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ABSTRACT 

The exponential surge in android malware has continued to increase with new variants of 

the malware surfacing daily. This is due to the ubiquitous nature of mobile platforms and 

internet technology which are almost inevitable in today’s digital age. One of the 

approaches used in detecting malware is the use of machine learning algorithm. SVM is 

a machine learning (ML) classifier that has demonstrated promising strength to be used 

as a tool for the detection of android malware. The goal of this study was to build an 

optimised SVM model for detection of android malware using the neighbourhood 

component analysis (NCA) algorithm. The research work adopted the neighbourhood 

component analysis (NCA) algorithm to sieve out irrelevant features which guaranteed 

excellent model performance.  The Bayesian optimization method was used to optimally 

combine the various SVM hyperparameters and their values to have a super and optimised 

NCA-BOM-SVM model for the detection of android malware. The results of the 

proposed model (NCA-SVM) show an accuracy of 97.8%, false alarm rate of 0.021, 

precision of 97.9%, error rate of 0.02, recall of 97.9%, and f1_score of 97.9%. These 

results show an enhanced performance of malware classification with higher accuracy 

and precision, alongside reduced false alarm rate and error rate, thus demonstrating an 

improvement on existing literature. This implies that the Bayesian optimization of SVM 

alongside the neighbourhood component analysis algorithm provides a more robust tool 

for the detection of android malware.       
{
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CHAPTER ONE 

1.0 INTRODUCTION 

1.1 Background to the Study 

Smartphones remain one of the most popular technologies in high demand, due to their 

ubiquitous nature as a result of their adaptable functionalities and diverse usage. The use 

of mobile phones has spread across different facets and spheres of life and it is almost 

indispensable in the present technological, modern and digital world. The functionalities 

of mobile platforms have widened, with an increasing scope of acceptance which tends 

to outpace laptops and personal computers. In fact, there is no gainsaying that the advent 

and sophistication of mobile technology has enhanced better efficiency and effectiveness 

of human life and activity.  

The sophistication and increased functionalities of mobile platform have not just 

increased their complexities, vulnerabilities and risks, but have drawn attention of hackers 

and cybercriminals, culminating in the violation of users’ privacy in barrage of ways, and 

in various cyberattacks. Smartphones have become primary target of hacking activities, 

with various devastating or degree of loss, as some malware developers catch in on these 

vulnerabilities to gain unauthorised access and privilege thus posing as security threats. 

Suffice it to say that cutting-edge technology via Internet of things (IoT), and proliferation 

of information technology (IT) devices and infrastructures like smart phones, computers, 

tablets, has created the leeway and a quite conducive environment and platform for 

creation and proliferation of malware. As such, research in the security of smartphone 

technology has become an issue of great and global concern and its interest not just to the 

smartphone research community, but the entire tech-world.   
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Android is considered a leader with an overwhelming market share in the world of 

smartphones operating system (OS), having gained or acquired superb or very large 

market share on smartphones and tablets as billions of devices are used around the world. 

This can be attributed to the market openness, ease of operability, and easy access 

compared to other mobile OS. Research shows that android platform remains one of the 

most patronised or used mobile platform in the present digital age. Consequently, android 

applications have exponentially grown. It was reported that Google Play had more than 

2.99 million apps as at 2020. Similarly, malicious apps are rapidly increasing as it was 

reported that almost two million new apps that are malicious, were noticed as at the third 

quarter of 2020. 

Malwares are malicious software or applications designed to target OSs, computer 

systems, or network infrastructures for the purpose of financial gains, information or data 

disruption, destruction, or theft; distorting the normal workings of the system or probably 

grind them to a halt. Most of these malwares have specific targets which could be 

smartphones or specific mobile OS; network, banking systems, manufacturing systems 

like the stuxnet. As such, there are mobile malwares designed to target smartphones, 

while some are specifically designed to target mobile platforms in particular like the 

Android OS. Interestingly, software vulnerabilities on Android smartphones is 

undoubtedly on the increase and quite challenging to detect or identify, due to complexity 

of the smartphone platforms. This exploitation triggers unusual or unexpected behaviours 

in the system. Android mobile OS is reported as the most targeted and affected mobile 

OS by malware threats. Malicious applications leverage on opportunity from the openness 

of the Android platform to carry out attacks. Pertinent to note that hackers now attack 

android mobile platforms with a sophistication that beats the security mechanism of those 

devices. While anti-malware developers are creating algorithms to contain and avert 
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existing malwares, malware developers on their part are re-strategizing and enhancing 

new techniques to help them perpetrate their nefarious activities, thus making these two 

sets of persons to constantly be at their heels to outsmart the other. It is expedient to note 

that despite the security mechanism embedded in android mobile platform and the 

security awareness of the users, the rate of malware attacks on android devices is still on 

the increase.  

The security architecture of Android projects a primary line of defence which restricts 

applications from running outside an isolated environment alongside with restricted 

privileges to the apps from the permission system. Despite the isolation and restricted 

privileges, apps still exploit the system and kernel vulnerabilities to bypass the Android 

defence. This is affirmed by the tremendous threat cases over the past years. There is 

tremendous increase in the size or number of malwares with so much improvement in 

sophistication of attack. This motivates the unrelenting concern in the research on 

smartphone security.  

Though several efforts have been made by several researchers, heralded with remarkable 

success, in stemming the activities, attacks, and effects of malwares on smartphones and 

other mobile targets, new or recent malware attack vectors are emerging every day and 

some have eluded these anti-malware detection systems. This remains the reason for 

continuous research in this problem domain. Researches to counter malware attacks using 

machine learning have been on-going. Thus, developing an efficient model or system that 

can robustly efficiently detect android malware is quite expedient, as it will offer 

protection to the device and further evade cyberattacks on android platform. Though 

Support Vector Machine (SVM) have been used in various researches to build models for 

android malware classification, this research work will focus on developing an optimised 

SVM for android malware classification, that will offer a more optimal performance than 
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existing ones. SVM based models and frameworks have considered by researchers as 

being to deal with code location and applications that are malicious and to handle labels 

with multiclass (Wu et. al. (2021). 

1.2 Statement of the Research Problem 

The existing malware detection data models are not good enough (Wu et. al. (2021) in 

the selection of representative features, therefore a need to improve on the selection 

technique to achieve better feature selection. In addition, the existing android malware 

detection models are still subjected to unacceptable accuracy rate and false alarm rate 

such as developed by Rana et. al. (2018) and Li et. al. (2018), and therefore need 

improvement.  

1.3 Aim and Objectives of the Study 

The aim of this research is to develop an optimised SVM model for detection of android 

malware with neighbourhood component analysis (NCA) algorithm. 

The objectives of this research are to: 

i. Develop data model to obtain representative features with Neighbourhood 

component analysis algorithm. 

ii. Develop an optimised SVM model with Bayesian optimisation method for 

detection of android malware.                                                                                                                         

iii. Evaluate the performance of the model in (ii) using the relevant machine learning 

performance evaluation metrics 

1.4 Scope of the Study 

The focus of this research is to develop an optimised support vector machine model using 

the Bayesian optimization method, and train it with an optimised data features obtained 
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from feature selection algorithms, which will consequently produce a model with optimal 

predicting capacity. More so, the research work will utilise the android malware and 

benign datasets from drebin data source. The technological tool for implementation, 

optimisation, and evaluation is the Matlab 9.6.0 platform.  

1.5 Significance of the Study  

The data model will ensure the elimination of the curse of dimensionality on the data 

consequent upon which there will be reduction in the features to a manageable and 

accurate data while the detection model will assist to detect android malware in 

applications. The evaluation will ensure better performance for the detection model. This 

will be of great benefit to the academic/research world alongside every other sector of 

life as the risks and threats associated with android malware will significantly reduce.    
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CHAPTER TWO 

2.0                                                  LITERATURE REVIEW 

2.1 RELATED LITERATURE 

Adebayo and Aziz (2014) carried out a static code analysis on android malware where 

they examined the different attack vectors on mobile android platforms for the purpose 

of identifying and obtaining useful features for further analysis and classification. They 

also researched into several attack vectors that target android operating system. This 

research, by analysing the Zertsecurity, highlighted the various step for statically 

analysing of android malware and came to conclusion that Zertsecurity is a Trojan that 

steals login information.  

Adebayo and AbdulAziz (2014) proposed the classification of android malware using the 

Apriori algorithm with an improvement with the particle swarm optimization and static 

code analysis. They used the static code analysis to extract features from android 

applications bytecode which was used to train supervised classifier. The improved apriori 

algorithm was used as the selection technique. In the course of the research work, they 

carried out both supervised and unsupervised classification and the results maximised and 

minimised the true positive rate as well as the false positive rate respectively. 

Khan et. al. (2017) researched and proposed a solution and method of malware 

classification and detection using the interceptor that sits in between the web browser and 

the server. The research engaged in the static analysis of JavaScript code for feature 

extraction. They further reduced the dimensionality of the datasets through wrapper 

method of feature selection where a sizeable feature subset was obtained and deployed 

for classification.  
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Dataset used for the research work had 1924 instances of 409 and 1515 malicious and 

benign JavaScript respectively. They had 3 different experiments with different levels of 

partitions.  In experiment 1, the entire subset of the dataset after feature selection was 

used for the training, whereas, in experiment 2 and 3, the hold-out method with eighty 

percent to twenty percent; and 10-fold cross-validation respectively. The following 

machine learning classifiers were engaged in the research work – Naïve Bayes, KNN, 

svm, and J48. SVM in all the three experiments achieved accuracy of 94.55% and 

95.42%, compared to other classifiers like Naïve Bayes which had 95.06% and 97.99%; 

J48 with 99.22% and 98.64%, in the second and third experiments respectively.  

Khan et. al. (2017) proposed an intelligent framework that profiles android users, which 

use multi-layer technology to communicate with the control sever and monitor their 

mobile devices. This framework assists in detecting malware application and activities of 

botnet on those devices. The proposed system creates user profiles which will be used for 

behavioural analysis, by monitoring resources used by the devices and all incoming and 

outgoing text messages.  

Wen and Yu (2017) extracted several Android features using both the static analysis and 

dynamic analysis methods. Considered the relief method for feature selection algorithm 

though with some weakness of inability to eliminate redundant features; alongside the 

PCA which is a dimensional redundant algorithm, capable of transforming features 

linearly into a low dimensional (or capable of reducing the dimensionality of the data). 

They proposed a new feature selection method called the PCA-RELEIF, which they used 

to dispose off redundant features and further carried out dimensionality reduction on the 

data. SVM was used to build a classifier. According to them, the experimental result 

obtained from the comparative analysis of using Relief, PCA, and PCA-RELIEF as 
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feature selection methods with SVM classifier, shows that PCA-RELIEF produced the 

best accuracy, highest TPR, and the lowest FPR. 

Yuan et. al. (2016) researched and proposed the DroidDectector, which depends on deep 

learning (DL) and also runs on the web, designed to detect malware on android devices. 

The DroidDetector produced a DL model which was thoroughly validated, tested and 

evaluated by performing in-depth analysis on features from real-world apps obtained 

from Google Play Store, and several malwares datasets from Contagio community and 

Genome projects. The researcher commended the strength of Deep Belief Network 

(DBN) in Android malware characterization and further reported and accuracy of 

96.76%. They asserted that their accuracy rate significantly outperforms some ML 

techniques such as Multi-layer Perceptron, Logistic Regression and support vector 

machine.    

Traditional malware detection method/techniques have gone obsolete due to the 

sophisticated nature of Android malware obfuscation and detection avoidance method, as 

these malwares continue outsmart several detection methods and further inflict harm to 

devices and system resources, Alzaylaee et. al (2020) proposed a deep learning solution 

called the DL-Droid which has the capacity through dynamic analysis to detect malware 

in Android applications. This study trained a deep learning algorithm which produced a 

DL model. Over 30,000 malicious and benign real-life applications on mobile devices 

were used to perform the experiments. 

Rana et. al. (2018) proposed a string-based feature selection approach to remove 

irrelevant predictors and subsequently deployed the resulting dataset to train some 

machine learning algorithms which include decision tree, gradient tree boosting, random 

forest, extremely randomised tree algorithms. The dataset for the experiment was 
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obtained from the Drebin dataset. Upon evaluation of these various classifiers, random 

forest classifier outperformed others with an accuracy of 97.24%, recall of 96.88%, 

fi_score of 97.23% and precision of 97.58%.  

Rana et. al. (2018) evaluated different machine learning algorithms for the detection of 

malware on android devices. They achieved the purpose of their research by carrying out  

an analysis on drebin dataset. According to them, in order to ascertain what happened 

after decompiling Android Apk file and to check the permission and API functions, they 

took a swap at the AndroidManifest.xml file. The metrics evaluation on the classification 

on the static analysis showed random forest classifier outperforming others with an 

accuracy of 94.33% and recall of 94.27%. More so, the SVM had an accuracy of 90.74%, 

precision of 91%and recall of 91%. 

 Alzaylaee et. al (2020) researched and proposed DL-Droid, which is a framework for the 

detection of android malware. Their research carried out a comparative analysis involving 

dataset with dynamic features and one that has both dynamic and static features.  

According to their study, they achieved 97.8% detection for the former, and 99.6% 

detection rate for the latter.  After extensive comparison of their results with seven popular 

traditional machine learning techniques, they asserted that their proposed system 

outperforms those ML classifiers.  

Li et. al. (2016) researched and proposed the DroidDeepLearner which is a malware 

detection approach that is based weight adjustment. This weight adjusted approach which 

according to the research has the capacity to automatically detect and distinguish between 

malware and benign samples, deploys both the risky permission and API calls to build a 

Deep Belief Network model. The experiment utilised the dremin dataset with 237 features 

and the evaluation showed an accuracy of 90% accuracy. 
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Adebayo and Abdul Aziz (2019) proposed a novel solution for the detection of android 

malware with a knowledge-based database discovery model obtained from android 

benign and malware. These researchers gathered and extracted benign and malicious 

android applications after they had analysed the sample of the code. They utilised triple 

feature selection approaches for ranking the features in the order of importance further 

had an association rule based on the features. The combination of the parameters 

associated with apriori algorithm and the optimised generation of candidate detectors was 

used for feature selection. The detection of malicious android applications was made with 

extraction algorithm and rule models which was obtained from the candidate detectors 

from particle swarm optimisation with apriori association rule. The proposed method 

demonstrated a remarkable improvement over the existing contemporary android 

detection methods. 

Chavan et al (2019) carried out a research on the comparative analysis on the 

classification of statically extracted features from Android applications. The research 

work covered both the binary classification and multi-class classification with family of 

Android malwares and their focus was on the permission requests by application. The 

research work used the Android malware Genome project dataset which consist of apk 

files which they obtained from various malware forums as well as Android applications. 

The benign dataset was obtained from the PlayDrone project. The researchers dealt with 

the challenge of high feature dimensionality using the information gain approach to 

reduce the features of the dataset and further used the RFE based on a linear SVM get the 

feature weights which was the criterion for feature elimination based on this approach. 

Subsequently, they deployed some machine learning classifiers (Adaboost, ANN, J48, 

LMT, linear SVM, random tree, and random forest on each of the resulting data subset 

from the information gain approach and the RFE with svm approach for malware 



11 
 

classification and detection, alongside the cross-validation strategy. Evaluation and 

comparison of the created models was made with the precision and AUC. For information 

gain approach, the best precision value came from ANN and random tree with score of 

0.97. The AUC for them in the information gained approach remain 0.94, 0.96, 0.96, 0.97, 

0.97, and 0.99 respectively. Similarly, the precision for linear svm and J48 using the RFE 

with svm feature selection are 0.96 and 0.96.  

Wang et al (2019) postulated the quality of datasets largely determines the dependency 

of malware detection models. This entails that some performances of some models may 

be unsatisfactory due to poor training datasets and can lead to failures of these models. 

They proposed SEdroid is an ensemble-based system with genetic algorithm. The 

SEdroid, which is an Android malware detection engine that is quite robust and engaging. 

They reported that SEdroid demonstrated 98.3% precision and 98.1% recall ratio. The 

research posits that designing SEdroid with consideration to diversity of the ensemble 

and accuracy, facilitate and fast-track the process of finding optimal ensemble 

combination, thus providing the model with super robustness and very strong 

generalization ability. 

Yang et. al (2020) researched into means of improving on the accuracy and efficiency of 

Android malware classification/ detection and came up with an approach which is an 

ensemble of decision tree and support vector machine algorithm (DT-SVM). According 

to the researchers, this DT-SVM machine learning advanced algorithm which they 

designed extracted the Dalvik opcode of sample using the reversing Android software, 

the n-gram model was used to generate the eigenvectors of the sample. They trained the 

samples and consequently generated a decision tree. Subsequently, using the bottom up 

approach, the decision nodes were updated as SVM nodes. This research deployed the 

strength of both the DT and SVM especially overfitting reduction by SVMs, to have high 



12 
 

accuracy. Their work achieved an all-time precision of 96% using the DT-SVM 

algorithm, for the Android malware apps classification/detection with a relatively low 

time consumption.  

2.2 Android Architecture 

Android was founded with the intention of developing the Android OS for mobile. It 

remained under the radar, until it was purchased by Google, Inc. in 2005. Android 

development incredibly soared higher as it captured almost 50% of mobile operating 

system market share. The 1.0 version of android OS was officially launched on September 

23, 2008 and it ran on HTC Dream device. The Android OS experienced a rapid growth 

is attributed to one of its unique features of open source since the binaries source codes 

were released. This open source gesture makes it possible for design and building of 

mobile phones that runs on Android OS by any interacting person. Android OS takes 

approximately 2.6GB of disk space, as such the entire source code can be downloaded. 

Android left its Android Operating System as open source software until version 3.0 and 

above, and have remained closed source since then. The Android architecture has four 

main components  

❖ The kernel 

❖ The libraries and Dalvik machine 

❖ The application framework 

❖ The applications 

2.2.1 The kernel 

The kernel is one of the components of the Android architecture for its mobile platform 

that communicates and interfaces with the hardware device that it sits on. Alongside other 

functions, it takes care of device drivers, networking, security, process management as 
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well as power, and memory management. It is accessible at http://android.git.kernel.org/ 

Application developers build applications in conformity with the Android kernel while 

the hardware or device manufacturer may have the leverage of kernel modification such 

that the Android OS is composite or works well with their particular hardware. 

2.2.2 The libraries 

The libraries component interfaces between the kernel and framework of the application 

as a translation layer. Developers can access these libraries which are written in C/C++ 

using the Java application framework via Java API.  

Below are the core libraries though not limited to the list. 

❖ LibWebCore; gives access to the web browser 

❖ Media libraries – which makes it possible to access to audio and video 

❖ Graphics libraries – which provides access to 2D and 3D graphics drawing 

engines 

The Dalvik virtual machine is one of the runtime components that interact with and 

applications. 

2.2.3 The dalvik virtual machine 

The Dalvik Virtual Machine was designed and build to primarily make it possible for 

applications to execute in devices with very limited resources. This is quite typical of 

mobile phones. Virtual machine functions as a guest operating system that runs within 

another host operating system and operates by executing applications in a manner that 

portrays it as physically running in that machine. It is highly portable. This feature allows 

the developer to execute one code on any hardware platform that runs a compatible VM. 

“The Dalvik VM executes .dex files.  

http://android.git.kernel.org/
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2.2.4 Android application framework 

This layer is always known as the application programming interface (API) component, 

which make available to application developer a suite of services. It gives the developer 

access to user interface components, privileges of apps showing data between them via 

the common content providers, access to notification manager which alerts the device 

owners of events, and ability to manage the lifecycle of application through the activity 

manager in the framework. Application layer provides the space through which apps 

executes. This is the closest component that interfaces with the end user and it is place 

that the contact, phone, messaging, as well as the Angry Birds apps resides. There is a 

high tendency of mobile device users to lose their sensitive data or have the data mutilated 

or destroyed or have the privacy compromised, in addition to losing or having their 

devices stolen. The focus of the developer should be to develop applications with best 

functionalities as well as offer adequate protection for users’ data. 

2.3 Android Security Architecture 

The Android security architecture through the Android kernel adopts or ensure the 

implementation of the privilege separation model during application execution. This 

entails that all running applications has its own user identifier as well as the group 

identifier. By this security feature, applications are forbidden from reading or writing to 

other applications or processes. More so, it also forbids applications from arbitrarily 

connecting to remote servers using the device’s networking stack. Two applications 

running on sandboxes can only access the data of the other through an explicit request 

and permission granted accordingly. All applications that will eventually require to access 

other components of the systems must have this designed and built into the application 

by the developers. Android security architecture gives the end user the privilege of 
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performing the final approval process and the prompt for permissions is expected to come 

at install time. The Android application code signing feature makes use of the certificate 

of individual developers in the identification and establishment of trust relationships 

amongst the different applications that runs in the Android OS. Android OS run only 

applications that has been signed with a self-signed certificate. Android security focuses 

on Android built-in security end permission and architecture. The Android platform is 

endowed with several security mechanisms which provides control over the security of 

the system and applications. This mechanism also implements the principle of application 

isolation as well as compartmentalizing every stage. Every process within Android has 

its own set of privileges. Except there is an explicit permission provided by the end user, 

other application can access this application or its data. APIs cannot be use without 

obtaining access from end user. Each process runs in its own isolated environment. Unless 

there is an explicit permission from end user, there is no interaction possible between 

applications. Interactions between applications is only made possible via permissions.  

2.4 Machine Learning 

Machine learning is a technique that provide systems’ ability to autonomously make 

decisions from a set of provided data, without any external support. ML makes such 

decisions by first learning from the dataset and further understanding its patterns. “The 

big data giants like Google, Facebook, Amazon are using Machine Learning to gain 

maximum benefits from data and compete their rivalries”. There exist various ML 

algorithms which are the support vector machine, decision tree, logistic regression, and 

random forest. The choice of  
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2.5 Supervised Learning 

Supervised learning, is used for data modelling where there is a precise mapping between 

input and output data. The algorithm for supervised learning has the capacity to recognise 

and identify the relationships between the two variables in order to have a prediction for 

a new outcome. The following are supervised learning algorithms – Support Vector 

Machine (SVM), Gradient Bootstring, Artificial neural networks, Random Forest (RF), 

Linear Regression, and   Logistic Regression amongst others. Classification is the process 

of recognising and grouping ideas and items into pre-defined categories or sub-classes. It 

is the process of deploying algorithm which use pattern recognition in the training dataset 

in order to spot the various patterns which could be number sequences, sentiments or 

similar words in future or new datasets. Classification is a type of supervised learning. In 

classification, algorithms make predictions on the likelihood of a subsequent dataset 

falling into predetermined categories, using input training data. This is made possible by 

the strength of an algorithm to analyse the sets of training data. Machine learning program 

deploy different algorithms to classify dataset into various categories using already 

categorised training datasets. Structured data can be classified as well as unstructured 

data. A supervised learning is mostly used for classification problems, considering the 

versatile features which help to actualise both categorical or its independent variable. 

Binary classification has two possible results or outcomes.  

There are several types of classification algorithms and their usage depends on a dataset. 

2.5.1 Logistic regression 

Logistic regression gives an estimate discrete values which is based on given set of 

independent variables. It fits data into a logit function and consequently give the 

prediction of the probability of occurrence of an event. Regression values fall between 0 
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and 1. Steps like interaction terms, removing features, use of non-linear models and 

regularising of techniques can be deployed to improve the model. This is the analysis for 

independent variable to predict the binary outcome whose result falls into of the two 

categories. The dependent variable which is the outcome is always categorical while the 

independent variables can be categorical or numeric.    

2.5.2 Decision trees  

Decision tree is a machine learning algorithm that splits population of items into two or 

more homogeneous sets, taking cognisance of the most significant attributes which makes 

the group as distinct as possible. In decision tree classification, data points or sets are 

separated into two similar categories per time and such trickles down from the trunk to 

branches and to the leaves, where the categories are assumed to become more finitely 

alike.  

2.5.3 Bayes classification 

Naïve Bayes classification is a technique of classification, which is based on Bayes’ 

theorem as well as independence between the samples or predictors. It portrays non-

correlations or non-relations between features of the same class. Naïve Bayes has strength 

that can make it to outperform some sophisticated classifiers depending on the type of 

data set.  

2.5.4 K-nearest neighbour (KNN)   

KNN classifies new classes by searching for the k-nearest neighbour sample of the same 

category and attributes. It uses the various distance functions like Hamming, Manhattan, 

Minkwoski and Euclidean to calculate the distance of the k neighbour. While the three 

former distance functions are used for continuous variables, hamming distance function 

is used for categorical variable. At times, selecting the value of k might be a big challenge 
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while performing KNN modelling. It is expedient to note that KNN is quite expensive 

with regards to computation. The variables are expected to be normalised to avoid higher 

range of values from being biased. More so, KNN provides optimal result when much 

work has been done at pre-processing stage like dealing with outliers and removing noise. 

KNN classifier uses the pattern recognition technique on a training dataset to find the k 

closest relatives in future datasets. It determines the place data within the category of its 

nearest neighbour. 

2.5.5 Support vector machine (SVM)  

SVM is a simple and robust classifier that works by creating a line which is the hyper 

plane that falls between two different sets of classes. This line is the classifier. This 

classifier classifies new data based on where the testing data falls which can be on either 

side of the line. SVM uses algorithm to train and classify data within decrees of polarity, 

taking it to a degree beyond X/Y predicts. It performs a non-linear classification by using 

the kernel to transform the data into higher dimension.  

2.6 Malware Classification 

Malware classification is the process that assigns a malware sample based on some factor 

into some specific malware families. Common attributes and properties are what 

malwares share in common and this makes it possible for the creation of signatures which 

could be used for their detection or classification. Malware within a family, shares similar 

properties that can be used to create signatures for detection and classification. Depending 

on the method of extraction, malware can either static or dynamic.  

2.7 Types of Malware Analysis 

Static and Dynamic analysis are two approaches for analysing malware files. The static 

analysis approach does not run the program, rather, it directly extracts features from the 



19 
 

byte-code or disassembled instruction. It has an advantage of using less resources and 

ability to follow all possible execution path. However, this approach is quite sensible “to 

packing technologies, encryptions, compression, garbage code insertion, and code 

permutation”, thus making it possible to bypass malware detection systems based on 

static analysis using obfuscation technique. 

The Dynamics Analysis approach monitors the various behaviours of malware which 

include but not limited to tracking the flow of information, file system, process 

monitoring, instruction tracing, detection of system change, monitoring of registers, 

network monitoring, auto-start extensibility points, function parameter analysis, and the 

monitoring of function call. This approach is not sensitive to packing or obfuscation 

techniques. This implies that this approach cannot be bypassed by packing or obfuscation 

techniques, due to insensitivity to packing or obfuscation.    

2.8 Malwares 

Malware is a malicious software designed and implemented by hackers/attackers to meet 

the harmful or malicious intent or to carry out certain nefarious activities. The intent is to 

spread itself and remain undetectable, cause changes or damages, disrupt or gain 

unauthorised access to users’ devices and inflict harm to data, infected system or network 

and or people in different ways. These nefarious activities range from fraudulent 

penetration of networks; compromise of computer and smart devices and bringing down 

devices’ performance to knees; destruction and crippling of critical information systems 

and infrastructures, stealing of confidential information, amongst others Ransomware, 

rootkits, viruses, bots, spyware, Trojans, worms amongst others are some of the 

programs/malware designed or used by attackers.  
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Mobile malwares are specifically written to attack mobile platforms whose devices 

include   smartphones, tablets, smartwatches and other wearable devices. It explores and 

exploits vulnerabilities of the mobile OS and phone technology It remains a growing 

threat to consumer devices.  Malware remains one the biggest and toughest threats to 

mobile devices, information systems and in the internet at large. Each malware operates 

in a bewildering variety of forms with different attack vectors. There is a tremendously 

and significant increase in the varieties of mobile malware programs whose targets are 

smartphones and tablet, and the growth rate is highly alarming. The emergence of mobile 

malware experienced a significant explosion in 2011 at the reported of new incidents in 

the Android platform. Cybercriminals design malwares with the capacity to install 

themselves or are installed on the various devices by unwitting mobile users. The mode 

of distribution of malicious mobile programs are through the internet; downloads; and 

installation through device messaging functions.  

The sophistication of malware attacks has increased as cybercriminals have turned to file-

less now. This level of sophistication where a malicious code does not require an 

executable file in the endpoints, has made it more difficult and challenging for detection 

by the traditional antivirus (AV), due to low footprint as well as the absence of files to 

scan. Cybercriminals carry out these acts by injecting these malwares into some processes 

and execute only in the RAM. Detection in this case can only be achieved by studying 

the behaviours and malicious patterns of the processes. The world experiences mega 

breach of cybersecurity attacks which are always calibrated yearly based on the level of 

impact or devastation. In 2016, there was an alarming wave of wannacry ransomware 

attacks which attacked millions of computers across the globe. There exist different types 

of mobile malware variation with varying attack vectors, different methods of distribution 

and infection, and impacts on mobile devices.  



21 
 

In order to get optional protection of devices and business system, and further forestall or 

avert compromise of these systems, it is quite crucial and expedite for users to recognise 

the different types of malware and their operational procedures. According to IT security 

professionals, several generic, mobile-specific and other device-specific malwares have 

been designed by hackers/cybercriminals to prey on IT infrastructures’ features and 

vulnerabilities like ones on smartphones and tablets. 

2.8.1 Classification of mobile malware 

2.8.1.1 Worms 

Worms are malicious software which upon installing itself into the computer memory, 

replicate itself and infect the entire device or network. It spreads through software 

vulnerabilities or phishing attacks. Worms can perpetrate serious harm depending on the 

type of worm and possibly the security measures established on the device or network. It 

can modify and delete files; inject malicious software into IT devices or electronics 

infrastructures; replicate themselves severally to deplete and overwhelm the system 

resources; steal data; and install a convenient backdoor for hackers, amongst others. It 

spreads very fast, consumes network bandwidth, and overload as well as overwhelm a 

web server.  

2.8.1.2 Virus 

Virus is a malicious software which operates by attaching itself to an executable file. It 

needs an infected active OS or program to function and remains dormant, and can only 

be activated by launching the host file or program that it is attached to. It spreads to the 

entire system via this means. It can spread through websites, file sharing, email 

attachment downloads, and other downloads from unreliable websites. A computer or 
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mobile virus can hijack applications, use these applications on the system to sneeze all 

over everywhere, by sending out files that are infected to other systems, clients, or friends 

2.8.1.3 Bots and botnets 

A bot is an IT device like computers or mobile device that is infected with malware such 

that it can be remotely controlled by cybercriminals and could be used to launch cyber-

attacks. A collection of these bots also referred to as zombie, form a botnet which is 

limitless. Botnets can control millions of devices even as it continues to spread without 

being detected. Hackers through the master servant commands, use the botnets to carry 

out several malicious activities including sending spam and phishing messages; 

screenshots key logs and webcam access; and DDOS attacks. The sophistication of 

mobile malware has increased to the level that programs can operate secretly run without 

notice in the background on the user device and watching out for certain behaviours like 

online banking session. 

2.8.1.4 Trojan horses 

Trojan horse disguises itself as a real and trustworthy file or program. Mobile Trojan finds 

itself into devices by attaching itself to legitimate programs that does not look harmful 

and get installed alongside with the apps after which it will infect the device or perpetrate 

malicious actions. It is activated by users. Cybercriminals typically embed Trojans into 

files or apps in the mobile devices that does looks legitimate. The Trojan is activated by 

the user as they open a file and it can infect and deactivate other applications and the 

mobile device itself as soon as it is activated. It can also paralyse the device after a certain 

period of time or a certain number of operations. These malicious programs hijack the 

browser and captures user login details. Trojans themselves are a doorway. It can spy on 

devices or systems; capture or steal data; delete or modify data; harvest devices and make 
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it part of botnet; and gain unauthorised access to devices and networks. Banking Trojans 

target vulnerable users by distributing fake version of legitimate mobile apps.  

2.8.1.5 Ransomware 

Ransomware is a malicious software that uses encryption principle to lock the victim’s 

data on their device or locks the hardware devices, thus restricting devices or users access 

to their hardware devices, files or data with a demand for a payment of ransom which 

most times are with cryptocurrencies such as bitcoin, before the data or device is 

decrypted. In a ransomware attack, the victim is usually notified of an exploit on his 

device and instructions are further provided on how to recover the encrypted item, while 

the identity of the cybercriminal remains unknown. This makes it different from other 

attacks. In May 2017, a ransomware named Wanncry attacked and compromised 

thousands of computers across the globe. This attacked individuals and corporate bodies 

with monumental damages and losses.  

2.8.1.6 Adware and scams 

These are malwares that automatically deliver advertisements which serves pop-ups and 

display unsolicited or illegal ads which often does not have relevance to the users. Adware 

is often annoying, pose as nuisance to users and can slow down the devices. It can redirect 

or link users to malicious sites. A device that has it installed can deliver spywares, which 

most often are easily hacked, thus making the devices to be soft target for hackers, 

phishers, and scammers. Most adware is authored by advertising firms as a means of 

generating revenue. Though some adware is meant to only deliver ads, some of them to 

be bundled with spyware to track user activities as well as steal personal and confidential 

information.  
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2.8.1.7 Spyware 

Malicious software with a common threat which secretly keep records of all activities of 

the users (both online and offline), harvest the users’ data and collect personal and 

confidential information such as contacts, usernames, passwords, location, downloads, 

user preferences, messaging habits, browser history and surfing habits/ behaviour and 

relays these data to a third party. It can also collect device information like the IMSI 

number, product ID, IMEI number, and OS version, which can be used by the third party 

to launch future cyber-attacks. Spyware is often installed or distributed on user device 

without the user’s consent as a freeware or shareware with a disguised or appealing 

function at the front end as a legitimate app, with covert, nefarious and unknown mission 

running in the background. This means is often use for perpetrating identity theft and 

credit card fraud. Spyware at times are referred to as adware because they may be 

advertisers or marketing firms. Cybercriminals or advertisers have access to users’ data 

through spyware and some of them can further install additional malware that make 

changes to the settings of devices. 

2.9 Feature Selection 

Feature selection is a technique and ML process in which the dimensionality of data is 

reduced by sequentially selecting a subset of the input features that are most relevant to 

the predicted or target class (variable), to develop a model. Subject to some evaluation 

criterion or constraints which includes the size of the subset, required features, and 

excluded features, the feature selection algorithms search and select a subset of the 

features that are highly representative of the original dataset and will optimally model the 

measured responses. Despite the importance of irrelevant or redundant predictor or input 

variable, they can mislead and add more stress to the learning algorithm, which possibly 
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can result in lower prediction performance. Though all features of the dataset can contain 

some level of information about the response class or variable, too many features will 

obviously degrade the model prediction performance. The main reasons or benefits for 

deploying feature selection algorithms in ML are to offer better or improve prediction 

performance with regards to accuracy and other evaluation metrics, facilitate or enhance 

faster and cost-effective predictions, and offer a better insight. These algorithms can be 

categorised into three types or methods  

2.9.1 Filter feature selection 

This method gives adequate measure of the importance of the features using the univariate 

statistics, entropy or correlation. The characteristics of the features like the variance and 

its relevance to the response class provide the basis for the measuring the feature 

importance. This method does not have any correlation with the training algorithm as 

important and relevant features based on the algorithm are selected as part of the data pre-

processing step, and subsequently used to train a classifier.  

2.9.2 Wrapper feature selection 

This method selects a subset of the features and through training, sequentially adds or 

removes additional features with reference to a selection criterion. The removal and 

addition of features due to the change in model performance is as a result of the selection 

criterion which actually measures the change in model. Trainings and improvements are 

repeated by the algorithm and stops when its halting criteria is satisfied. 

2.9.3 Embedded feature selection 

In the embedded type feature selection method, the features importance is learnt as part 

of the model learning process. The importance of the features are obtained while training 
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a model and the algorithm select the features that work well with a particular learning 

process. 

2.10 Feature Selection Algorithms 

Neighbourhood Component Analysis (NCA)- NCA is a non-parametric method which 

selects features with the hallmark goal of maximising prediction accuracy of regression 

and classification algorithms. The NCA feature selection with regularization learns 

features weights for minimization of an objective function that measures the average 

leave-one-out classification or regression loss over the training data. It learns the feature 

weights by using a diagonal adaptation with regularization. The feature selection is 

performed using the predictions and response variables. It learns feature weights for 

minimization of an objective function that measure the average leave-one-out 

classification loss over the training data.  

2.10.1 Maximum relevance minimum redundancy (MRMR) algorithm 

The MRMR algorithm’s ultimate goal is to search for relevant set of features that are 

dissimilar and can represent the response variable effectively. It maximizes the 

relevance of a feature set and further minimizes the redundancy of a feature set to the 

response class. The MRMR uses the mutual information of variable-pairwise mutual 

information of features, alongside mutual information of the response class to quantify 

the redundancy and relevance of features.  

2.11 Bayesian Optimization 

Optimization is the process where a point is located that has the capacity to minimise the 

objective function which is a real-valued function known. The Bayesian optimization uses 

the Gaussian kernel function in the process model of the objective function, which is used 

for training the model. The acquisition function is a function use by Bayesian 
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optimization to determine the next point to evaluate during optimization. The acquisition 

function as use in Bayesian optimisation explores areas and points that need to be 

remodelled and can also balance sampling at points that have low modelled objective 

functions. The Bayesian optimization algorithm seeks to minimize a scaler objective 

function in a bounded domain. 

2.12 Research Gap from Literature  

Table 2.1 provides a summary of related literature that were reviewed. This points to the 

fact that different researchers have carried out researches on the detection of Android 

malware using different methods and obtained various levels of performance results. 

Pertinent to mention that some of the performance recorded indicate insufficient accuracy 

rate and high error rates. More so, in some of the reviewed works, relevant metrics like 

accuracy rate, precision, error rate and false alarm rate were not reported. Despite these 

efforts, malware has continued to exponentially penetrate the mobile Android platform. 

Hence, the need for an enhanced and better performed machine learning algorithm that 

will provide better performance using the relevant evaluation metrics. This research work 

demonstrates strength in bridging these limitations using the Bayesian optimized SVM 

alongside the neighbourhood component analysis algorithm for detection of Android 

malware. All the relevant performance evaluation  metrics which includes accuracy rate, 

false alarm rate, precision, error rate, recall, and f1_score are reported in this research 

work.        
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Table 2.1 Summary of Result Performance for Related Literature            

Reference  Method  Accuracy 

 

(%) 

False 

Alarm 

Rate (%) 

Precision 

 

(%) 

Recall  

 

(%) 

F1_ 

Score  

(%) 

Yuan et al 

(2016) 

Deep 

Learning 

96.76     

Khan et al 

(2017) 

SVM 

NB 

95.42 

97.99 

NR 

NR 

   

Rana et al 

(2018) 

Random 

Forest SV  

DT  

ERT 

BAGG 

 

94.33 

90.74 

91.78 

93.66 

93.71 

Not 

Reported 

(NR) 

 

 

94 

91 

88 

93 

94 

 

95 

91 

94 

93 

94 

 

94 

91 

91 

93 

94 

Rana et al 

(2018) 

DT 

RF 

Gradient 

Boosting  

Ext. 

Randomized 

96.13 

97.24 

 

93.68 

 

96.97 

NR 96 

98 

 

94 

 

97 

96 

97 

 

93 

 

97 

96 

97 

 

94 

 

97 

Li et al 

(2018) 

Deep 

Learning  

90 NR NR NR NR 

Wang et al 

(2019) 

Ensemble 

Learning 

  98.3 98.1  

Alzaylaee  

et al (2020) 

Deep 

Learning  

97.8     

Yang  et al 

(2020) 

   96   
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CHAPTER `THREE 

3.0 RESEARCH METHODOLOGY 

This section of the research work encapsulates and outlines in detail the various steps and 

procedures for achieving the aim and objectives of the proposed research work. The 

dataset was optimised to reduce the curse of dimensionality using the sequential feature 

selection (SFS) algorithm alongside three other feature selection algorithms. This 

optimised dataset was divided into training and test sets. The training set was used to train 

the SVM classifier, using the k-fold cross validation strategy to avoid overfitting.  

An optimised SVM was tuned, trained and validated using the Bayesian optimisation 

method.  The optimised, and the first SVM model alongside other classifiers were tested 

with the test dataset, and their predictive performance were evaluated using the standard 

evaluation metrics. The detailed description of the above procedures is given in the 

sections below. 

3.1 Proposed Model 

The proposed model involves collection of android applications (malicious and benign) 

for the design of the model. The features were extracted from the applications to form the 

n by n dimensional data vectors for the training and testing of data model. The features 

were optimised after the feature selection using the neighbourhood component analysis 

(NCA), maximum relevant minimum redundant (MRMR), and the sequential feature 

selection. The dataset with optimised features were divided into two parts in the ratio of 

eighty percent to twenty percent for training and testing datasets respectively. The 

training dataset was used to train an SVM classifier with the strategy of 10-fold cross 

validation which resulted in an SVM model. The Bayesian optimisation method was used 

to optimise the model by retraining and further selecting all possible values of the 
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hyperparameters. This resulted in an optimised model. The SVM and the optimised SVM 

were tested with the testing dataset separately and further evaluated using the standard 

evaluation metrics. 
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Figure 3.1 Detection Model 
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3.2 Data Collection 

This research work adopted and deployed a standard and multi-dimensional android 

dataset from drebin which consist of thousands of data points arranged in rows and 

columns. The dataset has feature vectors of 215 attributes with 15,036 observations. The 

dataset was extracted from Drebin project with 5,560 malware apps and another 9,476 

benign apps, all totalling 15,036 applications. Invariably, the dataset has 15,036 rows and 

215 columns or features, in addition to the class label whose entries are either malware 

or benign. The dataset came with a supporting file that has the description of the feature 

vectors (attributes) which was extracted from the static code analysis of the Android apps. 

In order to have a balanced dataset to work with, the research work used the 5560 malware 

instances alongside the 5561 benign that was randomly selected from the 9476.  

Table 3.1 Sample of features Category 

onServiceConnected                                   API call signature 

Transact               API call signature 

bindService               API call signature 

SEND_SMS                                             Manifest Permission 

READ_PHONE_STATE                     Manifest Permission 
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Figure 3.2 Data Model 
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3.3 Data Model  

The data model as captured in figure 3.2 shows the flow of the data all through the 

research work. The original dataset was obtained bogus from drebin with large number 

of features and instances as explained in section 3.2. This drebin dataset had its curse of 

dimensionality reduced with the neighbourhood component analysis (NCA). It was 

reduced to 37 relevant and manageable features. This NCA dataset was divided into 

training and testing datasets in the ratio 80 to 20 respectively. NCA training dataset was 

used to the NCASVM model and the NCA-BOM-SVM model. While the NCA testing 

dataset was used to test the performance of two models. After this classification process, 

subsequent detection, the malware data formed another dataset and same for benign 

dataset.  

3.4 Feature Selection 

Feature selection is the technique deployed in machine learning for selecting a subset of 

input features that are most relevant to which is to be predicted. Apparently, most dataset 

come with less important, irrelevant, and redundant features which often distract and 

mislead machine learning algorithms, possibly resulting in lower or reduced prediction 

performance.  Feature selection algorithms deploys techniques that reduces the curse of 

data dimensionality by searching for and selecting subset of predictor variables (measured 

features), that will optimally model the predicting class or the measured responses, 

subject to constraints like the size of the subset, or the excluded or required features. 

Invariably, it is quite desirable to expunge these irrelevant and redundant features before 

building models, and only utilise features that will result in best performing models. 

Applying feature selection algorithm comes with several benefits including removing 

irrelevant and less important features that have little or no contribution to building the 
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model. It discards the non-trivial features thus reducing the complexity of the data. It is 

expedient to note that even when all features may contain information about the response 

variable and relevant, engaging in model building using all the features can denigrate the 

prediction performance.     

These processes will start with the generation of several subsets from the original dataset, 

evaluations of each of the subsets based on the stopping criterion or criteria, and the 

validation of result, which will be the resulting optimised features. The subset generation 

covers the search by the feature selection algorithm for optimised features. The search 

direction could be backward or forward or bidirectional, depending on the algorithm 

deployed. The subset evaluation process entails defining fitness functions to determine 

the optimal features, and computing the fitness value. The best or appropriate fitness 

value, depending on the earlier set criterion will be chosen, having met the condition for 

stopping the subset generation process. 

Sequential Feature Selection (SFS) algorithm, Neighbourhood Component Analysis 

(NCA) algorithm, Maximum relevance minimum redundant (MRMR) algorithm, and the 

relief algorithm were deployed on the dataset to carry out feature selection, in order to 

obtain the optimised features. Depending on the algorithms per time, the feature selection 

involved several processes and iteration and four separate optimised datasets were 

obtained from each of the algorithms. 

3.4.1 Sequential feature selection algorithm implementation 

The sequential feature selection is one of the feature selection algorithms that was 

deployed in this research work. On the Matlab platform where this algorithm was 

implemented, the function sequentialfs was used to achieve the purpose of the algorithm.  
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The function md = sequentialfs(fun,A B) selects a subset of the features from the predictor 

data matrix A, that best predict the class values or response class in B, by sequentially 

selecting features until there no improvement in the prediction. The A is a data matrix 

with 215 features and 10,121 observations, while B is a column vector which is the class 

variable, with 10,121 observations. The criterion value is defined by a function handle 

called the fun and it is used to select features and also determine when to halt the process. 

The features which are finally chosen are indicated or output by the logical vector called 

the md.  

The algorithm begins with the sequentialfs creating a candidate or potential feature 

subsets by sequentially adding each feature that is not yet selected. A k-fold cross-

validation is carried out on the selected subset by the sequentialfs which repeatedly calls 

the function handler fun with different training and testing subsets of A and B, obtained 

from the cross-validation. The criterion value which determine the chances of choosing a 

feature is obtained as – 

      Criterion = fun(ATrain, BTrain, Atest, Btest) 

Criterion is a scaler value which the function handler fun returns each time it is called. 

Fun uses ATrain and BTrain to train and fit a model, then predicts the values of Atest 

using the model, and eventually returns some measure of distance or loss, of these 

predicted values from Btest. The criterion value for each selected feature set is obtained 

from the cross-validation by sequentialfs summing the values returned by fun and 

dividing it by the total number of test observations. From the mean criterion value of each 

selected feature subset, the sequentialfs picks the feature subset that minimises this value. 

This process is repeated until adding more features does not devrease the criterion value. 
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The flowchart of the feature selection obtained from the sequential feature selection 

algorithm is given in figure 3.3. 
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Figure 3.3 Feature Selection Flowchart 
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3.4.2 MRMR algorithm implementation 

The MRMR was implemented with the Matlab in this research work. The fscmrmr is the 

function that was used to achieve its purpose. This function ranks all the features in the 

predicting dataset using the response class. The function [idx, scores] = fscmrmr(X,Y, 

Name, Value) has the predictor variable as X, the response variable as Y, Name specifies 

additional options as name-value pair arguments, and returns idx which contains the 

indices of predictors ordered by predictor importance, alongside the predictor scores. The 

importance of the predictor is determined by the score. More so, a drop in the feature 

importance score shows the confident of the feature selection. This entails that when value 

of the next important feature is much smaller than the score value of x, the algorithm is 

confident of selecting the preceding feature. The optimal set is obtained by selecting 

features in the order of importance from the score values of the various features. 

Using fscmrmr function, MRMR algorithm can be implementation and rank features 

importantly through the following steps. 

1) The feature with the largest relevance is selected and added to an empty set S.  

2) Search for the features that have non-zero relevance and zero redundancy from 

the compliment of S, Sc.  

a. If there is no non-zero relevance and zero redundancy in Sc, jump to step 

4 

b. Else pick the feature that has the largest relevance, and add to the set S. 

3)  Do step two again until the redundancy is not zero for all features in Sc. 

4) Select the feature with the largest MIQ values with nonzero relevance and non-

zero redundancy in Sc, and add the selected features to the set, S. 

5) Do step 4 again until the relevance is zero for all features in Sc.  
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6) Add the features with zero relevance to S in random order. 

3.5 Selection of the Training and Validation Data 

The optimised dataset that was obtained from the feature selection process were treated 

separately since the essence of the feature selection is to test the strength and viability of 

the feature selection algorithms in generating a representative subset capable of 

enhancing model performance. Each of the datasets were divided to two part in the ratio 

of eighty percent to twenty percent for training dataset and test dataset respectively. The 

training dataset was used for the training of the classifiers with the k-fold cross-validation 

strategy. A 10-fold cross-validation was used which split the training dataset into 10 

splits. Each split was further divided into 10. During this process, each data subset for 

each split had an opportunity of being a test/ validation set while the other nine was used 

was used for training. This entails that this particular process will be repeated until each 

of the groups has a chance to be used as the test set. Invariably, for ‘k’-fold cross-

validation, the process will be repeated for ‘k’ unique times.  

3.6 Training and Testing of the Classifier 

The SVM classifier was trained and validated with the optimised datasets from the feature 

selection algorithms. The 10-fold cross-validation strategy was used in order avoid the 

challenge of overfitting. More so, the cross-validation gave the model the generalizing to 

unseen data before the testing phase. The model was tested with the test dataset and its 

performance thoroughly evaluated using the standard classification metrics. Considering 

the aim and objectives of this research, the focus of evaluation of the model’s performance 

was on its ability to seamlessly detect malware presence. 
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1: Start 

2:  Initialize data (yTraining, xTraining, yTesting, xTesting) 

3: Set partition as k = 10-fold cross-validation 

4: Initialize SVM default parameters 

                  Set BoxConstraint = 1 

                  Set Standardize = true 

                  Set kernel = linear 

5: Train SVM model with xTraining, yTraining 

                 For k= 1to 10 

                 Train & validate SVM 

                 Return SVMModel  

6: Test SVMModel with yTesting, xTesting 

              Return metric results  

7: Compute & evaluate metrics results 

8: Visualise metric results   

9: Stop 

 

Figure 3.4 SVM Classifier Pseudocode for Android malware Detection                            

 3.7 Optimisation of the Model    

This research work deployed Bayesian optimization method for optimization on the 

resulting SVM model, where several internal parameters and hyperparameters were 

combinatorically tried and modelled. These variations provided the necessary tunings to 

the optimised SVM. The following parameter are the optimizable hyperparameters that 

were tuned 

❖ Kernel – values varies from Gaussian, Linear. Quadratic and Cubic 

❖ Box Constraint Level - values varies between [0.001 and 1000] 

❖ Kernel Scale -values varies between [0.001 and 1000] 
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❖ Multiclass method – Either one-vs-one or one-vs-all 

❖ Standardise data – Either true or false 

Other important optimisation options that were used include- 

❖ Acquisition function 

❖ Training time limit  

❖ Iterations 

❖ Maximum training time I seconds 

1: Start 

2: Initialize data (xTraining, yTraining, xTesting, yTesting) 

3: Set partition as k=10 fold cross-validation 

4: Initialize & pre-set some SVM parameters & hyperparameters 

5:               Set Acquisition function = expected-improvement plus 

6:               Set Optimize Hyperparameters = auto 

7:               Set Standardize = true 

8:               Set kernel = gaussian 

9:               While best feasible point is not obtained 

10:                      Train & validate BOMSVM model 

11:                      Get feasible points 

12:                            Get BoxConstraint values 

13:                            Get KernelScale values 

14:                            Get objective function value 

15:                             Get estimated objective function values 

16:                             Get function evaluation time 

17:                      If estimated best feasible point is reached 

18:                             Get optimal BoxConstraint value 

19:                             Get optimal KernelScale values 

20:                      Else continue training & optimization 

22:                 End while 
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23: Return pre-set parameters & hyperparameters, optimal BoxConstraint value, 

optimal… 

24: KernelScale value, optimal objective function value, estimated objective…  

25: value, function evaluation time 

26: Test BOM-SVM model with xTesting, yTesting 

27: Return metric results 

28: Compute & evaluate metrics results 

29: Visualize metric results 

30: Stop 

 

Figure 3.5 BOM-SVM Classifier Pseudocode for Android Malware detection 

 

3.8 Optimised NCA-BOM-SVM Model 

The optimization of SVM with Bayesian optimization method is the NCA-BOM-SVM. 

The sequential implementation of this model is followed from the flow chart in figure 3.1 

and the pseudocode in figure 3.5. The android dataset with 215 features was trained on 

the neighbourhood component analysis for the feature selection process. This process 

resulted in a dataset (NCA Dataset) with 37 highly relevant features. The NCA dataset is 

divided into the training and testing data in the ratio of 80 to 20. 

The essence of optimising SVM is to minimize the cross-validation loss and optimize 

some hyperparameters at the best feasible points that will develop a model with optimal 

performance. However, some parameters and hyperparameters of SVM were pre-set to 

some value. The kernel was pre-set to gaussian since the Bayesian optimization method 

makes use of the gaussian function. Apart from the pre-set parameters and 

hyperparameters, other hyperparameters referred to as the optimizable hyperparameters 

were set to auto. This include the box constraint and the kernel scale. With these selected 

values of these parameters and hyperparameters, an objective function was created and 

was varied all through the experiment until the best feasible points were obtained for auto 
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hyperparameters. The SVM was trained using the NCA training dataset with recourse to 

the hyperparameters adopting the 10-fold cross-validation strategy. The acquisition 

function which is one of the parameters determines the values and points of the auto 

hyperparameters that have not been modelled and further picks the next possible values 

to be modelled. The training and optimisation of SVM came to an end when the best 

feasible points for the auto-set hyperparameters were obtained These points are captured 

in table 4.4. This is the optimised SVM model called the NCA-BOM-SVM model. The 

performance of the optimised model is further tested with the NCA testing dataset and 

the results were obtained and evaluated as captured on table 4.6 while the minimum 

classification error graph for the optimisation is figure 4.5. The evaluation of the NCA-

BOM-SVM performance was done based the standard evaluation metrics and the results 

are capture on table 4.6.  

 3.9 Evaluation of Classification Metrices 

Performance evaluation of a classification while developing a machine learning model is 

undeniably a key step and essential part that cannot be evaded. As such, measuring the 

performance of a trained model, is absolutely very important. Both the adaptive and non-

adaptive capacity of a machine learning model is determined by the ability of the model 

to perfectly generalise on the unseen data.  

Performance evaluation metrics is the tool deployed or medium through which 

improvement could be done on the overall predictive power of a model. This metrics, 

which provides information concerning model performance, is used to monitor and 

further measure the performance of the model. The proper evaluation of the ML model, 

builds in confident and strength in the model’s generalisation accuracy in subsequent 
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predictive capacity. It evaluates the model’s performance which tells how good or bad 

the classification is. Each of the evaluation metric evaluates the model in different ways. 

3.9.1 Confusion matrix 

This is a matrix representation, with tabular visualisation of the real classification labels 

and the model predictions, being the prediction result of classification that is often used 

to describe the performance of the model on a stipulated set of test data at a known time. 

This is a simple matrix to decipher, whose row represents the instances in an actual class. 

 

      Actual  

       Predicted  

              Positive      Negative 

     Positive      True Positive (TP)     False Negative (FN) 

     Negative       False Positive (FP)     True Negative (TN) 

 

Figure 3.6 Confusion Matrix for the proposed model 

Each prediction in the confusion matrix represents an evaluation factor and can be one of 

the following outcomes- 

❖ True positive (TP) – Predicted and actual values are positive.  

❖ True negative (TN) - Predicted and actual values are negative.   

❖ False positive (FP) – Predicted value is positive whereas actual value 

is negative. This is equivalent to type I error. 

❖ False negative (FN) – Predicted value is negative whereas actual value 

is positive. This is equivalent to type II error.  
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3.9.2 Accuracy 

This is the ratio of the number of the correct or right predictions to total predictions. So, 

it tells how the classifier often make correct prediction. Accuracy is put to use mainly and 

works well when the classes are equal in size, that is, number of samples belonging to 

each class are equal. 

                           Accuracy = (TP+TN)/total number of predictions 

Misclassification Rate (Error Rate) – This tells how often the classifier predicts 

incorrectly or misclassify. This is a measure of the failure rate in terms of classification 

by the classifier. 

                            Misclassification Rate = (FP+FN)/total of predictions made 

3.9.3 Precision 

Precision stipulates the ratio of right or correct predictions to overall actual positive 

prediction. It tells how often is it correct, when the classifier predicts true or yes.  

                        Precision=TP/predicted yes; Precision = TP/TP+FP 

Precision is often put to use when there is a class imbalance, thus, accuracy becomes 

unreliable metric for measuring the model performance. 

3.9.4 Recall or sensitivity 

Recall offers the measurement metrics that stipulates how often a model predict positive 

or yes, when the actual value is positive. This metric is a measure of the true positive rate 

(TPR).  

                      Recall (TPR) = TP/Actual positive 
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It is best used when the sample dataset is imbalance.  

3.9.5 F1_score  

This is the harmonic mean of the precision and recall.  

                     F1_Score = 2 x (Precision x Recall)/(Precision + Recall) 

3.9.6 Specificity 

Specificity is the true negative rate (TNR) or the proportion of true negatives to 

everything that should have been classified as negative.  

           Specificity (TNR) = TN/Actual negative 

3.9.7 Receiver operating characteristics (ROC) curve  

ROC measures the area under the ROC curve. This measurement is done by plotting the 

true positive rate against the false positive rate. This plot produces the ROC curve, which 

allows the model designer to visualise the trade-off between the true positive rate and the 

false positive rate. 
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CHAPTER FOUR 

4.0 RESULTS AND DISCUSSIONS 

4.1 Feature Selection Results 

4.1.1 Feature selection -MRMR 

The Table 4.1 displays the result of feature selection by MRMR algorithm ranking the 

predictors and their corresponding weights.  

     Table 4.1 Feature ranking based on weight by MRMR algorithm.  

Predictors ranking Weight of 

Predictor 

Predictors ranking Weight of Predictor 

1 0.2099               60 0.0028 

127 0.2011 63 0.0028 

169 0.1247 15 0.0027 

99 0.0192 159 0.0027 

80 0.0190 73 0.0025 

42 0.0098 23 0.0025 

86 0.0096 61 0.0023 

109 0.0078 46 0.0022 

14 0.0075 56 0.0020 

75 0.0056 54 0.0020 

27 0.0042 24 0.0019 

106 0.0036 9 0.0019 

13 0.0035 31 0.0019 

51 0.0032 7 0.0019 

126 0.0029 66 0.0018 

 

The Figure 4.1 is the graphical representation of the predictors ranking and their 

corresponding weights obtained from the MRMR algorithm. 
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                   Figure 4.1 Feature ranking by MRMR 

 

                         Figure 4.2 Feature ranking by MRMR 

 

4.1.2 Feature selection - NCA 

The Table 4.2 is the result of the selected predictors according to their columns and their 

corresponding feature weights using the neighbourhood component analysis. 
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Table 4.2 Feature ranking based on weight by NCA  

Predictors Feature Weights Predictors Feature Weights 

X7 2.70384                 X23         1.31786 

X16 2.55435 X26 1.35393 

X29 1.69903 X22 1.4987 

X35 1.97921 X33 1.24626 

X43 1.79244 X42 1.10225 

X47 1.59551 X48 1.20294 

X95 1.70993 X51 1.14678 

X102 1.79552 X62 1.1376 

X122 1.92739 X64 1.45422 

X138 1.151621 X69 1.30107 

X172 1.8032 X76 1.37174 

X181 1.60786 X85 1.12156 

X207 1.66404 X93 1,29766 

X211 1.65918 X97 1.20723 

X9 1.01797 X100 1.228 

X8 1.09952 X123 1.28589 

X13 1.10374 X197 1.20545 

X15 1.19292                 X203 1.03951 

  X212 1.20908 

 

The Figure 4.3 gives the graphical representation of the predictors ranking and their  

corresponding feature weights by the neighbourhood component analysis algorithm. 
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               Figure 4.3 Feature ranking by NCA algorithm 

4.1.3 Feature Selection -Sequential Feature Selection (SFS) 

The Table 4.3 shows the result of the Sequential Feature Selection algorithm where some 

predictors were chosen based on their criterion value. 
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Table 4.3 Chosen features by SFS based on criterion value 

Chosen Features Criterion Value Chosen Features Criterion Value 

1 0.000206714 106 5.81947e-05 

14 0.000134753 86 5.75111e-05 

7 0.000113757 27 5.71202e-05 

8 9.61817e-05 62 5.68277e-05 

69 8.94436e-05 61 5.64369e-05 

60 8.3585e-05 135 5.62415e-05 

56 7.92889e-05 24 5.61438e-05 

42 7.58702e-0.5 43 5.3994e-05 

94 7.22563e-05 155 5.2822e-05 

202 6.80572e-05 80 5.25308e-05 

28 6.62992e-0.05 11 4.93086e-05 

67 6.52257e-05 5 4.67681e-05 

37 6.41518e-05 70 4.52059e-05 

66 6.31748e-05 172 4.38396e-05 

82 6.22962e-05 53 4.30591e-05 

119 6.13201e-05 49 3.97366e-05 

139 5.98552e-05 192 3.90537e-05 

145 5.8976e-05 194 3.87615e-05 

 

4.2 Results of Optimised NCA-BOM-SVM 

Table 4. 4 Optimised SVM hyperparameters that were tuned and values 

Kernel 

function 

Box 

constraint 

level 

Kernel  

Scale 

Acquisition 

Function 

Standardize 

Data 

Optimiser 

Gaussian 68.1216 Auto Expected 

improvement per 

second plus 

true Bayesian 

Opt 

Gaussian 1.7529 Auto Expected 

improvement per 

second plus 

true Bayesian 

Opt 

Gaussian 0.5212 Auto Expected 

improvement per 

second plus 

false Bayesian 

Opt 
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Pertinent to mention that the correct combination of the various hyperparameters 

alongside the modelling of the different values of the hyperparameters led to the 

optimisation of the SVM classifier. The Bayesian Optimization method made it possible 

for the different values to be modelled.  

Table 4.5 Default SVM Parameters and values 

Kernel      Box Constraint                  Kernel Scale  Standardize 

data 

Linear, rbc                                1          0    False 

 

  

   Figure 4.4 Minimum classification error graph for optimised SFS-BOM-SVM 



54 
 

 

Figure 4.5 Minimum classification error graph for optimised NCA-BOM-SVM 

 

 

Figure 4.6 Minimum classification error graph for optimised MRMR-BOM-SVM 

  



55 
 

Table 4.6 Performance Analysis of SVM and Optimised SVM (BOM-SVM) 

Algorithm Accuracy 

   % 

False 

Alarm 

Rate 

Precision Error 

Rate 

Recall F1_Score 

SFS-SVM- 

Linear 

95.1 0.05 94,5 0.048 96.2 95.34 

SFS-BOM-

SVM 

96.3 0.036 96.4 0.036 96.6 96.49 

NCA-SVM 

Quadratic 

95.8 0.037 96.3 0.04 95.6 95.9 

NCA-BOM-

SVM 

97.8 0.021 97.9 0.02 97.9 97.9 

MRMR-

SVM- -

Quadratic 

94.4 0.067 93.3 0.055 96.2 94.7 

MRMRBOM-

SVM 

94.9 0.065 93.5 0.05 96.9 95.2 

 

Table 4.7 Comparison of Proposed Optimized SVM Classifier with Baseline 

Literatures 

Reference Classifier/Method Accurac

y 

      % 

False 

Alarm 

Precisio

n 

Recal

l 

F1_Scor

e 

Proposed 

Optimise

d SVM 

NCA-Optimised 

SVM 

   97.8 0.021 97.9 97.9 97.9 

Rana et. 

al. (2018) 

Random Forest 

SVM 

DT 

ERT 

BAGG 

94.33 

90.74 

91.78 

93.66 

93.71 

Not 

reporte

d 

(NR) 

   94 

   91 

   88 

   93 

   94 

  95 

  91 

  94 

  93 

   94 

   94 

   91 

   91 

   93 

   94 

Rana et. 

al. 

(2018) 

DT 

RF 

Gradient Boosting 

Ext Randomised 

96.13 

97.24 

93.68 

96.97 

Not 

reporte

d 

(NR) 

  96 

  98 

  94 

  97 

  96 

  97 

  93 

  97 

  96 

  97 

  94 

  97 
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Li et. al. 

(2018) 

DroidDeepLearner

/ 

Deep Learning 

90   (NR)    (NR)   

(NR) 

  (NR) 

Further, the table 4.7 is a comparative analysis between the proposed solution and 

solutions from the base line literatures with reference to accuracy, precision, recall, 

fi_score and possibly the false alarm rate as the standard evaluation metrics. From Table 

4.9, the proposed solution displays mastery and strength over the methods in the base line 

literatures considering the accuracy, recall, precision and f1_score. 

4.3 Results Discussion 

Table 4.1 displays the thirty features with their corresponding weights, that were selected 

for the experiment as ranked by the MRMR algorithm from the 215 features from the 

original dataset based on their order of importance. Similarly, Table 4.2 and table 4.3 

show the selected features with corresponding weights and criterion values by the NCA 

and SFS algorithms respectively, from the 215 features from the original datasets. The 

weights in Table 4.2 show the importance of the features whereas the criterion value is 

the selection criteria for the feature to be added to the subset solution. For every selected 

feature in Table 4.3, its criterion must have been minimised else would have been dropped 

by the SFS algorithm. Figures 4.3 and 4.4 show the graphical representations of the 

features based on their ranking by the MRMR algorithm. Similarly, Figure 4.5 shows the 

scattered plots of the features based on their weights by NCA algorithm. The plots points 

with zero weights show how less relevant the features are.  

The results show that there is considerable benefit for deploying feature selection on 

datasets for classification purpose. The various feature selection algorithms used their 

methods to rank and select features they felt were representative of the original dataset. 

The algorithms were able to reduce the features from 215 to the numbers mentioned 

above. Only the SFS algorithm selected a certain number of features which was 36, while 
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others only ranked the features and gave the researcher the discretion of the number of 

features to be chosen. 

Table 4.4 shows the optimal points that the Bayesian optimization method chose as the 

points that optimised the SVM model which gave better performance. These optimal 

points were chosen after several combinations and modelling of all the possible values of 

the hyperparameters. Figures 4.6, 4.7 and 4.8 shows the minimum estimation graphs for 

the MRMR, NCA and SFS optimised dataset. The red points on the graphs represents the 

minimum error rates for the optimised SVM model. Table 4.6 shows the performance 

analysis of the SVM and optimised SVM, with consideration to the dataset from the 

feature selection algorithms. 

 It was observed that the datasets from the feature selections performed above acceptable 

level but the NCA outperformed all others as it produced alongside the optimised SVM a 

higher accuracy rate of 97.8%, precision of 97.9% and recall of 97.9, with lower error 

rate of 0.02 and false alarm rate of 0.021 compared to the combination of other feature 

selection algorithm with the optimised SVM as shown in table 4.8. NCA-SVM optimised 

model gives the proposed solution which is better that the result obtained from the SVM 

model without feature selection.  

Table 4.7 shows the comparative analysis of the proposed solution with some baseline 

literature that used the same original dataset for their experiment. The results as displayed 

from the table shows the proposed solution outperforming the results from the baseline 

literatures. The proposed solution has an accuracy of 97.8%, precision of 97.9%, recall 

97.9% and f1_score of 97.9%, compared with the best result from the baseline literature 

from Rana et. al. (2018) that obtained accuracy of 97.24%, precision of 98%, recall of 

97% and f1_score of 97%.  
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CHAPTER FIVE 

5.0 CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

There is no doubt that there is an exponential increase in the reported cases of Android 

malware. More so, worthy of concern is the level of sophistication in malware 

development which adopts different means including the code obfuscation. However, this 

research work was proposed to stem this menace by developing an ML model that will 

detect Android malware on mobile Android platforms. The research work deployed 

different feature selection algorithms which were the sequential feature selection 

algorithm, relief algorithm, neighbourhood component algorithm and the minimum 

redundant maximum relevant algorithm for feature selection process. These algorithms 

used their different methods and operations to rank, provide weights and criterion values 

to the features, which were considered for evaluation and selection and eventually used 

for training, validation and testing the SVM and optimised SVM. The process of feature 

selection indeed helped to reduce the curse of dimensionality of the dataset while still 

keeping its representation properties. This process saw the number of features reduced in 

each case from 215 in the original dataset. 

During the training and validation, the strategy of k-fold cross-validation helped to reduce 

overfitting and to enhance the generalization ability of the model to predicting unseen 

data. This is because there was testing in each split of the cross-validation process. SVM 

has some default values that are used while developing the model. But the Bayesian 

optimization method offered the opportunity to model almost every point in the 

optimisable hyperparameters and also provided the optimal values for the 

hyperparameters where the best solution was obtained. However, based on the displayed 
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results obtained from the evaluation of the performance of the model, there is no doubt 

that the proposed solution has demonstrated strength in the detection of android malware. 

5.2 Recommendations 

The following recommendations are made in furtherance any future from the spinoff of 

this research work. 

1. SVM is a promising ML classifier that can be enhanced for super accuracy for 

malware detection and similar challenges 

2. Possibilities of exploring a means of having an ensemble of two or more feature 

selection algorithms for more optimal output. 

5.3 Contribution to Knowledge 

This research work made the following contributions to knowledge- 

1. Development of a tool for detection of Android malware using Bayesian 

optimised SVM with neighbourhood component analysis algorithm. 
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