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ABSTRACT 

Fires are one of the most complex issues that many communities face, as they can cause 

serious environmental hazards and havoc.Fire outbreaks could be very complicated to 

quench, yet we cannot totally avoid fire accidents as they (fire) can be ignited from 

different sources, thereby exposing lives and properties to destruction. The thrust of this 

research is to provide the government with reliable models to curb the number of fire 

accidents that occur in order to reduce the loss of lives and property. A stochastic model 

that predicts the number of fire accident occurrences in Niger State is presented in this 

thesis. A three-state stochastic model was formulated using the principle of Markov. 

Each state of the model has four possible observations. The parameters of the model 

were estimated using the fire accident data collected from the archive of the Niger State 

Fire Service, after which the model was trained using the Baum-Welch Algorithm to 

achieve maximum likelihood. The validity test for the model showed 75% accuracy for 

short-time prediction and 50% accuracy for long-time prediction. This result indicates 

that the model is more reliable and dependable for short-time prediction. Information 

for this model could serve as a guide to the government in policy formulation that might 

assist in curbing the number of fire accident occurrences in the State. 
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CHAPTER ONE 

1.0              INTRODUCTION  

1.1 Background to the Study 

Fire is the rapid oxidation of a material in the exothermic chemical process of 

combustion, releasing heat, light, and various reaction products (Charles, 2000). Fires 

start when a flammable and/or a combustible material, in combination with a sufficient 

quantity of an oxidizer such as oxygen gas or another oxygen-rich compound is exposed 

to a source of heat or ambient temperature above the flash point for the fuel and is able 

to sustain a rate of rapid oxidation that produces a chain reaction (Yusuf, 2012).  

Fires are both natural and social phenomena that cause extensive harm to societies in 

terms of human lives, economic losses, and operational costs (Corcoran et al., 2011; 

Corcoran and Higgs, 2013; Jennings, 2013; Spatenkova and Virrantaus 2013). Fires also 

affect communities, their livelihoods and productivity, and can create serious damage 

and havoc to urban infrastructure, reserved or unreserved (Jennings, 2013 and Corcoran 

et al., 2007). All types of fire that are residential fires pose the greatest risk to human 

lives and the surrounding environment because of their high likelihood to lead to fatal 

consequences (Ceyhan et al., 2013). 

The complexity of people’s behaviour at an individual and collective level in cities has 

made fire risk extremely complicated to model and theorize (Corcoran et al. 2011; 

Jennings, 2013; Spatenkova and Virrantaus, 2013). While the number of studies have 

been increasing in recent years, the current knowledge about the spatial aspects of fire 

risk is still limited to a few studies mostly from developed countries, such as the United 

Kingdom (UK), Australia, Canada, Sweden and Finland (Corcoran et al. 2007; Chhetri 
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et al., 2010; Asgary et al. 2010; Corcoran et al., 2011; Spatenkova and Virrantaus 2013; 

Wuschke et al. 2013; Guldaker et al. 2018; Ardianto and Chhetri 2019).  

Cases of fire outbreaks in Nigeria have become a perennial problem. This is, indeed, 

worrisome. Generally, fires are initiated with a single fuel object. The smoke produced 

from the burning object is transported by a smoke plume and collects the upper portion 

of the space as a layer. The smoke plume also transports the heat produced by the fire 

into the smoke layer, causing the smoke layer to increase in depth and also temperature 

(Charles, 2000). This smoke layer radiates energy back to unburned fuels in the space, 

causing them to increase in temperature. Fire spreads to other objects either by radiation 

from flames attached to the originally burning item or from the smoke layer. As other 

objects ignite, the temperature of the smoke layer increases further, radiating more heat 

to other objects  (Charles, 2000). In small compartments, the unburned objects may 

ignite nearly simultaneously. This situation is called flashover. In large compartments, it 

is more likely that objects will ignite sequentially. The sequence of the ignition depends 

on the fuel arrangement and composition and ventilation available to support 

combustion of available fuels  (Charles, 2000). Dry weather has been identified as the 

major cause of the recent spate of incidents while storing of petrol in living houses and 

markets, careless disposal of cigarette stubs, adulterated fuel, power surge, electric 

sparks and illegal connection of electricity are all sources of fire outbreaks. Many 

people have faulted the responsiveness of fire services and emergency first responders 

in the country, who have been reputed to always arrive late and without sufficient 

equipment to the scene of fire incidents. There have also been renewed calls for the 

federal and state governments to adequately fund the fire department and emergency 

agencies, while the culture of insuring properties is not imbibed by Lagos residents to 

mitigate the damage and misery of the misfortune (Yusuf, 2012). 
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In 1983 the fire outbreak in New England Conservatorium of Music (NECOM) house, a 

37 storey structure housing, the then Nigerian Telecommunication Limited (NITEL) in 

Lagos. The fire started mysteriously and the havoc was tremendous. The loss was 

mostly on the property as it was learnt fire started in one of the nights of the year. It cost 

the Federal government colossal amount of money to renovate the building, not to talk 

of the vital document lost in the inferno. The Pipe line explosion in Jesse, Delta State 

occurs according to National Emergency Management, Agency (NEMA) in October 18, 

1998 which accounted for the highest number of casualties with 1082 person’s dead and 

hundreds injured. Also there was a multiple bomb explosion at the Nigerian military 

cantonment, Lagos: This occurred on January 27, 2002, which left up to 800 persons 

dead and thousands homeless. Pipe line explosion, Abule Egba (Lagos): This occurred 

in December 26, 2006. Up to 700 persons lost their lives and several undefined persons 

injured. Frequent fire accidents in the year 2012, in Abuja, the Federal capital: Not 

fewer than 69 persons were killed in the fire incidents and property worth 765 million 

naira was also destroyed during the period (extract from the Federal fire service 

magazine). Various fire accidents in Rivers State have also been recorded in 2012, and 

no fewer than 230 persons died while 73 others received various degrees of injuries in 

222 recorded fire incidents that occurred in Port Harcourt and other parts of the state. 

Numerous fire accidents in Osun and Gombe States: in Osun State fire incidents 

claimed 31 lives and destroyed property worth 227 million naira in 2012. Also the same 

year in Gombe State, fire killed about 60 persons and damaged property worth 790 

million naira. 

In 2016, fire disaster accident occurred in Lapai Local Government Area (LGA) of 

Niger State. It was reported that the fire was caused by Power Holding Company of 

Nigeria (PHCN) when they restored power with a powerful output (current) that led to 
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fire outbreak incident that destroy properties worth millions of naira despite no life was 

lost. It was not long ago that a similar sad incident happened in Maitumbi area of Bosso 

LGA, lives and properties worth millions of naira were also lost. 

1.2 Statement  of the Research Problem  

The outbreak of fire in Niger State and some other parts of the country is one of the 

challenging  situation  faced by inhabitants of this geographical location as in most 

cases lives and properties worth millions of naira are lost. Fire accident could be very 

difficult to combat as it can emanate from diverse source . Prediction of fire accident 

has been a challenging task to researchers for several decades,because its occurrance is 

Stochastic in nature. It is based on this note, that  Hidden Markov Model is been 

adopted to predict the number of fire accident occurence in Niger State with the view of 

providing the government with information to mitigate the impact of fire accident 

occurrence in the State. 

1.3 Aim and Objectives of Study 

The aim of this research is to develop a Stochastic model for the prediction of number 

of fire accident occurrence in Niger State, with a view of providing necessary model to 

the policy makers  in mitigatig the impact of fire accident occurrences. 

The Objectives are to: 

i. develop Hidden Markov Model for the prediction of fire accident occurrence. 

ii. train the developed Hidden Markov Model using Baum-Welch Algorithm. 

iii. make prediction with the trained Hidden Markov Model using Viterbi 

Algorithm. 
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1.4 Significance of the Study 

Fire accident is one of the most complex issues faced by lots of communities,as it could 

lead to serious environment hazard and havoc. Fire outbreak could be very complicated 

to quench, yet we cannot totally avoid fire accident as it (fire) can be ignited through 

different sources and thereby exposing lives and properties to destruction. However, in 

recent times, fire occurrence has gained more attention in combating.Hence, the results 

from this model will provide more understanding in fire accident occurrence within the 

years.  

1.5 Scope and Limitation of the Study 

This thesis focuses on the application of Hidden Markov Model via Viterbi Algorithm 

to predict fire accident occurences in Niger State. However, the model can be valid with 

data application of other States as well. 

1.6 Definition of terms 

1.6.1 Mathematical model 

A mathematical model can be defined as a description of a system using mathematical 

concepts and language to facilitate proper explaination of a system and the process of 

developing a methematical model is termed mathematical modelling. It can also be view 

usually to describes a system by a set of variables and a set of equation that establish 

relationships between the variable. It can also be viewed as a way of capturing or 

representing reality within the frame work of mathematical apparatus that helps in 

understanding the reality better. 
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1.6.2 Markov chain 

A Markov chain is a discrete-time stochastic model describing a sequence of possible 

events in which the probability of each event depends only on the state attained in the 

previous event. 

1.6.3 Markov process 

A Markov process is the continuous-time version of a Markov Chain. A Markov 

process is a random process in which the future is independent of the past, give the 

present. 

1.6.4 State space 

 The state space of a dynamical system is a set of all possible state of the system each 

coordinate is state variable and the value of all the state variable completely describe the 

state of the system. In other word, each point in the state space corresponds to different 

state of the system. The State space is a collection of all possible values of random 

variable.These state may be continuous or discrete comprise of finite or countable 

numbers or numerical values. A set of data is said to be continuous if it can 

conceivaably assume any numerical value within any two point on a continuum (Lawal, 

2017). 

1.6.5 Hidden markov model 

A Hidden Markov Model consists of two(double) stochastic processes. The first 

stochastic process is a Markov chain that is characterized by states and transition 

probabilities. The states of the chain are externally not visible, therefore “hidden”. 

The second stochastic process produces emissions observable at each moment, 

depending on a state-dependent probability distribution. It is important to notice that the 

https://en.wikipedia.org/wiki/Stochastic_model
https://en.wikipedia.org/wiki/Sequence
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denomination “hidden” while defining a Hidden Markov Model is referred to the states 

of the Markov chain, not to the parameters of the model.  

1.6.6 Stochastic model 

A Stochastic model is a tool for estimating probability distributions of potential 

outcomes by allowing for random variation in one or more inputs over time. 

1.6.7 Stochastic process 

A stochastic process is a collection of random variables X {Xt : 𝑡 ∈ 𝑇}  defined on a 

common probability space,taking value in a common set S, ( the state space) and 

indexed by a set T, often either N or(0,∞) and thought of as time (discrete or continuous 

respectively) (Oh, 2015).  

1.6.8 Transient state 

A State 𝑖  is said be transient if given that in state 𝑖, there is a non-zero probability that 

we will never return to 𝑖. Formally, let the random variable 𝑇𝑖 be the first return time to 

state. A state 𝑖, is said to be transient if and only if, starting from state 𝑖, is a positive 

probability that the process may not eventually return this state (Lawal, 2017). 

1.6.9 Prediction 

Prediction is the process of making forecast of the future based on the past and present 

data and most commonly by analysis of trends. A common place example maybe 

estimated of some variable of interest at some specified future data (Murali and 

Vijayalakshmi, 2014). 
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1.6.10 Dynamic programming 

Dynamic Programming is way of solving a complex problem by first breaking down the 

problem into a collection of simpler subproblems, after which those subproblems are 

solved just once and the results are stored in a memory based data struture. The next 

time the subproblem is met, instead of recomputing its solution, the previously 

computed solution is used, thereby saving computational time. 

1.6.11 Deterministic model 

 Deterministic means that, random phenomena are not involved. Deterministic model is 

a mathematical model in which outcomes are precisely determine through known 

relationships among states and events, without any room for random variation. In these 

models, the parameter values and the initial conditions determined the output. In 

comparison, stochastic models use ranges of values for variables in the form of 

probability distribution. 
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CHAPTER TWO 

2.0                                             LITERATURE REVIEW 

2.1 Fire Initiation 

Fires start when a flammable or a combustible material, in combination with a sufficient 

quantity of an oxidizer such as oxygen gas or another oxygen-rich compound, is 

exposed to a source of heat or ambient temperature above the blaze point for the 

fuel/oxidizer mix, and is able to sustain a rate of rapid oxidation that produces a chain 

reaction (Murali and Vijayalakshmi, 2014). This is commonly called the 

fire tetrahedron. Fire cannot exist without all of these elements in place and in the right 

proportions. Some fuel oxygen mixes may require a catalyst, a substance that is not 

directly involved in any chemical reaction during combustion, but which enables the 

reactants to combust more readily. Once ignited, a chain reaction takes place whereby 

fires can sustain its own heat by the further release of heat energy in the process of 

combustion and may propagate, provided there is a continuous supply of an oxidizer 

and fuel. If the oxidizer is oxygen from the surrounding air, the presence of a force of 

gravity, caused by acceleration, is necessary to produce convection, which removes 

combustion products and brings a supply of oxygen to the fire. Without gravity, a fire 

rapidly surrounds itself with its own combustion products and non-oxidizing gases from 

the air, which exclude oxygen and extinguish it (Nnabuko, 2015). 

Fire is one of the most common production safety accidents. The trend of fire can be 

mastered by analyzing the historical data. Prominent among the methods of predicting 

are based on models which employ regression, time series or stochastic approaches. The 

prediction of fire accidents is an important component of fire management decision-

making process. However, fire accidents are influenced by many complex factors, such 
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as environment, climate, fire investment, public’s fire safety consciousness and so on, 

the statistic data of fire accidents always take on the characteristic of both randomicity 

and fluctuation, so it is quite important to select an appropriate forecasting method, 

Many researches around the world, had proposed several methods in atttempt to provide 

information that could enable humanity to prevent or reduce fire accident occurance. 

Some of the researchers are reported as follows. 

2.2 Review of Related Materials 

Keane et al. (2013) conducted a research on Fire Severity Mapping System for Real-

Time Fire Management Applications and Long-Term Planning. Accurate, consistent, 

and timely fire severity maps are needed in all phases of fire management including 

planning, managing, and rehabilitating wildfires.The problem is that fire severity maps 

developed from satellite imagery are difficult to use for planning wildfire responses 

before a fire has actually happened and can’t be used for real-time wildfire management 

because of the timing of the imagery delivery. The objective of the research was to 

blend many fire severity mapping approaches that will help meet demands from fire and 

other natural resource managers for accurate and rapid assessment of spatial fire 

severity given time, funding, and resource constraints. Also, China fire services in 2012 

modelled Fire Risk Assessment of Residential Buildings Based on Fire Statistics from 

China by considering incidence of fire from 1991 to 2001. From their analysis , it was 

noted that the spatial temporal and causal fire incident data for the last six years have 

been analysed to gain an understanding of fire characteristics and the elements affecting 

fire risks. It was found that the number of fires was observed to be higher during cold 

winter months, and fires were more frequent during the weekend. The number of fires 

was lower during night time, whereas the number of fire deaths between midnight and 

4a.m. was much higher than at other times of the day. Most fire incidents occurred in 
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residential buildings. In economically developed East China, the fire situation is much 

more serious. Electrical failures and improper use of fire in daily life were major causes 

of fire incidents. Based on the statistical data from China’s fire services and the China 

Statistical Year book, the risk of occupant deaths and the risk of direct property loss are 

calculated to express the risk level in residential buildings. It was found that the risk of 

occupant deaths had a declining trend over the years. Statistics is considered a useful 

tool for learning from the actual events , and it helps decision makers develop proactive 

fire protection measures to reduce fatalities and financial losses caused by fires.  

Also Shin (2015) studied how design fires can be used in Fire Hazard Analysis. Many 

countries have introduced, or are planning to introduce in the near future, performance 

and aim based codes by the use of engineering analysis of fire development and 

occupant evacuation of the performance and aim based code were considered and the 

level of safety provided to the occupants in a building by a particular fire safety design 

were assessed Central to this performance based on the approach that was used for a 

suitable design fires that can characterize typical fire growth in a fire compartment. The 

research gave description of what features of design fires needed and how they can help 

analyse fire hazards to the occupants in a building as a result of smoke movement, 

untenable state in the stairs , and occupant response and evacuation. 

Asante (2012) used  regression analysis to study Fire Outbreaks in Assin North 

Municipality. The analysis sought to identify the five main causes of fire outbreaks 

(electrical, commercial, domestic, bush fire and institutional) and determine its effect on 

quarterly total number of fire outbreaks and develop implementation control and 

precaution system. The study was based on cases in Assin North Municipality Fire 

Outbreaks and covered ten years quarterly period from 2001 to 2010.During the 

analytical stages of the project, it was realized that the data obtained defined the 
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assumption of the normal distribution. From the analysis, it was concluded that, the five 

variables( electrical, commercial, domestic, bush fire and institutional) were the best 

predictors of the quarterly total number of fire outbreaks and the researcher 

recommended that there should be intense education on fire outbreak in the country at 

large and also urge people that call the fire service helpline to fake fire outbreaks to stop 

in order for Ghana Fire Service to embark on their duties professionally and efficiently. 

Ardianto (2018) used the Geographically Weighted Regression (GWR) in his doctoral 

dissertation to study local spatial drivers of residential fires in Melbourne, Australia. 

Ardianto (2018) found, for example, that owning an apartment increased fire risk more 

in the eastern Melbourne and decreased it in the central business district. Results 

indicate that the explanatory variables show great variability not only in their predictive 

outcome, but also in their intensity and direction across the study area. Overall, these 

studies prove that residential fires are nonstationary, and the GWR is able to address 

this problem and to find spatial variations in the study area (Spatenkova and Virrantaus 

2013; Ardianto 2018). 

Shin et al. (2014) selected the priority of fire and explosion danger of chemical 

material, and presented guidance, supervision and safety education method for disaster 

prevention of middle and small scale site after analyze the prevention data of the fire 

and explosion disaster. Shin (2015) presented that cause of welding, heater and electric 

power as current situation each principle factor of fire explosion is 78%, and suggested 

transmission and distribution, machine facility and chemical products as cause material. 

Oh (2015) has studied fire disaster factors of 7 major industries and to establish a 

preventive measure with special reference to apartment building project. For this 

purpose, countermeasure was planned by analyzing disaster cases and preventive 

measure was suggested by figuring out progression of work, risk factors of fire by 
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industrial type and inflammable and combustible materials. As mentioned above, 

research about fire accident cause analysis have studies that have only analyzed fire 

cause material and each work process. However, there has not been a study that 

analyzed a variety cause of fire accident (as time, season and official management and 

so on.). Therefore, this study aims to analyze the cause of fire accident based on the 

collected data of news accrued in construction site using big data analysis method. 

Pantousa (2017), developed a Fire-Structure Interface (FSI) simplified dual-layer 

model. The model calculates the temporal evolution of the gas-temperature in the fire 

compartment in every virtual zone which is divided in two layers (hot and cold layer). 

Sakurahara et al. (2018),  developed an integrated probabilistic risk assessment 

methodological framework for Fire PRA. The Fire Simulation Module (FSM), includes 

state-of-the-art models of fire initiation, fire progression, post-fire failure  damage 

propagation, fire brigade response, and scenario-based damage is used in simulation 

using a computational fluid dynamics  (CFD) code, fire dynamics simulator.  

Nilson et al. (2015) conducted some computational simulations and experiments. The 

comparisons showed that the fire diameter and geometry of the enclosure influence the 

grid size. Fire dynamic simulator were reliable for far field temperature predictions 

when grid sizes of up to half the fire diameter were used. For near field predictions, the 

models require a finer grid size to meet more accurate predictions. 

Jujuly et al. (2015), conducted a three-dimensional Computational Fluid Dynamics 

(CFD) simulation of Liquefied Natural Gas (LNG) pool fire using ANSYS CFX-14. 

The CFD model solves the fundamental governing equations of fluid dynamics, namely, 

the continuity, momentum and energy equations. Several built-in sub-models are used 

to capture the characteristics of pool fire.  

https://www.sciencedirect.com/topics/engineering/compartment-fire
https://www.sciencedirect.com/topics/engineering/compartment-fire
https://www.sciencedirect.com/topics/engineering/damage-propagation
https://www.sciencedirect.com/topics/engineering/damage-propagation
https://www.sciencedirect.com/topics/engineering/computational-fluid-dynamic
https://www.sciencedirect.com/topics/engineering/continuity-equation
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Maragkos et al. (2017), compared Large Eddy Simulations (LES) using advanced 

modelling approaches related to thermophysical, turbulence and combustion modelling, 

with some of the standard models used in the fire community. A comparison between 

the predictions of the new and the standard models available in the code against 

experimental data, it is identified that the predictions with the advanced modelling 

approaches are qualitatively and quantitatively better when compare to the standard 

models in the code. 

According to Kacem et al. (2016), developed an in-depth pyrolysis model of a semi-

transparent solid fuel (PMMA) with in-depth radiation and a moving gas/solid interface 

which was coupled with a CFD code including turbulence, combustion and radiation for 

the gas phase. 

However, only a few studies adopted numerical simulation of fire in the fire accident 

investigation. A representative example in this regard is the National Institute of 

Standards and Technology of the US, which has used FDS in assisting the investigation 

on some typical fire cases. For instance, it simulated the fire taking place in a single-

story timber-structured night club in Rhode Island in February, 2003, demonstrating the 

consistency between the results of Fire Dynamics Simulator (FDS) numerical 

simulation and the results of full-scale fire experiment and exhibiting the role of 

firefighting facilities in fire control under equal conditions. 

  

 

 

 

https://www.sciencedirect.com/topics/engineering/large-eddy-simulation
https://www.sciencedirect.com/topics/engineering/combustion-modeling
https://www.sciencedirect.com/topics/engineering/pyrolysis
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CHAPTER THREE 

3.0                                        MATERIALS AND METHOD 

3.1 Study Area and Data Source 

The data used in this research work were collected from the archive of Niger State Fire 

service for the period of 8 years (2013 – 2020). Niger state with a population of 

5,556,247 million people (National population commission, 2020) is located in the 

North central zone along the Middle Belt region of Nigeria. It is classified as one of the 

largest states in the country (in terms of landmarks), spanning over 86,000 km2 in land 

area.  

3.2 Hidden Markov Model 

A Hidden Markov Model consists of two(double) stochastic processes. The first 

stochastic process is a Markov chain that is characterized by states and transition 

probabilities. The states of the chain are externally not visible, therefore “hidden”. 

The second stochastic process produces emissions observable at each moment, 

depending on a state-dependent probability distribution. It is important to notice that the 

denomination “hidden” while defining a Hidden Markov Model is referred to the states 

of the Markov chain, not to the parameters of the model.  

3.2.1 Characteristics of hidden markov model 

Hidden Markov Model is characterized by the following  

N= number of states in the model 

M= number of distinct observation symbols per state 

Q = a state sequence of length 𝑇 taking values from 𝑆, 
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TqqqqQ ,...,, 321=                                                                  (3.1) 

TooooO ,...,, 321=                                                                     (3.2) 

O  = an observation sequence consisting of 𝑇 observations, taking values from the 

discrete 

 ijaA = ,    a transition probability matrix 𝐴, where each ija  represents the 

probability of moving from state is to state js , with 1
1

=
=

N

J

ija  

( ) 
tj obB = ,    observation probability matrix     

where 

)|()( jtttj sqopob ==   is the probability that the symbol tO is emitted when the system 

is in  state js     

If the observation is continuous a probability density function is used as follows: 

1)( =
+

−

dxxb j

                                                              (3.3)

  

 j =   is the initial probability distribution, where i  indicates the probability of 

starting in state is . 

 Also,  

1
1

=
=

N

i

i  
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The Hidden Markov Model (HMM) is denoted by  

),,(  =                                                                                                     (3.4)                                          

3.2.2      Three fundamental problems of hidden markov model  

According to Rabiner, 1989 and Lawal, 2017, three fundamental problems of HMM are 

as follows:  

Problem 1-Evaluation: Given the complete parameter set   and an observation 

sequence },...,,{ 21 ToooO = , determine the likelihood   )|( OP . 

Problem 2 – Decoding: Given the complete parameter set   and an observation 

Sequence },...,,{ 21 ToooO = , determine the best hidden states sequence  

}.,...,{ 21 TqqqQ =  

Problem 3 – Training: Given the observation sequence 

}...,{ 21 ToooO = ,  

How to estimate the parameters ),,( rrr BA  =  of the HMM?  

This is the model ),,(


 =  BA  that maximizes the probability of  

},...,,{ 21 ToooO = . 

3.2.2.1 Solution to problem 1 (evaluation) 

This is an evaluation problem, which means that given a model and a sequence of 

observations, what is the probability that the observations was generated by the model. 
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This information can be very valuable when choosing between different models wanting 

to know which one that best matches the observations.  

To find a solution to problem 1, the probability of a given observation sequence, 

( )ToooO ,...., 21=    given the model ( ) ,,=  was calculated. In other words, 

)|( OP was obtained. The most intuitive way of doing this, is to enumerate every 

possible state sequence of length T. then, the state sequence is given as 

 },..,{ 21 TqqqQ =                                                                                             (3.5) 

Where 
1q  is the initial state the probability of observation sequence O given a state 

sequence in equation (3.6)  

( ) ( )
=

=
T

t

tt qopQOP
1

,/,/                       (3.6) 

By definition of B we obtain  

),|,...,(),,,...|(),|( 1111  QooPQoooPQOP TTT −−=                                (3.7) 

),|,...,(),|(),|( 11  QooPqoPQOP TTT −=  

)()........()(),|( 21

1
21 Tqqqt

T

t

t obobobqoP
T

=
=

                                    (3.8) 

And by the definition of   and A  it follows as: 

TT qqqqqqq

T

t

tt aaaqqPqPQP
132211

.....)|()()|(
2

11 −
== 

=

−                                (3.9) 

The joint probability of O and Q, the probability that O and Q occurs simultaneously, is 

simply the product of equation (3.8) and (3.9) as 
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)(

)(

)(

)(
.

)(

)(
)|(),|(














P

QQP

P

QP

OP

QOP
QPQOP






==                             (3.10) 

)|(),|()|,(  QPQOPQOP =                                                               (3.11) 

  

                  

)()....()(
112111

21 Tqqqqqqqq obaobaob
TTT −

=                                          (3.12) 

Equation (3.12) says that at the initial time 𝑡 = 1 are in state 𝑞1 with probability
1q , 

and generate the observation 
1o  with probability )(

1
obq . As time ticks from 𝑡 𝑡𝑜 𝑡 +

1( 𝑡 =  2) the transform from state 
1q  to 

2q  with probability of a qq 21 , and generate 

observation 
2o with probability )( 22

obq
 and so on until 𝑡 =  𝑇.  

Equation (3.12) is the joint probability of equation (3.8) and equation (3.9). 

Hence, we obtain this  

 ==
all Q

QPQOPQOPOP )|(),|()|,()|(                                                 (3.13) 

This procedure involves a total of 2TNT calculations, which makes it infeasible, even 

for small values of N and T. Therefor it is needed to find a more efficient way of 

calculating 𝑃(𝑂|𝜆). Such a procedure exists and is called the Forward-Backward 

Procedure. For initiation the forward variable is defined as:  

)|,,..,,()( 21  ittt sqoooPi ==                                                                    (3.14)                                                                                           

)|()|()()|,(
1

1

2

1 t

T

t

tt

T

t

t qoPqqPqPQOP 
=

−

=

=
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In other words, the probability of the partial observation sequence, tooo ,...,, 21  until 

time 𝑡 and given state is  at time 𝑡. )(it  can be inductively solved as follows: 

Initialization. 

)|,()( 111  isqoPi ==                                                               (3.15) 

 ( ) ( )11 obi rii =                                                    (3.16)                                                                           

)|,,...,,()( 11211  jttt sqoooPj == +++                                          (3.17) 

)|()|,,...,,( 11121  jtjtt sqPsqoooP === +++                                                                  

)|(),|(),|,...,,( 111121  jtjttjtt sqPsqoPsqoooP ==== ++++                                                                      

)()|,,...,,( 1121 ++ == tjrjtt obsqoooP   

)|,,,....,,()( 1211 jtitt

i

tj sqsqoooPob === ++   

)|(),|,,....,,()( 1211  ititjtt

i

tj sqPsqsqoooPob ==== ++   

),(),|(),|,,....,,()( 1211  ititjtitt

i

tj sqPsqsqPsqoooPob ===== ++   

 

 

ijitt

i

tj qsqoooPob ),|,,....,,()( 211 == +
 

)()()( 11 ++ = tj

i

ijtt obqij      (Lawal, 2017)                                 (3.18)    

),(),|,,....,,()( 211  itijitt

i

tj sqPqsqoooPob === +
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From equation (3.18) it can be observed that the probability of the observation sequence 

can be calculated as:  

)|,()|(
1

 
=

==
N

i

iT sqOPOP                 (3.19)                                                                                     

Termination: 


=

=
N

i

T iOP
1

)()|(                                                  (3.20) 

Step 1 sets the forward probability to the joint probability of state js and initial 

observation
1o . The second step, which is the heart of the forward calculation is 

illustrated in figure 3.1. 

 

 

 

 

 

Figure 3.1: Diagram of forward probability 

 (Rabiner, 1989) 

Figure 3.1 Illustration of the sequence of operations required for the computation of the 

forward variable 𝛼𝑡(𝑖).  

It can be see that state js  at time 𝑡 + 1 can be reached from 𝑁 different states at time 𝑡. 

By summing the product over all possible states is ,1 ≤  𝑖 ≤ 𝑁 at time t results in the 
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probability of js  at time 𝑡 + 1 with all previous observations in consideration. Once it 

is calculated for js , it is easy to see that )(1 jt+  is obtained by accounting for 

observation 1+to  in state js , in other words by multiplying the summed value by the 

probability )( 1+tj ob .The computation of (3.18) is performed for all states js ,1 ≤  𝑗 ≤

 𝑁, for a given time 𝑡 and iterated for all 𝑡 = 1 ,2, . , 𝑡 − 1. Step 3 then gives 𝑃(𝑂|𝜆) by 

summing the terminal forward variables )(iT . This is the case because, by definition 

)|,,..,,()( 21  ittt sqoooPi ==
 

And therefore, P(O|λ) is just the sum of the )(iT ’s.  


=

=
N

i

T iOP
1

)()|(   

In a similar manner, it can be consider a backward variable, )(it  defined as follows 

),|,...()( 1  itTtt sqooPi == +           (3.21) 

 )(it  Is the probability of the partial observation sequence from t +1 to the last time, T, 

given the state is  at time 𝑡 and the HMM . By using induction, )(it  is found as 

follows:                                                                                    

Initialization:  

1)( =iT            (3.22) 

Induction: 

),|,...()( 1  itTtt sqooPi == +         

),|,,....,()( 11  itjtT

j

tt sqsqooPi === ++                                                    (3.22) 
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),|(),|,..,()( 111  itj

j

tjtTtt sqsqPsqooPi ==== +++
 

ijitjt

j

Ttitjttt asqsqoqPsqsqoPi ),,|,...,(),,|()( 1211  ===== ++++  

ijjt

j

Ttjttt asqoqPsqoPi ),|,...,(),|()( 1211  === ++++  

ijitjt

j

Ttitjttt asqsqoqPsqsqoPi ),,|,...,(),,|()( 1211  ===== ++++  

)()()( 11 jobai ttjr

j

ijrt ++= 

                                                                                   (3.23) 

Step 1 defines )(iT  to be for all is .  Step 2, which is illustrated in figure 3.2, shows that 

in order to have been in state is  at time 𝑡, and to account for the observation sequence 

from time 𝑡 + 1 and on, it can consider all possible states js  at time 𝑡 + 1, accounting 

for the transition from is  to js  as well as the observation 1+to  in state js , and then 

account for the remaining partial observation sequence from state js (Lawal, 2017). 

 

Figure 3.2: Diagram of backward probability 

                                                            (Rabinar,1989) 
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The Figure 3.2 Illustration of the sequence of operations required for the computation of 

the backward variable )(it . As mentioned before the backward variable is not used to 

find the probability 𝑃(𝑂|𝜆). Later on it will be shown how the backward as well as the 

forward calculation are used extensively to help to  solve the second as well as the third 

fundamental problem of HMMs. 

3.2.2.2 Solution to problem 2 (decoding)  

In this second problem, attempt to find the ‘correct’ hidden path that is, trying to 

uncover the hidden path. This is often used when we want to learn about the structure of 

the model or to get highest state sequences. 

There are several ways of finding the “highest” state sequence according to a given 

observation sequence. The difficulty lies in the definition of an highest state sequence. 

One possible way is to find the states tq  which are individually most likely. This criteria 

maximizes the total number of correct states. To be able to implement this as a solution 

to the second problem we start by defining the variable 

),|()(  osqPi itt ==                                                                 (3.24)  

Which gives the probability of being in state is  at time 𝑡 given the observation 

sequence, O, and the model  𝜆. Equation (3.24) can be expressed using the forward and 

backward variables, )(it  and )(it  as follows: 

 

 )|(

)(),|(
)(






OP

sqPsqOP
i itit

t

==
=
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 =

==
= +

j

it

itTtitt

sqoP

sqooPsqooP

)|,(

),|,...,(),|,...,( 11




                                      

 ==

==
= +

j

jtjt

itTtitt

sqPsqoP

sqooPsqooP

)|(),|(

)|....()|,,..( 11




 


=

j

tt

tt
t

jj

ii
i

)()(

)()(
)(






         (Lawal, 2017)                (3.25) 

It is simple to see that )(it  is a true probability measure. Since )(it  accounts for the 

partial observation sequence
Tooo ,..., 21

 and the state is  at time 𝑡, while )(it  accounts 

for the remainder of the observation sequence Ttt ooo ,..,, 21 ++  given state is  at time 𝑡. 

The normalization factor 𝑃(𝑂|𝜆) = ( ) ( )
=

N

i

tt ii
1

  makes )(it  a probability measure, 

which means that  

( ) .1
1

=
=

i
N

i

t                      (3.26) 

We can now find the individually most likely state tq  at time 𝑡 by using )(it  as 

follows:  

=tq maxarg  .1)],([1 TtiNi t                                    (3.27) 

 Although equation (3.27) maximizes the expected number of correct states there could 

be some problems with the resulting state sequence. For example, when the HMM has 

state transitions which has zero probability the highest state sequence may, in fact, not 

even be a valid state sequence. This is due to the fact that the solution of equation (3.27) 
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simply determines the most likely state at every instant, without regard to the 

probability of occurrence of sequences of states. 

To solve this problem we could modify the optimality criterion. For example, by 

solving for the state sequence that maximizes the number of correct pairs of states 

),( 1+tt qq  or triples of states ),,( 21 ++ ttt qqq .  

The most widely used criterion however, is to find the single best state sequence, in 

other words to maximize 𝑃(𝑄|𝑂, 𝜆) which is equivalent to maximizing 𝑃(𝑄, 𝑂|𝜆). To 

find the highest state sequence use a method, based on dynamic programming, called 

the ‘VITERBI ALGORITHM’ which is often used. 

To find the best state sequence },...,,{ 21 TqqqQ =  for a given observation sequence

},....,,{ 21 ToooO = , we need to define the variable. 

]|,....,,,,,,....,,[max)( 21121  tttt oooiqqqqPi == −                                                (3.28) 

Which means the highest probability along a single path, at time 𝑡, which accounts for 

the first 𝑡 observation and ends in state is . By induction we have: 

)(])([max)( 11 ++ = tjijtt obaiij                  (3.29) 

To be able to retrieve the state sequence, we need to keep track of the argument which 

maximized equation (3.29) for each 𝑡 and  𝑗. This is done via the array )( jt . The 

complete procedure for finding the best state sequence can now be stated as follows: 

Initialization: 

 
i

irirt

i

obi

=

=

0)(

),()(

1

1




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Recursion )...........2( Tt =   

 
),()(max)( 1 tjrijrtit obaij −= 

         

 ijrtit aij )(maxarg)( 1−= 
                                     (3.30) 

Termination: 

   𝑃 ∗ =  𝑚𝑎𝑥 1 ≤ 𝑖 ≤ 𝑁[𝛿𝑇(𝑖)] 

                     )(maxarg iq TiT =


  

Path (state sequence) backtracking  

 
1,....2,1),( 11 −−== +



+

 TTtqq ttT 
                                           (3.31) 

The variable )( jt  keeps track of the optimal state at time 𝑡 − 1 if the state at time 𝑡 

is 𝑗. Once the best state at time 𝑇 is known (which is )Tq


, the optimal path can be 

retrieved by backtracking the variable  (Lawal, 2017) 

3.2.2.3 Solution to problem 3 (training) 

This is training process and it involves the adjustment of the model parameter to best fit 

the observations. In general, the goal of learning is to calculate   that maximizes the 

likelihood )|( OP of the sample of training sequence, using the Baum-Welch 

Algorithm, we define ),( jit  as the probability of being is at time t and js at time 

1+t , given the whole observation 𝑂 and the model ,  that is  

),|,(),( 1  OsqsqPji jtitt === +                                                                             (3.32) 
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The needed information for the variable ( )jit ,  is shown in figure 3.3. 

  

 

 

 

 

Figure 3.3: Diagram of forward and backward variables 

                         (Rabinar,1989) 

The Figure 3.3 Illustration of the sequence of operations required for the computation of 

the joint event that the system is in state is  at time 𝑡 and state js  at time 𝑡 + 1. From 

this figure one should be able to understand that ),( jit  can be written using the 

forward and backward variables as follows:        

   

             (3.33) 

)|(

)|(),|(),,|( 11





OP

sqPsqsqPsqsqOP ititjtjtit =====
=

++
 

)|(

)|(),|,..,(),|(),|,...,( 11111





OP

sqPasqooPsqoPsqooP jtijjtTtjttitt ====
=

++++
  (3.34) 


= =

++

++++ ===
=

N

i

N

j

ttjrijrt

ijrjtTtjttitt

jobai

asqooPsqoPsqoooP

1 1

11

111121

)()()(

),|,..,(),|()|,..,,(




               (3.35)                   
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
= =

++

++
=

N

i

N

j

ttjrijrt

ttjrijrt

t

jobai

jobai
ji

1 1

11

11

)()()(

)()()(
),(






          (Lawal ,2017) 

Also the probability measure since the numerator is simply )/,,( 1 OsqsqP jtit == +  and 

denominator is 𝑃(𝑂|𝜆),  as described in equation (3.25),
 

)(it  is the probability of 

being in state is  at time t, given the observation sequence and the model. Therefore, 

there is a close relationship between )(it and ),( jit . We can express )(it  as the sum 

of all ),( jit  over all existing states as follows:  


=

=
N

j

tt jii
1

),()( 

                                                                                                (3.37) 

 By summing )(it  is the expected number of visits to state is at a time𝑡, and ),( jit  

is the expected number of transition from is at time 𝑡 to js at time 𝑡 + 1. 

Using equation (3.4), (3.14), (3.21), (3.24) and (3.32), the Baum-Welch Algorithm 

follow as: 

The Baum-Welch Algorithm 

1. Initialize ),,(  BA=   

2. Calculate )(it 𝑎𝑛𝑑 )(it  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡, 𝑖 

3. Calculate ),( jit 𝑎𝑛𝑑 )(it 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 

4. Estimation of the model parameters ,,  for the HMM is as follows: 

(3.36)                                                                   
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i i (i)


 =                                                                                             (3.38)                                                                                                                                                                 

T 1

t

t i

T 1ij

t

t 1

(i, j)

(i)
a

−


=

−

=



=






                                                                                  (3.39) 


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
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                                (3.40) 

Repeat Step 2 until convergence 

where  


−

=

=
1

1

)(
T

t

t i Expected number of transition from state 𝑖  

=
−

=

),(
1

1

ji
T

t

t Expected number of transitions from state 𝑖 to state 𝑗 

 

 

 

With the above definition, one can then outline the Baum-Welch Re-estimation formula 

as follows. 

i



 =Expected frequency in state 𝑖 at time 𝑡 = 1  

)(it=                                                                                                                     (3.41) 

ija


=
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝑖 𝑡𝑜 𝑠𝑡𝑎𝑡𝑒 𝑗

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝑖
                                               (3.42) 
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jb (m)


=
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑗 𝑎𝑛𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑖𝑛𝑔 𝑚𝑣

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑗
                                         (3.43) 


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   (Lawal, 2017) and (Rabiner, 1989). 

We should see that, from equation (3.38) can be interpreted as the frequency in state is

at time 1+t ,  also from Equation (3.39) should be interpreted as the expected number of 

transitions from state is  to js  divided by the number of transitions from state is . And 

finally, equation (3.40) can be seen as the expected number of times in state js  and 

observing the symbol m , divided by the expected number of times in state js . If the 

current HMM is defined as },,{  =  and used to compute the right hand side of 

equation (3.38)  to equation (3.40), and at the same time re-estimation HMM can be 

defined as },,{


=   determined from the left hand side of equation (3.38) to 

equation (3.40) it has been proven that either 

1. The initial model 𝜆 defines a critical point of the likelihood function, in which case 

 =


 or 2. Model 


  is more likely than model 𝜆 in the sense that )|()|(  OPOP 


, 

which means that one have found a new model


  from which the observation sequence 

is more likely to have been produced. 

An iterative re-estimation process, replacing λ with


 can be done to a certain extent, 

until some limiting point is reached. The final result of this re-estimation procedure is 

called a maximum likelihood estimation of the HMM. The problem, earlier discussed is 

that the forward-backward algorithm only leads to a local maximum. For most 
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applications the optimization surface is very complex and has many local maxima. The 

re-estimation formulas of equation (3.38) to equation (3.40) can be derived directly 

from Baum´s auxiliary function (Rabinar,1989). 

( )  =


Q

QOPOQPQ )/,(log,/),(        (3.44) 

By maximizing over


 . It has been proven that maximization of  ),(


Q  leads to an 

increasing likelihood as follows: 

)/()/()],([


  OPOPQ        (3.45) 

An important aspect of the re-estimation procedure is that the stochastic constraints of 

the HMM parameters, namely 

1
1

=
=

N

i

I                    (3.46) 

1
1

=
=

N

J

ija             (3.47) 
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1

=
=



k

N

k

j vb           (3.48) 

Are automatically satisfied at each iteration (Rabinar,1989). 

3.3 Hidden Markov Model for Prediction of Fire Accident Occurrence 

3.3.1 Model formulation 

Fire accidents are influence by many complex factors such as environment, climate, 

Fire investment, public fire safety consciousness and so on, the statistic data of fire 

accidents always take on the characteristic of both randomicity  and fluctuations (Sun 

and Mao, 2011). Since the fire accident occurrence depends on these factors and these 

factors are not static both varies along the quarters of the year this means that, the 
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number of occurrence of fire accident also varies along the quarters of the year. This 

situation is stochastic in nature and of the double type. This means that the number of 

occurrence of fire accident in each quarter of the years varies and the factor influencing 

the occurrence of the fire accident also varies among the quarters of the year. In general, 

fire accident occurrence among quarters of the year is a double stochastic process. It is 

based on this that HMM is being adopted to model the number of fire accident 

occurrence in Niger State. 

Now, Let the number of fire accident occurrence within the quarters of the year be 

taking as the state of the model and the factors influencing fire accident occurrence 

within the quarters be taking as emission of the Hidden Markov Model, hence we have 

the following model assumptions 

(i) The transition between the states is governed by first order Markov dependency 

as represented in equation (3.49) 

             ijnnnnnn PiXiXiXiXjXP ====== −−−−+ },,,...,|{ 1122001                    (3.49) 

(ii) The probability of  generating current observation symbol depends on current 

state, as represented by equation (3.50) 

               ),|(),|(
1

 tt

T

t
qoPQOP

=
=                                                                        (3.50)    

(iii) The number of fire accident occurrence in a year is considered to be low, if it is 

less than 83 

(iv) The number of fire accident occurrence in a year is considered to be moderate, if 

it is within the range (83 - 159) 
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(v) The number of fire accident occurrence in a year is considered to be high, if it is 

above 159 

Hence, we have the following states and observations for the Hidden 

Markov Model of fire accident occurrence prediction in Niger state  

State 1: Low Fire accident occurrence  

State 2: Moderate Fire accident occurrence  

State 3: High Fire accident occurrence  

Observations: 

 Q1 = O1 = First Quarter (January to March) 

Q2 = O2 = Second Quarter (April to June) 

Q3 = O3 = Third Quarter (July to September) 

Q4= O4 =Fourth Quarter (October to December) 

The classification of states and the observations, and the assumption made in this work 

are based on the study area and the data obtained. 

 

Figure 3.4: Transition diagram of the fire accident occurrence model 
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The following are the possible emission from figure 3.4 

State 1: Emissions 

 b1(o1) = p(o1 at t|q1 at t)            b1(o2) = P(o2 at t|q1 at t)          

b1(o3) =  P(o3 at t|q1 at t)                             b1(o4) = p(o4 at t|q1 at t) 

State 2: Emissions  

  b2(o1) = P(o1 at t|q2 at t)            b2(o2) = P(o2 at t|q2 at t)        

b2(o3) = p(o3 at t|q2 at t)              b2(o4) = p(o4 at t|q2 at t) 

State 3: emissions 

b3(o1) = P(o1 at t|q3 at t)                   b3(o3) = p(o3 at t|q3 at t)          

   b3(o2) = P(o2 at t|q3 at t)                         b3(o4) = p(o4 at t|q3 at t) 

3.3.2 Transition probability matrix 

The transition between the states are represented by equation (3.51) 

















=

333231

232221

131211

aaa

aaa

aaa

A                                                                       (3.51) 

3.3.3 Observation probability matrix  

The matrix below represents observation emitted from the model 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
















=

43332313

42322212

41312111

ObObObOb

ObObObOb

ObObObOb

B                                                           (3.52)                       
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3.3.4 Initial probability distribution  

The initial probability distribution for the model is given below 

 321 ,,  =                                                                                               (3.53) 

3.3.5 The hidden markov model for fire accident occurrence  

The general Hidden Markov Model for the number of fire accident occurrence 

prediction is given by the compact notation in equation (3.54) 

( ) ,,=           (3.54) 

3.3.6 Hidden markov model training  

The Hidden Markov Model for fire Accident Occurrence developed will be trained 

using Baum Welch Algorithm introduced in section 3.2.2.3. This will enable the model 

to better understand the previous recorded information. At the end of the training, the 

new hidden Markov model  will best fit the observed data. The Viterbi algorithm will 

then make predictions with better accuracy. 
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CHAPTER FOUR 

4.0                                         RESULTS AND DISCUSSION  

4.1 Application of the Hidden Markov Model for Prediction of Number of Fire 

accident Occurrence 

The formulation of the model is presented in section 3.3. The data used in this 

illustration was collected from the archive of Niger State Fire Service for the period of 8 

years (2013-2020). The raw data is shown in appendix A - H and the summary is 

presented in Table 4.1 below.  

Table 4.1: Summary of State and Observation of Fire Occurrence for a Period of 

Eight Years   

Years                      States                      Observations  

2013                          1 (L)      (Q1) 

             1(L)                       (Q2) 

             1(L)      (Q3) 

               1(L)                         (Q4) 

2014                           1(L)      (Q1) 

             1(L)      (Q2) 

               1(L)                         (Q3) 

               1(L)                         (Q4) 

2015                         1(L)                  (Q1) 

          1(L)                          (Q2) 

    1(L)          (Q3) 

    1(L)                              (Q4) 

2016                         1(L)                          (Q1) 

                                1(L)                              (Q2) 
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                                   1(L)                          (Q3) 

                  1(L)                              (O4) 

2017               2(M)                             (Q1) 

                1 (L)                             (Q2) 

                1(L)                              (Q3) 

                1(L)                              (Q4) 

2018                2(M)                             (Q1) 

                1(L)                      (Q2) 

                1(L)                              (Q3) 

                1(L)                              (Q4) 

2019                2(M)                             (O1) 

                                 2(M)                             (Q2) 

                                                  1(L)                              (Q3) 

                                      2(M)                           (Q4) 

2020                              3(H)                          (Q1) 

                                     2(M)                     (Q2) 

                                     1(L)                      (Q3) 

               2(M)                     (Q4) 

 

4.2 Validity Test for the Model 

To test for the validity of the model, the parameters of the HMM1 were estimated using 

the fire accident occurrence data from 2013 to 2017, then make prediction for 2018, 

2019 and 2020.  
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The Transition Count Matrix (C), Pseudo count Transition Matrix (S) and Transition 

Probability Matrix (A) are given in Equations (4.1), (4.2) and (4.3) respectively. 

















=

000

001

0117

C             (4.1) 

















=

111

112

1218

S                  (4.2) 

















=

3333.03333.03333.0

2500.02500.05000.0

0476.00952.08571.0

A                        (4.3) 

While Observation count matrix (E), Pseudo count Observation matrix (D) and 

Observation probability matrix (B) are given in equations (4.4), (4.5) and (4.6), 

respectively. 

















=

0000

0001

5554

E                     (4.4) 

















=

1111

1112

6665

D                     (4.5)    

















=

125.0125.0125.0125.0

125.0125.0125.0250.0

750.0750.0750.0625.0

B       (4.6) 

The initial state probability distribution is given below  

=  [0.95, 0.05, 0]          (4.7) 
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The general HMM1 is represented by equation (4.8) 

( ) ,,1 BA=                                                                                                    (4.8) 

After 1000 iteration of the Baum Welch Algorithm, The equation (4.8) stabilised to 

equation(4.9), the equation (4.8) was trained using a built-in Baum algorithm Algorithm 

function in the Matlab 2015. 









=


  ,,1                                                                                              (4.9) 

where  

















=


0000.00000.00000.1

0000.10000.00000.0

0000.04444.05556.0

A                                                                 (4.10) 

















=


000.0000.0000.1000.0

000.0000.0000.0000.1

500.0500.0000.0000.0

B                                                             (4.11) 

And =  [0.95, 0.05, 0]              (4.12) 

4.3 Making Prediction with the Model   

From the summary of fire accident data presented in table 4.1, the process is in State 1 

at the last Quarter of 2017 (that is with Observation Q4). Now, to obtain the likely state 

sequence of the process in 2018 given the observation sequence of the year 2018 that is 

Q1, Q2, Q3 and Q4, we use Viterbi algorithm presented in section(3.2.2.2) as shown in 

figure 4.1. 

To avoid underflow of the Viterbi algorithm, each of the obtained node in the 

computation process was normalised using the following equations: 
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( )
=

=
N

t
t

t

i
c

1

1


                    (4.13) 

                        (4.14)   

 

 

Figure 4.1: Viterbi Algorithm for Observation Sequence Q4,Q1,Q2,Q3Q4 

State 1 to  state 2, has the highest probability value under Q1 that is, (0.95 x 

0.44)1.00=0.4222, normalising this value using equation (4.13) and (4.14) the value 1 

was obtained, then move to the next path of computation. 

State 2 to  state 3, has the highest probability value under Q2 that is (0.05 x 

1.00)1.00=0.0500, normalising this value using equation (4.13) and (4.14) the value 1 

was obtained , then move to the next path of  the computation. 
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State 3 to  state 1, has the highest probability value under Q3 that is (0.95 x 

0.55)0.50=0.2639, normalising this value using equation (4.13) and (4.14) the value 1 

was obtained, then move to the next path of  the computation. 

State 1 to  state 1, has the highest probability value under Q4 that is, (0.95 x 

0.55)0.50=0.2636, normalising this value using equation (4.13) and (4.14) the value 1 

was obtained, The results of the computation of figure 4.1 are represented in Table 4.2 

below. 

Table 4.2: The Result for 2018 Number of Fire Accident Occurrence Based on 

Viterbi Algorithm Prediction  

Year/Months 2017                        2018 

States:  1 2 3 1 1 

Observation:          Q4 Q1 Q2 Q3 Q4 

 

Similarly from the calculation of Table 4.2, the process is in State 1 at the  last Quarter 

of  2018 (that is with Observation Q4). Now, to obtain the likely state sequence of the 

process in 2019 given the observation sequence of the year 2019 that is Q1, Q2, Q3 and 

Q4, hence the use viterbi algorithm presented in section (3.2.2.2) as shown in figure 4.2. 

To avoid underflow of the viterbi algorithm each of the obtained node was normalised 

in the computation process using the following equations (4.13) and (4.14) 
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Figure 4.2: Viterbi Algorithm for Observation Sequence Q4,Q1,Q2,Q3,Q4 

State  1 to  State 2, has the highest probability value under Q1  that is (0.444  x 

1.00)1.00=0.444, normalising this value using equation (4.13) and (4.14) we obtain the 

value 1, State 2 to  State 3, has the highest probability value under Q2 that is, 

(1.000x1.000)1.00=1.000, State 3 to  state 1, has the highest probability value under Q3 

that is, (1.000x1.000)0.50= 0.50, normalising this value using equation (4.13) and (4.14) 

we obtain the value 1. 

State 1 to  state 1, has the highest probability value under Q4 that is, (1.000x0.55)0.50 = 

0.2775, normalising this value using equation (4.13) and (4.14) we obtain the value 1.  

The results of the computation of figure 4.2 are represented in Table 4.3. 
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Table 4.3: The Result for 2019 Number of Fire Accident Occurrence Based On 

Viterbi Algorithm Prediction 

Years                       2019 

States 2 3 1 1 

Observation Q1 Q2 Q3 Q4 

 

Similarly, the process is in State 1  at last Quarter of  2019 (that is with Observation 

Q4). Now, to obtain the next likely state sequence of the process in 2020 given the 

observation sequence of the year 2020 that is Q1, Q2, Q3 and Q4, we use viterbi 

algorithm presented in section(3.2.2.2) as shown in figure 4.3. 

To avoid underunderflow of the Viterbi algorithm we normalised each of the obtained 

node in the computation process using the following equations(4.13) and (4.14) 

 

Figure 4.3: Viterbi Algorithm from Q4Q1Q2,Q3,Q4 
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State 1 to  state 2, has the highest probability value under Q1  that is(0.444  x 

1.00)1.00=0.444, normalising this value using equation (4.13) and (4.14) we obtain the 

value 1, State 2 to  state 3, has the highest probability value under Q2 that is, 

(1.000x1.000)1.00=1.000. 

State 3 to  state 1, has the highest probability value under Q3 that is, (1.000x1.000)0.50= 

0.50, normalising this value using equation (4.13) and (4.14) we obtain the value 1,  

State 1 to  state 1, has the highest probability value under Q4 that is, (1.000x0.55)0.50 = 

0.2775, normalising this value using equation (4.13) and (4.14) we obtain the value 1,  

The results of the computation of figure 4.3 are represented in Table 4.4 below. 

Table 4.4: The Result for 2020 Number of Fire Accident Occurrence Based On 

Viterbi Algorithm Prediction 

Year 2020 

States 2 3 1 1 

Observation Q1 Q2 Q3 Q4 

  

In general, the summary of the fire accident occurence is shown in table 4.5 

Table 4.5: Summary of the Fire Accident Occurence 

Year 2018 2019 2020  

States 2 3 1 1 2 3 1 1 2 3 1 1 

Observation Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 
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Table 4.6: Comparison of the Predicted States and Observations, and the Actual 

States and Observations from Table 4.1. 

Year 2018 2019 2020 

Actual 

States 

2 1 1 1 2 2 1 2 3 2 1 2 

Predicted 

States 

2 3 1 1 2 3 1 1 2 3 1 1 

Observation Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

 

From the table 4.6, it can be observed that the prediction for 2018 Quarters has 75% 

accuracy, then 2018 and 2019 Quarter has 62.5% accuracy and lastly for 2018 to 2020 

has 50% accuracy. The result of the model clearly showed that, the model performed 

excellently  for short time prediction and performed fairly for long time prediction. 

4.4 Hidden Markov Model (HMM2) for Future Forecast  

HMM2 was developed to predict number of Fire Accident Occurrance for future years, 

the parameters of the model were determined using Fire Accident Occurrance data from 

2013 to 2020 after which the prediction for 2021 and 2022 was done. 

Transition Count Matrix 

















=

010

114

0519

C           (4.13) 

Pseudo count Transition Matrix 

















=

121

225

1620

S           (4.14) 
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Transition Probability Matrix 

















=

2500.05000.02500.0

2222.02222.05555.0

0370.02222.07407.0

A         (4.15) 

Observation Count Matrix  

















=

0001

2023

6864

C           (4.16) 

Pseudo count Observation Matrix 

















=

1112

3134

7975

S           (4.17) 

Observation Probability Matrix 

















=

0909.00909.00909.01818.0

2727.00909.02727.03636.0

6363.08181.06363.04545.0

      (4.18) 

Initial State Probability 

 0312.02187.075.0=                               (4.19) 

( ) ,,2 BA=          (4.20) 

After 1000 iteration of Baum Welch Algorithm, equation (4.20) stabilized to (4.21) 









=


  ,, BA                                                                                (4.21) 

where  
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















=


000.00000.00000.1

0000.10000.00000.0

0000.04667.05333.0

A        (4.22) 

















=


0000.00000.00000.10000.0

0000.00000.00000.00000.1

4000.06000.00000.00000.0

B        (4.23) 

 0312.02187.075.0


=           (4.24) 

The training was done using built-in Baum algorithm Algorithm function in the Matlab 

2015. 

4.4.1 Making prediction for 2021 

From the fire accident data presented in table 4.1, the process is in State 2 at the last 

Quarter of 2020 (that is with Observation Q4). Now, to obtain the likely state sequence 

of the process in 2021 given the observation sequence of the year 2021 that is Q1, Q2, Q3 

and Q4, the viterbi algorithm was used, as  presented in section (3.2.2.2) and shown in 

figure 4.4. 

To avoid underflow of the viterbi algorithm each of the obtained node was normalised 

in the computation process using equations (4.13) and (4.14). 
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Figure 4.4: Viterbi Algorithm for Observation Sequence Q4,Q1,Q2,Q3,Q4 

State 1 to state 2, has the highest probability value under Q1 that is, 

(0.75x0.4667)1.0000 = 0.3500 , normalising this value using equation (4.13) and (4.14) 

we obtain 1, then we move to the next path of  the computation. State 1 to  state 3, has 

the highest probability value under Q2 that is (0.0312x1.0000) 1.0000= 0.0312, 

normalising this value using equation (4.13) and (4.14) we obtain 1, then we move to 

the next path of  the computation. 

State 3 to  state 1, has the highest probability value under Q1 that is 

(0.0312x1.0000)0.6000 = 0.01872, normalising this value using equation (4.13) and 

(4.14) we obtain 1, then we move to the next path of  the computation.  State 1 to state 

1, has the highest probability value under Q4 that is (0.75x0.5333)0.4000 =  0.1599, 

normalising this value using equation (4.13) and (4.14) we obtain 1, The results of the 

computation of figure 4.4 are represented in Table 4.7 below. 
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Table 4.7: The Result for 2021 Number of Fire Accident Occurrence Based on 

Viterbi Algorithm Prediction 

Year 2020 2021 

States:  1 2 3 1 1 

Observation:          Q4 Q1 Q2 Q3 Q4 

 

4.4.2 Making prediction for 2022 

Similarly, from the calculation of Table 4.7, the process is in State 1 at the  last Quarter 

of  2021 (that is with Observation Q4). Now, to obtain the likely state sequence of the 

process in 2022 given the observation sequence of the year 2022 that is Q1, Q2, Q3 and 

Q4, we use Viterbi algorithm presented in section(3.2.2.2) as shown in figure 4.6. 

To avoid underflow of the Viterbi algorithm, we normalised each of the obtained node 

in the computation process using the following equations (4.13) and (4.14). 

 

Figure 4.5: Viterbi algorithm for Observation Sequence Q4,Q1,Q2,Q3 and Q4 
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State 1 to state 2, has the highest probability value under Q1 that is, (1.00x0.4667) 

1.0000 = 0.4667 , normalising this value using equation (4.13) and (4.14) we obtain 1, 

then we move to the next path of the computation. State 2 to state 3, has the highest 

probability value under Q2 that is (1.000x1.0000) 1.0000= 1.0000. 

State 3 to state 1 , has the highest probability value under Q3 that is (1.0000x1.0000) 

0.6000 = 0.6000, normalising this value using equation (4.13) and (4.14) we obtain 1, 

then we move to the next path of the computation. State 1 to state 1, has the highest 

probability value under Q4 that is (1.0000x0.5333) 0.4000 = 0.21332, normalising this 

value using equation (4.13) and (4.14) we obtain 1, The results of the computation of 

figure 4.6 are represented in Table 4.8 below. 

Table 4.8: The Result for 2022 Number of Fire Accident Occurrence Based on 

Viterbi Algorithm Prediction 

Years 2022 

States 2 3 1 1 

Observation Q1 Q2 Q3 Q4 

 

4.5 Discussion of Results 

The parameter of the HMM1 were determined using fire Accident Occurrance data from 

2013 to 2017. After 1000 iterations of the Baum Welch Algorithm, 1  stabilised to a 

new model
•

1 , Viterbi Algorithm was then used to make a prediction for Fire Accident 

Occurrance for 2018, 2019, and 2020. From the table 4.1, the HMM1 was in state 1 at 

2017 last Quarter(Q4), It make transition to state 2 in 2018 emitting observation (Q1),  

then it make move to state 3 emitting observation (Q2), at that point, it also make move 

to state 1 emitting observation (Q3), it then make move to state 1 emitting observation 

(Q4). The Validity test for the Quarters of 2018 show 75% Accuracy. 
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Similary in 2019 the process is in state 2 first Quarter (Q1), then make move to state 3 

emitting observation (Q2) , at that point, it also make move to state 1 emitting 

observation (Q3), it also make move to state 1 emitting observation (Q4). The validity 

test for 2018 and 2019 Quarters showed 62.5% Accuracy.  

Similar interpretation is given in 2020, the process is in state 2 at first Quarter of 2020 

(Q1). then it make move to state 3 emitting observation (Q2), at that point, it also make 

move to state 1 emitting observation (Q3), it also make move to state 1 emitting 

observation at (Q4), The validity test for 2018, 2019 and 2020 shows 50% Accuracy.  

Generally, the result for the validity test showed that the model perform excellently for 

short time prediction and perform fairly for long time prediction. 

 For the Future Forcast the parameter of the HMM2 were estimated using Fire Accident 

Occurrance data from 2013 to 2020. After 1000 iteration of the Baum Welch algorithm 

2 , stabilised to another model
•

2 , the Viterbi Algorithm was then used to make  

prediction for future Quarters. From the table 4.1, the HMM2 was in state 2 last Quarter 

of 2020, then it make move to state 2 emitting observation (Q1) in 2021 , at that point, it 

also make move to state 3 emitting observation(Q2), it also make move to state 1 

emitting observation(Q3) it also make move to state 1 emitting observation (Q4) 2021. 

 Similar interpretation is given to movement in state 2 emitting observation (Q1), at 

2022 at that point, it also make move to state 3 emitting observation (Q2), it also make 

move to state 1 emitting observation (Q3) it also make move to state 1 emitting 

observation at (Q4) year 2022. 
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CHAPTER FIVE 

5.0      CONCLUSION AND RECOMMENDATIONS  

5.1 Conclusion 

A stochastic model that forcast the number of fire accidents occurrence in Niger State 

has been developed and implemented in the State. A validity test was conducted on the 

model for both short and long time prediction. It was observed that, the accuracy of the 

model decreases as the period of the prediction increases. The short time prediction 

gave 75% accuracy while the long time prediction gave 50% accuracy. The results 

indicate that, the model is more reliable for short time prediction. Results from this 

model could serve as important information to the government for policy formulation 

that might assist in curbing the number of Fire accident occurrence in the State. 

5.2 Contribution to Knowledge 

In this study, the following contributions were made to knowledge; 

(i) A stochastic model was developed and implemented in Niger State for 

predicting the number of fire accidents occurrence. 

(ii) A validity test was established and it was used to conduct both short and 

long time predictions. 

(iii) The thesis established that short time prediction gave 75% accuracy whereas 

long time prediction gave 50% accuracy. 
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5.3 Recommendations 

Based on our findings, we make the following recommendations: 

1. The model should be used for short time prediction of maximum of four Quarters (a 

year). This is because it performs excellently for short time prediction and fairly for 

long time prediction. 

2. The government should routinely enlighten the general public on the prevention of 

fire accident occurrence especially when high number of fire accident occurrence is 

predicted in the State. 

3. The model developed should be extended by future researchers to capture the 

emission in a form of continuous observation; this will improve the accuracy of the 

model in prediction.  

  



65 
 

REFERENCES 

Ardianto, R. & Chhetri, P. (2019). Modeling Spatial–Temporal Dynamics of Urban 

Residential Fire Risk Using a Markov Chain Technique. International Journal 

of Disaster Risk Science, 4(3), 45 - 98. 

Ardianto, R. (2018). Modelling spatial temporal patterns and drivers of urban residential 

fire risk. Doctoral dissertation, 167 p. School of Business IT and Logistics, 

College of Business, RMIT University. 

Asante (2012). Regression Analysis on Fire Outbreaks. Unpublished BSc. Thesis. 

Asgary, A., Ghaffari, A. & Levy, J. (2010). Spatial and Temporal Analyses of Structural 

Fire Incidents and Their Causes: A case of Toronto, Canada. Fire Safety 

Journal, 45(1), 44-57. 

Ceyhan, E., Ertuğay, K. & Düzgün, Ş. (2013). Exploratory and Inferential Methods for 

Spatio-Temporal Analysis of Residential Fire Clustering in Urban Areas. 

Fire Safety Journal, 58, 226-239. 

Charles, J. (2000). Fire Technology. Malaysia International Conference Proceeding, 35: 

13- 89.  

Chhetri, P., Corcoran, J., Stimson, R. & Inbakaran, R. (2010). Modelling Potential 

Socioeconomic Determinants of Building Fires in South East Queensland. 

Geographical Research, 48(1), 75-85. 

Corcoran, J. & Higgs, G. (2013). Special Issue on Spatial Analytical Approaches in 

Urban Fire Management. Fire Safety Journal, 6(2), 1-2. 

Corcoran, J., Higgs, G., Brunsdon, C., Ware, A. & Norman, P. (2007). The use of 

Spatial Analytical Techniques to Explore Patterns of Fire Incidence: A South 

Wales case study. Computers, Environment and Urban Systems, 31(6), 623-

647. 

Corcoran, J., Higgs, G., Rohde D. & Chhetri, P. (2011b). Investigating the Association 

Between Weather Conditions, Calendar Events and Socio-economic Patterns 

with Trends in Fire Incidence: An Australian Case Study. Journal of 

Geographical System, 13(2), 193-226. 

Guldåker, N. & Hallin, P-O., Nilsson, J. & Tykesson, M. (2018). Spatio-temporal 

Patterns of Intentional Fires, Social Stress and Socio-economic 

Determinants: A Case Study of Malmö, Sweden. Fire Safety Journal, 7(3), 

71-80. 

Jennings, C. (2013). Social and Economic Characteristics as Determinants of 

Residential Fire Risk in Urban Neighbourhoods: A Review of the Literature 

and Commentary. Fire Safety Journal, 6(2), 13-19. 

Jujuly, M. M., Rahman,  A. & Ahmed, S.  (2015). LNG Pool Fire Simulation for 

Domino Effect Analysis. Reliability Engineering and System Safety, 3(2), 45 – 

121. 



66 
 

Kacem, A., Mense,  M. & Pizzo, Y. (2016). A Fully Coupled Fluid/Solid Model for 

Open Air Combustion of Horizontally-Oriented PMMA Samples. The Journal 

of the Combustion Institute, 5(2), 56 – 131. 

Keane, R. E., Morgan, P. M., Dillon, G. K., Sikkink, P. G., Karau, E. C., Holden, 

Z. A., and Drury, S. A. (2013). A Fire Severity Mapping System for Real-time 

Fire Management Applications and Long-term Planning: The Fire Sevices 

Project. JFSP Research Project Reports, 18(2), 345-356 

Lawal A. (2017). Stochastic Model of Rainfall Precipitations for Crop Production in 

Some Selected States of North Central Nigeria. Unpublised PhD thesis, 

Department of mathematics Federal University Technology minna. 

Maragkos, G.  Beji, T. & Merci, B.  (2017). Advances in Modelling in CFD Simulations 

of Turbulent Gaseous Pool Fires. Combustion and Flame, 18(1), 22-38. 

Murali,  L. G.  and  Vijayalakshmi,  M. M.  (2014).  Fire  Accidents  in  Buildings-case  

Studies. International Journal of Engineering Trends and Technology, 11(4), 

178-184.  

NEMA, (2012). National Emergency Management, Agency. Extracts from their 

Publications. 45 – 65. 

Nilson, F., Bonander, C. & Jonsson, A. (2015). Differences in Determinants Amongst 

Individuals Reporting Residential Fires in Sweden: Results from a Cross-

Sectional Study. Fire Technology, 51(3), 615–626. 

Nnabuko, R. E. (2015). Fire Safety and Hazard Management. President, Nigerian 

Association of Plastic Reconstruction and Aesthetic Surgeon, During the 19th 

Annual Scientific Conference in Conjunction with Nigerian Burn Society held in 

Lokoja, 15th October to 20th October, 2015. 

Oh, Y. T. (2015). Problem Analysis and Response of Securing Fire 

Protection of Apartment Building Projects, Master Thesis, KyungHee University 

(in Korean). 

Pantousa, D.  E. M. (2017). Interface Modelling Between CFD and FEM Analysis: The 

Dual-layer Post-processing Model. Engineering Computations Journal Impact, 

3(1), 45 -133. 

Rabiner, L. R. (1989). A Tutorial on Hidden Markov Models and Selected Applications 

in Speech Recognition. Proceedings of the IEEE, 77(2), 257-286. 

Sakurahara, T., Mohaghegh, Z. & Reihani, S.  (2018). An Integrated Methodology for 

Spatio-temporal Incorporation of Underlying Failure Mechanisms into Fire 

Probabilistic Risk Assessment of Nuclear Power Plants. Journal of Statistical 

Scholar, 3(2), 121 – 145. 

Shin, W. C. (2015). The Characteristics on Construction Site Fire That Caused Fatalities 

and Injures. Korean Institute of Fire Investigation, 56, 31 – 56. 



67 
 

Shin, W. C., Kwon, J. H. & Lee, Y. S. (2014). Case Study on Prevention 

of Fire/Explosion Accidents Caused by Chemical Substances in Small/ 

Medium Sized Construction Sites. Journal of Korea Safety Management 

Science, 4(2), 123 -321. 

Špatenková, O. & Virrantaus, K. (2013). Discovering Spatio-temporal Relationships in 

the Distribution of Building Fires. Fire Safety Journal, 6(2), 49-63. 

Sun, T. M., & Mao S. W. (2011). Optimal Simultaneous Delivery of Sirna and 

Paclitaxel via a “Two-in-One” Micelleplex Promotes Synergistic Tumor 

Suppression.  Engineering Computations Journal Impact, 3(1), 65 -73. 

Wuschke, K., Clare, J. & Garis, L. (2013). Temporal and Geographic Clustering of 

Residential Structure Fires: A Theoretical Platform for Targeted Fire 

Prevention. Fire Safety Journal, 62, 3-12. 

Yusuf, O. (2012). A Literature Review of Fire Incidence with an Emphasis on Urban 

Residential Fires. Fire Safety Journal, 8, 116-130. 

 

 

  



68 
 

APPENDIX A 

DATA ON FIRE ACCIDENT OCCURRENCES IN NIGER STATE YEAR, 2013 
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APPENDIX B 

DATA ON FIRE ACCIDENT OCCURRENCES IN NIGER STATE YEAR, 2014 
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APPENDIX C 

DATA ON FIRE ACCIDENT OCCURRENCES IN NIGER STATE YEAR, 2015 
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APPENDIX D 

DATA ON FIRE ACCIDENT OCCURRENCES IN NIGER STATE YEAR, 2016 
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APPENDIX E 

DATA ON FIRE ACCIDENT OCCURRENCES IN NIGER STATE YEAR, 2017 
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APPENDIX F 

DATA ON FIRE ACCIDENT OCCURRENCES IN NIGER STATE YEAR, 2018 
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APPENDIX G 

DATA ON FIRE ACCIDENT OCCURRENCES IN NIGER STATE YEAR, 2019 

 

 

 

 



93 
 

 

 

 



94 
 

 

  



95 
 

 

  



96 
 

 

  



97 
 

 



98 
 

 

  



99 
 

 



100 
 

 

  



101 
 

APPENDIX H 

DATA ON FIRE ACCIDENT OCCURRENCES IN NIGER STATE YEAR, 2020 
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