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ABSTRACT 

One of the most complex machine learning and data classification problem is learning 

from skewed or imbalanced dataset. These imbalanced preprocessing approaches having 

received increasing research attention over the years, makes it necessary to access the 

scope of what have been achieved and what needs to be improved upon. Although 

numerous techniques for improving classifiers performance have been introduced but most 

of these techniques are for binary problems; the identification of conditions for the 

efficient use of these techniques is still an open research problem. This research work 

developed a multiclass resampling technique using class similarities degree and data 

difficulty factors. Nearest Neighbours technique was adopted to evaluate the neighbours 

of each example in the dataset and also the distance between each example x and its 

neighbours. This information about the neighbours of each example was further used to 

derive their difficulty type (safe and unsafe). 20 samples were selected from each class in 

the imbalanced dataset; these samples were evaluated using the proposed method to derive 

the similarity degree between classes. Finally, the similarities degree and difficulty type 

of each example were used to evaluate the safe level of examples; which then served as 

the criteria for selecting the examples to oversample and undersample. The new 

resampling technique, MIRT was tested on five standard imbalanced dataset, which were 

selected based on their different degree of difficulty level. After resampling the dataset, 

classification of the dataset was done using KNN, SVM and CART classifier. The 

performance of the proposed technique, MIRT on CART classifier which achieved a 100 

percentage in 4 of the 5 data samples used was better than SOUP, SOUPBag and MRBB 

resampling techniques which were compared using the G-mean values. Also, among the 

claasifiers used, CART performed way better than KNN and SVM. Finally, the similarity 

degree derived from this work can be further apply on dataset with classes more than four; 

which are more complex to classify. 
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CHAPTER ONE 

1.0            INTRODUCTION 

1.1 Background to the Study 

With the exponential growth and availability of data on a grand scale from sophisticated 

and networked systems, such as internet of things, security, surveillance, finance, 

medicine, academic and other industries. It is vital to advance fundamental understanding 

of knowledge acquisition and analysis from raw data use for decision-making and 

prediction processes (De and Do, 2020). Despite the progress made in data engineering 

techniques and existing knowledge discovery, learning from imbalanced dataset 

challenges remains a difficulty that has drawn increasing interest from industry and 

academia (Napierala and Stefanowski, 2016; Fernández et al., 2018). 

 

When one or more classes in a dataset have a little number of instances (minority class) in 

comparism to the remaining classes in the dataset (majority class) by a significant margin, 

the dataset is said to be imbalanced. Binary and multiclass datasets are defined as having 

two classes and more than two classes, respectively. The number of individuals with a 

certain ailment, such as asthma, in a random sample of 50 people is substantially lesser 

than the asthma-free patients in number. (Napierala and Stefanowski, 2016). Such instance 

takes place in many important applications which includes text classification, face and 

image recognition (Thabtah et al., 2019), word pronunciations learning (Ali et al., 2019),  

fraud detection, medical diagnosis (Blaszczynski and Lango, 2016). Learning from 

imbalanced dataset remain one of the most complex difficulties for supervised machine 

learning (Blaszczynski and Lango, 2016). Imbalanced data classification is a major 
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difficulty in data mining and machine learning that can be seen in many real-world datasets 

(Duan et al., 2020). 

 

Owing to the importance of this issues, major contributions have been made to existing 

and developing techniques. There are three categories for dealing class imbalanced based 

issues based on the approach that is been adopted in dealing with the imbalance problem: 

The internal or algorithmic level technique constructs or alters existing algorithms while 

taking minor class ramifications into account. External or data-level approaches, which 

involve preprocessing data in order to rebalance class distributions and reduce the unequal 

distribution effect on the classification process. The internal or algorithmic level technique 

constructs or alters existing algorithms while taking minor class ramifications into account. 

And the third category is cost-sensitive strategy, it integrates a variety of misclassification 

in the learning phase costs for every class by combining data and algorithmic level 

approaches in the learning phase (Ali et al., 2019).  

 

The American Association for Artificial Intelligence (now the Association for the 

Advancement of Artificial Intelligence) workshop on Learning from Imbalanced Datasets 

(AAAI '00), the International Conference on Machine Learning workshop on Learning 

from Imbalanced Datasets (ICML '00), and the American Association for Artificial 

Intelligence (now the Association for the Advancement of Artificial Intelligence) 

workshop on Learning from Imbalanced Datasets (AAAI '00) all reflect the increased 

interest in imbalanced (He and Garcia, 2009). 
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The core problem associated with the imbalanced dataset learning problem is that it has 

the potential to dramatically degrade the efficiency of virtually all standard learning 

techniques. The majority of classifiers assume or expect equal misclassification costs or 

balanced class distributions. (He and Garcia, 2009). As a result, when faced with high level 

of imbalanced datasets, these techniques fail to appropriately capture the data's distributive 

properties, resulting in inaccurate results for the minority class. (Fernández et al., 2018; 

Napierala and Stefanowski, 2016). Furthermore, the minority class is often has the most 

learning appeal, and when it is not correctly classified, it comes at a high cost (Sáez et al., 

2016). 

 

Learning algorithms or built models that do not take into account the dilemma of class 

imbalance can be overwhelmed by the majority class and ignoring the minority class. 

Consider a binary data collection with 98:2 percent imbalance ratio, in which the majority 

class makes up ninety-eight percent (98%) of the entire dataset and the minority class only 

contain two percent (2%). To reduce the erroneous rate, the learning algorithm group all 

of the samples into the majority class, resulting in a two percent (2%) error rate. The error 

level may appear small but it effect in real life may lead to great loss such as diagnosing a 

patient of not having a rare disease such as COVID-19, when actually the patient does.   

All instances belonging to the minority class are prioritized in this situation, and they are 

identified as improperly categorised, and the classification scenario is considered totally 

unsuccessful because the minority class that is of more interest have been totally 

misclassified (Lin et al., 2017; Jedrzejowicz et al., 2018). 
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Knowing that there is a disparity in class of a dataset makes learning more difficult, 

however, the difference by size in class examples is not the only source of possible 

problems (Sáez et al., 2016; Błaszczyński and Stefanowski, 2018). When the cardinalities 

ratio for the minority and majority classes are compared, utmost importance to analyse the 

data difficulty factors which is also known as data intrinsic characteristics, as well as the 

degree of similarities between classes is required (Napierala and Stefanowski, 2016; 

Koziarski et al., 2020; Weiss, 2012; Rendón et al., 2020).  

 

Data difficulty factors in dataset is the distribution of class examples within the dataset. 

This distribution can be categories into sub-concepts, small disjuncts, overlapping, 

borderline, rare and outlier examples based on their position (Lango et al., 2017). The 

degree of similarity between classes presents the information about the inter relationship 

that exact between every pairs of classes (Janicka et al., 2019).  

 

Therefore, this research is on how to address this problem of multiclass imbalance 

techniques putting into consideration the data intrinsic characteristics and the degree of 

similarity that exist between classes in the dataset. 

1.2 Statement of the Research Problem 

Combining class imbalance, data difficulty factors and multiclass into similar problem has 

huge negative effects on the accuracy level of common classifiers and deteriorates 

predictions performance (De and Do, 2020). Multiclass imbalanced problem are fairly 

fresh concept when compared with binary dataset that have received tremendous attention 

(Lango et al., 2017; Janicka et al., 2019; Wojciechowski et al., 2018). Solving class 

imbalance issues in multiclass problem, variety of irregularities that do not exist in binary 
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dataset are encountered, such as, the presence of disjoint majority classes or minority 

classes (De and Do, 2020; Lango et al., 2017). 

 

Furthermore, despite the methods that have been proposed to handle multiclass imbalanced 

dataset, information about dataset such as data difficulty level, class distribution 

concentration and data complexity have not been greatly considered due to difficult nature 

of dataset and limitations of the decomposition strategies (Fernández et al., 2019).  

 

However, few works have been proposed to handle preprocessing method that uses dataset 

information such as (Janicka et al., 2019; Lango and Stefanowski, 2018; Napierala and 

Stefanowski, 2016) and these details can be further explored to standardize the dataset and 

achieve improved performance of classifiers. Hence, this research is on how to design a 

preprocessing resampling technique that consider important data intrinsic characteristic 

and degree of similarity between classes.  

1.3 Aim and Objectives of the Study 

The aim of this study is to develop a preprocessing technique for multiclass imbalanced 

dataset based on data similarity degree and data difficulty factors. 

This will be achieved by the following objectives: 

i. To design a new data level multiclass preprocessing technique.  

ii. To implement the designed technique in (i) using jupiter notebook, [a python 

interactive computing environment and other python libraries which includes 

pandas, yellowbrick, seaborn, sklearn, matplotlib, numpy]. 

iii. To evaluate the performance of the technique using the following standard matrix, 

F-Score, AUC (Area Under ROC Curve) and Geometric Mean (G-Mean) 
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iv. To compare the results with existing techniques. 

1.4 Significance of the Study  

The increasing needs to achieved high-level accuracy in classification tasks, cannot be 

over emphasized as critical fields such as medicine, aeronautic and engineering  have 

adopted the use of machine learning to a great degree. From the imbalanced nature of real-

life dataset, the presences of data intrinsic characteristics and skewness have made 

classification task much more complex; data level preprocessing techniques reduces these 

complexities to some notable proportion.  

 

The proposed data level preprocessing technique will balance the cardinalities of classes 

and will also put into consideration class interrelationships information and data intrinsic 

characteristic factors thereby achieve an improved dataset for data classification and 

increases classifier accuracy.  

 

This work intend to develop a resampling technique to reduce the cost of multiclass 

imbalanced dataset preprocessing and also increase the quality of imbalanced dataset use 

for machine learning activities by researchers, data scientists, data engineers and data 

analysts.  

 

 

 

1.5 Scope of the Study 

This research work is focus on the development of a multiclass preprocessing technique 

for multiclass dataset using similarity information about the dataset. This work does not 

includes all aspect of preprocessing task such as data cleaning, empty feature generation 
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but adopted already existing methods but focused on informatively improving the 

resampling process using information about the dataset and the data intrinsic 

characteristics. The proposed resampling technique is for multiclass dataset only, it does 

not consider binary dataset. However, five (5) real-world multiclass imbalanced datasets 

gotten from UCI repository, representing different imbalance ratios, data intrinsic 

characteristics ratio and number of classes have been selected. These datasets have also 

been adopted in almost all related experimental studies on class imbalance, some of which 

are  Janicka et al. (2019),  Sáez et al. (2016), Galar et al. (2011), Fernández et al. (2013), 

Lango et al. (2017), Napierala and Stefanowski (2012), Błaszczyński and Stefanowski 

(2018), Nwe and Lynn (2020) for evaluation of their proposed techniques.  
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CHAPTER TWO 

2.0       LITERATURE REVIEW 

2.1 Imbalanced Data 

Imbalanced data refers to the disproportion of class examples that exist in a dataset to be 

used for a machine learning task; in such a dataset, one or more classes are 

underrepresented (minority classes) in comparism to other class(es) in the dataset 

(majority classes) (Wang and Yao, 2012) as shown in Figure 2.1. The uneven 

representation of classes is due to the fact that some classes occurs significantly more 

frequently in real-life scenarios; for example, in the current coronavirus (COVID-19) 

outbreak, only 320,000 people have tested positive for the virus out of millions who have 

been diagnosed in China (Max et al., 2020). 

 

With this issue of class imbalanced dataset, a classifier's performance tends to be biased 

in favor of some classes (majority class) in the dataset. Classifiers with performance bias 

operate differently, because there is more dataset available for the classifier to train, 

solutions in the majority class tend to be more accurate. However, considering the minority 

class, solutions with inadequate precision are carried out. In real-world applications such 

as bioinformatics, bleeding detection in medical diagnostics, fraud detection, and 

education; the problem of imbalanced data distributions is well-posed. Cost sensitive 

algorithm and neighborhood cleaning rule, safe level SMOTE are the most prevalent 

approaches for dealing with imbalanced data and they are generally applicable to binary 

datasets (Kaur et al., 2019). 
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Learning algorithms struggle with the dataset's class imbalanced ratio since they are 

designed for balanced classes, generating a bias in favor of the class with more examples. 

However, from the standpoint of machine learning, the minority class examples tends to 

be the class of interest since, despite its rarity, it contains more significant and useful 

knowledge (Krawczyk, 2016). 

 

Numerous methods have been presented in the literature to alleviate difficulties associated 

with class imbalance. This is thought-provoking and demanding in today's study domains, 

where many binary class problem, classes problem, cost of misclassified class, negligible 

disjoints, class overlapping, and magnitude of imbalanced datasets all require attention at 

the same time. Because multiclass imbalance problems include a variety of essential 

challenges, binary class problems have gotten increased attention (Ali et al., 2019). 

2.2 Types of Imbalanced Data 

The classification tasks are categorized into binary or multiclass, based on the number of 

classes involved. As illustrated in Figure 2.1, a dataset with two classes or more is called 

binary and a dataset with more than two classes is called multiclass. 

 

Figure 2.1: Two Possible Class Imbalance Scenarios (left) Binary class imbalanced 

data distribution, (right) Multiclass imbalanced data distribution (Sáez et al., 2016). 
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In comparism to what has been accomplished in its binary equivalent, research on 

multiclass imbalanced classification is still in its initial phase (Cruz et al., 2019; Alejo et 

al., 2017;  Lango et al., 2017;  Krawczyk, 2016). Also, in binary dataset. In as much as 

massive achievement have been recorded in binary classification, most of its  

preprocessing method cannot be directly applied to multiclass dataset which has more 

complicated situation (Krawczyk, 2016). As the relationships in classes get more complex, 

handling many minority classes makes the learning task much more complicated. Dealing 

with multiclass problems, performance on a class may be lost while attempting to obtain 

it in another class. With such issues in mind, there are many issues to be considered and 

resolve by novel approaches (Sáez et al., 2016). 

 

In other cases, separating numerous classes with low cardinalities may be beneficial. 

Taking into consideration the difficulty of distinguishing between two types of asthma 

(minority classes) and healthy individuals in medicine (majority class). When one type of 

asthma is classified as a minority class and the other is grouped with the healthy to form 

the majority class, an intolerable situation occurs in which sick people are mistaken for 

healthy people. While categorizing all asthmatic patients into a single minority class may 

be a better solution, it still leads to the unexpected loss of asthma type information (Lango 

et al., 2017). 

2.2.1    Complexity of multiclass dataset 

Traditionally, binary datasets have been associated with imbalanced classification. The 

class of interest and mostly the class with least instance are referred to as the minority or 

"positive" class and the most occurring class as the majority. As a result, the majority of 

the studies on this topic has concentrated on emphasizing the acknowledgment of the 

underrepresented class. Dealing with multi-class issues is difficult, and it becomes even 
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more difficult when there is an imbalance. When dealing with multiple majority and 

multiple minority classes, ascertaining which class should be evaluated and optimised at 

the point of learning a priori, the way it was achieved in studying binary case is difficult 

(Fernández et al., 2019).  

 

In numerous real-world scenarios, there are countless number of areas whose datasets are 

multiclass. Some of these areas includes microarray research, protein categorization, 

medical diagnostics, video mining, activity recognition and target detection are just a few 

examples. All of these issues have something in common: this is the distribution of 

instances throughout the classes is not uniform, as most of the classes are quite similar. In 

this regard, reference must be made to the multiclass case of the imbalanced data 

classification problems, and as the number of classes grows, so do the difficulty of 

effectively expressing the entire problem space (Hossen et al., 2018). For the increased 

number of borders to evaluate in a popular case analysis, reference must be made first to 

the constraint. However, in the imbalanced scenario, the occurrence of multiple majority 

class and multiple minority class is the most crucial issue that must be considered. This 

means that it is no more feasible to pay attention just on a particular class in order to 

improve the learning techniques geared toward that class (Rendón et al., 2020). When 

dealing with multiple class imbalanced datasets, however, this is not the only issue. All 

data inherent qualities that degraded performance in the binary case are now emphasized 

even more. The degree of similarity across classes in the dataset, as well as the reliance 

within classes (including overlaps) and relationships between classes, must all be 

thoroughly examined. This interdependence among the classes makes it difficult to learn 

from, but it can be used to assess the nature of the dataset during preprocessing (Janicka 

et al., 2019). 
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As a result of these certainty, there arise a simple yet important question: what are the 

ways that multiclass imbalanced datasets be effectively addressed? Though, there is not a 

straightforward response to this. Overcoming the issue of extending ordinary binary class 

solutions for used in this context.  Contrarily, data-level approaches (preprocessing) are 

not exactly applied as the search region is enlarged, for example, determining the right 

sample amount for each class. Diversely, it is because there may be more than one minority 

class, algorithmic level solutions become more difficult. (Fernández et al., 2019).  

 

To solve all of these concerns, one basic but yet effective method for maintaining standard 

binary-class imbalanced techniques in multiclass problems must be emphasis: Using 

decomposition methods (Hossen et al., 2018). Following the divide-and-conquer 

paradigm, original datasets are separated into binary ones. As a result, a collection of 

classifiers must be learned, each of which is in charge of one of the innovative binary 

problems. The results of all the classifiers for a given instance are pooled in the testing 

phase to make the final verdict (Vluymans et al., 2018). As a result, the challenge of 

dealing with the multiclass problem shifts from the classifier to the combination stage. 

2.2.2 Multiclass data decomposition techniques 

The most common approaches for dealing with multiclass problems are class 

decomposition strategies. This strategy involves reducing the problem into a binary class 

subtask that can be learned by binary classifier, even in the case of imbalanced data. This 

approach is required because most standard classifiers are designed for binary problem 

only (De and Do, 2020). When attempting to categorize any multiclass imbalanced 

situation, it is evident that the greater the amount of classes involved for classification, the 

more difficult it turns out to accurately select the query instance's result label. This is 
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primarily due to the data difficulty factors among the many dataset classes, which rises as 

increasing classes are interrelated. A divide-and-conquer strategy is a basic yet effective 

technique to approach this problem. Decomposition approaches, in which the original 

problem is reduced into numerous easier-to-solve binary subsets, are examples of such 

methods (Vluymans et al., 2018). The most popular decomposition algorithms, according 

to Janicka et al. (2019), are one-verse-all (OVA), one-verse-one (OVO), and Error-

Correcting Output Codes (ECOC). 

 

The OVA and OVO procedures run over all possible pairs of classes or aggregations of 

classes (for example, one class versus remaining classes) and apply binary problem 

methods at each iteration. Although the OVA technique keeps original classes, it ignores 

relationships between them. Although OVO does not aggregate classes, it is more 

complicated than OVA since it must process all possible pairs of classes (Wojciechowski 

et al., 2018). 

 

The Error-Correcting Output Codes binarization approach is a common framework for 

decomposing multiclass issues into binary components. Every class is allocated a specific 

length n binary string, referred to as a code word, under this strategy. Then, one binary 

classifier for each bit in the string is trained. The wanted result of a stated classifier is 

provided by the conformed bit in the code word for this class during the training stage on 

an instance from class i. This procedure can be visualized by a m × n binary code matrix 

(Nannes et al., 2020). 

2.3 Approaches for Tackling Imbalanced Data Problem 

It is because of the importance of issues of class imbalance, significant effort has been 

made in developing solutions to alleviate them. These proposals can be classified into three 
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categories based on how they address class imbalance: external or data-driven techniques, 

internal or algorithmic-driven approaches, and cost-sensitive options. Ensemble learning 

classifiers are also useful for classifying data that is imbalanced (Ali et al., 2019). 

 

Figure 2.2: Approaches used in Balancing Dataset (Kaur et al., 2019) 

2.3.1 Preprocessing approaches 

Preprocessing approaches are those techniques that are applied on the dataset to produce 

a balanced and less difficult dataset for the classifier, these preprocessing techniques are 

administrated to give rise to a more suitable training data than the original dataset. The 

techniques that exploit on preprocessing stage are also known as data centred (data level) 

technique. These methods function through acting directly on data sample space and 

attempting to lower the imbalance cardinality among the dataset's classes (Kaur et al., 

2019). A review of existing algorithms led to the finding that resampling technique 

together with ensemble methods, particularly oversampling, would be the better solutions 

for this scenario due to their performance (De and Do, 2020). The preprocessing technique 

can be categories into: 
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2.3.1.1      Feature selection method 

Feature selection is a dataset preparation stage that picks a subset from all the available 

attributes or features and removes unnecessary attributes that are not useful. This 

approaches have been devised to do away with the "curse of dimensionality," which is the 

amount of evaluation required grows exponentially as the amount of dimensions grows, 

while preserving or enhancing prediction performance. Filtering, wrapping, and 

embedding are the three basic ways to feature selection (Fernández et al., 2018).  

i. Filter Method: Filter methods use statistical or information measurements to 

choose high-range features. This can be accomplished by evaluating the range of 

differences between the dataset's features using statistical methods such as 

ANOVA and T-test (Fernández et al., 2018).  

ii. Wrapper Method: The wrapper approach classifies the subset of features based 

on their predictive outcome, utilizing the classifier as a black box. Because a 

thorough search necessitates 2n separate evaluations, test-and-trial or even greedy 

strategies are greater practical for finding the optimal choice solutions. To figure 

out how important each property is to each classifier a sensitivity evaluation could 

be carried out. (Fernández et al., 2018).  

iii. Embedded method: Unlike wrapping approaches, embedded methods choose 

attribute while considering the classifier's architecture and neighborhood 

information, and are almagamated into the modeling process (Fernández et al., 

2018). 

2.3.1.2         Resampling method 

Despite the fact that resampling is a common strategy for dealing with the problem of class 

imbalance, the question at hand is what is or finding a way to effectively determine the 

ideal class distribution given a dataset. Aside from the class distribution issue, another 
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challenge is a method to efficiently preprocess (resample) the training dataset. Random 

sampling is straightforward, but it is not always enough. If a dataset class imbalance 

problem is considered by within class ideas, some duplicate examples space may be 

favored by random oversampling over others (De and Do, 2020). A better resampling 

technique would first discover the sub-concepts that make up the class, and then 

oversample each idea individually to balance the overall distribution. Such a similarity 

resampling approach, however, raises the cost of data processing. In undersampling of the 

majority or dominant class in order to make the selected examples more representative 

raises more issue: sample selection is based on what criterion? Say for example, if distance 

is used to measure samples, those more occurring or majority class examples that are 

comparatively distant from minority class examples may represent more majority class 

attribute, whereas those that are comparably near the minority class examples may be 

critical in classifier learning algorithms choosing the class boundary region. When it 

comes to picking high-quality samples, which aspect should be prioritized? Before 

considering the amount of the examples in each class in the dataset, any resampling 

technique should consider these difficulties (Sun et al., 2009). 

 

According to Fernández et al. (2019), Three types of resampling approaches can be found:  

1.  Oversampling: This is one of the most widely adopted machine learning 

technique. Random minority oversampling is the most basic type, which just 

duplicate erratically picked examples from the minority class(es) in the dataset. 

Oversampling have been demonstrated to be effective, but it can also lead to 

overfitting. Synthetic Minority Over-Sampling Technique (SMOTE) is a better 

start-of-the-art sampling method that seeks to solve this problem of class 

imbalance. It increases the number of examples by generating artificial instances 
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through interpolating datasets from neighborhood data examples. Some 

modifications to this oversampling method were offered, such as pay attention 

exclusively on instances closer to the boundary class. Another method for 

performing more informed oversampling is to use data preparation. Cluster-based 

oversampling divides the entire dataset into clusters and then oversamples every 

subset individually. This minimises both interclass and intraclass disparities. 

DataBoost-IM, contrarily, uses boosting preprocessing to identify tough cases and 

then utilises them to produce the synthetic samples. Class-aware sampling is a type 

of oversampling that is peculiar with stochastic gradient descent to neural networks 

optimized. The key idea is to ensure that each mini-batch has a homogeneous class 

distribution and to manage the selection of examples from each class (Buda et al., 

2018).  

2. Undersampling: Another frequent way for ensuring that each class has the same 

number of examples is to use the same number of examples. Instead of 

oversampling, examples from majority classes are deleted at random until all 

classes have the same amount of examples. While it may seem counterintuitive, 

there is evidence that undersampling is superior to oversampling in some 

circumstances. This strategy has the considerable disadvantage of discarding a 

portion of the available data may have been crucial to improve performance. To 

address this flaw, certain changes were made to more carefully choose which 

samples should be eliminated. The one-sided selection, for example, identifies 

redundant samples along the class boundary (Buda et al., 2018).  

3.  Hybrids methods: The hybrid method combines the oversampling and 

undersampling approaches (Haixiang et al., 2017). This method is mostly used in 
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multiclass dataset where there is need to reduce of the majority classes and also 

increase from the minority classes (Fernández et al., 2019). 

2.3.2  Cost-sensitive learning 

This approach applies a different cost to misclassification of samples in the dataset from 

distinct classes. Cost-sensitive learning technique refers to a group of algorithms that are 

delicate to various costs related with specific aspects of the problems under consideration. 

These cost may be from a variety of sources relating to a specific real-world situation, such 

as information given by an expert in that domain or information learned during the 

classifier training phase (Fernández et al., 2019). This method can be applied both at the 

data level, by specifying costs during resample or feature selection, and at the algorithmic 

level, by modifying the algorithm to be sensitive to minority class cost. Although less 

popular than, say, resampling, a comparison of cost-sensitivity and both data-level and 

algorithm-level techniques shows that cost-sensitivity uses computational resources more 

efficiently. The disadvantage is that constructing an efficient cost matrix to represent said 

misclassification is complicated and time-consuming. It should also necessitate subject-

matter expertise, as cost attribution should be a well-thought-out procedure (Weiss, 2012). 

Misclassification costs have been classified into two sorts based on research: example-

dependent costs and class-dependent costs. The first assumes that each case should incur 

a misclassification cost, whereas the second expects that the incorrect categorization 

should be applied to all classes. As one might assume, the former method is only used in 

specific scenarios where cost classification by example is simple, whereas the latter is 

more practical in any context. As a result, cost-sensitive learning can be paired with 

boosting algorithms to create ensemble techniques in the hopes of achieving superior 

outcomes (De and Do, 2020). 
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2.3.3 Algorithm level approaches 

For addressing imbalanced datasets, algorithm level approaches might be considered as an 

alternative to data preprocessing methods. Rather than focusing on changing the training 

dataset to prevent class skew, this method focuses on changing the classifier learning 

mechanism. This necessitates a thorough study of the chosen earning technique needed to 

determine the exact mechanism is behind the majority class bias.  Algorithm level 

solutions do not alter data distributions, making them more compliant to multiple forms of 

datasets imbalance at the tradeoff of being unique to a single classifier. Instead of changing 

the provided training data, algorithm-level techniques focus on tweaking current learning 

algorithms to reduce their concentration in favor of the majority class. This necessitates a 

thorough understanding of the updated learning algorithm as well as a detailed 

determination of why it fails to mine skewed distributions. While preprocessing algorithms 

are more general in that any classifier may be trained to do class balancing subsequently, 

the approaches covered in this chapter are particular to a certain model. This limits the 

algorithmic approach's versatility, but also allows for greater specialisation in tailoring the 

solution to the task at hand. Algorithm based approaches are less common in literature, 

owing to the fact that algorithm based techniques are more complex to design and 

implement in comparism to data level technique. In spite of this situation, there are a 

variety of effective class imbalance results that dependent on direct changes in classifiers. 

SVMs and their variants, Decision Trees, NN methods, Bayesian classifiers, ANNs, and 

kernels are just a few of the popular machine learning algorithms that have undergone 

similar change (Fernández et al., 2019). 

2.3.4 Ensemble learning approach 

Classifier ensembles, also known as multiple classifier systems in Data Science, combine 

more than one classifiers output to determine the overall output and are believed to boost 
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precision when compared to using one classifier. On the other hand, the ensemble learning 

methods are unable to overcome the problem of class imbalance on their own. When 

compared to using a single classifier, this method is known to improve accuracy. Any of 

these ways for dealing with imbalance class issues can be combined into a classifier 

ensemble to increase overall performance. Ensemble based solutions for class imbalance 

problem are a type of strategy that has been widely used with success. Some popular 

ensemble learning methods include Bagging, Boosting (Fernández et al., 2019). 

2.3.4.1     Bootstrap aggregating  

Bootstrap Aggregating (Bagging) is an ensemble learning approach in which many 

classifiers are trained using distinct bootstrapped clones of the original training dataset. To 

put it another way, a new dataset is created for each classifier by selecting without 

choosing a specific (with replacement) example from the initial dataset. As a result, 

diversity in Bagging is achieved by the resampling approach, which involves training 

every one of the classifier with a distinct data subset from the original dataset. The model 

that is produce should differ owing to variation in the dataset, assuming the corresponding 

classifier is weak.  

 

Finally, when classifying an unknown instance, weighted vote or a majority choose is 

employed to determine the class of the instance. The confidence offered by each classifier 

in the prediction is usually used to execute weighted majority voting (Fernández et al., 

2019). Bagging has a number of advantages, one of which is it simplicity in 

implementation. Bagging also minimises variance since voting effect is comparable to that 

of averaging in regression, where the minimisation of overfitting effect becomes more 

visible (Khoshgoftaar et al., 2011). 
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2.3.4.2     Boosting 

Schapire established the concept of boosting in 1990, demonstrating that a weak synthetic 

sample generator (which is marginally more preferred than random prediction) may be 

transformed into a strong synthetic sample generator using the PAC learning framework. 

The algorithm in this family that is mostly represented is AdaBoost. Since the first time 

that Boosting was used, it was named among the preferred in data mining algorithms.  

AdaBoost, unlike Bagging, which is just capable of lessen variance, it is also known to its 

ability to reduce bias (in addition to variance) and, like SVMs, enhances margins 

(Fernández et al., 2019). 

2.3.4.3     Hybrid method 

Hybrid methods combine algorithm-oriented, data level approach, and ensemble 

approaches to accurately solve imbalanced data classification problem (Liu et al., 2019). 

2.4 Merit and Demerit of Data Level Preprocessing Approaches 

Advantages of Data Centred Approaches (Fernández et al., 2019) 

1. It is a simple and widely used method for balancing the training data's class 

distributions. 

2. Investigating the impact of modifying the class distribution to deal with datasets 

that are imbalanced. 

3. Data Centred Approaches are independent of the underlying classifiers 
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Disadvantages of Data Centred Approaches (Kaur et al., 2019) 

1. Achieving the goal of resampling the classes, there is a risk of over-fitting and data 

loss throughout the resampling process. 

2. Choose the best class distribution in a dataset, since the case for choosing the best 

class distribution varies depending on the dataset, and it affects the classifier's 

performance. 

3. Different distributions in different subclasses contained in a single class, as this 

increases the dataset's learning complexity.  

2.4.1 Merit and demerit of algorithmic approaches 

Advantages of Algorithmic Approaches (Kaur et al., 2019) 

1) Algorithmic approaches are particular to a given classifier type 

2) It minimises the misclassification cost of the minority class 

Disadvantages of Algorithmic Approaches (Ali et al., 2019) 

1) It is necessary to have a thorough understanding of the chosen strategy in order to 

determine what specific mechanism is responsible for the majority class bias. 

2) A large number of trials are required to determine which one is the most accurate. 

3) For dataset shifts, there is a lack of a good validation technique. 

4) Algorithmic Approaches necessitate a large amount of processing and storage 

space. 

2.5 Data Intrinsic Characteristics 

Although the problem of class imbalance is frequently stated as a deciding criteria for 

classifier performance decline, there exist times when regular classifiers can get good 

results. If the dataset is deemed linearly separable, high level accuracy could be obtained 
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even with the availability of significant class imbalance (or of low complexity). The 

circumstances that impact nonlinearly separable of datasets are frequently linked to data 

difficulty factors, also referred to as data intrinsic characteristics (Fernández et al., 2019). 

The most prevalent distinction is between instances that are safe and those that are unsafe. 

Safe examples, which are found in relatively homogeneous portion populated solely by 

instances from a single class, should be simpler for a classifier to learn from, but unsafe 

examples are thought to be more challenging and more likely to be misclassified 

(Napierala and Stefanowski, 2016), as shown in Figure 2.3. Understanding the underlying 

properties of these data, and also their interrelationship to class imbalance problem, is 

critical for using current and inventing new strategies to deal with data imbalance 

(Fernández et al., 2019).  Here are a number of the data difficulty factors that can be 

addressed while solving class imbalance problem, which are also grouped as the three sorts 

of dangerous cases: borderline, rare (small disjunct), and noisy (outlier) examples. (Lango 

et al., 2017). 

2.5.1 Borderline examples 

Borderline instance, this can also be referred to as overlapping instance, are examples that 

are found in the same portion as the class boundary between two or more classes (Napierala 

and Stefanowski, 2016) as shown in Figure 2.3.  When the input features are insufficient 

to appropriately distinguish between examples of distinct classes, and similar areas of the 

sample space contain examples from multiple classes, this is referred to as overlapping 

region (Fernández et al., 2019). 
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Figure 2.3: Difficult regions in Multiclass Data Distribution (García et al., 2018). 

2.5.2 Rare examples 

Learning algorithms frequently run into the problem of examples from similar class do not 

appear in homogeneous portion in the sample space. The "idea" underneath a class is 

frequently divided into numerous sub concepts that are scattered across the input space. 

Isolated pair examples positioned on the safe examples of another class and far away from 

the borderline examples are rare examples. (Fernández et al., 2019).  

2.5.3 Outliers examples 

In general, there are two categories of noise in machine learning: feature (or attribute) 

noise and class noise (Fernández et al., 2019). Noisy (class or attribute mistakes) errors 

degrade the performance of standard classifiers, and they are especially destructive to the 

minority class (Napierala and Stefanowski, 2016). Individual instances of another class(es) 

situated within the safe examples of another class are referred to as noisy examples 

(Napierała et al., 2010). 
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2.6 Related Studies 

 Napierala and Stefanowski (2012), proposed a new strategy for identifying distinct types 

of minority class examples in imbalanced dataset that is focused on examining the 

examples' local neighborhoods. The proposed analysis of an example's local neighborhood 

in the original attribute space to determine its type. The class assignment of each minority 

example's k-nearest neighbors was examined. This is because this method relied on an 

easy examination of a given amount of neighbors, it was examined to verify if the assigned 

labels accurately reflected the known distribution. To begin, the experiment was conducted 

with real-life datasets, which revealed that most datasets has a huge amount of unsafe 

instances.  

 

Second, the results revealed that all of the investigated classifiers find safe datasets to be 

rather simple to every classifier. Borderline, rare outlier or noisy examples 

in dataset are serious source of problems, influencing classifiers in different ways. It was 

also discovered that the ratio of imbalance and the size of data are not as dominant as the 

different types of distributions. Finally, when the efficiency of several classifiers were 

compared on the dataset, it was discovered that J4.8 trees or PART rules and Naive Bayes 

were the most flavorful to risky forms of instances in the minority class– even for more 

challenging types. Development of new methods which are able to examine the complexity 

of real-life datasets and their degree of difficult needs further studies. 

 

In the work of Fernández (2013), binarisation strategies and ad-hoc approaches; a method 

for analysing the classification of imbalanced datasets with multiple classes; The 

introduction of a preprocessing mechanism based on SMOTE, known as Static-SMOTE, 

which iteratively generated fresh instances from the lowest represented class at every 
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stage, was one of the strategies utilised. Then, a global cost-sensitive strategy was 

presented, which reweights the examples from every class based on their ratio. Ada-

Boost.NC, and specific boosting based methodology for addressing multiclass imbalance 

problems, is described next. 

 

The work presents an empirical examination of numerous ways for dealing with multiclass 

imbalanced data situations, the majority of which are reached from a merger of OVO and 

OVA strategies and binary based approaches, as well as additional ad hoc methods 

developed specifically for this problem. The following are some key takeaways from the 

research: 

1. For multiple-class imbalanced issues, oversampling strategies have demonstrated 

to be more vigorous than those formulated on undersampling and cleaning 

operations in terms of synergy of data level and binarisation techniques. 

2. When comparing OVO and OVA approaches, OVO methods have consistently 

outperformed OVA methods, notably in terms of average performance. The 

rationale for the results in greater quality is because the paired learning approaches 

deals with a smaller number of occurrences, making it unlikely to produce 

imbalanced training datasets, which is the drawback in this situation. Furthermore, 

the decision bounds of every binary issue in this situation may be significantly 

easier than in the OVA technique.  

3. It is necessary to emphasise that the most effective strategies investigated are those 

formulated on SMOTE with OVO and OVO with cost sensitive approach.  

The author finally determined that binarisation approaches combined with suitable data 

level or a cost-sensitive strategy are simple but effective mechanisms for improving 
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classifier accuracy in imbalanced area, although there is still more work to be done on this 

topic: Scalability, the OVO strategy as a decision making issue, and finally, Intrinsic data 

features are all non-competent examples in OVO strategy. 

 

Napierala and Stefanowski (2016), explored at the challenges of class distribution in real 

life dataset by looking at four different categories of minority class instances: safe, rare, 

borderline, and outliers, all of which can cause classifiers to underperform when learning 

from unbalanced dataset. 

 

By examining multidimensional visualisations of choosen datasets, the approach validated 

the prevalence of class distribution issues in real data. Then, in order to identify these types 

of cases, a new method formulated on examining distribution of a class in a local 

neighborhood of the examined instance was introduced. Modeling this neighborhood was 

done in two ways: with k-nearest examples and with kernel functions. 

The following are the highlights of the findings: 

1. Imbalanced datasets typically include a variety of minority cases in varying 

amounts. 

2. An intriguing result is that outlier examples can make up a significant portion of 

the minority class -they are found to even outnumber the majority in some datasets. 

3. The global imbalance ratio and data amount are less important than the distinct 

example types. 

4. It is handy to distinguish the performance of common classifiers by collecting 

information on local attributes of the minority class and discriminating between 

rare, safe, borderline, and outlier examples. 
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5. Analysing differences between common preprocessing methods might also benefit 

from considering information on sorts of minority instances. 

Napierala and Stefanowski (2016) study paid emphasised on rare and outlier examples, as 

well as the fact that common data distribution patterns observed across multiple 

imbalanced datasets can aid in the creation of novel learning algorithms and preprocessing 

methods for class imbalance. 

 

In multiclass imbalanced datasets, the resampling (oversampling) of distinct classes and 

samples types was examined by Sáez (2016). The goal was to see how data level approach 

(oversampling) of some classes and samples types in every class (safe, borderline, rare, or 

outlier) affected the efficiency of the classifiers constructed. 

 

The classes and instances types been oversampled in the dataset were established after 

selecting the dataset for this study. To begin, each sample in every class is categorised as 

safe, rare, borderline, or outlier using the HVDM distance metric for each dataset. Second, 

take into account all of the well-grounded design discovered in the previous phase. The 

preprocessing consisted of using an oversampling approach and generating fresh synthetic 

cases using a scheme much the same to that utilised in binary imbalanced issues by 

SMOTE approach. 

 

Finally, the performance of alternative classification methods, such as Support Vector 

Machine (SVM), C4.5, and Nearest Neighbour (NN) rule, used to examine the 

preprocessed datasets. 
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Following the analysis of the performance findings, various conclusions concerning the 

necessity of preprocessing in multiclass imbalanced datasets drawn are: 

1) Preprocessing some concrete classes and categories of samples in these classes 

(safe, rare, borderline, or outliers) can enhance performance that would otherwise 

be indiscriminately harmed by preprocessing all classes. However, if these classes 

and types of preprocessing samples are not selected accurately, the results may 

suffer. 

2) Sorts of examples to be preprocessed: To increase the final result, it's critical to 

focus on the data characteristics of each and every problem, research the 

distribution of every class, and analyse which instances types should be 

preprocessed. 

3) Choosing the most appropriate classes and examples for preprocessing. When the 

best instances types and class are chosen to be preprocessed, the outcome show 

that this preprocessing approach can result in a considerable increase in 

performance when compared to not preprocessing any classes or not preprocessing 

at all.  

The conclusions found can be used to create unique preprocessing learning algorithms in 

the future that use this problem structure background knowledge. The conclusions reached 

can be used to support a variety of multiclass unbalanced learning concepts. 

 

In a multiclass dataset, Lango et al. (2017) developed a new technique for assessing the 

characteristics of samples. The approach determines the safe level by examining the 

neighborhood of a minority class example as well as additional information about the 

similarity of neighboring classes to the example class. 
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The safe level coefficient was generalised in the following way: 

Consider the example x, belonging to the minority class Ci. Its safe level is defined as 

follows in respect to l classes of instances in its local neighborhood: 

𝑆𝑎𝑓𝑒 =
1

𝑛
∑ 𝑛𝑐𝑗𝜇𝑖𝑗

𝑙

𝑗=1

                                                                                                         (2.1) 

where ij is the degree of similarity, nCj is the number of class examples, Cj is the number 

of neighbors in the considered neighborhood of x, and n is the total number of neighbors 

The paper also developed the idea of class similarity, which is used to extend the process 

of identifying types of minority instances to a multiclass context and evaluate if safe level 

values are related to standard algorithm classification performance. 

 

The results demonstrated that this method accurately detects minority class distribution 

challenges in a variety of artificial and real-world datasets, as measured by values of safe 

levels for acceptable minority instances. The inability to derive similarity among classes 

from the dataset is a shortcoming of this study. The author states that by utilising safe 

levels to adaptively modify resampling, the new method of identifying data complexity in 

multiclass datasets can be leveraged to develop new preprocessing algorithms. 

 

To balance multiclass imbalanced data in the presence of data difficulty factor, Janicka et 

al. (2019), presented a novel technique called Similarity Oversampling and Undersampling 

Preprocessing (SOUP), which models interrelationships between classes.  This paper's key 

contribution is a new approach for determining the degree of similarity between classes 

and then used on Lango et al. (2017) way of determining the safe level of examples. This 

method of determining a safe level was then applied on the SOUP algorithm in the process 

of oversampling and undersampling process.  It was also compared to other well-known 
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methods such as Global-CS, Static-SMOTE, and Multiclass Roughly Balanced Bagging 

(MRBB), which it outperformed; it was also compared on decomposition ensembles OVO 

and OVA, where it also outperformed them. Regardless of its effectiveness, the heuristic 

approach employed to estimate the similarity level must be carefully reviewed. 

Nonetheless, SOUP is interested in generalising an underbagging ensemble, such as 

Neighborhood Balanced Bagging, as a future research topic in order to increase predictive 

ability. 

 

Nwe and Lynn (2020) proposed an efficient resampling method for skewed distributions 

in unbalanced datasets. It developed a data preprocessing strategy that focused on the 

skewed distribution of data points in the imbalanced dataset to improve the efficiency of 

imbalanced data classification. To tackle the issues associated with imbalanced learning 

of small disjuncts and short sample size, the author proposes using oversampling and 

undersampling algorithms based on k-means clustering. The proposed cluster-based 

resampling approaches also included the Tomek Link-based undersampling method to 

alleviate the class overlapping problem by deleting the majority samples in overlapping 

locations. The COTU approach should be expanded to multi-class imbalanced data in the 

future, and an appropriate value of clusters (K) will be defined for the problems of small 

disjuncts and small sample size, as the number of clusters (K) affects classification 

efficiency. 

 

Mahmoud (2020) demonstrated an Oversampling Technique (modified SMOTE) for 

dealing with imbalanced datasets, which addresses the binary classification of imbalanced 

datasets. The main goal of the improved SMOTE technique was to create new synthetic 

minority samples that would reduce the amount of differences between majority and 
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minority data. When creating new minority data samples, majority data samples are taken 

into account. The algorithm returns the majority class's k-nearest neighbors as well as the 

minority class's k-nearest neighbors. The distance between the nearest majority and 

minority neighbors was then computed and multiplied by a random number. Then, based 

on the randomly selected minority neighbor, create a new synthetic sample by increasing 

the distance between the nearest majority neighbor and the nearest minority neighbor.  

 

This strategy was compared to the SMOTE method, which is the usual oversampling 

approach in literatures, on several datasets using K-Nearest Neighbors, Fuzzy K-Nearest 

Neighbors, and Support Vector Machines classifiers, and it outperformed the SMOTE 

method. The author of this paper noted that though this technique was only used with 

numerical datasets, it might be extended to categorical datasets as well. Another possibility 

is to use the method with multiclass datasets. 

 

Duan (2020) proposed a novel classifier ensemble framework based on K-means and 

resampling technique (EKR). To begin, data samples in the majority class were divided 

into several sub-clusters using K-means, with the k-value determined by the Average 

Silhouette Coefficient, and then the number of data samples in each sub-cluster was 

adjusted to match that of the minority classes using resampling technology. Finally, each 

adjusted sub-cluster and the minority class were combined into several balanced subsets.  

 

Duan (2020) compared to UnderBagging, RUSBoost, SMOTEBagging, and Clustering-

based Undersampling (CBU) utilising different data preparation approaches, Duan, (2020) 

finally concluded that EKR performed better. The author suggests that further study be 

done to improve the algorithm in detail in order to avoid class overlaps and increase the 
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number of samples in a subset. In addition, the multi-classification task must be addressed, 

as well as the development of a multi-classification method. 

 

Kamalov and Denisov (2020), introduced the Multi-Class Combined Cleaning and 

Resampling (MC-CCR) algorithm as an oversampling technique. The method, which is 

less impacted by minor disjuncts and outliers than SMOTE, uses an energy-based 

approach to predict the regions suited for oversampling. It then combines it with a 

concurrent cleaning operation aimed at decreasing the impact of overlapping class 

distributions on the learning algorithms' performance. Traditional multi-class 

decomposition techniques were found to be less influenced by the loss of knowledge 

regarding inter-class relationships than the MC- CCR. The strong robustness of the 

suggested technique to noise was demonstrated based on the findings of experimental 

study conducted for various multiclass imbalanced benchmark datasets. The author 

indicated that novel approaches of cleaning the majority observations placed near the 

minority instances, which may be embedded in MC-CCR, should be examined as a 

direction for future work.  

2.7 Summary of Review  

After critical study of related works about imbalanced dataset and their preprocessing 

approaches, it was determined that, 

i. An expert should supply the degrees of similarity, or they can be derived from 

domain knowledge Lango et al. (2017). If neither of these options is accessible, 

some heuristic approaches may be employed. Because the class cardinality ratio 

does not explicitly reflect the degree of similarity between classes, the heuristics 

technique devised by Janicka et al. (2019) to assess the degree of similarity 

between classes requires further evaluation. 
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ii. Since it has also been demonstrated experimentally by Napierala and Stefanowski 

(2016), Napierala and Stefanowski (2012) that the unsafe examples (categorised 

into, rare, borderline and outliers) are hard for learning and deteriorate performance 

for class imbalanced problem, this work will consider the unsafe region during 

undersampling, paying more attention on borderline region that was not covered in 

the work of Napierala and Stefanowski (2016). 

 

Finally, this work will design a new technique for evaluating the degree of similarity 

among classes using the relationship between class examples and implementing it on a 

new resampling algorithm that is meant to consider unsafe region in the dataset when 

resampling the dataset. 
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CHAPTER THREE 

3.0    RESEARCH METHODOLOGY 

3.1 Approach Used 

With machine learning centred around data analysis, which is based on the idea that 

systems can learn patterns from dataset. This makes it more convincing why expert or 

domain knowledge should not be depended on, to be able to ascertain the data similarity 

degree between classes in a given sample of dataset. As proposed in previous literature, 

data similarity information can be derived from an expert or domain knowledge Lango et 

al. (2017), or by the used of an heuristic approach that evaluate the ratio between classes 

Janicka et al. (2019). Therefore, this study introduces a new technique to ascertain the data 

similarity degree from dataset, which is used to evaluate the safe level of all examples in 

a dataset. 

3.1.1 System capacity used 

1) Dell Laptop (Intel(R) Core (TM)2 Duo CPU 2.00GHz, RAM:4.00GB, 64-bits 

windows 10pro OS) 

3.1.2 Other materials and tools used 

1) Anaconda Navigator Software 

2) Chrome browser 

3) Microsoft word (Office 16) 

4) Airtel 4G internet Router 

5) Python (Jupyter interactive computing environment, other python libraries used 

includes pandas, matplotlib, yellowbrick, sklearn, numpy) 

6) Microsoft excel (Office 16) 
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3.2 Research Workflow 

The research workflow presents the progression (starting from the imbalanced dataset 

down to the preprocessed balanced dataset) of this research work; presenting the whole 

process in the design of the new multiclass resampling technique. Figure 3.1 gives the 

phases that was covered in this data preprocessing technique development. The workflow 

in designing new preprocessing technique as presented Figure 3.1, which was further sub-

divided in the research framework.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Research Workflow 
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Figure 3.2, the research framework presented in detail the data preprocessing stage, 

classification stage and performance evaluation stage; these phases gives an overview of 

what was achieve at each stage of the experiment and the tools used. For the 

implementation of the new multiclass resampling technique, the data pre-processing stage 

and classification stage were implemented using python programing language and its 

libraries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Research Framework 
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3.3 Data Collection 

From the nature of this work, it is clear that data level resampling technique is not domain 

specific, so dataset from diversify field with different number of instances, classes and 

difficulty levels were used. Critically analysed five (5) diversified real-world datasets from 

UCI repository were used to evaluate the proposed technique. These datasets have been 

chosen because they represent different domain, varying degrees of difficulty, has different 

sizes and imbalance ratios. Above all, these dataset were used based on their popular usage 

in previous experimental studies of class imbalance problems. The main characteristics of 

these datasets are presented in Table 3.1.  

TABLE 3.1: Characteristics of Multiclass Imbalanced Dataset used 

No Description No of 

Attributes 

Class 

Distribution 

Minority  

class(es) 

Manority  

class(es) 

1 balance-scale 625 49/288/288 1 2 

2 hates_roth 160 30/64/66 1 2 

3 Car 1728 65/69/384/1210 2 2 

4 Cmc 1473 628/333/511 1 2 

5 new_thyriod 225 30/35/150 2 1 

3.4 Analysis of the Preprocessing Phases 

To achieve the stated aim of this research work, which is the development of a resampling 

technique for multiclass dataset, the procedure have been spitted into phases as follows: 

3.4.1 Identifying the types of examples  

Different difficulty variables are associated with different sorts of examples - safe and 

unsafe (difficult examples). Previous work in class imbalance analyse the ratio between 

the number of minority and majority examples present in its neighborhood to identify the 

type of a given case. K-nearest neighbors or kernel functions can be used to model this. In 

this study, k-nearest neighbors was used because of its simplicity and adoption by the 

benchmark literature.  
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3.4.1.1      Categorising the unsafe examples 

To categorise the types of example, the class label of the k-nearest neighbor is been 

analysed. The value for k in this work is five (5), due to its usage in imbalanced 

preprocessing and the Euclidean distance is also been used to calculate the distance 

between examples. Based on the proportion, the examples are labeled as safe and unsafe, 

where the unsafe examples are further categorised in the following way as used in previous 

class imbalance works, in the manner described as  proposed by Napierala and 

Stefanowski, (2016): 

5:0 or 4:1 – Safe example is one that is labeled as 4 to 5 examples (further denoted as S). 

3:2 or 2:3 – a borderline example (denoted as B). Because the cases with a 3:2 ratio are 

accurately identified by their neighbors, they may still be safe. However, because the 

number of neighbors from the interest class and other classes is nearly equal, it's possible 

that this example is too close to the decision boundary between the classes. As a result, 

any examples with a 2:3 or 3:2 ratio are considered borderline examples. 

1:4 – Only if it has a neighbor from the same class, a rare example (designated as R), has 

the proportion of neighbors either 1:4 (additionally, in case of 1:4, it must point to the 

analysed example). 

0:5 – Any example with all of its neighbors belonging to a different class is referred to as 

an outlier, and it is designated by O. 

3.4.2 Proposed informative class similarity evaluation technique  

To model the relationships between classes in multiclass imbalanced dataset, information 

of the similarity between pairs of classes were exploited. In general, the intuition behind 

this similarity degree is as follows: When a particular class's example x has some neighbors 

from different classes, the neighbors with the highest similarity are preferred. Consider the 
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asthma learning problem, in which two asthma classes are characterised as being more 

similar than the non-asthmatic class. If an asthma-type-1 example is not surrounded by 

just other asthma-type-1 examples (which is the ideal circumstance), it's preferable to have 

neighbors from the asthma-type-2 class rather than the no-asthma class. Such a 

neighborhood would allow us to consider the studied example to be safer - it would be 

easier to recognise it as a member of its class (since it would be less likely to suffer from 

majority bias). In previous works, the similarity information where acquired from a subject 

matter expert or domain knowledge. The method of getting the similarity degree between 

classes was further ascertained by using a heuristic approach which evaluate similarity 

degree information from the ratio between classes. 

 

This work proposed an approach which models the similarity relationship between 

minority and majority classes in imbalance dataset. It considered more interior data 

features, such as the attributes values of randomly selected examples to ascertain the 

similarities between classes. Since the basic idea of machine learning is learning from data, 

then the data should be capable of generating the similarities information between classes 

instead of depending on human knowledge which may be bias or inaccurate. 

 

In more formal terms, it is assumed that for each pair of classes Ci, Cj, the degree of their 

similarity to itself is defined as μii =1. The degree of similarity as a real μij ∈ [0, 1]. The 

similarity of a class to another does not have to be symmetric, for example: for some 

classes Ci, Cj it may happen that μij ≠ μji. Although the values of μij are defined individually 

for each dataset, the general recommendation is to have higher similarities (μig → 1) for 

other minority classes Cg, while similarities to majority classes Ch should be rather low 

(μih → 0).  
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3.4.2.1      Degree of similarities between classes evaluation steps 

1. Firstly, randomly select 20 examples from each class in the dataset.  

2. Next, evaluate the mean for each class attributes. 

3. Take the average of all the mean score for each class to generate a value for each 

class. 

4. Take the difference between each class in the dataset 

5. Finally, based on the value for each class, multiply or divide the values by a 

multiple of 10 to derive a value ranging from 0 to 1. These values now serves as 

the degree of similarities (μ) between pair of classes. 

 

It is worth noting that this process can only be carried out on numeric attributes or 

categorical values which can be converted. For example, a dataset with attribute “Male” 

and “Female” can be represented as 1 and 0 respectively.  

3.4.3 Examples safe level evaluation 

Imbalanced data difficulty factors correspond to local data characteristics seen in specific 

sub-regions of the minority class distribution, and the mutual position of an example in 

relation to examples from other minority and majority class(es) impacts learning 

classifiers. The Safe Level assessment considers both the degree of similarity across 

classes and the homogeneity of a k neighborhood. 

The safe level coefficient was generalised in the following way: 

Consider the case of an example x, who belongs to the minority class Ci. Its safe level is 

defined as follows in relation to l classes of instances in its neighborhood as: 

𝑆𝑎𝑓𝑒(𝑥𝑐𝑗) =
1

𝑛
∑ 𝑛𝑐𝑗𝜇𝑖𝑗

𝑙

𝑗=1

                                                                                                      (3.1) 

Where  
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μij is the degree of similarity,  

nCj is the number of examples from class Cj, in the considered neighborhood of x  

n is the total number of neighbors.  

The safe level value for each example is analysed as follows: the lower the value, the more 

dangerous (difficult) it is, and vice versa. After successfully evaluating the safe level of all 

examples in the dataset, the minority classes are informatively oversampled by duplicating 

the examples with the higher safe level value while the majority class(es) are also 

informatively undersample by removing the examples with the least safe level until the 

required threshold is acquired.  

3.5 Algorithm Design 

The proposed similarity oversampling and undersampling preprocessing technique use the 

outcome of the similarity information and data difficulty factor to evaluate the safe level 

which is then applied to determine the examples in the majority classes to undersample 

and the examples in the minority classes to oversample.  

 

From Table 3.2, line 1 split the entire dataset into their respective classes. Line 2: creates 

a dataframe which will be used to store the processed balanced dataset. Line 3, evaluate 

the cardinality been the average of largest minority and the smallest majority class. This 

cardinality value is then used as benchmark during the resampling process. 

 

Line 4 to 6 evaluate the Nearest Neighbor (5NN) of all the examples in each class. This 

neighbourhood information is then applied to evaluate the data difficulty factor of each 

example based on the class of its neighbours. Next, line 7 to 9 evaluate the similarity 
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between the classes. It continued by processing the safe level of each examples in the 

dataset using Equation 3.1. 

 

Finally, the undersampling of the examples with the least safe level was done and 

oversampling of examples with the highest safe level and highest distance were also 

performed. 

3.5.1 Multiclass resampling algorithm design 

Start 

Input: S Original training set of |S| examples with n classes; Cmin: Indexes of minority 

classes; Cmaj indexes of majority classes; µij: similarities between classes. 

Output: So: Balanced training set 

Stop 
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Table 3.2: Multiclass Resampling Algorithm 

1. Start 

2. Split dataset S into homogenous parts S1, S2, ……, Sn. Each Si contain all instances 

from i class 

3. So = {} 

4. m  avg (mini ∊ Cmaj|Si|, maxj ∊ Cmin|Sj|) 

5. for all x ∊ S do 

6.      the k nearest neighbors of x according to session 3.3.1.1 is find 

7. end for 

8. for all x ∊ S do 

9.      calculate the similarity degree between class according to session 3.3.2.1 

10. end for 

11. for all x ∊ S do 

12.       evaluate the safe level of xi, according to Equation (3.1) in session 3.3.3 

13. end for 

14. for all i ∊ Cmaj do 

15.        Remove |Si| - m, // Instances in Si with the least safe level value 

16.        So      So U Si 

17. end for 

18. for all i ∊ Cmin do 

19.      Duplicate m - |Sj|, //Sj , instances with the most safe level values and with the                   

highest distance between examples. 

20. So    So U Sj 

21. end for 

22. return So 

23. Stop 

 

3.6 Performance Evaluation Matrix 

The performance of the algorithm will be evaluated with the following matrix: F1-score, 

Geometric-mean (G-Mean), and Area Under curve (AUC). The definition of these 

evaluation metrics uses in at evaluation, the confusion matrix presented in Table 3.3. 
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Table 3.3: Confusion Matrix 

Confusion matrix 
Predicted Labels 

Positive Negative 

Actual Labels 
Positive TP FN 

Negative FP TN 

 

From Table 3.3, the number of positive samples projected as "positive" is known as True 

Positive (TP). The number of positive samples predicted as "negative" is known as false 

negative (FN). The number of negative samples predicted as "positive" is known as false 

positive (FP). The number of negative samples predicted as "negative" is also known as 

true negative (TN). 

 

Accuracy: The proportion of correctly predicted samples to total samples, which is 

computed using Equation (3.2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
                                                                                  (3.2) 

F1-score: The F1-score of positive data takes into account both the Precision and Recall 

of the classification model, which is the harmonic average of Precision and Recall as in 

Equation 3.11: 

Where p denote the positive instances 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃  
                                                                                                       (3.3) 

𝑅𝑒𝑐𝑎𝑙𝑙𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁  
                                                                                                             (3.4) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒𝑝 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑃  ×  𝑅𝑒𝑐𝑎𝑙𝑙𝑃

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑃 +  𝑅𝑒𝑐𝑎𝑙𝑙𝑃  
                                                                    (3.5) 

Similarly, the F1-score for negative samples is derived as follows: 

Where n denote the negative instances 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁  
                                                                                                      (3.6) 

𝑅𝑒𝑐𝑎𝑙𝑙𝑁 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃  
                                                                                                             (3.7) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒𝑁 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁  ×  𝑅𝑒𝑐𝑎𝑙𝑙𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁 +  𝑅𝑒𝑐𝑎𝑙𝑙𝑁  
                                                                  (3.8) 

As a result, synthetic Precision, Recall, and F1-score are generated for the complete dataset 

as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑃 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁

2 
                                                                          (3.9) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑅𝑒𝑐𝑎𝑙𝑙𝑃 +  𝑅𝑒𝑐𝑎𝑙𝑙𝑁

2 
                                                                                            (3.10) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
𝐹1 − 𝑆𝑐𝑜𝑟𝑒𝑃 +  𝐹1 − 𝑆𝑐𝑜𝑟𝑒𝑁

2 
                                                                (3.11) 

G-mean, which is defined as Equation (17) can be used to evaluate the overall 

performance of an algorithm: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
                                                                                                                   (3.12) 

𝑇𝑁𝑅 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁 
                                                                                                                  (3.13) 

𝐺 − 𝑚𝑒𝑎𝑛 = √𝑇𝑃𝑅 × 𝑇𝑁𝑅                                                                                               (3.14)                                                                  

TPR and TNR are used by G-mean to assess positive and negative class classification 

performance. The G-mean is not optimal if one of the two is really small. 

AUC (Area Under Curve) ROC (Receiver Operating Characteristic) curves uses a model's 

ability to distinguish between classes in classification issues to describe the standard 

performance measurements. AUC represents the degree or measure of separability, 

whereas ROC is a probability curve. AUC with a higher value indicates that the model is 

more accurate at predicting true positives. It also depicts the region under the ROC, which 
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is a fairly solid categorisation evaluation criteria. The trade-off between TPR and FPR can 

be seen using the ROC. The AUC scale ranges from 0 to 1. The higher the AUC value, the 

better the algorithm's performance. 

 

The performance of the proposed resampling technique was evaluated and compared 

against KNN and CART, F1-score, G-mean, and AUC. These evaluation matrices have 

been used in this work because of its adoption in evaluation algorithms in previous 

literatures. 
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CHAPTER FOUR 

4.0    RESULTS AND DISCUSSION 

4.1 Degree of Data Difficulty Present in Dataset Used 

Presented on Table 4.1 is the value of each data difficulty factor present in the dataset used 

for the evaluation of the new technique. This data difficulty value of each example was 

used to evaluate the safe level of examples to ascertain the efficiency of the new technique 

and to ascertain to what degree does the technique improves performance even in the 

presence of unsafe (borderline, rare and outlier) examples. From Table 4.1, the most 

difficult dataset for a classifier to learn from is hayes-roth, this difficulty is due to the 

presence of more unsafe examples such as the borderline, rare and outlier examples than 

the safe example while the easiest to learn from is the car dataset since it contain only safe 

examples. 

Table 4.1: Analysis of Data Difficulty Factors in Dataset 

Description Code Safe (%) Borderline (%) Rare (%) Outlier (%) 

new-thyroid NT 91 8 1 0 

balance-scale BS 93 6 1 0 

cmc CM 77 20 3 0 

hayes-roth HR 28 54 13 6 

car CA 100 0 0 0 

 

4.1.2 Similarity degree and safe level of classes in the dataset  

From the multiclass resampling technique, similarities degree of examples were used in 

the derivation of the safe level of examples. Firstly, the similarity degree between classes 

conducted on each of the five data sample used for this study is presented in Table 4.2. 
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Table 4.2: Dataset Classes Similarity Degree 

Dataset 

Description 

new-

thyroid 

balance-

scale 

cmc hayes-

roth 

Car 

Similarity 

Degree (𝜇) 

𝜇12 = 0.21 

𝜇13 = 0.83 

𝜇23 = 0.39 

𝜇12 = 0.99 

𝜇13 = 0.99 

𝜇23 = 0.99 

𝜇12 = 1.00 

𝜇13 = 0.99 

𝜇23 = 1.00 

𝜇12 = 0.21 

𝜇13 = 0.83 

𝜇23 = 0.39 

𝜇12 = 0.91,𝜇41 = 0.78   

𝜇13 = 1.00, 𝜇42 = 0.99 

𝜇23 = 0.09, 𝜇43 = 1.00 

 

In evaluating the performance of the proposed technique KNN, SVM and CART where 

used for the classification of 5 standard imbalanced dataset after balancing the original 

dataset. Table 4.3 presents the result of this new technique in terms of accuracy, precision, 

recall and F-score. 

Table 4.3: Summary of Classifiers Result 

Dataset 

Description 

Classifier Accuracy 

(%) 

Precision Recall F-score 

NT KNN 96 0.97 0.96 0.96 

CART 100 1.00 1.00 1.00 

 SVM 84 0.90 0.85 0.85 

BS KNN 96 0.97 0.96 0.96 

CART 100 1.00 1.00 1.00 

 SVM 99 0.99 0.99 0.99 

CM KNN 91 0.91 0.92 0.92 

CART 100 1.00 1.00 1.00 

 SVM 78 0.79 0.78 0.78 

HR KNN 72 0.72 0.75 0.72 

CART 99 0.99 0.99 0.99 

 SVM 63 0.65 0.64 0.63 

CA KNN 100 1.00 1.00 1.00 

CART 100 1.00 1.00 1.00 

 SVM 100 1.00 1.00 1.00 

 

4.1.3    General classifier results analysis 

The balanced dataset were classified using 5NN, CART and SVM, from analysis, the 

nature of dataset in terms of safe and unsafe examples really played a great role in the 

result as dataset with more safe examples performed generally better than the unsafe. From 
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the representation in Figure 4.1, despite this data nature, CART performed outstanding, 

for it was able to achieve a better result in respective of the data nature.  

 

Figure 4.1: Accuracy of Classifiers on the Techniques 

The F-Score is used to evaluate an algorithm's performance when dealing with imbalanced 

cases. It is the weighted average of the precision and recall measures, with false positives 

(FP) and false negatives (FN) taken into consideration. Figure 4.2 gives the analysis of the 

F-Score for the new techniques on KNN, CART and SVM classifiers. This analysis also 

shows that all the classifiers performed well but CART showed a near excellent 

performance. 
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FIGURE 4.2: F-Score of Classifiers on the dataset 

4.1.4 Analysis of AUC ROC curve for the technique 

Figure 4.3 presents the Area Under Curve (AUC) Receiver Operating Characteristic 

(ROC) for K nearest neighbor classifier on the HR dataset with value 0.97. The ROC 

visualise the trade-off between TPR and FPR, with the range of the AUC being 0 to 1. The 

larger the AUC value, the better the performance of the technique. The diagrams for the 

AUC ROC curve the other datasets are presented in appendix A. 

 

Figure 4.3: ROC Curve for KNN Classifier on hayes_roth Dataset 
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Figure 4.4 presents the Area Under Curve for the Receiver Operating Characteristic (ROC) 

for CART classifier on the HR dataset with value 0.94. 

 

FIGURE 4.4: ROC Curve for CART Classifier on hayes_roth Dataset 

Figure 4.5 presents the Area Under Curve for the Receiver Operating Characteristic (ROC) 

for SVM classifier on the HR dataset with value 0.84.  

 

Figure 4.5: ROC Curve for SVM Classifier on hayes_roth Dataset 
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Table 4.4 presents the AUC ROC values for the new technique on the balanced dataset 

and classifiers used in this study.  

Table 4.4: Summary of the AUC ROC for classifiers and datasets used 

 

Data Description 

MIRT 

KNN CART SVM 

NT 1.00 1.00 1.00 

BS 0.90 0.94 1.00 

CM 0.87 0.74 0.82 

HR 0.97 0.94 0.84 

CA 1.00 1.00 1.00 

 

To further analyse the AUC ROC results for each dataset, the results are presented in 

Figure 4.6. The results generally shows that KNN performed better than CART and SVM. 

For the NT and CA datasets all the classifier showed an outstanding performance of 100 

percentage. For the most difficult dataset HR, KNN also performed better. 
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Figure 4.6: Summary of the AUC ROC results for all dataset used 

4.2 Discussion of Result 

Firstly, from this point on, the proposed technique is referred to as Multiclass Informative 

Preprocessing Technique (MIRT). The evaluation of MIRT have been done analysing the 

accuracy, precision, recall, F-score, G-mean and AUC ROC curve results.  

 

Furthermore, from the work of Janicka et al. (2019) and De and Do (2020), whose 

techniques are been use to compare MIRT, it was observed that G-mean value was their 

main criteria for comparism.  MIRT will be compared with some of the recent best 

performing methods such as SOUP, Multi-class Roughly Balanced Bagging (MRBB) and 

SOUPBag. From Table 4.5, it is observed that MIRT technique performed better than 

SOUP, SOUPBag and MRBB most especially when used with the CART and KNN 

classifiers. 
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Table 4.5: G-Mean Comparism of MIRT with SOUP, SOUPBag and MRBB. 

Data 

Description 

MIRT MRBB MRBB SOUP SOUPBag 

KNN CART SVM KNN DT J4.8 KNN 

NT 0.983 1.00 0.883 0.730 0.977 0.922 0.897 

BS 0.971 1.00 0.995 0.704 0.637 0.585 0.750 

CM 0.933 0.985 0.837 0.545 0.531 0.535 0.485 

HR 0.931 1.000 0.640 N/A N/A 0.835 N/A 

CA 1.000 1.000 1.000 0.957 0.811 0.941 0.851 

 

Figure 4.7 compares the performance of MIRT with SOUP, SOUPBag and MRBB. MIRT 

balanced dataset was classified using KNN, SVM and CART, with KNN and CART 

performing better that SVM, even with the HR dataset, that has greater percentage of 

unsafe examples than the safe, CART performance was still outstanding compare to SVM 

and KNN. From the G-mean result, KNN was used in the classification of all dataset from 

all techniques, MIRT KNN results has an overall better performance than the other 

techniques. 
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Figure 4.7: Comparism of MIRT with SOUP, SOUPBag and MRBB 

From the results obtained by running the MIRT balanced dataset on the three classifiers 

and comparing it with some of the best methods, as an example, consider the following: 

i. Overall performance of MIRT is better in all datasets used, because of its 

performance even in the presence of unsafe examples, just as in HR. 

ii. ii. Using Decision Trees (CART) as a classifier appears to perform better 

with MIRT, owing to its superior performance when compared to KNN and SVM. 

4.2.1 Experimentation 

This presents the step by step procedure used to implement MIRT resampling technique. 

Firstly, some python libraries were imported into Jupiter notebook, which is the python 

interactive environment used for the implementation of the algorithm. The libraries 

includes: Numpy, Pandas, Scikit-learn, Imblearn, Seaborn, Yellowbrick and Matplotlib.  

 

Pandas is a fast, powerful, flexible and easy to use open source data analysis and 

manipulation tool, built on top of the python programming language. All manipulation of 
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the dataset was carried it using the pandas library. Numpy is a fast and versatile python 

numeric computing library for arithmetic and logical operation in the implementation. 

Scikit-learn is a powerful data prediction library for machine learning process, it was built 

on Numpy, Matplotlib, Scipy. It is the most used python data prediction library for 

machine learning process. The predictions of this work was done using sklearn library.  

Imbalanced-learn (imported as imblearn) is an open source, MIT-licensed library relying 

on scikit-learn (imported as sklearn) and provides tools when dealing with classification 

with imbalanced classes. Seaborn, Yellowbrick and Matplotlib are all python data 

visualisation library, use for data visualisation purposes.  

 

After importing all necessary python library, the dataset was also read into the computing 

environment. Next, missing attributes are search for in the dataset and were filled using 

already existing approach in pandas. It was proceeded by randomly selecting twenty (20) 

samples from the dataset which were evaluated to deduce the data similarity degree 

between classes. The steps for evaluation the data similarity degree was presented in 

session 3.4.2.1.  

 

Next, the five (5) nearest neighbors of all the examples were evaluated using 

sklearn.neighbors. From the result of the evaluation, each data sample was grouped into 

safe, borderline, rare and outlier difficulty type. This was proceeded by using the data 

difficulty information and data similarity degree information to evaluate the safe level of 

examples. 
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After successfully evaluating the safe level of all examples in the dataset, the minority 

classes are informatively oversampled by duplicating the examples in the dataset with the 

higher safe level value while the majority class(es) are also informatively undersample by 

removing the examples with the least safe level until the required threshold is acquired; 

which then produces a balanced dataset. Classification was done on the balanced dataset 

using KNN, SVM and CART classifier. The results were computed on different 

visualisation library for better representation. The following metrics were used to evaluate 

the performance of the algorithm: precision, recall, f1-score, AUC ROC, G-mean; which 

were already implemented in sklearn. 
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CHAPTER FIVE 

5.0   CONCLUSION AND RECOMMENDATIONS 

5.1 Summary 

This research work developed a multiclass resampling technique using class similarities 

degree and data difficulty factors information from the dataset. The data difficulty and 

similarity information’s were implemented using KNN to determine the neighbours of 

each example in the dataset and also the distance between each example and its neighbours. 

The information about the neighbours of each example was used to derive their difficulty 

type (safe and unsafe). It went further to select 20 samples from each class in the dataset 

which were evaluated to derive the similarity degree between classes. Finally, the 

similarities degree and difficulty type of each example were used to evaluate the safe level 

of examples; which then served as the criteria for selecting the oversampling and 

undersampling examples. This proposed technique was tested on 5 standard imbalanced 

dataset, which were selected based on their difficulty level. After resampling the dataset, 

classification of the dataset was done using KNN, SVM and CART classifier. The 

performance of the proposed technique, MIRT on CART classifier which achieved a 100 

percentage in 4 of the 5 data samples used was better than SOUP, SOUPBag and MRBB 

resampling techniques which were compared using the G-mean values. Also, among the 

claasifiers used, CART performed way better than KNN and SVM. The performance of 

the proposed technique was outstanding when compared with Similarity Oversampling 

and Undersampling Preprocessing SOUP resampling technique. 
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5.2 Conclusions 

With the study of similarities degree, data intrinsic characteristic and multiclass 

imbalanced nature of dataset the following conclusion were drawn: 

 

The aim of this study was to develop a multiclass resampling technique using class 

similarities degree and data difficulty factor. This was achieved by using KNN to 

determine the neighbours of each examples, these examples are further categorised as safe, 

borderline, rare and outliers based on the class of its neighbours. Next, 20 samples from 

each class in the dataset were evaluated to derive the similarity degree between classes. 

These data difficulty type of each example and similarity information were used to 

evaluate the safe level of each example in the dataset; the safe level of example serves as 

the criteria for selecting the oversampling and undersampling examples.   

 

This proposed technique was implemented using Jupiter notebook, a python interactive 

computing environment and other python libraries which includes pandas, yellowbrick, 

seaborn, sklearn, matplotlib, numpy. Multiclass Informative Resampling Technique 

(MIRT) was evaluated using standard parameters such as F-Score, AUC (Area Under ROC 

Curve) and Geometric Mean (G-Mean). These evaluation metrics where also implemented 

in python.  

 

Finally, MIRT was compared with SOUP, SOUPBag and MRBB resampling technique 

and was found to outperforming them all; most especially the result from CART classifier 

with outstanding accuracy for all datasets used. From the comparism presented in Table 

4.3, it was observed that MIRT performed better than SOUP, SOUPBag and MRBB due 

to its outstanding performance in the presence of complex unsafe data difficulty factors. 
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The MIRT increase the rate of detection of the minority class in the presence of complex 

data difficulty factor and also increased classifier performance which is very key in 

building a resampling technique.  

5.3 Contributions to Knowledge 

The contributions reached at the end of this work could be summarised as:  

(i) Design of an approach for evaluating the degree of similarities between classes in 

multiclass imbalanced dataset. 

(ii) Development of a new resampling technique for informatively identifying the 

appropriate examples to oversample and undersample. 

5.4 Recommendations 

The main achievements of this study were highlighted in the section above, however, some 

areas of research that can be further explore are: 

(i) This method for evaluating class similarity degree should also be applied on binary 

preprocessing technique. 

(ii) New multiclass resampling technique design should put into consideration data 

intrinsic characteristic and inter-relationship between classes and examples; 

avoiding uninformative random oversampling and random undersampling. 

(iii) The design method for evaluating the similarity degree between classes can be used 

with other resampling methods such as SMOTE, ADASYN to improve 

performance. 
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APPENDICES 

 

APPENDIX A:     AUC Curve for the datasets 

 

 

FIGURE 1: ROC Curve for KNN Classifier on balance-scale Dataset 

 

FIGURE 2: ROC Curve for CART Classifier on balance-scale Dataset 
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APPENDIX B: Imbalanced data for hayes-roth dataset 

 

S/No Class Oxin Onine Hormone Tsh Resin 

1 1 92 2 1 1 2 

2 1 36 2 2 1 1 

3 1 105 3 2 1 1 

4 1 81 1 2 1 1 

5 1 94 1 1 2 1 

6 1 20 1 1 3 3 

7 1 50 1 2 1 1 

8 1 68 3 3 2 1 

9 1 89 3 1 3 2 

10 1 19 3 2 1 3 

11 1 118 2 1 2 1 

12 1 16 3 2 1 3 

13 1 91 2 3 2 1 

14 1 30 1 1 3 2 

15 1 57 3 2 1 1 

16 1 114 2 2 1 3 

17 1 66 1 1 1 2 

18 1 74 3 2 1 1 

19 1 106 3 1 2 1 

20 1 130 2 1 1 2 

21 1 54 1 1 1 2 

22 1 67 3 3 1 1 

23 1 69 3 3 3 1 

24 1 127 3 1 2 1 

25 1 96 1 1 1 2 

26 1 121 2 1 3 2 

27 1 123 2 1 2 1 

28 1 42 2 2 1 3 

29 1 5 1 3 2 1 

30 1 95 2 3 2 1 

31 1 119 3 1 3 2 

32 1 93 2 1 2 1 

33 1 132 2 2 1 1 

34 1 108 1 1 2 1 

35 1 120 1 1 3 2 

36 1 35 1 2 1 3 

37 1 112 1 1 1 3 

38 1 59 1 1 1 2 

39 1 1 3 2 1 1 

40 1 28 1 1 2 1 

41 1 97 2 1 3 1 

42 1 51 3 1 1 2 
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43 1 103 2 2 1 1 

44 1 7 1 2 1 1 

45 1 15 1 3 2 1 

46 1 126 3 1 2 1 

47 1 45 3 1 1 2 

48 1 131 2 3 1 3 

49 1 17 2 1 1 2 

50 1 40 2 1 2 1 

51 1 9 3 1 1 2 

52 2 10 2 1 3 2 

53 2 113 1 1 3 2 

54 2 80 3 1 3 2 

55 2 60 2 1 2 2 

56 2 85 3 2 1 2 

57 2 52 1 2 2 1 

58 2 79 3 2 2 1 

59 2 23 3 2 1 3 

60 2 25 2 1 2 2 

61 2 37 1 2 1 3 

62 2 116 3 1 2 2 

63 2 88 1 1 2 2 

64 2 77 3 2 2 1 

65 2 82 1 2 1 2 

66 2 84 2 2 2 1 

67 2 86 2 2 1 2 

68 2 6 3 2 1 3 

69 2 115 1 2 1 3 

70 2 33 1 2 2 3 

71 2 39 3 2 1 2 

72 2 53 3 2 1 2 

73 2 70 2 2 2 1 

74 2 78 2 1 2 2 

75 2 129 2 2 1 2 

76 2 73 3 1 2 2 

77 2 26 1 1 2 2 

78 2 104 1 1 2 2 

79 2 2 2 1 3 2 

80 2 41 1 1 3 2 

81 2 62 3 1 2 2 

82 2 98 3 3 3 2 

83 2 109 2 2 1 3 

84 2 31 3 3 2 1 

85 2 34 2 2 1 2 

86 2 63 2 2 2 1 

87 2 65 2 3 2 3 

88 2 117 1 3 2 1 
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89 2 56 2 2 1 2 

90 2 76 3 2 2 1 

91 2 29 3 3 2 1 

92 2 111 2 3 2 1 

93 2 49 1 2 1 2 

94 2 58 1 2 2 1 

95 2 32 2 3 2 1 

96 2 99 2 2 3 2 

97 2 24 1 2 3 3 

98 2 124 3 3 2 2 

99 2 14 1 2 2 1 

100 2 71 3 1 2 2 

101 2 90 1 2 1 2 

102 2 21 1 2 2 1 

103 3 83 3 1 4 1 

104 3 61 2 4 2 2 

105 3 107 1 1 3 4 

106 3 125 3 4 2 4 

107 3 122 2 2 3 4 

108 3 8 2 4 1 4 

109 3 3 1 4 1 1 

110 3 110 2 4 3 1 

111 3 64 3 4 3 2 

112 3 11 1 2 4 2 

113 3 128 1 1 2 4 

114 3 4 2 4 4 2 

115 3 48 1 3 2 4 

116 3 102 3 1 4 2 

117 3 75 1 2 4 4 

118 3 47 1 4 2 1 

119 3 46 3 4 1 2 

120 3 18 2 2 4 3 

121 3 27 1 4 4 1 

122 3 22 3 1 4 4 

123 3 87 2 2 4 1 

124 3 72 2 2 1 4 

125 3 55 1 4 2 3 

126 3 101 3 3 1 4 

127 3 100 2 3 4 1 

128 3 13 3 3 4 2 

129 3 38 2 1 1 4 

130 3 43 3 2 2 4 

131 3 12 3 4 1 3 

132 3 44 1 1 4 3 
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APPENDIX C: Balanced data for hayes-roth dataset 

S/No Class Oxin Onine Hormone Tsh Resin 

0 1 94 1 1 2 1 

1 1 96 1 1 1 2 

2 1 93 2 1 2 1 

3 1 120 1 1 3 2 

4 1 94 1 1 2 1 

5 1 96 1 1 1 2 

6 1 93 2 1 2 1 

7 1 94 1 1 2 1 

8 1 94 1 1 2 1 

9 1 95 2 3 2 1 

10 1 96 1 1 1 2 

11 1 96 1 1 1 2 

12 1 94 1 1 2 1 

13 1 94 1 1 2 1 

14 1 95 2 3 2 1 

15 1 93 2 1 2 1 

16 1 94 1 1 2 1 

17 1 95 2 3 2 1 

18 1 95 2 3 2 1 

19 1 120 1 1 3 2 

20 1 120 1 1 3 2 

21 1 96 1 1 1 2 

22 1 94 1 1 2 1 

23 1 94 1 1 2 1 

24 1 120 1 1 3 2 

25 1 96 1 1 1 2 

26 1 94 1 1 2 1 

27 1 94 1 1 2 1 

28 1 94 1 1 2 1 

29 1 93 2 1 2 1 

30 1 93 2 1 2 1 

31 1 120 1 1 3 2 

32 1 96 1 1 1 2 

33 1 93 2 1 2 1 

34 1 120 1 1 3 2 

35 1 96 1 1 1 2 

36 1 120 1 1 3 2 

37 1 94 1 1 2 1 

38 1 95 2 3 2 1 

39 1 94 1 1 2 1 

40 2 76 3 2 2 1 

41 2 32 2 3 2 1 

42 2 25 2 1 2 2 
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43 2 85 3 2 1 2 

44 2 23 3 2 1 3 

45 2 23 3 2 1 3 

46 2 60 2 1 2 2 

47 2 78 2 1 2 2 

48 2 115 1 2 1 3 

49 2 80 3 1 3 2 

50 2 85 3 2 1 2 

51 2 76 3 2 2 1 

52 2 84 2 2 2 1 

53 2 32 2 3 2 1 

54 2 76 3 2 2 1 

55 2 31 3 3 2 1 

56 2 60 2 1 2 2 

57 2 80 3 1 3 2 

58 2 85 3 2 1 2 

59 2 79 3 2 2 1 

60 2 32 2 3 2 1 

61 2 79 3 2 2 1 

62 2 82 1 2 1 2 

63 2 25 2 1 2 2 

64 2 32 2 3 2 1 

65 2 79 3 2 2 1 

66 2 32 2 3 2 1 

67 2 31 3 3 2 1 

68 2 25 2 1 2 2 

69 2 78 2 1 2 2 

70 2 77 3 2 2 1 

71 2 86 2 2 1 2 

72 2 24 1 2 3 3 

73 2 84 2 2 2 1 

74 2 76 3 2 2 1 

75 2 60 2 1 2 2 

76 2 115 1 2 1 3 

77 2 60 2 1 2 2 

78 2 80 3 1 3 2 

79 2 115 1 2 1 3 

80 3 72 2 2 1 4 

81 3 44 1 1 4 3 

82 3 22 3 1 4 4 

83 3 38 2 1 1 4 

84 3 83 3 1 4 1 

85 3 100 2 3 4 1 

86 3 38 2 1 1 4 

87 3 75 1 2 4 4 

88 3 100 2 3 4 1 
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89 3 72 2 2 1 4 

90 3 128 1 1 2 4 

91 3 64 3 4 3 2 

92 3 22 3 1 4 4 

93 3 128 1 1 2 4 

94 3 12 3 4 1 3 

95 3 102 3 1 4 2 

96 3 13 3 3 4 2 

97 3 75 1 2 4 4 

98 3 11 1 2 4 2 

99 3 64 3 4 3 2 

100 3 44 1 1 4 3 

101 3 3 1 4 1 1 

102 3 55 1 4 2 3 

103 3 110 2 4 3 1 

104 3 128 1 1 2 4 

105 3 102 3 1 4 2 

106 3 18 2 2 4 3 

107 3 125 3 4 2 4 

108 3 18 2 2 4 3 

109 3 48 1 3 2 4 

110 3 64 3 4 3 2 

111 3 72 2 2 1 4 

112 3 47 1 4 2 1 

113 3 128 1 1 2 4 

114 3 100 2 3 4 1 

115 3 4 2 4 4 2 

116 3 12 3 4 1 3 

117 3 72 2 2 1 4 

118 3 4 2 4 4 2 

119 3 72 2 2 1 4 
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APPENDIX D: Code for the Resampling Technique 

import numpy as np  

import pandas as pd  

import math 

import random 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.model_selection import train_test_split, cross_val_predict 

from sklearn import metrics 

from sklearn import svm 

import matplotlib.pyplot as plt 

get_ipython().run_line_magic('matplotlib', 'inline') 

import seaborn as sns 

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay 

from sklearn.metrics import roc_curve, auc 

from sklearn.metrics import roc_auc_score 

from sklearn.tree import DecisionTreeClassifier 

from sklearn import tree 

from sklearn.dummy import DummyClassifier 

# Read dataset 

data=pd.read_csv("new-thyroid.csv") 

# Add heading column to dataset 

data.columns=["id","Class","Oxin","Onine","Hormone","Tsh","Resin"] 

# Use id as index 

data.set_index("id", inplace=True) 

# Group data by Class 

gb=data.groupby("Class") 

for Class, Class_df in gb: 

    print(Class) 

    print(Class_df) 

gb.get_group(1) 

# Select 15 sample from the dataset 
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class_samples=gb.get_group(1).sample(n=20) 

print(type(class_samples)) 

# Take the mean of the column in the selected 20 samples and evaluation 

mean_sum=class_samples["Oxin"].mean() + class_samples["Onine"].mean() + 

class_samples["Hormone"].mean() + class_samples["Tsh"].mean() + 

class_samples["Resin"].mean() 

column_length=len(data.columns) -1 

similar_val_1=mean_sum/column_length 

print(similar_val_1) 

# Take the mean of the column in the selected 20 samples and evaluation 

class_2_samples=gb.get_group(2).sample(n=20) 

mean_sum_2=class_2_samples["Oxin"].mean() + class_2_samples["Onine"].mean() + 

class_2_samples["Hormone"].mean() + class_2_samples["Tsh"].mean() + 

class_2_samples["Resin"].mean() 

similar_val_2=mean_sum_2/column_length 

print(similar_val_2) 

# Take the mean of the column in the selected 20 samples and evaluation 

class_3_samples=gb.get_group(3).sample(n=20) 

mean_sum_3=class_3_samples["Oxin"].mean() + class_3_samples["Onine"].mean() + 

class_3_samples["Hormone"].mean() + class_3_samples["Tsh"].mean() + 

class_3_samples["Resin"].mean() 

similar_val_3=mean_sum_3/column_length 

print(similar_val_3) 

#evaluating 

sim_23=similar_val_3 - similar_val_2 

sim_23=sim_23/10 

sim_23=1 - sim_23 

sim_12=similar_val_1 - similar_val_2 

sim_12=sim_12/10 

sim_12=1 - sim_12 

sim_13=similar_val_3 - similar_val_1 

sim_13=sim_13/10 

sim_13=1 - sim_13 

print("Similarity between 2 and 3: ", sim_23) 
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print("Similarity between 2 and 1: ", sim_12) 

print("Similarity between 1 and 3: ", sim_13) 

m=math.ceil((149+35)/2) 

len(gb) 

# Take the neighbors of each samples 

neigh = KNeighborsClassifier(n_neighbors=5) 

#neigh.fit(X_train, Y_train) 

neigh.fit(data, data.Class) 

result=neigh.kneighbors(data, return_distance=True) 

print(type(result)) 

print(result) 

arr1=result[0] 

print(type(arr1)) 

print(arr1.ndim) 

arr2=result[1] 

print(type(arr2)) 

print(arr1.ndim) 

print(arr2) 

print(arr1) 

print(arr1.size) 

addVal=[] 

s=1 

for i in arr1: 

    _sum=int(i[0] + i[1] + i[2] + i[3] + i[4]) 

    addVal.append(_sum) 

    print(i ," ", _sum, " ")  

    s=s+1 

print(len(addVal)) 

print(addVal) 

arr3=np.array(addVal) 

print(type(arr3)) 

print(arr3.size) 
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print(arr3) 

g=1 

for i in addVal: 

    print(g ," ", i)  

    g=g+1 

newarr = arr3.reshape(214, 1) 

print(newarr.ndim) 

new_arr2=np.append(arr2, newarr, axis=1) 

print(type(new_arr2)) 

print(new_arr2) 

print(new_arr2[0]) 

arr2 

print(new_arr2[0][1],  new_arr2[0][2],  new_arr2[0][3], new_arr2[0][4],new_arr2[0][5]) 

# Creating and populating a dictionary 

new_dist={} 

for i, v in data.Class.iteritems(): 

    new_dist[i]=v 

print(new_dist) 

# Creating and populating a dictionary 

new_dist2={} 

print(new_dist2) 

print(new_dist3) 

# <!-- Populating a dictionary  --> 

    

neigh_count.append([i,new_dist3[i],class_example,c1,c2,c3,safe_level,new_arr2[i][5]])     

new_main_df = 

pd.DataFrame(neigh_count,columns=['s_no','real_index','Class','c_one','c_two','c_three','s

afe_level','distance']) 

new_main_df.set_index("s_no", inplace=True) 

print(new_main_df) 

for i, row in enumerate(new_main_df.itertuples(), 0): 

    print(i, row.real_index) 

new_classes=new_main_df.groupby("Class") 
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s=1 

# In[146]: 

#Loading the Classifier model 

model=svm.SVC(C = 1, probability=True) 

clf = DecisionTreeClassifier(random_state=0, max_depth=3) 

knn = KNeighborsClassifier(n_neighbors=5) 

#Train the model using the training sets 

model.fit(X_train, Y_train) 

clf = clf.fit(X_train, Y_train) 

knn = knn.fit(X_train, Y_train) 

#prule_pred_proba=prule.predict_proba(X_test) 

model_pred_proba=model.predict_proba(X_test) 

clf_pred_proba=clf.predict_proba(X_test) 

knn_pred_proba=knn.predict_proba(X_test) 

model_X_train_pred=model.predict(X_train) 

model_X_test_pred=model.predict(X_test) 

clf_X_train_pred=clf.predict(X_train) 

clf_X_test_pred=clf.predict(X_test) 

knn_X_train_pred=knn.predict(X_train) 

knn_X_test_pred=knn.predict(X_test) 

print("Accuracy for SVM Test Data:                        ", metrics.accuracy_score(Y_test, 

model_X_test_pred)) 

print("Accuracy for Decision Tree Classifier Test Data:   ", clf.score(X_test, Y_test, 

sample_weight=None)) 

print("Accuracy for KNN Test Data:                        ", knn.score(X_test, Y_test, 

sample_weight=None)) 

cm_model_test=confusion_matrix(Y_test, model_X_test_pred) 

 

 

 

 

 

 


