

The Muslim World (ICT4M). Published.

https://doi.org/10.1109/ict4m.2014.7020656

Adebayo, O. S., & AbdulAziz, N. (2014). Android malware classification using static

code analysis and Apriori algorithm improved with particle swarm

optimization. 2014 4th World Congress on Information and Communication

Technologies (WICT 2014). https://doi.org/10.1109/wict.2014.707731

Alzaylaee, M. K., Yerima, S. Y., & Sezer, S. (2020). DL-Droid: Deep learning based

android malware detection using real devices. Computers & Security, 89, 101663.

https://doi.org/10.1016/j.cose.2019.101663

Android malware detection technique via feature analysis, Journal of Engineering

Android, 2016 INTECH Innovation Conference

Aneja, L., Babbar, S. (2018) Research trends in malware detection on Android devices.

Bhatia, T., Kaushal, R. (2016). Malware Detection in Android based on Dynamic

Analysis,Canfora, G. “Effectiveness of opcode ngrams for detection of

multifamily android

Chavan, N., di Troia, F., & Stamp, M. (2019). A Comparative Analysis of Android

Malware. Proceedings of the 5th International Conference on Information

Systems Security and Privacy. Published.

https://doi.org/10.5220/0007701506640673

Coronado-De-Alba, L. D., Rodríguez-Moto, A., Escamilla- Ambrosio, P. J. (2016).

Feature

Cortes, C. & Vapnik, V. Support Vector Networks, Machine Learning, vol. 20, no. 3,

pp.273-297, 1995

Dubey, A., Misra, I. (2013). Android security attacks and defenses, Parkway NW: CRC

Press Taylor & Francis

 Elenkov, N. (2015). Android Security Internals, An In-Depth Guide to Android’s

Security Architecture, San Francesco: William Pollock

 Engineering Science and Technology, 14(3), 1572 – 1586

Gibert, D., Mateu, C., Planes, J. (2020). The rise of machine learning for detection and

classification of malware: Research developments, trends and challenges, Journal

of Network and Computer Applications, (153), doi: 10.1016/j.jnca.2019.102526

61

Jami, Q., Shah, M.(2016). Analysis of Machine Learning Solutions to Detect Malware in

K. Xu, Y. Li, R. H. Deng, and Deng, “Iccdetector: icc-based malware detection on

android,” IEEE Transactions on Information Forensics and Security, vol. 11, no.

6, pp. 1252–1264, 2016.

Khan, N., Abdullah, J., & Khan, A. S. (2017). Defending Malicious Script Attacks Using

Machine Learning Classifiers. Wireless Communications and Mobile Computing,

2017, 1–9. https://doi.org/10.1155/2017/5360472

malware,” in Proceedings of the 2015 10th International Conference on Availability,

Reliability and Security, IEEE, Toulouse, France, August 2015.

Martin, I., Hermader, J. A., Munoz A. (2018). Android characteristic using metadata

machine doi: 10,1155/2018/5749481

Memon, L. U., Bawany, N. Z., Shamsi, J. A. (2019). A comparison of machine learning

Narayanan, A. (2018)“APK2VEC: semi-supervised multi-view representation learning

for Profiling Android applications,”in Proceedings of the 2018 IEEE

International Conference on Data Mining (ICDM), IEEE, Beijing

Ng, A. P.. Chiew, K. L., Ibrahim, D. H. A., Tiong, W. K., Sze, S. N., Musa, N.(2018)

Rana, M. S., Gudla, C., & Sung, A. H. (2018). Evaluating Machine Learning Models for

Android Malware Detection. Proceedings of the 2018 VII International

Conference on Network, Communication and Computing - ICNCC 2018.

Published. https://doi.org/10.1145/3301326.3301390

Rana, M. S., Rahman, S. S. M. M., & Sung, A. H. (2018). Evaluation of Tree Based

Machine Learning Classifiers for Android Malware Detection. Computational

Collective Intelligence, 377–385. https://doi.org/10.1007/978-3-319-98446-9_35

Ranveer, S., Hiray, S., (2015). SVM Based Effective Malware Detection System.

International Journal of Computer Science and Information Technologies, Vol. 6

(4) , 2015, 3361-3365

Rathore, H., Agarwal, S., Sahay, S. K., Sewak, M. (2019). Malware detection using

machine learning and deep learning Science and Technology, (2018) 78 – 90

Selection and Ensemble of Classifiers for Android Malware Detection,

Proceedings of 2016 IEEE International Conference Springer Nature, (799), 629–

642, doi:10.1007/978-981-10-8527-7_53.

Wang, J., Jing, Q., & Gao, J. (2019). SEdroid: A robust Android malware detection using

selective ensemble, Proceedings of the 5th International Conference on

Information Systems Security and Privacy.

Wang, Z., Cai, J., Cheng, S., & Li, W. (2016). DroidDeepLearner: Identifying Android

malware using deep learning. 2016 IEEE 37th Sarnoff Symposium. Published.

https://doi.org/10.1109/sarnof.2016.7846747

62

Wen, L., Yu, H. (2017). An Android malware detection system based on machine

learning. AIP Conference Proceedings, (1864), doi:10.1063/1.4992953

Wu, Q., Zhu, X., Liu, B(2021). A Survey of Android Malware Static Detection

Technology Based on Machine Learning, Mobile Information Systems,

ID 8896013, doi.org/10.1155/2021/8896013

Yang, M., Chen, X., Zhang, H., (2020). An Android malware detection model based on

DT-SVM. Security and Communication Netwoks, (2020), doi:

10.1155/2020/8841233

Yuan, Z., Lu, Y., & Xue, Y. (2016). Droiddetector: android malware characterization and

detection using deep learning. Tsinghua Science and Technology, 21(1), 114–123.

https://doi.org/10.1109/tst.2016.7399288

