
DEVELOPMENT OF MULTICLASS DATASET RESAMPLING TECHNIQUE

BASED ON DATA SIMILARITY DEGREE AND DATA DIFFICULTY

FACTORS

BY

DAKO, Dickson Apaleokhai

MTech/SICT/2018/8711

DEPARTMENT OF COMPUTER SCIENCE,

FEDERAL UNIVERSITY OF TECHNOLOGY

 MINNA

NOVEMBER, 2021

i

DEVELOPMENT OF MULTICLASS DATASET RESAMPLING TECHNIQUE

BASED ON DATA SIMILARITY DEGREE AND DATA DIFFICULTY

FACTORS

BY

DAKO, Dickson Apaleokhai

MTech/SICT/2018/8711

A THESIS SUBMITTED TO THE POSTGRADUATE SCHOOL, FEDERAL

UNIVERSITY OF TECHNOLOGY, MINNA, NIGERIA IN PARTIAL

FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE

DEGREE OF MASTER OF TECHNOLOGY IN DEPARTMENT OF

COMPUTER SCIENCE, FEDERAL UNIVERSITY OF TECHNOLOGY MINNA

NOVEMBER, 2021

ii

ABSTRACT

One of the most complex machine learning and data classification problem is learning

from skewed or imbalanced dataset. These imbalanced preprocessing approaches having

received increasing research attention over the years, makes it necessary to access the

scope of what have been achieved and what needs to be improved upon. Although

numerous techniques for improving classifiers performance have been introduced but most

of these techniques are for binary problems; the identification of conditions for the

efficient use of these techniques is still an open research problem. This research work

developed a multiclass resampling technique using class similarities degree and data

difficulty factors. Nearest Neighbours technique was adopted to evaluate the neighbours

of each example in the dataset and also the distance between each example x and its

neighbours. This information about the neighbours of each example was further used to

derive their difficulty type (safe and unsafe). 20 samples were selected from each class in

the imbalanced dataset; these samples were evaluated using the proposed method to derive

the similarity degree between classes. Finally, the similarities degree and difficulty type

of each example were used to evaluate the safe level of examples; which then served as

the criteria for selecting the examples to oversample and undersample. The new

resampling technique, MIRT was tested on five standard imbalanced dataset, which were

selected based on their different degree of difficulty level. After resampling the dataset,

classification of the dataset was done using KNN, SVM and CART classifier. The

performance of the proposed technique, MIRT on CART classifier which achieved a 100

percentage in 4 of the 5 data samples used was better than SOUP, SOUPBag and MRBB

resampling techniques which were compared using the G-mean values. Also, among the

claasifiers used, CART performed way better than KNN and SVM. Finally, the similarity

degree derived from this work can be further apply on dataset with classes more than four;

which are more complex to classify.

iii

TABLE OF CONTENTS

Content Page

Title Page i

Declaration ii

Certification iii

Dedication iv

Acknowledgment v

Abstract vi

Table of Content vii

List of Tables xi

List of Figures xii

Abbreviations xiii

CHAPTER ONE

1.0 INTRODUCTION 1

1.1 Background to the Study 1

1.2 Statement of the Research Problem 4

1.3 Aim and Objectives of the Study 5

1.4 Significance of the Study 6

1.5 Scope of the Study 7

CHAPTER TWO

2.0 LITERATURE REVIEW 8

2.1 Imbalanced Data 8

iv

2.2 Types of Imbalanced Data 9

2.2.1 Complexity of multiclass dataset 10

2.2.2 Multiclass data decomposition techniques 12

2.3 Approaches for Tackling Imbalanced Data Problem 14

2.3.1 Preprocessing approaches 14

2.3.1.1 Feature selection method 15

2.3.1.2 Resampling method 16

2.3.2 Cost-sensitive learning 18

2.3.3 Algorithm level approaches 19

2.3.4 Ensemble learning approach 20

2.3.4.1 Bootstrap aggregating 20

2.3.4.2 Boosting 21

2.3.4.3 Hybrid method 21

2.4 Merit and Demerit of Data Level Preprocessing Approaches 21

2.4.1 Merit and demerit of algorithmic approaches 22

2.5 Data Intrinsic Characteristics 22

2.5.1 Borderline examples 23

2.5.2 Rare examples 24

2.5.3 Outliers examples 24

2.6 Related Studies 25

v

2.7 Summary of Review 33

CHAPTER THREE

3.0 RESEARCH METHODOLOGY 35

3.1 Approach Used 35

3.1.1 System capacity used 35

3.1.2 Other materials and tools used 35

3.2 Research Workflow 36

3.3 Data Collection 38

3.4 Analysis of the Preprocessing Phases 38

3.4.1 Identifying the types of examples 38

3.4.1.1 Categorising the unsafe examples 39

3.4.2 Proposed informative class similarity evaluation technique 39

3.4.2.1 Degree of similarities between classes evaluation steps 41

3.4.3 Examples safe level evaluation 41

3.5 Algorithm Design 42

3.5.1 Multiclass resampling algorithm design 43

3.6 Performance Evaluation Matrix 44

CHAPTER FOUR

4.0 RESULTS AND DISCUSSION 48

4.1 Degree of Data Difficulty Present in Dataset Used 48

vi

4.1.2 Similarity degree and safe level of classes in the dataset 48

4.1.3 General classifier results analysis 49

4.1.4 Analysis of AUC ROC curve for the technique 51

4.2 Discussion of Result 54

4.2.1 Experimentation 56

CHAPTER FIVE

5.0 CONCLUSION AND RECOMMENDATIONS 59

5.1 Summary 59

5.2 Conclusions 60

5.3 Contributions to Knowledge 61

5.4 Recommendations 61

REFERENCES 62

APPENDICES 66

vii

LIST OF TABLES

Table Page

3.1 Characteristics of Multiclass Imbalanced Dataset used 38

3.2 Multiclass Resampling Algorithm 44

3.3 Confusion Matrix 45

4.1 Analysis of Data Difficulty Factors in Dataset 48

4.2 Dataset Classes Similarity Degree 49

4.3 Summary of Classifiers Result 49

4.4 Summary of the AUC ROC for classifiers and datasets used 53

4.5 G-Mean Comparism of MIRT with SOUP, SOUPBag and MRBB 55

viii

LIST OF FIGURES

Figure Page

2.1 Two Possible Class Imbalance Scenarios 9

2.2 Approaches used in Balancing Dataset 14

2.3 Difficult regions in Multiclass Data Distribution 24

3.1 Research Workflow 36

3.2 Research Framework 37

4.1 Accuracy of Classifiers on the Techniques 50

4.2 F-Score of Classifiers on the dataset 51

4.3 ROC Curve for KNN Classifier on hayes_roth Dataset 51

4.4 ROC Curve for CART Classifier on hayes_roth Dataset 52

4.5 ROC Curve for SVM Classifier on hayes_roth Dataset 52

4.6 Summary of the AUC ROC results for all dataset used 54

4.7 Comparism of MIRT with SOUP, SOUPBag and MRBB 56

ix

Abbreviation Description

AUC Area Under Curve

CART Classification And Regression Trees

ECOC Error-Correcting Output Codes Strategy

FN False Negative

FP False Positive

FPR False Positive Ratio

HVDM Heterogeneous Value Difference Metric

MIRT Multiclass Informative Preprocessing Technique

MRBB Multiclass Roughly Balanced Bagging

NN Nearest Neighbour

OVA One Verse All

OVO One Verse One

ROC Receiver Operating Characteristics

SMOTE Synthetic Minority Oversampling Technique

SOUP Similarity Oversampling and Undersampling Preprocessing

SVM Support Vector Machine

TN True Negative

x

 ABBREVIATIONS

TP True Positive

TPR True Positive Ratio

MIT Massachusetts Institute of Technology

1

CHAPTER ONE

1.0 INTRODUCTION

1.1 Background to the Study

With the exponential growth and availability of data on a grand scale from sophisticated

and networked systems, such as internet of things, security, surveillance, finance,

medicine, academic and other industries. It is vital to advance fundamental understanding

of knowledge acquisition and analysis from raw data use for decision-making and

prediction processes (De and Do, 2020). Despite the progress made in data engineering

techniques and existing knowledge discovery, learning from imbalanced dataset

challenges remains a difficulty that has drawn increasing interest from industry and

academia (Napierala and Stefanowski, 2016; Fernández et al., 2018).

When one or more classes in a dataset have a little number of instances (minority class) in

comparism to the remaining classes in the dataset (majority class) by a significant margin,

the dataset is said to be imbalanced. Binary and multiclass datasets are defined as having

two classes and more than two classes, respectively. The number of individuals with a

certain ailment, such as asthma, in a random sample of 50 people is substantially lesser

than the asthma-free patients in number. (Napierala and Stefanowski, 2016). Such instance

takes place in many important applications which includes text classification, face and

image recognition (Thabtah et al., 2019), word pronunciations learning (Ali et al., 2019),

fraud detection, medical diagnosis (Blaszczynski and Lango, 2016). Learning from

imbalanced dataset remain one of the most complex difficulties for supervised machine

learning (Blaszczynski and Lango, 2016). Imbalanced data classification is a major

2

difficulty in data mining and machine learning that can be seen in many real-world datasets

(Duan et al., 2020).

Owing to the importance of this issues, major contributions have been made to existing

and developing techniques. There are three categories for dealing class imbalanced based

issues based on the approach that is been adopted in dealing with the imbalance problem:

The internal or algorithmic level technique constructs or alters existing algorithms while

taking minor class ramifications into account. External or data-level approaches, which

involve preprocessing data in order to rebalance class distributions and reduce the unequal

distribution effect on the classification process. The internal or algorithmic level technique

constructs or alters existing algorithms while taking minor class ramifications into account.

And the third category is cost-sensitive strategy, it integrates a variety of misclassification

in the learning phase costs for every class by combining data and algorithmic level

approaches in the learning phase (Ali et al., 2019).

The American Association for Artificial Intelligence (now the Association for the

Advancement of Artificial Intelligence) workshop on Learning from Imbalanced Datasets

(AAAI '00), the International Conference on Machine Learning workshop on Learning

from Imbalanced Datasets (ICML '00), and the American Association for Artificial

Intelligence (now the Association for the Advancement of Artificial Intelligence)

workshop on Learning from Imbalanced Datasets (AAAI '00) all reflect the increased

interest in imbalanced (He and Garcia, 2009).

3

The core problem associated with the imbalanced dataset learning problem is that it has

the potential to dramatically degrade the efficiency of virtually all standard learning

techniques. The majority of classifiers assume or expect equal misclassification costs or

balanced class distributions. (He and Garcia, 2009). As a result, when faced with high level

of imbalanced datasets, these techniques fail to appropriately capture the data's distributive

properties, resulting in inaccurate results for the minority class. (Fernández et al., 2018;

Napierala and Stefanowski, 2016). Furthermore, the minority class is often has the most

learning appeal, and when it is not correctly classified, it comes at a high cost (Sáez et al.,

2016).

Learning algorithms or built models that do not take into account the dilemma of class

imbalance can be overwhelmed by the majority class and ignoring the minority class.

Consider a binary data collection with 98:2 percent imbalance ratio, in which the majority

class makes up ninety-eight percent (98%) of the entire dataset and the minority class only

contain two percent (2%). To reduce the erroneous rate, the learning algorithm group all

of the samples into the majority class, resulting in a two percent (2%) error rate. The error

level may appear small but it effect in real life may lead to great loss such as diagnosing a

patient of not having a rare disease such as COVID-19, when actually the patient does.

All instances belonging to the minority class are prioritized in this situation, and they are

identified as improperly categorised, and the classification scenario is considered totally

unsuccessful because the minority class that is of more interest have been totally

misclassified (Lin et al., 2017; Jedrzejowicz et al., 2018).

4

Knowing that there is a disparity in class of a dataset makes learning more difficult,

however, the difference by size in class examples is not the only source of possible

problems (Sáez et al., 2016; Błaszczyński and Stefanowski, 2018). When the cardinalities

ratio for the minority and majority classes are compared, utmost importance to analyse the

data difficulty factors which is also known as data intrinsic characteristics, as well as the

degree of similarities between classes is required (Napierala and Stefanowski, 2016;

Koziarski et al., 2020; Weiss, 2012; Rendón et al., 2020).

Data difficulty factors in dataset is the distribution of class examples within the dataset.

This distribution can be categories into sub-concepts, small disjuncts, overlapping,

borderline, rare and outlier examples based on their position (Lango et al., 2017). The

degree of similarity between classes presents the information about the inter relationship

that exact between every pairs of classes (Janicka et al., 2019).

Therefore, this research is on how to address this problem of multiclass imbalance

techniques putting into consideration the data intrinsic characteristics and the degree of

similarity that exist between classes in the dataset.

1.2 Statement of the Research Problem

Combining class imbalance, data difficulty factors and multiclass into similar problem has

huge negative effects on the accuracy level of common classifiers and deteriorates

predictions performance (De and Do, 2020). Multiclass imbalanced problem are fairly

fresh concept when compared with binary dataset that have received tremendous attention

(Lango et al., 2017; Janicka et al., 2019; Wojciechowski et al., 2018). Solving class

imbalance issues in multiclass problem, variety of irregularities that do not exist in binary

5

dataset are encountered, such as, the presence of disjoint majority classes or minority

classes (De and Do, 2020; Lango et al., 2017).

Furthermore, despite the methods that have been proposed to handle multiclass imbalanced

dataset, information about dataset such as data difficulty level, class distribution

concentration and data complexity have not been greatly considered due to difficult nature

of dataset and limitations of the decomposition strategies (Fernández et al., 2019).

However, few works have been proposed to handle preprocessing method that uses dataset

information such as (Janicka et al., 2019; Lango and Stefanowski, 2018; Napierala and

Stefanowski, 2016) and these details can be further explored to standardize the dataset and

achieve improved performance of classifiers. Hence, this research is on how to design a

preprocessing resampling technique that consider important data intrinsic characteristic

and degree of similarity between classes.

1.3 Aim and Objectives of the Study

The aim of this study is to develop a preprocessing technique for multiclass imbalanced

dataset based on data similarity degree and data difficulty factors.

This will be achieved by the following objectives:

i. To design a new data level multiclass preprocessing technique.

ii. To implement the designed technique in (i) using jupiter notebook, [a python

interactive computing environment and other python libraries which includes

pandas, yellowbrick, seaborn, sklearn, matplotlib, numpy].

iii. To evaluate the performance of the technique using the following standard matrix,

F-Score, AUC (Area Under ROC Curve) and Geometric Mean (G-Mean)

6

iv. To compare the results with existing techniques.

1.4 Significance of the Study

The increasing needs to achieved high-level accuracy in classification tasks, cannot be

over emphasized as critical fields such as medicine, aeronautic and engineering have

adopted the use of machine learning to a great degree. From the imbalanced nature of real-

life dataset, the presences of data intrinsic characteristics and skewness have made

classification task much more complex; data level preprocessing techniques reduces these

complexities to some notable proportion.

The proposed data level preprocessing technique will balance the cardinalities of classes

and will also put into consideration class interrelationships information and data intrinsic

characteristic factors thereby achieve an improved dataset for data classification and

increases classifier accuracy.

This work intend to develop a resampling technique to reduce the cost of multiclass

imbalanced dataset preprocessing and also increase the quality of imbalanced dataset use

for machine learning activities by researchers, data scientists, data engineers and data

analysts.

1.5 Scope of the Study

This research work is focus on the development of a multiclass preprocessing technique

for multiclass dataset using similarity information about the dataset. This work does not

includes all aspect of preprocessing task such as data cleaning, empty feature generation

7

but adopted already existing methods but focused on informatively improving the

resampling process using information about the dataset and the data intrinsic

characteristics. The proposed resampling technique is for multiclass dataset only, it does

not consider binary dataset. However, five (5) real-world multiclass imbalanced datasets

gotten from UCI repository, representing different imbalance ratios, data intrinsic

characteristics ratio and number of classes have been selected. These datasets have also

been adopted in almost all related experimental studies on class imbalance, some of which

are Janicka et al. (2019), Sáez et al. (2016), Galar et al. (2011), Fernández et al. (2013),

Lango et al. (2017), Napierala and Stefanowski (2012), Błaszczyński and Stefanowski

(2018), Nwe and Lynn (2020) for evaluation of their proposed techniques.

8

CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Imbalanced Data

Imbalanced data refers to the disproportion of class examples that exist in a dataset to be

used for a machine learning task; in such a dataset, one or more classes are

underrepresented (minority classes) in comparism to other class(es) in the dataset

(majority classes) (Wang and Yao, 2012) as shown in Figure 2.1. The uneven

representation of classes is due to the fact that some classes occurs significantly more

frequently in real-life scenarios; for example, in the current coronavirus (COVID-19)

outbreak, only 320,000 people have tested positive for the virus out of millions who have

been diagnosed in China (Max et al., 2020).

With this issue of class imbalanced dataset, a classifier's performance tends to be biased

in favor of some classes (majority class) in the dataset. Classifiers with performance bias

operate differently, because there is more dataset available for the classifier to train,

solutions in the majority class tend to be more accurate. However, considering the minority

class, solutions with inadequate precision are carried out. In real-world applications such

as bioinformatics, bleeding detection in medical diagnostics, fraud detection, and

education; the problem of imbalanced data distributions is well-posed. Cost sensitive

algorithm and neighborhood cleaning rule, safe level SMOTE are the most prevalent

approaches for dealing with imbalanced data and they are generally applicable to binary

datasets (Kaur et al., 2019).

9

Learning algorithms struggle with the dataset's class imbalanced ratio since they are

designed for balanced classes, generating a bias in favor of the class with more examples.

However, from the standpoint of machine learning, the minority class examples tends to

be the class of interest since, despite its rarity, it contains more significant and useful

knowledge (Krawczyk, 2016).

Numerous methods have been presented in the literature to alleviate difficulties associated

with class imbalance. This is thought-provoking and demanding in today's study domains,

where many binary class problem, classes problem, cost of misclassified class, negligible

disjoints, class overlapping, and magnitude of imbalanced datasets all require attention at

the same time. Because multiclass imbalance problems include a variety of essential

challenges, binary class problems have gotten increased attention (Ali et al., 2019).

2.2 Types of Imbalanced Data

The classification tasks are categorized into binary or multiclass, based on the number of

classes involved. As illustrated in Figure 2.1, a dataset with two classes or more is called

binary and a dataset with more than two classes is called multiclass.

Figure 2.1: Two Possible Class Imbalance Scenarios (left) Binary class imbalanced

data distribution, (right) Multiclass imbalanced data distribution (Sáez et al., 2016).

10

In comparism to what has been accomplished in its binary equivalent, research on

multiclass imbalanced classification is still in its initial phase (Cruz et al., 2019; Alejo et

al., 2017; Lango et al., 2017; Krawczyk, 2016). Also, in binary dataset. In as much as

massive achievement have been recorded in binary classification, most of its

preprocessing method cannot be directly applied to multiclass dataset which has more

complicated situation (Krawczyk, 2016). As the relationships in classes get more complex,

handling many minority classes makes the learning task much more complicated. Dealing

with multiclass problems, performance on a class may be lost while attempting to obtain

it in another class. With such issues in mind, there are many issues to be considered and

resolve by novel approaches (Sáez et al., 2016).

In other cases, separating numerous classes with low cardinalities may be beneficial.

Taking into consideration the difficulty of distinguishing between two types of asthma

(minority classes) and healthy individuals in medicine (majority class). When one type of

asthma is classified as a minority class and the other is grouped with the healthy to form

the majority class, an intolerable situation occurs in which sick people are mistaken for

healthy people. While categorizing all asthmatic patients into a single minority class may

be a better solution, it still leads to the unexpected loss of asthma type information (Lango

et al., 2017).

2.2.1 Complexity of multiclass dataset

Traditionally, binary datasets have been associated with imbalanced classification. The

class of interest and mostly the class with least instance are referred to as the minority or

"positive" class and the most occurring class as the majority. As a result, the majority of

the studies on this topic has concentrated on emphasizing the acknowledgment of the

underrepresented class. Dealing with multi-class issues is difficult, and it becomes even

11

more difficult when there is an imbalance. When dealing with multiple majority and

multiple minority classes, ascertaining which class should be evaluated and optimised at

the point of learning a priori, the way it was achieved in studying binary case is difficult

(Fernández et al., 2019).

In numerous real-world scenarios, there are countless number of areas whose datasets are

multiclass. Some of these areas includes microarray research, protein categorization,

medical diagnostics, video mining, activity recognition and target detection are just a few

examples. All of these issues have something in common: this is the distribution of

instances throughout the classes is not uniform, as most of the classes are quite similar. In

this regard, reference must be made to the multiclass case of the imbalanced data

classification problems, and as the number of classes grows, so do the difficulty of

effectively expressing the entire problem space (Hossen et al., 2018). For the increased

number of borders to evaluate in a popular case analysis, reference must be made first to

the constraint. However, in the imbalanced scenario, the occurrence of multiple majority

class and multiple minority class is the most crucial issue that must be considered. This

means that it is no more feasible to pay attention just on a particular class in order to

improve the learning techniques geared toward that class (Rendón et al., 2020). When

dealing with multiple class imbalanced datasets, however, this is not the only issue. All

data inherent qualities that degraded performance in the binary case are now emphasized

even more. The degree of similarity across classes in the dataset, as well as the reliance

within classes (including overlaps) and relationships between classes, must all be

thoroughly examined. This interdependence among the classes makes it difficult to learn

from, but it can be used to assess the nature of the dataset during preprocessing (Janicka

et al., 2019).

12

As a result of these certainty, there arise a simple yet important question: what are the

ways that multiclass imbalanced datasets be effectively addressed? Though, there is not a

straightforward response to this. Overcoming the issue of extending ordinary binary class

solutions for used in this context. Contrarily, data-level approaches (preprocessing) are

not exactly applied as the search region is enlarged, for example, determining the right

sample amount for each class. Diversely, it is because there may be more than one minority

class, algorithmic level solutions become more difficult. (Fernández et al., 2019).

To solve all of these concerns, one basic but yet effective method for maintaining standard

binary-class imbalanced techniques in multiclass problems must be emphasis: Using

decomposition methods (Hossen et al., 2018). Following the divide-and-conquer

paradigm, original datasets are separated into binary ones. As a result, a collection of

classifiers must be learned, each of which is in charge of one of the innovative binary

problems. The results of all the classifiers for a given instance are pooled in the testing

phase to make the final verdict (Vluymans et al., 2018). As a result, the challenge of

dealing with the multiclass problem shifts from the classifier to the combination stage.

2.2.2 Multiclass data decomposition techniques

The most common approaches for dealing with multiclass problems are class

decomposition strategies. This strategy involves reducing the problem into a binary class

subtask that can be learned by binary classifier, even in the case of imbalanced data. This

approach is required because most standard classifiers are designed for binary problem

only (De and Do, 2020). When attempting to categorize any multiclass imbalanced

situation, it is evident that the greater the amount of classes involved for classification, the

more difficult it turns out to accurately select the query instance's result label. This is

13

primarily due to the data difficulty factors among the many dataset classes, which rises as

increasing classes are interrelated. A divide-and-conquer strategy is a basic yet effective

technique to approach this problem. Decomposition approaches, in which the original

problem is reduced into numerous easier-to-solve binary subsets, are examples of such

methods (Vluymans et al., 2018). The most popular decomposition algorithms, according

to Janicka et al. (2019), are one-verse-all (OVA), one-verse-one (OVO), and Error-

Correcting Output Codes (ECOC).

The OVA and OVO procedures run over all possible pairs of classes or aggregations of

classes (for example, one class versus remaining classes) and apply binary problem

methods at each iteration. Although the OVA technique keeps original classes, it ignores

relationships between them. Although OVO does not aggregate classes, it is more

complicated than OVA since it must process all possible pairs of classes (Wojciechowski

et al., 2018).

The Error-Correcting Output Codes binarization approach is a common framework for

decomposing multiclass issues into binary components. Every class is allocated a specific

length n binary string, referred to as a code word, under this strategy. Then, one binary

classifier for each bit in the string is trained. The wanted result of a stated classifier is

provided by the conformed bit in the code word for this class during the training stage on

an instance from class i. This procedure can be visualized by a m × n binary code matrix

(Nannes et al., 2020).

2.3 Approaches for Tackling Imbalanced Data Problem

It is because of the importance of issues of class imbalance, significant effort has been

made in developing solutions to alleviate them. These proposals can be classified into three

14

categories based on how they address class imbalance: external or data-driven techniques,

internal or algorithmic-driven approaches, and cost-sensitive options. Ensemble learning

classifiers are also useful for classifying data that is imbalanced (Ali et al., 2019).

Figure 2.2: Approaches used in Balancing Dataset (Kaur et al., 2019)

2.3.1 Preprocessing approaches

Preprocessing approaches are those techniques that are applied on the dataset to produce

a balanced and less difficult dataset for the classifier, these preprocessing techniques are

administrated to give rise to a more suitable training data than the original dataset. The

techniques that exploit on preprocessing stage are also known as data centred (data level)

technique. These methods function through acting directly on data sample space and

attempting to lower the imbalance cardinality among the dataset's classes (Kaur et al.,

2019). A review of existing algorithms led to the finding that resampling technique

together with ensemble methods, particularly oversampling, would be the better solutions

for this scenario due to their performance (De and Do, 2020). The preprocessing technique

can be categories into:

15

2.3.1.1 Feature selection method

Feature selection is a dataset preparation stage that picks a subset from all the available

attributes or features and removes unnecessary attributes that are not useful. This

approaches have been devised to do away with the "curse of dimensionality," which is the

amount of evaluation required grows exponentially as the amount of dimensions grows,

while preserving or enhancing prediction performance. Filtering, wrapping, and

embedding are the three basic ways to feature selection (Fernández et al., 2018).

i. Filter Method: Filter methods use statistical or information measurements to

choose high-range features. This can be accomplished by evaluating the range of

differences between the dataset's features using statistical methods such as

ANOVA and T-test (Fernández et al., 2018).

ii. Wrapper Method: The wrapper approach classifies the subset of features based

on their predictive outcome, utilizing the classifier as a black box. Because a

thorough search necessitates 2n separate evaluations, test-and-trial or even greedy

strategies are greater practical for finding the optimal choice solutions. To figure

out how important each property is to each classifier a sensitivity evaluation could

be carried out. (Fernández et al., 2018).

iii. Embedded method: Unlike wrapping approaches, embedded methods choose

attribute while considering the classifier's architecture and neighborhood

information, and are almagamated into the modeling process (Fernández et al.,

2018).

2.3.1.2 Resampling method

Despite the fact that resampling is a common strategy for dealing with the problem of class

imbalance, the question at hand is what is or finding a way to effectively determine the

ideal class distribution given a dataset. Aside from the class distribution issue, another

16

challenge is a method to efficiently preprocess (resample) the training dataset. Random

sampling is straightforward, but it is not always enough. If a dataset class imbalance

problem is considered by within class ideas, some duplicate examples space may be

favored by random oversampling over others (De and Do, 2020). A better resampling

technique would first discover the sub-concepts that make up the class, and then

oversample each idea individually to balance the overall distribution. Such a similarity

resampling approach, however, raises the cost of data processing. In undersampling of the

majority or dominant class in order to make the selected examples more representative

raises more issue: sample selection is based on what criterion? Say for example, if distance

is used to measure samples, those more occurring or majority class examples that are

comparatively distant from minority class examples may represent more majority class

attribute, whereas those that are comparably near the minority class examples may be

critical in classifier learning algorithms choosing the class boundary region. When it

comes to picking high-quality samples, which aspect should be prioritized? Before

considering the amount of the examples in each class in the dataset, any resampling

technique should consider these difficulties (Sun et al., 2009).

According to Fernández et al. (2019), Three types of resampling approaches can be found:

1. Oversampling: This is one of the most widely adopted machine learning

technique. Random minority oversampling is the most basic type, which just

duplicate erratically picked examples from the minority class(es) in the dataset.

Oversampling have been demonstrated to be effective, but it can also lead to

overfitting. Synthetic Minority Over-Sampling Technique (SMOTE) is a better

start-of-the-art sampling method that seeks to solve this problem of class

imbalance. It increases the number of examples by generating artificial instances

17

through interpolating datasets from neighborhood data examples. Some

modifications to this oversampling method were offered, such as pay attention

exclusively on instances closer to the boundary class. Another method for

performing more informed oversampling is to use data preparation. Cluster-based

oversampling divides the entire dataset into clusters and then oversamples every

subset individually. This minimises both interclass and intraclass disparities.

DataBoost-IM, contrarily, uses boosting preprocessing to identify tough cases and

then utilises them to produce the synthetic samples. Class-aware sampling is a type

of oversampling that is peculiar with stochastic gradient descent to neural networks

optimized. The key idea is to ensure that each mini-batch has a homogeneous class

distribution and to manage the selection of examples from each class (Buda et al.,

2018).

2. Undersampling: Another frequent way for ensuring that each class has the same

number of examples is to use the same number of examples. Instead of

oversampling, examples from majority classes are deleted at random until all

classes have the same amount of examples. While it may seem counterintuitive,

there is evidence that undersampling is superior to oversampling in some

circumstances. This strategy has the considerable disadvantage of discarding a

portion of the available data may have been crucial to improve performance. To

address this flaw, certain changes were made to more carefully choose which

samples should be eliminated. The one-sided selection, for example, identifies

redundant samples along the class boundary (Buda et al., 2018).

3. Hybrids methods: The hybrid method combines the oversampling and

undersampling approaches (Haixiang et al., 2017). This method is mostly used in

18

multiclass dataset where there is need to reduce of the majority classes and also

increase from the minority classes (Fernández et al., 2019).

2.3.2 Cost-sensitive learning

This approach applies a different cost to misclassification of samples in the dataset from

distinct classes. Cost-sensitive learning technique refers to a group of algorithms that are

delicate to various costs related with specific aspects of the problems under consideration.

These cost may be from a variety of sources relating to a specific real-world situation, such

as information given by an expert in that domain or information learned during the

classifier training phase (Fernández et al., 2019). This method can be applied both at the

data level, by specifying costs during resample or feature selection, and at the algorithmic

level, by modifying the algorithm to be sensitive to minority class cost. Although less

popular than, say, resampling, a comparison of cost-sensitivity and both data-level and

algorithm-level techniques shows that cost-sensitivity uses computational resources more

efficiently. The disadvantage is that constructing an efficient cost matrix to represent said

misclassification is complicated and time-consuming. It should also necessitate subject-

matter expertise, as cost attribution should be a well-thought-out procedure (Weiss, 2012).

Misclassification costs have been classified into two sorts based on research: example-

dependent costs and class-dependent costs. The first assumes that each case should incur

a misclassification cost, whereas the second expects that the incorrect categorization

should be applied to all classes. As one might assume, the former method is only used in

specific scenarios where cost classification by example is simple, whereas the latter is

more practical in any context. As a result, cost-sensitive learning can be paired with

boosting algorithms to create ensemble techniques in the hopes of achieving superior

outcomes (De and Do, 2020).

19

2.3.3 Algorithm level approaches

For addressing imbalanced datasets, algorithm level approaches might be considered as an

alternative to data preprocessing methods. Rather than focusing on changing the training

dataset to prevent class skew, this method focuses on changing the classifier learning

mechanism. This necessitates a thorough study of the chosen earning technique needed to

determine the exact mechanism is behind the majority class bias. Algorithm level

solutions do not alter data distributions, making them more compliant to multiple forms of

datasets imbalance at the tradeoff of being unique to a single classifier. Instead of changing

the provided training data, algorithm-level techniques focus on tweaking current learning

algorithms to reduce their concentration in favor of the majority class. This necessitates a

thorough understanding of the updated learning algorithm as well as a detailed

determination of why it fails to mine skewed distributions. While preprocessing algorithms

are more general in that any classifier may be trained to do class balancing subsequently,

the approaches covered in this chapter are particular to a certain model. This limits the

algorithmic approach's versatility, but also allows for greater specialisation in tailoring the

solution to the task at hand. Algorithm based approaches are less common in literature,

owing to the fact that algorithm based techniques are more complex to design and

implement in comparism to data level technique. In spite of this situation, there are a

variety of effective class imbalance results that dependent on direct changes in classifiers.

SVMs and their variants, Decision Trees, NN methods, Bayesian classifiers, ANNs, and

kernels are just a few of the popular machine learning algorithms that have undergone

similar change (Fernández et al., 2019).

2.3.4 Ensemble learning approach

Classifier ensembles, also known as multiple classifier systems in Data Science, combine

more than one classifiers output to determine the overall output and are believed to boost

20

precision when compared to using one classifier. On the other hand, the ensemble learning

methods are unable to overcome the problem of class imbalance on their own. When

compared to using a single classifier, this method is known to improve accuracy. Any of

these ways for dealing with imbalance class issues can be combined into a classifier

ensemble to increase overall performance. Ensemble based solutions for class imbalance

problem are a type of strategy that has been widely used with success. Some popular

ensemble learning methods include Bagging, Boosting (Fernández et al., 2019).

2.3.4.1 Bootstrap aggregating

Bootstrap Aggregating (Bagging) is an ensemble learning approach in which many

classifiers are trained using distinct bootstrapped clones of the original training dataset. To

put it another way, a new dataset is created for each classifier by selecting without

choosing a specific (with replacement) example from the initial dataset. As a result,

diversity in Bagging is achieved by the resampling approach, which involves training

every one of the classifier with a distinct data subset from the original dataset. The model

that is produce should differ owing to variation in the dataset, assuming the corresponding

classifier is weak.

Finally, when classifying an unknown instance, weighted vote or a majority choose is

employed to determine the class of the instance. The confidence offered by each classifier

in the prediction is usually used to execute weighted majority voting (Fernández et al.,

2019). Bagging has a number of advantages, one of which is it simplicity in

implementation. Bagging also minimises variance since voting effect is comparable to that

of averaging in regression, where the minimisation of overfitting effect becomes more

visible (Khoshgoftaar et al., 2011).

21

2.3.4.2 Boosting

Schapire established the concept of boosting in 1990, demonstrating that a weak synthetic

sample generator (which is marginally more preferred than random prediction) may be

transformed into a strong synthetic sample generator using the PAC learning framework.

The algorithm in this family that is mostly represented is AdaBoost. Since the first time

that Boosting was used, it was named among the preferred in data mining algorithms.

AdaBoost, unlike Bagging, which is just capable of lessen variance, it is also known to its

ability to reduce bias (in addition to variance) and, like SVMs, enhances margins

(Fernández et al., 2019).

2.3.4.3 Hybrid method

Hybrid methods combine algorithm-oriented, data level approach, and ensemble

approaches to accurately solve imbalanced data classification problem (Liu et al., 2019).

2.4 Merit and Demerit of Data Level Preprocessing Approaches

Advantages of Data Centred Approaches (Fernández et al., 2019)

1. It is a simple and widely used method for balancing the training data's class

distributions.

2. Investigating the impact of modifying the class distribution to deal with datasets

that are imbalanced.

3. Data Centred Approaches are independent of the underlying classifiers

22

Disadvantages of Data Centred Approaches (Kaur et al., 2019)

1. Achieving the goal of resampling the classes, there is a risk of over-fitting and data

loss throughout the resampling process.

2. Choose the best class distribution in a dataset, since the case for choosing the best

class distribution varies depending on the dataset, and it affects the classifier's

performance.

3. Different distributions in different subclasses contained in a single class, as this

increases the dataset's learning complexity.

2.4.1 Merit and demerit of algorithmic approaches

Advantages of Algorithmic Approaches (Kaur et al., 2019)

1) Algorithmic approaches are particular to a given classifier type

2) It minimises the misclassification cost of the minority class

Disadvantages of Algorithmic Approaches (Ali et al., 2019)

1) It is necessary to have a thorough understanding of the chosen strategy in order to

determine what specific mechanism is responsible for the majority class bias.

2) A large number of trials are required to determine which one is the most accurate.

3) For dataset shifts, there is a lack of a good validation technique.

4) Algorithmic Approaches necessitate a large amount of processing and storage

space.

2.5 Data Intrinsic Characteristics

Although the problem of class imbalance is frequently stated as a deciding criteria for

classifier performance decline, there exist times when regular classifiers can get good

results. If the dataset is deemed linearly separable, high level accuracy could be obtained

23

even with the availability of significant class imbalance (or of low complexity). The

circumstances that impact nonlinearly separable of datasets are frequently linked to data

difficulty factors, also referred to as data intrinsic characteristics (Fernández et al., 2019).

The most prevalent distinction is between instances that are safe and those that are unsafe.

Safe examples, which are found in relatively homogeneous portion populated solely by

instances from a single class, should be simpler for a classifier to learn from, but unsafe

examples are thought to be more challenging and more likely to be misclassified

(Napierala and Stefanowski, 2016), as shown in Figure 2.3. Understanding the underlying

properties of these data, and also their interrelationship to class imbalance problem, is

critical for using current and inventing new strategies to deal with data imbalance

(Fernández et al., 2019). Here are a number of the data difficulty factors that can be

addressed while solving class imbalance problem, which are also grouped as the three sorts

of dangerous cases: borderline, rare (small disjunct), and noisy (outlier) examples. (Lango

et al., 2017).

2.5.1 Borderline examples

Borderline instance, this can also be referred to as overlapping instance, are examples that

are found in the same portion as the class boundary between two or more classes (Napierala

and Stefanowski, 2016) as shown in Figure 2.3. When the input features are insufficient

to appropriately distinguish between examples of distinct classes, and similar areas of the

sample space contain examples from multiple classes, this is referred to as overlapping

region (Fernández et al., 2019).

24

Figure 2.3: Difficult regions in Multiclass Data Distribution (García et al., 2018).

2.5.2 Rare examples

Learning algorithms frequently run into the problem of examples from similar class do not

appear in homogeneous portion in the sample space. The "idea" underneath a class is

frequently divided into numerous sub concepts that are scattered across the input space.

Isolated pair examples positioned on the safe examples of another class and far away from

the borderline examples are rare examples. (Fernández et al., 2019).

2.5.3 Outliers examples

In general, there are two categories of noise in machine learning: feature (or attribute)

noise and class noise (Fernández et al., 2019). Noisy (class or attribute mistakes) errors

degrade the performance of standard classifiers, and they are especially destructive to the

minority class (Napierala and Stefanowski, 2016). Individual instances of another class(es)

situated within the safe examples of another class are referred to as noisy examples

(Napierała et al., 2010).

25

2.6 Related Studies

 Napierala and Stefanowski (2012), proposed a new strategy for identifying distinct types

of minority class examples in imbalanced dataset that is focused on examining the

examples' local neighborhoods. The proposed analysis of an example's local neighborhood

in the original attribute space to determine its type. The class assignment of each minority

example's k-nearest neighbors was examined. This is because this method relied on an

easy examination of a given amount of neighbors, it was examined to verify if the assigned

labels accurately reflected the known distribution. To begin, the experiment was conducted

with real-life datasets, which revealed that most datasets has a huge amount of unsafe

instances.

Second, the results revealed that all of the investigated classifiers find safe datasets to be

rather simple to every classifier. Borderline, rare outlier or noisy examples

in dataset are serious source of problems, influencing classifiers in different ways. It was

also discovered that the ratio of imbalance and the size of data are not as dominant as the

different types of distributions. Finally, when the efficiency of several classifiers were

compared on the dataset, it was discovered that J4.8 trees or PART rules and Naive Bayes

were the most flavorful to risky forms of instances in the minority class– even for more

challenging types. Development of new methods which are able to examine the complexity

of real-life datasets and their degree of difficult needs further studies.

In the work of Fernández (2013), binarisation strategies and ad-hoc approaches; a method

for analysing the classification of imbalanced datasets with multiple classes; The

introduction of a preprocessing mechanism based on SMOTE, known as Static-SMOTE,

which iteratively generated fresh instances from the lowest represented class at every

26

stage, was one of the strategies utilised. Then, a global cost-sensitive strategy was

presented, which reweights the examples from every class based on their ratio. Ada-

Boost.NC, and specific boosting based methodology for addressing multiclass imbalance

problems, is described next.

The work presents an empirical examination of numerous ways for dealing with multiclass

imbalanced data situations, the majority of which are reached from a merger of OVO and

OVA strategies and binary based approaches, as well as additional ad hoc methods

developed specifically for this problem. The following are some key takeaways from the

research:

1. For multiple-class imbalanced issues, oversampling strategies have demonstrated

to be more vigorous than those formulated on undersampling and cleaning

operations in terms of synergy of data level and binarisation techniques.

2. When comparing OVO and OVA approaches, OVO methods have consistently

outperformed OVA methods, notably in terms of average performance. The

rationale for the results in greater quality is because the paired learning approaches

deals with a smaller number of occurrences, making it unlikely to produce

imbalanced training datasets, which is the drawback in this situation. Furthermore,

the decision bounds of every binary issue in this situation may be significantly

easier than in the OVA technique.

3. It is necessary to emphasise that the most effective strategies investigated are those

formulated on SMOTE with OVO and OVO with cost sensitive approach.

The author finally determined that binarisation approaches combined with suitable data

level or a cost-sensitive strategy are simple but effective mechanisms for improving

27

classifier accuracy in imbalanced area, although there is still more work to be done on this

topic: Scalability, the OVO strategy as a decision making issue, and finally, Intrinsic data

features are all non-competent examples in OVO strategy.

Napierala and Stefanowski (2016), explored at the challenges of class distribution in real

life dataset by looking at four different categories of minority class instances: safe, rare,

borderline, and outliers, all of which can cause classifiers to underperform when learning

from unbalanced dataset.

By examining multidimensional visualisations of choosen datasets, the approach validated

the prevalence of class distribution issues in real data. Then, in order to identify these types

of cases, a new method formulated on examining distribution of a class in a local

neighborhood of the examined instance was introduced. Modeling this neighborhood was

done in two ways: with k-nearest examples and with kernel functions.

The following are the highlights of the findings:

1. Imbalanced datasets typically include a variety of minority cases in varying

amounts.

2. An intriguing result is that outlier examples can make up a significant portion of

the minority class -they are found to even outnumber the majority in some datasets.

3. The global imbalance ratio and data amount are less important than the distinct

example types.

4. It is handy to distinguish the performance of common classifiers by collecting

information on local attributes of the minority class and discriminating between

rare, safe, borderline, and outlier examples.

28

5. Analysing differences between common preprocessing methods might also benefit

from considering information on sorts of minority instances.

Napierala and Stefanowski (2016) study paid emphasised on rare and outlier examples, as

well as the fact that common data distribution patterns observed across multiple

imbalanced datasets can aid in the creation of novel learning algorithms and preprocessing

methods for class imbalance.

In multiclass imbalanced datasets, the resampling (oversampling) of distinct classes and

samples types was examined by Sáez (2016). The goal was to see how data level approach

(oversampling) of some classes and samples types in every class (safe, borderline, rare, or

outlier) affected the efficiency of the classifiers constructed.

The classes and instances types been oversampled in the dataset were established after

selecting the dataset for this study. To begin, each sample in every class is categorised as

safe, rare, borderline, or outlier using the HVDM distance metric for each dataset. Second,

take into account all of the well-grounded design discovered in the previous phase. The

preprocessing consisted of using an oversampling approach and generating fresh synthetic

cases using a scheme much the same to that utilised in binary imbalanced issues by

SMOTE approach.

Finally, the performance of alternative classification methods, such as Support Vector

Machine (SVM), C4.5, and Nearest Neighbour (NN) rule, used to examine the

preprocessed datasets.

29

Following the analysis of the performance findings, various conclusions concerning the

necessity of preprocessing in multiclass imbalanced datasets drawn are:

1) Preprocessing some concrete classes and categories of samples in these classes

(safe, rare, borderline, or outliers) can enhance performance that would otherwise

be indiscriminately harmed by preprocessing all classes. However, if these classes

and types of preprocessing samples are not selected accurately, the results may

suffer.

2) Sorts of examples to be preprocessed: To increase the final result, it's critical to

focus on the data characteristics of each and every problem, research the

distribution of every class, and analyse which instances types should be

preprocessed.

3) Choosing the most appropriate classes and examples for preprocessing. When the

best instances types and class are chosen to be preprocessed, the outcome show

that this preprocessing approach can result in a considerable increase in

performance when compared to not preprocessing any classes or not preprocessing

at all.

The conclusions found can be used to create unique preprocessing learning algorithms in

the future that use this problem structure background knowledge. The conclusions reached

can be used to support a variety of multiclass unbalanced learning concepts.

In a multiclass dataset, Lango et al. (2017) developed a new technique for assessing the

characteristics of samples. The approach determines the safe level by examining the

neighborhood of a minority class example as well as additional information about the

similarity of neighboring classes to the example class.

30

The safe level coefficient was generalised in the following way:

Consider the example x, belonging to the minority class Ci. Its safe level is defined as

follows in respect to l classes of instances in its local neighborhood:

𝑆𝑎𝑓𝑒 =
1

𝑛
∑ 𝑛𝑐𝑗𝜇𝑖𝑗

𝑙

𝑗=1

 (2.1)

where ij is the degree of similarity, nCj is the number of class examples, Cj is the number

of neighbors in the considered neighborhood of x, and n is the total number of neighbors

The paper also developed the idea of class similarity, which is used to extend the process

of identifying types of minority instances to a multiclass context and evaluate if safe level

values are related to standard algorithm classification performance.

The results demonstrated that this method accurately detects minority class distribution

challenges in a variety of artificial and real-world datasets, as measured by values of safe

levels for acceptable minority instances. The inability to derive similarity among classes

from the dataset is a shortcoming of this study. The author states that by utilising safe

levels to adaptively modify resampling, the new method of identifying data complexity in

multiclass datasets can be leveraged to develop new preprocessing algorithms.

To balance multiclass imbalanced data in the presence of data difficulty factor, Janicka et

al. (2019), presented a novel technique called Similarity Oversampling and Undersampling

Preprocessing (SOUP), which models interrelationships between classes. This paper's key

contribution is a new approach for determining the degree of similarity between classes

and then used on Lango et al. (2017) way of determining the safe level of examples. This

method of determining a safe level was then applied on the SOUP algorithm in the process

of oversampling and undersampling process. It was also compared to other well-known

31

methods such as Global-CS, Static-SMOTE, and Multiclass Roughly Balanced Bagging

(MRBB), which it outperformed; it was also compared on decomposition ensembles OVO

and OVA, where it also outperformed them. Regardless of its effectiveness, the heuristic

approach employed to estimate the similarity level must be carefully reviewed.

Nonetheless, SOUP is interested in generalising an underbagging ensemble, such as

Neighborhood Balanced Bagging, as a future research topic in order to increase predictive

ability.

Nwe and Lynn (2020) proposed an efficient resampling method for skewed distributions

in unbalanced datasets. It developed a data preprocessing strategy that focused on the

skewed distribution of data points in the imbalanced dataset to improve the efficiency of

imbalanced data classification. To tackle the issues associated with imbalanced learning

of small disjuncts and short sample size, the author proposes using oversampling and

undersampling algorithms based on k-means clustering. The proposed cluster-based

resampling approaches also included the Tomek Link-based undersampling method to

alleviate the class overlapping problem by deleting the majority samples in overlapping

locations. The COTU approach should be expanded to multi-class imbalanced data in the

future, and an appropriate value of clusters (K) will be defined for the problems of small

disjuncts and small sample size, as the number of clusters (K) affects classification

efficiency.

Mahmoud (2020) demonstrated an Oversampling Technique (modified SMOTE) for

dealing with imbalanced datasets, which addresses the binary classification of imbalanced

datasets. The main goal of the improved SMOTE technique was to create new synthetic

minority samples that would reduce the amount of differences between majority and

32

minority data. When creating new minority data samples, majority data samples are taken

into account. The algorithm returns the majority class's k-nearest neighbors as well as the

minority class's k-nearest neighbors. The distance between the nearest majority and

minority neighbors was then computed and multiplied by a random number. Then, based

on the randomly selected minority neighbor, create a new synthetic sample by increasing

the distance between the nearest majority neighbor and the nearest minority neighbor.

This strategy was compared to the SMOTE method, which is the usual oversampling

approach in literatures, on several datasets using K-Nearest Neighbors, Fuzzy K-Nearest

Neighbors, and Support Vector Machines classifiers, and it outperformed the SMOTE

method. The author of this paper noted that though this technique was only used with

numerical datasets, it might be extended to categorical datasets as well. Another possibility

is to use the method with multiclass datasets.

Duan (2020) proposed a novel classifier ensemble framework based on K-means and

resampling technique (EKR). To begin, data samples in the majority class were divided

into several sub-clusters using K-means, with the k-value determined by the Average

Silhouette Coefficient, and then the number of data samples in each sub-cluster was

adjusted to match that of the minority classes using resampling technology. Finally, each

adjusted sub-cluster and the minority class were combined into several balanced subsets.

Duan (2020) compared to UnderBagging, RUSBoost, SMOTEBagging, and Clustering-

based Undersampling (CBU) utilising different data preparation approaches, Duan, (2020)

finally concluded that EKR performed better. The author suggests that further study be

done to improve the algorithm in detail in order to avoid class overlaps and increase the

33

number of samples in a subset. In addition, the multi-classification task must be addressed,

as well as the development of a multi-classification method.

Kamalov and Denisov (2020), introduced the Multi-Class Combined Cleaning and

Resampling (MC-CCR) algorithm as an oversampling technique. The method, which is

less impacted by minor disjuncts and outliers than SMOTE, uses an energy-based

approach to predict the regions suited for oversampling. It then combines it with a

concurrent cleaning operation aimed at decreasing the impact of overlapping class

distributions on the learning algorithms' performance. Traditional multi-class

decomposition techniques were found to be less influenced by the loss of knowledge

regarding inter-class relationships than the MC- CCR. The strong robustness of the

suggested technique to noise was demonstrated based on the findings of experimental

study conducted for various multiclass imbalanced benchmark datasets. The author

indicated that novel approaches of cleaning the majority observations placed near the

minority instances, which may be embedded in MC-CCR, should be examined as a

direction for future work.

2.7 Summary of Review

After critical study of related works about imbalanced dataset and their preprocessing

approaches, it was determined that,

i. An expert should supply the degrees of similarity, or they can be derived from

domain knowledge Lango et al. (2017). If neither of these options is accessible,

some heuristic approaches may be employed. Because the class cardinality ratio

does not explicitly reflect the degree of similarity between classes, the heuristics

technique devised by Janicka et al. (2019) to assess the degree of similarity

between classes requires further evaluation.

34

ii. Since it has also been demonstrated experimentally by Napierala and Stefanowski

(2016), Napierala and Stefanowski (2012) that the unsafe examples (categorised

into, rare, borderline and outliers) are hard for learning and deteriorate performance

for class imbalanced problem, this work will consider the unsafe region during

undersampling, paying more attention on borderline region that was not covered in

the work of Napierala and Stefanowski (2016).

Finally, this work will design a new technique for evaluating the degree of similarity

among classes using the relationship between class examples and implementing it on a

new resampling algorithm that is meant to consider unsafe region in the dataset when

resampling the dataset.

35

CHAPTER THREE

3.0 RESEARCH METHODOLOGY

3.1 Approach Used

With machine learning centred around data analysis, which is based on the idea that

systems can learn patterns from dataset. This makes it more convincing why expert or

domain knowledge should not be depended on, to be able to ascertain the data similarity

degree between classes in a given sample of dataset. As proposed in previous literature,

data similarity information can be derived from an expert or domain knowledge Lango et

al. (2017), or by the used of an heuristic approach that evaluate the ratio between classes

Janicka et al. (2019). Therefore, this study introduces a new technique to ascertain the data

similarity degree from dataset, which is used to evaluate the safe level of all examples in

a dataset.

3.1.1 System capacity used

1) Dell Laptop (Intel(R) Core (TM)2 Duo CPU 2.00GHz, RAM:4.00GB, 64-bits

windows 10pro OS)

3.1.2 Other materials and tools used

1) Anaconda Navigator Software

2) Chrome browser

3) Microsoft word (Office 16)

4) Airtel 4G internet Router

5) Python (Jupyter interactive computing environment, other python libraries used

includes pandas, matplotlib, yellowbrick, sklearn, numpy)

6) Microsoft excel (Office 16)

36

3.2 Research Workflow

The research workflow presents the progression (starting from the imbalanced dataset

down to the preprocessed balanced dataset) of this research work; presenting the whole

process in the design of the new multiclass resampling technique. Figure 3.1 gives the

phases that was covered in this data preprocessing technique development. The workflow

in designing new preprocessing technique as presented Figure 3.1, which was further sub-

divided in the research framework.

Figure 3.1: Research Workflow

Testing Set

Training Classifier

Imbalanced dataset

Dataset division

Training Set

New Preprocessing

Technique

Minority Class(es) Majority Class(es)

Oversampling Undersampling

Balanced Training

Set

Performance Evaluation

37

Figure 3.2, the research framework presented in detail the data preprocessing stage,

classification stage and performance evaluation stage; these phases gives an overview of

what was achieve at each stage of the experiment and the tools used. For the

implementation of the new multiclass resampling technique, the data pre-processing stage

and classification stage were implemented using python programing language and its

libraries.

Figure 3.2 Research Framework

Multiclass

Imbalanced Training

Dataset

Evaluation of

method used

Performance

Evaluation

Data Preprocessing

Phase

Classification Phase

Performance

Evaluation Phase

Performance

Evaluation matrix:

Accuracy,

Precision, Recall,

G-Mean, F-Score,

AUC

Analysing the

degree of similarity

between classes

using the proposed

technique

Identification of

safe and unsafe

(Borderline, Rare

and Outliers)

examples using KNN

Comparing related

approaches such

as

SOUP

MRBB

SOUPBag

Classifiers Used

CART

KNN

SVM

Evaluate the safe

level of examples in

the dataset

Balanced dataset

using the proposed

data level

informative

oversampling and

undersampling

38

3.3 Data Collection

From the nature of this work, it is clear that data level resampling technique is not domain

specific, so dataset from diversify field with different number of instances, classes and

difficulty levels were used. Critically analysed five (5) diversified real-world datasets from

UCI repository were used to evaluate the proposed technique. These datasets have been

chosen because they represent different domain, varying degrees of difficulty, has different

sizes and imbalance ratios. Above all, these dataset were used based on their popular usage

in previous experimental studies of class imbalance problems. The main characteristics of

these datasets are presented in Table 3.1.

TABLE 3.1: Characteristics of Multiclass Imbalanced Dataset used

No Description No of

Attributes

Class

Distribution

Minority

class(es)

Manority

class(es)

1 balance-scale 625 49/288/288 1 2

2 hates_roth 160 30/64/66 1 2

3 Car 1728 65/69/384/1210 2 2

4 Cmc 1473 628/333/511 1 2

5 new_thyriod 225 30/35/150 2 1

3.4 Analysis of the Preprocessing Phases

To achieve the stated aim of this research work, which is the development of a resampling

technique for multiclass dataset, the procedure have been spitted into phases as follows:

3.4.1 Identifying the types of examples

Different difficulty variables are associated with different sorts of examples - safe and

unsafe (difficult examples). Previous work in class imbalance analyse the ratio between

the number of minority and majority examples present in its neighborhood to identify the

type of a given case. K-nearest neighbors or kernel functions can be used to model this. In

this study, k-nearest neighbors was used because of its simplicity and adoption by the

benchmark literature.

39

3.4.1.1 Categorising the unsafe examples

To categorise the types of example, the class label of the k-nearest neighbor is been

analysed. The value for k in this work is five (5), due to its usage in imbalanced

preprocessing and the Euclidean distance is also been used to calculate the distance

between examples. Based on the proportion, the examples are labeled as safe and unsafe,

where the unsafe examples are further categorised in the following way as used in previous

class imbalance works, in the manner described as proposed by Napierala and

Stefanowski, (2016):

5:0 or 4:1 – Safe example is one that is labeled as 4 to 5 examples (further denoted as S).

3:2 or 2:3 – a borderline example (denoted as B). Because the cases with a 3:2 ratio are

accurately identified by their neighbors, they may still be safe. However, because the

number of neighbors from the interest class and other classes is nearly equal, it's possible

that this example is too close to the decision boundary between the classes. As a result,

any examples with a 2:3 or 3:2 ratio are considered borderline examples.

1:4 – Only if it has a neighbor from the same class, a rare example (designated as R), has

the proportion of neighbors either 1:4 (additionally, in case of 1:4, it must point to the

analysed example).

0:5 – Any example with all of its neighbors belonging to a different class is referred to as

an outlier, and it is designated by O.

3.4.2 Proposed informative class similarity evaluation technique

To model the relationships between classes in multiclass imbalanced dataset, information

of the similarity between pairs of classes were exploited. In general, the intuition behind

this similarity degree is as follows: When a particular class's example x has some neighbors

from different classes, the neighbors with the highest similarity are preferred. Consider the

40

asthma learning problem, in which two asthma classes are characterised as being more

similar than the non-asthmatic class. If an asthma-type-1 example is not surrounded by

just other asthma-type-1 examples (which is the ideal circumstance), it's preferable to have

neighbors from the asthma-type-2 class rather than the no-asthma class. Such a

neighborhood would allow us to consider the studied example to be safer - it would be

easier to recognise it as a member of its class (since it would be less likely to suffer from

majority bias). In previous works, the similarity information where acquired from a subject

matter expert or domain knowledge. The method of getting the similarity degree between

classes was further ascertained by using a heuristic approach which evaluate similarity

degree information from the ratio between classes.

This work proposed an approach which models the similarity relationship between

minority and majority classes in imbalance dataset. It considered more interior data

features, such as the attributes values of randomly selected examples to ascertain the

similarities between classes. Since the basic idea of machine learning is learning from data,

then the data should be capable of generating the similarities information between classes

instead of depending on human knowledge which may be bias or inaccurate.

In more formal terms, it is assumed that for each pair of classes Ci, Cj, the degree of their

similarity to itself is defined as μii =1. The degree of similarity as a real μij ∈ [0, 1]. The

similarity of a class to another does not have to be symmetric, for example: for some

classes Ci, Cj it may happen that μij ≠ μji. Although the values of μij are defined individually

for each dataset, the general recommendation is to have higher similarities (μig → 1) for

other minority classes Cg, while similarities to majority classes Ch should be rather low

(μih → 0).

41

3.4.2.1 Degree of similarities between classes evaluation steps

1. Firstly, randomly select 20 examples from each class in the dataset.

2. Next, evaluate the mean for each class attributes.

3. Take the average of all the mean score for each class to generate a value for each

class.

4. Take the difference between each class in the dataset

5. Finally, based on the value for each class, multiply or divide the values by a

multiple of 10 to derive a value ranging from 0 to 1. These values now serves as

the degree of similarities (μ) between pair of classes.

It is worth noting that this process can only be carried out on numeric attributes or

categorical values which can be converted. For example, a dataset with attribute “Male”

and “Female” can be represented as 1 and 0 respectively.

3.4.3 Examples safe level evaluation

Imbalanced data difficulty factors correspond to local data characteristics seen in specific

sub-regions of the minority class distribution, and the mutual position of an example in

relation to examples from other minority and majority class(es) impacts learning

classifiers. The Safe Level assessment considers both the degree of similarity across

classes and the homogeneity of a k neighborhood.

The safe level coefficient was generalised in the following way:

Consider the case of an example x, who belongs to the minority class Ci. Its safe level is

defined as follows in relation to l classes of instances in its neighborhood as:

𝑆𝑎𝑓𝑒(𝑥𝑐𝑗) =
1

𝑛
∑ 𝑛𝑐𝑗𝜇𝑖𝑗

𝑙

𝑗=1

 (3.1)

Where

42

μij is the degree of similarity,

nCj is the number of examples from class Cj, in the considered neighborhood of x

n is the total number of neighbors.

The safe level value for each example is analysed as follows: the lower the value, the more

dangerous (difficult) it is, and vice versa. After successfully evaluating the safe level of all

examples in the dataset, the minority classes are informatively oversampled by duplicating

the examples with the higher safe level value while the majority class(es) are also

informatively undersample by removing the examples with the least safe level until the

required threshold is acquired.

3.5 Algorithm Design

The proposed similarity oversampling and undersampling preprocessing technique use the

outcome of the similarity information and data difficulty factor to evaluate the safe level

which is then applied to determine the examples in the majority classes to undersample

and the examples in the minority classes to oversample.

From Table 3.2, line 1 split the entire dataset into their respective classes. Line 2: creates

a dataframe which will be used to store the processed balanced dataset. Line 3, evaluate

the cardinality been the average of largest minority and the smallest majority class. This

cardinality value is then used as benchmark during the resampling process.

Line 4 to 6 evaluate the Nearest Neighbor (5NN) of all the examples in each class. This

neighbourhood information is then applied to evaluate the data difficulty factor of each

example based on the class of its neighbours. Next, line 7 to 9 evaluate the similarity

43

between the classes. It continued by processing the safe level of each examples in the

dataset using Equation 3.1.

Finally, the undersampling of the examples with the least safe level was done and

oversampling of examples with the highest safe level and highest distance were also

performed.

3.5.1 Multiclass resampling algorithm design

Start

Input: S Original training set of |S| examples with n classes; Cmin: Indexes of minority

classes; Cmaj indexes of majority classes; µij: similarities between classes.

Output: So: Balanced training set

Stop

44

Table 3.2: Multiclass Resampling Algorithm

1. Start

2. Split dataset S into homogenous parts S1, S2, ……, Sn. Each Si contain all instances

from i class

3. So = {}

4. m avg (mini ∊ Cmaj|Si|, maxj ∊ Cmin|Sj|)

5. for all x ∊ S do

6. the k nearest neighbors of x according to session 3.3.1.1 is find

7. end for

8. for all x ∊ S do

9. calculate the similarity degree between class according to session 3.3.2.1

10. end for

11. for all x ∊ S do

12. evaluate the safe level of xi, according to Equation (3.1) in session 3.3.3

13. end for

14. for all i ∊ Cmaj do

15. Remove |Si| - m, // Instances in Si with the least safe level value

16. So So U Si

17. end for

18. for all i ∊ Cmin do

19. Duplicate m - |Sj|, //Sj , instances with the most safe level values and with the

highest distance between examples.

20. So So U Sj

21. end for

22. return So

23. Stop

3.6 Performance Evaluation Matrix

The performance of the algorithm will be evaluated with the following matrix: F1-score,

Geometric-mean (G-Mean), and Area Under curve (AUC). The definition of these

evaluation metrics uses in at evaluation, the confusion matrix presented in Table 3.3.

45

Table 3.3: Confusion Matrix

Confusion matrix
Predicted Labels

Positive Negative

Actual Labels
Positive TP FN

Negative FP TN

From Table 3.3, the number of positive samples projected as "positive" is known as True

Positive (TP). The number of positive samples predicted as "negative" is known as false

negative (FN). The number of negative samples predicted as "positive" is known as false

positive (FP). The number of negative samples predicted as "negative" is also known as

true negative (TN).

Accuracy: The proportion of correctly predicted samples to total samples, which is

computed using Equation (3.2)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3.2)

F1-score: The F1-score of positive data takes into account both the Precision and Recall

of the classification model, which is the harmonic average of Precision and Recall as in

Equation 3.11:

Where p denote the positive instances

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.3)

𝑅𝑒𝑐𝑎𝑙𝑙𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.4)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒𝑝 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑃 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑃 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑃
 (3.5)

Similarly, the F1-score for negative samples is derived as follows:

Where n denote the negative instances

46

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (3.6)

𝑅𝑒𝑐𝑎𝑙𝑙𝑁 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (3.7)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒𝑁 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑁
 (3.8)

As a result, synthetic Precision, Recall, and F1-score are generated for the complete dataset

as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑃 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁

2
 (3.9)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑅𝑒𝑐𝑎𝑙𝑙𝑃 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑁

2
 (3.10)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
𝐹1 − 𝑆𝑐𝑜𝑟𝑒𝑃 + 𝐹1 − 𝑆𝑐𝑜𝑟𝑒𝑁

2
 (3.11)

G-mean, which is defined as Equation (17) can be used to evaluate the overall

performance of an algorithm:

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.12)

𝑇𝑁𝑅 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (3.13)

𝐺 − 𝑚𝑒𝑎𝑛 = √𝑇𝑃𝑅 × 𝑇𝑁𝑅 (3.14)

TPR and TNR are used by G-mean to assess positive and negative class classification

performance. The G-mean is not optimal if one of the two is really small.

AUC (Area Under Curve) ROC (Receiver Operating Characteristic) curves uses a model's

ability to distinguish between classes in classification issues to describe the standard

performance measurements. AUC represents the degree or measure of separability,

whereas ROC is a probability curve. AUC with a higher value indicates that the model is

more accurate at predicting true positives. It also depicts the region under the ROC, which

47

is a fairly solid categorisation evaluation criteria. The trade-off between TPR and FPR can

be seen using the ROC. The AUC scale ranges from 0 to 1. The higher the AUC value, the

better the algorithm's performance.

The performance of the proposed resampling technique was evaluated and compared

against KNN and CART, F1-score, G-mean, and AUC. These evaluation matrices have

been used in this work because of its adoption in evaluation algorithms in previous

literatures.

48

CHAPTER FOUR

4.0 RESULTS AND DISCUSSION

4.1 Degree of Data Difficulty Present in Dataset Used

Presented on Table 4.1 is the value of each data difficulty factor present in the dataset used

for the evaluation of the new technique. This data difficulty value of each example was

used to evaluate the safe level of examples to ascertain the efficiency of the new technique

and to ascertain to what degree does the technique improves performance even in the

presence of unsafe (borderline, rare and outlier) examples. From Table 4.1, the most

difficult dataset for a classifier to learn from is hayes-roth, this difficulty is due to the

presence of more unsafe examples such as the borderline, rare and outlier examples than

the safe example while the easiest to learn from is the car dataset since it contain only safe

examples.

Table 4.1: Analysis of Data Difficulty Factors in Dataset

Description Code Safe (%) Borderline (%) Rare (%) Outlier (%)

new-thyroid NT 91 8 1 0

balance-scale BS 93 6 1 0

cmc CM 77 20 3 0

hayes-roth HR 28 54 13 6

car CA 100 0 0 0

4.1.2 Similarity degree and safe level of classes in the dataset

From the multiclass resampling technique, similarities degree of examples were used in

the derivation of the safe level of examples. Firstly, the similarity degree between classes

conducted on each of the five data sample used for this study is presented in Table 4.2.

49

Table 4.2: Dataset Classes Similarity Degree

Dataset

Description

new-

thyroid

balance-

scale

cmc hayes-

roth

Car

Similarity

Degree (𝜇)

𝜇12 = 0.21

𝜇13 = 0.83

𝜇23 = 0.39

𝜇12 = 0.99

𝜇13 = 0.99

𝜇23 = 0.99

𝜇12 = 1.00

𝜇13 = 0.99

𝜇23 = 1.00

𝜇12 = 0.21

𝜇13 = 0.83

𝜇23 = 0.39

𝜇12 = 0.91,𝜇41 = 0.78

𝜇13 = 1.00, 𝜇42 = 0.99

𝜇23 = 0.09, 𝜇43 = 1.00

In evaluating the performance of the proposed technique KNN, SVM and CART where

used for the classification of 5 standard imbalanced dataset after balancing the original

dataset. Table 4.3 presents the result of this new technique in terms of accuracy, precision,

recall and F-score.

Table 4.3: Summary of Classifiers Result

Dataset

Description

Classifier Accuracy

(%)

Precision Recall F-score

NT KNN 96 0.97 0.96 0.96

CART 100 1.00 1.00 1.00

 SVM 84 0.90 0.85 0.85

BS KNN 96 0.97 0.96 0.96

CART 100 1.00 1.00 1.00

 SVM 99 0.99 0.99 0.99

CM KNN 91 0.91 0.92 0.92

CART 100 1.00 1.00 1.00

 SVM 78 0.79 0.78 0.78

HR KNN 72 0.72 0.75 0.72

CART 99 0.99 0.99 0.99

 SVM 63 0.65 0.64 0.63

CA KNN 100 1.00 1.00 1.00

CART 100 1.00 1.00 1.00

 SVM 100 1.00 1.00 1.00

4.1.3 General classifier results analysis

The balanced dataset were classified using 5NN, CART and SVM, from analysis, the

nature of dataset in terms of safe and unsafe examples really played a great role in the

result as dataset with more safe examples performed generally better than the unsafe. From

50

the representation in Figure 4.1, despite this data nature, CART performed outstanding,

for it was able to achieve a better result in respective of the data nature.

Figure 4.1: Accuracy of Classifiers on the Techniques

The F-Score is used to evaluate an algorithm's performance when dealing with imbalanced

cases. It is the weighted average of the precision and recall measures, with false positives

(FP) and false negatives (FN) taken into consideration. Figure 4.2 gives the analysis of the

F-Score for the new techniques on KNN, CART and SVM classifiers. This analysis also

shows that all the classifiers performed well but CART showed a near excellent

performance.

0.96 0.96
0.91

0.72

11 1 1 0.99 1

0.85

0.99

0.78

0.63

1

0

0.2

0.4

0.6

0.8

1

1.2

NT BS CM HR CA

Classifier Accuracy

KNN CART SVM

51

FIGURE 4.2: F-Score of Classifiers on the dataset

4.1.4 Analysis of AUC ROC curve for the technique

Figure 4.3 presents the Area Under Curve (AUC) Receiver Operating Characteristic

(ROC) for K nearest neighbor classifier on the HR dataset with value 0.97. The ROC

visualise the trade-off between TPR and FPR, with the range of the AUC being 0 to 1. The

larger the AUC value, the better the performance of the technique. The diagrams for the

AUC ROC curve the other datasets are presented in appendix A.

Figure 4.3: ROC Curve for KNN Classifier on hayes_roth Dataset

0

0.2

0.4

0.6

0.8

1

1.2

N T B S C M H R C A

F-SCORE

KNN CART SVM

52

Figure 4.4 presents the Area Under Curve for the Receiver Operating Characteristic (ROC)

for CART classifier on the HR dataset with value 0.94.

FIGURE 4.4: ROC Curve for CART Classifier on hayes_roth Dataset

Figure 4.5 presents the Area Under Curve for the Receiver Operating Characteristic (ROC)

for SVM classifier on the HR dataset with value 0.84.

Figure 4.5: ROC Curve for SVM Classifier on hayes_roth Dataset

53

Table 4.4 presents the AUC ROC values for the new technique on the balanced dataset

and classifiers used in this study.

Table 4.4: Summary of the AUC ROC for classifiers and datasets used

Data Description

MIRT

KNN CART SVM

NT 1.00 1.00 1.00

BS 0.90 0.94 1.00

CM 0.87 0.74 0.82

HR 0.97 0.94 0.84

CA 1.00 1.00 1.00

To further analyse the AUC ROC results for each dataset, the results are presented in

Figure 4.6. The results generally shows that KNN performed better than CART and SVM.

For the NT and CA datasets all the classifier showed an outstanding performance of 100

percentage. For the most difficult dataset HR, KNN also performed better.

54

Figure 4.6: Summary of the AUC ROC results for all dataset used

4.2 Discussion of Result

Firstly, from this point on, the proposed technique is referred to as Multiclass Informative

Preprocessing Technique (MIRT). The evaluation of MIRT have been done analysing the

accuracy, precision, recall, F-score, G-mean and AUC ROC curve results.

Furthermore, from the work of Janicka et al. (2019) and De and Do (2020), whose

techniques are been use to compare MIRT, it was observed that G-mean value was their

main criteria for comparism. MIRT will be compared with some of the recent best

performing methods such as SOUP, Multi-class Roughly Balanced Bagging (MRBB) and

SOUPBag. From Table 4.5, it is observed that MIRT technique performed better than

SOUP, SOUPBag and MRBB most especially when used with the CART and KNN

classifiers.

0

0.2

0.4

0.6

0.8

1

1.2

NT BS CM HR CA

MIRT KNN MIRT CART MIRT SVM

55

Table 4.5: G-Mean Comparism of MIRT with SOUP, SOUPBag and MRBB.

Data

Description

MIRT MRBB MRBB SOUP SOUPBag

KNN CART SVM KNN DT J4.8 KNN

NT 0.983 1.00 0.883 0.730 0.977 0.922 0.897

BS 0.971 1.00 0.995 0.704 0.637 0.585 0.750

CM 0.933 0.985 0.837 0.545 0.531 0.535 0.485

HR 0.931 1.000 0.640 N/A N/A 0.835 N/A

CA 1.000 1.000 1.000 0.957 0.811 0.941 0.851

Figure 4.7 compares the performance of MIRT with SOUP, SOUPBag and MRBB. MIRT

balanced dataset was classified using KNN, SVM and CART, with KNN and CART

performing better that SVM, even with the HR dataset, that has greater percentage of

unsafe examples than the safe, CART performance was still outstanding compare to SVM

and KNN. From the G-mean result, KNN was used in the classification of all dataset from

all techniques, MIRT KNN results has an overall better performance than the other

techniques.

56

Figure 4.7: Comparism of MIRT with SOUP, SOUPBag and MRBB

From the results obtained by running the MIRT balanced dataset on the three classifiers

and comparing it with some of the best methods, as an example, consider the following:

i. Overall performance of MIRT is better in all datasets used, because of its

performance even in the presence of unsafe examples, just as in HR.

ii. ii. Using Decision Trees (CART) as a classifier appears to perform better

with MIRT, owing to its superior performance when compared to KNN and SVM.

4.2.1 Experimentation

This presents the step by step procedure used to implement MIRT resampling technique.

Firstly, some python libraries were imported into Jupiter notebook, which is the python

interactive environment used for the implementation of the algorithm. The libraries

includes: Numpy, Pandas, Scikit-learn, Imblearn, Seaborn, Yellowbrick and Matplotlib.

Pandas is a fast, powerful, flexible and easy to use open source data analysis and

manipulation tool, built on top of the python programming language. All manipulation of

0

0.2

0.4

0.6

0.8

1

1.2

NT BS CM HR CA

MIRT KNN MIRT CART MIRT SVM MRBB KNN

MRBB DT SOUP J4.8 SOUPBag KNN

57

the dataset was carried it using the pandas library. Numpy is a fast and versatile python

numeric computing library for arithmetic and logical operation in the implementation.

Scikit-learn is a powerful data prediction library for machine learning process, it was built

on Numpy, Matplotlib, Scipy. It is the most used python data prediction library for

machine learning process. The predictions of this work was done using sklearn library.

Imbalanced-learn (imported as imblearn) is an open source, MIT-licensed library relying

on scikit-learn (imported as sklearn) and provides tools when dealing with classification

with imbalanced classes. Seaborn, Yellowbrick and Matplotlib are all python data

visualisation library, use for data visualisation purposes.

After importing all necessary python library, the dataset was also read into the computing

environment. Next, missing attributes are search for in the dataset and were filled using

already existing approach in pandas. It was proceeded by randomly selecting twenty (20)

samples from the dataset which were evaluated to deduce the data similarity degree

between classes. The steps for evaluation the data similarity degree was presented in

session 3.4.2.1.

Next, the five (5) nearest neighbors of all the examples were evaluated using

sklearn.neighbors. From the result of the evaluation, each data sample was grouped into

safe, borderline, rare and outlier difficulty type. This was proceeded by using the data

difficulty information and data similarity degree information to evaluate the safe level of

examples.

58

After successfully evaluating the safe level of all examples in the dataset, the minority

classes are informatively oversampled by duplicating the examples in the dataset with the

higher safe level value while the majority class(es) are also informatively undersample by

removing the examples with the least safe level until the required threshold is acquired;

which then produces a balanced dataset. Classification was done on the balanced dataset

using KNN, SVM and CART classifier. The results were computed on different

visualisation library for better representation. The following metrics were used to evaluate

the performance of the algorithm: precision, recall, f1-score, AUC ROC, G-mean; which

were already implemented in sklearn.

59

CHAPTER FIVE

5.0 CONCLUSION AND RECOMMENDATIONS

5.1 Summary

This research work developed a multiclass resampling technique using class similarities

degree and data difficulty factors information from the dataset. The data difficulty and

similarity information’s were implemented using KNN to determine the neighbours of

each example in the dataset and also the distance between each example and its neighbours.

The information about the neighbours of each example was used to derive their difficulty

type (safe and unsafe). It went further to select 20 samples from each class in the dataset

which were evaluated to derive the similarity degree between classes. Finally, the

similarities degree and difficulty type of each example were used to evaluate the safe level

of examples; which then served as the criteria for selecting the oversampling and

undersampling examples. This proposed technique was tested on 5 standard imbalanced

dataset, which were selected based on their difficulty level. After resampling the dataset,

classification of the dataset was done using KNN, SVM and CART classifier. The

performance of the proposed technique, MIRT on CART classifier which achieved a 100

percentage in 4 of the 5 data samples used was better than SOUP, SOUPBag and MRBB

resampling techniques which were compared using the G-mean values. Also, among the

claasifiers used, CART performed way better than KNN and SVM. The performance of

the proposed technique was outstanding when compared with Similarity Oversampling

and Undersampling Preprocessing SOUP resampling technique.

60

5.2 Conclusions

With the study of similarities degree, data intrinsic characteristic and multiclass

imbalanced nature of dataset the following conclusion were drawn:

The aim of this study was to develop a multiclass resampling technique using class

similarities degree and data difficulty factor. This was achieved by using KNN to

determine the neighbours of each examples, these examples are further categorised as safe,

borderline, rare and outliers based on the class of its neighbours. Next, 20 samples from

each class in the dataset were evaluated to derive the similarity degree between classes.

These data difficulty type of each example and similarity information were used to

evaluate the safe level of each example in the dataset; the safe level of example serves as

the criteria for selecting the oversampling and undersampling examples.

This proposed technique was implemented using Jupiter notebook, a python interactive

computing environment and other python libraries which includes pandas, yellowbrick,

seaborn, sklearn, matplotlib, numpy. Multiclass Informative Resampling Technique

(MIRT) was evaluated using standard parameters such as F-Score, AUC (Area Under ROC

Curve) and Geometric Mean (G-Mean). These evaluation metrics where also implemented

in python.

Finally, MIRT was compared with SOUP, SOUPBag and MRBB resampling technique

and was found to outperforming them all; most especially the result from CART classifier

with outstanding accuracy for all datasets used. From the comparism presented in Table

4.3, it was observed that MIRT performed better than SOUP, SOUPBag and MRBB due

to its outstanding performance in the presence of complex unsafe data difficulty factors.

61

The MIRT increase the rate of detection of the minority class in the presence of complex

data difficulty factor and also increased classifier performance which is very key in

building a resampling technique.

5.3 Contributions to Knowledge

The contributions reached at the end of this work could be summarised as:

(i) Design of an approach for evaluating the degree of similarities between classes in

multiclass imbalanced dataset.

(ii) Development of a new resampling technique for informatively identifying the

appropriate examples to oversample and undersample.

5.4 Recommendations

The main achievements of this study were highlighted in the section above, however, some

areas of research that can be further explore are:

(i) This method for evaluating class similarity degree should also be applied on binary

preprocessing technique.

(ii) New multiclass resampling technique design should put into consideration data

intrinsic characteristic and inter-relationship between classes and examples;

avoiding uninformative random oversampling and random undersampling.

(iii) The design method for evaluating the similarity degree between classes can be used

with other resampling methods such as SMOTE, ADASYN to improve

performance.

62

REFERENCES

Alejo, R., Monroy-de-Jesús, J., Ambriz-Polo, J. C., & Pacheco-Sánchez, J. H. (2017). An

improved dynamic sampling back-propagation algorithm based on mean square error

to face the multi-class imbalance problem. Neural Computing and Applications,

28(10), 2843–2857. Retrieved from https://doi.org/10.1007/s00521-017-2938-3

Ali, H., Salleh, M. N. M., Saedudin, R., Hussain, K., & Mushtaq, M. F. (2019). Imbalance

class problems in data mining: A review. Indonesian Journal of Electrical

Engineering and Computer Science, 14(3), 1552–1563.

Blaszczynski, J., & Lango, M. (2016). Diversity Analysis on Imbalanced Data Using

Neighbourhood and Roughly Balanced. International Conference on Artificial

Intelligence and Soft Computing , 552–562.

Błaszczyński, J., & Stefanowski, J. (2018). Local data characteristics in learning classifiers

from imbalanced data. Studies in Computational Intelligence, 738, 51-85.

Buda, M., Maki, A., & Mazurowski, M. A. (2018). A systematic study of the class

imbalance problem in convolutional neural networks. Neural Networks, 106, 249–

259. Retrieved from https://doi.org/10.1016/j.neunet.2018.07.011

Cruz, R. M. O., Souza, M. A., Sabourin, R., & Cavalcanti, G. D. (2019). Dynamic

Ensemble Selection and Data Preprocessing for Multi-Class Imbalance Learning.

International Journal of Pattern Recognition and Artificial Intelligence, 33(11).

De, A., & Do, N. (2020). Techniques to deal with imbalanced data in multi-class

problems : A review of existing methods. Mestrado Integrado em Engenharia

Informática e Computação, 5(2).

Duan, H., Wei, Y., Liu, P., & Yin, H. (2020). A novel ensemble framework based on K-

means and resampling for imbalanced data. Applied Sciences (Switzerland), 10(5),

1684.

Fernández, A., García, S., Galar, M., Prati, R. C., Krawczyk, B., & Herrera, F. (2019).

Learning from imbalanced data. Studies in Computational Intelligence (807), 81-110.

Fernández, A., López, V., Galar, M., Del Jesus, M. J., & Herrera, F. (2013). Analysing the

classification of imbalanced data-sets with multiple classes: Binarization techniques

and ad-hoc approaches. Knowledge-Based Systems, 42, 97–110.

Fernández, A., Salvador, G., Galar, M., Prati C, R., Krawczyk, B., & Herrera, F. (2018).

Learning from imbalanced data Sets. IEEE Transactions on Knowledge and Data

Engineering (21), 978.

Galar, M., Fernández, A., Barrenechea, E., Bustince, H., & Herrera, F. (2011). An

overview of ensemble methods for binary classifiers in multi-class problems:

Experimental study on one-vs-one and one-vs-all schemes. Pattern Recognition,

44(8), 1761–1776.

63

García, S., Zhang, Z. L., Altalhi, A., Alshomrani, S., & Herrera, F. (2018). Dynamic

ensemble selection for multi-class imbalanced datasets. Information Sciences, 445,

22–37.

Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., & Bing, G. (2017).

Learning from class-imbalanced data: Review of methods and applications. Expert

Systems with Applications, 73, 220–239. Retrieved from

http://dx.doi.org/10.1016/j.eswa.2016.12.035

He, H., & Garcia, E. A. (2009). Learning from Imbalanced Data. IEEE Transactions on

Knowledge and Data Engineering, 21(9), 1263–1284.

Hossen, I., Goh, M., Connie, T., & Aris, A. (2018). Combining Sampling and Ensemble

Classifier for Multiclass Imbalance Data Learning, Knowledge-Based Systems 3(2),

241–251.

Janicka, M. A., Lango, M. A., & Stefanowski, J. E. (2019). Using Information On Class

Interrelations To Improve Classification Of Multiclass Imbalanced Data : A New

Resampling Algorithm. International Journal of Applied Mathematics and Computer

Science., 29(4), 769–781.

Jedrzejowicz, J., Kostrzewski, R., & Neumann, J. (2018). Imbalanced data classification

using MapReduce and relief. Journal of Information and Telecommunication, 2(2),

217-230.

Kamalov, F., & Denisov, D. (2020). Gamma distribution-based sampling for imbalanced

data. Knowledge-Based Systems, 207, 106368. Retrieved from

https://doi.org/10.1016/j.knosys.2020.106368

Kaur, H., Pannu, H. S., & Malhi, A. K. (2019). A Systematic Review on Imbalanced Data

Challenges in Machine Learning : Applications and Solutions. ACM Computing

Surveys (CSUR), 52(4), 1-36.

Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. (2011). Comparing boosting and

bagging techniques with noisy and imbalanced data. IEEE Transactions on Systems,

Man, and Cybernetics Part A:Systems and Humans, 41(3), 552–568.

Koziarski, M., Woźniak, M., & Krawczyk, B. (2020). Combined Cleaning and Resampling

algorithm for multi-class imbalanced data with label noise. Knowledge-Based

Systems, 204, 106223. Retrieved from https://doi.org/10.1016/j.knosys.2020.106223

Krawczyk, B. (2016). Learning from imbalanced data: open challenges and future

directions. Progress in Artificial Intelligence, 5(4), 221–232.

Lango, M., Napierala, K., & Stefanowski, J. (2017). Evaluating Difficulty of Multi-class

Imbalanced Data. International Symposium on Methodologies for Intelligent Systems,

312–322.

Lango, M., & Stefanowski, J. (2018). Multi-class and feature selection extensions of

Roughly Balanced Bagging for imbalanced data. Journal of Intelligent Information

64

Systems, 50(1), 97–127.

Lin, W., Tsai, C., Hu, Y., & Jhang, J. (2017). Clustering-based undersampling in class-

imbalanced data. Information Sciences, 410, 17–26.

Liu, Y., Wang, Y., Ren, X., Zhou, H., & Diao, X. (2019). A Classification Method Based

on Feature Selection for Imbalanced Data. IEEE Access, 7, 81794–81807.

Mahmoud, A., El-Kilany, A., Ali, F., & Mazen, S. (2020). A Novel Oversampling

Technique To Handle Imbalanced Datasets. Communications of the ECMS, 177–182.

Max, R., Hannah, R., & Ortiz-Ospina, E. (2020). Coronavirus Disease (COVID-19) –

Research and Statistics. Retrieved from OurWorldInData.org

Nannes, B. B., Quax, R., Ashikaga, H., Bernus, O., & Ha, M. (2020). Computational

Science. Twenty Years of Computational Science. Lecture Notes in Computer

Science, (12140). Retrieved from http://link.springer.com/10.1007/978-3-030-

50423-6

Napierala, K., & Stefanowski, J. (2012). Identification of Different Types of Minority

Class Examples in Imbalanced Data. International Conference on Hybrid Artificial

Intelligence Systems , 139–150.

Napierala, K., & Stefanowski, J. (2016). Types of minority class examples and their

influence on learning classifiers from imbalanced data. Journal of Intelligent

Information Systems, 46(3), 563–597. Retrieved from

http://dx.doi.org/10.1007/s10844-015-0368-1

Napierała, K., Stefanowski, J., & Wilk, S. (2010). Learning from imbalanced data in

presence of noisy and borderline examples. International conference on rough sets

and current trends in computing, 6086 LNAI, 158–167.

Nwe, M. M., & Lynn, K. T. (2020). Effective resampling approach for skewed distribution

on imbalanced data set. IAENG International Journal of Computer Science, 47(2),

234–249.

Rendón, E., Alejo, R., Castorena, C., Isidro-Ortega, F. J., & Granda-Gutiérrez, E. E.

(2020). Data sampling methods to deal with the big data multi-class imbalance

problem. Applied Sciences (Switzerland), 10(4), 1276.

Sáez, J. A., Krawczyk, B., & Woźniak, M. (2016). Analyzing the oversampling of different

classes and types of examples in multi-class imbalanced datasets. Pattern

Recognition, 57, 164–178. Retrieved from

http://dx.doi.org/10.1016/j.patcog.2016.03.012

Sun, Y., Wong, A. K. C., & Kamel, M. S. (2009). Classification of imbalanced data: A

review. International Journal of Pattern Recognition and Artificial Intelligence,

23(04), 687–719.

Thabtah, F., Hammoud, S., & Kamalov, F. (2019). Data Imbalance in Classification :

Experimental Evaluation. Information Sciences, 513, 429-441.

65

Vluymans, S., Fernández, A., Saeys, Y., Cornelis, C., & Herrera, F. (2018). Dynamic

affinity-based classification of multi-class imbalanced data with one-versus-one

decomposition: a fuzzy rough set approach. Knowledge and Information Systems,

56(1), 55–84.

Wang, S., & Yao, X. (2012). Multiclass imbalance problems: Analysis and potential

solutions. IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics, 42(4), 1119–1130.

Weiss, G. M. (2013). Foundations of Imbalanced Learning. Imbalanced Learning:

Foundations, Algorithms, and Applications, 13-41.

Wojciechowski, S., Wilk, S., & Stefanowski, J. (2018). An Algorithm for Selective

Preprocessing of Multi-class Imbalanced Data. International Conference on

Computer Recognition Systems, 238-247.

66

APPENDICES

APPENDIX A: AUC Curve for the datasets

FIGURE 1: ROC Curve for KNN Classifier on balance-scale Dataset

FIGURE 2: ROC Curve for CART Classifier on balance-scale Dataset

67

APPENDIX B: Imbalanced data for hayes-roth dataset

S/No Class Oxin Onine Hormone Tsh Resin

1 1 92 2 1 1 2

2 1 36 2 2 1 1

3 1 105 3 2 1 1

4 1 81 1 2 1 1

5 1 94 1 1 2 1

6 1 20 1 1 3 3

7 1 50 1 2 1 1

8 1 68 3 3 2 1

9 1 89 3 1 3 2

10 1 19 3 2 1 3

11 1 118 2 1 2 1

12 1 16 3 2 1 3

13 1 91 2 3 2 1

14 1 30 1 1 3 2

15 1 57 3 2 1 1

16 1 114 2 2 1 3

17 1 66 1 1 1 2

18 1 74 3 2 1 1

19 1 106 3 1 2 1

20 1 130 2 1 1 2

21 1 54 1 1 1 2

22 1 67 3 3 1 1

23 1 69 3 3 3 1

24 1 127 3 1 2 1

25 1 96 1 1 1 2

26 1 121 2 1 3 2

27 1 123 2 1 2 1

28 1 42 2 2 1 3

29 1 5 1 3 2 1

30 1 95 2 3 2 1

31 1 119 3 1 3 2

32 1 93 2 1 2 1

33 1 132 2 2 1 1

34 1 108 1 1 2 1

35 1 120 1 1 3 2

36 1 35 1 2 1 3

37 1 112 1 1 1 3

38 1 59 1 1 1 2

39 1 1 3 2 1 1

40 1 28 1 1 2 1

41 1 97 2 1 3 1

42 1 51 3 1 1 2

68

43 1 103 2 2 1 1

44 1 7 1 2 1 1

45 1 15 1 3 2 1

46 1 126 3 1 2 1

47 1 45 3 1 1 2

48 1 131 2 3 1 3

49 1 17 2 1 1 2

50 1 40 2 1 2 1

51 1 9 3 1 1 2

52 2 10 2 1 3 2

53 2 113 1 1 3 2

54 2 80 3 1 3 2

55 2 60 2 1 2 2

56 2 85 3 2 1 2

57 2 52 1 2 2 1

58 2 79 3 2 2 1

59 2 23 3 2 1 3

60 2 25 2 1 2 2

61 2 37 1 2 1 3

62 2 116 3 1 2 2

63 2 88 1 1 2 2

64 2 77 3 2 2 1

65 2 82 1 2 1 2

66 2 84 2 2 2 1

67 2 86 2 2 1 2

68 2 6 3 2 1 3

69 2 115 1 2 1 3

70 2 33 1 2 2 3

71 2 39 3 2 1 2

72 2 53 3 2 1 2

73 2 70 2 2 2 1

74 2 78 2 1 2 2

75 2 129 2 2 1 2

76 2 73 3 1 2 2

77 2 26 1 1 2 2

78 2 104 1 1 2 2

79 2 2 2 1 3 2

80 2 41 1 1 3 2

81 2 62 3 1 2 2

82 2 98 3 3 3 2

83 2 109 2 2 1 3

84 2 31 3 3 2 1

85 2 34 2 2 1 2

86 2 63 2 2 2 1

87 2 65 2 3 2 3

88 2 117 1 3 2 1

69

89 2 56 2 2 1 2

90 2 76 3 2 2 1

91 2 29 3 3 2 1

92 2 111 2 3 2 1

93 2 49 1 2 1 2

94 2 58 1 2 2 1

95 2 32 2 3 2 1

96 2 99 2 2 3 2

97 2 24 1 2 3 3

98 2 124 3 3 2 2

99 2 14 1 2 2 1

100 2 71 3 1 2 2

101 2 90 1 2 1 2

102 2 21 1 2 2 1

103 3 83 3 1 4 1

104 3 61 2 4 2 2

105 3 107 1 1 3 4

106 3 125 3 4 2 4

107 3 122 2 2 3 4

108 3 8 2 4 1 4

109 3 3 1 4 1 1

110 3 110 2 4 3 1

111 3 64 3 4 3 2

112 3 11 1 2 4 2

113 3 128 1 1 2 4

114 3 4 2 4 4 2

115 3 48 1 3 2 4

116 3 102 3 1 4 2

117 3 75 1 2 4 4

118 3 47 1 4 2 1

119 3 46 3 4 1 2

120 3 18 2 2 4 3

121 3 27 1 4 4 1

122 3 22 3 1 4 4

123 3 87 2 2 4 1

124 3 72 2 2 1 4

125 3 55 1 4 2 3

126 3 101 3 3 1 4

127 3 100 2 3 4 1

128 3 13 3 3 4 2

129 3 38 2 1 1 4

130 3 43 3 2 2 4

131 3 12 3 4 1 3

132 3 44 1 1 4 3

70

APPENDIX C: Balanced data for hayes-roth dataset

S/No Class Oxin Onine Hormone Tsh Resin

0 1 94 1 1 2 1

1 1 96 1 1 1 2

2 1 93 2 1 2 1

3 1 120 1 1 3 2

4 1 94 1 1 2 1

5 1 96 1 1 1 2

6 1 93 2 1 2 1

7 1 94 1 1 2 1

8 1 94 1 1 2 1

9 1 95 2 3 2 1

10 1 96 1 1 1 2

11 1 96 1 1 1 2

12 1 94 1 1 2 1

13 1 94 1 1 2 1

14 1 95 2 3 2 1

15 1 93 2 1 2 1

16 1 94 1 1 2 1

17 1 95 2 3 2 1

18 1 95 2 3 2 1

19 1 120 1 1 3 2

20 1 120 1 1 3 2

21 1 96 1 1 1 2

22 1 94 1 1 2 1

23 1 94 1 1 2 1

24 1 120 1 1 3 2

25 1 96 1 1 1 2

26 1 94 1 1 2 1

27 1 94 1 1 2 1

28 1 94 1 1 2 1

29 1 93 2 1 2 1

30 1 93 2 1 2 1

31 1 120 1 1 3 2

32 1 96 1 1 1 2

33 1 93 2 1 2 1

34 1 120 1 1 3 2

35 1 96 1 1 1 2

36 1 120 1 1 3 2

37 1 94 1 1 2 1

38 1 95 2 3 2 1

39 1 94 1 1 2 1

40 2 76 3 2 2 1

41 2 32 2 3 2 1

42 2 25 2 1 2 2

71

43 2 85 3 2 1 2

44 2 23 3 2 1 3

45 2 23 3 2 1 3

46 2 60 2 1 2 2

47 2 78 2 1 2 2

48 2 115 1 2 1 3

49 2 80 3 1 3 2

50 2 85 3 2 1 2

51 2 76 3 2 2 1

52 2 84 2 2 2 1

53 2 32 2 3 2 1

54 2 76 3 2 2 1

55 2 31 3 3 2 1

56 2 60 2 1 2 2

57 2 80 3 1 3 2

58 2 85 3 2 1 2

59 2 79 3 2 2 1

60 2 32 2 3 2 1

61 2 79 3 2 2 1

62 2 82 1 2 1 2

63 2 25 2 1 2 2

64 2 32 2 3 2 1

65 2 79 3 2 2 1

66 2 32 2 3 2 1

67 2 31 3 3 2 1

68 2 25 2 1 2 2

69 2 78 2 1 2 2

70 2 77 3 2 2 1

71 2 86 2 2 1 2

72 2 24 1 2 3 3

73 2 84 2 2 2 1

74 2 76 3 2 2 1

75 2 60 2 1 2 2

76 2 115 1 2 1 3

77 2 60 2 1 2 2

78 2 80 3 1 3 2

79 2 115 1 2 1 3

80 3 72 2 2 1 4

81 3 44 1 1 4 3

82 3 22 3 1 4 4

83 3 38 2 1 1 4

84 3 83 3 1 4 1

85 3 100 2 3 4 1

86 3 38 2 1 1 4

87 3 75 1 2 4 4

88 3 100 2 3 4 1

72

89 3 72 2 2 1 4

90 3 128 1 1 2 4

91 3 64 3 4 3 2

92 3 22 3 1 4 4

93 3 128 1 1 2 4

94 3 12 3 4 1 3

95 3 102 3 1 4 2

96 3 13 3 3 4 2

97 3 75 1 2 4 4

98 3 11 1 2 4 2

99 3 64 3 4 3 2

100 3 44 1 1 4 3

101 3 3 1 4 1 1

102 3 55 1 4 2 3

103 3 110 2 4 3 1

104 3 128 1 1 2 4

105 3 102 3 1 4 2

106 3 18 2 2 4 3

107 3 125 3 4 2 4

108 3 18 2 2 4 3

109 3 48 1 3 2 4

110 3 64 3 4 3 2

111 3 72 2 2 1 4

112 3 47 1 4 2 1

113 3 128 1 1 2 4

114 3 100 2 3 4 1

115 3 4 2 4 4 2

116 3 12 3 4 1 3

117 3 72 2 2 1 4

118 3 4 2 4 4 2

119 3 72 2 2 1 4

73

APPENDIX D: Code for the Resampling Technique

import numpy as np

import pandas as pd

import math

import random

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model_selection import train_test_split, cross_val_predict

from sklearn import metrics

from sklearn import svm

import matplotlib.pyplot as plt

get_ipython().run_line_magic('matplotlib', 'inline')

import seaborn as sns

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

from sklearn.metrics import roc_curve, auc

from sklearn.metrics import roc_auc_score

from sklearn.tree import DecisionTreeClassifier

from sklearn import tree

from sklearn.dummy import DummyClassifier

Read dataset

data=pd.read_csv("new-thyroid.csv")

Add heading column to dataset

data.columns=["id","Class","Oxin","Onine","Hormone","Tsh","Resin"]

Use id as index

data.set_index("id", inplace=True)

Group data by Class

gb=data.groupby("Class")

for Class, Class_df in gb:

 print(Class)

 print(Class_df)

gb.get_group(1)

Select 15 sample from the dataset

74

class_samples=gb.get_group(1).sample(n=20)

print(type(class_samples))

Take the mean of the column in the selected 20 samples and evaluation

mean_sum=class_samples["Oxin"].mean() + class_samples["Onine"].mean() +

class_samples["Hormone"].mean() + class_samples["Tsh"].mean() +

class_samples["Resin"].mean()

column_length=len(data.columns) -1

similar_val_1=mean_sum/column_length

print(similar_val_1)

Take the mean of the column in the selected 20 samples and evaluation

class_2_samples=gb.get_group(2).sample(n=20)

mean_sum_2=class_2_samples["Oxin"].mean() + class_2_samples["Onine"].mean() +

class_2_samples["Hormone"].mean() + class_2_samples["Tsh"].mean() +

class_2_samples["Resin"].mean()

similar_val_2=mean_sum_2/column_length

print(similar_val_2)

Take the mean of the column in the selected 20 samples and evaluation

class_3_samples=gb.get_group(3).sample(n=20)

mean_sum_3=class_3_samples["Oxin"].mean() + class_3_samples["Onine"].mean() +

class_3_samples["Hormone"].mean() + class_3_samples["Tsh"].mean() +

class_3_samples["Resin"].mean()

similar_val_3=mean_sum_3/column_length

print(similar_val_3)

#evaluating

sim_23=similar_val_3 - similar_val_2

sim_23=sim_23/10

sim_23=1 - sim_23

sim_12=similar_val_1 - similar_val_2

sim_12=sim_12/10

sim_12=1 - sim_12

sim_13=similar_val_3 - similar_val_1

sim_13=sim_13/10

sim_13=1 - sim_13

print("Similarity between 2 and 3: ", sim_23)

75

print("Similarity between 2 and 1: ", sim_12)

print("Similarity between 1 and 3: ", sim_13)

m=math.ceil((149+35)/2)

len(gb)

Take the neighbors of each samples

neigh = KNeighborsClassifier(n_neighbors=5)

#neigh.fit(X_train, Y_train)

neigh.fit(data, data.Class)

result=neigh.kneighbors(data, return_distance=True)

print(type(result))

print(result)

arr1=result[0]

print(type(arr1))

print(arr1.ndim)

arr2=result[1]

print(type(arr2))

print(arr1.ndim)

print(arr2)

print(arr1)

print(arr1.size)

addVal=[]

s=1

for i in arr1:

 _sum=int(i[0] + i[1] + i[2] + i[3] + i[4])

 addVal.append(_sum)

 print(i ," ", _sum, " ")

 s=s+1

print(len(addVal))

print(addVal)

arr3=np.array(addVal)

print(type(arr3))

print(arr3.size)

76

print(arr3)

g=1

for i in addVal:

 print(g ," ", i)

 g=g+1

newarr = arr3.reshape(214, 1)

print(newarr.ndim)

new_arr2=np.append(arr2, newarr, axis=1)

print(type(new_arr2))

print(new_arr2)

print(new_arr2[0])

arr2

print(new_arr2[0][1], new_arr2[0][2], new_arr2[0][3], new_arr2[0][4],new_arr2[0][5])

Creating and populating a dictionary

new_dist={}

for i, v in data.Class.iteritems():

 new_dist[i]=v

print(new_dist)

Creating and populating a dictionary

new_dist2={}

print(new_dist2)

print(new_dist3)

<!-- Populating a dictionary -->

neigh_count.append([i,new_dist3[i],class_example,c1,c2,c3,safe_level,new_arr2[i][5]])

new_main_df =

pd.DataFrame(neigh_count,columns=['s_no','real_index','Class','c_one','c_two','c_three','s

afe_level','distance'])

new_main_df.set_index("s_no", inplace=True)

print(new_main_df)

for i, row in enumerate(new_main_df.itertuples(), 0):

 print(i, row.real_index)

new_classes=new_main_df.groupby("Class")

77

s=1

In[146]:

#Loading the Classifier model

model=svm.SVC(C = 1, probability=True)

clf = DecisionTreeClassifier(random_state=0, max_depth=3)

knn = KNeighborsClassifier(n_neighbors=5)

#Train the model using the training sets

model.fit(X_train, Y_train)

clf = clf.fit(X_train, Y_train)

knn = knn.fit(X_train, Y_train)

#prule_pred_proba=prule.predict_proba(X_test)

model_pred_proba=model.predict_proba(X_test)

clf_pred_proba=clf.predict_proba(X_test)

knn_pred_proba=knn.predict_proba(X_test)

model_X_train_pred=model.predict(X_train)

model_X_test_pred=model.predict(X_test)

clf_X_train_pred=clf.predict(X_train)

clf_X_test_pred=clf.predict(X_test)

knn_X_train_pred=knn.predict(X_train)

knn_X_test_pred=knn.predict(X_test)

print("Accuracy for SVM Test Data: ", metrics.accuracy_score(Y_test,

model_X_test_pred))

print("Accuracy for Decision Tree Classifier Test Data: ", clf.score(X_test, Y_test,

sample_weight=None))

print("Accuracy for KNN Test Data: ", knn.score(X_test, Y_test,

sample_weight=None))

cm_model_test=confusion_matrix(Y_test, model_X_test_pred)

