
1 
 

DEVELOPMENT OF A RANDOM-FOREST-BASED MODEL FOR PREDICTING 

SLUG FLOW CHARACTERISTICS USING MACHINE LEARNING TECHNIQUE 

 

 

 

BY 

 

 

EBIRIM, Francis Onyema 

(M.ENG/SEET/2017/6739) 

 

 

 

 

 

 

A THESIS SUBMITTED TO THE POSTGRADUATE SCHOOL, FEDERAL 

UNIVERSITY OF TECHNOLOGY, MINNA, NIGERIA IN PARTIAL 

FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE 

DEGREE OF MASTER OF ENGINEERING IN CHEMICAL ENGINEERING 

 

 

 

 

 

 

 



2 
 

OCTOBER, 2021 

 

ABSTRACT 

The development of heavy oil has attracted attention in recent times. With increasing fluid 

viscosity, slug flow has become the most common flow pattern in oil and gas pipeline flow 

which poses a challenge in flow assurance as the need for stability of system and 

production maximization. The accurate prediction of slug flow parameters is an urgent 

problem to be solved in heavy oil development for more efficiency in productivity. In this 

research paper, the analysis of experimental data for the Air-Silicon oil slug transition in a 

67 mm diameter and 6 m long vertical pipe was carried out in this work. The superficial 

velocity ranges of gas and liquid obtained from the ECT were 0.047 – 4.727 m/s and 0.05 – 

0.284 m/s respectively. This research makes use of Random-forest-based Machine learning 

technique to predict liquid hold up and slog flow regime characteristics at different time 

intervals due to as it uses random subspace method and bagging to prevent overfitting. 

From the investigated data, the liquid hold up, void fraction were obtained and other slug 

flow parameters obtained were; structural velocity, slug frequency, length of slug and film 

thickness. Comparison with the data from the proposed algorithm accurately predicts the 

liquid hold up, void fraction, and liquid film thickness. They were seen to have a good 

agreement with a Mean Square Error of 0.2 % with the Machine Learning based Random-

forest prediction however slug frequency, structural velocity, and length of slug unit all had 

varying disagreement with the prediction leading to limitations in the use of the model 

algorithm in prediction of these flow parameters. The model was also tested against 

varying viscosity and a good agreement of over 99 % was seen from 5 cP to 1000 cP 

excluding high liquid viscosity of 5000 cP. The random-forest based machine learning 

model can then be used in predicting liquid hold up, void fraction, and liquid film thickness 

in low viscosity fluids less 1000 cP. The model developed aids the flow assurance and 

design involving multiphase flow slug flow in Oil and gas operations. 
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CHAPTER ONE 

1.0 INTRODUCTION 

1.1 Background to the Study 

Multiphase flow phenomenon is seen in many engineering fields such as, nuclear reactor 

engineering, power generation, food production, automobile, and majorly the oil and gas 

engineering. This phenomenon deals with the concurrent flow of fluids within different 

phases (i.e., gas, liquid and solid) or the different chemical properties but in the same 

phase, for example gas-liquid, gas solid, liquid-solid, liquid-liquid and gas-liquid-solid 

(Abdulkadir et al., 2015). 

Where the liquefied gas mixture moves along the pipe, it is observed that different 

difficulties are encountered in the flow, some of which are phase velocity differences and 

the existence of numerous flow regimes, flow rate and patterns.  The exact nature of flow 

pattern depends on conduit size and geometry, fluid properties, and phase velocity (Ganat 

& Hrairi, 2019). 

Although pipes are the safest means of transporting oil and gas products, pipelines can 

sometimes fail, resulting to hazardous consequences and large business losses. The 

decision to replace, repair, or rehabilitate depends mainly on the condition of the pipeline 

(El-abbasy et al., 2014). There is therefore a need to asses and predict the condition within 

the multiphase flow as a key step for pipeline maintenance.  

During the co-current flow of gas and liquid in a pipe the multiphase flow can acquire a 

variety of characteristic distributions called flow regimes, each featuring specific 
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hydrodynamic characteristics (e.g., bubbly, slug, annular) depending on the volumetric 

flow rates. (Lakehal, 2013).  

Slug flow is an undesirable multiphase flow regime which occurs the most in many 

industrial processes, causing time varying stresses in pipes and supports and consequently 

causes structural fatigue damage and failure. The focus of this study is on slug flow regime 

with air-silicone oil flows in vertical pipes due to its vast usage in oil and gas industry 

applications. Slug flow pattern has been the dominant flow regime for highly viscous oils 

occurs over a wide range of superficial velocities, thus making the knowledge of slug flow 

a major significance for the oil and gas industries. 

Experimental, and Numerical approaches in investigating multiphase flow have been 

significantly done with varying degree of accuracy, however analytical machine learning 

approach gives an even higher accuracy of prediction. In recent years, the continuing 

advancement of machine learning makes it a promising data analytic/fusion method for 

multiphase flowrate estimation (Wang et al., 2020). 

In this study, Air-Silicone oil flow data from vertical pipes will be analyzed using machine 

learning in order to make predictions for slug flow parameters. 

1.2 Statement of Research Problem 

The challenge associated with slug flow in production facilities including vertical pipe 

processes has been observed since the 1970s. This undesirable flow pattern continues to 

demand the attention of researchers and operators alike. Parameters associated with slug 

flow have been seen difficult to determine accurately and this has a posed a major 

challenge in flow assurance in industries. 

1.3 Justification of the Study 
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Machine learning in recent years, has been effective in oil and gas operations and 

predicting multiphase flow because of the possibility of analyzing multiple input 

parameters and large amount of process data that simple mathematical models are 

challenged with. Hence, it’s use in investigating slug flow regime and making predictions 

using random-forest-based model as it uses random subspace method and bagging to 

prevent overfitting in order to improve efficiency and safety in flow assurance in slug flow 

patterns in vertical pipes.  

1.4 Research Aim and Objectives 

The aim of this research is to develop a random forest-based model for predicting liquid 

hold up and slug flow characteristics in a vertical air-silicone oil 67 mm diameter and 6 m 

long pipe. 

The aim will be achieved through these objectives: 

I. Classification and training time series experimental data in order to develop models 

for the prediction of Liquid hold up using Machine Learning python interface. 

II. Development of a random forest-based model based derived from the training data 

III. Testing random forest-based model by predicting Liquid hold-up using and other 

slug flow data using Python interface and a MACRO. 

IV. Validating developed model using relevant performance evaluation metrices. 

V. Testing Random-Forest-based model with high viscosity data viscosity. 
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1.5 Scope of Study 

The studies that will be presented in this work will concentrate on the following:  

I. Characterisation of slug flow regime,  

II. Development of a random forrest based model for prediction. 

III. Prediction of liquid hold up and other slug flow characteristics using random forest-

based model through machine learning technique 

IV. Validating with relevant performance techniques.  
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CHAPTER TWO 

2.0        LITERATURE REVIEW 

Slug flow is one of the flow assurance challenges confronting the oil and gas industry. This 

phenomenon can pose significant threat to oil and gas production facilities. The three 

known types of slug flow: hydrodynamic slug flow, operational induced slug flow, and 

severe slug flow have been widely investigated (Ehinmowo et al., 2016). Most of the gas-

phase is concentrated in large bullet-shaped gas pockets, named Taylor bubbles. The 

Taylor bubbles are separated by liquid slugs, which contain small entrained gas bubbles. 

For vertical flow, the liquid film flows downward between the Taylor bubble and the pipe 

wall. A major characteristic of slug flows is their inherent unsteadiness. It is interesting to 

note that these two states follow in a random-like manner, inducing pressure, velocity and 

phase distribution fluctuations.  As this kind of flow occurs over a wide range of 

intermediate flow rates of gas and liquid, it is of significance for many industrial processes 

employing pipeline transport (Abdulkadir et al., 2014).   

The dependence of the flow behavior on different parameters, such as fluid properties, 

makes it difficult to predict the flow characteristics when one of these parameters is 

changed. In order to characterize slug flow in more industry relevant fluids, an 

experimental campaign has been carried out using air and silicone oil as the gas and liquid 

fluids, respectively. This paper reports the results of an analysis performed on experimental 

data to determine parameters that characterize the vertical slug flow phenomena observed. 

A comparison of    
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the experimental results obtained against previously published empirical relationships is 

presented. 

2.2 Flow Regimes Classification in Two Phase Flows 

At the point when at least two phases flow concurrently in pipes, the flow behavior is to a 

large extent more intricate than for single flow.  The phases in general separate because of 

disparity in density. Shear stresses at the pipe wall are diverse for each phase as a result of 

their different densities and viscosities. Expansion of the highly compressible gas phase 

with decreasing pressure increases the in-situ volumetric flow rate of the gas. 

Consequently, the gas and liquid phases generally do not travel at the same velocity in the 

pipe. The flow regimes that are present during two or more phase fluid movement depend 

on the relative magnitude of the forces that act on the fluids.  

Buoyancy, turbulence, inertia and surface tension forces vary significantly with flow rates, 

pipe diameter, inclination angle and fluid properties of the phases. 

Two phase flow patterns in vertical tubes are like those in horizontal flows but the 

distribution of the liquid is dependent on gravity that acts to ensure the liquid is constrained 

to the bottom of the tube and the gas at the top. 

Flow patterns in two phase flow depend on different flow parameters, including the 

physical properties of fluids (the density of the gas and liquid phases respectively (g and 

l), the viscosity of the gas and liquid phases (g and l), and the surface tension ()), the 

flow rate of the gas and liquid phases (Qg and Ql), as well as the geometrical dimensions of 

the flow system. 
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The flow regimes can be divided into three main classes: 

i. Regimes for horizontal flow in pipes, where the heavier phase (water) tends to be 

located close to the bottom, because of gravity. In most cases the gas phase pushes 

the liquid phase along the flow direction. 

ii. Regimes for vertical flow in pipes. The liquid phase tends to be on the pipe walls, 

forming a stable or an unstable film. Flow velocity can be different and flow 

regimes form differently for upward and downward flows (Asikolaye, 2019). 

iii. Regimes for sloped pipes, which are not as well known. Here the slope angle is 

important as well as the direction of the flow (upwards or downwards). 

2.2.1 Horizontal multiphase flow regimes in pipes 

When gravity is seen to act perpendicularly to the tube axis, separation of the phases can 

develop. This leads to increases in the possible number of flow patterns, as shown 

schematic diagram in Figure 2.7. 

According to (Monni et al., 2014), the horizontal gas liquid flow can be classified in four 

general flow structures: bubbly flow, stratified flow, slug/plug flow and annular flow. Each 

flow pattern can also be divided in sub categories: stratified flow in smooth and wavy flow, 

intermittent flow in slug and plug flow and annular flow in smooth, wavy and mist flow. 

The flow patterns according to (Thome and El Hajaj, 2010) are illustrated in Figure 2.1 

below. 
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Figure 2.1: Horizontal Gas-Liquid flow pattern (Thome and El Hajaj, 2010) 

 

2.2.1.1 Slug flow 

Similar to plug flow, is intermittent. The gas bubbles are larger while smaller bubbles are 

in the liquid slug. At greater occurring levels of aeration, they are known frothy surges or 

semi-slug, if the surges do not occupy the pipe completely. However, this might be better 

considered as part of wavy flow. A continuous gas core with a complete wall film has 

annular flow characteristics. Just as in vertical flow, some of the liquid can be entrained as 

drops in the gas core. Gravity causes the film to be thicker on the bottom of the pipe but as 

the gas velocity is increased the film becomes circumferentially more uniform. 

2.2.1.2 Plug flow 

These are liquid plugs separated by elongated gas bubbles. These bubbles are smaller than 

the tube diameter such that the liquid phase is separated and found below them. This 

particular flow regime is also known as the elongated bubble flow. Plug flow is 

characterized by bullet shaped gas bubbles as seen in vertical flow. However here they 

travel along the top of the pipe (Kwatia, 2016). 
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2.2.1.3 Bubbly flow 

As in the equivalent pattern in vertical flow, this flow is made up of gas bubbles dispersed 

in a liquid continuum. However, except at very high liquid velocities when the intensity of 

the turbulence is strong enough to cause dispersion of the bubbles about the cross section, 

gravity usually is seen to make bubbles accumulate in the upper part of the pipe as 

illustrated. In Stratified flow liquid flows in the lower part of the pipe with the gas above it. 

The interface is smooth. An increase of gas velocity causes waves to form on the interface 

of stratified flow leading to wave like flows (Kwatia, 2016). 

2.2.1.4 Stratified flow  

This particular flow regime occurs at low liquid and gas flow rates, complete separation of 

the two phases occurs. Since the gas is less dense, it stays at the top and the denser phase 

being the liquid at the bottom of the tube, such that the horizontal interface between them is 

undisturbed. This causes a separation between the liquid and the gas in this regime. For 

gas-liquid flows, the difference in densities of the two fluids is large and the flow ranges 

over which stratified flow is found, is correspondingly larger. 

2.2.1.5 Stratified-wavy flow 

Once the gas flow rate in a stratified flow is increased, the gas velocity tends to increase 

such that waves are formed on the interface of these fluids.  The waves move in the 

direction of flow with amplitude notable and dependent on the velocity of both phases.  As 

the waves rise up the walls of the pipe, thin films of liquid are left on the wall. 
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2.2.1.6 Annular flow 

At higher gas flow rates, the liquid forms a thin film along the walls of the tube, similar to 

that in vertical flow.  However, the liquid film at the bottom is thicker than at the top. The 

disturbance between the two phases causes droplets to disperse in the core of the gas core. 

2.2.1.7 Mist flow 

As the gas velocities increase in annular flow, the liquid films along the wall are stripped 

and coalesce into wisps in the gas core. 

Various studies have been done in order to understand the behavior of the various flow 

regimes and to develop models to aid the prediction of these regimes in pipelines. 

2.2.2 Vertical multiphase flow regimes in pipes 

The Figure 2.2 below illustrates the different flow patterns in vertical flow systems in 

multiphase operations. 

 

Figure 2.2: Vertical Gas-Liquid flow pattern (Ren et al., 2021) (Gas in white, Liquid in 

grey) 
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In the oil and gas industry, multiphase flow in vertical pipes often occurs. The flow of 

fluids through the vertical pipe string causes a loss of energy through friction losses, where 

the value of this loss depends on the fluid flow viscosity and the size of the conduit. Often, 

the friction loss is an important part of the oil well completion design (Saeb et al., 2015). 

The pressure drop occurs as a result of the changes in potential and kinetic energy of the 

fluid due to the friction on the pipe walls (Shannak, 2008). Generally, the total pressure 

drop in the vertical conduit is basically related to four main components: frictional, 

hydrostatic, acceleration, and pressure drop. Among these four components, calculation of 

the pressure drop is the most complex component and has received extensive attention by 

researchers. Previous research has tried to determine the two-phase frictional pressure drop 

in the whole range of flow patterns through a vertical pipe. With experiments carried out to 

obtain fluid flow friction losses in both Newtonian and non-Newtonian systems (Shannak, 

2008; Jiang et al., 2011; Xu et al., 2012; Fadare and Ofidhe, 2009). 

A number of experimentations done usually involved the use of short tubes and as a result, 

a lot of engineering problems are encountered when attempting to extend these 

experimental set up to realistic process conditions where longer piping is employed. In 

many experiments, the data shows only a limited number of variables, and as a result, 

imprecisions are introduced when the friction correlations are applied outside the 

limitations of the experimental data. As a result of the limited amount of data available for 

these experiments, the effects of some significant variables were ignored in the early 

studies (Griffith, 1962). 

The precision of the prediction of pressure drop in fluid flow has a significant influence on 

the fluid flow measurement. In some multiphase conditions, the gas travels at a much 
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higher velocity than the liquid. Accordingly, the flowing density of the gas–liquid mixture 

is higher than the corresponding density. Moreover, the liquid’s velocity inside the pipe 

wall can be different over a short distance and can cause a variable friction loss. The 

variation in velocity and flow regime of the two phases affect pressure drop computations, 

meaning that slippage is a consequence of the difference between the combined velocities 

of the two phases, which is caused by the physical properties of the fluids involved. For 

single-phase flow, the frictional pressure losses do not normally increase with a decrease in 

the tubing size or an increase in well production flow rate. 

This refers to the existence of a gas phase, which tends to slip by the liquid phase without 

essentially contributing to its lift. Many researchers have tried to show a relationship 

between the slippage losses and the friction losses (Tek, 1961). A method for the 

estimation of gas–liquid flow rates in the vertical pipe has been proposed (Shaban and 

Tavoularis, 2014). The method was used to calibrate a differential pressure sensor to 

predict the flow rates of both phases in air–water flow. The estimations were in good 

agreement with real flow rate measurements. Daev and Kairakbaev (2017) proposed a new 

model of the liquid flow through pipes that incorporated flow straighteners. The prediction 

of the flow rate of liquid was studied and the parameters affecting the process of measuring 

the flow rate of liquid were considered. 

An experimental study of the two-phase flow regime and frictional pressure drop inside the 

pipe was done by Cai et al., (2016). The flow patterns were defined and recorded by a 

high-speed camera. A new empirical correlation was proposed based on the experimental 

results to predict the liquid multiplier factor of the test channel. A two-phase flow 

measurement applying a resistive void fraction meter combined to a venturi, or orifice 
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plate, was suggested by Oliveira et al., (2009). This method was applied to determine the 

fluid mass flow rates using an air–water experimental apparatus. The results showed that 

the flow path has no important effect on the meters in relation to the frictional pressure 

drop in the experimental process range. The outcomes of the experimental work displayed 

a mean slip ratio of less than 1.1, when slug and bubbly flow patterns were lower than 70 

%. 

Several types of spatial distribution of both phases flow patterns may occur depending on 

the set of fluid properties, flow rates, and on the geometry and inclination of the tube. 

Realizing the importance of accurately predicting the transition conditions between flow 

patterns, several authors proposed classifications for upward flow of gas-liquid mixtures in 

vertical pipes (Barnea, et al., 1980; Hewitt, 1982; Taitel and Dukler, 1976). Five main 

types of gas–liquid flow patterns are usually identified: 

i. Bubbly Flow or homogeneous  

ii. Annular Flow 

iii. Churn Flow or heterogeneous  

iv. Slug Flow 

2.2.2.1 Bubbly flow   

At low void fractions, liquid is seen to be continuous and the gas exists as individual 

bubbles. Homogeneous flow occurs at low void ages, where the Bubble Size Distribution 

(BSD) is narrow and there exists little interaction between bubbles, while with increasing 

voidage on the distribution broadens and bubble coalescence and break-up begin to occur. 

The boundary between homogeneous and heterogeneous bubbly flow is not well defined, 

however, bubbly flow to be treated as a single regime. Bubble flow consists of a 
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continuous liquid phase with the gas phase is dispersed as bubbles within it. The bubbles 

travel with a complex motion within the flow, may be coalescing and are generally of 

irregular size. 

2.2.2.2 Churn flow  

This flow regime consists of discontinuous, large irregular plugs of gas flow interspersed 

with slugs of liquid. Heterogeneous flow occurs at high gas superficial velocities. Due to 

intense coalescence and break-up, small as well large bubbles appear in this regime, 

leading to wide bubble size distribution. The large bubbles churn through the liquid, and 

thus, it is called as churn-turbulent flow. The non-uniform gas hold-up distribution across 

the radial direction causes bulk liquid circulation in this flow regime (Shaikh and Al-

Dahhan, 2007). 

2.2.2.3 Annular flow  

At high enough gas-flow rates only a film of liquid exists at the walls of the tube, with 

liquid droplets also entrained in the flow. Some authors describe other regimes at higher 

gas flow rates, including whispy annular flow (Edem and Lao, 2019). Annular flow is 

characterized by liquid traveling as a film on the channel walls. In fact, for certain flow 

rates, the majority of the liquid travels as drops, leading to the term mist flow being applied 

to this flow pattern in some industries.  

2.2.2.4 Slug flow 

Slug flow not only occurs in horizontal pipes but also in pipes with inclination and vertical 

pipes over vast liquid and gas flow rates. The flow is commonly experienced with 

operational problems such as operation, enhancement of corrosion-erosion, and structural 
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problems observed in bends particularly. Slug flow hydrodynamics is complex with 

unsteady flow behavior characteristics. It has peculiar velocity and pressure distributions. 

Therefore, the predictions of the liquid hold-up, pressure drop, heat transfer, mass transfer 

are difficult and challenging. (Abdulkadir et al., 2011) 

In up flow in pipes with inclined angles and vertical pipe flow, slug flow is usually the 

dominant flow pattern, Hernandez-Perez, (2007). This can enhance corrosion, as Kaul 

(1996) noted that the corrosion rate is accelerated when the flow pattern is slug flow.  

The increase of the gas flow rate and, consequently, the concentration of small bubbles, 

promote coalescence between them, yielding larger bubbles. It is seen that the Taylor 

bubble was named after Geoffrey Taylor, a British physicist and mathematician notable for 

his pioneer work on slug flow (Davies and Taylor, 1950), these large gas bubbles are 

characterized by their bullet shape: a round-shaped nose followed by a cylindrical main 

body.  

The Taylor bubbles are separated by intermediate liquid slugs, which may contain small 

entrained gas bubbles. A major characteristic of slug flows is their inherent unsteadiness. 

As this kind of flow occurs over a wide range of intermediate flow rates of gas and liquid, 

it is of major interest to a wide range of industrial processes that employ pipeline transport 

systems.  

The presence of liquid slugs in the flow system gives an irregular output in terms of gas 

and liquid flow at the outlet of the system, or at the next processing stage.  

This can pose problems to the designer and operator of two-phase flow systems. Pressure 

drop is substantially higher in slug flow as compared to other flow regimes, and the 
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maximum possible length of a liquid slug that might be encountered in the flow system 

needs to be known. (Abdulkadir et al., 2011) 

Isolated Taylor bubbles rise almost uniformly in vertical pipes, occupying nearly the entire 

cross-section of the tube. On its turn, continuous slug flow or bubble train flow is 

characterized by an almost-periodic rise of Taylor bubbles separated by liquid slugs that 

may contain small, dispersed bubbles in it. Between a Taylor bubble and the tube wall, the 

liquid flows downwards as a thin falling film. As it reaches the bottom of the bubble, the 

annular film enters the liquid slug behind it as an expanding jet, with the possibility of 

creating a recirculation region known as the bubble wake, depending on the flow 

conditions. Both the shape of the bubble trailing edge and the wake flow pattern depend on 

the fluid properties and tube geometry, besides flow conditions. If the separation distance 

between two Taylor bubbles is small enough, the motion and shape of the trailing bubble 

get largely affected by the flow in the wake of the leading one: the nose becomes distorted 

and wavy, its velocity increases, and coalescence between bubbles will occur.  

2.3 Slug Flow Characteristics 

The phenomenon of slug flow in vertical risers is a usually found under normal operating 

conditions of a gas- liquid phase flow facility, such as in an oil production riser. A large 

number of research studies have been carried out in this field over the past three decades. 

An early contribution to slug flow characterisation research was done by by Nicklin et al., 

(1962), who proffered an empirical correlation to describe the rise velocity of single Taylor 

bubble in a static water column. Nicklin’s empirical relationship, given by equation (2.1), 

describes the rise velocity of the Taylor bubble as a linear function of the mixture velocity. 

For the air-water system considered the value of the constant Co was determined to be 1.2. 
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UN = COULLS + 0.35√gD                          (2.1) 

2.3.1 Rise velocity of taylor bubble 

A cross-correlation was performed on the time varying void fraction data measured by the 

twin ECT- planes located at 5.0 and 5.089 m above the mixer section at the base of the 

riser. This allows the determination of the delay time as individual slugs passed between 

the two planes; and this together with the distance between the planes enabled the 

calculation of the structure velocity, UN. Details of the cross-correlation function used may 

be found in Hernandez-Perez, (2007).  

2.3.2 Models for liquid hold-up in vertical pipes 

The Figure 2.3 below shows the schematic diagram in gas-liquid slug flow in vertical 

pipes. 

   

Figure. 2.3: Slug Flow Diagram (Hernandez-Perez, 2007). 
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From the experimental observations, it is seen that slug flow displays alternating liquid and 

gas flows. In the image of slug flow in a vertical pipe is shown above, the liquid slug that 

occupies the pipe cross section and it is differentiated by the gas slug, and bubbles may mix 

in the liquid slug area. There is a liquid film along the wall of the pipe in the gas slug area. 

Under the assumptions that liquid film thickness is constant and incompressible liquid and 

gas phases, the mass balance equation of the whole slug unit liquid can be given as: 

vslLu = vlsHlsLs + vlfHlfLf               (2.2) 

Where Lu, Ls, and Lf are the slug unit length, slug body length, and liquid film region 

thickness, respectively, m; vsl is the liquid superficial velocity, m/s; vls is the liquid velocity, 

m/s; vlf is the velocity of the liquid in the liquid film region, (m/s);  

Hls is the liquid hold-up in the slug; and Hlf is the liquid film region liquid hold-up. 

Xiao (2011), derived a material balance to the two cross sections. For the liquid phase, the 

translational velocity balance is given as: 

(vt −vls)Hls = (vt − vlf)Hlf,                                (2.3)  

Where vt is the velocity of Taylor bubbles in the liquid film region, m/s. 

The total volume flow rate remains constant at any cross section of slug flow as follows: 

vM = vl + vg = vlsHls + vb(1 − Hls),            (2.4) 

Where vM is the mixture velocity in the slug, m/s; vb is the dispersed bubbles velocity seen 

in the slug, m/s; vg is the superficial gas velocity, (m/s) and vl is the superficial liquid 

velocity, (m/s);  
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The slug unit liquid hold-up is given as follows: 

𝐻1 =
𝐻𝑙𝑠.𝐿𝑠+𝐻𝑙𝑓.𝐿𝑓

𝐿𝑢
                (2.5) 

According to Equations (2.1), (2.2), (2.3), (2.4) and (2.5), the equation provided by Xiao 

for the liquid hold-up of a slug unit can be expressed as follows: 

𝐻1 =
𝑣𝑡.𝐻𝑙𝑠+𝑣𝑏(1−𝐻𝑙𝑠)−𝑣𝑠𝑔

𝑣𝑡
               (2.6) 

Where Hls is the slug flow liquid hold-up and in Equation (2.6) it can be seen that the 

solution of the slug flow liquid hold-up of, three parameters are employed: the velocity of 

Taylor bubbles in the liquid film region vt, the velocity of dispersed bubbles in slug vb , 

liquid hold-up of the slug Hls, and the liquid film region Taylor bubbles vt. 

Bendiksen (1984) in calculating the Taylor bubbles velocity in the liquid film region at 

different dip angles proffered the following: 

vt = CvM + 0.35(gD sin θ)1/2 + 0.54(gD cos θ)1/2            (2.7) 

Where D is the inner diameter of the pipe, m, and 𝜃 is the angle of inclination, °. 

In Equation (2.7), C is given as the velocity distribution in the slug coefficient. Gokcal et 

al., (2008) found that when the liquid-phase Reynolds number is low (Rel ≤ 1000), the 

distribution coefficient C ≈ 2. When the distribution coefficient of the liquid phase is 

higher (Rel > 1000), the distribution coefficient value ranges from Fabre, (2003) is 1.0 –

1.2. Looking at the correlation by Choi et al., (2012). as a relatively simple and accurate 

equation that takes into account the effect of viscosity as follows: 
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C              (2.8) 

aG = 1- H1                 (2.9) 

Re1= ρ1v1D/μ1                          (2.10) 

Where void fraction is denoted as aG; 𝜌l is the density of the liquid, kg/m3; and 𝜇l is the 

viscosity of the liquid, Pa s. 

The velocity of dispersed bubbles in slug vb 

The dispersed bubbles in slug velocity vb is calculated through this equation: 

vb = 1.2vs + 1.35 [σg(𝜌l – 𝜌2)/ 𝜌2]
1/4 Hls

0.1 sin θ        (2.11) 

Where surface tension is denoted as 𝜎, N/m; the gas density is given as 𝜌g, kg/m3; and 

 Hls
0.1 describes “bubble group” effect in the slug. 

The liquid hold-up of the slug Hls 

In equations (2.8) and (2.10), it is seen that liquid hold-up of the slug not only affects 

proportionally the liquid hold-up of the slug unit but also considers the influence of slug 

liquid hold-up on the velocity of dispersed bubbles in the slug. Therefore, slug liquid hold-

up is therefore key in determining the liquid hold-up of a slug unit. 

Gregory et al., (1978) initially attempted deriving the liquid hold-up of the slug flow 

through experiments and gave the correlation below between slug liquid hold-up and 

mixing velocity: 
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Hls = 
1

1+(
𝑣𝑚

8.66
).1.39

            (2.12) 

 Gregory et al., (1978) did not however put into consideration the effects the fluid physical 

parameters and inclination angle brings. According to the experimental results, Felizola, 

(1992) gave an empirical equation of liquid hold-up of the slug at different angles of 

inclination (0 – 90°) with velocity of mixing and angle of inclination. 

Currently, most studies on slug liquid hold-up are centered on low-viscosity fluid 

experiments, and the influence of viscosity is not usually discussed. Nadler and Mewes, 

(1995) researched the effects of liquid-phase viscosity (viscosity: 17, 34 cP) on the liquid 

hold-up of the slug area, liquid film area, and entire slug unit. In his studies, the flow-

averaged liquid hold-up and the liquid hold-up values within the film zone were seen to be 

greatly higher for oil–air slug flow than the corresponding water–air slug flow values, 

while the liquid hold-up occurring within the slug zone in oil–air slug flow was lesser than 

the liquid hold-up in water–air slug flow. As the liquid phase viscosity improved, the 

average liquid hold-up of the slug unit was seen to be increased greatly. Kora et al., (2011) 

investigated the oil viscosity effects (181–589 cP) on liquid hold-up slug in a gas–liquid 

two-phase flow experiment with different viscosities, and the proposed correlation of slug 

liquid hold-up was compared with correlations proposed by other authors. The results 

obtained from the research shows that the new model prediction performance was better. 

The correlation proposed by Kora et al., (2011) considers the effects of viscosity change on 

liquid hold-up of the slug. The correlation of slug liquid hold-up is seen below: 

NFr = 
𝑣𝑚

(𝑔𝐷.0.5)
(𝜌l/ 𝜌l – 𝜌g)

0.5             (2.13) 
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Nμ = vM. μM/gD2(𝜌l – 𝜌g)             (2.14) 

When NFr.Nu
0.2 ≤ 0.15 

Hls = 1,                (2.15) 

  When 0.15 < NFr.Nu
0.2 < 1.5, 

Hls = 1.1012𝑒(−0.085𝑁𝑓𝑟.𝑁𝑢.0.2)              (2.16) 

  When 1.5 ≤ NFr.Nu
0.2, 

Hls = 0.9473𝑒(0.041𝑁𝑓𝑟.𝑁𝑢.0.2)              (2.17) 

The slug unit liquid hold-up is calculated thus: 

• Estimating Hls from Equation (2.12), and calculate vb according to Equation (2.11). 

Assuming that C = 2, calculate vt by Equation (2.17) and obtain an initial value Hl0 

of the average liquid hold-up of the slug by Equation (2.16).  

• The initial value Hl0 when known, vt is calculated by Equation (2.17). The slug 

liquid hold-up Hls is obtained from the correlation by Kora, and vb could be 

calculated by from Equation (2.11). 

• The liquid hold-up of slug unit Hl is then calculated using Equation. (2.16); if | | Hl 

− Hl0| |> 0.001, set Hl0 = Hl, and repeat step (2). When | | H l − H l0| |< 0.001, the 

calculation then terminates. 

2.3.3 Slug frequency 

The slug frequency is defined as the number of units of slugs that traverse in a defined 

cross-section of a pipe at a given time period. In order obtain the frequency of periodic 
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structures (slugs), Power Spectral Density (PSD) method was utilized. The Power Spectral 

Density, PSD, is defined as a measure of how the power in a signal content over frequency 

and therefore, it describes how the variance of a time series is distributed with frequency. It 

could be defined mathematically as the Fourier Transform of the autocorrelation sequence 

of time series. This is determined using a Fast Fourier Transform (FFT) algorithm. Details 

can be found in Hernandez-Perez, (2007). 

2.3.4 Length of slug unit, taylor bubble and liquid slug 

The slug unit length is obtained when the rise velocity of the Taylor bubble and the slug 

frequency is known, as indicated in the equation (2.16). The different zones of the slug unit 

length have been obtained for varied liquid and gas rates range. The time of passage of the 

slug unit, Taylor bubble and liquid slug is gotten through analysis of the time series gotten 

from the twin-planes of the ECT signals. It was assumed that the times to be corresponding 

to the respective lengths. Relationships were then obtained to estimate the respective 

lengths, as briefly described below. Equations (2.24), (2.25) and (2.26) is then used to 

obtain the of the slug unit length, liquid slug as well as the Taylor bubble, respectively. 

 UN = 
𝐿𝑠𝑢

𝑇𝑖𝑚𝑒
              (2.18) 

Where, 
1

𝑇𝑖𝑚𝑒
= 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑓            (2.19) 

 UN = LSU * f              (2.20) 

 LSU = 
𝑈𝑛

𝑓
              (2.21) 

Assuming that 
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LSU α tSU, LTB α tTB, Ls α tS, incompressibility and Mach number < 1 

Dividing LTB by Ls, 

 
𝐿𝑡𝑏

𝐿𝑠
=

𝐾𝑇𝑡𝑏

𝐾𝑇𝑠
= 𝑐              (2.22) 

And also considering the fact that, 

 LSU = LTB + LS              (2.23) 

The following relationships can be obtained 

 LSU = cLS + LS             (2.24) 

 LS = 
𝐿𝑠𝑢

𝑐+1
              (2.25) 

 LTB = LSU – LS              (2.26) 

2.4 Parameters to Characterize Flow Regimes 

It is important to note when dealing with gas-liquid flow, void fraction and bubble velocity 

are two of the fundamental parameters. The liquid hold-up and void fraction describes the 

liquid and gas distribution respectively and is an important parameter for hydrodynamic 

and thermal design in various multi-phase systems, while the bubble velocity is used to 

obtain the transport of the void fraction and area concentration of the interface. 

2.4.1 Void fraction prediction in vertical pipe 

Void fraction is the fraction of pipe volume the gas is resident in. This parameter is a major 

the important parameters used to determine flow pattern characteristics in two-phase flows. 

It is used for other variables such as two-phase flow viscosity, density, the relative average 
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velocity of two-phases and for estimation of pattern of flow transitions, heat transfer, 

interfacial area calculation and determination of pressure drop. It can be measured using 

wire mesh sensors, quick-close valves, γ rays, x-rays, and microwave, among many others 

(Oteng, 2014). In considering void fraction, the time average value (taken over a long 

period) is used, but it should be noted that the void fraction varies as the time varies, hence 

the need to know the various at different points in time (Almalki and Ahmed, 2019). 

2.4.2 Pressure drop prediction in vertical pipes 

Prediction of pressure drop in multiphase flow channels is essential for the design of flow 

equipment. It allows sizing of the pump necessary for the operation of the flow system and 

enables operators to minimize the occurrence of some multiphase challenges like gas 

hydrate formation since this impedes on the flow efficiency. The total pressure drop 

considered in this pipe comprises of three distinct components. 

 (
𝑑𝑃

𝑑𝑧
) 𝑡𝑝 = (

𝑑𝑃

𝑑𝑧
) 𝑓𝑟𝑖𝑐 + (

𝑑𝑃

𝑑𝑧
) 𝑔𝑟𝑎𝑣 + (

𝑑𝑃

𝑑𝑧
) 𝑎𝑐𝑐          (2.27) 

Where (
𝑑𝑃

𝑑𝑧
) 𝑔𝑟𝑎𝑣 =

𝑔

𝑔𝑐
𝜌 𝑠𝑖𝑛𝜃 is the component due to potential energy or elevation 

change, it is also referred to as the hydrostatic component. 

(
𝑑𝑃

𝑑𝑧
) 𝑔𝑟𝑎𝑣 =

𝑓𝑝𝑉2

2𝑔𝑐𝐷
  is the component due to frictional loss. 

(
𝑑𝑃

𝑑𝑧
) 𝑔𝑟𝑎𝑣 =

𝜌𝑣𝑑𝑣

𝑔𝑐𝑑𝐿
  is the component due to kinetic energy change or convective 

acceleration. According to the definition of flow geometry, when the pipe is in the 

horizontal position, the angle and the sine of the angle is zero. This means that there is no 

elevation and hence the pressure drop and pressure gradient becomes; 

(
𝑑𝑃

𝑑𝑧
) 𝑡𝑝 = (

𝑑𝑃

𝑑𝑧
) 𝑓𝑟𝑖𝑐 + (

𝑑𝑃

𝑑𝑧
) 𝑎𝑐𝑐            (2.28) 
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The pressure drop due to acceleration is often minimal and is mostly overlooked in design 

calculations 

2.5 Models in Multiphase Flow 

The need to model and predict the exact behaviour of multiphase flows and the phenomena 

that they display cannot be over emphasized. There are three broad ways in which such 

models are usually investigated: 

i. Experimentally, in laboratory, using instruments for measurements, 

ii. Theoretically, through use of appropriate equations of mathematics to model the 

flow, and  

iii. Computationally, using the power and size of modern computers to address the 

complexity of the flow. 

It is then seen, that there are some applications in which big-scale laboratory models are 

realistic. But, in reality, the laboratory model varies in terms of scale than the prototype, 

and then a verified theoretical or computational model is desired for a comfortable 

extrapolation to the prototype scale. There are certain instances it is difficult to use the 

laboratory model for a number of reasons. As a result of this, the predictive capability and 

physical understanding would then depend greatly on theoretical and/or computational 

models. This then brings to bear the complexity of most multiphase flows presents as a 

challenge to be resolved. There could be a possibility of the Navier-Stokes equations in 

computer codes at a future time for each of the phases or components and in order to 

determine every variable behaviour of a multiphase flow, the fluid movement around and 

inside every individual particle or drop, the position of every interface. But the processing 

speed and power of such computer required to do this with 100% accuracy is not realistic at 
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this point in time due to technological limitations for most of the occurring flows. A normal 

occurrence is when turbulence is experienced in one or both of the phases, more difficulty 

is encountered. Therefore, it is necessary to provide simplifications in realistic models of 

most gas-liquid flows (Brennen, 2005). 

2.6 Machine Learning for Slug Flow Analysis 

Machine Learning (ML) is that study in computer science that utilizes computation systems 

in order to provide sense to data similar to human beings (Kristian, 2018). 

According to Kristian (2018), ML is a part of artificial intelligence that collects raw data 

behavior by through an algorithm or method. The main intention of ML is to allow 

computer systems learn from experience in form data without being explicitly programmed 

or inputs from human activity. 

 

2.6.1 Python 

Python is an object-oriented programing language commonly employed which possess 

capabilities of a high-level programming language. It is quite portable and easy to learn 

command makes it very common in usage in recent time. Python was developed by Guido 

van Rossum in the Netherlands in 1980s to succeed of ‘ABC” programming language. It 

has the features of Java and C programming (Nitnaware, 2019). 

 

2.6.1.1 Why python for data science 

Python is a very common and significant language for Machine learning and data science 

studies. These common features of Python that makes it attractive and desired for use 

includes extensive set of packages such as numpy, pandas, scikit-learn, etc., easy 
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prototyping, collaborative features as well as one unified language irrespective domain 

used.  (Jyothi and Yamaganti, 2019) 

2.6.2 Artificial neural network (ANN) modelling 

Systems in ANN can be seen as simplified mathematical models of human brain-like 

systems and they function as parallel distributed computing networks. However, unlike 

regular computers, which are programmed to carry out specific task, most neural networks 

must be taught, or trained. They can learn new associations, new functional dependencies 

and new patterns. Perhaps, a significant advantage of neural networks in performance is 

their adaptive nature. Neural networks can adjust their weights automatically to optimize 

their behaviour as to recognize patterns, decision makers, system controllers, predictors, 

etc. This enables the neural network to perform well even when the environment or the 

system being controlled changes with time (Abiodun et al., 2018). In Mijwel (2018), it is 

seen that ANN has a possibility of overfitting data, training takes a long time particularly 

large data sets among other limitations. 

2.6.3 Computational fluid dynamics (CFD) 

Computational fluid dynamics (CFD) is one of the most quickly emerging fields in applied 

sciences. Because it is a numerical tool which relies heavily on experimental or analytical 

data for validation. CFD mainly deals with the numerical analysis of fluid dynamics 

problems, which embodies differential calculus. The equations involved in fluid dynamics 

are Navier–Stokes equations. CFD process consists of three stages: pre-processing, solving, 

and post-processing. All three processes are interdependent. As much as 90% of effort is 

used in the meshing (preprocessing) stage. This requires the user to be dexterous and there 

must be the idea of creating an understandable topology. The next stage is to solve the 
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governing equations of flow, which is the computer’s work. Post-processing has its own 

delights, and you can impress people by showing flow simulations such as path lines, flow 

contours, vector plots, flow ribbons, cylinders, and so forth (Jamshed, 2015). 

2.6.4 Neuro-fuzzy logic 

The modern techniques of artificial intelligence have found application in almost all the 

fields of the human knowledge. However, a great emphasis is given to the accurate 

sciences areas, perhaps the biggest expression of the success of these techniques is in 

engineering field. These two techniques neural networks and fuzzy logic are many times 

applied together for solving engineering problems where the classic techniques do not 

supply an easy and accurate solution. The neuro-fuzzy term was born by the fusing of these 

two techniques.  

Given the wide usage in industrial application, the perception that the development of a 

fuzzy system with good performance as difficult was common. The challenge of locating 

membership functions and appropriate rules is frequently a tiring process of attempt and 

error. Leading to learning algorithms application to the fuzzy systems. The neural 

networks, that have efficient learning algorithms, had been presented as an alternative to 

automate or to support the development of tuning fuzzy systems. Gradually, its application 

spread for all the areas of the knowledge like, data analysis, data classification, 

imperfections detection and support to decision-making, etc. Neural networks and fuzzy 

systems can be fused to improve its advantages and to curb the limitation of each one on its 

own. Neural networks introduce its computational characteristics of learning in the fuzzy 

systems and receive from them the interpretation and clarity of systems representation. 

Thus, the disadvantages of the fuzzy systems are compensated by the capacities of the 
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neural networks. These techniques are complementary, which justifies its use together 

(Jamshed, 2015). 

2.7 Challenges in Machine Learning 

While Machine Learning (ML) is rapidly evolving, making significant strides with 

cybersecurity and autonomous cars, this segment of Artificial Intelligent (AI) as whole still 

has a long way to go. The reason behind is that Machine Learning has not been able to 

overcome number of challenges. The challenges that Machine Learning is facing currently 

are: 

i. Quality of data: Having good-quality data for Machine Learning (ML) algorithms is 

one of the biggest challenges. Use of low-quality data leads to the problems related 

to data preprocessing and feature extraction. 

ii. Time-Consuming task: Another challenge faced by Machine Learning models is the 

consumption of time especially for data acquisition, feature extraction and retrieval. 

iii. Lack of specialist persons: As Machine Learning (ML) technology is still in its 

infancy stage, availability of expert resources is a tough job. 

iv. No clear objective for formulating business problems: Having no clear objective 

and well-defined goal for business problems is another key challenge for Machine 

Learning because this technology is not that mature yet. 

v. Issue of overfitting and underfitting: If the model is overfitting or underfitting, it 

cannot be represented well for the problem. 

vi. Curse of dimensionality: Another challenge Machine Learning model faces is too 

many features of data points. This can be a real hindrance. 
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vii. Difficulty in deployment: Complexity of the Machine Learning model makes it 

quite difficult to be deployed in real life. 

2.8 Application of Machine Learning 

Machine Learning is the most rapidly growing technology and according to researchers we 

are in the golden year of AI and ML. It is used to solve many real-world complex problems 

which cannot be solved with traditional approach. Following are some real-world 

applications of ML: 

i. Sentiment analysis 

ii. Emotion analysis 

iii. Error detection and prevention 

iv. Weather forecasting and prediction 

v. Stock market analysis and forecasting 

vi. Speech synthesis 

vii. Speech recognition  

2.9 Phase Distribution of an Air-Silicone Flow in a Vertical Pipe 

Manera et al., (2009) compared wire mesh sensors and conductive needle-probes for 

measurements of vertical two-phase flow parameters using air-water system. They found 

out that the WMS is a very good candidate for achieving a full mapping of interfacial area 

density and also for achieving a full three-dimensional reconstruction of gas bubbles. On 

the other hand, that the needle probe is less intrusive and yields fewer disturbances in the 

downstream flow. 
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 Shen et al., (2004) studied two-phase distribution in a vertical (0.2 m internal diameter and 

height 24 m) pipe. They used optical probes and pressure transducers to record local 

measurements including; void fraction, Sauter mean diameter and pressure loss. From an 

analysis of their experimental data, they concluded that the phase distribution patterns 

could be subdivided into basic patterns, namely, wall peak and core peak using the concept 

of Fisher skewness. However, the weakness of Fisher skewness is its sensitivity to irregular 

observations at the extremes where the difference between the mean and the value is cubed.  

Later, Azzopardi et al., (2008) carried out wire mesh sensor studies in a vertical 67 mm 

internal diameter pipe using air-water as the operating fluids. They measured the radial 

time averaged void fraction and cross-sectional average time series of void fraction. They 

determined that the wire mesh sensor was capable of providing insight into the details of 

phase distributions in a pipe. They expressed the cross-sectional time averaged air void 

fraction in terms of the gas mass fraction.  

Also, these studies were restricted to the use of air-water flow mixtures. Abdulkadir et al., 

(2010) carried out experimental investigation of phase distributions of two-phase air-

silicone oil flow in a vertical pipe using wire mesh sensors (WMS). They found out that 

reasonably symmetric profiles were obtained when the air-silicone oil was fully developed 

and that the shape of the profile was strongly dependent on superficial gas velocity. They 

also found out that symmetric parabolic profiles can be represented as spherical cap bubble 

and slug flows and that flattened symmetric profile can be represented as churn flow. It was 

also reported that the cross-sectional void fraction was strongly affected by the superficial 

gas velocity, whereby the higher the superficial gas velocity, the higher was the observed 

average void fraction. Also, the steepness parameter decreases with an increase in gas 
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superficial velocity whilst the c-parameter increases with an increase in gas superficial 

velocity. The steepness parameter can be used to classify flow regimes; high steepness 

values represent cap/ bubble flow, intermediate values, slug flow and low values represent 

churn flow. 

They also reported that the radial void fraction increases with gas superficial velocity and 

that shape of the profile is dependent on the gas superficial velocity. The profiles for cap/ 

bubble, slug and churn flows are parabolic, semi-flat parabolic, and flat parabolic profiles, 

respectively based on the radial void fraction distribution. 

  

2.10 Application of Vertical Multiphase Flow 

The study of two-phase flows is of great importance for several technological applications. 

Particularly, gas-liquid two-phase flows are often encountered in a wide range of industrial 

applications, such as condensers, evaporators, distillation towers, nuclear power plants, 

boilers, crude oil transportation and chemical plant (Carpintero, 2009). 

Micro-scale liquid-liquid flow finds its potential for process intensification in applications 

like micro reactors, micro mixers, emulsions and materials synthesis (Al-Azzawi et al., 

2021). 
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CHAPTER THREE 

3.1                                           MATERIALS AND METHOD 

This chapter discussed the methodology and techniques used; the objectives stated in 

chapter one. The system consideration that determines the selection of the materials to be 

used are also discussed. 

3.11 Data Acquisition 

The Data to be analysed was gotten from experiments carried out by Abdulkadir, (2011). 

The work is titled “Experimental and Computational Fluid Dynamics (CFD) Studies of 

Gas-Liquid Flow in Bends” using an inclinable rig (-5o to 90o) in the Chemical Engineering 

Laboratory of the University of Nottingham. The facility where the experiment was carried 

out was made up of a testing section made from transparent acrylic glass pipes of 67 mm 

diameter pipes and 6 m long as shown in Figures 3.2 and 3.3. The fluid mixture used was 

an air-silicone oil mixture using a state-of-the-art instrument called a Wire Mesh Sensor 

(WMS). The schematic diagram of the flow facility is shown in Figure 3.1 below. 

 

Figure 3.1: A Schematic Diagram of the Flow Facility (Abdulkadir et al., 2015) 
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Figure 3.2: The components of the rig (a) liquid pump (b) liquid tank (c) air-silicone             

oil mixing section (d) rotameters and (e) cyclone separator (Abdulkadir, 2011) 



44 
 

 

Figure 3.3: Overview of the experimental flow facility, (Abdulkadir, 2011) 

3.2 Analysis of Acquired Data 

The wire mesh sensor was used in obtaining the cross-sectional mean liquid hold up time 

series data. Gas superficial velocity (0.047- 4.727 m/s), at different liquid superficial 

velocities (0.05-0.378 m/s) on the liquid hold up, were obtained for vertical pipes.  The 

time series raw data was processed to obtain the void fraction for different experimental 

runs. The void fraction data for planes 1 and 2 of each experimental run were used in a 

MACRO cross correlation template to obtain the structural velocity after inserting the total 

number of data (12000), sampling frequency (200 Hz) and distance between the sensors 

(0.089 m). Power spectral density (PSD) was ran in macro after inserting the total of 

12,000 data points and sampling frequency (200 Hz) to obtain the dominant frequency in 

each run.  

3.2.1 Model generation and validation using random forest algorithm 

The Model generation involved using the PYTHON and to learn 70 % of the collected data, 

20 % for testing and 10 % for validation.  
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The model development was based on a random forest algorithm, this choice was 

influenced due to literature with random forest algorithms efficient in situations and areas 

where mathematical model fails to handle cumbersome data as well as its convergent 

nature which uses multiple iterations to get a result as close as possible to the training data 

as illustrated in g. It was used to predict the liquid hold up for all the various runs of data 

set.  

 

Figure 3.4: Random-Forrest Model decision generation based on iterations. 

The random-forest based model developed trained with about 70 % of data from Runs 1-13 

from the experimental data and tested with about 20 % of data. The algorithm was then 

used to predict the Liquid Holdup as shown below in Figure 3.5a and b. 
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Figure 3.5a: Random Forest algorithm model developed using Python  

 

Figure 3.5b: Random Forest algorithm model developed using Python  
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The predicted Liquid Hold up for the various runs data sets were obtained, the Void 

fraction and slug flow parameters of (Structural velocity, slug frequency, length of slug 

unit and liquid film thickness) were calculated and then plotted in a cross plot against the 

experimental to make comparison. The Figure 3.6 below gives the description of the 

methodology steps taken. 

 

 

  

 

 

 

 

 

 

  

 

 

Figure 3.6: Flow sheet of the Methodology 
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CHAPTER FOUR 

4.1     RESULTS AND DISCUSSION 

4.11 The Correlation of Simulated and Experimental Liquid Holdup (Hl) and Void 

fraction (Vf) at Liquid Superficial Velocity (Usl) = 0.05 - 0.378 m/s 

From the liquid hold up cross plots as shown in Figures 4.10, 4.12, 4.14, 4.16, 4.18, and 

4.20, it can be seen that the Liquid hold up decreases with increasing gas velocity at 

constant liquid velocity, while void fractions in Figures 4.11, 4.13, 4.15, 4.17, 4.19 and 

4.21 were increasing as the gas velocity increased as was the case in Abdulkadir, (2010, 

2011 and 2015), Kong et al., (2018) and Hernandez-Alvarado et al., (2017). The model 

could be seen to give a good fit for the predictions of liquid hold up and void fractions. 

The Figures 4.10 to 4.21 shows the Liquid Holdup and Void fraction cross plot of the 

simulated vs experimental liquid hold up and void fraction obtained using the model. A 

perfect fit can be seen in Figure 4.10 and 4.11 between the experimental and predicted 

liquid hold up and void fraction at Liquid superficial velocity of 0.05 m/s. This shows the 

liquid hold up and Void fraction can give a good estimation using the models generated. 

 

 

 

Figure 4.10: Cross plot of simulated vs experimental liquid hold up at Usl = 0.05 m/s 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

H
l
S

im
u
la

re
d

Hl Experimental



49 
 

 

 

Figure 4.11: Cross plot of simulated vs experimental Void fraction at Usl = 0.05 m/s 

 

A near perfect fit between the experimental and predicted liquid hold up and void fraction 

at Liquid superficial velocity of 0.071 m/s as shown in Figures 4.12 and 4.13 however, 

with over prediction observed at point (0.54059; 0.498151) for a (x; y) axes respectively for 

the Void fraction over the range of flow conditions of the present work. Despite this, it can 

be seen that the liquid hold up and Void fraction can give a good estimation using the 

models generated. 

 

Figure 4.12: Cross plot of simulated vs experimental liquid hold up at Usl = 0.071 m/s 
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Figure 4.13: Cross plot of simulated vs experimental void fraction at Usl = 0.071 m/s 

As observed in liquid velocities cross plot, a perfect fit between the experimental and 

predicted liquid hold up and void fraction at Liquid superficial velocity of 0.142 m/s as 

shown in Figures 4.14 and 4.15. This shows the liquid hold up and Void fraction can give a 

good estimation using the models generated for the flow conditions of this work. 

 

Figure 4.14: Cross plot of simulated vs experimental liquid hold up at Usl = 0.095 m/s 
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Figure 4.15: Cross plot of simulated vs experimental Void fraction at Usl = 0.095 m/s 

A perfect fit between the experimental and predicted liquid hold up and void fraction at 

Liquid superficial velocity of 0.05 m/s in Figures 4.16 and 4.17. This shows the liquid hold 

up and Void fraction can give a good estimation using the models. 

 

Figure 4.16: Cross plot of simulated vs experimental Liquid Hold up at Usl = 0.142 m/s  
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Figure 4.17: Cross plot of simulated vs experimental Void fraction at Usl = 0.142 m/s 

It can be observed that a perfect fit between the experimental and predicted liquid hold up 

and void fraction at Liquid superficial velocity of 0.284 m/s as shown in Figures 4.18 and 

4.19, However, there were slight over predictions and under predictions observed as the 

liquid increased to 0.284 m/s. This shows the liquid hold up and Void fraction can give a 

good estimation using the models. 

 

 

 

 

Figure 4.18: Cross plot of simulated vs experimental liquid hold up at Usl = 0.284 m/s 
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Figure 4.19: Cross plot of simulated vs experimental void fraction at Usl = 0.284 m/s 

It is shown that a perfect fit between the experimental and predicted liquid hold up and 

void fraction at Liquid superficial velocity of 0.378 m/s in Figures 4.20 and 4.21 however, 

there were slight over predictions and under predictions observed as the liquid increased to 

0.378 m/s. This shows the liquid hold up and Void fraction can give a good estimation 

using the models. 

 

Figure 4.20: Cross plot of simulated vs experimental Liquid hold up at Usl = 0.378 m/s 
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Figure 4.21: Cross plot of simulated vs experimental void fraction at Usl = 0.378 m/s 
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velocity considering the flow conditions of the work. In Figures 4.22 - 4.33 below are the 

structure velocity and cross plots of between liquid velocities (Usl) of 0.05 to 0.378 m/s. 

However, a perfect fit between the experimental and predicted Structural velocity at Liquid 

superficial velocity of 0.05 m/s in Figure 4.22 under the flow conditions of this work, while 

as shown in Figure 4.23 the model did not give a good estimate of the predicted slug 

frequency. 
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Figure 4.22: Cross plot of simulated vs experimental Structural Velocity at Usl = 0.05 m/s 

 

Figure 4.23: Cross plot of simulated vs experimental Slug frequency at Usl = 0.05 m/s 

Over prediction is observed by the model at liquid velocity of 0.071 m/s for slug frequency 

as shown in Figure 4.24, while in Figure 4.25 cross plot of structural velocity gives a 
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Figure 4.24: Cross plot of simulated vs experimental Slug frequency at Usl = 0.071 m/s 

 

 

 

 

 

 

 

Figure 4.25: Cross plot of simulated vs experimental structural velocity at Usl = 0.071 m/s 
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Figure 4.26: Cross plot of simulated vs experimental slug frequency at Usl = 0.095 m/s 

 

Figure 4.27: Cross plot of simulated vs experimental Void fraction at Usl = 0.095 m/s 
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Figure 4.28: Cross plot of simulated vs experimental Slug frequency at Usl = 0.142 m/s 

 

Figure 4.29: Cross plot of simulated vs experimental Structure velocity at Usl = 0.142 m/s 
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Figure 4.30: Cross plot of simulated vs experimental slug frequency at Usl = 0.284 m/s 

 

 

Figure 4.31: Cross plot of simulated vs experimental Structure velocity at Usl = 0.284 m/s 
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Figure 4.32: Cross plot of simulated vs experimental slug frequency at Usl = 0.378 m/s 

 

 

Figure 4.33: Cross plot of simulated vs experimental Structure velocity at Usl = 0.378 m/s 
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4.3 The Correlation of Simulated and Experimental Length of Slug Unit and Liquid 

Film Thickness at Liquid Velocity (Usl) = 0.05 - 0.378 m/s 

The Figures below 4.34 – 4.3 are the cross plots for simulated vs experimental slug length 

from 0.05 to 0.378 m/s. The deviations indicated the machine learning model is very 

limited due to great deviations in the cross plot for predicting length of slug unit since 

limitations are also seen in the calculation of structure velocity. 

There were observed over predictions the length of slug unit this is due to the fact that it is 

a function of mixture velocity and slug frequency as shown in Figures 4.34. While a perfect 

fit between the experimental and predicted liquid film thickness at Liquid superficial 

velocity of 0.05 m/s was observed in Figure 4.35, this shows a good estimate of the liquid 

film thickness can give a good estimation using the models for liquid superficial velocities 

as low as 0.05 m/s. 

 

Figure 4.34: Cross plot of simulated vs experimental Length of slug at Usl = 0.05 m/s 
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Figure 4.35: Cross plot of simulated vs experimental Liquid film thickness at Usl = 0.05 

m/s 

 

There was little correlation between experimental and simulated the length of slug unit this 

is due to the fact that it is a function of mixture velocity and slug frequency, which has 

limitations in Figure 4.36. While a good fit between the experimental and slight over 

predictions of liquid film thickness at Liquid superficial velocity of 0.05 m/s was observed 

as seen in in Figure 4.37, this shows good estimation can be gotten using the model for 

liquid superficial velocities as low as 0.071 m/s. 

 

Figure 4.36: Cross plot of simulated vs experimental Length of slug at Usl = 0.071 m/s 

0.00

5.00

10.00

15.00

20.00

25.00

0 5 10 15 20 25

S
im

u
la

te
d

 l
iq

u
id

 f
il

m
 t

h
ic

k
n
es

s

Experimental liquid film thickness 

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

S
im

u
la

te
d

 L
en

g
th

 o
f 

sl
u
g

Experimental Length of slug



63 
 

 

 

Figure 4.37: Cross plot of simulated vs experimental Liquid film thickness at Usl = 0.071 

m/s 
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a good fit between the experimental and slight over predictions of liquid film thickness at 

Liquid superficial velocity of 0.095 m/s was observed in Figure 4.39, this shows very good 

estimation can be gotten using the model. 
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Figure 4.38: Cross plot of simulated vs experimental Length of slug unit at Usl = 0.095 m/s 

 

 

Figure 4.39: Cross plot of simulated vs experimental Liquid film thickness at Usl = 0.095 

m/s 
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prediction has limitations from the model as seen in Figures 4.40. While a good fit between 

the experimental and very slight over predictions of liquid film thickness at Liquid 

superficial velocity of 0.142 m/s was observed as shown in Figure 4.41, this shows very 

good estimation can be gotten using the model. 
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Figure 4.40: Cross plot of simulated vs experimental Length of slug unit at Usl = 0.142 m/s 

 

Figure 4.41: Cross plot of simulated vs experimental Liquid film thickness at Usl = 0.142 

m/s 

It can be deduced that little correlation between experimental and simulated the length of 

slug unit this is due to the fact that it is dependent on mixture velocity and slug frequency, 

whose prediction has limitations from the model as shown in Figures 4.42. While a good fit 

between the experimental and slight over predictions of liquid film thickness at Liquid 

superficial velocity of 0.284 m/s was observed and shown in Figure 4.43, this shows very 

good estimation can be gotten using the model. 

 

Figure 4.42: Cross plot of simulated vs experimental Length of slug unit at Usl = 0.284 m/s 
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Figure 4.43: Cross plot of simulated vs experimental Liquid film thickness at Usl = 0.284 

m/s 
 

There were over predictions in length of slug unit this is due to the fact as the liquid 

velocity increased to 0.378 m/s from the model as shown in Figures 4.44. While a good fit 

between the experimental and slight over predictions of liquid film thickness at Liquid 

superficial velocity of 0.378 m/s was observed and shown in the cross plot in Figure 4.45, 

this shows very good estimation can be gotten using the model. 

 

Figure 4.44: Cross plot of simulated vs experimental Length of slug unit at Usl = 0.378 m/s 
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Figure 4.45: Cross plot of simulated vs experimental Liquid film thickness at Usl = 0.378 

m/s 
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The Figures 4.46 and 4.47 shows the random forrest model tested with high viscosity 

multiphase data of 100 cP and 5000 cP. It is seen that the model gives a good plot at lower 

viscosity of 100 cP while it becomes less stable as the viscosity gets to 5000 cP. This 

follows the trend seen in Kora (2012). 

 

Figure 4.46: Cross plot of simulated vs experimental liquid hold up at viscosity = 100 cP 

 

 

 

 

 

 

 

 

 

 

Figure 4.47: Cross plot of simulated vs experimental liquid hold up at viscosity = 5000 cP 
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4.5 Performance Evaluation Mean Square Error 

The results of the performance comparison of the matrix techniques are presented. The metrics 

for evaluating the performance of the techniques is based on the Mean Square Error (MSE), 

The comparative performance of the metrics form the basis for selecting the best performance 

evaluation technique used for testing the system. The results depict the minimum error 

technique as having the least values as compared with other techniques. These metrics is the 

measure of errors between the actual measurements and the simulated, thus the smaller the 

values, the better the performance.   

 The technique adopted Mean Squared Error (MSE) or mean squared deviation (MSD) of 

an estimator (of a procedure for estimating an unobserved quantity) measures the average 

of the squares of the errors that is, the average squared difference between the estimated 

values and what is estimated. 

This is given as follows 

𝑀𝑆𝐸 =
I

n
∑ (𝑌𝑖 − 𝑌𝑝)

2
𝑛

𝑖=1
                                                                                                                          (3.0) 

Let Yi   = value of Actual data  

Let YP  = value of  data from the evolved technique(Predicted) 

MSE = 0.001984832 (0.2%)  

  

https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Error_(statistics)
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Table 1.0: The matrix of values for the results obtained and Mean Squared Error = 

0.001984832 (0.2 %) 

S/N HL HL Simulated Squared Error  

1 0.785896 0.851135194331589 0.004256093  

2 0.768684 0.851135194123256 0.006798253  

3 0.569899 0.640851454112417 0.005034284  

4 0.533710 0.611169074916500 0.005999871  

5 0.519968 0.582884941959748 0.003958593  

6 0.459412 0.501849199069167 0.001800892  

7 0.393191 0.478255502997312 0.007235924  

8 0.663012 0.640851454111820 0.000491103  

9 0.623254 0.611169074918463 0.000146045  

10 0.588582 0.582884941959809 0.000032453  

11 0.507583 0.501849199070353 0.000032873  

12 0.466540 0.478255502997312 0.000137251  

13 0.399461 0.406455187217086 0.000048918  

14 0.653691 0.640851454 0.000164862  

15 0.628829 0.611169075 0.000311864  

16 0.606551 0.582884941959809 0.000560063  

17 0.52506 0.501849199 0.000538720  

18 0.486545 0.478255502997312 0.000068723  

19 0.416203 0.406455187217086 0.000095024  
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CHAPTER FIVE 

5.0    CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

In this work, the experimental data obtained with a 67 mm diameter vertical pipe for air-

silicone oil slug flow regime have been presented. Machine learning models developed and 

then used for prediction. Comparisons were made between the experimental and predicted 

data for liquid hold up, void fraction, structure velocity, slug frequency, length of slug unit, 

and liquid film thickness. 

It can be concluded that: 

1. The liquid hold up decreases with increasing gas superficial velocity at constant 

liquid superficial velocity as seen in Kong et al., 2018, and Hernandez- Alvarado et 

al., 2017. 

2. The model generated showed a good fit of over 99 % in predicted slug flow 

parameters of liquid hold up, void fraction, and liquid film thickness under the flow 

conditions for the work. 

3. The model showed high deviations in the slug frequency, length of slug unit, and 

structure velocity this could be attributed to data leakage in the machine learning 

model creation based on the flow parameters considered. This leads to limitation in 

using the model to predict the above slug flow parameters. 

4. Viscosity has a significant effect on the prediction of the liquid hold up as over and 

under predictions were observed when the model was used to predict high viscosity 

of 5000 cP data. While at low viscosity of 100 cP, a perfect prediction was 

observed. 
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5. The Machine learning gives a very accurate prediction under the flow conditions 

and can be useful in multiphase flow predictions. 

 

5.2 Recommendations 

Based on the results obtained and the conclusions of this study. The following 

recommendations are made: 

1. The Machine learning random forest model for inclined and horizontal fluid flow can 

be generated and predicted to observe the predictability of the model. 

2. More Multiphase flow parameters can be generated from the models in slug flow as 

well as other flow patterns to see the predictability in varying flow conditions. 

3. Structure velocity, slug frequency and length of slug unit models can be further 

generated by considering liquid viscosity and pressure data. 

5.3 Contribution to Knowledge 

1. A Random forest-based model was developed in machine learning to predict Liquid 

holdup and slug flow characteristics in an Air-Silicone Oil 67mm diameter and 6m 

long vertical pipe. The time series data comprises of superficial velocity ranges of 

gas and liquid obtained from the ECT were 0.047 – 4.727m/s and 0.05 – 0.284m/s 

respectively. The predicted liquid holdup had a mean square error of 0.2%.  

2. The study shows the developed random-forest based model has a high degree of 

accuracy and useful in the handling of slug flow in multiphase flow however 

limitations were seen in prediction of some slug flow characteristics namely 

structure velocity, length of slug unit, and slug frequency while length of film 

thickness and void fraction had a perfect fit using the model. 
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3. The study also shows the effectiveness of machine learning in handling complex 

data in design and handling of process operation for greater efficiency. This is 

useful particularly when mathematical model could not describe the process due to 

complexity of data. 
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